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Experimental setting

Classical Lippmann formula (under scrutiny):
cos O(V) = cos ©(0) 4 2172
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General assumption: mass density of the two liquids identical!

Case 1: Conductive liquid surrounded by nonconductive ambient liquid

Model equations

vi+ (v-V)v-=V-0(@)T(v))+Vp—puVeo+pVV =0 in Qr,
V.-v=0 inQp,

pr+v-Vp—=V-(K(@)V(V+Ap))=q inQr, (1)
G+ v-Vé—V-(M)Vu)=0 inQr,
—V - (E[p]VV)=p in Q" Vte (0,T).

with symmetric strain tensor and chemical potential
T(v) = % (Vv + (Vv)t) ,
= (=686 + 3W'(9)) — 3¢'(9) [VV".

Formal energy estimate
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Case 2: Electrowetting with electrolyte solutions

Model equations
vi+ (v - V)v=V-(n(@)T(v))+Vp=puVe—(p1 — p2)VV in Qr,
V-v=20in Qp,
b0 — V- (K(¢)Vpo) = R(p1, p2, po, ¢) in Qr,
pipi =V - (K(¢)pf V((=1)"V +log pi)) = —R(p1, p2, po, ¢) in Qr for i € {1,2},
26—V (M(6)Vi) =0 in Qr.
—V - (E[p]VV) = p1 — pg in Q" forall t € (0,T)

(4)

with no-slip boundary conditions for v, Dirichlet b.c. for V', no-flux b.c. for the transported

quantities and the additional non-standard b.c. for the phase-field

IVo[" > Vo -n=—7},(¢) — ap (5)

on 002 x (0,7). Here, R(p1,p2,po,®) is an appropriate recombination term, e.g.
R(p1, p2: po, ¢) = K1 (@) p1p2 — Ko(9)pf-

Formal energy estimate
€ss SUup;c (0,1 {/ﬂ (% |v\2 + p1log p1 + p2 log p2 + % |Vo|* + W (d>)) + /asz vfs (6) + /Q* %é[qb] |VV‘2} (t)
- [n (@) T W2+ K (8) 1 [V [V +log pr] > + K (6) p2 [V [=V + log pa]|* + M () \vmﬂ
2 K + +l K + +1 (6)
+/@QTocI¢t| +/[,,121] 1(9)p1 P2 0gp1+/{p221] 1(9)p1 p3 log p2

_/ Ko(9) (po)® log p1 —/ Ko(¢) (po)® log p2
[0<p1<1] [0<p2<1]

< const.(initial and boundary data)

Sketch of model derivation

total energy £ = (kinetic + distributional + interfacial + adsorption + electrostatic) energy
(cf. (3) and (6)),
take general evolution equations as ansatz functions for ¢, p etc, e.g. D%gb +V.-Js=0,

consider dissipation functionals of the type

P [P [P faw (B
‘P(J"’)‘/gzM(@*/QzK(m+/an<¢>+/r§¢2+/r§‘“‘ ’

apply Onsager's variational principle §3(E(J) + ®(J,J)) = 0 to determine the unknown

fluxes,

use zero increase rate of total mechanical work to determine the force density in the hydro-

dynamic equation,

inspired by the methods of [4] for pure two-phase flow with wall effects.

Model features
A nonstandard boundary condition for the phase-field — consequences on contact

angles

boundary condition 'yo%%gb = —7},(¢) — ag; entails for equilibrium contact angles (6 =0)

in first approximation (assuming ¢ to be linear inside the interface)

—1) — 1
coS Ogtatic = 775 )7 Vrs(+1)
0

which is Young's law. HENCE: LIPPMANN FORMULA CAN HOLD AT MOST MACRO-
SCOPICALLY! (see also [3] for another approach in the stationary case)

taking a contact line movement to the left into account yields cos Ogayancing = €S Ostatic —
%f&ng < €08 Ogtqtic, hence contact angle hysteresis O y4pancing > Ostatic included in the

model.

Numerical Simulations (Fabian Klingbeil)

Contact angle evolution

Charged droplet on a surface (Avss = 70, ©(0) = 2F). The plots show the zero-level of ¢ at times ¢ = 0 (dashed), 0.001, 0.0025, 0.005, 0.0075,
0.01. Each plot shows a different choice of po = 0, 200, 400, 600 (from left to right). Here, po is the total charge inside the drop. Note also the

temporary increase in the microscopic contact angle.

Droplet motion
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Snapshots of a charged droplet set in motion by switching-off/switching-on of two different electrodes. Depicted are velocity field, phase field and

charge density

Topology changes
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Two non-equally charged droplets (red: positive charge, dark blue: negative charge) are attracting each other — on the left, a negative electrode
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is switched on additionally — droplets merge and move towards the electrode

Mathematical analysis
Model (1) — see [1]

2D case: global existence of weak solutions for degenerate and for non-degenerate mobilities

K(9),

3D case: global existence in the degenerate case only under the additional assumption &

independent of ¢.

Model (4) — see [2]
3D case: global existence established without further side conditions,
species densities pg, p1, p2 globally non-negative,

novel iteration method suggested to establish L>°(L?) N L*(H'!) regularity for the species

densities.
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