
Manual

June 2, 2015

This software is being developed at:

Applied Mathematics I

Modelling and Simulation

Friedrich-Alexander-University Erlangen-Nürnberg

Cauerstr. 11

D-91058 Erlangen

Contents

1 Introduction 1
1.1 Operating Instruction . 2
1.2 Work Scheme . 5

2 Items of Richy1D’s Menu 8
2.1 Command . 8
2.2 Library . 9
2.3 Problem . 9

2.3.1 Domain . 10
2.3.2 Boundary Conditions . 11
2.3.3 Initial Values . 14
2.3.4 Coefficient Functions . 15

2.4 Discretization . 17
2.5 Solvers . 17
2.6 Timesteppers . 20
2.7 Identification . 22

2.7.1 Identification of Standard Parametrization 22
2.7.2 Formfree Identification with Spline Parametrization 32

2.8 Experimental Design . 44
2.9 Plot . 48
2.10 General Settings . 50
2.11 Geological Database . 50

3 Problem Classes 57
3.1 Heat Conduction . 57
3.2 Solute Transport . 62
3.3 Saturated/Unsaturated Water Flow (Richards Equation) 78
3.4 Saturated/Unsaturated Preferential Water Flow (Richards Equation) . 84
3.5 Coupled Water-Surfactant Transport 91
3.6 Biodegradation . 99
3.7 Reactive Multicomponent Transport 113

A Annotations and Support 130
A.1 Stabilization . 130
A.2 Simulation Examples . 130

A.2.1 Simulation of Heat Conduction 130

ii

Contents

A.2.2 Simulation of Solute Transport 136
A.2.3 Simulation of Water-Flow (Richards Equation) 143

A.3 Scriptfile . 148
A.4 Stylesheet . 150

Bibliography 151

Index 154

iii

Chapter 1

Introduction

Richy1D is a simulation software for physical transport problems modeled by partial
differential equations. Richy1D

• works in 1 space dimension,

• simulates time and space dependent problems,

• includes the solution of inverse problems to identify model parameters. . . and
provides many more features for mathematicians and engineers, described within
this manual.

The main purpose of R. i. c. h. y. is, to support the evaluation of soil remediation
and risk assessment scenarios. A typical situation of interest is a contaminated site,
where the spreading of chemicals in the soil exhibits a hazard for the environment.
Model equations for (un-)saturated water flow and for solute transport were the first
problems of hydrology, numerically solved with Richy1D.

An earlier state of the software is also documented with some examples in Schneid et
al. (2000). Richy1D is an outstanding tool due to its combination of state-of-the-art
mathematical techniques (like locally mass-conserving mixed hybrid finite elements)
with a unique variety of advanced model descriptions (like preferential flow or carrier-
facilitated multicomponent transport). To put it in a nutshell:

Really interesting contaminant hydrology!

At present, numerical solutions to the following single and coupled partial differential
equations are implemented:

1. Heat Conduction, p. 57,

2. Solute Transport, p. 62,

3. Saturated/Unsaturated Water Flow (Richards Equation), p. 78,

4. Saturated/Unsaturated Preferential Water Flow (Richards Equation), p. 84,

5. Coupled Water-Surfactant Transport, p. 91,

6. Biodegradation, p. 99,

1

Chapter 1 Introduction

7. Multiphase Flow (currently no documentation available),

8. Reactive Multicomponent Transport, p. 113.

1.1 Operating Instruction

During a session an environment is built up in the main memory, which has a structure
(tree) comparable to that of a filesystem directory. When you start Richy1D, you face
the toplevel of that directory. Each entry in this environment consists of two parts:
a symbol indicating the type of the entry and its name. Clicking with the left mouse
button on the name invokes it.

Navigating

The top level (the root directory) contains the following directories

Command

Library

Domain

BoundCond

InitialValue

Coefficient

Problem

Discretization

Grid

NLSolver

Timer

Identification

ExpDesign

Plot

GeneralSettings

Geobase

You can navigate through this environment with the left mouse button. To change into
the top level directory /Library, just click on its name with your left mouse button.
You will face its subdirectory:

2

Chapter 1 Introduction

Command

Library

Grid

Domain

BoundCond

InitialValue

Coefficient

Discretization

Problem

NLSolver

Timer

Identification

ExpDesign

Plot

GeoBase

Domain

Click a second time on /Library, to close it.

Selecting

Some directories allow the selection of one of its entries. This is done by clicking with
the right mousebutton on that entry. The name of the selected entry is highlighted
with a different color.

BoundCond

Left

Interpolation

Type

Dirichlet

Neumann

Flux

Editing

Flags are modified directly by clicking with the left mousebutton on the corresponding
entry. The value toggles between on and off.

To edit any number or string entry of the environment, you simply have to click on
it and an edit-window is opened, where you can enter your changes. Strings must not
contain any blanks. Within the array editor you can jump from one cell to the next
by pressing the Tab key. Note that the array windows always display a list of several
entries even if your specific problem at hand requires less. The redundant entries are
ignored.

3

Chapter 1 Introduction

Executing

Execution of a command is invoked by clicking with the left mousebutton on a com-
mand entry of the environment.

If a command is a member of the /Library, its execution is related to the generation
of a new entry in one of the other toplevel directories.

Other commands are related to plotting, solving, etc.

Hiding

➟ /GeneralSettings/DisplayAll

Environment entries can be hidden. To enable hiding of entries, set the
/GeneralSettings/DisplayAll off. To toggle between hide and show for an entry
hold the Shift key and click the entry with the left mousebutton. Be aware that
you pass the point of no return, when you first enable hiding and then hide the
/GeneralSettings/DisplayAll.

Symbols

Each icon1 indicates the type of an entry.

icon symbol meaning

closed folder

open folder

✲ command

? flag (: checked, : unchecked)

N integer

N array of integers

R float

R array of floats

R matrix of floats

A string

Array Data Input

Figure 1.1 shows the array data input dialog. Layout is as follows:

• 〈 name of the variable being edited 〉

• (data type of variable’s values [♯values − 1])

1License: The icons , , , , , are taken from the Tango Icon Gallery
(http://tango.freedesktop.org/), licensed under the Creative Commons Attribution Share-
Alike license (http://creativecommons.org/licenses/by-sa/2.5/).

4

http://tango.freedesktop.org/
http://creativecommons.org/licenses/by-sa/2.5/

Chapter 1 Introduction

• value[0], . . . , value[♯values− 1]

• | array data load | save | link controls | ok | cancel |

Figure 1.1: Example of an array data input window.

The load/save controls in the lower, left of the dialog window allow loading and saving
of the array input data. The accepted file format is given in A.3 Scriptfile, p. 148. The
‘Link’ checkbox is used in conjunction with Richy1D’s logging facility. If array data
is loaded from a file, the state of the ‘Link’ checkbox indicates whether the array data
values are logged directly to the script file or if only the filename of the picked file is
logged. In the last case, it is possible to manually edit the data file without touching
the script file.

1.2 Work Scheme—The 12 Steps to Happiness

Richy1D provides a menu driven frontend to set up a numerical simulation. To make
use of Richy1D’s features, the user has to familiarize with Richy1D’s approach to
define, set up and solve flow and transport phenomena of one of the implemented types.
The proper utilization can be summarized by a schedule consisting of 12 consecutive
steps. It is mandatory that these steps are performed according to the given order.
Disregard of the work scheme may lead to unpredictable results!

1. Choose a PDE, suitable as a model equation for the transport problem you want
to simulate and become familiar with the details of the corresponding problem
class (cf.3 Problem Classes, p. 57).

2. Create and specify the Model Domain (cf.2.3.1 Domain, p. 10).

3. Create and specify proper Boundary Conditions (cf.2.3.2 Boundary Conditions,
p. 11).

5

Chapter 1 Introduction

Figure 1.2: Screenshot of Richy1D running on a WinXP system.

4. Create and specify proper Initial Values (cf.2.3.3 Initial Values, p. 14).

5. Select and specify the model’s Coefficient Functions (cf.2.3.4 Coefficient Func-
tions, p. 15).

6. Select the model’s Discretization Scheme (cf.2.4 Discretization, p. 17).

7. Prepare the Numerical Grid.

8. Add the Problem and its Discretization to the Grid.

9. Initialize the Grid.

10. Apply a Numercial Solver.

11. Apply a Time Stepping Scheme.

12. Prepare the Plots (cf.2.9 Plot, p. 48).

13. Initialize and Execute the Simulation.

6

Chapter 1 Introduction

For an introducing example, see A.2.1 Simulation of Heat Conduction, p. 130.

7

Chapter 2

Items of Richy1D’s Menu

2.1 Command

Here you find a list of commands of Richy1D.

Commands within the toplevel directory Command

Command

AdaptGrid

AddP&D2Grid

EnableInterrupt.. see below
EstimateGrid

ExecScript...........................see A.3 Execution of Scriptfiles, p. 148
ExpDesigning............................ see 2.8 Experimental Design, p. 44
Initialize

InitializeGrid

MultiLevel......................................see 2.7 Identification, p. 22
ParaFitting see 2.7 Identification, p. 22
Plot...see 2.9 Plot, p. 48
Proceed

Quit

SaveData .. see 2.9 Plot, p. 48
SingleLevel see 2.7 Identification, p. 22
SingleStep

Commands within the subdirectory GeoBase (cf.2.11 Geological Database, p. 50)

GeoBase

Data2Transport.................................see 2.11 Soil Texture, p. 53
Data2Heat.......................................see 2.11 Soil Texture, p. 53
SoilTexture

AddLayer.............................see 2.11 Interface to Problem, p. 55
RemoveLayer see 2.11 Interface to Problem, p. 55

8

Chapter 2 Items of Richy1D’s Menu

➟ /Command/EnableInterrupt

The command EnableInterrupt opens a small menu with the following buttons:

• Interrupt Simulation: Stops a (forward) simulation. To continue press
Proceed in the main menu like usual.

• Pause ParaFitting: Pause an identification (of standard parametrisation). This
way you are e. g.able to have a look at intermediate results. To continue uncheck
the button again.

• Close: Close EnableInterrupt menu again. Then it is not possible to halt the
simulation or identification before the end time is reached or the identification is
completed, respectively.

2.2 Library

The /Library is the toolbox of Richy1D. It provides the user with all components,
that can be combined to define the transport problem for simulation. The generation
of components from the /Library is explained in the documentation part of each
component.

Library

Grid

Domain

BoundCond

InitialValue

Coefficient

Discretization

Problem

NLSolver

Timer

Identification

ExpDesign

Plot

GeoBase

2.3 Problem

The problem is (from a mathematical point of view) either a boundary value problem
(stationary, timeindependent case) or an initial boundary value problem (instation-
ary, timedependent case). The problem therefore consists of a domain, a boundary
condition, a set of coefficient functions and in case of timedependent problems of an
initial value. The type of problem you have to generate, depends on the problem class
(cf.3 Problem Classes, p. 57) you want to use.

9

Chapter 2 Items of Richy1D’s Menu

The generation of any of these parts of a problem is explained within its documen-
tation.

To generate a timedependent problem, follow these steps:

• Select the desired components within the directories /Domain, /BoundCond,
/InitialValue and /Coefficient,

• go to /Library/Problem and execute Parabolic.

The four parts are bound together into one problem as an entry in the toplevel directory
/Problem with the name you specified.

2.3.1 Domain

The domain is the explicit numerical representation of the region in which the transport
phenomena occur. A domain has to be specified prior to all other definitions.

To generate a domain, go to the directory /Library/Domain, execute the command
1DDomain and enter a domain name. To specify your domain, go to the directory
/Domain/domainname and change the corresponding values.

Domain

domainname

LeftBoundary

RightBoundary

Subdonains

InnerBoundaries

ElemsPerSubdom

The meaning of the entries is as follows

LeftBoundary [Length] left boundary of the domain

RightBoundary [Length] right boundary of the domain

Subdomains [−] number of subdomains

InnerBoundaries [Length] points between subdomains

ElemsPerSubdom [−] number of elements per subdomain

The number of subdomains you specify here is important for all the coefficients of
your problem.

Note
Ensure that LeftBoundary < RightBoundary.

➟ /GeneralSettings/ZDirection

The domain is horizontal orientated with positiv direction from left to right and

10

Chapter 2 Items of Richy1D’s Menu

counterclockwise rotated by ϕ = arcsin(ZDirection) (cf.fig. 2.1). Admissable values
of ZDirection are [−1, 1], i. e., ϕ ∈ [−π/2, π/2]. The value of ZDirection enters
directly the discretization as measure for gravitation (i. e., no gravitation for horizontal
orientation). The orientation of the domain has no other influences on the problem.

ϕ

ZDirection = 1

= −1

= 0

Figure 2.1: Illustration of the possible directions for the domain.

2.3.2 Boundary Conditions

After the domain, we have to specify proper boundary conditions. To define the bound-
ary conditions, go to the directory /Library/BoundCond. You are offered three general
commands (and the command Closed4Transport for the problem class ‘solute trans-
port’, see Closed-Flow Design, p. 76 for details) to build the problem-specific boundary
condition and some other commands to build the boundary condition for a specific
problem class.

Library

BoundCond

ScalarBC

VectorBC

AddComponent

The type of boundary condition you have to use depends on and is documented in
3 Problem Classes, p. 57.

Scalar Boundary Conditions

If you have a scalar problem (e. g.heat conduction), you have to use ScalarBC (e. g.to
specify boundary values for the temperature). Follow these steps:

• Go to the directory /Library/BoundCond, execute ScalarBC and specify a name,
e. g., ‘SBC’,

• go to the directory /BoundCond/SBC and specify for each side (Left and Right)
the values as described below for a single component (see below).

11

Chapter 2 Items of Richy1D’s Menu

Vector Boundary Conditions

If you have a vectorial problem (e. g.surfactant influenced water transport), then you
have to use VectorBC and further AddComponent for each component of the unknown
vector of the problem class (e. g.one component to specify boundary values for the
water pressure and a second component for the boundary values of surfactant concen-
tration). Follow these steps:

• Go to the directory /Library/BoundCond, execute VectorBC and specify a name,
e. g., ‘VBC’,

• for each component execute AddComponent and specify a name, e. g., ‘Comp’,

• for each component Comp go to the directories /BoundCond/VBC/Left/Comp and
/BoundCond/VBC/Right/Comp and specify the values as described below for a
single component (see below).

Specifying the Boundary Condition for a Component

The menu entries of a boundary condition for a single comoponent looks like:

Interpolation

Constant

Linear

Type

Dirichlet

Neumann

Robin

Flux

Time

F(Time)

Period

The meanings of these entries are as follows:

{
Constant

Linear

}
selectable type of interpolation

Dirichlet

Neumann

Robin

Flux

selectable type of boundary condition

Time [Time] array of timepoints

F(Time) [∗] array of values corresponding to timepoints

Period [Time] time interval for periodical repetition

12

Chapter 2 Items of Richy1D’s Menu

➟ /BoundCond/[name]/[Left or Right]/Interpolation

• Define the type of interpolation (piecewise constant or piecewise linear, see be-
low).

• Piecewise constant interpolation is mainly used for experimental design
(cf.2.8 Experimental Design, p. 44).

➟ /BoundCond/[name]/[Left or Right]/Type

• The problem class gives information about admissable types of boundary condi-
tion and details of their meaning.

➟ /BoundCond/[name]/[Left or Right]/F(Time)

• The boundary condition is a continuous piecewise linear function or a disconti-
nous piecewise constant function of time.

• Time and F(Time) are float arrays that provide the interface to this function.

• Define at least two values for Time and for F(Time)

• the time interval, you want to simulate, should be inside of the time intervals of
the array Time.

• The evaluation of the boundary condition is piecewise constant or piecewise linear
between timepoints with increasing time—the function is kept constant if the
time interval of two consecutive timepoints is less or equal 0.

• Piecewise constant interpolation: the value of the function is F(Time[i]) on the
half-open interval [F(Time[i]), F(Time[i+1])[.

➟ /BoundCond/[name]/[Left or Right]/Period

• The boundary condition function is periodical in time: F(Time+Period) =
F(Time).

Special Forms of Boundary Conditions

If a special form of the boundary conditions is available for a problem class, detailed
information can be found in 3 Problem Classes, p. 57.

13

Chapter 2 Items of Richy1D’s Menu

2.3.3 Initial Values

After the boundary condition, we have to specify a proper initial value. To define the
initial value, go to the directory /Library/InitialValue. You are offered at least
three different commands to build the problem-specific initial value:

Library

Grid

Domain

BoundCond

InitialValue

Create

AddVector

StdFunctions

The type of initial value you have to use depends on and is documented in 3 Problem
Classes, p. 57.

In general you have to follow these steps:

• Go to the directory /Library/InitialValue,

• generate a basic entry in the toplevel directory /InitialValue with the com-
mand Create and specify its name, e. g., ‘Cold’,

• for each vector of your problem class add an entry to /InitialValue/Cold by
executing AddVector and specify its name, e. g., ‘Temperature’,

• for each component of an already defined vector, e. g.,
/InitialValue/Cold/Temperature add an entry by executing, e. g.,
StdFunctions and specify the name for the initial value function of this
component, e. g., ‘Comp1’.

In the simplest case of heat conduction (a scalar initial boundary value problem) the
initial value Cold has to set values for one vector Temperature with one component
Comp1. The result looks like:

InitialValue

Cold

Temperature

Comp1

Coord

F(Coord)

The meaning of these entries is as follows:

Coord [Length] array of coordinates

F(Coord) [∗] array of values corresponding to coordinates

14

Chapter 2 Items of Richy1D’s Menu

➟ /InitialValue/[...]/Coord, /InitialValue/[...]/F(Coord)

• The initial value is a continous, piecewise linear function of coordinate.

• Coord and F(Coord) are float arrays that provide the interface to this piecewise
linear function.

• Define at least two values for Coord and for F(Coord).

• The space interval, of your domain, should be inside of the coordinate intervals
of the array Coord.

Note
The toplevel directory /InitialValue and any directory below (e. g.Cold) allow se-
lection of one of their entries. The commands AddVector and StdFunctions generate
their entries below the selected directories.

2.3.4 Coefficient Functions

The last part to complement a problem is a set of coefficient functions. To generate
such a set follow these steps:

• Go to the directory /Library/Coefficient,

• execute that entry, that corresponds to your problem class, and specify the name
under which this set of coefficent functions will be available in the toplevel direc-
tory /Coefficient,

• change into the directory /Coefficient/[name] to edit parameters of that set
of functions. If your domain is divided in several subdomains, many parameters
have to be specified for each subdomain (even if they may not vary in every
subdomain of your specific problem at hand).

Generic Coefficient Functions for Spline Interpolation

For some coefficient functions exists a generic type (ParaType 4) for spline interpola-
tion (e. g.a coefficient function can be discretized to a piecewise polynomial function).
The subdirectory /Coefficient/Kermit/Functions contains the names of these co-
efficient functions. The data of spline interpolation are located at a directory called
../DiscreteData.

15

Chapter 2 Items of Richy1D’s Menu

DiscreteData

Add2Display

Initialize

Subdomain1

Basis

Hierarc

Local

Interpolation

Linear

CubicHermite

Quadratic

Cubic

DiscretePoints

F(DiscretePoints)

Expot

XLog_Trans

YLog_Trans

Subdomain2

The meanings of these entries are as follows:

{
Hierarc

Local

}
selectable type of basis functions

Linear

CubicHermite

Quadratic

Cubic

selectable type of splines/interpolation

DiscretePoints [∗] array of discretization points

F(DiscretePoints) [∗] array of values corresponding to discretization points

XLog_Trans [−] logarithmic transformation, x-domain

YLog_Trans [−] logarithmic transformation, y-domain

16

Chapter 2 Items of Richy1D’s Menu

Note

• The command Add2Display creates above entries for the next subdomain.

• The float array DiscretePoints describes a discretization x1 < x2 < . . . < xn of
the domain of definition.

• The evaluation of the coefficient function corresponds to the selected interpolation
and basis type.

• The coefficient function is constant for x < x1 and x > xn.

• If XLog_Trans/YLog_Trans is active, the discrete data describe the according
logarithmic function.

• The generic coefficient functions must be initialized by executing the command
Initialize.

Any further information about coefficient functions can be found in 3 Problem
Classes, p. 57.

2.4 Discretization

Each problem class provides a discretization for a problem. Therefore more detailed
information about discretizations can be found at the corresponding problem classes,
see 3 Problem Classes, p. 57. After the generation of a problem, a proper discretization
has to be specified. Follow this step:

• Go to /Library/Discretization, execute the entry with the name defined in
the documentation of your problem class and specify any name, say ‘Disc1’.

The discretization is now the entry name of the toplevel directory /Discretization.
There is one common subdirectory /Discretization/Disc1/Variables, under which
the available variables of a discretization can be selected. If a variable is displayed like a
flag, you have to activate the flag and initialize the grid, to make the variable accessible.
The use of other entries below /Discretization/Disc1 is explained when needed.

2.5 Solvers

Nonlinear Solvers

The nonlinear system of equations resulting of the discretization of nonlinear problems
is solved by Newton’s Method. The advantage of this iterative method is that it con-
verges quadratically to the solution of the problem, i. e., the number of significant digits
is doubled in every time step (minus a fixed number). However, Newton’s method is
locally convergent, i. e., you may not find a solution that satisfies the expected error,

17

Chapter 2 Items of Richy1D’s Menu

if your initial iterate is too far from the true solution. We use a damped version of the
algorithm with Armijo’s rule (see Knabner and Angermann 2003).

The interface of the NLSolver reads

NLSolver

[name]

AbsError

RelError

MaxNewIterates

MaxLineSearchSteps

GoodIterates

BadIterates

PerformanceInfo

TotalCPUTime(s)

Time4Assembling(s)

Time4LinearSolver(s)

TotalNewtonSteps

AverageNewtonSteps

➟ /NLSolver/[name]/PerformanceInfo

The subdirectory PerformanceInfo contains—seperately for every
problem—information about

• the total CPU time in seconds of your simulation,

• the effort in CPU seconds for assembling routines (composing the Jacobian, right
hand side, evaluation of the norm of the right hand side),

• the time for the linear solver,

• the total number of Newton steps, and

• the number of average Newton steps per time step.

Note
If the number of Newton steps per time step is high (e. g.greater than 10), you should
try to reduce the time step size (see 2.6 Timesteppers, p. 20). Of course, if your problem
is linear (e. g.heat conduction), you need only one Newton step per time step to find
your solution.

Linear Solvers

In each iteration step of the nonlinear solver, the linear solver is called. There are two
different linear solvers implemented:

• The LU factorization,

18

Chapter 2 Items of Richy1D’s Menu

• the preconditioned GMinRes(m) method.

The user should select the solver which requires less CPU time (see below). In most
situations, the LU factorization is the more efficient solver.

Description of the methods and their parameters, efficiency. The LU factoriza-
tion is a direct, i. e., a non-iterative method, that decomposes the system matrix into
a lower and an upper triangular matrix. Details on the method can be found in any
book on numerics. For problems with one space dimension, the computational costs
of the LU factorization are O(S N3), where S is the number of species and N is the
number of elements.

The GMinRes(m) method is an iterative method. As a preconditioner, the matrix

(D+ ω L)D−1 (D+ ωU) (2.1)

is used, where D, L, U are the diagonal/lower/upper part of the system matrix and ω
is a relaxation parameter. If GMinRes(m) is used, the user can choose 3 parameters:

• The convergence criterion ε. ε should definitely be chosen at least one or two
powers of ten smaller than the corresponding value for the nonlinear solver. Oth-
erwise, the nonlinear solver might not converge.

• The parameter m. Since the computational complexity of each iteration step and
the amount of computer memory increase during the GMinRes iteration, after m
iteration steps, a restart is done. The literature recommends to choose m between
6 and 20.

• The relaxation parameter ω. The convergence rate can be optimized by choosing
the right relaxation parameter for the preconditioner. ω must be chosen from the
interval [1.0, 2.0]. The finer the spatial discretization of the problem, the larger ω
should be chosen. For the script file def4multispec.scr (multicomponent reactive
transport with 10 species), we found the following optimal values for ω:

N ωopt

125 1.35

250 1.45

500 1.7

1000 1.85

2000 1.8

The CPU time for the preconditioned GMinRes(m) method depends on the number
of nonzero entries in the system matrix (between O(S N) and O(S2N), depending
on the reaction network) and the number of iteration steps (about O(

√
N) required

to reach the convergence criterion. Hence, (only) if the number of species S is large

19

Chapter 2 Items of Richy1D’s Menu

and the number of elements N is small, the GMinRes can be the more efficient choice.
To give an idea of the range in which GMinRes(m) can be more efficient, we give the
following table:

• For S = 20 and N < 300 choose GMinRes(m),

• for S = 10 and N < 150 choose GMinRes(m),

• for S = 1 the direct solvers seems to be faster for arbitrary N .

2.6 Timesteppers

For the temporal discretization, one time stepper has to be selected. The selected time
stepper handles all the problems which are defined by the user. For the solute trans-
port equation (including sorption, convection, diffusion-dispersion and serial decay
reactions, cf.3.2 Solute Transport, p. 62), the following time steppers are implemented:

• The Implicit Euler Method (IE),

• the Crank–Nicolson Method (CN),

• the 2nd order Backward Difference Method (BDF2),

• the 2nd order Numerical Differentiation Method (NDF2).

For other problem classes, only IE is implemented presently.
Notice the following restriction: If CN or BDF2 or NDF2 is selected while problems

different from the transport equation (i. e., Richards equation, biodegradation, heat
conduction, etc.) are to be solved, or while those problems are coupled to the transport
equation, those problems are still handled with the standard IE method, while only
the solute transport equation solver uses the chosen timestepper. No error message or
warning is generated in this case. The overall error will be of first order in this case.

Properties of the Methods

General classification. IE and CN are one-step methods, i. e., the state at time tn
is computed from the state at time tn−1. BDF2 and NDF2 are 2-step/3-step methods,
respectively, i. e., the state at time tn is computed from the state at the previous
timesteps tn−1 / tn−2. NDF2 is a modification of the well-known BDF2 method having
a smaller leading error term and similar stability properties.

Accuracy. IE is of first order accuracy while CN, BDF2, NDF2 are of second order.
Thus, the latter methods should yield a higher accuracy for the same timestep size,
provided the solution is smooth enough. To put it in different words: The second order
methods allow to choose larger timesteps to gain the same accuracy as IE.

20

Chapter 2 Items of Richy1D’s Menu

To take advantage from this property, it is necessary that temporal and spatial error
of the scheme are equilibrated. (If the spatial discretization is too coarse, the total error
is dominated by the spatial error, i. e., a second order temporal scheme would bring
no advantage at all.) CN is the method with the smallest temporal discretization error
(see table). If the solution is not smooth enough, the second order accuracy of CN,
BDF2, NDF2 may not be recovered. However, in this case, the second order methods
usually lead at least to a smaller leading error term compared to IE.

Stability. All the methods IE, CN, BDF2, NDF2 are A-stable, i. e., for a linear prob-
lem, the numerical solution decays, if the exact solution decays. However, for CN, this
decay may take very long, and during the decay, temporal and spatial oscillations of
the numerical solution may be present which decrease very slowly. These oscillations
may lead to (locally in space and time) negative solutions! In mathematical terms:
IE, BDF2, NDF2 are L-stable, but CN is not. A- and L-stability are stability cri-
teria for linear problems. These creteria are also meaningful for nonlinear problems
(e. g.nonlinear sorption processes). However, the stability for nonlinear problems is
guaranteed by the criterion of B-stability, and its generalization for multistep meth-
ods, the G-stability. IE, CN are B-stable, BDF2 and NDF2 are G-stable.

Stepper Leading Error Term A-stability L-stability B-/G-stability

IE ∆t/2 yes yes yes

CN ∆t2/12 yes no yes

NDF2 ∆t2/6 yes yes yes

BDF2 ∆t2/3 yes yes yes

Advice for the Optimal Choice of Timestepper

1. Get Richy1D running by using IE.

2. If you are only solving transport equation(s):
Switch to a higher order method (BDF2, NDF2, CN). If the problem is stiff or if
you want to choose very large timesteps, choose BDF2 or NDF2. Otherwise, also
CN should work. If oscillations or negative concentrations occur (most likely for
CN), choose a different stepper or smaller timesteps.

3. Optimize timestep size ∆t in relation to spatial discretization parameter h (h =
domain length divided by number of mesh points): For a given h and ∆t, run
the program with ∆t, h then with ∆t/2, h and with ∆t, h/2. Save the solutions
each time. If the change of h has more influence on the solution than the change
of ∆t, the spatial error is dominant, i. e., you may choose larger ∆t (or smaller
h). Otherwise, your temporal error is dominant, i. e., increase h or decrease ∆t.

A detailed overview on timestepping methods and their properties is given in the book
of Strehmel and Weiner (1995).

21

Chapter 2 Items of Richy1D’s Menu

2.7 Identification

To define the identification, go to the directory /Library/Identification and pro-
ceed according to one of the following schemes. If you want to identify certain pa-
rameters (coefficients) of a given, fixed functional form (e. g.a Freundlich isotherm),
then choose StandardIdent (see 2.7.1 Identification of Standard Parametrization,
p. 22). If you do not want to restrict yourself to a special functional form of your
coefficient function you can choose FormfreeIdent (see 2.7.2 Formfree Identifica-
tion with Spline Parametrization, p. 32) which allows you to identify e. g.the best
piecewise cubic spline function.

Details of the formfree identification method are given in Igler (1998) for reactive
transport and in Bitterlich (2003) for the Richards equation. Applications can be
found, e. g., in Igler et al. (1998) and Bitterlich et al. (2004).

Library

Identification

StandardIdent

FormfreeIdent

2.7.1 Identification of Standard Parametrization

General Framework

For some problem classes an identification procedure for coefficient functions exists. To
create the toolbox necessary for the identification of the coefficients of a given standard
parametrization (i. e., to identify parameters of a given coefficient function), go to
the directory /Library/Identification/StandardIdent. This directory contains the
commands to install the identification tools:

Library

Identification

StandardIdent

CreateParaFit

AddMeasurement

InputMeasData

InputWeights

In general you have to proceed according to the following steps:

• Set up the problem-specific (forward) simulation,

• go to the directory /Library/Identification/StandardIdent,

• generate a basic entry with the command CreateParaFit and specify its name,

• select the variable which is observed for the identification in the directory
/Discretization/[discretization name]/Variables,

22

Chapter 2 Items of Richy1D’s Menu

• go to the directory /Library/Identification and add the selected variable to
the identification with the command AddMeasurement and specify its name.

In this way one or more coefficient functions and/or measurements can be added to
an identification.

Note
Your problems have to be established with fixed grid and time step size. Do not use
adaption, if you want to identify parameters.

The result looks in general like this:

Identification

[identification name]

Measurements

Observation

Linear

ErrorFunctional

OLS

OLS_TW

OLS_SW

OLS_manW

PseudoInvSensMat

Gradient

FDAppr

Direct

Optimization

ErrorAnalysis

SaveIdentData

ComputeMeasWeight

The meanings of these entries are explained in the following table and in the next few
paragraphs.

23

Chapter 2 Items of Richy1D’s Menu

Measurements folder

Linear selectable type of interpolation of observations

OLS

OLS_TW

OLS_SW

OLS_manW

selectable

type of error functional: ordinary least squares;
OLS with weights according to the time inter-
val around the data point; OLS with weights ac-
cording to the (inverse of the) sensitivity of the
observation; OLS with weights given by the user
manually or by computing PseudoInvWFactors

PseudiInvSensMat folder{
FDAppr

Direct

}
selectable

type of gradient computation: Finite Difference
Approximation or direct gradient computation

Optimization folder

ErrorAnalysis folder

SaveIdentData folder

ComputeWeight command
computes a weighting factor for the selected
measurement (yields the inverse of the square
of the mean value)

Measurements

The entries of the directory /Identification/[identification name]/Measurements

are selectable for the command ComputeMeasWeight or for plotting with the
command GLMeasPlot in the directory /Library/Plot. The menu entries of a
measurement looks like this:

Measurements

[measurement name]

Coordinate

Weight

NumInBlock

MeasTime

F(MeasTime)

W(MeasTime)

ErrorAnalysis

Epsilon

The meaning is as follows:

24

Chapter 2 Items of Richy1D’s Menu

Coordinate [Length] measurement point for variable

Weight [−]
weighting factor in error functional

(By using the value 0 the current parameter will not be
considered for the inverse problem.)

NumInBlock [−] component if variable is a vector

MeasTime [Time] array of timepoints when variable has been observed

F(MeasTime) [∗] array of measured values corresponding to timepoints

Epsilon [−] data error

Measured data (MeasTime, F(MeasTime)) for the selected measurement can also
be read from a file by executing the command InputMeasData in the directory
/Library/Identification. In case of more than one identification or measurements
you have to assign one of the them before reading the datafile.

Note
The entry Epsilon is only used in the problem class experimental design (cf.2.8 Ex-
perimental Design, p. 44).

Optimization

The necessary settings for the applied optimization procedure are included in the sub-
directory /Optimization in every entry of the toplevel directory /Identification.

25

Chapter 2 Items of Richy1D’s Menu

Optimization

Procedure

BundleTrust

SQP

GGPRV

Hessian

Rosen

BFGS

LineSearch

Bisection

GoldenSect

Gold_Armijo

ACO

RunPart

RecursiveOptimization

CompDataRecursive

ActRecursiveStorage

MaxRecIteration

MaxIter

MaxFuncCalls

NofSubGrad

MachinePrec

StopCriterion

MinStep

iFail

The meaning of these entries is as follows:

26

Chapter 2 Items of Richy1D’s Menu

BundleTrust

SQP

GGPRV

ACO

selectable type of optimization procedure

{
Rosen

BFGS

}
selectable type of approximation of Hessian

Bisection

GoldenSect

Gold_Armijo

selectable type of line search for GGPRV

RunPart [−] considered pathways for ACO in percent

MaxIter [−] maximum number of iterations

MaxFuncCalls [−] maximum number of function calls

NofSubGrad [−] maximum number of stored subgradients (≥ 3, only BundleTrust)

MachinePrec [−] machine precision

StopCriterion [−] stopping criterion

MinStep [Time] minimum time stepsize during identification

ifail [−]

Parameter for showing reason of terminating:

0: The optimality conditions are satisfied.

1: The algorithm has been stopped after MaxIter iter-
ations.

2: The algorithm computed an uphill search direction.

3: Underflow occured when determining a new approx-
imation matrix for the Hessian of the Lagrangian.

4: More than MaxFunCalls function calls are required
during the line search.

5: Length of a working array is too short.

7: The search direction is close to zero, but the current
iterate is still infeasible.

> 10: The solution of the quadratic of least squares
subproblem has been terminated with an error message
IFQL > 0 and ifail is set to IFQL + 10.

27

Chapter 2 Items of Richy1D’s Menu

Note — Optimization Procedures

• BundleTrust:
algorithm for nonsmooth functions.

• SQP:
sequential quadratic programming method for smooth functions; modified BFGS-
update; L2-augmented Lagrangian penalty function/L1-penalty function for the
line search.

• GGPRV:
gradient-projection method for smooth functions; (unmodified) BFGS-update or
method of Rosen; bisection method, golden section method, or Goldstein-Armijo
principle for the line search.

• ACO:
ant colony optimization algorithm (non-derivative method, for standard identifi-
cation only).

Pseudo Inverse Sensitivity Matrix

The subdirectory /Identification/[identification name]/PseudoInvSensMat

contains some options for computing and saving the pseudo inverse sensitivity matrix
and the resulting weighting factors for the error functional. In general it looks like
this:

PseudoInvSensMat

PInvWeightFactors

SavePInvWFactors

SavePseudoInv

PInvWFactorsFileName

PseudoInvFileName

DirName4SavingPFile

The meanings of these above entries are as follows:

28

Chapter 2 Items of Richy1D’s Menu

PInvWeightFactors [−]
computes weighting factors for the error functional
based on the pseudo inverse sensitivity matrix. The
factors can be used by recursive identification in the
next identification procedure

SavePInvWFactors [−] saves the computed pseudo inverse sensitivity weighting factors

SavePseudoInv [−] saves the pseudo inverse sensitivity matrix

PInvWFactorsFileName [−] name of the file including the weighting factors. The
default filename is ‘PInvWFactors.dat’

PseudoInvFileName [−] name of the file including the pseudo inverse sensitiv-
ity matrix. The default filename is ‘PInvSensMat.dat’

DirName4SavingPFile [−] name of the directory where the data are saved (if the
directory does not exist, the directory will be created)

Coefficient Functions

After executing the command CreateParaFit the directory
/Coefficient/[coefficient name] contains subdirectories named
/FittingData with entries of the following type:

FittingData

[name]

Active

Bounds_Lower

Bounds_Upper

Log_Scale

The meanings of these entries are as follows:

Active flag flag for activating/deactivating the parameter for optimization

Bounds_Lower [∗] lower boundaries (per subdomain) for the search of the parameter value

Bounds_Upper [∗] upper boundaries (per subdomain) for the search of the parameter value

Log_Scale flag flag for optimization on logarithmic scale

EstDeviation [∗] estimated deviation of the optimized parameter

99%Confidence [∗] 99% confidence interval for the parameter

Note
The default of the item Active is ‘off’. Before starting the current identification at
least one coefficient has to be active.

29

Chapter 2 Items of Richy1D’s Menu

Error Analysis

The subdirectory /Identification/[identification name]/ErrorAnalysis con-
tains some data for the error analysis and looks similar to this:

ErrorAnalysis

MueCond

MueMax

WEuklidNorm

WMaxNorm

Trace

Determinant

Func_Value

The meanings of the above entries are as follows:

MueCond [−] condition number

MueMax [−] maximum error amplification

EuklidNorm [−] Euklidian norm of the residuals

MaxNorm [−] maximum norm of the residuals

Trace [−] trace of the covariance matrix

Determinant [−] determinant of the covariance matrix (product of the non-zero eigenvalues)

Func_Value [−] value of the error functionals

Save Identification Data

The subdirectory /Identification/[identification name]/SaveIdentData con-
tains some saving options. It looks in general like this:

SaveIdentData

SaveOptData

SaveSensitivities

SaveCorrelCoeff

SaveDataRecursive

ActRecursiveStorage

DirectoryName4Saving

The meanings of the above entries are as follows:

30

Chapter 2 Items of Richy1D’s Menu

SaveData [−]

save option for the identification results:
ParameterValues.dat includes the identified op-
timal value of the coefficients; ErrorData.dat

gives information about the minimized function;
measurementname.dat prints the measured and the
simulated data for the appropriate variable

SaveSensitivities [−]
save option for the sensitivities of the identification
results: Sensitivities.dat prints the sensitivities of
each measurement variable and each time point

SaveCorrelCoeffs [−] save option for the correlation coefficients: CorrelCoeffs.dat

SaveDataRecursive [−] save option for recursive identification calls

ActRecursiveStorage [−] parameter show the actual number of recursive identification

DirectoryName4Saving [−] name of the directory where the data are saved (if the
directory does not exist, the directory will be created)

Plots

For the identification in the case of standard parametrization we can generate partic-
ular plots where the fixed measured data points are given along with the calculated
solution corresponding to the current coefficients.

First, you have to single out one of the measurements for the current plot:

• Go to the directory /Identification,

• choose one of the identification sets you have defined before,

• go to the directory /[identification name]/Measurements corresponding to
your favorite identification,

• choose one of the measurements (by clicking the right mouse button).

Note
In the case of a single identification with just one measurement these steps can be
omitted because because the corresponding measurement will be highlighted automat-
ically.

Now we can create the appropriate plot:

• Go to the directory /Library/Plot,

• choose the command GLMeasPlot and specify a name for the plot,

• execute the command Plot in the /Command directory.

31

Chapter 2 Items of Richy1D’s Menu

Starting the Identification

If an identification with at least one measurement was created the inverse simulation
procedure can be started:

• select a identification in the toplevel directory /Identification

• specify the corresponding entries (choose the active variables etc.).

• The selected identification finally runs by executing the command ParaFitting

in the /Command directory.

Results of the Current Identification

After the identification of a standard parametrization you will find the calculated
data of the identified parameters in the directory /Coefficient/[coefficient

name]. They have replaced the initial values you have inserted before. Furthermore
you will find more information about the quality of the results in the subdirectory
/ParaFitting.

2.7.2 Formfree Identification with Spline Parametrization

General Framework

For some problem classes exists an identification procedure for coefficient
functions. To define the formfree identification, go to the directory
/Library/Identification/FormfreeIdent. This directory contains some
commands to set up the identification:

Library

Identification

FormfreeIdent

1DFFIdent

Create1DFFIdent

Add1DFunction

3DFFIdent

Create3DFFIdent

Add3DFunction

AddMeasurement

InputMeasData

InputWeights

In general you have to proceed according to the following steps:

• Set up the problem-specific simulation,

• go to the directory /Library/Identification,

32

Chapter 2 Items of Richy1D’s Menu

• generate a basic entry in the subdirectory /FormfreeIdent/1DFFIdent

(3DFFIdent) with the command Create1DFFIdent (Create3DFFIdent) and
specify its name,

• go to the directory /Coefficient/[coefficient name]/Functions/ScalarFunctions

and select the function, which is to be identified,

• go to the directory /Library/Identification/FormfreeIdent/1DFFIdent

(3DFFIdent) and add the selected function to the identification with the
command Add1DFunction (Add3DFunction),

• select the variable, which is observed for identification, in the directory
/Discretization/[discretization name]/Variables,

• go to the directory /Library/Identification and add the selected variable to
the identification with the command AddMeasurement and specify its name.

In this way one or more coefficient functions can be added to an identification.

Note
The problems have to be established with fixed grid and time step size. Do not use
adaption, if you want to identify parameters.

The result looks like this:

33

Chapter 2 Items of Richy1D’s Menu

Identification

[identification name]

Measurements

Strategy.

Adaptive

Local

Global

Equidistant

DyadicLeft

DyadicRight

OneScale

Observation

Linear

ErrorFunctional

OLS

OLS_TW

OLS_SW

OLS_manW

Mualem_Pen

PseudoInvSensMat

Gradient

FDAppr

StepSize

Direct

Optimization

ErrorAnalysis

Options .4 Start

End

Step

NumDPoints

Scale

SaveIdentData

ComputeMeasWeight

The meanings of these entries are as follows:

34

Chapter 2 Items of Richy1D’s Menu

Measurements folder

Linear selectable type of interpolation of observations

Adaptive

Equidistant

DyadicLeft

DyadicRight

OneScale

selectable type of refinement strategy

{
Local

Global

}
selectable type of adaptive refinement strategy

OLS

OLS_TW

OLS_SW

OLS_manW

OLS_Mualem_Pen

selectable

type of error functional: ordinary least squares;
OLS with weights according to the time inter-
val around the data point; OLS with weights ac-
cording to the (inverse of the) sensitivity of the
observation; OLS with weights given by the user
manually or by computing PseudoInvWFactors{

FDAppr

Direct

}
selectable

type of gradient computation: Finite Difference
Approximation or direct gradient computation

StepSize [−] relative stepsize for finite difference approximation

Optimization folder

Options folder

ErrorAnalysis folder

SaveIdentData folder

ComputeWeight command
computes a weighting factor for the selected
measurement (yields the inverse of the square
of the mean value)

Measurements

The entries of the directory /Identification/[identification name]/Measurements

are selectable for the command ComputeWeight or for plotting with the command
GLMeasPlot in the directory /Library/Plot. The menu entries of a measurement
look like this:

35

Chapter 2 Items of Richy1D’s Menu

Measurements

[name]

Coordinate

Weight

NumInBlock

MeasTime

F(MeasTime)

ErrorAnalysis

Epsilon

The meaning is as follows:

Coordinate [Length] measurement point for variable

Weight [−] weighting factor in error functional

NumInBlock [−] component if variable is a vector

MeasTime [Time] array of timepoints of measuring

F(MeasTime) [∗] array of measured values corresponding to timepoints

Epsilon [−] data error

Measured Data (MeasTime, F(MeasTime)) for the selected measurement can be
read also from a file by executing the command InputMeasData of the directory
/Library/Identification. In the case of more than one identification or measure-
ments you have to assign one of the them before reading the datafile.

Note
The entry Epsilon is only used in the problem class experimental design (cf.2.8 Ex-
perimental Design, p. 44).

Coefficient Functions

If a coefficient function is added to a identification, the directory
/Coefficient/[coefficient name]/Functions/ScalarFunctions/[function name]

contains a subdirectory /FittingData with further informations for the optimization.

36

Chapter 2 Items of Richy1D’s Menu

FittingData

Constraints

None

Increase

Inc+LConst

Inc+UConst

IncConc+LConst

Decrease

Dec+LConst

Dec+UConst

LValue

UValue

Bounds_Lower

Bounds_Upper

Mon_Factor

ErrorAnalysis

The meanings of these entries are as follows:

None

Increase

Inc+LConst

Inc+UConst

IncConc+LConst

Decrease

Dec+LConst

Dec+UConst

selectable
type of constraints corresponding to the physical
properties of the coefficient function

LValue [∗] lower value

UValue [∗] upper value

Bounds_Lower [∗] lower boundaries (per subdomain) for search of the param. value

Bounds_Upper [∗] upper boundaries (per subdomain) for search of the param. value

Mon_Factor [−] monotonicity factor

MaxEstDeviation [∗] maximum estimated deviation of identified formfree coefficient

Max99%Confidence [∗] max. 99% confidence interval of identified formfree coefficient

Note
For the formfree identification the ParaType of the to identified coefficient function
have set to generic type.

37

Chapter 2 Items of Richy1D’s Menu

Pseudo Inverse Sensitivity Matrix

The subdirectory /Identification/[identification name]/PseudoInvSensMat

contains some options for computing and saving the pseudo inverse sensitivity matrix
and the resulting weighting factors for the error functional. In general it looks like
this:

PseudoInvSensMat

PInvWeightFactors

SavePInvWFactors

SavePseudoInv

PInvWFactorsFileName

PseudoInvFileName

DirName4SavingPFile

The meanings of these above entries are as follows:

PInvWeightFactors [−]
computes weighting factors for the error functional
based on the pseudo inverse sensitivity matrix. The
factors can be used by recursive identification in the
next identification procedure

SavePInvWFactors [−] saves the computed pseudo inverse sensitivity weighting factors

SavePseudoInv [−] saves the pseudo inverse sensitivity matrix

PInvWFactorsFileName [−] name of the file including the weighting factors. The
default filename is ‘PInvWFactors.dat’

PseudoInvFileName [−] name of the file including the pseudo inverse sensitiv-
ity matrix. The default filename is ‘PInvSensMat.dat’

DirName4SavingPFile [−] name of the directory where the data are saved (if the
directory does not exist, the directory will be created)

Optimization

The necessary settings for the applied optimization procedure are included in the sub-
directory /Optimization in every entry of the toplevel directory /Identification.

38

Chapter 2 Items of Richy1D’s Menu

Optimization

Procedure

BundleTrust

SQP

GGPRV

Hessian

Rosen

BFGS

LineSearch

Bisection

GoldenSect

Gold_Armijo

ACO

RunPart

RecursiveOptimization

CompDataRecursive

ActRecursiveStorage

MaxRecIteration

MaxIter

MaxFuncCalls

NofSubGrad

MachinePrec

StopCriterion

MinStep

iFail

The meaning of these entries is as follows:

39

Chapter 2 Items of Richy1D’s Menu

BundleTrust

SQP

GGPRV

ACO

selectable type of optimization procedure

{
Rosen

BFGS

}
selectable type of approximation of Hessian

Bisection

GoldenSect

Gold_Armijo

selectable type of line search for GGPRV

RunPart [−] considered pathways for ACO in percent

MaxIter [−] maximum number of iterations

MaxFuncCalls [−] maximum number of function calls

NofSubGrad [−] maximum number of stored subgradients (≥ 3, only BundleTrust)

MachinePrec [−] machine precision

StopCriterion [−] stopping criterion

MinStep [Time] minimum time stepsize during identification

ifail [−]

Parameter for showing reason of terminating:

0: The optimality conditions are satisfied.

1: The algorithm has been stopped after MaxIter iter-
ations.

2: The algorithm computed an uphill search direction.

3: Underflow occured when determining a new approx-
imation matrix for the Hessian of the Lagrangian.

4: More than MaxFunCalls function calls are required
during the line search.

5: Length of a working array is too short.

7: The search direction is close to zero, but the current
iterate is still infeasible.

> 10: The solution of the quadratic of least squares
subproblem has been terminated with an error message
IFQL > 0 and ifail is set to IFQL + 10.

40

Chapter 2 Items of Richy1D’s Menu

Note — Optimization Procedures

• BundleTrust:
algorithm for nonsmooth functions.

• SQP:
sequential quadratic programming method for smooth functions; modified BFGS-
update; L2-augmented Lagrangian penalty function/L1-penalty function for the
line search.

• GGPRV:
gradient-projection method for smooth functions; (unmodified) BFGS-update or
method of Rosen; bisection method, golden section method, or Goldstein-Armijo
principle for the line search.

• ACO:
ant colony optimization algorithm (non-derivative method, for standard identifi-
cation only).

Error Analysis

A subdirectory /ErrorAnalysis contains some data for the error analysis and looks
similar to this:

ErrorAnalysis

StopCriterion

Type

None

FuncReduce

MueCond

MueMax

Tolerance

MueCond

MueMax

EuklidNorm

MaxNorm

Func_Value

Est_Exp

Est_Dev

The meanings of the above entries are as follows:

41

Chapter 2 Items of Richy1D’s Menu

None

FuncReduce

MueCond

MueMax

selectable type of stopping criterion for the multi-level algorithm

Tolerance [−] tolerance parameter

MueCond [−] condition number

MueMax [−] maximum error amplification

EuklidNorm [−] Euklidian norm of the residuals

MaxNorm [−] maximum norm of the residuals

Trace [−] trace of the covariance matrix

Determinant [−] determinant of the covariance matrix (product of the eigenvalues 6= 0)

Func_Value [−] value of the error functionals

Est_Exp [∗] estimated expectation of the residuals

Est_Dev [∗] estimated standard deviation of the residuals

Options

The subdirectory /Identification/[identification name]/SaveIdentData con-
tains some options for the formfree identification. It looks like this:

Options

Start

End

Step

NumDPoints

Scale

The meanings of the above entries are as follows:

Start [−] number of discrete points or scale index at the start

End [−] number of discrete points or scale index at the end

Step [−] step length

NumDPoints [−] current number of discrete points

Scale [−] current scale index

Save Identification Data

The subdirectory /Identification/[identification name]/SaveIdentData con-
tains some saving options. It looks in general like this:

42

Chapter 2 Items of Richy1D’s Menu

SaveIdentData

SaveOptData

SaveSensitivities

SaveCorrelCoeff

ErrorDataFileName

OptParamValuesFileName

SensitivitiesFileName

CorrelCoeffsFileName

DirectoryName4Saving

The meanings of the above entries are as follows:

SaveData [−]

save option for the identification results:
ParameterValues.dat includes the identified op-
timal value of the coefficients; ErrorData.dat

gives information about the minimized function;
measurementname.dat prints the measured and the
simulated data for the appropriate variable

SaveSensitivities [−]
save option for the sensitivities of the identification
results: Sensitivities.dat prints the sensitivities of
each measurement variable and each time point

SaveCorrelCoeffs [−] save option for the correlation coefficients: CorrelCoeffs.dat

SaveDataRecursive [−] save option for recursive identification calls

ActRecursiveStorage [−] parameter show the actual number of recursive identification

DirectoryName4Saving [−] name of the directory where the data are saved (if the
directory does not exist, the directory will be created)

Plots

For the identification in the case of standard parametrization we can generate partic-
ular plots where the fixed measured data points are given along with the calculated
solution corresponding to the current coefficients.

First, you have to single out one of the measurements for the current plot:

• Go to the directory /Identification,

• choose one of the identification sets you have defined before,

• go to the directory /[identification name]/Measurements corresponding to
your favorite identification,

• choose one of the measurements (by clicking the right mouse button).

43

Chapter 2 Items of Richy1D’s Menu

Note
In the case of a single identification with just one measurement these steps can be
omitted because because the corresponding measurement will be highlighted automat-
ically.

Now we can create the appropriate plot:

• Go to the directory /Library/Plot,

• choose the command GLMeasPlot and specify a name for the plot,

• execute the command Plot in the /Command directory.

Starting the Identification

If an identification was created and at least one coefficient function was added, the
identification can be started:

• Select a identification in the toplevel directory /Identification,

• specify the corresponding entries,

• the formfree identification runs

– one step by executing the command SingleLevel or

– a complete multi-level process by executing the command MultiLevel.

2.8 Experimental Design

General Framework

For the identification of coefficient functions we can specify a experiment design prob-
lem (currently available only for identification by standard parametrization).

To define the experiment design problem, go to the directory /Library/ExpDesign,
which offers several commands to build the experiment design problem.

Library

ExpDesign

CreateExpDesign

AddScalarBC

First, you have to create the identification problem. Then you have to follow these
steps:

• Go to the top level directory /Identification and select the entry pertaining
the experiment design problem,

• go to the directory /Library/ExpDesign,

44

Chapter 2 Items of Richy1D’s Menu

• generate a basic entry in the top level directory /ExpDesign with the command
CreateExpDesign and specify the name.

A basic entry in the toplevel directory /ExpDesign looks like:

ExpDesign

[name]

OptData

OptCriterion

MueCond

MueMax

Trace

Determinant

Procedure

BundleTrust

Hooke

SimAnnealing

ObjFuncEvals

MaxFuncCalls

NofSubGrad

MaxIter

Rho

StopCriterion

StepSize4FD

StartTemp

DeltaTemp

WithDataError

WithCompWeights

The meaning of the entries is as follows:

45

Chapter 2 Items of Richy1D’s Menu

MueCond

MueMax

Trace

Determinant

selectable type of the objective function

BundleTrust

Hooke

SimAnnealing

selectable type of the optimization procedure

ObjFuncEvals [−] number of used evaluations of the objective function

MaxFuncCalls [−] max. number of evaluations of the objective function

NofSubGrad [−] max. number of stored subgradients (≥ 3, only for BundleTrust)

MaxIter [−] max. number of iterations

Rho [−] stepsize multiplicator (0 < Rho < 1, only for Hooke)

StopCriterion [−] stopping criterion (for Hooke and BundleTrust)

StepSize4FD [−]
relative stepsize for finite difference approximation
of the subgradient of the objective function (only for
BundleTrust)

StartTemp [−] start temperature for simulated annealing

DeltaTemp [−] stepsize of temperature for simulated annealing

WithDataError flag flag for using a data noise in measurements for the identification

WithCompWeights flag flag for using the command ComputeWeight in the identification

Note

• If the flag WithDataError is on, the generated measurements for the iden-
tification are disturbed by a Gaussian noise with the amplitude specified
in the entries Epsilon of the subdirectories of the corresponding directory
/Identification/[identification name]/Measurements.

• The directory /OptData is used to include problem-specific entries.

Problem Classes

The experiment design problem must be completed by the specification of the opti-
mization variables. You can consider the following problem:

Optimization of scalar boundary conditions. To complete the experiment design
problem of optimization a scalar boundary condition you have to follow these steps:

• Go to the top level directory /BoundCond and select the boundary condition,
which is to be optimized,

• go to the the directory /Library/ExpDesign and execute the command

46

Chapter 2 Items of Richy1D’s Menu

AddScalarBC to add the boundary condition to the selected entry in the top
level directory /ExpDesign.

In this case the directory /OptData contains the following entries:

OptData

Boundary

Left

Right

Type

AllFree

FirstFix

LastFix

First+LastFix

LowerBound

UpperBound

The meaning of these entries is as follows:

{
Left

Right

}
selectable optimization of the left or right boundary condition

AllFree

FirstFix

LastFix

First+LastFix

selectable selection to fix some variables

LowerBound [∗] lower boundary of optimization variables

UpperBound [∗] upper boundary of optimization variables

Note — Optimization variables

• The optimization variables are the elements of the array F(Time) of the subdi-
rectory Left or menuitemRight (selected in /OptData/Boundary) of the added
scalar boundary condition.

• Only the part of F(Time) is optimized, which corresponds to the monotone part
of Time (cf.2.3.2 Specifying the Boundary Condition for a Component, p. 12).

• By selecting an entry of the directory /OptData/Type you can optimize all vari-
ables or fix some variables.

Starting the Experiment Designing

If the experiment design problem is correctly created and the corresponding entries are
specified, the command ExpDesigning of the top level directory /Command starts the
experiment designing for the selected problem in the top level directory /ExpDesign.

47

Chapter 2 Items of Richy1D’s Menu

2.9 Plot

Graphical output of calculated data and coefficient functions can be invoked with
Richy1D’s plotting feature. To set up a plot, you have to specify first the variable or
coefficient function you are going to plot and secondly, whether you want to visualize
its space or time dependence.

To select a problem specific variable, follow these steps:

• Go to the toplevel directory /Discretization,

• select the discretization name linked to the problem, you are going to choose a
variable from,

• go to the directory /Discretization/[discretization name]/Variables and
select the variable.

To select a problem spezific coefficient function, follow these steps:

• Go to the toplevel directory /Coefficient,

• select the coefficient name linked to the problem, you are going to choose a
coefficient function from,

• go to the directory /Coefficient/[coefficient name]/Functions and select
the function.

To generate a plot of this variable or coefficient function, follow these steps:

• Go to the directory /Library/Plot (you are offered at least free commands: one
for the time-, one for the space dependent plot and one for plotting a function),

• execute one of these commands and specify the name of the plot.

To edit plot specific parameters go to the directory /Plot/[name] and change the
corresponding values:

Plot

[name]

Active

Coordinate

NumInBlock

Subdomain

XAutoRange

XRange

YAutoRange

YRange

The meanings of the entries are as follows:

48

Chapter 2 Items of Richy1D’s Menu

Active flag flag for activating/deactivating the plot

Coordinate1 [Length] Evaluation point for variable

NumInBlock2 [−] component if variable is a vector

Subdomain3 [−] selection subdomain

XAutoRange flag flag for autoscaling of horizontal axis

XRange
[Length]

or [Time]
left and right boundary of horizontal axis (unit depends on type of plot)

YAutoRange flag flag for autoscaling of vertical axis

YRange [∗] lower and upper boundary of vertical axis

Steps2Save1 [−] SaveData in /Command directory saves every
Steps2Save th time point and corresponding value

Resolution1 [−] sets the number of lines to be drawn at least in the plot
(only graphical output, not calculation)

Note

• For a TimePlot specify the point of evaluation and ensure that this Coordinate
is inside of your domain.

• If the variable of the plot is vector valued (see description of the problem class,
3 Problem Classes, p. 57), you can select the component of the vector with
NumInBlock.

• The plot will be scaled automatically, if you choose Left > Right or Lower >
Upper, even if AutoRange is not active.

• You may not generate a GridPlot or TimePlot before the timer is present.

➟ /Command/Plot

This command sequentially executes all plots.

➟ /Command/SaveData

This command saves the data of the selected GridPlot or TimePlot into a file. You
are asked for a file name. If no plot is available or a FunctionPlot is selected, the
selected variable of the selected discretization is saved.

1only for TimePlot
2only for GridPlot and TimePlot
3only for FunctionPlot

49

Chapter 2 Items of Richy1D’s Menu

2.10 General Settings

The variables of the toplevel directory /GeneralSettings are used to control arbi-
trary behavior of Richy1D. Further details can be found in the documentation of the
corresponding parts.

GeneralSettings

DisplayAll...see 1.1 Hiding, p. 4
ShowMessages..see below
SizeOfHeapInMB

ZDirection...see 2.3.1 Domain, p. 10
SaveDataSettings...see below

NumOfDigits

CutOff

Log2File..................................see A.3 Logging a Session, p. 148
GraphicalInput

ShowHistoryLog ... see below

➟ /GeneralSettings/ShowMessages

This command enables/disables the popping up of message boxes, e. g.when new
species are added (in the multicomponent problems) or different problems are con-
nected to each other (carrier facilitation or water flow with solute transport). You
normally have to hit the ‘Ok’ button to confirm the messages. If you do not want that
messages pop up (e. g.because you do not want that the execution of script files is
interrupted by this confirmation), just switch the button off (by default, it is on).

➟ /GeneralSettings/SaveDataSettings

In this directory you can define the number of digits NumOfDigits of the values that
you save when the SaveData command is executed for the current plot. The CutOff

value sets every datum that should be saved to 0.0, if the absolute value of the datum
is smaller or equal to CutOff. CutOff is only relevant for grid plots or time plots, it
has no effect on the calculations themselves, though!

➟ /GeneralSettings/ShowHistoryLog

The command ShowHistoryLog envokes a window that displays all the operations/ac-
tions that you perform during your session (e. g.execution of any command, changing
directories, setting parameters or selecting items).

2.11 Geological Database

Overview

GeoBase is an interface to transfer physicochemical properties of the soil and the
contaminant to the input data of certain problem classes of Richy1D, e. g.transport.

50

Chapter 2 Items of Richy1D’s Menu

The physicochemical properties are available through ASCII files which are loaded into
the application and build up a database that can be found in the toplevel directory
/GeoBase. The user may also modify any properties within Richy1D, choose any
contaminant from the database and build up a soil structure from the textures defined
in the database. A single command will transfer the user’s settings into the structures
of Richy1D.

By default, the database is not loaded automatically when Richy1D is started,
therefore you have to execute the script file ./appl/scripts/geobase.scr. Then you
have access to a number of soil properties and contaminant data, which are mainly
based on data of the Umweltbundesamt UBA. Of course the user is free to modify these
databases, or create its own database files. Therefore he just has to modify the files
./appl/scripts/geobase/contamiants/contaminants.scr or ./appl/scripts/geobase/

soiltextures/soiltextures.scr or create similar new files of that kind. The directory
structure of GeoBase

GeoBase

Data2Transport

Data2Heat

Contaminant

SorptionModel

SoilTexture

is explained in the following sections.

Contaminants

Under the toplevel directory /GeoBase there is a directory Contaminants, which itself
has the subdirectory DataBase. The database contains one directory for each contam-
inant. The entries in this directory are

51

Chapter 2 Items of Richy1D’s Menu

GeoBase

Contaminant

DataBase

[name of contaminant]

MolarMass

Density

MeltingPoint

BoilingPoint

VapourPressure

RelGasDensity

WaterSolubility

SaturationConcentration

DynamicViscosity

KinematicViscosity

DiffusionWater

DiffusionAir

DissociationConstant

HenryCoefficient

K_OW

K_OC

Most of these entries are still unused and we will only explain and give units for the
used entries.

WaterSolubility [g/cm3]

DiffusionWater [cm2/min] molecular diffusion coefficient in water

K_OC [−] partition coefficient between organic carbon and water

Within this database you only have to select the desired contaminant, then the
specified parameter will be used for the equilibrium sorption model, see the following
section, and the diffusion constant.

Sorption Models

The second directory under /GeoBase is SorptionModel. The sorption models are
mathematical formulations of isotherms built from physical properties. They differ
from each other by the set of physical properties used to formulate an isotherm and
by the mathematical formula that is used to define the isotherm. The following model
in the GeoBase framework is available:
Linear, depending on organic carbon and clay content. The directory of this sorption
model looks like

52

Chapter 2 Items of Richy1D’s Menu

GeoBase

Contaminant

SorptionModel

Linear(OC,T)

ClayCutOff

KT(S)_Factor

KT(S)_Exponent

This model represents a linear sorption isotherm for equilibrium sorption. It is a
familiar way to write the sorbed concentration as product of bulk density, Kd value
and concentration of the contaminant. Kd is calculated from the contaminant’s
WaterSolubility, it’s partition coefficient KOC , the soil’s OrganicCarbon and Clay

content.

Kd = KOC
OrganicCarbon

100
+

Clay

100
KT(S)_Factor exp

(
KT(S)_Exponent ln(WaterSolubility)

)

The second term in this sum, containing the clay dependence of sorption, is neglected
if Clay < ClayCutOff. You have to select the desired sorption model.

Soil Texture

The last subdirectory under /GeoBase is SoilTexture

GeoBase

Contaminant

SorptionModel

SoilTexture

DataBase

AddLayer

RemoveLayer

Layers

and contains a database of soil properties, commands to add a layer of the selected
property or to remove a selected layer and a list of layers that builds the soil.

➟ /GeoBase/SoilTexture/DataBase

The database contains one directory for each specified soil type. The entries in this
directory are

53

Chapter 2 Items of Richy1D’s Menu

GeoBase

Contaminant

SorptionModel

SoilTexture

DataBase

[name of soil property]

BulkDensity

ClayContent

SiltContent

SandContent

FieldCapacity

AvailableWater

ResidualWaterContent

Porosity

Permeability

QuartzContent

OtherMineral

SesquioxidesContent

OrganicMatter

Most of these entries are still unused by the available sorption models within GeoBase

and we will only explain and give units for the used entries.

BulkDensity [g/cm3]

ClayContent [%]

OrganicCarbon [%]

FieldCapacity [%]

QuartzContent [%]

OtherMinerals [%]

SesquioxidesContent [%]

OrganicMatter [%]

Within this database you have to select the soil property, from which you want to
add a layer to your soil.

➟ /GeoBase/SoilTexture/AddLayer

This command adds a layer of the previously selected soil property to the list of layers
in that directory (see below).

➟ /GeoBase/SoilTexture/RemoveLayer

This command removes the selected layer from that directory (see below).

➟ /GeoBase/SoilTexture/Layers

The directory Layers contains all layers, which you

54

Chapter 2 Items of Richy1D’s Menu

• add by the command AddLayer, after

• selecting the soil property from the DataBase.

You can also remove a layer from this directory by selecting this layer and using the
command RemoveLayer.

Each layer is represented by a directory named by the soil property, containing the
same information like the entries of any soil property and in addition the Thickness

of the layer and the content of OrganicCarbon

GeoBase

Contaminant

SorptionModel

SoilTexture

DataBase

AddLayer

Layers

[name of soil property

Thickness

OrganicCarbon

BulkDensity

ClayContent

The sequence of layers in this directory is arranged from top to bottom. The first layer
is the toplayer in your soil. The second layer is the layer below the first layer and so
on.

Interface to Problem

➟ Data2[problem]

The command Data2[roblem] is only available for heat and transport problems. This
command requires that a domain is allocated (it uses the selected domain) and that the
coefficient functions of the corresponding problem are allocated (it uses the selected
coefficients). If these requirements are fullfilled, the command

1. fills the information of your soil texture (the sequence of layers) into the domain
definition and

2. for each layer it combines the soil properties and the information for the
problem coefficents (detailed below) and fills the corresponding data into the
Coefficients of the Problem.

Note
Be aware that Richy1D enumerates the layers along the axis in positive direction. If
you read any data outside of GeoBase which are defined per subdomain, the index 0
is that of the bottom layer and the toplayer has the largest index number.

55

Chapter 2 Items of Richy1D’s Menu

Some parameters in the database are given with units. You have to ensure that all
other parameters are defined consistently to these units.

In detail, currently the following information is transferred from the GeoBase to the
Coefficients of the Problem:

➟ /Geobase/Data2Heat

Besides the configuration of the layers which is used to build the domain, the following
data are transferred to the heat coefficients:

The contents of quartz, other minerals, sesquioxides and natural matter of the layers.

➟ /Geobase/Data2Transport

Besides the configuration of the layers which is used to build the domain, the following
data are transferred to the transport coefficients:

The (equilibrium) sorption model is transferred as explained in the section sorption
models, p. 52. Furthermore the values for the field capacity (→ water content), the
molecular diffusion of the contaminant species, and the bulk density of the soil layers
are read in.

56

Chapter 3

Problem Classes

Each problem class deals with a certain model equation and provides at least a set
of coefficient functions and a discretization for this equation. The model equations
are in vectorial form and have to be condidered for only one spatial dimension in the
framework of Richy1D.

3.1 Heat Conduction

Notation

T [Temperature] temperature

cν [Mass/(Time2 Length2 Temperature2)] volumetric storage capacity of soil

λ [Mass Length/(Time3 Temperature)] thermal conductivity of soil

cw [Mass/(Time2 Length Temperature)] volumetric heat capacity of water

q [Length/Time] water flux

f [Mass/(Time3 Length)] source

θ [−] volumetric water content

θsat [−] saturated water content

fM [−] volumetric fraction of minerals

fO [−] volumetric fraction of organic matter

Model Equation

The conduction of heat in a porous medium by convection and diffusion is described
by this equation (cf.e. g. de Vries and Afgan 1975):

∂t (cν(θ) T)−∇ · (λ(θ)∇T) + cw ∇ · (T q) = f (3.1)

It reduces to the classical equation of heat conduction (in a bar, e. g.) for constant
storage capacity cν and conductivity λ, and vanishing convective part (i. e., q = 0).

Coefficient Functions

To create the set of coefficient functions for heat conduction follow these steps:

57

Chapter 3 Problem Classes

• Go to the directory /Library/Coefficient,

• execute HeatConduction and define a name, under which the corresponding pa-
rameter set appears in the toplevel directory /Coefficient.

Heat Conduction

To assign or change the parameter values, Richy1D offers the following interface:

Coefficient

[name]

StorageCapacity

Conductivity

HomogSource

Water

The parameters correspond to those, introduced in the notations table above. The
parameters are displayed as arrays. You have to specify values for each subdomain.

To calculate the solution of the heat equation (3.1) define the coefficients
StorageCapacity, Conductivity and HomogSource. These coefficients are piecewise
constant on subdomains.

Heat Transport

To simulate heat transport in connection with water flow in soils, you have to switch
on the flag WaterDependend in the Water subdirectory. Now additional terms in your
equation are considered that account for convective transport and relate the other
coefficients to the water content (see the model equation (3.1)). The formulations of
these coefficient functions are based on work of de Vries and Afgan (1975), see also
Totsche (1996).

You have either the possibility to define values for the water content θ and the water
flux q in the menu (in this case, switch WithRichards off), or couple a simulation of
a water flow problem (the Richards equation) to the heat conduction problem (in this
case, switch WithRichards on). In the latter case, the current water contents and
fluxes are taken from the water flow problem, as well as the value for the saturated
water content θsat (in this case, the menu variable for ThetaSat is ignored.). Richy1D

offers you the following interface:

58

Chapter 3 Problem Classes

Coefficient

[name]

StorageCapacity

Conductivity

HomogSource

Water

WaterDependend

WithRichards

WaterContent

Time

Flux

HeatCapWater

LambdaWater

LambdaQuartz

LambdaOtherMinerals

LambdaSesquiOxides

LambdaOrganicMatter

LambdaAir

ThetaSat

XQuartz

XOtherMinerals

XSesquiOxides

XOrganicMatter

PrefFlowNumInBlock

Connect2WaterContent

Connect2Flux

To provide the information concerning the water content θ and the water flux q for
the heat conduction problem follow these steps:

1. Select WithRichards.

2. Define HomogSource, OrganicMatter and HeatCapWater.

3. Go to the toplevel directory /Discretization and select the discretization cor-
responding to the water flow (e. g.WaterDisc).

4. Go into the directory /Discretization/WaterDisc/Variables and select the
water content.

5. Execute the command /Coefficient/[name]/Water/Connect2WaterContent.

6. Go into the directory /Discretization/[water discretization

name]/Variables and select flux.

7. Execute the command /Coefficient/SoluteCoeff/Water/Connect2Flux.

59

Chapter 3 Problem Classes

8. Set PrefFlowNumInBlock to define the number of Richards equation in
problem class PrefFlow (cf.3.4 Saturated/Unsaturated Preferential Water
Flow (Richards Equation), p. 84). If water flow is simulated by problem class
Richards, PrefFlowNumInBlock has to be set to 0.

Note
The simulation of water flow has to be added to the grid before the heat transport.

If WaterDependend is selected, the volumetric storage capacity of soil cν is defined
with the help of empirically derived weighting factors according to de Vries and Afgan
(1975)

cν = 0.46 fM + 0.60 fO + 1.0 θ . (3.2)

fM and fO are the volumetric fractions of minerals and organic matter, respectively.
The thermal conductivity of the soil λ has the following form:

λ(θ) =

∑5
i=1 λi xi ki∑5
i=1 xi ki

xi =
Vi∑6
j=0 Vj

. (3.3)

The volumetric fractions for water and air are not given in the menu, because xwater
corresponds to the water content θ and xair = θsat − θ. ki is currently set to 1.0.
Otherwise (in the case you switch WaterDependend off) cν is set to StorageCapacity,
λ to Conductivity.

Discretization

The heat conduction is discretized with a conforming finite element method, mass
lumpimg and a backward Euler scheme. To create the corresponding discretization
follow these steps:

• Go to the directory /Library/Discretization,

• execute FEM4HeatConduction and define a name, under which the discretization
appears in the toplevel directory /Discretization.

Now, you have access (e. g.for selection) to the variables of this discretization in the
toplevel directory /Discretization.

Discretization

[name]

Variables

temperature

The entry in the directory Variables corresponds to that, explained in the notations
table above.

60

Chapter 3 Problem Classes

Grid-and time adaption. The discretization FEM4HeatConduction does not provide
any indicators for grid and time adaption.

Instructions for Usage

The problem class heat conduction handles a scalar initial boundary value problem.
Therefore you have to add

• an initial boundary value problem consisting of

– a domain,

– a scalar boundary condition (Type Dirichlet, Neumann or Flux for temper-
ature),

– a scalar initial value (1 vector with 1 component, prescribing temperature
at the beginning of the simulation),

– the set of coefficient functions HeatConduction and

• the discretization FEM4HeatConduction

to the grid. The result of this discretization is a piecewise linear approximation of the
temperature on the grid. As the problem is linear, a nonlinear solver should only need
one iteration to solve one time step.

61

Chapter 3 Problem Classes

3.2 Solute Transport

Table of Contents

1. Notation, p. 63

2. Model Equation, p. 63

3. Coefficient Functions, p. 63

a) Solute Transport, p. 64

b) Multiple Non-Equilibrium Isotherms, p. 66

c) Carrier Facilitation, p. 66

d) Water Flow, p. 68

e) Serial Decay Reactions, p. 69

f) Temperature-Dependent Kinetics of Degradation, p. 71

g) Linking Isotherms of Different Problems, p. 73

h) Usage, p. 73

4. Discretization, p. 73

5. Instructions for Usage, p. 75

6. Closed-Flow Design, p. 76

7. Identification, p. 76

62

Chapter 3 Problem Classes

Notation

t [Time] time

c [Mass/Length3] mass concentration of solute

s [−] mass concentration of sorbate at nonequilibrium sorption sites

θ [−] volumetric water content

q [Length/Time] water flux

ρb [Mass/Length3] bulk density

fφ, fϕ [−] mass fraction of sorption sites

φ(c) [−] equilibrium sorption isotherm

ϕ(c) [−] nonequilibrium sorption isotherm

r [1/Time] rate parameter for nonequilibrium sorption

D [Length2/Time] diffusion-dispersion tensor

αl [Length] longitudinal dispersivity

d [Length2/Time] molecular diffusion

k [1/Time] first order decay rate

const [Mass/(Length3 Time)] constant zeroth order decay

kr [1/Time] exchange rate between solution and organic phase

X [−] mole fraction within organic phase

Sp [Mass/Length3] pure solubility in water

Model Equation

The solute transport is described with a transport equation including
diffusion-dispersion, convection, equilibrium and nonequilibrium sorption, decay and
Raoult’s law driven by first order exchange kinetic:

∂t(θ c)−∇ · (D∇c− q c) + ρb ∂t (fφ φ(c) + fϕ s(c)) = −θ k c− θ const− θ kr (X Sp − c) ,
(3.4a)

∂ts = r (ϕ(c)− s) . (3.4b)

Coefficient Functions

The main directory looks like:

63

Chapter 3 Problem Classes

Coefficient

[name]

Functions

Transport

Carrier

Water

Decay

Stabilization4Transport

Solute Transport

The interface to these parameters is as follows:

Coefficient

[name]

Transport

Diffusion

Dispersion

BulkDensity

EquiSorpt

ParaType

MassFraction

Kd-Value

Exponent

Regularization

MaxSorption

Link2Coeff

NonEquiSorpt

AddIsotherm

Raoult

MolarFraction

PureSolubility

ExchangeRate

In case of existing nonequilibrium sorbtion the subdirectory
Coefficient/[name]/Transport/Non\ EquiSorpt looks like

64

Chapter 3 Problem Classes

NonEquiSorpt

AddIsotherm

NEIsothermA

ParaType

MassFraction

Kd-Value

Exponent

Regularization

MaxSorption

RateParameter

Link2Coeff

Note
By using the default setting RateParameter = −1 the corresponding nonequilibrium
sorption isotherm will be ignored.

The solute transport provides four different sorption isotherms both for equilibrium
and for nonequilibrium sorption. The ParaType controls the evaluation of this
isotherms on each subdomain in the following way:

ParaType name equation

0 linear ϕlin = Kd c

1 Freundlich ϕF = Kd c
Exponent

2 Langmuir ϕL =
Kd c

1 + Kd

MaxSorption
c

3 Freundlich–Langmuir ϕFL =
Kd c

Exponent

1 + Kd

MaxSorption
cExponent

The Freundlich and the Freundlich–Langmuir isotherms can be regularized within
the interval [0, Regularization]. For Exponent < 1 the isotherms are continuously
substituted within this interval.

The diffusion-dispersion tensor has the following form in one space dimension:

D = αl q + d θ . (3.5)

In more space dimensions there exist several matrix representations.
Release of organic substances from the Non-Aqueous Phase Liquid (NAPL) phase is

often controlled by Raoult’s law. The parametrization of this source/sink term com-
prises the MolarFraction of the organic substance in the NAPL phase, the solubil-
ity of the pure substance in water (PureSolubility) and theExchangeRate between
aqueous solution and NAPL.

65

Chapter 3 Problem Classes

Multiple Non-Equilibrium Isotherms

It is possible to add several kinetic isotherms to the transport problem. An isotherm
is added by clicking the command-button AddIsotherm:

Coefficient

[name]

Transport

Diffusion

Dispersion

BulkDensity

EquiSorpt

NonEquiSorpt

AddIsotherm

Raoult

The added kinetic isotherms are displayed and the coefficients can be set in the same
way as they are set for the equilibrium isotherms.

It is necessary to specify new initial values for each added isotherm. In order to do
this, add a vector to describe the initial values for the sorbate and a function for each
new isotherm to this vector.

In order to select plots for the different sorption places, the corresponding
NumInBlock values must be specified according following table:

[isotherm name] NumInBlock

NEIsothermA 0

NEIsothermB 1

NEIsothermC 2

.

If a domain is divided into subdomains, it is possible to deactivate these isotherms
in some subdomains by specifying negative rateparameters for these subdomains.

Note
It is necessary to create a dicretisation prior to the addition of non equilibrium
isotherms. The grid has to be reinitialized after adding new isotherms.

Carrier Facilitation

The effect of mobile and immobile carriers (e. g.dissolved organic carbon, DOC) on
solute transport can be included. According to the work of Knabner et al. (1996) and
Totsche et al. (1996) the contaminant’s sorption isotherm ψ is replaced by an effective
sorption isotherm ψeff . Following experimental studies (Magee et al. (1991), Roy and
Dzombak (1997)) the partitioning of the solute (phenanthrene) to DOC is modelled
by a linear exchange mechanism (cf.Prechtel et al. (2002) for an application). The

66

Chapter 3 Problem Classes

resulting effective isotherm consists of a term for the sorption of the free contaminant
and a term for the sorption of the carrier bound contaminant:

fψψeff(c) = fψHf
ψHf

(
c

1 + cDKHD

)

︸ ︷︷ ︸
sorption of free HOC

+ fψD
ψD(cD)KHD

c

1 + cDKHD︸ ︷︷ ︸
sorption of carrier bound HOC

(3.6)

where c is the total (free + carrier bound) dissolved concentration of the contami-
nant, fψHf

and fψD
are the mass fractions of the solid matrix providing equilibrium

sorption sites for free HOC (phenanthrene) and for DOC respectively, ψHf and ψD
are the equilibrium sorption isotherms for free phenanthrene and for DOC, cD is the
current solute concentration of the carrier, and KHD is the partition coefficient for the
linear sorption of HOC to DOC. Note that the term describing the sorption of carrier
bound HOC only takes cumulative sorption into account, i. e. the binding of dissolved
HOC to sorbed DOC. A term describing co-sorption, i. e. the sorption of HOC-loaded
DOC particles could be easily added, but at the moment, the experimental distinction
between the two effects is still questionable. For the derivation, discussion and further
properties of the model (also with respect to other approaches), see Knabner et al.
(1996), Totsche et al. (1996) and KS1996.

Sorption of the free solute is described in the menu Transport as usual. Additionally
the solute now may sorb to a carrier substance, which itself is subject to transport,
sorption etc.

Carrier facilitation is switched on and off with the flag WithCarrier. The interface
to carrier facilitation is as follows:

Coefficient

SoluteCoeff

Transport

Carrier

WithCarrier

PartitioningCoefficient

Connect2Solute

Connect2Sorbate

Water

Decay

To use this feature, you need another problem on your grid, that describes the transport
of the carrier. You can use e. g.the problem class solute transport twice. First, you
create the problem and its discretization for the carrier. And then, you add the same
problem and discretization a second time to the grid for the solute that is subject to
carrier facilitated transport. To establish the connection between the current solute
transport and a previously defined carrier transport follow these steps:

• Switch WithCarrier on,

• define a PartitioningCoefficient for the sorption of your solute to the carrier,

67

Chapter 3 Problem Classes

• go to the toplevel directory /Discretization and select the discretization cor-
responding to the carrier (e. g.CarrierDisc),

• go into the directory /Discretization/CarrierDisc/Variables and select the
concentration of the carrier,

• execute the command /Coefficient/SoluteCoeff/Carrier/Connect2Solute,

• go into the directory /Discretization/CarrierDisc/Variables and select the
sorbed concentration of the carrier,

• execute the command /Coefficient/SoluteCoeff/Carrier/Connect2Sorbate.

Note
The carrier transport has to be added to the grid before the (carrier facilitated) solute
transport.

Water Flow

Richy1D’s interface to define the water flow for your transport problem is as follows:

Coefficient

SoluteCoeff

Transport

Carrier

Water

WithRichards

WaterContent

Time

Flux(Time)

Connect2WaterContent

Connect2Flux

The simulation of solute transport depends on a description of water flow i. e., of
the water flux q and the water content θ. There are two possibilities to provide this
information for solute transport:

1. Predetermined constant values for water content θ on each subdomain and pos-
sibly time dependent values for water flux q. To make use of this method, follow
these steps:

• Switch WithRichards off,

• define WaterContent for each subdomain and

• define Time and Flux(Time) for the whole domain. Values are interpolated
piecewise linear at intermediate time points.

68

Chapter 3 Problem Classes

2. Simulation of water flow. To make use this method, you need the problem and
its discretization, that describes water flow, on your grid. Follow these steps:

• Switch WithRichards on,

• go to the toplevel directory /Discretization and select the discretization
corresponding to the water flow (e. g.WaterDisc),

• enter the directory /Discretization/WaterDisc/Variables and select the
water content,

• execute the command /Coefficient/SoluteCoeff/Water/Connect2WaterContent,

• enter the directory /Discretization/WaterDisc/Variables and select the
water flux,

• execute the command /Coefficient/SoluteCoeff/Water/Connect2Flux.

Note
The simulation of water flow has to be added to the grid before the solute transport.

Serial Decay Reactions

Let introduce the following notations:

ci [Mass/Length3] concentration of species i

ci−1 [Mass/Length3] concentration of species i− 1

ki, ki−1 [1/Time] first order decay rates for ci and ci−1

yi [−] stoichiometric factor

const [Mass/Time] constant zeroth order decay

It is possible to couple several transport/decay reactions that are described by the
following model equations:

∂t(θ ci)−∇ · (D∇ci − q ci) + ρb ∂t (fφ φ(ci) + fϕ si(ci)) = yi ki−1 ci−1 − ki ci − const
(3.7a)

∂tsi = r (ϕ(ci)− si) (3.7b)

Note
A constant zeroth order decay is independent of the current solute concentration and
thus may lead to negative concentrations! This is not a numerical error but a conse-
quence of the zerothth order model (which is not appropriate in such a situation).

For each species only one father species may be given, for the first problem i = 0
you have to set ci−1 to zero. Two examples of serial decay rates are shown in figure
3.1.

69

Chapter 3 Problem Classes

A B C D

FE G
A B C2

C1

C3

Figure 3.1: Example of two decay series.

Coupling the reactions. The interface to serial decay is as follows:

Coefficient

ReactionB

Transport

Carrier

Water

Decay

0thOrderRate

1stOrderRate

WithFatherSpecies

YieldFactor

Connect2Father

Connect2SubComp

To use this feature, you have to create several transport problems (and their discretiza-
tion) on your grid, that describe the transport of the species 1 to i. It is also possible
to connect your transport problem with a biodegradation problem. To establish the
connection between two reactions (A→ B) follow these steps:

• Switch WithFatherSpecies on,

• define the yield factor of the reaction,

• if the solute variable of the father reaction consists of two (or more) compo-
nents (as e. g.in the biodegradation problem), define the component by setting
Connect2SubComp. Look out: ‘0’ identifies the first component!

• Enter the toplevel directory /Discretization and select the discretization cor-
responding to the father reaction (e. g.‘ReactionA’),

• enter the directory /Discretization/ReactionA/Variables/ and select the
sink-term. If ReactionA is a transport problem, you have to select the variable
sink-trans (then the sink term corresponds to a first order term). If ReactionA
is defined in the problem class biodegradation, you have to select sink-biodeg

(then the sink term corresponds to a Monod model).

• Enter the directory /Coefficient/ReactionB/Decay and execute the command
Connect2Father.

70

Chapter 3 Problem Classes

Temperature-Dependent Kinetics of Degradation

The influence of the temperature on the kinetics of microbially mediated degradation
can be described by multiplying an inhibition term

I(T) = exp
(
−κ(T − Topt)2

)
. (3.8a)

Thus the zeroth order term becomes

const −→ constopt I(T) (3.8b)

and the zeroth order rate constant can now be interpreted as the zeroth order constant
at optimal temperature. Analogously the first order rate becomes

k −→ kopt I(T) (3.8c)

where

T [Temp] current temperature

Topt [Temp] optimal temperature for biodegradation

κ [1/Temp2] inhibition coefficient

The Interface to this feature is as follows:

Coefficient

Transport

Decay

0thOrderF(Temp)

OptimalT40thOrder

Kappa40thOrder

1stOrderF(Temp)

OptimalT41stOrder

Kappa41stOrder

WithHeatConduction

Connect2HeatConduction

Temperature

Add2Display

TempMeasurement1

These entries have the following meaning:

71

Chapter 3 Problem Classes

{
0thOrderF(Temp)

1stOrderF(Temp)

}
flag to specify whether temperature has an influence on
each degradation{

OptimalT40thOrder

OptimalT41stOrder

}
temperature at which the biodegradation takes place at
maximum speed for zeroth order and first order decay{

Kappa40thOrder

Kappa41stOrder

}
inhibition term for first and zeroth order decay

WithHeatConduction
flag which specifies whether temperature distribution is
calculated by heat conduction

Connect2HeatConduction command to connect heat conduction problem to transport problem

Add2Display command to add temperature measurements for a new coordinate

TempMeasurement1
directory in which the temperature measurements for
one coordinate can be specified

In order to model temperature dependent decay reactions, the temporal evolution
of the temperature in the whole domain has to be specified. This can be done in two
ways:

1. The temperature can be specified explicitly as a function of time and space.

2. The transport problem can be coupled with a heat conduction problem.

In order to specify the temperature explicitly, use the command Add2Display in
order to add new temperature measurements for each coordinate: The directory
/TemperatureMeasurement contains following entries:

Interpolation

Linear

CubicHermit

X-Coordinate

Time

Temperature(Time)

The interpolation which has to be specified refers to the evaluation with respect to
time. The interpolation between the coordinates is done linearily. It is important to
specify the coordinates in an ordered way (x1 < x2 < . . . < xn). Outside of the
specified intervals the values will be kept constant.

In order to couple the transport problem with the heat conduction problem, a prob-
lem of the type heat conduction must be defined prior to the following steps:

• Switch WithHeatConduction on,

• go to the toplevel directory /Discretization and select the discretization cor-
responding to the heat conduction problem (e. g.HcDisc),

• enter the directory /Discretization/HcDisc/Variables and select
temperature,

72

Chapter 3 Problem Classes

• execute the command /Coefficient/Transport/Decay/Connect2HeatConduction,

• select the flag /Coefficient/Transport/Decay/WithHeatConduction.

It is possible to determine the parameters κ and Topt by inverse modelling as well
as to model temperature dependent serial decay reactions. Though it is necessary to
specify the explicit temporal evolution of the temperature for each species as well as
the coupling with the heat conduction must be done for each species.

Linking Isotherms of Different Problems

If at least two transport problems with separate Coefficient are defined, then an
isotherm can be linked to an isotherm from another Coefficient. This is especially
of interest to identify an isotherm from two experiments which use, e. g., different flux
conditions.

Example
Let two entries—named CoefficientA and CoefficientB—are defined in the toplevel
directory /Coefficient. The equilibrium isotherm of CoefficientB is to be linked to
the equilibrium isotherm of CoefficientA. The link is created in the following way:

• Go to the toplevel directory /Coefficient and select the entry CoefficientA,

• go into the directory /CoefficientA/Functions and select EquiIsotherm,

• go into the directory /CoefficientB/Transport/EquiSorpt and execute
Link2Coeff.

Now, CoefficientB uses the same equilibrium isotherm data as CoefficientA (for
simulation and identification).

Usage

To create a set of coefficient functions for solute transport follow these steps:

• Go to the directory /Library/Coefficient,

• execute Transport and define a name, under which the corresponding parameter
set appears in the toplevel directory /Coefficient.

Discretization

The solute transport is discretized with a conforming finite element method, mass
lumping and a backward Euler scheme. To create the corresponding discretization
follow these steps:

• Go to the directory /Library/Discretization,

73

Chapter 3 Problem Classes

• execute FEM4Transport and define a name, under which the discretization ap-
pears in the toplevel directory /Discretization.

Now you have access (e. g.for selection) to the variables of this discretization in the
toplevel directory /Discretization.

Discretization

Stabilization4Transport

ArtificialDiffusion

[name]

Variables

solute

sorbate(neq)

sorbate(eq)

solute_sens

sorbate(neq)_sens

sorbate(eq)_sens

sink-trans

The entry ArtificialDiffusion is the parameter of the stabilization (cf.A.1 Stabi-
lization, p. 130). The entries in the directory Variables correspond to those explained
in the notations table above. The variable sink-trans refers to the sink-term by first-
order decay of your transport problem. This sink-term may enter as a source term in
a subsequent transport problem (see the section about serial decay reactions above).
Note that it does not contain the zeroth order decay term!

A variable [name]_sens has 22 components and includes the sensitivities of the
variable [name] with respect to small changes in the parameters of the coefficient
functions. The assignment is as follows:

74

Chapter 3 Problem Classes

N
u
m
I
n
B
l
o
c
k

[parameter]

0 Diffusion

1 Dispersion

2 BulkDensity

3 Flux

4 WaterContent

5 MassFraction(EquiSorpt)

6 Kd-Value(EquiSorpt)

7 Exponent(EquiSorpt)

8 MaxSorption(EquiSorpt)

9 MassFraction(NonEquiSorpt)

10 Kd-Value(NonEquiSorpt)

11 Exponent(NonEquiSorpt)

12 MaxSorption(NonEquiSorpt)

N
u
m
I
n
B
l
o
c
k

[parameter]

13 RateParameter

14 PartitioningCoefficient

15 K_sat(Richards)

16 T_sat(Richards)

17 T_res(Richards)

18 n(Richards)

19 alpha(Richards)

20 p(Richards)

21 beta(Richards)

22 1stOrderRate

23 YieldFactor

24 1stOrderRate(FatherSpecies)

25 0thOrderRate

Instructions for Usage

The problem class solute transport handles a scalar initial boundary value
problem for the solute concentration together with an initial value problem for
the(nonequilibrium-)sorbed concentration. Therefore you have to add

• an initial boundary value problem consisting of

– a domain,

– a scalar boundary condition (Type Dirichlet, Neumann or Flux) or the
closed-flow boundary condition (see below), an initial value with two vectors
(1st vector for the solute and 2nd vector for the (nonequilibrium-)sorbed
concentration). If Flux conditions (qin, cin) are specified, the given values
are the inflow concentrations, which will be multiplied by the given water
flux, taken from the coefficients menu, or the Richards equation, if you have
coupled the problems (so you need not recalculate the boundary conditions
when the water flux changes),

– the set of coefficient functions Transport and

• the discretization FEM4Transport to the grid.

The result of this discretization is a piecewise linear approximation of the
solute- and the (nonequilibrium-)sorbed concentration. Any further variables

75

Chapter 3 Problem Classes

(e. g.(equilibrium-)sorbed concentration) can be derived from these variables. The
variable that a nonlinear solver has to bring to zero is. . . By this way the stopping
criterion of the nonlinear solver bounds the. . .

Closed-Flow Design

For the solute transport a closed-flow design of a column can be created by executing
the command Closed4Transport in the directory /Library/BoundCond and specify-
ing a name. The menu entries of the boundary condition for the closed-flow design
look like:

Inflow

Left

Right

Volume

Area

IniValue

The meanings of these entries are as follows:

{
Left

Right

}
selectable position of the inflow boundary

Volume [Length3] volume of the reservoir

Area [Length2] inflow (=outflow) area

IniValue [Mass/Length3] initial value of mass concentration in the reservoir

Identification

The problem class solute transport allows the identification of sorptions isotherms. For
identification you can use the OLS error functional (output least squares), the OLS_TW

error functional (output least squares with weighting by time differences) or the OLS_SW
error functional (output least squares with adaptive weighting by sensitivity values).

The directory /Coefficient/[coefficient name]/Functions/NonEquiIsotherm/FittingData

contains two additional entries for the formfree identification:

RB_Lower [1/Time] lower boundaries for rate parameter

RB_Upper [1/Time] upper boundaries for rate parameter

Additionally to the identification of sorption isotherms and the according coefficient
functions it is possible to identify initial conditions. This requires to put up the initial
conditions in the following way:

• Go to the directory /Library/InitialValue,

76

Chapter 3 Problem Classes

• generate a basic entry in the toplevel directory /InitialValue with the com-
mand Create and specify its name (e. g.‘Pollutant’),

• for each vector of your problem class add an entry to /InitialValue/Pollutant

by executing AddVector and specify its name (e. g.‘Sorbate’),

• for each component of an already defined vector (e. g./InitialValue/Pollutant/Sorbate)
add an entry by executing e. g.ConstFunctions and specify the name for the
initial value function of this component (e. g.‘Comp’).

• Within an array constant in the subdirectory /InitialValue/Pollutant/Sorbate/Comp

a concentration value can be specified for each subdomain.

After creation of the identification (CreateParaFit or CreateIdentify) it is possible
to specify the identification controls.

77

Chapter 3 Problem Classes

3.3 Saturated/Unsaturated Water Flow (Richards

Equation)

Table of Contents

1. Notation, p. 78

2. Model Equation, p. 78

3. Coefficient Functions, p. 79

4. Initial Value, p. 81

5. Discretization, p. 81

6. Instructions for Usage, p. 83

7. Identification, p. 83

Notation

t [Time] time

z [Length] coordinate, opposite to the gravitational direction

ψ [Length] pressure head

q [Length/Time] water flux

θ [−] volumetric water content (coefficient function)

θres [−] residual water content

θsat [−] saturated water content

K [Length/Time] hydraulic conductivity (coefficient function; K = KrelKsat)

Krel [−] relative hydraulic conductivity (Krel = Krel(θ))

Ksat [Length/Time] saturated hydraulic conductivity

α, β [1/Length] parameter for the pressure–saturation curve

m, n, p [−] parameter for the pressure–saturation curve

Model Equation

The saturated/unsaturated flow of water in a porous media is described by the
Richards equation (Richards 1931):

∂tθ +∇ · q = 0 , q = −K(θ)∇(ψ + z) . (3.9)

In one spatial dimension, the unsaturated hydraulic conductivity tensor K becomes a
scalar K. The primary unknown variable of this model equation is the pressure head ψ.

78

Chapter 3 Problem Classes

Coefficient Functions

In saturated regions, i. e., where ψ > 0 holds, the water content and the conductivity
are equal to θ = θsat, K = Ksat (due to Krel = 1). Regarding unsaturated regions
three parametrizations of the coefficient functions are available for the one-dimensional
Richards equation:

Gardner

θexp(ψ) = θres + (θsat − θres) eαψ , (3.10a)

Kexp(ψ) = Ksat e
αψ . (3.10b)

Haverkamp

θHav(ψ) = θres +
θsat − θres

1 + (−αψ)n , (3.11a)

KHav(ψ) =
Ksat

1 + (−β ψ)p . (3.11b)

van-Genuchten–Mualem

θvG(ψ) = θres + (θsat − θres) Φ(ψ) , (3.12a)

KvG(ψ) = Ksat

√
Φ(ψ)

(
1−

(
1− Φ(ψ)1/m

)m)2

(3.12b)

with Φ(ψ) =
1

(1 + (−αψ)n)m , m = 1− 1/n .

To create this set of coefficient functions for the Richards equation we follow these
steps:

• go to the directory /Library/Coefficient,

• execute Richards and define a name, under which the corresponding parameter
set appears in the toplevel directory /Coefficient.

Typical values for the parameters of the van-Genuchten parametrization are found in
the next table (Blume 2011, Tab. 2.1):

θres [−] θsat [−] Ksat [cm s−1] α [cm−1] n [−]
sand 0.03 0.32 2.2× 10−3 2.3× 10−2 4.17

silt 0.01 0.41 1.0× 10−3 7.0× 10−3 1.30

loam 0.00 0.43 3.0× 10−4 1.6× 10−2 1.25

To select the parametrization type, assign or change the parameter values, Richy1D

offers the following interface:

79

Chapter 3 Problem Classes

Coefficient

[name]

Functions

...

ParaType

K_sat

T_sat

T_sat_approx

Connect2Porosity

WithPorosity

T_res

n

alpha

p

beta

Regularization

The meaning of most of the parameters in this directory is explained in the notation
table above. The parameters are displayed as arrays. You have to specify values for
each subdomain. The ParaType defines the used parameter function per subdomain
as follows from this table:

name of estimation model ParaType

Gardner 0

Haverkamp 1

van-Genuchten–Mualem 2

generic spline interpolation 4

Variable Porosity

In the case you want to include the effect of varying mineral concentrations on the
total porosity (which we do not distinguish from the saturated water content θsat in
our models), you can connect a reactive multispecies problem (see Reactive Multicom-
ponent Transport, p. 113) with the water flow problem.

The porosity can be described in terms of mineral concentrations by

θsat = 1−
∑

m

V mmc̄m [Length3 pore/Length3 bulk] (3.13)

where V mm [Length3 mth mineral/Mass] denotes the molar volume of the mth min-
eral species which is assumed to be constant. According to eqn. (3.13), a change in
mineral concentrations directly influences the porosity and therewith the water move-
ment. The residual water content θres is a measure for the minimum water volume held
in the pore space by capillary forces. Assuming that the microscopic structure of the

80

Chapter 3 Problem Classes

soil matrix does not change with respect to variable porosity (i.e. there is no forming
of ridges or fingers) the following scaling is performed:

θres ←− φ/φ0θres

where φ0 denotes the initial porosity.

In the subdirectory T_sat_approx set the variable withPorosity to on. Then go to

➟ /Discretization/[MultispecProblem]/Variables/porosity

Set porosity on and highlight the variable with a right-click. Go to

➟ /Coefficiemt/[RichardsProblem]/T_sat_approx

and execute the command Connect2Porosity.

Note — Regularization
Not all the parameters are active for each function although the menu always contains
the complete set of parameters for every model. The entry Regularization refers to
the van-Genuchten–Mualem model: for n < 2, the permeability function KvG must be
regularized (cf. Blume 2011, Sec. 2.1.5). The permeability is continuous differentiable
substituted by a quadratic function within the range [1− Regularization, 1].

Initial Value

The problem class Richards equation provides the additional initial value function
RichyEqui, which can be used instead of the standard piecewise linear function defined
within the kernel. Instead of the parametrization of piecewise linear function you have
now only the parameter Flux to define the initial pressure profile. This works as follows:

➟ /Library/InitialValue/RichyEqui

The command RichyEqui invokes the computation of an equilibrium initial condition
for the (un)saturated water flow problem. Initialization calculates the pressure and
water content distribution within the domain using the Dirichlet boundary condition
at the left side of the domain for time t = 0 and the specified Flux within the domain.

Note
If you adjust the boundary condition (Type Flux) at the right hand side of the domain
to the value you specified for the initial value and if you keep boundary condition
values constant in time, your problem will remain stationary.

Discretization

The Richards equation is discretized with a mixed hybrid finite element method. To
create the corresponding discretization follow these steps:

• go to the directory /Library/Discretization,

81

Chapter 3 Problem Classes

• execute HMFEM4Richards and define a name, under which the discretization ap-
pears in the toplevel directory /Discretization.

Now, you have access (e. g. for selection) to the variables of this discretization in the
toplevel directory /Discretization.

Discretization

[name]

Variables

pressure

flux

theta

cum_flow

pressure_sens

flux_sens

theta_sens

cum_flow_sens

EpsTheta

ErrorGrid

ErrorTime

The meaning of the entries pressure, flux and theta in the directory Variables is
explained in the notations table above. The variable cum_flow contains the cumulative
flow.

A variable [name]_sens has seven components and includes the sensitivities of the
variable name with respect to small changes in the parameters of the coefficient func-
tions. The assignment is as follows:

NumInBlock parameter

0 Ksat

1 θsat

2 θres

3 n

4 α

5 p

6 β

Grid- and Time Adaptation

The discretization HMFEM4Richards provides error indicators for grid and time adap-
tation. If you activate adaptivity grid size and timestep size is controlled by the cor-
responding parameters: ErrorGrid and ErrorTime.

82

Chapter 3 Problem Classes

Instructions for Usage

The problem class Richards equation handles a scalar initial boundary value problem.
Therefore you have to add

• an initial boundary value problem consisting of

– a domain,

– a scalar boundary condition (Type Dirichlet for pressure or Type Flux for
water flux),

– a scalar initial value (1 vector with 1 component, prescribing pressure at the
beginning of the simulation),

– the set of coefficient functions Richards and

• the discretization HMFEM4Richards

to the grid. The result of this discretization is

• a piecewise constant approximation of the pressure on each element,

• a pressure value on the edges between two elements and

• a piecewise linear and continous flux.

Any further variables (e. g.theta, cum_flow) can be derived from these variables.
The variable that a nonlinear solver has to bring to zero is the flux difference on

every edge between two elements. By this way the stopping criterion of the nonlinear
solver bounds the discontinouity of the flux across edges.

Identification

The Richards equation allows us the identification of the hydraulic properties. For the
identification you can use the output least squares error functionals OLS, OLS_TW and
OLS_SW. The error functional Mualem_Pen combines the output least squares identifi-
cation with a regularization by the Mualem relation. The subdirectory /Mualem_Pen

contains two additional parameters:

PenaltyDom [−] tolerance parameter for the penalty term

PenaltyPar [−] regularization parameter

83

Chapter 3 Problem Classes

3.4 Saturated/Unsaturated Preferential Water Flow

(Richards Equation)

Table of Contents

1. Notation, p. 84

2. Model Equation, p. 85

3. Coefficient Functions, p. 85

4. Exchange Term, p. 87

5. Initial Value, p. 88

6. Discretization, p. 88

7. Instructions for Usage, p. 89

8. Identification, p. 90

Notation

t [Time] time

z [Length] coordinate, opposite to the gravitational direction

ψ [Length] pressure head

q [Length/Time] water flux

θ [−] volumetric water content (coefficient function)

θres [−] residual water content

θsat [−] saturated water content

K [Length/Time] hydraulic conductivity (coefficient function; K = Krel Ksat)

Krel [−] relative hydraulic conductivity (Krel = Krel(θ))

Ksat [Length/Time] saturated hydraulic conductivity

α, β [1/Length] parameter

m, n, p [−] parameter

Γ [1/Time] exchange term

a
(ij)
Pl [1/(Length Time)] mass exchange coefficient reg. phase i → phase j

a
(ij)
Pnl [1/Length2] mass exchange coefficient reg. phase i → phase j

a
(ij)
S [1/Time] mass exchange coefficient reg. phase i → phase j

NP [−] number of pore systems/Richards equations

84

Chapter 3 Problem Classes

Model Equation

Consider a structured porous media consisting of NP pore systems. The saturated/un-
saturated flow of water in pore system i is described by the Richards equation:

∂tθi +∇ · qi + Γi = 0 , qi = −Ki(θi)∇(ψi + z) . (3.14)

In one spatial dimension, the unsaturated hydraulic conductivity tensor Ki becomes a
scalar Ki. The primary unknown variable of this model equation is the pressure head
ψi.

Coefficient Functions

In saturated regions, i. e., where ψ > 0 holds, the water content and the conductivity
are equal to θ = θsat, K = Ksat (due to Krel = 1). Regarding unsaturated regions
three parametrizations of the coefficient functions are available for the one-dimensional
Richards equation:

Gardner

θexp(ψ) = θres + (θsat − θres) eαψ , (3.15a)

Kexp(ψ) = Ksat e
αψ . (3.15b)

Haverkamp

θHav(ψ) = θres +
θsat − θres

1 + (−αψ)n , (3.16a)

KHav(ψ) =
Ksat

1 + (−β ψ)p . (3.16b)

van-Genuchten–Mualem

θvG(ψ) = θres + (θsat − θres) Φ(ψ) , (3.17a)

KvG(ψ) = Ksat

√
Φ(ψ)

(
1−

(
1− Φ(ψ)1/m

)m)2

(3.17b)

with Φ(ψ) =
1

(1 + (−αψ)n)m , m = 1− 1/n .

To create this set of coefficient functions for Richards equation follow these steps:

• Go to the directory /Library/Coefficient,

• execute PrefFlow and define a name, under which the corresponding parameter
set appears in the toplevel directory /Coefficient.

To add a Richards equation use the interface

85

Chapter 3 Problem Classes

Coefficient

[name]

Functions

Source

Exchangeterm

SingleEquations

AddRichy

and execute AddRichy and enter an equation name.
To select the parametrization type, assign or change the parameter values, Richy1D

offers the following interface:

Coefficient

[name]

Functions

Source

Exchangeterm

SingleEquations

AddRichy

Equation01:[equation name]

ParaType

K_sat

T_sat

T_res

n

alpha

p

beta

Regularization

a

The meaning of most of the parameters in this directory is explained in the notations
table above. The parameters are displayed as arrays. You have to specify values for
each subdomain. The ParaType defines the used parameter function per subdomain
as follows from this table:

name of estimation model ParaType

Gardner 0

Haverkamp 1

van-Genuchten–Mualem 2

Note
Not all the parameters are active for each function although the menu always contains
the complete set of parameters for every model. The Regularization is used for
the van-Genuchten–Mualem model. For n < 2 the permeability function must be

86

Chapter 3 Problem Classes

regularized. The permeability is continuous differentiable substituted by a quadratic
function within the range [1− Regularization, 1].

Exchange Term

For the Richards equations four exchange terms are available:

No exchange
Γ
(i)
0 = 0 . (3.18)

Pressure difference—linear

Γ
(i)
Pl =

R∑

j=1
j 6=i

a
(ij)
Pl (ψi − ψj) . (3.19)

Pressure difference—nonlinear

Γ
(i)
Pn =

R∑

j=1
j 6=i

a
(ij)
Pnl

Ki(ψi)−Kj(ψj)

2
(ψi − ψj) . (3.20)

Saturation difference

Γ
(i)
S =

R∑

j=1
j 6=i

a
(ij)
S (Θ(i) −Θ(j)) , Θ(k) =

θk − θ(k)res

θ
(k)
sat − θ(k)res

. (3.21)

An exchange term can be chosen by

Exchangeterm exchange type

0 no exchange

1 pressure difference linear

2 pressure difference nonlinear

3 saturation difference

All equations of the model use the same type of exchange term. To choose the type
of exchange term and the parameters use the interface above.

87

Chapter 3 Problem Classes

Initial Value

The problem class preferential flow provides the additional initial value function
PrefFlowEqui, which can be used instead of the standard piecewise linear function
defined within the kernel. Instead of the parametrization of piecewise linear function
you have now only the parameter Flux to define the initial pressure profile. This
works as follows:

➟ /Library/InitialValue/PrefFlowEqui

The command RichyEqui invokes the computation of an equilibrium initial condition
for the (un)saturated water flow problem. Initialization calculates the pressure and
water content distribution within the domain using the Dirichlet boundary condition
at the left side of the domain for time t = 0 and the specified Flux within the domain.

Note
If you adjust the boundary condition (Type Flux) at the right hand side of the domain
to the value you specified for the initial value and if you keep boundary condition
values constant in time, your problem will remain stationary.

Discretization

The Richards equation is discretized with a mixed hybrid finite element method. To
create the corresponding discretization follow these steps:

• Go to the directory /Library/Discretization,

• execute HMFEM4PrefFlow and define a name, under which the discretization ap-
pears in the toplevel directory /Discretization.

Now, you have access (e. g.for selection) to the variables of this discretization in the
toplevel directory /Discretization.

Discretization

[name]

Variables

pressure

flux

theta

cum_flow

pressure_sens

flux_sens

theta_sens

cum_flow_sens

EpsTheta

ErrorGrid

ErrorTime

88

Chapter 3 Problem Classes

The meaning of the entries pressure, flux and theta in the directory Variables is
explained in the notations table above. The variable cum_flow contains the cumulative
flow.

A variable [name]_sens has seven components and includes the sensitivities of the
variable name with respect to small changes in the parameters of the coefficient func-
tions. The assignment is as follows:

NumInBlock parameter

0 Ksat

1 θsat

2 θres

3 n

4 α

5 p

6 β

Grid- and Time Adaptation

The discretization HMFEM4PrefFlow provides error indicators for grid and time adap-
tation. If you activate adaptivity grid size and timestep size is controlled by the cor-
responding parameters: ErrorGrid and ErrorTime.

Instructions for Usage

The problem class preferential flow handles a scalar initial boundary value problem.
Therefore you have to add

• an initial boundary value problem consisting of

– a domain,

– a scalar boundary condition (Type Dirichlet for pressure or Type Flux for
water flux),

– a scalar initial value (1 vector with 1 component, prescribing pressure at the
beginning of the simulation),

– the set of coefficient functions PrefFlow and

• the discretization HMFEM4PrefFlow

to the grid. The result of this discretization is

• a piecewise constant approximation of the pressure on each element,

• a pressure value on the edges between two elements and

89

Chapter 3 Problem Classes

• a piecewise linear and continous flux.

Any further variables (e. g.theta, cum_flow) can be derived from these variables.
The variable that a nonlinear solver has to bring to zero is the flux difference on

every edge between two elements. By this way the stopping criterion of the nonlinear
solver bounds the discontinouity of the flux across edges.

Identification

The identification of parameters will be included in a later version. For problems
with only one Richards equation use the problem class (un-)saturated water flow (see
3.3 Saturated/Unsaturated Water Flow (Richards Equation), p. 78).

90

Chapter 3 Problem Classes

3.5 Coupled Water-Surfactant Transport

Table of Contents

1. Notation, p. 92

2. Model Equations, p. 92

3. Coefficient- and Coupling Functions, p. 93

a) Richards Equation, p. 93

b) Surfactant Transport Equation, p. 93

c) Coupling, p. 94

d) Usage, p. 95

4. Initial Value, p. 96

5. Discretization, p. 96

6. Instructions for Usage, p. 97

91

Chapter 3 Problem Classes

Notation

t [Time] time

z [Length] coordinate, opposite to the gravitational direction

ψ [Length] pressure head

q [Length/Time] water flux

c [Mass/Length3] surfactant concentration

θ [−] volumetric water content (coefficient function)

θres [−] residual water content

θsat [−] saturated water content

K [Length/Time] hydraulic conductivity (coefficient function; K = KrelKsat)

Krel [−] relative hydraulic conductivity (Krel = Krel(θ))

Ksat [Length/Time] saturated hydraulic conductivity

Kcoarse, Kclay [Length/Time] hydraulic conductivity for a component of the soil

ν, νclay [−] volume fraction of a comp. of the soil relative to total bulk volume

σ0 surface tension of water (without surfactant)

σ(c) surface tension of water as function of surfactant concentration

ρb [Mass/Length3] bulk density

ρsurfactant [Mass/Length3] mass density of surfactant

φ [−] equilibrium sorption isotherm

Kd distribution coefficient

D [Length2/Time] diffusion-dispersion tensor

d [Length2/Time] molecular diffusion

αl [Length] longitudinal dispersivity

α, β [1/Length] parameter

a, b, ℓ, m, n [−] parameter

Model Equations

The coupled water surfactant transport is is described by Richards equation (for water
flow) and by a solute transport equation (for surfactant transport) including convec-
tion, diffusion-dispersion and sorption.

∂tθ +∇ · q = 0 , q = −K(θ)∇(ψ + z) , (3.22a)

∂t(θ c) + ρb ∂tφ(c)−∇ · (D∇c− q c) = 0 . (3.22b)

In one spatial dimension, the unsaturated hydraulic conductivity tensor K becomes a
scalar K. The primary unknown variable of this model equation are the pressure head
of water, ψ, and the solute concentration of the surfactant c.

92

Chapter 3 Problem Classes

Coefficient- and Coupling Functions

Richards Equation

For the one-dimensional Richards equation two parametrizations of the coefficient
functions are available:

Gardner

θexp(ψ) = θres + (θsat − θres) eαψ , (3.23a)

Kexp(ψ) = Ksat e
αψ . (3.23b)

van-Genuchten–Mualem

θvG(ψ) = θres + (θsat − θres) Φ(ψ) , (3.24a)

KvG(ψ) = KsatΦ(ψ)
ℓ
(
1−

(
1− Φ(ψ)1/m

)m)2

(3.24b)

with Φ(ψ) =
1

(1 + (αψ)n)m
, m = 1− 1/n .

The interface to these parameters is as follows:

Coefficient

[name]

ParaType

Water

Ks

Theta_s

Theta_r

n

alpha

n

l

Coupling

Transport

Surfactant Transport Equation

For the surfactant transport equation four different parametrizations of the equilibrium
sorption isotherm are available:

93

Chapter 3 Problem Classes

ParaType name equation

0 linear φlin = Kd c

1 Freundlich φF = Kd c
Exponent

2 Langmuir φL =
Kd c

1 + Kd

MaxSorption
c

3 Freundlich–Langmuir φFL =
Kd c

Exponent

1 + Kd

MaxSorption
cExponent

The Freundlich and the Freundlich–Langmuir isotherms can be regularized within
the interval [0, Regularization]. For Exponent < 1 the isotherms are continuously
substituted within this interval.

The diffusion-dispersion tensor has the following form in one space dimension:

D = αl q + d θ . (3.25)

In more space dimensions there exist several matrix representations.
The interface to these parameters is as follows:

Coefficient

[name]

ParaType

Water

Coupling

Transport

Diffusion

Dispersion

Kd

Exponent

Regularization

MaxSorption

BulkDensity

Coupling

The Richards equation and the surfactant transport equation are coupled by the fol-
lowing mechanisms:

Pressure scaling. The following model is based on the work of Smith and Gillham
(1994). The surface activity of surfactant inluences the surface tension of the water

94

Chapter 3 Problem Classes

phase. This physical property of the solute is represented by a scaling factor within
the pressure saturation relation:

θ(ψ) −→ θ

(
σ0
σ(c)

ψ

)
=: θ̃(c, ψ) ,

σ0
σ(c)

=
1

1− b ln(c/a+ 1)
. (3.26)

Permeability scaling. This model is based on the work of Renshaw et al. (1997).
It is assumed that soil consists of a mixture of two components. One component
with high permeability like for example sand, and clay as the second component.
Surfactants sorb to the clay and therefore increase the volume fraction of the clay-
surfactant conglomerate. It follows that the effective permeability decreases:

Ksat −→ Keff(c) = K1−ν
coarseK

ν
clay , ν = νclay +

ρb
ρsurfactant

φ(c) . (3.27a)

Altogether, the hydraulic conductivity becomes

Krel(θ)Ksat = K(θ) −→ K̃(c, θ) = Krel(θ) Keff(c) . (3.27b)

The conductivity of clay is adjusted, such that at vanishing surfactant concentration
the saturated conductivity is equal to the value defined for Richards equation.

The interface to these parameters is as follows:

Coefficient

[name]

ParaType

Water

Coupling

PressureScaling

scale_a

scale_b

PermeabilityScaling

Ks_coarse

ClayVolumeFraction

SurfactantDensity

Transport

The variables PressureScaling and PermeabilityScaling are flags, that allow to
switch the coupling on and off.

Usage

To create this set of coefficient- and coupling functions for the coupled water surfactant
transport follow these steps:

• Go to the directory /Library/Coefficient,

95

Chapter 3 Problem Classes

• execute SurfactantWater and define a name, under which the corresponding
parameter set appears in the toplevel directory /Coefficient.

The parameters of this set of coefficient functions are displayed as arrays. You have
to specify values for each subdomain. The ParaType defines the used parametrization
type per subdomain as follows from this table:

exponential van Genuchten

linear 0 10

Freundlich 1 11

Langmuir 2 12

Freundlich–Langmuir 3 13

Initial Value

The problem class surfactant water transport provides the additional initial value
function SurfWaterEqui, which can be used instead of the standard piecewise linear
function defined within the kernel. Instead of the parametrization of a piecewise linear
function you have now only the parameters Flux, to define the initial pressure and
concentration profile. SurfWaterEqui invokes the computation of an equilibrium ini-
tial condition for the coupled water surfactant transport. Initialization calculates the
pressure and concentration distribution within the domain using the Dirichlet bound-
ary condition at the left side of the domain for time t = 0 and the specified flux within
the domain.

Note
If you adjust the boundary condition (Type Flux) at the right hand side of the domain
to the value you specified for the initial value and if you keep boundary condition
values constant in time, your problem will remain stationary.

Discretization

The Richards equation is discretized with a mixed hybrid finite element method. To
create the corresponding discretization follow these steps:

• Go to the directory /Library/Discretization,

• execute HMFEM4SurfWater and define a name, under which the discretization
appears in the toplevel directory /Discretization.

Now, you have access (e. g.for selection) to the variables of this discretization in the
toplevel directory /Discretization.

96

Chapter 3 Problem Classes

Discretization

[name]

Variables

press/conc

Theta

flux_water/surf

permeability

Weights

The meaning of the entries in the directory Variables is explained in the notations ta-
ble above. The two variables press/conc and flux_water/surf have two components.
In both cases the first component corresponds to water and the second to surfactant.

The Weights are applied to each component (water, surfactant) of the defect vector
when the norm of the defect is calculated. By this method you can equilibrate the
defect of water- and of surfactant flux. Depending on the units you choose, water- and
surfactant flux may have values in different orders of magnitude.

Grid- and Time Adaptation

The discretization HMFEM4SurfWater does not provide error indicators.

Instructions for Usage

The problem class water surfactant transport handles a vector valued initial boundary
value problem. The solution has two components. The first component is the pressure
head and the second is the surfactant concentration. Therefore you have to add

• an initial boundary value problem consisting of

– a domain,

– a vector boundary condition (Type Dirichlet for pressure or Type Flux for
water flux) with two components,

– a vector initial value (1 vector with 2 components, prescribing pressure and
concentration at the beginning of the simulation),

– the set of coefficient functions WaterSurfactant and

• the discretization HMFEM4WaterSurf

to the grid. The result of this discretization is

• a piecewise constant approximation of the pressure and of the concentration on
each element,

• a pressure and a concentration value on the edges between two elements and

• a piecewise linear and continous flux for water and for surfactant.

97

Chapter 3 Problem Classes

Any further variables (e. g.Theta) can be derived from these variables.
The variable that a nonlinear solver has to bring to zero is the flux difference on

every edge between two elements. By this way the stopping criterion of the nonlinear
solver bounds the discontinouity of the flux across edges.

98

Chapter 3 Problem Classes

3.6 Biodegradation

Table of Contents

1. Notation, p. 100

2. Model Equation, p. 100

3. Coefficient Functions, p. 101

a) Solute Transport, p. 101

b) Biodegradation, p. 103

c) Carrier Facilitation, p. 104

d) Water Flow, p. 105

e) Serial Decay Reactions, p. 106

f) Temperature-Dependent Kinetics of Degradation, p. 108

g) Usage, p. 110

4. Discretization, p. 110

5. Instructions for Usage, p. 111

6. Identification, p. 112

99

Chapter 3 Problem Classes

Notation

Parameters for solute transport of donator and acceptor

t [Time] time

cD, cA [Mass/Length3] mass concentration of solute (donator, acceptor)

cX [Mass/Length3] mass concentration of biomass

sD, sA [Mass/Length3] mass conc. of sorbate (don., acc.) at nonequ. sorption sites

q [Length/Time] water flux

θ [−] volumetric water content (coefficient function)

ρb [Mass/Length3] bulk density

fφ, fϕ [−] mass fraction of sorption sites

φ(c) [−] equilibrium sorption isotherm

ϕ(c) [−] nonequilibrium sorption isotherm

rD, rA [1/Time] rate parameter for nonequilibrium sorption (don., acc.)

kD, kA [1/Time] first order decay rates for donator and acceptor

DA, DD [Length2/Time] diffusion-dispersion for acceptor and donator

αl [Length] longitudinal dispersivity

d [Length2/Time] molecular diffusion

constD, constA [Mass/(Length3 Time)] zeroth order decay constant (donator, acceptor)

Parameters for biodegradation

αA/D [−] yield coefficient for acceptor

µmax [1/Time] maximum substrate utilization rate

µD [Mass/(Time Length3)] degradation rate

cXmax
[Mass/Length3] maximum biomass concentration

KA [Mass/Length3] half maximum rate parameter for acceptor (Monod parameter)

KD [Mass/Length3] half maximum rate parameter for donator (Monod parameter)

KIA [Mass/Length3] inhibition parameter for acceptor (Haldane parameter)

KID [Mass/Length3] inhibition parameter for donator (Haldane parameter)

Y [Mass/Mass] microb. yield coeff. (biomass formed / mass of substrate consumed)

kX [1/Time] decay rate (death coefficient) for biomass

Model Equation

Biodegradation is described by a three component model:

• 1st component: Electron donator (mobile),

• 2nd component: Electron acceptor (mobile, e. g.oxygen),

100

Chapter 3 Problem Classes

• 3rd component: Biomass (immobile).

The transport model for the mobile species includes diffusion-dispersion, convection,
equilibrium and nonequilibrium sorption; double Monod kinetics are used for the decay:

∂t(θ cD)−∇ · (DD ∇cD − q cD) + ρb ∂t (fφ φ(cD) + fϕ sD(cD)) +

+ µD + θ kD cD − θ constD = 0 ,
(3.28a)

∂t(θ cA)−∇ · (DA∇cA − q cA) + ρb ∂t (fφ φ(cA) + fϕ sA(cA)) +

+ αA/D µD + θ kA cA − θ constA = 0 ,
(3.28b)

∂tcX −
Y

θ

(
1− cX

cXmax

)
µD + θ kX cX = 0 (3.28c)

with

∂tsD = rD (ϕ(cD)− sD) , (3.28d)

∂tsA = rA (ϕ(cA)− sA) (3.28e)

and

µD := θ µmax

(
cD

KD + cD + c2D/KID

)(
cA

KA + cA + c2A/KIA

)
cX . (3.28f)

Coefficient Functions

The interface for a biodegradation problem in the highest level looks like:

Coefficient

[coefficient name]

Functions

Donator

Acceptor

Transport

Water

Biodegradation

Stabilization4Biodeg

Solute Transport

The interface to the parameters for the mobile components of the donator (and the
acceptor as well) is as follows:

101

Chapter 3 Problem Classes

Coefficient

[coefficient name]

Donator

Diffusion

K

WithInhibition

K_I

Carrier

EquiSorpt

ParaType

MassFraction

Kd-Value

Exponent

Regularization

MaxSorption

DiscreteData

NonEquiSorpt

ParaType

MassFraction

Kd-Value

Exponent

Regularization

MaxSorption

RateParameter

DiscreteData

Decay

The solute transport provides four different sorption isotherms both for equilibrium
and for nonequilibrium sorption, with is controlled by the variable ParaType

ParaType name equation

0 linear ϕlin = Kd c

1 Freundlich ϕF = Kd c
Exponent

2 Langmuir ϕL =
Kd c

1 + Kd

MaxSorption
c

3 Freundlich–Langmuir ϕFL =
Kd c

Exponent

1 + Kd

MaxSorption
cExponent

4 generic spline interpolation

102

Chapter 3 Problem Classes

The Freundlich and the Freundlich–Langmuir isotherms can be regularized within
the interval [0, Regularization]. For Exponent < 1 the isotherms are continuously
substituted within this interval.

The diffusion-dispersion tensor has the following form in one space dimension:

D = αl q + d θ . (3.29)

In more space dimensions there exist several matrix representations.

Biodegradation

The interface to the parameters of biodegradation is as follows:

Coefficient

[coefficient name]

Donator

Diffusion

K

WithInhibition

K_I

Carrier

EquiSorpt

NonEquiSorpt

Decay

Acceptor

Diffusion

K

WithInhibition

K_I

Carrier

EquiSorpt

NonEquiSorpt

Decay

Transport

Water

Biodegradation

ParaType

MuMax

YieldBio

DeathCoeff

Alpha

WithMaxBiomass

MaxBiomass

The restriction by a maximum biomass concentration can be controlled by the flag
WithMaxBiomass in the /Biodegradation subdirectory. In case of no existing bound-

103

Chapter 3 Problem Classes

aries the appropriate biomass differential equation simplifies to

∂tcX −
Y

θ
µD + kX cX = 0 . (3.30)

You can choose independently an inhibition term of the electron donator and -acceptor
by the flag WithInhibition in the corresponding /eDonator or /eAcceptor subdirec-
tory. The model equation for the maximum substrate utilization rate µmax will simplify
in that way that the appropriate addend in the denominator c2D/KID and/or c2A/KIA

are omitted.
If you are using a zeroth order decay constant, verify carefully that this model makes

sense in the range of concentration where your simulation proceeds. The model may
otherwise result in negative concentrations!

Carrier Facilitation

The effect of mobile and immobile carriers (e. g.dissolved organic carbon, DOC) on
solute transport can be included. According to the work of Knabner et al. (1996) the
sorption isotherm is replaced by an effective sorption isotherm. Carrier facilitation is
switched on and off with the flag WithCarrier. The interface to carrier facilitation is
as follows:

Coefficient

[coefficient name]

Donator

Diffusion

Functions

Carrier

WithCarrier

PartitioningCoefficient

Connect2Solute

Connect2Sorbate

EquiSorpt

NonEquiSorpt

Acceptor

To use this feature, you need another problem on your grid, that describes the transport
of the carrier. You can use e. g.the problem class solute transport twice. First, you
create this problem and its discretization for the carrier. Then, you add the same
problem and discretization a second time to the grid for the solute. To establish the
connection between the current solute transport for the donator and a previously
defined carrier transport follow these steps (This has not been tested so far!):

• Switch WithCarrier on,

• define a PartitioningCoefficient for the sorption of your solute to the carrier,

104

Chapter 3 Problem Classes

• go to the toplevel directory /Discretization and select the discretization cor-
responding to the carrier (e. g.CarrierDisc),

• go into the directory /Discretization/CarrierDisc/Variables and select the
concentration of the carrier,

• execute the command /Coefficient/[coefficient name]/Donator/Carrier/Connect2\
Solute,

• enter the directory /Discretization/CarrierDisc/Variables and select the
sorbed concentration of the carrier,

• execute the command /Coefficient/[coefficient name]/Donator/Carrier/Connect2\
Sorbate.

Note
The carrier transport has to be added to the grid before the (carrier facilitated) solute
transport.

Water Flow

Richy1D’s interface to define the water flow for your transport problem is as follows:

Coefficient

[coefficient name]

Donator

Acceptor

Transport

Water

WithRichards

WaterContent

Time

Flux(Time)

Connect2WaterContent

Connect2Flux

The simulation of solute transport depends on a description of water flow, i. e., of
the water flux q and the water content θ. There are two possibilities to provide this
information for solute transport:

1. Predetermined constant values for water content θ on each subdomain and pos-
sibly time dependent values for water flux q. To make use of this method, follow
these steps:

• Switch WithRichards off,

• define WaterContent for each subdomain and

105

Chapter 3 Problem Classes

• define Time and Flux(Time) for the whole domain. Values are interpolated
piecewise linear at intermediate time points.

2. Simulation of water flow. To make use this method, you need the problem and
its discretization, that describes water flow, on your grid. Follow these steps:

• Switch WithRichards on,

• go to the toplevel directory /Discretization and select the discretization
corresponding to the water flow (e. g.WaterDisc),

• enter the directory /Discretization/WaterDisc/Variables and select the
water content,

• execute the command /Coefficient/[coefficient name]/Water/Connect2Water\
Content,

• go into the directory /Discretization/WaterDisc/Variables and select
the water flux,

• execute the command /Coefficient/[coefficient name]/Water/Connect2Flux

Note
The simulation of water flow has to be added to the grid before the biodegradation
problem.

Serial Decay Reactions

It is possible to couple several transport/biodegradation reactions (cf.3.2 Serial De-
cay Reactions, p. 69).

Coupling the reactions. The interface to serial decay is as follows (analogous for
the acceptor):

106

Chapter 3 Problem Classes

Coefficient

ReactionB

Donator

Diffusion

K

WithInhibition

K_I

Carrier

EquiSorpt

NonEquiSorpt

Decay

0thOrderRate

1stOrderRate

WithFatherSpecies

YieldFactor

Connect2Father

Connect2SubComp

Acceptor

Transport

To use this feature, you have to create several transport problems (and their discretiza-
tion) on your grid, that describe the transport of the species 1 to i. To establish the
connection between two reactions (A→ B) follow these steps:

• Switch WithFatherSpecies on,

• define the yield factor of the reaction,

• if the solute variable of the father reaction consists of two (or more) components,
define the component by setting Connect2SubComp. Look out: ‘0’ identifies the
first component!

• Enter the toplevel directory /Discretization and select the discretization cor-
responding to the father reaction (e. g.‘ReactionA’),

• enter the directory /Discretization/ReactionA/Variables/ and select the
sink term (e. g.sink-biodeg for the problem class biodegradation or sink-trans
for the problem class transport),

• enter the directory /Coefficient/ReactionB/Donator/Decay and execute the
command Connect2Father.

The links between the reactions for donator and acceptor can be established indepen-
dently from each other.

107

Chapter 3 Problem Classes

Temperature-Dependent Kinetics of Degradation

The influence of the temperature on the kinetics of microbially mediated degradation
can be described by multiplying an inhibition term

I(T) = exp
(
−κ(T − Topt)2

)
. (3.31a)

Thus the zeroth order term becomes

const −→ constopt I(T) (3.31b)

and the zeroth order rate constant can now be interpreted as the zeroth order constant
at optimal temperature. Analogously the first order rate becomes

k −→ kopt I(T) (3.31c)

where

T [Temp] current temperature

Topt [Temp] optimal temperature for biodegradation

κ [1/Temp2] inhibition coefficient

The Interface to this feature is as follows:

Coefficient

[transport name]

Donator

Decay

0thOrderRate

0thOrderF(Temp)

OptimalT40thOrder

Kappa40thOrder

1stOrderRate

1stOrderF(Temp)

OptimalT41stOrder

Kappa41stOrder

Acceptor

Decay

Biodegradation

BiodegF(Temp)

WithHeatConduction

Kappa4Monod

MonodTopt

Temperature

Add2Display

TempMeasurement1

Connect2HeatConduction

108

Chapter 3 Problem Classes

These entries have the following meaning:

0thOrderF(Temp)

1stOrderF(Temp)

BiodegF(Temp)

flag to specify whether temperature has an influence on
each type of degradation

OptimalT40thOrder

OptimalT41stOrder

MonodTopt

temperature at which the biodegradation takes place at
maximum speed for zeroth order, first order decay and
for Monod kinetics

Kappa40thOrder

Kappa41stOrder

Kappa4Monod

inhibition coeff. for first and zeroth order decay and for Monod kinetics

WithHeatConduction
flag which specifies whether temperature distribution is
calculated by heat conduction

Connect2HeatConduction command to connect the heat conduction to the biodegredation problem

Add2Display command to add temperature measurements for a new coordinate

TempMeasurement1
directory in which the temperature measurements for
one coordinate can be specified

The directory /Decay exists as well for the donator as for the acceptor. Its entries
are identical. There are two ways to specify the temperature development:

1. It can be given explicitly as a function of time and space.

2. The biodegradation problem can be coupled with the heat conduction problem.

In order to specify the temperature explicitly, use the command Add2Display in
order to add new temperature measurements for each coordinate: The directory
/TemperatureMeasurement contains following entries:

Interpolation

Linear

CubicHermit

X-Coordinate

Time

Temperature(Time)

The interpolation which has to be specified refers to the evaluation with respect to
time. The interpolation between the coordinates is done linearily. It is important to
specify the coordinates in an ordered way (x1 < x2 < . . . < xn). Outside of the
specified intervals the values will be kept constant.

In order to couple the transport problem with the heat conduction problem, a prob-
lem of the type heat conduction must be defined prior to the following steps:

• Go to the toplevel directory /Discretization and select the discretization cor-
responding to the heat conduction problem (e. g.HcDisc),

109

Chapter 3 Problem Classes

• enter the directory /Discretization/HcDisc/Variables and select
temperature,

• execute the command /Coefficient/[transport name]/Biodegradation/Connect2Heat\
Conduction,

• select the flag /Coefficient/[transport name]/Biodegradation/WithHeatConduction.

It is possible to determine the parameters κ and Topt by inverse modelling as well
as to model temperature dependent serial decay reactions. Though it is necessary to
specify the explicit temporal evolution of the temperature for each species as well as
the coupling with the heat conduction must be done for each species.

Usage

To create a set of coefficient functions for biodegradation follow these steps:

• Go to the directory /Library/Coefficient,

• execute Biodeg and define a name, under which the corresponding parameter set
appears in the toplevel directory /Coefficient.

Discretization

The solute transport is discretized with a conforming finite element method, mass
lumping and a backward Euler scheme. To create the corresponding discretization
follow these steps:

• Go to the directory /Library/Discretization,

• execute FEM4Biodeg and define a name, under which the discretization appears
in the toplevel directory /Discretization.

Now you have access (e. g.for selection) to the variables of this discretization in the
toplevel directory /Discretization.

Discretization

Stabilization4Transport

ArtificialDiffusion

[name]

Variables

solute

sorbate(neq)

sorbate(eq)

sink-biodeg

solute_sens

sorbate(neq)_sens

sorbate(eq)_sens

110

Chapter 3 Problem Classes

The entry ArtificialDiffusion is the parameter of the stabilization (cf.A.1 Stabi-
lization, p. 130). The entries in the directory Variables correspond to that, explained
in the notations table above. The variable sink-biodeg refers to the sink term by
Monod kinetics of your biodegradation problem. This sink term may enter as a source
term in a subsequent transport problem. Note that it does not contain the zeroth order
decay terms!

A variable [name]_sens contains the sensitivities of the variable [name] with respect
to the parameters for biodegradation. Starting with donator, then acceptor and finally
biomass, the arrangement of the parameters is as follows:

number 0 1 2 3 4 5 6 7 8 9 10

parameter µmax Y kX αA/D KD KID KA KIA κ Topt cXmax

Example
The subcomponent 15 = 1×11+4 of the variable solute_sens contains the sensitivity
values of the solute mass concentration of the acceptor.

Instructions for Usage

The problem class biodegradation handles a scalar initial boundary value problem
for the solute concentration together with an initial value problem for the
(nonequilibrium-)sorbed concentration. Therefore you have to add

• an initial boundary value problem consisting of

– a domain,

– a scalar boundary condition for donator and acceptor (Type Dirichlet,
Neumann or Flux) for all three species an initial value with two vectors
(first vector for the solute and second vector for the (nonequilibrium-)sorbed
concentration). If flux conditions (qin, cin) are specified, the given values
are the inflow concentrations, which will be multiplied by the given water
flux, taken from the coefficients menu, or the Richards equation, if you have
coupled the problems (so you need not recalculate the boundary conditions
when the water flux changes),

– the set of coefficient functions Biodeg and

• the discretization FEM4Biodeg to the grid.

Note
Even if the biomass is immobile, you have to specify homogenous Neumann boundary
conditions for it! This is due to technical reasons and must not be changed.

The result of this discretization is a piecewise linear approximation of the
solute- and the (nonequilibrium-)sorbed concentration. Any further variables
(e. g.(equilibrium-)sorbed concentration) can be derived from these variables.

111

Chapter 3 Problem Classes

Identification

The problem class biodegradation allows the identification of the parameters of
biodegradation. For the identification you can use the OLS error functional (output
least squares), the OLS_TW error functional (output least squares with weighting by
time differences) or the OLS_SW error functional (output least squares with adaptive
weighting by sensitivity values).

In the case of formfree identification (parametrization of the
growth rates in the Monod model with splines) the directory
/Coefficient/[coefficient name]/Functions/GrowthRateDonator/FittingData

contains the additional entries:

MuMax-BdLower [1/Time] lower boundaries for maximum decay rate

MuMax-BdUpper [1/Time] upper boundaries for maximum decay rate

YieldBio-BdLower [−] lower boundaries for yield coefficient for biomass

YieldBio-BdUpper [−] upper boundaries for yield coefficient for biomass

DeathCoeff-BdLower [1/Time] lower boundaries for decay rate for biomass

DeathCoeff-BdUpper [1/Time] upper boundaries for decay rate for biomass

and the directory /Coefficient/[coefficient name]/Functions/GrowthRateAcceptor

/FittingData contains the additional entries:

Alpha-BdLower [−] lower boundaries for yield coefficient for acceptor

Alpha-BdUpper [−] upper boundaries for yield coefficient for acceptor

112

Chapter 3 Problem Classes

3.7 Reactive Multicomponent Transport

Table of Contents

1. Notation, p. 114

2. Model Equation, p. 114

a) Zeroth and First Order Decay, p. 115

b) Biodegradation Reactions, p. 115

c) Stoichiometric Kinetic Reactions, p. 116

d) Mineral Stoichiometric Kinetic Reactions, p. 116

3. Coefficient Functions, p. 117

a) Water Flow and Matrix Menu, p. 117

b) Species Dependent Coefficient Functions, p. 119

c) Biodegredation Reaction, p. 121

d) Chemical Kinetic Reactions, p. 122

e) Carrier Facilitation, p. 123

f) Temperature-Dependent Kinetics of Degradation, p. 123

g) Usage, p. 127

4. Discretization, p. 127

5. Instructions for Usage, p. 128

113

Chapter 3 Problem Classes

Notation

Parameters for solute transport of species

t [Time] time

ci [Mass/Length3] mass concentration of ith solute or immobile species

γi [−] activity coefficient for ith species

cXℓ
[Mass/Length3] mass concentration of ℓth biomass species

si [Mass/Mass] mass concentration of sorbate at nonequ. sorption sites

q [Length/Time] water flux

θ [−] volumetric water content (coefficient function)

ρb [Mass/Length3] bulk density

fφ, fϕ [−] mass fraction of sorption sites

φ(c) [−] equilibrium sorption isotherm

ϕ(c) [−] nonequilibrium sorption isotherm

ri [1/Time] rate parameter for nonequilibrium sorption

ki [1/Time] first order decay rates

Di [Length2/Time] diffusion-dispersion

αl [Length] longitudinal dispersivity

di [Length2/Time] molecular diffusion

consti [Mass/(Length3 Time)] zeroth order constant (source or loss)

Rj [Mass/(Length3 Time)] rate of jth reaction

νij [−] stoichiometric factor of ith species in jth reaction

Model Equation

The module for reactive multicomponent transport allows you to simulate the spread-
ing of multiple species simultaneously, which may be coupled by kinetic reactions in
a flexible and rather arbitrary way. There exist four basic types of species: mobile,
immobile, mineral and microbial species. Microbial species are also immobile, but are
additionally taken into account for the calculation of the maximum biomass concentra-
tion, that may limit the biomass growth (see Biodegredation Reaction, p. 121). Mineral
species are immobile and their volume is part of the solid phase, and thus you can
include the influence of varying mineral concentrations on the porosity, if you connect
the subproblems (see p. 116)

The transport model for the mobile species includes diffusion-dispersion, convec-
tion, and reaction rates of different kinds. Furthermore, we also kept the possibility of
including an equilibrium and a nonequilibrium sorption isotherm.

114

Chapter 3 Problem Classes

The general form of the equation reads

∂t(θ ci)−∇ · (Di∇ci − q ci) + ρb ∂t (fφi φi(ci) + fϕi
si(ci)) = θ

NR∑

j=1

νij Rj , (3.32a)

∂tsi = ri(ϕi(ci)− si) .
The specific reaction rates Rj for zeroth and first order decay, general stoichiomet-
ric kinetic reactions, and general microbial reactions will be depicted in detail in the
following. Mineral, microbial or other immobile species are not transported, but trans-
formed by reactions and thus equation (3.32a) simplifies for those species to:

∂tci =

NR∑

j=1

νij Rj . (3.32b)

Zeroth and First Order Decay

For zeroth and first order decay of the ith species, we get the rate expressions

Ri = −ki ci − consti . (3.33)

Note that here, the (additional) stoichiometric coefficients will be unity. Decay chains
(with father and product concentrations) can be included in the framework of the
stoichiometric reactions. Note that these rates are multiplied by the water content θ
for the mobile species.

Biodegradation Reactions

The biodegradation reaction may involve arbritrary species, but one reaction is cat-
alyzed by exactly one microbial species, which is denoted here by the index Xℓ. The
model combines Monod growth terms and the inhibition terms of an arbitrary number
and combination of species (a substance may as well be necessary and inhibiting in
different concentration ranges), see also Widdowson et al. (1988). The index sets Mj

and Ij refer to those species involved in the jth reaction, that are necessary for the
microbial (Monod) growth and that inhibit that reaction, respectively:

Rj = −µmaxj cXℓ

∏

i∈Mj⊂{1,...,NS}

(
ci

KMi
+ ci

) ∏

i∈Ij⊂{1,...,NS}

KIi

KIi + ci
. (3.34)

This reaction term can slightly be modified in the equations of the microbial species,
to account for growth limitations of the microorganisms by pore space restrictions,
production of toxic metabolites or lack of nutrients (cf.(Schirmer et al. 2000)). This
restriction term sums up the concentrations of all the present microbial species. The
resulting equation is

Rj =

(
1−

∑
i cXi

cXmax

)
µmaxjcXℓ

∏

i∈Mj⊂{1,...,NS}

(
ci

KMi
+ ci

) ∏

i∈Ij⊂{1,...,NS}

KIi

KIi + ci
.

(3.35)

115

Chapter 3 Problem Classes

You may also switch off this restriction term (see Biodegredation Reaction, p. 121).

Stoichiometric Kinetic Reactions

The general reaction rate of the rth stoichiometric kinetic reaction is given as the net
rate between forward and backward reaction rates, which can be formulated by the
rate constants of forward and backward reaction (e. g.(Bethke 1996)) according to the
mass action law of thermodynamics:

Rj =

kfj

∏

{i|νij>0}

c
νij
i − kbj

∏

{i|νij<0}

c
−νij
i

 . (3.36)

The first product refers to the reactants, the second to the product species, where by
convention their stoichiometric coefficients are negative. Note that we do not make
activity corrections for the concentrations.

Mineral Stoichiometric Kinetic Reactions

The general reaction rate of the jth surface-controlled mineral stoichiometric kinetic
reaction is given as the net rate between forward and backward reaction rates, which
can be formulated by the rate constants of forward and backward reaction:

Rj = s̃m

kfj

∏

{m6=i|νij>0}

c
νij
i − kbj

∏

{m6=i|νij<0}

c
−νij
i

 , (3.37)

where s̃m = s̃0m(cm/c
0
m)

σm is the surface area of the mineral species. s̃0m denotes the
initial surface area of the mineral species and c0m is the initial concentration of the
mineral species. Please note that there is exactly one mineral species per mineral re-
action. This species has index m (in equation 3.37). The first product refers to the
reactants, the second to the product species, where by convention their stoichiometric
coefficients are negative. The shape factor σm ∈ (0, 1) may be chosen arbitrarily, it is
set to 2/3 by default. For more details see (Frank 2008).
Surface-controlled mineral stoichiometric kinetic reactions may influence porosity as
the mineral is a substantial part of the solid matrix, and thus changes in the mineral
concentration also change porosity.

If you want to include this effect in your simulation, you must connect the reactive
transport problem with the water flow problem (i.e. the Richards Equation). The varia-
tion of the porosity is described in Section 3.4. Therefore use the following instructions:

1. Connect multispecies problem to Richards Problem.
This provides the current water flux and water content values of an unsaturated
flow problem and uses them in the Multicomponent transport problem.

• Go to Discretization and select directory HMFEM4Richards. Then enter
this directory and select theta.

116

Chapter 3 Problem Classes

• Go to Coefficient and select directory [Coefficient name]. Then
enter directory /Coefficient/[Coefficient name]/Water and execute
Connect2WaterContent.

• Go to Discretization and select directory HMFEM4Richards. Then enter
this directory and select pressure.

• Go to Coefficient and select directory [Coefficient name]. Then
enter directory /Coefficient/[Coefficient name]/Water and execute
Connect2Pressure.

• Go to Discretization and select directory HMFEM4Richards. Then enter
this directory and select flux.

• Go to Coefficient and select directory [Coefficient name]. Then
enter directory /Coefficient/[Coefficient name]/Water and execute
Connect2Flux.

2. Connect Richards Problem to multispecies problem.
This takes into account the variations of the mineral concentrations and updates
the resulting porosity changes in the flow problem.

• Go to Discretization and select directory FEM4Multispec. Then enter
directory /Discretization/FEM4Multispec/Variables and select
porosity.

• Enter directory /Coefficient/Richards/T_sat_approx. Then execute
Connect2Porosity and switch on WithPorosity.

Coefficient Functions

Some coefficient functions of a reactive multicomponent transport problem are iden-
tical for all species. This holds true for the water flow, transport parameters of the
porous medium like the dispersion length αl, the bulk density ρb, and the temperature
(if needed). Others are specific for every species.

Water Flow and Matrix Menu

Mobile species are transported in the liquid phase. The menu’s Matrix and Water

apply to all mobile species. Richy1D’s interface to define the water flow for your
transport problem is as follows:

117

Chapter 3 Problem Classes

Coefficient

[coefficient name]

Matrix

Water

WithRichards

WaterContent

Time

Flux(Time)

Exchangeterm

Connect2WaterContent

Connect2Flux

Connect2Pressure

Temperature

Species

Reactions

The simulation of solute transport needs the specification of the water content θ and
the water flux q (see also model equation (3.32a)). There are two possibilities to provide
this information for solute transport:

1. Predetermined constant values for water content θ on each subdomain and pos-
sibly time dependent values for water flux q. To make use of this method, follow
these steps:

• Switch WithRichards off,

• define WaterContent for each subdomain and

• define Time and Flux(Time) for the whole domain. Values are interpolated
piecewise linear at intermediate time points.

2. Simulation of water flow. To make use this method, you need the problem and
its discretization, that describes water flow, on your grid. Follow these steps:

• Switch WithRichards on,

• go to the toplevel directory /Discretization and select the discretization
corresponding to the water flow (e. g.WaterDisc),

• enter the directory /Discretization/WaterDisc/Variables and select the
water content,

• execute the command /Coefficient/[coefficient name]/Water/Connect2Water\
Content,

• enter the directory /Discretization/WaterDisc/Variables and select the
water flux,

• execute the command /Coefficient/[coefficient name]/Water/Connect2Flux.

118

Chapter 3 Problem Classes

Note
The simulation of water flow has to be added to the grid before the multispecies
transport problem.

In the Matrix menu, properties of the porous medium (the solid matrix) like the
dispersion length αl and the bulk density ρb are given:

Coefficient

[coefficient name]

Matrix

Dispersion

BulkDensity

Water

Temperature

Species

Reactions

Species Dependent Coefficient Functions

If you have added a species by the AddSpecies command, you will be prompted for the
name of the species (e. g.‘Benzene’), and a new subdirectory is created including the
running number of the species to identify it, and its name (note—the running number
starts with 0). The menu structure could look like:

Coefficient

[coefficient name]

Matrix

Water

Temperature

Species

AddSpecies

Species00:Benzene

Species01:Xylene

Reactions

The species subdirectory has the following entries:

119

Chapter 3 Problem Classes

Species00:Benzene

Type

mobile

immobile

microbial

mineral

Diffusion

Charge

MolarVolume

Sigma

Carrier

EquiSorpt

WithIsotherm

ParaType

MassFraction

Kd-Value

Exponent

Regularization

MaxSorption

NonEquiSorpt

WithIsotherm

ParaType

MassFraction

Kd-Value

Exponent

Regularization

MaxSorption

RateParameter

DiscreteData

0thOrderRate

0thOrderF(Temp)

OptimalT40thOrder

Kappa40thOrder

1stOrderRate

1stOrderF(Temp)

OptimalT41stOrder

Kappa41stOrder

RichyNumInBlock

a

First, select the type of the species. For a mobile species, you should give its molecular
diffusion constant di. The diffusion-dispersion tensor has the following form in one
space dimension:

Di = αl q + di θ , (3.38)

120

Chapter 3 Problem Classes

where the molecular diffusion di depends on the concentration of the ith species. In
more space dimensions there exist several matrix representations.

If you want to describe sorption of mobile species by isotherms, you can define them
in the equilibrium sorption menu and/or the nonequilibrium sorption menu. You can
switch the isotherms on and off with the flags WithIsotherm. For immobile, microbial
and mineral species, these settings will be ignored. The sorption menus are explained
in the solute transport section. Note that we currently allow only one nonequilibrium
sorption isotherm per species (no multiple kinetic sites). Furthermore you can specify
decay rates of zeroth and first order, which may be temperature dependent. If they
depend on the temperature (switch the flags 1stOrderF(Temp) or 0thOrderF(Temp)
on), you have to define the optimal temperature and the inhibition constant Kappa (see
Temperature-Dependent Kinetics of Degradation, p. 123). If you are using a zeroth
order decay constant, verify carefully that this model makes sense in the range of
concentration where your simulation proceeds. The model may otherwise result in
negative concentrations!

Immobile and microbial species are only transformed by decay and reactions.

Biodegredation Reaction

When you add a biodegradation reaction, the following interface for the parameters
will be available:

Coefficient

[coefficient name]

Transport

Water

Temperature

Species

Reactions

AddKineticReaction

AddBiodegradationReaction

Reaction01:Biodegradation

Mumax

SpeciesList

NrOfBioSpecies

StoichCoeff

Monod

Haldane

WithMaxBiomass

MaxBiomass

BiodegF(Temp)

Kappa

OptimalTemp

121

Chapter 3 Problem Classes

Mumax is the maximum microbial growth rate (in each subdomain), the SpeciesList

contains the indices of the species that take part in this reaction, also the possibly
inhibiting species. The order is not of importance, but note that the Monod coefficients
etc. refer to the order of the indices given in SpeciesList, i. e., if the first entry in
SpeciesList is 4, the first Monod coefficient refers to species no. 4. Note that the
entry ‘−1’ means that the end of the list is reached. No further values will be read.

The index of the microbial species that catalyses this reaction, is additionally
given in NrOfBioSpecies. The list of the corresponding stoichiometric coefficients
is given in StoichCoeff, again note that StoichCoeff[i] refers to species number
SpeciesList[i]. Purely inhibitory substances have, of course, stoichiometric
coefficient 0, because they do not grow or decay through the reaction.

Monod and Haldane are matrices of dimension MaxSpecies×MaxSubdomains, so for
each line (i. e., each species, corresponding again to the order given in SpeciesList),
you specify the species coefficients in the subdomains. In case a species is not inhibitory,
this corresponds to an extremely large inhibition concentration (say, e. g., 1×109), then
the inhibition term equals approximately 1.

The restriction by a total maximum biomass concentration can be controlled by the
flag WithMaxBiomass. The other parameters are as listed in the notations table above.

Parameters for jth biodegradation reaction

νij [−] stoichiometric coefficient for ith species in jth reaction

µmaxj [1/Time] maximum substrate utilization rate

cXmax
[Mass/Length3] maximum total biomass concentration

KMi
[Mass/Length3] half maximum rate parameter (Monod constant)

KIi [Mass/Length3] inhibition concentration

For the microbial species, the stoichiometric coefficient is equivalent with the yield
coefficient for the microbial species in this reaction. For the calculation of the total
biomass concentration, all microbial species concentrations of the multicomponent
problem are summed up. Temperature dependency of the reaction is described in the
section Temperature-Dependent Kinetics of Degradation, p. 123.

Chemical Kinetic Reactions

When you add a reaction according to mass action kinetics, the following interface for
the parameters will be available:

122

Chapter 3 Problem Classes

Coefficient

[coefficient name]

Transport

Water

Temperature

Species

Reactions

AddKineticReaction

AddBiodegradationReaction

Reaction01:KineticRateLaw

SpeciesList

StoichCoeff

ForwardRateConst

BackwardRateConst

The SpeciesList contains the identification number of the participating species in
that reaction (e. g.Species03:NaCl is number 3), as they are given in the Species

menu. Note that the entry ‘−1’ means that the end of the list is reached. No further
values will be read. The stoichiometric coefficients of the species in that reaction are
given in the array StoichCoeff in the same order as the species in SpeciesList

are given. ForwardRateConst and BackwardRateConst have to be specified for each
subdomain.

Parameters for kinetic rate law

kf [1/Time] forward rate constant

kb [1/Time] backward rate constant

νij [−] stoichimetric coefficient of species i in reaction j

Carrier Facilitation

The effect of mobile and immobile carriers (e. g.dissolved organic carbon, DOC) on the
transport of mobile species can be included in the simulation. This feature is explained
in the solute transport documentation (cf.3.2 Solute Transport, p. 62).

Note
The carrier transport problem has to be added to the grid before the (carrier facili-
tated) solute transport problem. This must be two seperate problems, it is not possible
to choose the carrier among the species of the same multicomponent problem.

Temperature-Dependent Kinetics of Degradation

The influence of the temperature on the kinetics of microbially mediated degradation
can be described by multiplying an inhibition term to the standard degradation rate.

123

Chapter 3 Problem Classes

This rate may be of zeroth or first order, or the rate of a biodegradation reaction. The
inhibition term reads

I(T) = exp
(
−κ(T − Topt)2

)
, (3.39a)

where

T [Temp] current temperature

Topt [Temp] optimal temperature for biodegradation

κ [1/Temp2] inhibition coefficient

The degradation process is inhibited (i. e., the optimal rate decreased) whenever the
current temperature T deviates of the optimal temperature Topt. The rates you specify
now are interpreted as the optimal rates at Topt. Thus the zeroth order term becomes

const −→ constopt I(T) . (3.39b)

Analogously the first order decay rate becomes

k −→ kopt I(T) . (3.39c)

You also may include this effect for the biodegradation reaction (cf.Biodegredation Re-
action, p. 121). The relevant menu items for this feature are the following:

Coefficient

[multispecies transport name]

Temperature

Connect2HeatConduction

Add2Display

WithHeatConduction

Species

SpeciesXX:Carbonsource

Decay

0thOrderRate

0thOrderF(Temp)

OptimalT40thOrder

Kappa40thOrder

1stOrderRate

1stOrderF(Temp)

OptimalT41stOrder

Kappa41stOrder

Reactions

ReactionXX:Biodegradation

BiodegF(Temp)

Kappa

OptimalTemp

124

Chapter 3 Problem Classes

These entries have the following meaning:

0thOrderF(Temp)

1stOrderF(Temp)

BiodegF(Temp)

flag to specify whether temperature has an influence on
each type of degradation

OptimalT40thOrder

OptimalT41stOrder

OptimalTemp

temperature at which the biodegradation takes place at
maximum speed for zeroth order decay, first order decay
and for the Monod type degradation reaction

Kappa40thOrder

Kappa41stOrder

Kappa

inhibition coeff. for first and zeroth order decay and for Monod kinetics

WithHeatConduction
flag which specifies whether temperature distribution is
calculated by heat conduction

Connect2HeatConduction command to connect the heat conduction to the biodegredation problem

Add2Display command to add temperature measurements for a new coordinate

TempMeasurement1
directory in which the temperature measurements for
one coordinate can be specified

The decay rates of zeroth and first order exist for every species. The specified tem-
perature profile is relevant for every temperature dependent rate, but it is not nec-
essary that every rate is temperature dependent. There are two ways to specify the
temperature development:

1. It can be given explicitly as a function of time and space.

2. The transport problem can be coupled with a heat conduction problem.

In order to give the temperature explicitly, use the command Add2Display in
order to add a new temperature measurement for each coordinate: The directory
/TemperatureMeasurement contains following entries:

Interpolation

Linear

CubicHermit

X-Coordinate

Time

Temperature(Time)

The interpolation which has to be specified refers to the evaluation with respect to
time. The interpolation between the coordinates is done linearily. It is important to
specify the coordinates in an ordered way (x1 < x2 < . . . < xn). Outside of the
specified intervals the values will be kept constant.

In order to couple the transport problem with the heat conduction problem, a prob-
lem of the type heat conduction must be defined prior to the following steps:

125

Chapter 3 Problem Classes

• Go to the toplevel directory /Discretization and select the discretization cor-
responding to the heat conduction problem (e. g.HcDisc),

• enter the directory /Discretization/HcDisc/Variables and select tempera-
ture,

• execute the command /Coefficient/MultispecTransport/Temperature/Connect2Heat\
Conduction,

• select the flag /Coefficient/MultispecTransport/Temperature/WithHeatConduction.

It is possible to determine the parameters κ and Topt by inverse modelling.

Activity Correction

Solutions with low salinity can be regarded as ideal solutions - electrostatic interaction
betweeen ions can be neglected. For higher ionic concentrations those have to be taken
into account. Consequently the activity as “effective concentration” for ionic species
is smaller than the actual concentration due to the decrease of the chemical potential
in consequence of the interaction between opposed-charged ions. Within the reaction
rates (3.36) and (3.37) in the model equation (3.32a) the concentrations ci have to be
substituted by the activities for each dissolved species:

ci ←− γici, i ∈ Sdissolved [Mass/Length3 water],

where γi [−] denotes the activity coefficient for the ith dissolved, ionic species, which
depends on the concentrations of all dissolved ionic species.

Estimation of the Activity Coefficient

Aγ constant, Aγ ≈ 0.511 for water at 25°C and 1 atm

Bγ constant, Bγ ≈ 0.33 for water at 25°C and 1 atm

γi [−] activity coefficient for the ith dissolved species

I [Mass/Length3 water] ionic strength

zi ionic charge of the ith dissolved species

The activity coefficient varies with the amount of cat- and anions in a solution. The
ionic strength I of an electrolyte solution is given by (W. Stumm 1996):

I =
1

2

∑

i

ciz
2
i [Mass/Length3 water]

where zi denotes the ionic charge of the ith ionic species (Menu entry Charge). For
different ranges of values of I, the activity coefficient γi can be estimated via the model
equations given in the table below. The parameters Aγ and Bγ depend in general on
temperature and density of the solution.

126

Chapter 3 Problem Classes

Remark - Richy1D - Dimensions. The values of the ionic strength I must be
converted to the explicit dimension [mol/dm3] to fit the definition range of the approx-
imation models of the activity coefficients (cf. table below). This is an open problem
since the activity correction thus abolishes the option to choose arbitrary dimensions
for simulations with Richy1D.

Approximation Activity Coefficient Approx. Applicability

Debye-Hückel log10 γi = −Aγz2i I1/2 I < 10−2.3 mol/dm3

Güntelberg log10 γi = −Aγz2i I1/2

1+I1/2
I < 10−1 mol/dm3

Davies log10 γi = −Aγz2i
(

I1/2

1+I1/2
− 0.24I

)
I < 0.5 mol/dm3

Usage

To create a set of coefficient functions for reactive multispecies transport problems
follow these steps:

• Go to the directory /Library/Coefficient,

• execute Multispecies and define a name (e. g.‘MS’), under which the corre-
sponding parameter set appears in the toplevel directory /Coefficient.

Adding species. Note that before you can add species in the coefficients menu, you
must have defined the discretization of your multispecies problem. After that, you may
define the coefficients corresponding to every single species of your problem:

• Go to the directory /Coeffient/MS/Species and execute the command
AddSpecies for every species you want to include in your simulation. You are
asked for a name (e. g.‘CaCO3’). A new entry in the species menu is created of
the type SpeciesXX:CaCO3 with a number XX, that is generated automatically.
This number is the so called NumInBlock of the concentration vector, which
may be needed for plotting, identifying the species in the specieslists of the
reactions, or for connecting different problems. Note that it starts with 00.

• Go to the directory /Coeffient/MS/Species/SpeciesXX:CaCO3 and define the
coefficients for that species.

Discretization

The solute transport is discretized with a conforming finite element method, mass
lumping and a backward Euler scheme. The reactive multicomponent/transport prob-
lem is accurately solved fully coupled without operator splitting (and its errors) by
Newton’s method. To create the corresponding discretization follow these steps:

• Go to the directory /Library/Discretization,

127

Chapter 3 Problem Classes

• execute FEM4Multispec and define a name, under which the discretization ap-
pears in the toplevel directory /Discretization.

Now you have access (e. g.for selection) to the variables of this discretization in the
toplevel directory /Discretization.

Discretization

Stabilization4Transport

ArtificialDiffusion

[name]

Variables

concentration

sorbate(neq)

sorbate(eq)

The entry ArtificialDiffusion is the parameter of the stabilization (cf.A.1 Stabi-
lization, p. 130). The entries in the directory Variables correspond to that, explained
in the notations table above. All the variables in a multispecies problem must be un-
derstood as vectors that contain all the components (i. e., the single species, e. g.the
concentrations). You have access to a species concentration (e. g.for plotting) by spec-
ifying its NumInBlock. This number corresponds to the species number in the species
menu (attention: this number has nothing to do with the name you specify for the
species).

Example
The menu entry Species04:Solute138 tells you, that the relevant NumInBlock is 4.

Instructions for Usage

The problem class reactive multispecies transport handles a coupled system of initial
boundary value problems for the solute concentrations together with initial value prob-
lems for the (nonequilibrium-)sorbed concentrations of the mobile species, and initial
value problems for the species of immobile or microbial type. Therefore you have to
add

• an initial boundary value problem consisting of

– a domain,

– a vector boundary condition with components for every species (even the
immobile and microbial) of type Dirichlet, Neumann or flux. If flux condi-
tions (qin, cin) are specified, the given values are the inflow concentrations,
which will be multiplied by the given water flux, taken from the coefficients
menu, or the Richards equation, if you have coupled the problems (so you
need not recalculate the boundary conditions when the water flux changes),

128

Chapter 3 Problem Classes

– a vector initial condition with components for every species for specify-
ing the initial concentrations. This concentration corresponds to the solute
concentration for species of the type mobile, and to sorbed concentrations
for species of the type immobile, mineral, or microbial. As you still have
the possibility to include sorption kinetics in your simulation by sorption
isotherms, you also have to specify a vector initial condition with com-
ponents for the nonequilibrium sorbed concentration for every species, and
a vector initial condition to define the initial surface area for mineral
species.
You always need these three types of initial values (concentration, non equi-
librium sorbed concentration, surface area) for every species you add - no
matter which type it is. The entries in the vector will only be read for the
species with noneq. sorption, or the minerals with initial surface area, respec-
tively. However the number of components in each vector must correspond
to the total number of species (see also note below).

– the set of coefficient functions and

• the discretization FEM4Multispec to the grid.

Note
Even if the microbial and other immobile species do not need boundary conditions, you
have to add a component for them in the vector of boundary conditions. You do not
need to specify any values, as they are ignored, but there have to exist as many com-
ponents as species. This is only due to technical reasons and may be changed in a later
version. The same holds true for the initial conditions of the nonequilibrium sorbate.
Even if not needed for every species, you have to add a component for every species. Of
course the simulation of the sorbate part makes only sense for mobile species, but due
to technical reasons, the vectors must all have the same number of components (may
be changed in a later version). So you just have to specify initial values for the sorbate
concentrations of mobile species, that have a nonequilibrium sorption isotherm, but
the other components must at least exist (although they certainly have no influence
on the simulation).

The result of this discretization is a piecewise linear approximation of the solute
concentration for mobile species, sorbed concentration for immobile and microbial
species. For mobile species, additionally a piecewise linear approximation of
the (nonequilibrium-)sorbed concentration may be given. Any further variables
(e. g.(equilibrium-)sorbed concentration) can be derived from these variables.

We have included a sample script-file def4multispec.scr, which you may modify for
your own purposes.

129

Appendix A

Annotations and Support

A.1 Stabilization

If the problem is convection dominant, i. e., the convective forces are much bigger
than the diffusive, the numerical solution can have instabilities. The solution may
be oscillating. To reduce or avoid this effect you can use special numerical meth-
ods for solving the problem. In Richy1D the SUPG (Streamline Upwind Petrov–
Galerkin method) as described in the book of Knabner and Angermann (2003) is
implemented. It has the parameter ArtificalDiffusion which can be set in the
menu /Discretization/Stabilization4name, where ‘name’ is the one of the prob-
lem class. If you set the parameter to zero the SUPG-Method is switched off and the
problem will be solved with the standard finite element method.

How to choose the parameter The bigger the parameter the more the oscillations
are damped. But if you choose the parameter too big the numerical solution becomes
wrong. For example negative values of concentrations can occur or at boundary layers
the solution is flattened. So a good value of the paramter may be about 20 in the case of
biodegradation (see 3.6 Biodegradation, p. 99) and reactive multicomponent transport
(see 3.7 Reactive Multicomponent Transport, p. 113) or about 1 in the case of solute
transport (see 3.2 Solute Transport, p. 62). To avoid the negative concentrations which
occur at strong stabilization you can increase the number of elements in the domain
(see 2.3.1 Domain, p. 10).

A.2 Simulation Examples

A.2.1 Simulation of Heat Conduction

This example for the solution of a heat conduction problem is a step-by-step introduc-
tion to set up the problem specific simulation scenario. The commands and definitions
given herein can also be found in the corresponding scriptfile def4heat.scr in ./appl

/scripts/. The content of this course corresponds to the work scheme (cf.1.2 Work
Scheme, p. 5).

130

Appendix A Annotations and Support

Statement of the Problem

This example provides a solution to the one-dimensional heat conduction equation.
We use a homogeneous domain with constant coefficients, i. e., thermal conductivity
and heat capacity. Details about the model equation are given in section 3.1 Heat
Conduction, p. 57.

Domain

We create a domain named ‘Oven’, represented by the interval [0, 1], consisting of
one subdomain (where the coefficients do not vary) and choose a spatial grid of 100
elements:

• go to the directory /Library/Domain,

• allocate a domain with the command 1DDomain and enter the name, e. g., ‘Oven’,

• go to the directory /Domain/Oven,

• set the variables

– LeftBoundary to 0.0 (default),

– RightBoundary to 1.0,

– NumOfSubdomains to 1 (default),

– InnerBoundaries will be ignored because of the coherent domain,

– ElemsPerSubDom to 100 (integer array, but due to the single subdomain just
the first entry will be used).

Boundary Condition

We now have to assign the type and values for the left and the right boundary condi-
tions:

• go to the directory /Library/BoundCond,

• define a scalar boundary condition with the command ScalarBC and name it,
e. g., ‘FireFromRight’,

• enter the directory /BoundCond/FireFromRight/Left,

• select (by right mouse button) Linear in the corresponding subdirectory
Interpolation (default), this defines the type of interpolation between the
values that you specify,

• select Dirichlet within the subdirectory Type (default),

• set the variables

131

Appendix A Annotations and Support

– Time to (0.0, 10.0),

– F(Time) to (0.0, 0.0) (default),

– Period is set by default to 1.0× 1020, this will have no effect here, because
Period > Endtime.

• Go to the directory /BoundCond/FireFromRight/Right,

• select (by right mouse button) Linear in the corresponding subdirectory
Interpolation (default),

• select Dirichlet within the subdirectory Type (default),

• set the variables

– Time to (0.0, 2.0, 10.0),

– F(Time) to (0.0, 2.0, 2.0).

Initial Value

In the next step we assign the initial values for the heat conduction problem:

• go to the directory /Library/InitialValue,

• create an inital condition with the command Create and name it, e. g., ‘Cold’,

• create a vector with the command AddVector and name it, e. g., ‘Temperature’,

• assign a component to the vector with the command StdFunctions and name
it, e. g., ‘Component0’,

• enter the directory /IntialValue/Cold/Temperature/Component0,

• set the variables

– Time to (0.0, 1.0),

– F(Time) to (0.0, 0.0) (default).

Coefficient Functions

Now, the coefficient functions for the heat conduction problem have to be defined. In
our example, these are the conductivities and the heat capacities for each subdomain:

• go to the directory /Library/Coeffcient,

• create a coefficent function set with the command HeatConduction and name it,
e. g., ‘HeatConduction’,

• enter the directory /Coefficients/HeatConduction,

132

Appendix A Annotations and Support

• set the variables per subdomain (in this case only one)

– StorageCapacity to 1.0 (default),

– Conductivity to 0.1,

– HomogSource to 0.0.

In the subdirectory /Water the flag WaterDependend is inactive (default), in this case
the remaining options will not be used.

Discretization Scheme

To complete the set of definitions, we have to choose an appropriate discretization
scheme. Therefore

• go to the directory /Library/Discretization,

• select the discretization scheme with the command FEM4HeatConduction, and
name it, e. g., ‘Fem4HeatConduction’.

Building the Grid

Now, the grid has to be build up:

• go to the directory /Library/Grid,

• select the grid with the command StandardGrid and name it, e. g., ‘Transport’.

Adding Problem and Discretization to the Grid

We add the problem and its discretization to the grid:

• go to the directory /Library/Problem,

• define your problem with the command Parabolic and name it, e. g., ‘Getting-
Warm’,

• go to the directory /Command,

• add the problem and the discretization to the grid with the command
AddP&D2Grid (don’t worry! Nothing will happen on screen).

Initialization of the Grid

We initialize the grid, i. e., the domain will be discretized by elements:

• Execute the command InitializeGrid in the /Command directory (there is
also no changing visible on screen).

133

Appendix A Annotations and Support

Solver

In the next step we have to apply the solver:

• go to the directory /Library/NLSolver,

• select the Newton solver with the command NewtonLS and name it, e. g.,
‘Cracker’.

Timer

The set up of the simulation algorithm is finished by a timer:

• go to the directory /Library/Timer,

• select the implicit Euler method with the command ImplicitEuler and name
it, e. g., ‘Stepper’,

• go to the directory /Timer/Stepper,

• set the variables

– Start to 0.0 (default),

– End to 10.0,

– StepSize to 0.05.

Use defaults for the other menu items.

Creating Plots

To display and follow up the progress in calculation, the interface provides a plotting
feature. To make use of this, the user has to set up and define an output window for
the simulation problem. We want to see the course of temperature during simulation.
To do so

• enter the directory /Discretization/FEM4HeatConduction/Variables,

• select the entry Temperature (default in this case),

• enter the directory /Library/Plot,

• select the space dependence of the temperature as plot with the command
GLGridPlot and name it, e. g., ‘Temperature’,

• go to the directory /Command,

• invoke the plot with the command Plot.

Richy1D now opens a graphical pop-up window entitled ‘Temperature’.

134

Appendix A Annotations and Support

Simulation

Now we are ready to run the simulation. To do so

• the initial values are set by execution of the command InitializeData in the
/Command submenu.

• the simulation runs

– until the time End is reached (see directory /Timer) by executing the com-
mand Proceed or

– by one timestep of StepSize by executing the command SingleStep.

Remarks
In the following some useful features are listed:

• If you want to use the set up of a problem again it will be useful to create a
scriptfile (cf.A.3 Scriptfile, p. 148). To save your interactive settings done with
the GUI into a scriptfile, you can log your session. Therefore you just have to
activate the flag Log2File in the toplevel directory /GeneralSettings before
starting. You may edit the scriptfile afterwards with any text editor, if desired.

• The heat conduction discretization FEM4HeatConduction expect exactly one ini-
tial value vector which prescribe the temperature at the beginning of the sim-
ulation. In this session it is Temperature (have a look to step 3). If you define
more than one initial value vectors in Cold Richy1D will ignore them. But you
can create other scenarios by executing the command Create in the directory
/Library/InitialValue and for each of this circumstances you can allign an
other initial value vector. The current scenario has to be marked (by the right
mouse button) then.

• In case of using more than one, say 4 subdomains you have to modify the variables

– /Domain/Oven/Subdomains to 4,

– /Domain/Oven/InnerBoundaries to (0.25, 0.5, 0.75) (float vector of size
NumOfSubdomains − 1),

– /Domain/Oven/ElemsPerSubDom to (25, 25, 25, 25) (integer vector of size
NumOfSubdomains, you can expediently use different values in various sub-
domains),

– /Coefficient/HeatConduction/StorageCapacity to (1.0, 1.0, 1.0, 1.0),

– /Coefficient/HeatConduction/Conductivity to (0.1, 0.1, 0.1, 0.1),

– /Coefficient/HeatConduction/HomogSource to (0.0, 0.0, 0.0, 0.0).

• If you have changed parts of the current grid it will be necessary to execute
the command InitializeGrid in the /Command directory for restarting the cal-
culation. For resetting the computation you have furthermore to click on the

135

Appendix A Annotations and Support

command Initialize and optionally on the command Plot. Only this way you
can start the simulation again.

A.2.2 Simulation of Solute Transport

This example session on the solution of the solute transport problem is a step-by-step
introduction to the set up of problem specific simulation scenario. The instructions
given herein can also be found in the corresponding scriptfile def4trans.scr in the
directory ./appl/scripts/. The content of this course corresponds to the work scheme
(cf.1.2 Work Scheme, p. 5).

Statement of the Problem

This example provides a solution to the one-dimensional solute transport equation (3.4)
including diffusion-dispersion, convection and equilibrium sorption. More information
is given in section 3.2 Solute Transport, p. 62.

Domain

We create a domain named ‘SoilColumn’, represented by the interval [0, 10], consisting
of one subdomain (it is not splitted into layers) and we choose a spatial grid of 200
elements:

• go to the directory /Library/Domain,

• allocate a domain with the command 1DDomain and enter the name, e. g., ‘Soil-
Column’,

• go to the directory /Domain/SoilColumn,

• set the variables

– LeftBoundary to 0.0 (default),

– RightBoundary to 10.0,

– NumOfSubdomains to 1 (default),

– InnerBoundaries will be ignored because of the coherent domain,

– ElemsPerSubDom to 200 (integer array, but due to the single subdomain just
the first entry will be used).

Boundary Condition

We now have to assign proper values for the left and the right boundary conditions:

• go to the directory /Library/BoundCond,

136

Appendix A Annotations and Support

• define a scalar boundary condition (because we consider one single substance)
with the command ScalarBC and name it, e. g., ‘TopInflow’,

• enter the directory /BoundCond/TopInflow/Left,

• select (by right mouse button) Linear in the subdirectory Interpolation (de-
fault), this defines the type of interpolation between the values that you specify,

• select Flux within the subdirectory Type,

• set the variables

– Time to (0.0, 1.0 × 109) (the last time point should be larger than the end
time of your simulation which is specified in the Timer menu),

– F(Time) to (0.16, 0.16).

– Period is set by default to 1.0 × 1020, this will have no effect here since
Period > Endtime.

• Go to the directory /BoundCond/TopInflow/Right,

• select (by right mouse button) Linear in the corresponding subdirectory
Interpolation (default),

• select Neumann within the subdirectory Type,

• set the variables

– Time to (0.0, 1.0× 109),

– F(Time) to (0.0, 0.0),

– Period to 1.0× 1020 (default)

Initial Value

In the next step we assign the initial values for the solute transport problem. We will
not have any nonequilibrium sorption ‘sorbate(neq)’. Therefore just one initial value
vector has to be created. For getting the correct number of initial vectors have a look
at remarks on p. 142.

• Go to the directory /Library/InitialValue,

• create an inital value condition with the command Create and name it, e. g.,
‘Empty’,

• create a vector with the command AddVector and name it, e. g., ‘solute’,

• assign a component to the vector with the command StdFunctions and name
it, e. g., ‘const’,

137

Appendix A Annotations and Support

• enter the directory /IntialValue/Empty/solute/const,

• set the variables

– Coords to (−0.1, 10.1),
– F(Coords) to (0.0, 0.0) default.

Coefficient Functions

Now, the coefficient functions for the solute transport problem have to be defined.
These are molecular diffusion d, dispersion length αl, needed for the diffusion/dis-
persion tensor D, and the bulk density ρb. Furthermore the modelling of equilibrium
sorption requires the mass fraction of the equilibrium sorption site fψ and a sorption
isotherm with all corresponding parameters:

• go to the directory /Library/Coeffcient,

• create a coefficent function set with the command Transport and name it, e. g.,
‘ContaminantTransport’,

• enter directory /Coefficients/ContaminantTransport/Transport,

• set the variables (just an array of size NumOfSubdomains = 1 will be used respec-
tively)

– Diffusion to 0.04,

– Dispersion to 0.003,

– BulkDensity to 1.0,

• enter the subdirectory /Transport/EquiSorpt,

• set the variables

– ParaType to 1 (i. e., Freundlich isotherm),

– MassFraction to 1.0,

– Kd-Value to 1.0,

– Exponent to 0.5,

– Regularisation to 0.001,

– MaxSorption (default, will be ignored since not needed in Freundlich
isotherm).

We will neither simulate nonequilibrium sorbate concentrations nor releases caused by
Raoult’s law. Therefore the default settings (for being deactivated) in the subdirecto-
ries /Transport/NonEquiSorpt and /Transport/Raoult should be used. Additionally
to the already defined values, the water flow has to be defined. Here we do not want to
simulate the water flow by solving the Richards equation (3.9) but give explicit values
for water flux q and water content Θ that define a stationary flow regime:

138

Appendix A Annotations and Support

• Return to the directory /Coefficient/ContaminantTransport,

• enter the directory /Water,

• deactivate the flag WithRichards (default),

• set the variables

– WaterContent to 1.0,

– Time to 0.0 (default),

– Flux(Time) to 1.0.

The commands Connect2WaterContent and Connect2Flux are not needed here. Use
defaults for all the other parameters in the other subdirectories carrier, decay and
Stabilization4Transport.

Discretization Scheme

To complement the set of definitions, we have to choose an appropriate discretization
scheme. Therefore

• go to the directory /Library/Discretization,

• select the discretization scheme with the command FEM4Transport, and name
it, e. g., ‘FEM4Transport’.

Note
The variable solute and the created isotherms for sorbates in the equilibrium will be
discretizised automatically without any more settings. If you want to calculate other
values like sorbate(neq) or solute_sens, sorbate(neq)_sens, sorbate(eq)_sens,
sink-trans and sink-trans_sens you have to appoint that additionally.

In this example we have no isotherms for the sorbate in the nonequilibrium but we
want to simulate the sorbate in the equilibrium. Therefore

• go to the directory /Discretization/Variables,

• activate the flag sorbate(eq).

Remark
It is not neccesary and even wrong to define a new unkown vector called ‘sorbate(eq)’
in step 3, Initial Value. This is a result of the fact that sorbate(eq) depends directly
on the solute concentration and is not an additional unknown in the problem.

139

Appendix A Annotations and Support

Building the Grid

Now, the grid has to be build up:

• go to the directory /Library/Grid,

• select the grid with the command StandardGrid and name it, e. g., ‘Transport-
Grid’.

Adding Problem and Discretization to the Grid

We add the problem and its discretization to the grid:

• go to the directory /Library/Problem,

• create the problem with the command Parabolic and name it,
e. g.,‘TransportProblem’,

• go to the directory /Command,

• add the problem and the discretization to the grid with the command
AddP&D2Grid (nothing will happen on screen).

Initialization of the Grid

We initialize the grid, i. e., the domain will be discretized by elements:

• Execute the command InitializeGrid in the /Command directory (there is also
no changing visible on screen).

Solver

In the next step we have to apply the solver:

• go to the directory /Library/NLSolver,

• select the Newton solver with the command NewtonLS and name it, e. g.,
‘Cracker’.

The the solver’s settings have to be defined:

• go to the directory /NLSolver/Cracker,

• set the variable AbsError to 1.0× 10−6.

Use the defaults for all the other variables.

140

Appendix A Annotations and Support

Timer

The set up of the simulation algorithm is finished by a timer:

• go to the directory /Library/Timer,

• select the implicit Euler method with the command ImplicitEuler and name
it, e. g., ‘Stepper’,

• go to the directory /Timer/Stepper,

• set the variables

– Start to 0.0 (default),

– End to 30.0,

– StepSize to 0.1.

Use defaults for the other menu items.

Creating Plots

To display and follow up the progress in calculation, the interface provides a plotting
feature. To make use of this, the user has to set up and define an output window for
the simulation problem. We want to see the course of the solute and the sorbate(eq)
during simulation. Therefore we have to create two plots:

• Enter the directory /Discretization/FEM4Transport/Variables,

• select the entry solute (by right mouse button),

• go to the directory /Library/Plot,

• to display the evolution of the unknown solute in the spatial domain execute
the command GLGridPlot and name the plot, e. g.,‘PlotSolute’,

• enter the directory /Discretization/FEM4Transport/Variables,

• select this time the entry sorbate(eq),

• return to the directory /Library/Plot again,

• execute the command GLGridPlot and name the plot, e. g.., ‘PlotSorbate(eq)’,

• go to the directory /Command,

• invoke the plot with the command Plot.

Richy1D now opens two graphical pop-up windows entitled ‘PlotSolute’ and ‘Plot-
Sorbate(eq)’ respectively.

141

Appendix A Annotations and Support

Simulation

Now we are ready to run the simulation. To do so

• the initial values are set by execution of the command InitializeData in the
/Command menu,

• the simulation runs

– until the time End is reached (see directory /Timer) by executing the com-
mand Proceed or

– by one timestep of StepSize by executing the command SingleStep.

Remarks
In the following some useful features are listed:

• If you want to use the set up of a problem again it will be useful to create a
scriptfile (cf.A.3 Scriptfile, p. 148). To save your interactive settings done with
the GUI into a scriptfile, you can log your session. Therefore you just have to
activate the flag Log2File in the toplevel directory /GeneralSettings before
starting. You may edit the scriptfile afterwards with any text editor, if desired.

• The number of initial and boundary value vectors which are expected by
Richy1D in case of a solute transport discretization depends on the number
of unknowns of the problem. The unknowns are the solute concentration
and optionally up to five nonequilibrium sorption concentrations (note that
the equilibrium sorbate concentration is not an additional unknown of the
problem—it can be calculated directly from the solute concentration). For each
unknown initial and boundary conditions have to be provided! Therefore the
unchangeable sequence of the vectors reads as follows:

1. Vector describing the solute.

2. Vector describing the first nonequilibrium sorbate, corresponding to the first
type of sorption sites (described by an isotherm).

3. Vector describing the second nonequilibrium sorbate, etc.

If you define to less vectors Richy1D will print an error message without starting
the simulation. In case of to much defined vectors the program will ignore them.
Other problem classes can handle the number of initial vectors with have to be
defined different. Have a look at section 3.6 Biodegradation, p. 99). You have
the possibility to create as much other scenarios as you want by executing the
command Create in the directory /Library/InitialValue and for each of these
scenarios you can align different initial value vectors. The current scenario has to
be selected then. In this session due to nonexisting isotherms of sorbates in the
nonequilibrium just one vector solute exists.

142

Appendix A Annotations and Support

• If you have changed parts of the current grid it will be necessary to execute
the command InitializeGrid in the /Command directory for restarting the cal-
culation. For resetting the computation you have furthermore to click on the
command Initialize and optionally on the command Plot. Only now you can
start the simulation again.

A.2.3 Simulation of Water-Flow (Richards Equation)

This example session on the solution of the Richards equation describing the water flow
is a step-by-step introduction to the set up of problem specific simulation scenario. The
instructions given herein can also be found in the corresponding scriptfile def4richy

.scr in the directory ./appl/scripts/. The content of this course corresponds to the
work scheme (cf.1.2 Work Scheme, p. 5).

Statement of the Problem

This example provides a solution to the one-dimensional Richards equation (3.9) on a
two-layered soil column. More information is given in section 3.3 Saturated/Unsatu-
rated Water Flow (Richards Equation), p. 78.

Domain

We create a domain named ‘twolayer’, represented by the interval [−1, 1], consisting
of two subdomains and we choose a spatial grid of 50 elements per subdomain:

• go to the directory /Library/Domain,

• allocate a domain with the command 1DDomain and enter the name, e. g.,
‘twolayer’,

• go to the directory /Domain/twolayer,

• set the variables

– LeftBoundary to −1.0,
– RightBoundary to 1.0,

– NumOfSubdomains to 2,

– InnerBoundaries to 0.0,

– ElemsPerSubDom to (50, 50) (integer array, following entries will be ignored).

Boundary Condition

We now have to assign proper values for the left and the right boundary conditions:

• go to the directory /Library/BoundCond,

143

Appendix A Annotations and Support

• define a scalar boundary condition with the command ScalarBC and name it,
e. g., ‘watertableandflux’,

• enter the directory /BoundCond/watertableandflux/Left,

• select (by right mouse button) Linear in the subdirectory Interpolation (de-
fault), this defines the type of interpolation between the values that you specify,

• select Dirichlet within the subdirectory Type,

• set the variables

– Time to (0.0, 1.0 × 103) (the last time point should be larger than the end
time of your simulation which is specified in the Timer menu),

– F(Time) to (0.0, 0.0).

– Period is set by default to 1.0 × 1020, this will have no effect here since
Period > Endtime.

• go to the directory /BoundCond/watertableandflux/Right,

• select (by right mouse button) Linear in the corresponding subdirectory
Interpolation (default),

• select Flux within the subdirectory Type,

• set the variables

– Time to (0.0, 1.0× 102, 1.0× 103),

– F(Time) to (2.77× 10−7, 2.5× 10−6, 2.5× 10−6,

– Period to 1.0× 1020 (default)

Initial Value

In the next step we assign the initial values for the Richards equation with use of
the command RichyEqui. As described in section Initial Value, p. 81, the initial value
function RichyEqui only requires the parameter Flux while the pressure head ψ and
the water content Θ will be calculated.

• Go to the directory /Library/InitialValue,

• create an inital value condition with the command Create and name it, e. g.,
‘PressureProfile’,

• create a vector with the command AddVector and name it, e. g., ‘Pressure’,

• execute the command RichyEqui,

• enter the directory /IntialValue/PressureProfile/Pressure/Equilibrium,

• set Flux to −2.77× 10−7.

144

Appendix A Annotations and Support

Coefficient Functions

Now, the parametrisation of the coefficient functions—these are water content Θ and
hydraulic conductivity K—has to be chosen and included parameters have to be de-
fined:

• go to the directory /Library/Coeffcient,

• create a coefficent function set with the command Richards and name it, e. g.,
‘Richards’,

• enter directory /Coefficients/Richards,

• set the variables (just an array of size NumOfSubdomains = 2 will be used respec-
tively)

– ParaType to (0, 0) (i. e., Gardner estimation for both subdomains),

– K_sat to (2.77× 10−6, 2.77× 10−5),

– T_sat to (0.36, 0.36),

– T_res to (0.06, 0.06),

– alpha to (10.0, 10.0).

Preparing the Grid

Now, the grid has to be build up:

• go to the directory /GeneralSettings,

• set ZDirection to 1.0.

• Go to the directory /Library/Grid,

• select the grid with the command StandardGrid and name it, e. g., ‘flowgrid’.

Building Boundary Value Problem and Finishing the Grid

To complement the set of definitions, we have to create a problem and to choose an
appropriate discretization scheme. Therefore

• go to the directory /Library/Problem,

• execute the command Parabolic and name the problem, e. g., ‘flowbvp’,

• go to the directory /Library/Discretization,

• select the discretization scheme with the command HMFEM4Richards, and name
it, e. g., ‘HMFEM4Richards’.

145

Appendix A Annotations and Support

We want to use time adaption. Therefore the following settings are declared:

• go to the directory iscretization/HMFEM4Richards,

• set the variables

– ErrorTime to 1.0× 10−5,

– CoarseningRatio4Time to 6.

Add the problem and the discretization to the grid by executing the command
AddP&D2Grid in the command directory. Finish the grid with the command
InitializeGrid (in both cases nothing will happen on screen).

Solver

In the next step we have to apply the solver:

• go to the directory /Library/NLSolver,

• select the Newton solver with the command NewtonLS and name it, e. g., ‘cracker’.

The the solver’s settings have to be defined:

• go to the directory /NLSolver/Cracker,

• set the variables

– AbsError to 1.0× 10−20,

– RelError to 1.0× 10−6.

Use the defaults for all the other variables.

Timer

The set up of the simulation algorithm is finished by a timer:

• go to the directory /Library/Timer,

• select the implicit Euler method with the command ImplicitEuler and name
it, e. g., ‘stepper’,

• go to the directory /Timer/stepper,

• set the variables

– Start to 0.0 (default),

– End to 1.0× 106,

– MinStepSize to 1.0× 10−5,

– MaxStepSize to 1.0× 105.

Enable the flag AdaptTime and disable the flag AdaptGrid. Use defaults for the other
menu items. Initialize all datas by executing the command InitializeData in the
command directory.

146

Appendix A Annotations and Support

Creating Plots

To display and follow up the progress in calculation, the interface provides a plotting
feature. To make use of this, the user has to set up and define an output window for
the simulation problem. We want to see the course of the pressure head ψ and the
water flux q during simulation. Therefore we have to create two plots:

• Enter the directory /Discretization/HMFEM4Richards/Variables,

• select the entry pressure (by right mouse button),

• go to the directory /Library/Plot,

• to display the evolution of the unknown pressure in the spatial domain execute
the command GLGridPlot and name the plot, e. g.,‘pressure’,

• enter the directory /Discretization/HMFEM4Richards/Variables,

• select this time the entry flux,

• return to the directory /Library/Plot again,

• execute the command GLGridPlot and name the plot, e. g., ‘flux’,

• go to the directory /Command,

• invoke the plot with the command Plot.

Richy1D now opens two graphical pop-up windows entitled ‘pressure’ and ‘flux’ re-
spectively.

Simulation

Now we are ready to run the simulation. To do so

• the initial values are set by execution of the command InitializeData in the
/Command menu (done already above),

• the simulation runs

– until the time End is reached (see directory /Timer) by executing the com-
mand Proceed or

– by one timestep of StepSize by executing the command SingleStep.

Also have a look at remarks on p. 142.

147

Appendix A Annotations and Support

A.3 Scriptfile

Richy1D can work without any user interaction. You can choose a startup file, to
be loaded automatically. Interactively generated sessions can be logged into a file,
which can be modified by usual ASCII text editors and executed in later sessions. The
execution of scriptfiles can be nested.

Logging a Session

➟ /GeneralSettings/Log2File

You start/stop the logging of your session into the file ./appl/scripts/logfile.scr by
activating/deactivating the flag Log2File in the toplevel directory /GeneralSettings.
By default, logging is off. Any previously generated session in ./appl/scripts/logfile

.scr is deleted when starting a new session. If you want to keep the script file of
your session, choose a new filename and copy ./appl/scripts/logfile.scr to ./appl

/scripts/filename.scr.

Execution of Scriptfiles

➟ /Command/ExecScript

You can execute a series of commands, logged or written previously into a file, by
execution of the command ExecScript. You will be asked to enter a filename. This
file is searched for in the subdirectory scripts.

Scriptfile Language

The scriptfile language consists of the following actions each of which is written in one
line within the scriptfile.
GOTO [name of toplevel directory]

Changes the current directory to one of the toplevel directories. You can move only
down, but not up. So you always have to start from a toplevel directory.

GOTO /Domain

CD [name of subdirectory]

Changes the current directory to the defined subdirectory.

CD Oven

HIDE [name of menuitem]

Hides the defined menuitem (i. e., variable, command, directory, etc.). The menuitem
is searched for under the current directory. If it is not found here, the search starts
again from the toplevel.

HIDE /Variable

148

Appendix A Annotations and Support

SET [name of variable] [list of values]

Sets the value of the defined variable. The form of [list of values] depends on the
type of the variable:

• Floating point or integer number: A single value of the desired type,

• array of floating point or integer numbers: First the number of values and then
the sequence of these values,

• matrix of floating point or integer numbers: Specify number of lines i, then num-
ber of columns j, then j values for first line, up to j values for ith line.

SET #LeftBoundary# 0.0

SET #RightBoundary# 1.0

SET #InnerBoundaries# 3 0.2 0.4 0.9

SET #ElemsPerSubdom# 4 20 20 50 10

SET #Matrix# 2 3 1.0 1.0 1.0

2.0 2.0 2.0

SETFROMFILE [name of variable] "[filename]"

Sets the values of a integer or floating point array variable. The values are read from
the file given by [filename] which must be enclosed by quotes. The file format is as
follows:

[first line is for comments /identification. it is ignored]

[n: number of values (integer)]

[value 0]

[...]

[value n-1]

Values are either integer or floating point—dependent on the variable’s type. If more
values are given than the variable holds, the additional values are ignored. If less values
are given, the not specified array entries are set to 0.
SELECT [name or number of menuitem]

Selects a menuitem, defined by its name or number, within the current directory.

GOTO /Domain

SELECT Oven

CMD [name of command] [string]

Executes the defined command. The string contains further information for the com-
mand (e. g.a filename). Even if the command does not require any further information,
the string may not be empty and you should at least write something like ‘dummy’.

CMD *ExecScript* session.scr

CMD *Plot* dummy

149

Appendix A Annotations and Support

FOR [replacement character] [lower value] [upper value] [step size]

[code]

ENDFOR

Note that upper value − lower value mod stepsize
!
= 0.

GOTO /Plot

CD SorbatTimePlot

FOR X 8 12 2

SET #Coordinate# X

CMD *SaveData * coord_X.dat

ENDFOR

END

Tells the interpreter that the execution of the scriptfile is finished. The execution of
commands will be continued by the user interface.

END

If you want to quit the application you have to use the following command within the
scriptfile:

CMD *Quit*

A.4 Stylesheet

You can adapt Richy1D’s graphical appearance to your own ideas by changing the
stylesheet ./appl/tcl/browser_conf.tcl. The meaning of the variables are very intu-
itive and commented within this file. I.a. the following fonts are available:

Monospace Fonts Proportional Fonts

Courier Arial

LucidaTypewriter Helvetica

FotinosTypewriter Times

Terminal

150

Bibliography

Bethke, C. M. (1996). Geochemical Reaction Modeling. New York: Oxford University
Press.

Bitterlich, S. (2003). “Identifizierung der hydraulischen Funktionen poröser Medien
unter Verwendung formfreier Ansätze.” PhD thesis. Institute of Applied Mathemat-
ics, Friedrich–Alexander-University Erlangen–Nürnberg.

Bitterlich, S., W. Durner, S. C. Iden, and P. Knabner (2004). “Inverse estimation
of the unsaturated soil hydraulic properties from column outflow experiments
using free-form parameterizations.” Vadose Zone Journal 3, pp. 971–981. doi:
10.2136/vzj2004.0971.

Blume, M. (2011). “Identifizierung nichtlinearer Koeffizientenfunktionen des
reaktiven Transports durch poröse Medien unter Verwendung rekursiver
und formfreier Ansätze.” PhD thesis. Institute of Applied Mathematics,
Friedrich–Alexander-University Erlangen–Nürnberg.

De Vries, D. A. and N. H. Afgan (1975). Heat and Mass Transfer in the Biosphere.
New York: Wiley.

Frank, F. (2008). “Hydrogeochemical Multi-Component Transport - Mineral
Dissolution and Precipitation with Consideration of Porosity-Changes in
Variably-Saturated Porous Media.” Diploma Thesis. Institute of Applied
Mathematics, Friedrich–Alexander-University Erlangen–Nürnberg.

Gardner, W. (1958). “Some steady state solutions for the unsaturated moisture flow
equation with application to evaporation from a water table.” Soil Science 85.4,
pp. 228–232.

Igler, B. (1998). “Identification of Nonlinear Coefficient Functions in Reactive
Transport through Porous Media.” PhD thesis. Institute of Applied Mathematics,
Friedrich–Alexander-University Erlangen–Nürnberg.

Igler, B., K. U. Totsche, and P. Knabner (1998). “Identification of Nonlinear Sorption
Isotherms by Soil Column Breakthrough Experiments.” Physics and Chemistry of
the Earth 23.2, pp. 215–219.

Knabner, P. and L. Angermann (2003). Numerical Methods for Elliptic and Parabolic
Partial Differential Equations. Vol. 44. Texts in Applied Mathematics. New York:
Springer.

151

http://dx.doi.org/10.2136/vzj2004.0971

Bibliography

Knabner, P. and E. Schneid (1996). “Qualitative Properties of a Model for Carrier
Facilitated Groundwater Contaminant Transport.” English. Scientific Computing in
Chemical Engineering. Ed. by F. Keil, W. Mackens, H. Voß, and J. Werther. Springer
Berlin Heidelberg, pp. 129–135. doi: 10.1007/978-3-642-80149-5_14.

Knabner, P., K. U. Totsche, and I. Kögel-Knabner (1996). “The modeling of reactive
solute transport with sorption to mobile and immobile sorbents; 1. Experimental
evidence and model development.” Water Resources Research 32.6, pp. 1611–1622.

Magee, B. R., L. W. Lion, and A. T. Lemley (1991). “Transport of dissolved organic
macromolecules and their effect on the transport of phenanthrene in porous media.”
Environmental Science & Technology 25, pp. 323–331.

Prechtel, A., P. Knabner, E. Schneid, and K. U. Totsche (2002). “Simulation of Carrier
Facilitated Transport of Phenanthrene in Layered Soil Profile.” Journal of Contam-
inant Hydrology 56.3-4, pp. 209–225.

Renshaw, C. E., G. D. Zynda, and J. C. Fountain (1997). “Permeability reductions
induced by sorption of surfactant.” Water Resources Research 33.3, pp. 371–378.

Richards, L. A. (1931). “Capillary conduction of liquids through porous mediums.”
PhD thesis. New York: Cornell University.

Roy, S. B. and D. A. Dzombak (1997). “Chemical factors influencing colloid-facilitated
transport of contaminants in porous media.” Environmental Science & Technology
31, pp. 656–664.

Schirmer, M., J. W. Molson, E. O. Frind, and J. F. Barker (2000). “Biodegradation
modelling of a dissolved gasoline plume applying independent laboratory and field
parameters.” Journal of Contaminant Hydrology 46, pp. 339–374.

Schneid, E., A. Prechtel, and P. Knabner (2000). “A comprehensive tool for the sim-
ulation of complex reactive transport and flow in soils.” Land Contamination &
Reclamation 8.4, pp. 357–365.

Smith, J. E. and R. W. Gillham (1994). “The effect of concentration-dependent sur-
face tension on the flow of water and transport of dissolved organic compounds: A
pressure head-based formulation and numerical model.” Water Resources Research
30.2, pp. 343–354.

Strehmel, K. and R. Weiner (1995). Numerik gewöhnlicher Differentialgleichungen.
Stuttgart: Teubner.

Totsche, K. U. (1996). “SIMFONI— a numerical model for the simultaneous simula-
tion of water, heat and nitrogen dynamics in forest ecosystems.” BITÖK Forschungs-
bericht 1995 28.

152

http://dx.doi.org/10.1007/978-3-642-80149-5_14

Bibliography

Totsche, K. U., P. Knabner, and I. Kögel-Knabner (1996). “The modeling of reactive
solute transport with sorption to mobile and immobile sorbents; 2. Model discussion
and numerical simulation.” Water Resources Research 32.6, pp. 1623–1634.

W. Stumm, J. M. (1996). Aquatic chemistry: an introduction emphasizing chemical
equilibria in natural waters. New York: John Wiley and Sons.

Widdowson, M. A., F. J. Molz, and L. D. Benefield (1988). “A numerical Transport
model for oxygen- and nitrate-based respiration linked to substrate and nutrient
availability in porous media.” Water Resources Research 24.9, pp. 1553–1565.

153

Index

biodegradation, 99–112
boundary conditions, 11

coefficient values, 15
commands, 8

discretization, 17
domain, 10

examples, 130–147
experimental design, 44

Gardner parametrization, 79
geological database, 50
gravitation, 10

Haverkamp parametrization, 79
heat conduction, 57–61

identification, 22
initial values, 14
introduction, 1–7

library, 9

menu, 8–56
command, 8
discretization, 17
experimental design, 44
general settings, 50
geological database, 50
identification, 22
library, 9
operating instructions, 2
plot, 48
problem, 9
solvers, 17

timesteppers, 20

plots, 48
preferential water flow, 84–90
problem classes, 57–129

Richards equation, 78–90
coefficient functions, 79
model equation, 78

scriptfile, 148–150
solute transport, 62–77
stabilization, 130
stylesheet, 150
surfactant transport, 91–98

tensid, see surfactant
timer, 20

van-Genuchten–Mualem
parametrization, 79

work scheme, 5

z-direction, 10

154

	Introduction
	Operating Instruction
	Work Scheme

	Items of Richy1D's Menu
	Command
	Library
	Problem
	Domain
	Boundary Conditions
	Initial Values
	Coefficient Functions

	Discretization
	Solvers
	Timesteppers
	Identification
	Identification of Standard Parametrization
	Formfree Identification with Spline Parametrization

	Experimental Design
	Plot
	General Settings
	Geological Database

	Problem Classes
	Heat Conduction
	Solute Transport
	Saturated/Unsaturated Water Flow (Richards Equation)
	Saturated/Unsaturated Preferential Water Flow (Richards Equation)
	Coupled Water-Surfactant Transport
	Biodegradation
	Reactive Multicomponent Transport

	Annotations and Support
	Stabilization
	Simulation Examples
	Simulation of Heat Conduction
	Simulation of Solute Transport
	Simulation of Water-Flow (Richards Equation)

	Scriptfile
	Stylesheet

	Bibliography
	Index

