

Informationen für Studierende im 2. Fachsemester

Frauke Liers FAU Erlangen-Nürnberg Juni 2018

Informationen für Studierende im 2. Fachsemester

- 1. Allgemeines (Prof. Dr. F. Liers)
- 2. Module Angewandte Mathematik (Prof. Dr. Eberhard Bänsch)
- 3. Studiengang Technomathematik: Technisches Nebenfach (Prof. Dr. Martin Gugat)
- 4. Studiengang Wirtschaftsmathematik (Dr. Dieter Weninger)
- 5. Module Theoretische Mathematik (Prof. Dr. Karl-Hermann Neeb)
- 6. Studiengang Mathematik (Prof. Dr. Christoph Richard)

Beratungs- und Informationsmöglichkeiten

Beratung des Studien-Service Center (SSC, Raum 01.385):

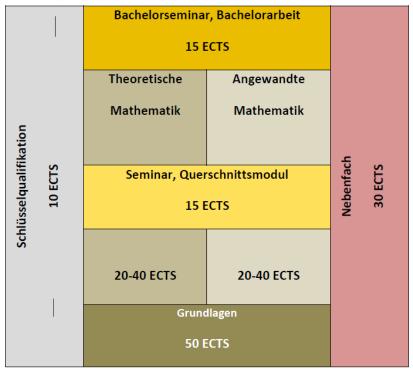
- 1. zu einem möglichen Studiengangwechsel
- 2. zu Schlüsselqualifikationen
- 3. grobe Planung eines Auslandssemesters (mindestens 1 Jahr im Voraus!)
- 4. Studierende sollten sich beim SSC beraten lassen, falls sie eine außermathematische Angelegenheit länger als 2 Wochen beschäftigt und sie sich nicht mehr aufs Studium konzentrieren können. Fachschaftsinitiative (FSI):
- 5. Die FSI hat einen anonymen Kummerkasten im Erdgeschoss neben den weißen Briefkästen.

Inhaltliche Fragen, Fragen zum Studienverlauf

Studiengangsfachberater beraten bei Fragen zum Studienverlauf:

- Mathematik: C. Richard
- Technomathematik: M. Gugat
- Wirtschaftsmathematik: D. Weninger

Mathematisch-inhaltliche Fragen:


- Tutoren, Assistenten, Dozenten der Vorlesungen und Übungen
- offene Sprechstunde für Studierende der ersten beiden Fachsemester

5

Typisches Curriculum

z.B. Bachelor Mathematik

Frauke Liers FAU Erlangen-Nürnberg Seminar Juni 2018

Details zu den Modulen

- Grundlagen: Analysis I III, Lineare Algebra I II
- Grundlagen- und Orientierungsprüfung (GOP): nach 2 Fachsemestern Erwerb von mindestens 30 ECTS aus Grundlagen () meinCampus: Klick Prüfungen, Notenspiegel, Standard mit Kontenstruktur)
- Theoretische/Angewandte Mathematik () Folien K.-H. Neeb, H. Bänsch)
- Schlüsselqualifikation: Angebot der FAU, etc. Querschnittsmodul (15ECTS):
- i.A. im 4. Semester
- Vorlesung: mündliche Prüfung, wöchentliche Übungsblätter (10 ECTS)
- Seminar zum Querschnittsmodul: Vortrag, 5-10 Seiten schriftliche Ausarbeitung, kurze mündliche Prüfung (5 ECTS)
- Angebot immer im Sommersemester; Vorstellungsveranstaltung im Semester vorher

Bachelorseminar, Bachelorarbeit

- i.A. im 6. Semester
- Bachelorseminar (5 ECTS): Angebot jedes Semester;
 Vorstellungsveranstaltung im Semester vorher
- Bachelorarbeit (10 ECTS):
- geht i.A. aus einem Bachelorseminar hervor
- Dauer 2 Monate
- ca. 20 Seiten

Informationen für Studierende im 2. Fachsemester

- 1. Allgemeines (Prof. Dr. F. Liers)
- 2. Module Angewandte Mathematik (Prof. Dr. Eberhard Bänsch)
- 3. Studiengang Technomathematik: Technisches Nebenfach (Prof. Dr. Martin Gugat)
- 4. Studiengang Wirtschaftsmathematik (Dr. Dieter Weninger)
- 5. Module Theoretische Mathematik (Prof. Dr. Karl-Hermann Neeb)
- 6. Studiengang Mathematik (Prof. Dr. Christoph Richard)

Forschungsschwerpunkte Angewandte Mathematik

...zwischen mathematischer Grundlagenforschung und interdisziplinären wie intersektoralen Forschungskooperationen andererseits.

- Analysis, Modellierung und Numerik:
 - meist im Kontext partieller Differentialgleichungen (gewöhnliche, partielle, stochastische...)
 - Anwendungen z.B. in Hydrodynamik, in Wechselwirkung mit Festkörpern
 - effiziente, computergestützte Berechnung von Näherungslösungen
 - Erforschung der Wohlgestelltheit von Extremalproblemen.
 - Graduiertenkolleg IntComSim
- Optimierung:
 - kombinatorische, gemischt-ganzzahlige (nicht-)lineare Optimierung,
 - Optimierung und Steuerung mit gewöhnlichen sowie partiellen Differentialgleichungen.
 - Anwendungen z.B. im Energiesektor, in Transport und Logistik, bei Prozessen, in Ingenieurwissenschaften.
 - SFB/TRR 154 'Mathematische Modellierung, Simulation und Optimierung am Beispiel von Gasnetzwerken'.

Der Block Angewandte Mathematik

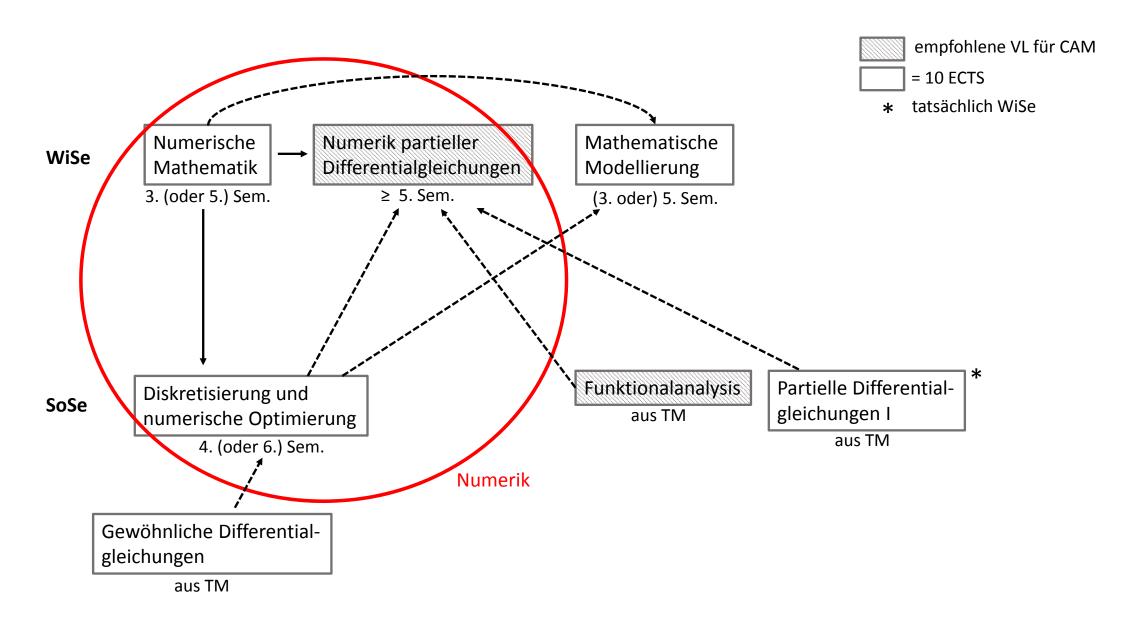
in den Bachelor-Studiengängen der Mathematik

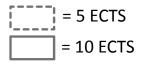
Wahl aus den Blöcken Theoretische Mathematik und Angewandte Mathematik

- Summe mindestens 60 ECTS
- aus jedem Block mindestens 20 ECTS

Studium Schwerpunkt Theoretische Mathematik Block Theoretische Mathematik ≥ 40 ECTS Block Angewandte Mathematik ≥ 20 ECTS

Studium *Schwerpunkt Angewandte Mathematik*Block Theoretische Mathematik ≥ 20 ECTS
Block Angewandte Mathematik ≥ 40 ECTS


	Modulbezeichnung	Lehrveranstaltung		SWS		SWS				sws				Gesamt ECTS	ECTS-Punkten						Art und Umfang der Prü- fung/Studienleistung	Faktor Modul- note
			V	n _	P	S	Т.		1. Sem.	2. Sem.	3. Sem	4. Sem	5. Sem	6. Sem								
	Numerische Mathematik ¹	Vorlesung Numerische Mathematik	4			3	•	10			(7)		(7)		Portfolioprüfung: Klausur 90 Min. (benotet;	1						
Numanik		ibung Numerische Mathematik		2							(2)		(2)		100 %) und Hausaufgaben (wöchentlich 1							
Numerik		Rechnerübung Numerische Mathe- matik		1							(1)		(1)		Übungsblatt) (unbenotet)							
	Diskretisierung und numerische Optimierung ²	Vorlest ng Diskretisierung u. numeri- sche Optimierung	4					10				(7)		(7)	Portfolioprüfung: Klausur 90 Min. (benotet;	1						
		Übung Diskretisierung u. nume- rische Optimierung		2								(3)		(3)	100 %) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)							
¥	Numerik partieller Differenti- algleichungen ⁴	Vor esung Numerik partieller Differentialgleichungen	4					10					7		Portfolioprüfung: Klausur 90 Min. (benotet;	1						
Angewandte Mathema		Übung Numerik partieller Diffe- rentialgleichungen		2									3		100 %) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)							
ndte N	Mathematische Modellierung	Vorlesung Mathematische Modellierung	4					10					7		Portfolioprüfung: Klausur 90 Min. (benotet;	1						
ngewa		Übung Mathematische Model- lierung		2									2		100 %) und Hausaufgaben (wöchentlich							
₹		Praktikum Mathematische Modellierung			2								1		1 Übungsblatt) (unbenotet)							
Ontimiorung	Nichtlineare Optimierung ¹	Vorlesung Nichtlineare Optimie- rung	4					10			(7)		(7)		Portfolioprüfung: Klausur 90 Min. (benotet;	1						
Optimierung		Ühung Nichtlineare Optimierung		2							(3)		(3)		100 %) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)							
	Lineare und Kombinatorische Optimierung ¹	Vorles ing Lineare u. Kombinato- rische Optimierung	4					10			(7)		(7)		Portfolioprüfung: Klausur 90 Min. (benotet;	1						
		Übung Lineare u. Kombinatori- sche Optimierung		2							(3)		(3)		100 %) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)							
	Robuste Optimierung							5				(5)										


Stochastik/ Statistik

	Modulbezeichnung	Lehrveranstaltung			SWS			Gesamt ECTS	TS ECTS-Punkten						Art und Umfang der Prü- fung/Studienleistung	Faktor Modul- note
									1. Sem.	2. Sem.	3. Sem	4. Sem	5. Sem	6. Sem		
			V	Ü	Р	S	Т									
	Introduction to Statis- tics and Statistical	Vorlesung Introduction to Statistics and Statistical Programming	2					5					3		Portfolioprüfung: Klausur 90 Min. (benotet;	1
	Programming	Übun, Introduction to Statistics and Statistical Programming		1									1		100 %) und Hausaufgaben (wöchent-	
		Rechnery bung Introduction to Statistics and Statis ical Programming		1									1		lich 1 Übungsblatt) (unbe- notet)	
matil	Stochastische Modell- bildung ²	Vorlesung Stochastische Modellbildung	4					10				(7)		(7)	Portfolioprüfung: Klausur 90 Min. (benotet;	1
Mathe		Übung Stoc astische Modellbildung		2								(2)		(2)	100 %) und Hausaufgaben (wöchent-	
Angewandte Mathematik		Tafelübung Stochastische Modellbildung		1								(1)		(1)	lich 1 Übungsblatt) (unbe- notet)	
Mapu	Elementare Stochastik des Risikomanage-	Vorlesung Elementare Stochastik des Risikon anagements	2					5					3		Portfolioprüfung: Klausur 60 Min. (benotet;	1
Ā	ments	Übung Elementare Stochastik des Risi- kornanagements		1									1		100 %) und Hausaufgaben (wöchent- lich 1 Übungsblatt) (unbe- notet)	
	Summe Angewandte M	athematik						20- 40								

	Modulbezeichnung	Lehrveranstaltung			SWS			Gesamt ECTS	Workload-Verteilung pro Semester in ECTS-Punkten						Art und Umfang der Prü- fung/Studienleistung	Faktor Modul- note
			V	Ü	P	S	Т		1. Sem.	2. Sem.	3. Sem	4. Sem	5. Sem	6. Sem		
	Algebra ¹	Vorlesung Algebra	4					10			(7)		(7)		Portfolioprüfung: Klausur 90 Min. (benotet; 100	1
		Übung Algebra		3							(3)		(3)		%) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	
	Körpertheorie ²	Vorlesung Körpertheorie	2					5				(4)		(4)	Portfolioprüfung: Klausur 60 Min. (benotet; 100	1
		Übung Körpertheorie		2								(1)		(1)	%) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	
i 芸	Einführung in die Darstel- lungstheorie ⁴	Vorlesung Darstellungstheorie	4					10					7		Portfolioprüfung: Klausur 90 Min. (benotet; 100	1
Theoretische Mathematik		Übung Darstellungstheorie		2									3		%) und Hausaufgaben (wö- chentlich 1 Übungsblatt) (un- benotet)	
ische	Geometrie ²	Vorlesung Geometrie	2					5				(3)		(3)	Portfolioprüfung: Klausur 60 Min. (benotet; 100	1
Theoret		Übung Geometrie		2								(2)		(2)	%) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	
	Topologie ²	Vorlesung Topologie	2					5				(3)		(3)	Portfolioprüfung: Klausur 60 Min. (benotet; 100	1
		Übung Topologie		2								(2)		(2)	%) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	
	Funktionentheorie I ²	Vorlesung Funktionentheorie I	2					5				(3,5)		(3,5)	Portfolioprüfung: Klausur 60 Min. (benotet; 100	1
		Übung Funktionentheorie I		1								(1,5)		(1,5)	%) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	

	Modulbezeichnung	Lehrveranstaltung			SWS			Gesamt ECTS	Workload-Verteilung pro Semester in ECTS-Punkten						Art und Umfang der Prü- fung/Studienleistung	Faktor Modul- note
				A					1. Sem.	2. Sem.	3. Sem	4. Sem	5. Sem	6. Sem		
	Funktionentheorie II ²	Vorlesung Funktionentheorie II Übung Funktionentheorie II	2	1	P	S	T	5				(3,5)		(3,5)	Portfolioprüfung: Klausur 60 Min. (benotet; 100 %) und Hausaufgaben (wöchentlich 1	1
¥	Gewöhnliche Differential- gleichungen ²	Vorlesung Gewöhnliche Differential- gleichungen. Übung Gewöhnliche Differential- gleichungen	4	2				10				(7)		(7)	Übungsblatt) (unbenotet) Portfolioprüfung: Klausur 90 Min. (benotet; 100 %) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	1
Theoretische Mathematik	Funktionalanalysis ²	Vorlesung Funktionalanalysis Übung Funktionalanalysis	4	2				10				(7)		(7)	Portfolioprüfung: Klausur 90 Min. (benotet; 100 %) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	1
Theoretisc	Partielle Differentialglei- chungen I ^{2,4}	Vorlesung Partielle Differential- gleichungen I Übung Partielle Differential- gleichungen I	4	2				10				(7)		(7)	Portfolioprüfung: Klausur 90 Min. (benotet; 100 %) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	1
	Wahrscheinlichkeitstheorie ⁴	Vorlesung Wahrscheinlichkeitstheorie Übung Wahrscheinlichkeitstheorie Tafelübung Wahrscheinlichkeitstheorie	4	2				10					7 2 1		Portfolioprüfung: Klausur 90 Min. (benotet; 100 %) und Hausaufgaben (wöchentlich 1 Übungsblatt) (unbenotet)	1
	Summe Theoretische Mather	natik						20-40								

Empfehlung Mathematik/Technomathematik

- 3. Sem. Numerische Mathematik (verpflichtend für TM)

 bei Vertiefung Angewandte Mathematik

 eine Optimierungsvorlesung
- 4. Sem. Stochastische Modellbildung
- 5. Sem. bei Vertiefung Angewandte Mathematik
 Mathematische Modellierung (verpflichtend für TM)
 oder eine Optimierungs-VL
 oder Numerik partieller Differentialgleichungen

oder Stochastik/Statistik-VL

Empfehlung Technomathematik Musterstudienplan

3. Sem.	Numerische Mathematik	AM
4. Sem.	Querschnittsmodul: Diskretisierung und num. Optimierung	
	Gewöhnliche Differentialgleichungen	TM
	Funktionalanalysis	TM
5. Sem.	Mathematische Modellierung	AM
	Numerik partieller Differentialgleichungen	
	oder Nichtlineare Optimierung	AM
6. Sem.	Stochastische Modellbildung	AM
	Bachelorseminar und -arbeit	

Technomathematik - Die Tür zu den Ingenieurwissenschaften

Martin Gugat martin.gugat@fau.de
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
2018

Technomathematik - Angewandte Wissenschaft

..alle denkende Reflexion betrifft

- entweder das handelnde Leben
- oder die hervorbringende Tätigkeit
- oder bewegt sich in reiner Theorie

ARISTOTELES, Metaphysik.

Technomathematik - Angewandte Wissenschaft

Das technische Wahlfach im Studiengang Technomathematik:

Ihr Zugang zu den Ingenieurwissenschaften.

Die Veranstaltungen dazu beginnen im 3. Studiensemester.

Die FPO enthält Modulkataloge zu verschiedenen technischen Wahlfächern.

Dort müssen 20-25 ECTS Punkte erworben werden.

In der Informatik und dem technischen Wahlfach zusammen: 45 ECTS Punkte.

Die FPO enthält Modulkataloge zu verschiedenen technischen Wahlfächern.

Dort müssen 20-25 ECTS Punkte erworben werden.

In der Informatik und dem technischen Wahlfach zusammen: 45 ECTS Punkte.

Hier betrachten wir erst einmal den Maschinenbau.

Technisches Wahlfach Maschinenbau

Modul	SWS	Sem.	ECTS Modul
Optik und optische Technologien	2	3	2,5
Statik	2 + 2	3	5
Elastostatik und Festigkeitslehre	3 + 2 + 2	4	7,5
Dynamik starrer Körper	3 + 2 + 2	5	7,5

Das Modul heisst **Statik**, **Elastostatik und Festigkeitslehre (SEF)** und ist mit 12,5 ECTS validiert. Die Dauer beträgt 2 Semester.

Die FPO enthält Modulkataloge zu verschiedenen technischen Wahlfächern.

Dort müssen 20-25 ECTS Punkte erworben werden.

In der Informatik und dem technischen Wahlfach zusammen: 45 ECTS Punkte.

Hier betrachten wir erst einmal den Maschinenbau.

Technisches Wahlfach Maschinenbau

Modul	SWS	Sem.	ECTS Modul
Optik und optische Technologien	2	3	2,5
Statik	2 + 2	3	5
Elastostatik und Festigkeitslehre	3 + 2 + 2	4	7,5
Dynamik starrer Körper	3 + 2 + 2	5	7,5

Das Modul heisst **Statik**, **Elastostatik und Festigkeitslehre (SEF)** und ist mit 12,5 ECTS validiert. Die Dauer beträgt 2 Semester.

Für die Prüfungsmodalitäten

bitte Rücksprache mit den Dozentinnen und Dozenten halten! Eine Rücksprache mit der **Studienfachberatung MB**, Herrn Patrick Schmitt (patrick.schmitt@mb.uni-erlangen.de) kann auch nützlich sein.

Mögliche technische Wahlfächer sind

Maschinenbau

Mögliche technische Wahlfächer sind

- Maschinenbau
- EEI Elektrotechnik-Elektronik-Informationstechnik

Mögliche technische Wahlfächer sind

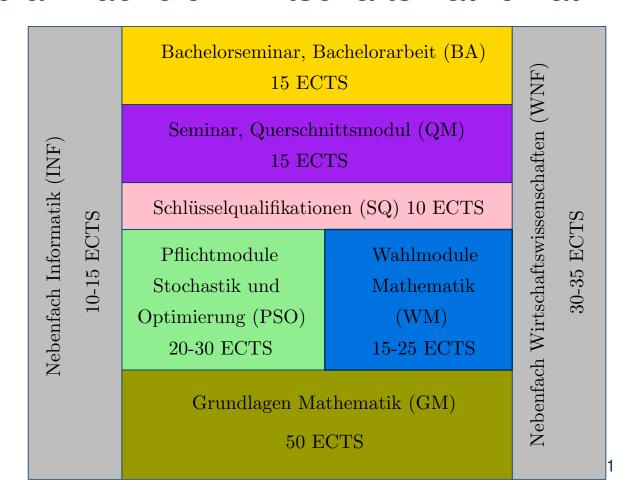
- Maschinenbau
- EEI Elektrotechnik-Elektronik-Informationstechnik
- Medizintechnik.

Mögliche technische Wahlfächer sind

- Maschinenbau
- EEI Elektrotechnik-Elektronik-Informationstechnik
- Medizintechnik.

Eine Liste möglicher Module finden Sie in der *FPO (Fachprüfungsordnung) Technomathematik*.

Für Fragen stehe ich gerne zur Verfügung.


Informationen für Studierende im 2. Fachsemester - Bachelor Wirtschaftsmathematik

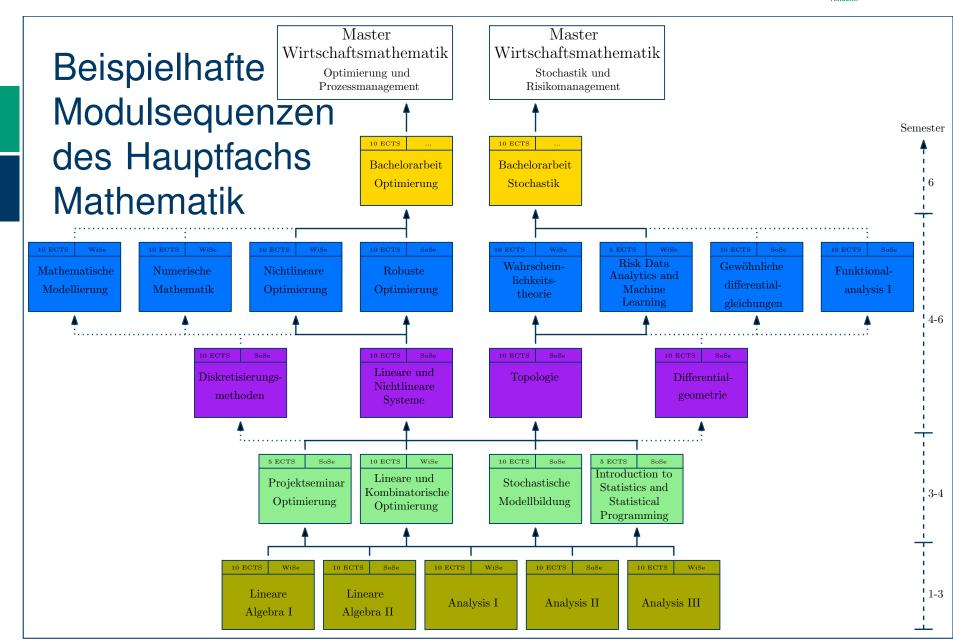
Dr. Dieter Weninger FAU Erlangen-Nürnberg Erlangen, 18.06.2018

Curricular Bachelor Wirtschaftsmathematik

¹Siehe Fachprüfungsordnung Anlage 1

Curricular ohne INF, WNF, SQ und Seminare

Bachelorarbeit (BA)
10 ECTS

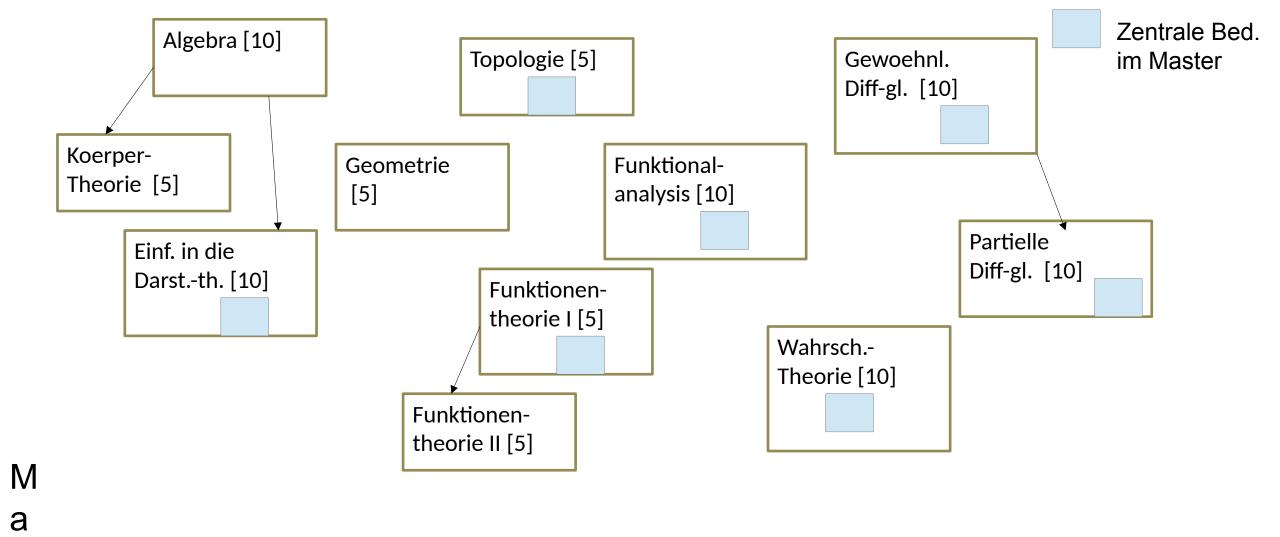

Querschnittsmodul (QM) 10 ECTS

Pflichtmodule
Stochastik und
Optimierung (PSO)
20-30 ECTS

Wahlmodule
Mathematik
(WM)
15-25 ECTS

Grundlagen Mathematik (GM)
50 ECTS

Der Block Theoretische Mathematik


in den Bachelor-Studiengängen der Mathematik

Wahl aus den Blöcken Theoretische Mathematik und Angewandte Mathematik

- Summe mindestens 60 ECTS
- aus jedem Block mindestens 20 ECTS

Studium Schwerpunkt Theoretische Mathematik Block Theoretische Mathematik ≥ 40 ECTS Block Angewandte Mathematik ≥ 20 ECTS

Studium Schwerpunkt Angewandte Mathematik Block Theoretische Mathematik ≥ 20 ECTS Block Angewandte Mathematik ≥ 40 ECTS

Algebra und Geometrie

Analysis und Stochastik

S

e

Empfehlungen Schwerp. Theoret. Mathematik:

Auswahl mit Fokus **Algebra**

- **3. Sem.** Algebra [10]
- **4. Sem.** Koerpertheorie [5]

Einf in die Darstellungstheorie [10],

Topologie [5], Funktionentheorie I [5]

5. Sem. Geometrie [5], Funktionentheorie II [5]

* davon eine Vorlesung ggf als Querschnittsmodul

+ 20 ECTS aus dem angew.Bereich: z.B. Num. Math., Lin. u. Komb. Opt.

Empfehlungen Schwerp. Theoret. Mathematik:

Auswahl zu Fokus Geometrie/Analysis

```
3./5. Sem. Algebra [10]
4./6. Sem. Funktionalanalysis [10]
Topologie [5], Funktionentheorie I [5]
Gewoehnliche Dgln. [10],
Einfuehrung in die Darstellungstheorie [10]
```

+ 20 ECTS aus dem angew.Bereich: z.B. Num. Math., Nichtlineare Opt.

^{*} davon eine Vorlesung ggf als Querschnittsmodul

Empfehlungen Schwerp. Theoret. Mathematik:

Auswahl zu Fokus Analysis/Stochastik

4./6. Sem. Funktionalanalysis [10]
Topologie [5], Funktionentheorie I [5]
Gewoehnliche Dgln. [10],
Partielle Differentialgleichungen [10]

5. Sem. Wahrscheinlichkeitstheorie [10] [vorher im 4. Sem: Stoch. Modellbildung aus Angew. Bereich]

- * davon eine Vorlesung ggf als Querschnittsmodul
- + 20 ECTS aus dem angew.Bereich: z.B. Num. Math., Numerik part. Dgln.

Forschungsschwerpunkte Theoretische Math.:

algebraisch-geometrisch:

- P. Fiebig (Lie-Algebren und ihre Darstellungen)
- F. Knop (Algebraische Gruppen, Invariantentheorie)
- C. Meusburger (Hopf-Algebren, Kategorien, Poisson-Geometrie)

analytisch:

- A. Knauf (Dynamische Systeme, Symplektische Geom.)
- K.-H. Neeb, J. Frahm (Lie-Gruppen, Unitaere Darstellungen, Op.-Alg.)
- H. Schulz-Baldes (Operatortheorie, Anwendung in der Physik)

Stochastik:

- A. Greven (Stochastik, Anw. in Biologie)
- G. Keller (Dynamische Systeme, Ergodentheorie)
- W. Stummer (Stochastik, Finanz- und Vers.-math) [WiMa]

Exemplarische Studienverlaufspläne BSc Mathematik (Stand 6/2018)

Die folgenden Studienverlaufspläne orientieren sich an den Vorgaben der <u>Fachprüfungsordnung</u> sowie an der <u>Vorlesungsplanung</u> des Departments und dem <u>Vorlesungsverzeichnis</u> UnivIS. Hilfreich ist auch die Webseite der <u>Studienfachberatung</u>.

Es wurde auf Fehlervermeidung geachtet. Dennoch sind die folgenden Angaben ohne Gewähr.

Anmerkungen:

- In der Regel sollten 30 ECTS pro Semester belegt werden.
- Mögliche Nebenfachmodule können den Prüfungsordnungen der Nebenfächer oder univIS entnommen werden. Der Turnus der Module ist in den Modulbeschreibungen festgelegt.
- Spezielle Hinweise für Studierende im Bereich MSO finden sich <u>hier</u>.

BSc Mathematik NF BWL (Modellierung, Simulation und Optimierung)

1. Semester:

Analysis I (10 ECTS)

Lineare Algebra I (10 ECTS)

Programmierung: Computerorientierte Mathematik 1 (5 ECTS)

Modul des Nebenfachs: Betriebswirtschaftslehre 1 (5 ECTS)

2. Semester:

Analysis II (10 ECTS)

Lineare Algebra II (10 ECTS)

Modul des Nebenfachs: Betriebswirtschaftslehre 2 (5 ECTS)

3. Semester:

Analysis III (10 ECTS)

Angewandte Mathematik: Lineare und Komb. Optimierung (10 ECTS)

Angewandte Mathematik: Numerische Mathematik (10 ECTS)

Modul des Nebenfachs: Betriebliches Rechnungswesen 1 (5 ECTS)

4. Semester:

Querschnittsmodul: Lineare und nichtlineare Systeme (10 ECTS)

Angewandte Mathematik: Robuste Optimierung (5 ECTS)

Angewandte Mathematik: Stochastische Modellbildung (10 ECTS)

Modul des Nebenfachs: Betriebliches Rechnungswesen 2 (5 ECTS)

5. Semester:

Seminar: Angewandte Mathematik (5 ECTS)

Theoretische Mathematik: Wahrscheinlichkeitstheorie (10 ECTS)

Modul des Nebenfachs: Betriebliches Rechnungswesen 3 (5 ECTS)

Modul des Nebenfachs: Recht für Wirtschaftswissenschaftler 1 (5 ECTS)

Schlüsselqualifikation: Betriebspraktikum (5 ECTS)

6. Semester:

Theoretische Mathematik: Gewöhnliche Differentialgleichungen (10 ECTS)

Angewandte Mathematik: Introduction to Statistics (5 ECTS)

Bachelorseminar: Optimierung (5 ECTS)

Bachelorarbeit (10 ECTS)

BSc Mathematik NF Informatik (Algebra und Geometrie)

1. Semester:

Analysis I (10 ECTS)

Lineare Algebra I (10 ECTS)

Modul des Nebenfachs: Algorithmen und Datenstrukturen (10 ECTS)

2. Semester:

Analysis II (10 ECTS)

Lineare Algebra II (10 ECTS)

Modul des Nebenfachs: Konzeptionelle Modellierung (5 ECTS)

Modul des Nebenfachs: Systemnahe Programmierung in C (5 ECTS)

3. Semester:

Analysis III (10 ECTS)

Theoretische Mathematik: Algebra (10 ECTS)

Modul des Nebenfachs: Berechenbarkeit und formale Sprachen (5 ECTS)

Schlüsselqualifikation: Tutorenschulung+ Tutorentätigkeit (5 ECTS)

4. Semester:

Querschnittsmodul: Theoretische Mathematik (10 ECTS)

Theoretische Mathematik: Körpertheorie (5 ECTS)

Angewandte Mathematik: Stochastische Modellbildung (10 ECTS)

Modul des Nebenfachs: Algebra des Programmierens (5 ECTS)

5. Semester:

Seminar: Theoretische Mathematik (5 ECTS)

Theoretische Mathematik: Geometrie (5 ECTS)

Theoretische Mathematik: Wahrscheinlichkeitstheorie (10 ECTS)

Angewandte Mathematik: Numerische Mathematik (10 ECTS)

6. Semester:

Theoretische Mathematik: Funktionentheorie I (5 ECTS)

Theoretische Mathematik: Einführung in die Darstellungstheorie (10 ECTS)

Bachelorseminar: Algebra/Geometrie (5 ECTS)

Bachelorarbeit (10 ECTS)

BSc Mathematik NF Theoretische Physik (Analysis und Stochastik)

1. Semester:

Analysis I (10 ECTS)

Lineare Algebra I (10 ECTS)

Programmierung: Computerorientierte Mathematik 1 (5 ECTS)

Modul des Nebenfachs: Experimentalphysik 1 (7.5 ECTS)

2. Semester:

Analysis II (10 ECTS)

Lineare Algebra II (10 ECTS)

Modul des Nebenfachs: Theoretische Physik 1 (10 ECTS)

3. Semester:

Analysis III (10 ECTS)

Theoretische Mathematik: Algebra (10 ECTS)

Modul des Nebenfachs: Theoretische Physik 2 (7.5 ECTS)

4. Semester:

Querschnittsmodul: Theoretische Mathematik (10 ECTS)

Angewandte Mathematik: Stochastische Modellbildung (10 ECTS)

Theoretische Mathematik: Gewöhnliche Differentialgleichungen (10 ECTS)

5. Semester:

Seminar: Theoretische Mathematik (5 ECTS)

Theoretische Mathematik: Wahrscheinlichkeitstheorie (10 ECTS)

Angewandte Mathematik: Numerische Mathematik (10 ECTS)

Schlüsselqualifikation: Auffrischungskurs Französisch (5 ECTS)

6. Semester:

Theoretische Mathematik: Körpertheorie (5 ECTS)

Bachelorseminar: Stochastik (5 ECTS)

Bachelorarbeit (10 ECTS)

Modul des Nebenfachs: Theoretische Physik 3 (10 ECTS)