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Abstract

In this article a systematic approach for the efficient computation of the
transport and reaction of a multi-species multi-reaction system is proposed.
The objective of this approach is to reformulate the given system of differen-
tial or differential-algebraic equations in such a way that the couplings and the
nonlinearities are concentrated in a reduced number of equations (if compared
to the original formulation), while some linear equations decouple from the sys-
tem. The resulting system is handled in the spirit of a global implicit approach
(’one step method’) avoiding operator splitting techniques. The reduction of
the problem size proposed in this article helps to limit the large computa-
tional costs of numerical simulations for such problems. The reduction mech-
anism is a generalization of the method proposed in a previous paper. Now,
problems with mixed mobile/immobile species, homogeneous/heterogeneous
kinetic/equilibrium reactions are considered, while the previous publication
was restricted to problems without heterogeneous equilibrium reactions (such
as equilibrium sorption). An application of the reduction mechanism to an
example problem is given in order to investigate the reduction of the number
of coupled nonlinear equations, and to compare it to other methods.
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1 Introduction

This article is concerned with the efficient numerical solution of a large system of
partial differential equations (PDEs), ordinary differential equations (ODEs), and
algebraic equations (AEs), as they occur in the modelling of transport, chemical
reactions and biodegradation below the Earth’s surface. The topic of this article is

1submitted to Water Resour. Res. in July 2005. Accepted for publication in Water Resour.
Res. in Oct 2006. Copyright American Geophysical Union. Further reproduction or electronic
distribution is not permitted.



2 1 INTRODUCTION

the proposition of a method to reformulate the given system of equations describing
the problem, in such a way that the resulting system is easier to solve. A rather
general approach for a wide class of such biogeochemical problems is proposed in
this article. In fact, this article is a generalization of the work by Kräutle and
Knabner [2005], where equilibrium reactions between mobile and immobile species
were excluded.

The chemical species which are considered are divided into two classes: Mobile
(dissolved) species and immobile (sorbed chemical species, minerals, immobile bac-
teria) ones. The system of equations for the concentrations consists of PDEs for the
mobile species and ODEs for the immobile ones, all of them coupled through the
reaction terms. The characteristic timescale of the different reactions may cover a
large range making it desirable to model some reactions as equilibrium-controlled
and others as kinetically controlled, leading to an differential algebraic system of
equations (DAE).

Basically there are two different concepts to treat these kinds of problems nu-
merically: By global implicit approaches (GIA) and by sequential iterative and
sequential noniterative approaches (SIA/SNIA). The GIA requires most resources
per time step, but is usually considered to be the most stable solution method.
SIA and SNIA, depending on the specific problem to solve, may suffer from heavy
restrictions on the time step size to gain convergence, or from the introduction of
large splitting errors, respectively. See, e.g., Steefel and MacQuarrie [1996] and
the papers cited therein, Valocchi and Malmstead [1992], Saaltink et al. [2000],
Berkvens et al. [2002].

In this article, our goal is to avoid such problems by focussing on the GIA.
In order to keep the computational effort with respect to memory requirements
and cpu time limited, we want to reformulate the given system of PDEs/ODEs or
DAE in such a way that some of the equations decouple, leading to a smaller non-
linear system to which we apply the GIA. The reformulation of the given system
is performed by (a) taking linear combinations of the given equations and (b) by
introducing new variables which are linear combinations of the unknown concen-
trations. This leads to a decoupling of some scalar linear transport equations and
a smaller remaining nonlinear system of PDEs, ODEs, and AEs. In another step,
the local equations, i.e., the ODEs and the AEs, are solved for certain variables,
and these variables are eliminated in the remaining PDEs, which reduces the size of
the coupled system again, and which resembles the so-called direct substitutional
approach (DSA).

There are many papers dealing with the efficient solution of transport-reaction
problems in porous media, e.g., Lichtner [1985], Yeh and Tripathi [1989], Friedly
[1991], Friedly and Rubin [1992], Saaltink et al. [1998], Chilakapati et al. [1998,
2000], Robinson et al. [2000], Holstad [2000], Fang, Yeh and Burgos [2003], and,
recently, the very advanced paradigm system by Molins et al. [2004]. A main dif-
ference of the method proposed in this article to other reformulations (e.g., Saaltink
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et al. [1998, 2000], Molins et al. [2004]) is that when we introduce linear combi-
nations of concentrations or equations, we lay special emphasis on the distinction
between mobile species and immobile species, not mixing up mobile and immobile
species during the transformation. A benefit of this proceeding compared to other
methods is that it enables a decoupling of some equations without posing addi-
tional assumptions on the stoichiometry of the problem and without ’enforcing’ a
decoupling by splitting techniques. Another advantage can be seen in the fact that
the DSA-like treatment of the local equations in our resulting system preserves a
very sparse population of the Jacobian (see Kräutle and Knabner [2005, sec. 3.4]),
which can be exploited if the linear solver is an iterative method.

The article is structured as follows: In section 2, the equations for the coupled
reactive transport are given. In section 3, which is the main part of this article, the
general reduction algorithm including the case of heterogeneous equilibrium reac-
tions is derived. The algorithm presented in section 3 requires a certain condition
on the stoichiometric matrix. In section 4 it is demonstrated that every stoichio-
metric system can be written in such a form that the required condition is met.
Section 5 demonstrates the application of the method to an example problem. A
comparison of the proceeding to other methods is included in order to motivate
our method.

A mathematical proof that the local equations can always be solved for certain
variables, if mass action law is assumed for the equilibrium reactions, is given in
the appendix.

2 Problem Formulation

Let us consider I mobile species X1, ..., XI and Ī immobile species X̄I+1, ..., X̄I+Ī .
Let us denote their time and space dependent concentrations by c = (c1, ..., cI)t,
c̄ = (c̄I+1, ..., c̄I+Ī)

t; the mobile ci are given in moles per fluid volume, the immobile
c̄i in moles per total volume. The mobile species are convected by a given Darcy
flow field and are subject to dispersion. Let us assume that the underlying transport
operator L is linear and that it is the same for all mobile species, i.e., L(c1, ..., cI)t =
(L1c1, ..., LIcI)t with L1 = ... = LI . The last assumption is justified if the species-
dependent diffusion is negligible compared to species-independent dispersion. A
typical transport operator would be Lici = −∇ · (D∇ci − q ci), i = 1, ..., I, with
dispersion tensor D and flow field q.

The J chemical reactions can be written as

I∑
i=1

sijXi +
I+Ī∑

i=1+I

sijX̄i
Rj←→ 0, j = 1, ..., J,

where the stoichiometric coefficients sij form an (I + Ī)× J-matrix S with entries
in ZZ or in IR and Rj = Rj(c, c̄) is the rate expression for reaction j.
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The I + Ī mass balance equations are

∂
∂t(θci) + Lci =

J∑
j=1

sijRj(c, c̄), i = 1, ..., I

∂
∂t c̄i =

J∑
j=1

sijRj(c, c̄), i = I+1, ..., I+Ī .
(1)

θ > 0 denotes the fraction of the mobile fluid-phase volume. We assume that the
sij are constant in space and time. The rates Rj and θ may depend on space and
time; however, for the sake of simplicity we assume that θ is constant.

The stoichiometric matrix S consists of an I × J block S1 of stoichiometric
coefficients for the mobile species and an Ī × J block S2 of coefficients for the
immobile species:

S =

(
S1

S2

)
Using the vector notation R = (R1, ..., RJ)t we get the compact notation

θ ∂
∂tc + Lc = S1 R(c, c̄)

∂
∂t c̄ = S2 R(c, c̄)

(2)

for (1).
If a rate Rj in (1)/(2) is kinetic, then we prescribe a rate function Rj(c, c̄). As

an example may serve the forward-backward rate formulation

Rj(c, c̄) = kf
j

I+Ī∏
i=1

sij<0

c
−sij

i − kb
j

I+Ī∏
i=1

sij>0

c
+sij

i . (3)

with rate constants kf
j , kb

j ≥0. For the sake of simplicity we have omitted the bar
atop the immobile species c̄I+1, ..., c̄I+Ī in (3). Besides (3), other rate laws can be
considered.

A reaction Rj that is assumed to be at local equilibrium is described by a local
algebraic equation

Qj(c, c̄) = 0 (4)

that holds at every point of the computational domain. The local equilibrium
described by the law of mass action

Qj(c, c̄) := kf
j

I+Ī∏
i=1

sij<0

c
−sij

i − kb
j

I+Ī∏
i=1

sij>0

c
+sij

i = 0, (5)
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here formulated with ideal activities for all species, is a typical assumption, at
least for low concentrations. However, we will not need this specific form (5)
unless we are interested in proving the mathematical theorem of section 3.4. See
also section 3.6 for a discussion of the equilibrium conditions. Note that if an
equilibrium condition (4) is assumed, then the corresponding rate term Rj(c, c̄) in
(1) is not an explicit function of the local concentration vector (see, e.g., Lichtner
[1996, eq. (121)], De Simoni et al. [2005]). The common way to handle the DAE
is to eliminate the rates Rj corresponding to equilibrium reactions from the system
(1)/(2). This can be achieved by taking linear combinations of the differential
equations. This process leads to the introduction of what is often called components
(see, e.g., Friedly and Rubin [1992], Saaltink et al. [1998], Molins et al. [2004]).

Let us assume reactions R1, ..., RJeq to be in equilibrium and reactions
RJeq+1, ..., RJ to be kinetic, 0 ≤ Jeq ≤ J . We can split the vector R into a
vector of equilibrium reaction rates Req of size Jeq, and a vector of kinetic reaction
rates Rneq of size Jneq = J − Jeq:

R =

(
Req

Rneq

)

Similar to vector R, we split the matrices S,S1,S2 into a block of Jeq columns
belonging to the equilibrium reactions, and a block of Jneq columns for the kinetic
reactions:

S =

(
S1

S2

)
=

(
S1

eq S1
neq

S2
eq S2

neq

)
=
(

Seq Sneq

)
. (6)

With this notation, (2) reads

θ ∂
∂tc + Lc = S1

eq Req + S1
neq Rneq(c, c̄)

∂
∂t c̄ = S2

eq Req + S2
neq Rneq(c, c̄)

(7)

and the AEs (5) for j = 1, ..., Jeq can be expressed by the equivalent formulation

Q̂eq(c, c̄) := Seq
t ln

(
c
c̄

)
−K

= S1
eq

t ln c + S2
eq

t ln c̄−K = 0 (8)

where the vector of equilibrium constants K has the entries ln(kf
j /kb

j), and ln (the
natural logarithm) applied to a vector with entries ci > 0 is short for the vector
with the entries ln ci.

The well known way to handle system (7) together with (4) is to form linear
combinations of the equations in (7) in such a way that the unknown reaction terms
Req vanish. The forming of linear combinations of equations can be expressed by
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multiplying (2) with certain matrices (e.g., Lichtner [1996], Saaltink et al. [1998],
Molins et al. [2004], Kräutle and Knabner [2005]). A main difference between
different reduction methods lies in the choice of these matrices. This choice strongly
influences whether (or under which conditions) the aim of a partial decoupling of
equations can be reached in the resulting system.

3 The decoupling algorithm

3.1 The transformation of the mobile and of the immobile block

Let us recall the basic idea of the transformation by Kräutle and Knabner [2005],
Sec. 4.1.

The first step of the decoupling method is to transform the two blocks of (2)
separately: Let J1, J2 be the number of linearly independent columns in the matrix
S1, S2, respectively. For Si, i = 1, 2, we define S∗i as a matrix consisting of a
maximum system of linearly independent columns of Si and Ai such that

Si = S∗i Ai (9)

holds. A1 is a matrix of size J1 × J and A2 of size J2 × J . For S∗i we define S>i
consisting of a maximum set of linearly independent columns that are orthogonal
to each column of S∗i . By using (9) in (2) and then multiplication of each block of
(2) by

(S∗i
tS∗i )

−1S∗i
t and by (S>i

t
S>i )−1S>i

t
(10)

we derive the following four blocks:

(S>1
tS>1 )−1S>1

t (θ ∂
∂tc + Lc) = 0

(S>2
tS>2 )−1S>2

t ∂
∂t c̄ = 0

(S∗1
tS∗1)−1S∗1

t (θ ∂
∂tc + Lc) = A1 R (c, c̄)

(S∗2
tS∗2)−1S∗2

t ∂
∂t c̄ = A2 R (c, c̄)

(11)

This manipulation corresponds to the forming of linear combinations within each
of the two blocks of equations in (2). The number of equations in (11) is the same
as the number of equations in (2) or (7). Hence, the reduction is still to come.

Since the matrices and the differential operators in system (11) commute, we
can substitute

η= (S>1
tS>1 )−1S>1

t c, ξ= (S∗1
tS∗1)−1S∗1

t c,
η̄= (S>2

tS>2 )−1S>2
t c̄, ξ̄= (S∗2

tS∗2)−1S∗2
t c̄.

(12)
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The inversion of relation (12) reads

c = S∗
1ξ+S>

1 η,
c̄ = S∗

2 ξ̄+S>
2 η̄.

(13)

The vectors (ξ, η) ∈ IRI , (ξ̄, η̄) ∈ IRĪ are representations of the vectors c, c̄, re-
spectively, with respect to another basis. ξ and η are linear combinations of only
mobile species, and ξ̄, η̄ are linear combinations of only immobile species.

System (11) becomes

θ ∂
∂t η + Lη = 0 (I − J1 eqs.)

∂
∂t η̄ = 0 (Ī − J2 eqs.)

θ ∂
∂t ξ + Lξ = A1 R

(
S∗1ξ+S>1 η
S∗2ξ̄+S>2 η̄

)
(J1 eqs.)

∂
∂t ξ̄ = A2 R

(
S∗1ξ+S>1 η
S∗2ξ̄+S>2 η̄

)
(J2 eqs.).

(14)

The advantage of (14) compared to other possible formulations is that the ’reaction
invariants’, i.e., the equations for the components η and η̄ are decoupled from the
equations for ξ, ξ̄. This is caused by the fact that our components η, η̄ do not
consist of mixed linear combinations of mobile and immobile species. Note that
the decoupled equations for η are linear and scalar which makes their solution
rather fast. The components η̄ are even constant throughout the whole simulation.
The evolution of both of these quantities is completely determined by the initial and
boundary values for c, c̄ and is independent of the reactions. The ξ, ξ̄ differ from
the classical definition of ’reaction extents’ (Prigogine and Defay [1954], Friedly
[1991], Friedly and Rubin [1992]), since on the right hand sides of the corresponding
equations, linear combinations of reaction rates occur.

The number of remaining coupled nonlinear equations for representation (14)
is J1 + J2. If all reactions are kinetic, then the formulation (14) could directly be
used for simulation. However, it is possible to further reduce the system size: After
discretization in time, the last block in (14) consists of local algebraic equations for
ξ̄. These equations can be solved for ξ̄ and substituted in the right hand side of
the third block in (14). This reduces the number of remaining coupled nonlinear
PDEs to J1.

If some of the reactions are assumed to be at equilibrium (formulation (7)
together with (4)), then formulation (14) cannot be used directly. It is necessary
to eliminate the equilibrium rates Req from the system (14) and use the remaining
equations together with the equilibrium conditions (4). The way to eliminate the
equilibrium reactions from the system (14) such that the component equations for
η, η̄ remain decoupled will be motivated by an example in the following section.
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3.2 The further treatment for an example problem including equi-
librium sorption

Let us consider the chemical reaction network

2X1
R1←→ X2, X2 + X3

R2←→ X4, X4
R3←→ X5 (15)

consisting of 3 mobile species X1, X2, X3 and 2 immobile species X4, X5 and 3
chemical reactions R1, R2, R3. The corresponding nonlinear system of PDEs reads

θċ1 + Lc1 = −2R1(c1, c2)
θċ2 + Lc2 = R1(c1, c2)−R2(c1, c2, c4)
θċ3 + Lc3 = −R2(c2, c3, c4)
ċ4 = R2(c2, c3, c4)−R3(c2, c4, c5)
ċ5 = R3(c2, c4, c5)

(16)

Let us apply the algorithm of Section 3.1 to (15)/(16): The stoichiometric matrix
reads

S =

(
S1

S2

)
=


−2 0 0

1 −1 0
0 −1 0
0 1 −1
0 0 1

 ,

The extraction of the linearly independent columns yields

S∗1 =

 −2 0
1 −1
0 −1

 , S∗2 =

(
1 −1
0 1

)
,

A1 =

(
1 0 0
0 1 0

)
, A2 =

(
0 1 0
0 0 1

)
,

and for the orthogonal complement of S∗1 we choose

S>1 =

 1/2
1
−1

 ,

and S>2 = () is the empty matrix. Hence, the algorithm of section 3.1 yields the
system

(θ ∂
∂t + L) η1 = 0

(θ ∂
∂t + L) ξ1 = R1

(θ ∂
∂t + L) ξ2 = R2

∂
∂t ξ̄1 = R2
∂
∂t ξ̄2 = R3

(17)
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where (
ξ1

ξ2

)
=

1
9

(
−4 1 −1
−2 −4 −5

) c1

c2

c3

 ,

η1 =
4
9

(
1
2

1 −1
)  c1

c2

c3

 ,

(
ξ1

ξ2

)
=

(
1 1
0 1

)(
c4

c5

)

Equation (17) corresponds to the general form (14).
Let us analyse (17) with respect to the case that reactions can be at equilibrium.

In this case, our goal is a formulation in which every equilibrium reaction occurs
only in one equation, and where in each equation, there is at most one equilibrium
reaction term. After that we can replace the corresponding PDE or ODE by the
corresponding algebraic equilibrium condition (4). If R1 or R3 is at equilibrium in
(17), then we can immediatly proceed like this. If R2 is at equilibrium, then we
first have to replace the third or the fourth line in (17) by the difference of these
two equations:

(θ ∂
∂t + L)η1 = 0

∂
∂t(θξ2 − ξ̄1) + Lξ2 = 0

(θ ∂
∂t + L)ξ1 = R1

∂
∂t ξ̄1 = R2
∂
∂t ξ̄2 = R3

(18)

In this formulation, an arbitrary subset of the three reactions can be assumed to
be at equilibrium, since we can replace the specific PDEs/ODEs from (18) by the
corresponding algebraic equilibrium conditions Qj = 0.

Analysis of this example problem shows under which assumptions we can gen-
eralize the proceeding: Reactions R1 and R3 are homogeneous; they only occur in
exactly one of the two blocks (16). Therefore they occur only in one of the blocks
of the system (17). Due to the special structure of A1,A2, which consist of unit
vector columns and zero columns (this is a consequence of the fact that S1,S2

consist of linear independent and zero vectors), they occur only once in the whole
system. However, reaction R2 is heterogeneous, hence, it occurs in both blocks of
(16) and therefore occurs in both blocks of the system (17). Again, thanks to the
structure of A1,A2, the heterogeneous reaction occurs exactly in one equation of
each block of the system (17). By taking the difference of these two equations, as
it was done in (18), one occurence of R2 can be eliminated.

So what we need to apply the method used for this example, is basically that
those columns of A1 and A2 that correspond to equilibrium reactions, are certain
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unit vectors or zero columns. For this, we need that S1
eq and S2

eq consist of lin-
early independent columns plus possibly some zero columns; see section 3.3 for the
details.

3.3 The general algorithm capable of handling heterogeneous equi-
librium reactions

Let us sort the vector of equilibrium reactions in the following way: We start
with those equilibrium reactions whose participants are all mobile, then we take
the heterogeneous equilibrium reactions (i.e., those having participants both in the
mobile and in the immobile phase) and at last those equilibrium reactions in the
immobile phase:

Req = (Rmob,Rsorp,Rimmo),

R = (Req,Rneq) = (Rmob,Rsorp,Rimmo,Rneq)

Note the slight abuse of notation, since Rsorp not only contains equilibrium sorp-
tion reactions, but arbitrary equilibrium reactions between mobile and immobile
species. For the kinetic reactions Rneq, no special order is required. The size of the
subvectors is Jmob, Jsorp, Jimmo, Jneq; Jmob + Jsorp + Jimmo = Jeq, Jeq + Jneq = J .
Due to this order, the stoichiometric matrix has the following shape:

S =

(
S1

S2

)
=
(

Seq Sneq

)
=

(
S1

eq S1
neq

S2
eq S2

neq

)

=

(
S1

mob S1
sorp 0 S1

neq

0 S2
sorp S2

immo S2
neq

)
(19)

Note that for representation (19) we made no assumptions on the stoichiometry;
every reactive system has such a representation. A usual assumption on the sto-
ichiometric matrix is that all the columns of S are linearly independent. What
we require is that at least the columns of the equilibrium part Seq are linearly

independent. Hence, also the columns in S1
mob, in S2

immo and in

(
S1

sorp

S2
sorp

)
are

linearly independent.
As an additional requirement, motivated by the example in section 3.2, we

postulate that both the columns in (S1
mob|S1

sorp) and in (S2
sorp|S2

immo) are linearly
independent, i.e.,

rank(S1
mob |S1

sorp) = Jmob + Jsorp and
rank(S2

sorp |S2
immo) = Jsorp + Jimmo.

(20)

This condition is not met for arbitrary stoichiometric matrices (19), but in section 4
we will show that without loss of generality, each chemical system can be formulated
in a way fulfilling condition (20).
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As a consequence of (20), we can choose a maximum set of linearly independent
columns from S1 containing (S1

mob|S1
sorp), and a maximum set of linearly indepen-

dent columns from S2 containing (S2
sorp|S2

immo). As in section 3.1, we denote these
matrices by S∗1,S∗2 again. We get the block structure

S∗1 = (S1
mob |S1

sorp |S1′
neq),

S∗2 = (S2
sorp |S2

immo |S2′
neq),

(21)

where S1′
neq,S2′

neq consist of columns taken from S1
neq,S2

neq, respectively, such that
S∗1,S∗2 consist of a maximal set of linear independent columns of S1,S2. Let
J1′

neq, J
2′
neq be the number of columns of S1′

neq,S2′
neq.

The selection process is described by (9), where A1,A2 have, thanks to (20)
and (21), the block structure

A1 =

 IdJmob
0 0 A1

mob

0 IdJsorp 0 A1
sorp

0 0 0 A1
neq

 , (22)

A2 =

 0 IdJsorp 0 A2
sorp

0 0 IdJimmo
A2

immo

0 0 0 A2
neq

 , (23)

and where Idn is the n×n identity matrix. Exactly as in (9)-(14) we define S>1 ,S>2 ,
multiply the two blocks of the given system (2) by the matrices (10) and substitute
c, c̄ by the new variables η, ξ, η̄, ξ̄. Additionally we introduce the splitting into
subvectors

ξ = (ξmob, ξsorp, ξneq), ξ = (ξsorp, ξimmo, ξneq)

of size Jmob, Jsorp, J
1′
neq; Jsorp, Jimmo, J

2′
neq, and we make use of the block structure

(22), (23). We get:

(i) (θ ∂
∂t + L) η = 0

(ii) ∂
∂t η = 0

(iii) (θ ∂
∂t + L) ξmob = Rmob+ A1

mob Rneq(c, c)
(iv) (θ ∂

∂t + L) ξsorp = Rsorp+ A1
sorp Rneq(c, c)

(v) (θ ∂
∂t + L) ξneq = A1

neq Rneq(c, c)

(vi) ∂
∂t ξsorp = Rsorp+ A2

sorp Rneq(c, c)
(vii) ∂

∂t ξimmo = Rimmo+ A2
immoRneq(c, c)

(viii) ∂
∂t ξneq = A2

neq Rneq(c, c)

(24)

This formulation corresponds completely to the representation (14); the only dif-
ference is that we used the block structure of S,A1,A2. Formulation (24) also
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corresponds to formulation (17) of the example problem: Those equilibrium rates
which involve only mobile species or only immobile species (Rmob,Rimmo) oc-
cur exactly once, and the heterogeneous equilibrium reactions Rsorp occur exactly
twice. The assumption (20) was necessary to guarantee these properties. The
kinetic reaction rates Rneq can occur multiple times.

As in the example of Section 3.2, we have to eliminate one occurence of Rsorp

by taking the difference of block (iv) and block (vi) in (24):

(i) (θ ∂
∂t + L) η = 0

(ii) ∂
∂t η = 0

(iii) (θ ∂
∂t + L) ξmob = Rmob+ A1

mob Rneq(c, c)
(iv)-(vi) ∂

∂t(θξsorp−ξ̄sorp)+Lξsorp = Asorp Rneq(c, c)
(v) (θ ∂

∂t + L) ξneq = A1
neq Rneq(c, c)

(vi) ∂
∂t ξsorp = Rsorp+ A2

sorp Rneq(c, c)
(vii) ∂

∂t ξimmo = Rimmo+ A2
immo Rneq(c, c)

(viii) ∂
∂t

ξneq = A2
neq Rneq(c, c),

(25)

where we have set Asorp := A1
sorp −A2

sorp. Now, since all equilibrium reactions
(Rmob,Rsorp,Rimmo) = Req occur exactly once, we can replace blocks (iii), (vi),
(vii) by the AEs (4) describing the equilibrium.

(i’) (θ ∂
∂t + L) η = 0 (I−J1 eqs.)

(ii’) ∂
∂t η = 0 (Ī−J2 eqs.)

(iii’) Qeq(c, c̄) = 0 (Jeq eqs.)
(iv’) ∂

∂t ξneq = A2
neq Rneq(c, c) (J2′

neq eqs.)

(v’) ∂
∂t(θξsorp−ξ̄sorp) + Lξsorp

= AsorpRneq(c, c) (Jsorp eqs.)
(vi’) (θ ∂

∂t + L) ξneq = A1
neq Rneq(c, c) (J1′

neq eqs.)

(26)

The system is closed (see (13)) by

c = S∗1ξ+S>1 η

= S1
mobξmob+S1

sorpξsorp+S1′
neqξneq+S>1 η,

c = S∗2ξ+S>2 η

= S2
sorpξsorp+S2

immoξimmo+S2′
neqξneq+S>2 η. (27)

The system (26) consists of the decoupled linear problems (i’) for η, a block of
’local’ problems (iii’), (iv’), and a system of PDEs (v’), (vi’). The character of
equation (v’) is that of a ’generalized equilibrium sorption process’. As the next
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sections shows, the blocks of local equations (iii’), (iv’) can be solved for the un-
knowns ξmob, ξ̄sorp, ξ̄immo and ξ̄neq (or for ξmob, ξsorp, ξ̄immo, ξ̄neq), and sub-
stituted into the remaining PDEs in the sense of a DSA. Note that (different from
the scheme arising from the method by Friedly and Rubin [1992], if considered
as a GIA with DSA technique), the introduction of the resolution functions for
ξmob, ξ̄sorp, ξ̄immo, ξ̄neq in (v’), (vi’) does not take place under the transport
operator. Hence the sparsity pattern for the linear problems arising from the dis-
cretization of (26) is more convenient for efficient numerical solution with iterative
linear solvers. See Kräutle and Knabner [2005, sec. 3.4] for a more detailed discus-
sion of the sparsity pattern.

After the local equations (iii’), (iv’) are substituted into (v’), (vi’), the size of
remaining coupled nonlinear equations (v’), (vi’) is Jsorp + J1′

neq, which is less than
or equal to Jsorp + Jneq, which is again less than or equal to the total number of
reactions J , and J is less than or equal to I + Ī, which is the number of unknowns
in the original problem (1)/(2). The number of homogeneous equilibrium reactions
(Jmob, Jimmo) does not influence the size of the resulting system. See also section 5
for a comparison of our reduction scheme to classical formulations and to Molins
et al. [2004].

3.4 The implicit elimination process

In this section, the solvability of the blocks of local equations in scheme (26) is
discussed under rather general assumptions.
Theorem. Let assumption (20) hold and let there be a positive lower bound for
all concentrations ci, c̄i, uniform for all points x of the computational domain.

(a)

(a1) If the equilibrium reactions (iii’) are governed by the mass action law
(5)/(8), then there is a local resolution function for ξmob, ξ̄sorp, ξ̄immo

(depending on ξsorp, ξneq, ξ̄neq).

(a2) Let the derivatives ∂Rj

∂ci
,

∂Rj

∂c̄i
exist and are bounded all over the com-

putational domain for all species ci, c̄i and all kinetic reactions Rj ,
j = Jeq + 1, ..., J . If block (iv’) is discretized with the implicit Eu-
ler method and if the timestep size ∆t is sufficiently small (or if the
explicit Euler method is used and ∆t > 0 is arbitrary), then there
is a local resolution function of this block for ξ̄neq (depending on
ξmob, ξsorp, ξneq, ξ̄sorp, ξ̄immo).

(a3) Under the assumptions of (a1) and (a2), there is a local resolution
function of block (iii’), (iv’) for ξmob, ξ̄sorp, ξ̄immo, ξ̄neq (depending
on ξsorp, ξneq).

(b) The assertion (a1)-(a3) is also true if we exchange ξsorp and ξ̄sorp in (a).
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Proof: See appendix.
Note that the choice to solve (iii’) for ξmob, ξ̄sorp, ξ̄immo (or for

ξmob, ξsorp, ξ̄immo) corresponds to the segregation of the so-called secondary de-
pendent variables from the primary ones. So for our method, this segregation is
not done for the original unknowns ci, c̄i, as it is done, e.g., by Lichtner [1996], and
by most of the authors cited in section 1, but for the new unknowns ξi, ξ̄i.

Let us mention that it is possible to show that under the assumptions of the
theorem, the system of differential equations we get after substitution of the local
variables is parabolic and does not degenerate.

3.5 Newton’s method for the reduced system

Each time step for our reduced system (26) consists of the following steps:
First we perform the time step for the linear scalar decoupled equations for

η. Then we perform a Newton or Newton-like iteration for the nonlinear problem
consisting of equations (v’), (vi’) for the variables ξsorp and ξneq. We refer to these
variables as ’global’ variables, since they are coupled by a system of PDEs. The
variables ξmob, ξ̄sorp, ξ̄immo, ξ̄neq are considered to be substituted in (v’), (vi’)
by solving (iii’), (iv’) for these variables. It is not necessary (and also not realistic)
that we find the resolution function of (iii’), (iv’) explicitely; it is sufficient that we
can evaluate the residuals of (v’), (vi’) and compute the Jacobian for the reduced
problem. Notice that the Newton step for (v’), (vi’) only gives an update for
the global variables. In order to get an update for the remaining so-called ’local’
variables, which is necessary to evaluate the residuals and the Jacobian, we have to
perform a nested Newton iteration for problem (iii’), (iv’) with fixed values of the
global variables. This nested problem consists of small local decoupled problems for
the different nodes or control volumes of the computational domain. Numerical test
runs confirm that the costs for solving these local problems are negligible compared
to the cpu time for the global problem.

3.6 Non-ideal activities and minerals

The assumption of ideal activities in (5) was only required for the proof of the
theorem in section 3.4. However, also if non-ideal activities are assumed, the reso-
lution function exists most likely – only the proof does not cover this case. If the
assertion of the theorem is desired also in the case of non-ideal activities of aqueous
species, one could make the approximation that during one time step, the activity
coefficients remain constant. This leads to a formulation of the equilibrium condi-
tions again depending on the concentrations instead of the activities like equation
(8), but now, with different equilibrium constants K incorporating the activity
coefficients of the species. By this, the assertion of the theorem holds valid.
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If reactions with minerals are considered, for the mineral species usually con-
stant activity is assumed. For species with constant activity, the remarks made in
Kräutle and Knabner [2005, sec. 4.4] apply, i.e., these mineral species can be elim-
inated a priori, and the reduction algorithm is applicable, as long as no mineral
reaches zero concentration (no complete dissolution).

If a system is considered where complete dissolution of minerals is possible,
then the transformation of the problem into the decoupled formulation (26) is still
valid. However, the further reduction of section 3.4 cannot be guaranteed, since
the equilibrium conditions with minerals have a more complicated structure than
(5). For example, the equilibrium condition corresponding to reaction R2 in (15),
with X̄4 assumed to be a mineral, can be written as

(K2 − c2c3) · c̄4 = 0, K2 − c2c3 ≥ 0, c̄4 ≥ 0, (28)

which is called a complementarity condition, and which cannot be solved for one of
the variables. One well-known possibility to handle the case of vanishing minerals
is to formulate the given problem as a moving boundary value problem (MBVP)
(Lichtner [1985]), the moving boundaries separating the saturated and the under-
saturated subdomain. The formalism of MBVP assumes that on subdomains where
a certain mineral concentration c̄i is zero, the corresponding mineral reaction rate
Rj is zero, i.e., the corresponding column and row of the stoichiometric matrix
can be dropped on that subdomain. On subdomains where the mineral concentra-
tion c̄i is greater than zero, a simple algebraic condition describes the equilibrium.
This condition, as well as all the other reactions, are independent of the mineral
concentration, so that the ODE for the mineral concentration is decoupled from
the computation of the nonmineral concentrations, and the update of the mineral
concentration can be computed a posteriori from the update of the nonmineral
concentrations. This procedure leads to slightly different stoichiometric matrices
describing the nonlinear problem on the different subdomains, all being submatrices
of S. It is possible to perform the transformation of section 3.3 on each subdomain
separately using on each subdomain the specific stoichiometric matrix. A different
rather new approach would be to use the complementarity representation of the
mineral reactions (28), which is valid on the whole domain, instead of the MBVP,
and to perform the transformation of section 3.3 on the whole domain with the
complete given stoichiometric matrix S, and to apply numerical solution methods
to the resulting system of differential equations coupled to the complementarity
conditions without applying the substitution of section 3.4 for the mineral reac-
tions. Such numerical solution methods for complementarity problems are known
from the mathematical optimization theory, for example the interior point method,
which was applied by Saaf [1996] to a problem on porous media.
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4 Reduction for arbitrary stoichiometric systems

In section 3.3 the assumption (20) on the equilibrium reactions was made in order
to guarantee the applicability of the reduction algorithm. The condition was used

(a) to derive representation (24) such that the generalized sorption formulation
(25)/(26) could be derived and

(b) to guarantee the solvability of the equilibrium conditions (iii’) in (26) (see
proof of the theorem part (i) in the appendix).

In this section we will show that every reactive system can be formulated in such
a way that condition (20) is met. We will see that two simple preprocessing steps
for the given problem are sufficient.

For the following, let us consider an arbitrarily given stoichiometric matrix.
Without loss of generality we can assume that at least the equilibrium reactions
(i.e., the columns of Seq) are linearly independent.

4.1 Preprocessing step I

Let us consider an example problem with 6 species X1, X2, X3, X̄4, X̄5, X̄6 and the
following Jeq = Jsorp = 4 heterogeneous equilibrium reactions R1-R4:

X2
R1←→ X1 + X̄6, X̄5

R2←→ X3 + 3X̄6,

X3 + X̄6
R3←→ 2X̄4, X2

R4←→ X1 + X̄5

The corresponding stoichiometric matrix is

Seq =

(
S1

eq

S2
eq

)
=



1 0 0 1
−1 0 0 −1

0 1 −1 0
0 0 2 0
0 −1 0 1
1 3 −1 0


(29)

Clearly, both the columns of
(

S1
mob S1

sorp

)
= S1

eq and the columns of(
S2

sorp S2
immo

)
= S2

eq are linearly dependent, though the columns of Seq are
linearly independent; condition (20) is not met.

The preprocessing step I now consists of a Gaussian (row-based) elimination
for Seq

t (or, equivalently, a column-based Gaussian elimination for Seq):

Seq
t =


1 −1 0 0 0 1
0 0 1 0 −1 3
0 0 −1 2 0 −1
1 −1 0 0 1 0
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−→


1
0
0
0

−1
0
0
0

0
1
0
0

∣∣∣∣∣∣∣∣∣∣
0
0
1
0

0
0
0
1

1
2
1
2
−1


After transposition we get the following matrix, which will, to keep the notation

simple, be denoted by Seq again:

Seq =



1 0 0 0
−1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1
1 2 1

2 −1


(30)

The Gaussian elimination does not modify the stoichiometry: An addition of two
columns of Seq corresponds, for example, to the multiplication of one equilibrium
condition in (5) by another. Note that the same effect is used when stoichiometric
matrices are transformed to the so-called canonical form, Lichtner [1985]. However,
the reason for such a transformation when using the canonical form is, different
from ours, the desire to write the local equations as explicit resolution functions
for the secondary variables.

Since all Jeq columns of the given matrix (29) are linearly independent, the
resulting matrix (30) contains Jeq rows which equal the Jeq unit vectors in IRJeq .
Each column in matrix (30) contains exactly one of the unities (printed in bold
fonts). Each column in the upper part S1

eq of matrix (30) contains either a unity
or is completely zero. From this representation it is clear that we can write (30) as

Seq =

(
S1

mob S1
sorp 0

0 S2
sorp S2

immo

)
(31)

such that all columns in submatrix (S1
mob|S1

sorp) are linearly independent, i.e.,

rank
(

S1
mob S1

sorp

)
= Jmob + Jsorp (32)

(in the example (30), Jmob = 0, Jsorp = 2, Jimmo = 2). The columns in S2
immo are

also linearly independent, since all columns in

(
0

S2
immo

)
are linearly independent.

Note that for the example of this section (matrix (30)) the stronger condition
(20) is still not met after the preprocessing.
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4.2 Preprocessing step II

Let us consider a matrix of type (31) with linearly independent columns which ful-
fills (32). We will transform it into a matrix fulfilling (20) using column operations:

Let us denote the columns of Seq,S1
eq,S2

eq by sj , s
1
j , s

2
j , j = 1, ..., Jeq, respec-

tively. Hence, sj =

(
s1
j

s2
j

)
. Suppose the columns in

(
S2

sorp|S2
immo

)
are linearly

dependent. Then there is a linear combination
Jeq∑

j=Jmob+1
αjs

2
j = 0 where at least

one αj0 6= 0. Since the columns of S2
immo are linearly independent, the column j0

can be chosen among the S2
sorp columns, i.e., Jmob+1≤j0≤Jmob+Jsorp. Since

s2
j0 = − 1

αj0

Jeq∑
j=Jmob+1

j 6=j0

αjs
2
j ,

the addition of

− 1
αj0

Jeq∑
j=Jmob+1

j 6=j0

αj

(
s1
j

s2
j

)

to column sj0 =

(
s1
j0

s2
j0

)
cancels vector s2

j0
, leaving us with a matrix with Jmob

increased by one and Jsorp decreased by one. Obviously the property (32) remains
unaffected by this addition.

The process is repeated until the columns of
(
S2

sorp|S2
immo

)
are linearly inde-

pendent.
Returning to our example (30) with Jmob = 0, Jsorp = 2, Jimmo = 2, we

may choose j0 = 1 and add −1/2 times column 2 to column 1, and get the new
stoichiometric matrix, which is again denoted by Seq,

Seq =



1 0 0 0
−1 0 0 0
−1

2 1 0 0
0 0 1 0
0 0 0 1
0 2 1

2 −1


(33)

with Jmob = 1, Jsorp = 1, Jimmo = 2.
Note that the preprocessing does not affect the reaction invariants, since the

orthogonal complement of the space generated by the columns of of the upper/lower
parts of the representations (29), (30), (33) is clearly the same.
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5 Application of the reduction scheme and comparison
to previous methods

In this section we demonstrate the application of the reduction scheme of sec-
tion 3 to an example problem and we compare the procedure and the number
of resulting equations with other methods. Since the concept of this paper is to
investigate decoupling techniques which do not require splitting techniques, we
consider other available methods only insofar as they do not apply some opera-
tor splitting. Furthermore, we consider problems with mixed kinetic/equilibrium
reactions and mobile/immobile species. We consider an example without mineral
reactions, i.e., all heterogeneous reactions are sorption reactions. The reasons for
this choice are twofold: Problems with minerals where full dissolution of minerals
never occurs would not be very challenging for our decoupling method, since the
mineral amounts do not affect the mobile species concentrations, i.e., the ODEs can
be dropped and the structure of the system simplifies strongly. If problems with
minerals are considered where complete dissolution of minerals takes place, some
extension of the solution algorithm is necessary (see section 3.6), and the analysis
of the efficiency of the method becomes more complicated.

As an example may serve the problem with I + Ī = 10 species c :=
(c1, c2, c3, c4, c5, c6, c̄7, c8, c9, c̄10)t, three equilibrium reactions Req = (R1, R2, R3)t

and two kinetic reactions Rneq = (R4, R5)t with the stoichiometric matrix

S = (Seq|Sneq) =



0 1 0 0.5 1
0 1 3 −0.5 −1
0 0 0 0.25 −3.5
1 0 0 0 2
1 0 0 1 1
0 0 1 −1 0
0 0 0 0 −1
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0


. (34)

Note that for the moment we do not seperate mobile from immobile species. The
system of ODEs/ODEs can be written

∂

∂t
M1c + LM2c = SeqReq + SneqRneq(c), (35)

where M1 is a diagonal matrix with diagonal entries θ for mobile and 1 for im-
mobile species, and M2 is a diagonal matrix with entries 1 for mobile and 0 for
immobile species. Besides these differential equations, the equilibrium conditions
Req

t ln c = K holds (see (8)). Note that this example corresponds, concerning sto-
ichiometry and mobility of species, to the example in Molins et al. [2004]; however,
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as mentioned, we consider the heterogeneous reactions to be sorption reactions in-
stead of mineral precipitation/dissolution. Let us start with the demonstration of
’standard’ methods to the example.

5.1 Reformulation by classical approaches

The basic idea for classical methods is to eliminate the unknown equilibrium rates
Req from the system. There are several ways to achieve this. One possibility is
(see, e.g., Lichtner [1996]) to solve the Jeq algebraic equations for certain variables
(the so-called secondary variables), e.g.,

c8 = K1c4c5, c9 = K2c1c2, c̄10 = K3c
3
2c6, (36)

and then to solve Jeq = 3 differential equations from the system (35) for the Jeq

equilibrium rates R1, R2, R3. In our case, we have to take the three differential
equations for the secondary species c8, c9, c̄10 from (35) and get

R1 = − ∂

∂t
(θc8)− Lc8, R2 = − ∂

∂t
(θc9)− Lc9, R3 = − ∂

∂t
c̄10.

The choice of secondary species is rather arbitrary; however, the corresponding
part of Seq has to be invertible.

The expressions for R1, R2, R3 can be substituted in the remaining I+Ī−Jeq = 7
differential equations from (35). We get

∂
∂t

(θc1 + θc9) +L(c1 + c9) = 0.5R4 + R5,
∂
∂t

(θc2 + θc9 + 3c̄10) +L(c2 + c9) = −0.5R4 −R5,
∂
∂t

θc3 +L c3 = 0.25R4 − 3.5R5,
∂
∂t

(θc4 + θc8) +L(c4 + c8) = 2R5,
∂
∂t

(θc5 + θc8) +L(c5 + c8) = R4 + R5,
∂
∂t

(θc6 + c̄10) +L c6 = −R4,
∂
∂t

c̄7 = −R5

(37)

The remaining system consists of I + Ī − Jeq = 7 PDEs/ODEs and the Jeq = 3
AEs (36). The AEs could be substituted into the differential equations leaving us
with 7 coupled PDEs.

Another possibility to derive such a system where Req is eliminated is to mul-
tiply (35) by a matrix Ueq

t where Ueq is a (I + Ī)× (I + Ī−Jeq) matrix consisting
of a maximal system of columns which are orthogonal to the columns of Seq, i.e.,
Ueq = Seq

> in the notation of the previous sections. This technique is applied
in Molins et al. [2004] as a first step of the transformation, and this matrix is
called component matrix. Since Ueq

tSeq = 0, the multiplication of (35) by Ueq
t



5.1 Reformulation by classical approaches 21

eliminates the equilibrium reaction term in (35). If we chose for example

Ueq =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 1 0 0
1 1 0 0 0 0 0
0 3 0 0 0 1 0


,

(Ueq is not unique) then the multiplication yields (37). A third (equivalent) way to
achive this structure is to take linear combinations of the equations of (35) in such
a way that R1, R2, R3 are eliminated from 7 equations (Steefel and MacQuarrie
[1996]).

Note that these classical transformations only eliminate Req; they do not lead
to any decoupling of differential equations. Several authors note that it is possible
to remove also the kinetic rate terms from I + Ī − J = 5 of the I + Ī − Jeq = 7
equations. There are again several possibilities to achieve this goal. One possibility
is to take linear combinations among the equations of (37) such that R4, R5 are
eliminated from I + Ī − J = 5 differential equations. Since the right-hand side
of (37) reads Ueq

tSneqRneq(c), a more instructive way to achive the goal is to
multiply (37) by a matrix Uneq

t, where Uneq consists of I + Ī − J columns which
are orthogonal to the Jneq columns of matrix Ueq

tSneq. For the choice

Uneq =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0.5 −0.5 0.25 0 1
1 −1 −3.5 2 1


we get the first I + Ī − J = 5 equations of the system

∂
∂t

(θ(c1+0.5c6+c9)+c̄7+0.5c̄10) +L(c1+0.5c6+c9) = 0
∂
∂t

(θ(c2−0.5c6+c9)−c̄7+2.5c̄10) +L(c2−0.5c6+c9) = 0
∂
∂t

(θ(c3+0.25c6)−3.5c̄7+0.25c̄10) +L(c3 + 0.25c6) = 0
∂
∂t

(θ(c4 + c8) + 2c̄7) +L(c4 + c8) = 0
∂
∂t

(θ(c5 + c6 + c8) + c̄7 + c̄10) +L(c5 + c6 + c8) = 0
∂
∂t

(θc6 + c̄10) +L c6 = −R4
∂
∂t

c̄7 = −R5

(38)

Another way to find the conservative equations being void of any reaction term
(called component equations) is to multiply the given system (35) directly by a
matrix Et where E consists of I + Ī − J = 5 columns that are orthogonal to all
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of the J = 5 columns of S. The resulting system consists of a coupled system of
I + Ī−J component equations (PDEs), Jneq PDEs with kinetic rates (38), and Jeq

AEs (36). Such a structure is also derived in Steefel and MacQuarrie [1996].
One can either use (38) together with (36) for numerical simulation, or one can

substitute (36) into (38) for simulation. Note that still no decoupling is achieved. A
decoupling is possible if all species occuring in the component equations are either
mobile or immobile. Then, the introduction of new variables η1, ..., ηI+Ī−J in the
first I + Ī −J equations of (38) leads to I + Ī −J linear scalar transport equations
for the ηi. After a time step for the ηi is done, the linear algebraic equations
which were used to define the ηi can be solved for certain ci, and these ci can be
eliminated in the remaining problem consisting of the last Jneq = 2 equations of
(38) and the nonlinear algebraic equations (36). However, in most situations, as in
our example, the component equations will contain a combination of mobile and
immobile species which results in different linear combinations of species in the
time derivatives and in the flux terms, which seems to prevent the introduction of
the ηi and the decoupling.

5.2 Reformulation by a newer approach

Let us consider the method by Molins et al. [2004]. The authors require that the
stoichiometric matrix has the shape

S = (Seq|Sneq) =

 S11 S12

S21 −IdJneq

−IdJeq 0

 , (39)

and that all immobile species correspond to rows in the second and in the third
block of rows of S, and that, if immobile species correspond to rows in the second
block of rows, these rows have only zero entries in S21; i.e., each reaction con-
tains at most one immobile species. Our example problem (34) has already this
structure. The authors also perform the multiplication of (35) by Ueq

t and then
by Uneq

t and get formulation (38). Then, they eliminate those immobile species
which correspond to the second block of rows in (39) (this is only c̄7 in our example
(34)) from the component equations in (38). This is done by multiplication of (38)
by a certain matrix Ft which reads

Ft =



1 0 0 0 −1 0 0
0 1 0 0 1 0 0
0 0 1 0 3.5 0 0
0 0 0 1 −2 0 0
0 0 0 0 1 0 −1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
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The entries in the senventh column are chosen such that c̄7 vanishes from the
component equations; the resulting system reads

∂
∂t

(θ(c1 − c5 − 0.5c6 − c8 + c9)− 0.5c̄10)
+L(c1 − c5 − 0.5c6 − c8 + c9) = 0

∂
∂t

(θ(c2 + c5 + 0.5c6 + c8 + c9) + 3.5c̄10)
+L(c2 + c5 + 0.5c6 + c8 + c9) = 0

∂
∂t

(θ(c3 + 3.5c5 + 3.75c6 + 3.5c8) + 3.75c̄10)
+L(c3+3.5c5+3.75c6+3.5c8) = 0

∂
∂t

(θ(c4 − 2c5 − 2c6 − c8)− 2c̄10)
+L(c4 − 2c5 − 2c6 − c8) = 0

∂
∂t

(θ(c5 + c6 + c8) + c̄10) +L(c5 + c6 + c8) = R5
∂
∂t

(θc6 + c̄10) +L c6 = −R4
∂
∂t

c̄7 = −R5

(40)

Furthermore, Molins et al. provide a possibility to eliminate immobile constant
activity species from the component equations in (40) by another multiplication
step. This is a useful step if all the immobile species are constant activity species,
since then component equations with only mobile species are left, which provides
the possibility of introducing new variables ηi and a decoupling of the component
equations. However, this is not the case for c̄10 in our example, so linear combi-
nations of mobile and immobile species remain in the component equation, and a
decoupling only occurs by splitting techniques. For those immobile species that
correspond to rows within the second block in (39), the so-called immobile kinetic
species (c̄7 in our example), ODEs occur in (40). These can, after a time dis-
cretization, be solved for the immobile kinetic species concentrations, so that these
species can be eliminated from the right-hand sides of the PDEs of (40), effectively
reducing the number of coupled PDEs by the number of immobile kinetic species
Nki (=1). Since we want to treat the problem without splitting, we can substitute
the Jeq = 3 AEs (36) into the remaining I + Ī − Jeq − Nki = 6 ODEs. Hence,
the number of remaining PDEs is by one smaller than for the previously discussed
methods. Note that the method by Molins et al. leads to a decoupling of the linear
component equations if all immobile species with non-constant activity correspond
to rows within the second block of (39). This is usually the case if there is no
equilibrium sorption.

5.3 The new decoupling technique of section 3

Now let us apply the new reduction scheme of section 3 to the example. One
main difference of our transformation is that, from the beginning, we distinguish
thorougly between mobile and immobile species. Hence, we start by sorting the
rows of S w.r.t. mobile and immobile species and by renumbering the species
correspondingly. We get the system in the shape (2) with species vector c =
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(c1, ..., c8)t, c̄ = (c̄9, c̄10) and stoichiometric matrix

S =

(
S1

eq S1
neq

S2
eq S2

neq

)
=



0 1 0 0.5 1
0 1 3 −0.5 −1
0 0 0 0.25 −3.5
1 0 0 0 2
1 0 0 1 1
0 0 1 −1 0
−1 0 0 0 0
0 −1 0 0 0

0 0 −1 0 0
0 0 0 0 −1


.

All nonzero columns in S1
eq and in S2

eq are linearly independent; hence the prepro-
cessing of section 4 is not required. We note that all of the J = 5 = J1 columns
of S1 are linearly independent; hence S∗1 = S1, A1 = Id5. Only J2 = 2 columns of
S2 are linearly independent; we get S∗2 = −Id2, A2 = −S2. We choose I − J1 = 3
columns orthogonal to the columns of S1, for example

S>1 =



1 0 0
0 1 0
0 0 1

−0.25 1.75 1.875
−0.5 −2.5 −0.25

0 −3 0
−0.75 −0.75 1.625

1 1 0


.

Before we look at the final system of shape (26), let us consider the intermediate
state (14)/(24), where only within the block of mobile species equations and within
the block of immobile species equations linear combinations were taken. For our
example this formulation reads

∂
∂tθ η1 + Lη1 = 0
∂
∂tθ η2 + Lη2 = 0
∂
∂tθ η3 + Lη3 = 0
∂
∂tθ ξ1 + Lξ1 = R1
∂
∂tθ ξ2 + Lξ2 = R2
∂
∂tθ ξ3 + Lξ3 = R3
∂
∂tθ ξ4 + Lξ4 = R4(c, c̄)
∂
∂tθ ξ5 + Lξ5 = R5(c, c̄)
∂
∂t ξ̄1 = R3
∂
∂t ξ̄2 = R5(c, c̄)

(41)

where the relations between old and new variables, according to (12), (13), are
given in table 1. Also the three AEs corresponding to the three first columns in S
have to be expressed in terms of the new variables.
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If we compare (41) to (38) or (40), we note that our number of component
equations (I − J1 = 3 for the ηi plus Ī − J2 = 0 for the η̄i) is smaller than the
number of component equations (I+Ī−Jeq = 5) of the previous methods. However,
what is more important, is the fact that our component equations decouple from
the rest of the system, which is due to the fact that our component equations do
not combine mobile and immobile species concentrations.

As explained at the end of section 3.1, the formulation (41) is not yet suitable
for numerical simulations, since the equilibrium rates R1, R2, R3 are still present.
That was the reason to perform the transformation of (24) to (25). Formula-
tion (41) corresponds to (24), with Req = (R1, R2, R3)t splitted into Rmob =
(R1, R2)t, Rsorp = R3, and ξ= (ξ1, ..., ξ5)t splitted into ξmob= (ξ1, ξ2)t, ξsorp= ξ3,
ξneq= (ξ4, ξ5)t, and with ξ̄= (ξ̄1, ξ̄2)t splitted into ξ̄sorp= ξ̄1 and ξ̄neq= ξ̄2.The re-
actions Rmob occur exactly once in the system, and the reactions Rsorp occur once
in each of the two blocks. Now we take differences between mobile and immobile
equations in (41) such that in the resulting system, also the Rsorp reactions occur

Table 1: Transformation from the old to the new variables according to (12), (13).

η1 = 0.4769c1−0.0709c2+0.1296c3−0.0003c4−0.0935c5+0.2128c6−0.0938c7+0.4059c8

η2 =−0.0709c1+0.0609c2−0.0380c3+0.0530c4−0.1072c5−0.1826c6−0.0542c7 −0.0101c8

η3 = 0.1296c1−0.0380c2+0.1807c3+0.2400c4−0.0150c5+0.1141c6+0.2250c7 +0.0916c8

ξ1 =−0.0938c1−0.0542c2+0.2250c3+0.3504c4+0.1262c5+0.1627c6−0.5234c7 −0.1480c8

ξ2 = 0.4059c1−0.0101c2+0.0916c3+0.0527c4−0.2007c5+0.0302c6−0.1480c7 −0.6041c8

ξ3 =−0.0726c1+0.3434c2−0.0916c3−0.0527c4+0.2007c5−0.0302c6+0.1480c7 +0.2708c8

ξ4 = 0.1402c1+0.1608c2+0.0224c3−0.2116c4+0.5223c5−0.4824c6+0.3107c7 +0.3010c8

ξ5 = 0.0471c1+0.0006c2−0.2325c3+0.0534c4+0.0330c5−0.0019c6+0.0865c7 +0.0477c8

c1 = ξ2 +0.5ξ4 +ξ5 +η1

c2 = ξ2+3ξ3 −0.5ξ4 −ξ5 +η2

c3 = +0.25ξ4−3.5ξ5 +η3

ξ̄1 = −c̄9 c4 = ξ1 +2ξ5 −0.25η1+1.75η2+1.875η3

ξ̄2 = −c̄10 c5 = ξ1 +ξ4 +ξ5 −0.5η1 −2.5η2 −0.25η3

c6 = +ξ3 −ξ4 −3η2

c7 =−ξ1 −0.75η1−0.75η2+1.625η3

c8 = −ξ2 +η1 +η2
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only once:
∂
∂tθ η1 +Lη1 = 0
∂
∂tθ η2 +Lη2 = 0
∂
∂tθ η3 +Lη3 = 0
∂
∂tθ ξ1 +Lξ1 = R1
∂
∂tθ ξ2 +Lξ2 = R2
∂
∂t(θ ξ3 − ξ̄1) +Lξ3 = 0
∂
∂tθ ξ4 +Lξ4 = R4(c, c̄)
∂
∂tθ ξ5 +Lξ5 = R5(c, c̄)
∂
∂t ξ̄1 = R3
∂
∂t ξ̄2 = R5(c, c̄)

(42)

This formulation corresponds to (25). By this, we have gained one more component
equation; however, this equation will not decouple from the system due to the
combination of mobile and immobile species. The equations with equilibrium rates
R1, R2, R3 in (42) are now replaced by the three algebraic equilibrium conditions.

From the theorem in section 3.4 we know that the three AEs, expressed in terms
of the new variables, together with the ODE for ξ̄neq= ξ̄2 in (42) can be solved
for the variables ξmob, ξ̄sorp, ξ̄neq, i.e., for ξ1, ξ2, ξ̄1, ξ̄2 (our secondary species).
So the equations for the local variables ξmob, ξ̄sorp, ξ̄neq vanish from our global
system (the corresponding equations can be used a posteriori to determine the
equilibrium rates). The resulting formulation consists of the I − J1 = 3 decoupled
linear component equations

∂
∂tθ η1 +Lη1 = 0
∂
∂tθ η2 +Lη2 = 0
∂
∂tθ η3 +Lη3 = 0

(43)

and the Jsorp + J1′
neq = J1 − Jmob = 3 coupled nonlinear PDEs

∂
∂t(θ ξ3 − ξ̄1) +Lξ3 = 0
∂
∂tθ ξ4 +Lξ4 = R4(c, c̄)
∂
∂tθ ξ5 +Lξ5 = R5(c, c̄)

(44)

where c, c̄ are expressed in terms of the new variables according to table 1 and
where ξ1, ξ2, ξ̄1, ξ̄2 are the resolution functions of the Jeq +J2′

neq = 4 local equations.
Comparing this to the formulations by Lichtner [1996], Steefel and MacQuarrie
[1996], Molins et al. [2004], we have about half the number of coupled nonlinear
differential equations (3 instead of 6 or 7). To emphasize the difference to the
canonical formulation or Molins’ formulation, note that three of our four compo-
nent equations in (43)-(44) lack completely immobile and secondary species, thus
decouple.

Besides the smaller number of remaining coupled PDEs, our formulation (43)-
(44) has obviously the property that the only coupling terms between the equations
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occur on the right-hand sides and under the time derivative, but not under the
spatial derivatives. Note that the formulations (38), (40) do contain many coupling
terms under the transport operator after (36) is substituted. As a result, the
number of nonzero entries in the Jacobian for (44) is by far smaller than for (38) or
(40), and this reduces the computation time for the linear solver, at least if iterative
methods are used. This amplifies the cpu time reduction which was achieved by
the smaller number of coupled PDEs. The factor by which the number of nonzero
entries of the Jacobian for (44) is reduced compared to the other formulations
depends on the spatial discretization and the number of space dimensions (1-D, 2-
D, 3-D); a discussion of this question can be found in Knabner and Kräutle [2005],
section 3.4.

The reduction scheme was implemented using the software basis M++ by
Wieners [2004] which provides the possibility of running the code on parallel com-
puters. For the discretization we chose bilinear finite elements with mass lumping
for the mass term and for the reactive terms, and an implicit Euler stepping in time.
The nonlinear timesteps are linearized by a Newton-Armijo method, and the linear
solver is GMinRes(k) with Jacobi preconditioner. Several scenarios including ki-
netic/equilibrium sorption, aqueous complexation, transport and biodegradation,
e.g., the transformation of EDTA considered by Fang et al. [2003], section 6.1,
were simulated. The observations which were made for the preliminary version of
the code in Kräutle and Knabner [2005] concerning the cpu time in essence also
hold for our generalized code. This includes the observation of a cpu time reduc-
tion by factors between two and seven compared to simulations using the initial
formulation (2).

6 Summary and Outlook

We have proposed a new reduction scheme for multicomponent reactive transport
problems, which is able to handle coupled mobile and immobile species and mixed
equilibrium and kinetic reactions. The basic philosophy is to figure out how much
the size of the nonlinear system of differential equations can be reduced without us-
ing splitting techniques (SNIA/SIA) or imposing restrictions on the stoichiometry.

The number of coupled PDEs for the canonical formulation (e.g., Licht-
ner [1996]) is the number of species minus the number of equilibrium reactions
I + Ī − Jeq. For Molins et al. [2004] it is I + Ī − Jeq −Nki if no constant activity
species participate. A further decoupling is only achieved by splitting techniques.

The number of coupled nonlinear PDEs for our reduction scheme lies between
Jsorp and Jsorp + Jneq, where Jsorp is the number of heterogeneous equilibrium
reactions and Jneq is the number of kinetic reactions. For most stoichiometric ex-
amples, the number of remaining PDEs seems to be smaller than that for the other
mentioned formulations; however, there might be counterexamples. Comparisons
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of our GIA in terms of efficiency to methods using splitting techniques were not the
subject of this article; results can be expected to depend strongly on the specific
problem under consideration.

A special property of the new scheme is that even within those equations which
remain coupled, these coupling terms do not occur under the transport operator,
which would cause many nonzero entries in the Jacobian. The sparsity of the system
matrix can be exploited if iterative linear solvers are used, which seems reasonable
at least for problems with fine discretization. Under rather general conditions,
assuming mass action law for the equilibrium reactions, the applicability of the
reduction method and the existence of the resolution functions can be guaranteed.
Application to problems including minerals are possible as long as the mineral
concentrations do not vanish or if techniques like the formulation in terms of a
moving boundary value problem is applied first.

Future work could try to consider the full generalization of the reduction scheme
to situations where there are constant activity species (minerals) with total disso-
lution and precipitation in parts of the computational domain. The transformation
into a formulation corresponding to (26) is still valid in this situation. Generaliza-
tions of our reduction scheme to this case could be achieved either by formulations
of a moving boundary problem or by the formulation as a complementarity system
(see section 3.6). The algorithmic details of these generalizations require a detailed
investigation in the future.

Appendix

Proof of the theorem, part (a).
(i) We have to check that

Q̂eq(ξmob, ξ̄sorp, ξ̄immo, ξsorp, ξneq, ξ̄neq)

= Seq
t ln

(
c
c̄

)
−K = 0 (45)

with c, c̄ given by (27) has a resolution function

(ξsorp, ξneq, ξ̄neq) 7→ (ξmob, ξ̄sorp, ξ̄immo). (46)
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Due to the implicit function theorem we have to verify that the matrix
∂Q̂eq/∂(ξmob, ξsorp, ξimmo) is invertible. We compute the block matrix

∂Q̂eq

∂(ξmob,ξsorp,ξimmo)

=
(

S1
eq

tDcS1
mob S2

eq
tDcS2

sorp S2
eq

tDcS2
immo

)

=


S1

mob
tDcS1

mob 0 0

S1
sorp

tDcS1
mob S2

sorp
tDcS2

sorp S2
sorp

tDcS2
immo

0 S2
immo

tDcS2
sorp S2

immo
tDcS2

immo


(47)

where Dc, Dc̄ are the diagonal matrices

Dc =

 1/c1 0
. . .

0 1/cI

 , Dc =


1/cI+1 0

. . .
0 1/cI+I

.

The lower right block in (47) can be simplified:(
S2

sorp
tDcS2

sorp S2
sorp

tDcS2
immo

S2
immo

tDcS2
sorp S2

immo
tDcS2

immo

)

=
(

S2
sorp S2

immo

)t
Dc

(
S2

sorp S2
immo

)
(48)

Thanks to assumption (20), the columns of
(
S2

sorp|S2
immo

)
are linearly indepen-

dent. Due to the same argument used in Kräutle and Knabner [2005, appendix,
proof of Theorem 1, part 1.], matrix (48) is symmetric positive definite and has a
complete basis of eigenvectors with positive eigenvalues. The same argument holds
for block S1

mob
tDcS1

mob in (47). So both diagonal blocks in (47) are nonsingular.
Therefore matrix (47) is nonsingular.

(ii) We have to prove that there is a resolution function
(ξmob, ξsorp, ξneq, ξ̄sorp, ξ̄immo) 7→ξ̄neq of equation Qneq = 0, where

Qneq :=ξneq−ξneq,old−∆tA2
neqRneq(c, c) (49)

if the implicit Euler method is used, and

Qneq :=ξneq−ξneq,old−∆tA2
neqRneq(cold, cold) (50)

if the explicit Euler method is used (ξneq,old, cold, cold taken from the previous
timestep). For (50) there is apparently even an explicit resolution function. For
(49) we get

∂Qneq

∂ξ̄neq
= IdJ2′

neq
−∆tA2

neq
∂Rneq

∂c S2′
neq
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which is nonsingular at least if ∆t < ‖A2
neq

∂Rneq

∂c S2′
neq‖−1, where ‖·‖ is an arbitrary

submultiplicative matrix norm.
(iii) We prove the existence of a local resolution function

(ξsorp, ξneq) 7→ (ξmob, ξ̄sorp, ξ̄immo, ξ̄neq) (51)

of the equations Q̂eq = 0, Qneq = 0. We compute

∂(Qneq, Q̂eq)
∂(ξ̄neq, ξmob, ξ̄sorp, ξ̄immo)

=


∂Qneq

∂ξneq

∂Qneq

∂(ξmob,ξsorp,ξimmo)
∂Q̂eq

∂ξneq

∂Q̂eq

∂(ξmob,ξsorp,ξimmo)



=

 IdJ2′
neq
−∆tA2

neq
∂Rneq

∂c S2′
neq O(∆t)(

0|S2
sorp|S2

immo

)t
DcS2′

neq
∂Q̂eq

∂(ξmob,ξsorp,ξimmo)


The two blocks on the diagonal are nonsingular due to (i), (ii). The regularity of the
whole block matrix for ∆t sufficiently small follows as in the proof of Theorem 1,
part 3, in Kräutle and Knabner [2005].
Part (b). We want to verify the existence of a resolution function

(ξ̄sorp, ξneq, ξ̄neq) 7→ (ξmob, ξsorp, ξ̄immo)

of (45). We get

∂Q̂eq

∂(ξmob, ξsorp, ξimmo)
=

S1
mob

tDcS1
mob S1

mob
tDcS1

sorp 0
S1

sorp
tDcS1

mob S1
sorp

tDcS1
sorp S2

sorp
tDcS2

immo

0 0 S2
immo

tDcS2
immo


The structure of this matrix is similar to that of (47), and therefore the rest of the
proof is similar to (a).
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