

List of modules for the Master's degree programme Computational and Applied Mathematics for the summer semester 2019

Not all of the listed modules are offered annually. On the other hand, additional modules may be offered.

Department of Mathematics Friedrich-Alexander-Universität Erlangen-Nürnberg

Last updated:April 10 2019Reference:Examination regulations dated Feb 27, 2017

Table of contents

Dean of Studies (General questions about the programme)

Prof. Dr. Frauke Liers

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstr.11, 91058 Erlangen, Room 03.345

Phone: +49 9131 8567151 E-mail: frauke.liers@math.uni-erlangen.de

Examination Committee for Bachelor's and Master's degree courses in Mathematics (Examination matters for the programme)

Prof. Dr. Eberhard Bänsch

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.323

Phone: +49 9131 8567202, E-mail: baensch@am.uni-erlangen.de

Degree programme manager

Prof. Dr. Günther Grün

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.343

Phone: +49 9131 8567220 E-mail:gruen@math.fau.de

Degree programme administration (Procedures and organisation)

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.337

Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Subject advisor

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.337 Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Student Service Centre

Christine Gräßel, M. A.

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 01.385

Phone: +49 9131 8567024, E-mail:ssc@math.fau.de

1	Module name	Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	
3	Lectures	Prof. Dr. G. Grün	
4	Module coordinator	Prof. Dr. G. Grün	
5	Content	 At least two of the following three topics: Shear-thinning liquids and monotone operators: analytical concepts, using the example of the p-Laplace equation Poisson-Boltzmann equation: analysis of semilinear equations with monotone nonlinearities Mathematical concepts of model reduction: homogenisation, gamma convergence, asymptotic analysis 	
6	Learning objectives and skills	Students explain various concepts for model reduction and apply them to derive mathematical models, formulate and prove qualitative statements on solutions to quasilinear or semilinear partial differential equations in continuum mechanics.	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory elective module for MSc in Mathematics	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 A. Braides: Gamma-convergence for beginners, Oxford University Press, D. Cioranescu & P. Donato: An introduction to homogenization, Oxford University Press R.E. Showalter: Monotone operators in Banach space and nonlinear partial differential equations, AMS 	

1	Module name	Module 3: MoSi: Practical Course: Modeling, Simulation, Optimization	ECTS 5
2	Courses/lectures	Seminar: 3 semester hrs/week	
3	Lectures	Prof. Dr. G. Grün	
4	Module coordinator	Prof. Dr. P. Knabner	
5	Content	 Modelling, analysis, simulation or optimisation of problems in engineering or the natural sciences (Partial) differential equation models (also with additional aspects) and corresponding numerical algorithms ((Mixed) Finite Element Method ((M)FEM), Finite Volume Method (FVM), Discontinuous Galerkin (DG)) Mixed integer or continuous (non-)linear optimisation 	
6	Learning objectives and skills	 Students work on a problem in engineering or the natural sciences as part of a team, but with assigned independent tasks, by constructing a suitable mathematical model and solving it using analytical and numerical methods, are able to collect and evaluate relevant information and identify connections, are able to implement processes using their own or specified software and critically evaluate the results, are able to set out their approaches and results in a comprehensible and convincing manner, making use of appropriate presentation techniques, are able to develop and set out in writing the theories and problem solutions they have developed, develop their communication skills and ability to work as a team through project work. 	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc in Computational Applied Mathematics Elective module for MSc in Mathematics Elective module for MSc in Mathematics and Economics	
10	Method of examination	Talk/presentation (45 minutes) and final report (10 - 15 pages)	
11	Grading Procedure	Talk/presentation 50% final report 50%	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16	Recommended reading	Project-dependent. Will be published on StudOn at the beginning of the semester.

1	Module name	Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 2 semester hrs/week	
3	Lectures	Prof. Dr. G. Wellein	
4	Module coordinator	Prof. Dr. G. Wellein	
5	Content	Introduction to the architecture of modern supercomputers Single core architecture and optimisation strategies Memory hierarchy and data access optimization Concepts of parallel computers and parallel computing Efficient "shared memory" parallelisation (OpenMP) Parallelisation approaches for multi-core processors including GPUs Efficient "distributed memory" parallelisation (MPI) Roofline performance model Serial and parallel performance modelling Complete parallel implementation of a modern iterative Poisson solver	
6	Learning objectives and skills	Students acquire a comprehensive overview of programming modern supercomputers efficiently for numerical simulations, learn modern optimisation and parallelisation strategies, guided by structured performance modelling, acquire an insight into innovative programming techniques and alternative supercomputer architectures, are able to implement numerical methods to solve partial differential equations (PDEs) with finite difference (FD) discretization with high hardware efficiency on parallel computers.	
7	Prerequisites	Recommended: Experience in C/C++ or Fortran programming; basic knowledge of MPI and OpenMP programming	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc Computational and Applied Mathemati	cs
10	Method of examination	oral exam (30 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 120 hrs Independent study: 180 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

	Recommended reading	G. Hager & G. Wellein:
		Introduction to High Performance Computing for Scientists and Engineers.
16		CRC Computational Science Series, 2010. ISBN 978-1439811924
10		J. Hennessy & D. Patterson:
		Computer Architecture. A Quantitative Approach.
		Morgan Kaufmann Publishers, Elsevier, 2003. ISBN 1-55860-724-2

1	Module name	Module 10: AdSolTech: Advanced Solution Techniques	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	
3	Lectures	Prof. Dr. P. Knabner	
4	Module coordinator	Prof. Dr. P. Knabner	
5	Content	 Krylov subspace methods for large non-symmetric systems of equations Multilevel methods, especially multigrid (MG) methods, nested and non-nested grid hierarchies Parallel numerics, especially domain decomposition methods Inexact Newton/Newton-Krylov methods for discretized nonlinear partial differential equations Preconditioning and operator-splitting methods 	
6	Learning objectives and skills	Students are able to design application-specific own MG algorithms with the theory of multigrid methods and decide for which problems the MG algorithm is suitable to solve large linear systems of equations, are able to solve sparse nonlinear/non-symmetric systems of equations with modern methods (also with parallel computers), are able to develop under critical assessment complete and efficient methods for application-orientated problems.	
7	Prerequisites	Recommended: Advanced Discretization Techniques	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Compulsory elective module for MSc in Mathematics	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 A. Quarteroni & A. Valli: Numerical Approximation of Partial Differential Equations P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations Further literature and scientific publications are announced during the lectures 	

1	Module name	Module 11: RTpMNum: Transport and Reaction in Porous Media: Modeling	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	
3	Lectures	Prof. Dr. S. Kräutle	
4	Module coordinator	Prof. Dr. S. Kräutle	
5	Content	 Modelling of fluid flow through a porous medium: Groundwater models (Richards' equation), multiphase flow Advection, diffusion, dispersion of dissolved substances, (nonlinear) reaction-models (i.a. law of mass action, adsorption, kinetic / in local equilibrium, reactions with minerals) Models of partial (PDEs), ordinary (ODEs) differential equations, and local conditions Nonnegativity, boundedness, global existence of solutions, necessary model assumptions in the case of a pure ODE model as well as for a PDE model Existence of stationary solutions (i.a. introduction to the Feinberg network theory) 	
6	Learning objectives and skills	Students are able to model flow and reaction processes in porous media on macro- and micro-scale using partial differential equations, possess the techniques and the analytical foundations to assess the global existence of solutions.	
7	Prerequisites	Recommended: Basic knowledge in differential equations	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Research module for MSc in Mathematics with field of "Modeling, Simulation, and Optimisation" Mathematical elective module in all other fields of study in MSc Mathematics and in MSc Mathematics and Economics Master Physics, non-physical elective module 	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

	- S. Kräutle: lecture notes	
	Recommended reading	www.mso.math.fau.de/fileadmin/am1/users/kraeutle/scripts/Skript-RT.pdf
16		- C. Eck, H. Garcke, P. Knabner: Mathematical Modeling, Springer
16		- J.D. Logan: Transport Modeling in Hydrogeochemical Systems, Springer
		- M. Feinberg: lecture notes
		crnt.osu.edu/LecturesOnReactionNetworks

1	Module name	Module 13: NuIF1: Numerics of Incompressible Flows I	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	
3	Lectures	Prof. Dr. E. Bänsch	
4	Module coordinator	Prof. Dr. E. Bänsch	
5	Content	Mathematical modelling of (incompressible) flows Variational formulation, existence and (non-)uniqueness of solutions to the stationary Navier-Stokes (NVS) equations Stable finite element (FE) discretization of the stationary (Navier-) Stokes equations Error estimates Solution techniques for the saddle point problem	
6	Learning objectives and skills	Students explain and apply the mathematical theory for the stationary, incompressible Navier-Stokes equations, analyse FE discretization for the stationary Stokes equations and apply them to practical problems, explain the meaning of the inf-sup condition, choose the appropriate function spaces, stabilisation techniques and solution techniques and apply them to concrete problem settings.	
7	Prerequisites	Recommended: Advanced discretization techniques	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied N Compulsory elective module for MSc in Mathematics	Mathematics
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral examination	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours:37.5 hrsIndependent study:12.5 hrsTotal:150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

		V. Girault & PA. Raviart: Finite element methods for the Navier-Stokes
		equations. Theory and algorithms. Springer 1986
		H. Elman, D. Silvester & A. Rathen: Finite elements and fast iterative solvers:
16	Recommended reading	with applications in incompressible fluid dynamics. Oxford University Press
		2014
		R. Temam: Navier-Stokes equations. Theory and numerical analysis. North
		Holland

1	Module name	Module 14: MaMM: Mathematics of Multiscale Models	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	
3	Lectures	Dr. Nadja Ray	
4	Module coordinator	Prof. Dr. P. Knabner	
5	Content	Function spaces of periodic functions and asymptotic expansions Two-scale convergence and unfolding method Application to differential equation models in continuum mechanics Multi-scale finite element methods Numerical upscaling methods	
6	Learning objectives and skills	Students have profound expertise about the basic methods in multi-scale analysis and homogenisation, are able to derive rigorously homogenised (effective) models and analyse the quality of the approximation.	
7	Prerequisites	Recommended: Knowledge in modeling as well as analysis and numerics of partial differential equations	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Elective module for MSc in Mathematics Elective module for MSc in Mathematics and Economics	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	At least once every two years To check whether the course is offered in the current semester, see univis.fau.de	UnivIS:
13	Workload	Contact hours: 37,5 hrs Independent study: 112,5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	D. Cioranescu & P. Donato: An Introduction to Homogenization U. Hornung (ed.): Homogenization and Porous Media Y. Efendiev & T. Hou: Multiscale Finite Element Methods	

1	Module name	Module 24: IPro: Partial Differential Equations Based Image Processing	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hr/week	
3	Lectures	Prof. Dr. M. Burger	
4	Module coordinator	Dr. M. Fried	
5	Content	basics of image processing deblurring using different partial differential equations Finite Element Method for variational methods in image restauration and image segmentation	
6	Learning objectives and skills	Students explain mathematical and algorithmic methods for image processing, apply above image processing methods in computerised practical exercises, apply analytical techniques to evaluate the qualitative characteristics of the above methods.	
7	Prerequisites	Basic knowledge in functional analysis and numerical methods for pdes is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc Computational and Applied Mathematics Mandatory elective module for MSc Mathematics Compulsory elective module MSc Integrated Life Science	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	if requested: every second summer semester To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	G. Aubert & P. Kornprobst: Mathematical problems in image Springer	e processing,

1	Module name	Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	ECTS 5
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 0.5 weekly lecture hour	
3	Lectures	Prof. Dr.A. Martin	
4	Module coordinator	Prof. Dr. A. Martin	
5	Content	Revised Simplex (with bounds) Simplex Phase I Dual Simplex LP Presolve/Postsolve Scaling MIP Solution Techniques	
6	Learning objectives and skills	Students are able to explain and use methods and numerical approaches for solving linear and mixed-integer programs in practice.	
7	Prerequisites	Knowledge in linear algebra and combinatorial optimization is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc Computational and Applied Mathematics, Elective module for MSc Mathematics, Elective Module for MSc Mathematics and Economics, Core/research module MSc Mathematics within "Modeling, simulation, optimization", MSc Mathematics and Economics within "Optimization and process management"	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Attendance: 45 h Self-study: 105 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	
16	Recommended reading	V. Chvátal: Linear Programming, W. H. Freeman and Company, Nev L.A. Wolsey: Integer Programming, John Wiley and Sons, Inc., 1998	

1	Module name	Module 33a: OptPDE: Optimization with Partial Differential Equations	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	
3	Lectures	PD Dr. F. Hante	
4	Module coordinator	Prof. Dr. M. Stingl	
5	Content	Several of the following topics: Optimization and control in Banach spaces Concepts of controllability and stabilization Optimal control of Partial differential equations Singular Perturbations and asymptotic analysis Numerical realizations of optimal controls Technical, medical and economic applications	
6	Learning objectives and skills	Students explain and use theory as well as numerical methods for optimization, control and stabilization in the context of partial differential equations, apply these abilities to technical and economic applications.	
7	Prerequisites	Basic knowledge in numerics, partial differential equations, and nonlinear optimization is recommended.	
8	Integration into curriculum	1 st or 3rd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Elective module for MSc in Mathematics Elective module for MSc in Mathematics and Economics	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 F. Tröltzsch: Optimal Control of Partial Differential Equations, AMS G. Leugering & P. Kogut: Optimal Control of PDEs in Reticulated Do Birkhäuser. 	

1	Module name	Module 33b: OptPDE: Optimization with Partial Differential Equations	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 1 semester hrs/week	
3	Lectures	PD Dr. F. Hante	
4	Module coordinator	Prof. Dr. M. Stingl	
5	Content	Several of the following topics: System and control theory for partial differential equations Optimization theory in Banach and Hilbert spaces Optimality conditions for problems with control and state constraints Sensitivity analysis, singular perturbations and asymptotics Optimization methods in Banach spaces Technical, medical and economic applications	
6	Learning objectives and skills	Students extensively explain and use the theory as well as numerical methods for optimization, control and stabilization in the broad of problems with partial differential equations, apply these abilities to technical and economic applications.	
7	Prerequisites	Basic knowledge in numerics, partial differential equations, and nonlinear optimization is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Elective module for MSc in Mathematics Elective module for MSc in Mathematics and Economics	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 - F. Tröltzsch: Optimal Control of Partial Differential Equations, AMS - M. Hinze et al.: Optimization with PDE Constraints, Springer, - G. Leugering & P. Kogut: Optimal Control of PDEs in Reticulated Do Birkhäuser. 	

1	Module name	Module 34: DiscOpt II: Discrete Optimization II	ECTS 10
2	Courses/lectures	a) Lectures: 4 weekly lecture hours b) Practical: 2 weekly lecture hour	
3	Lectures	Prof. Dr. Alexander Martin	
4	Module coordinator	Prof. Dr. Alexander Martin	
5	Content	In this lecture we cover theoretical aspects and solution strategies for difficult integer and mixed-integer optimization problems. First, we point out the equivalence between separation and optimization. Second, fundamental results of integral polyhedra, lattices and lattice polyhedra as well as its importance to discrete optimization are discussed. Furthermore, we introduce solution strategies for large-scale optimization problems, e.g., decomposition methods or approximation algorithms and heuristics based on linear programming. In addition, we discuss applications arising in engineering, finance, energy management or public transport.	
6	Learning objectives and skills	Students use basic terms of discrete optimization, model real-world discrete optimization problems, determine their complexity and solve them with appropriate mathematical methods.	
7	Prerequisites	Recommended: Knowledge in linear and combinatorial optimization, discrete optimization I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc Computational and Applied Ma Elective module for MSc Mathematics, Elective module for MSc Mathematics and Economics, Core/research module MSc Mathematics within "Modeling, simulat optimization", MSc Mathematics and Economics within "Optimiza process management"	ion,
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Attendance: 90 h Self-study: 210 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	

	Recommended reading	Lecture notes
		D. Bertsimas & R. Weismantel: Optimization over Integers, Dynamic Ideas, 2005
16		Conforti, Cornuéjols & Zambelli: Integer Programming, Springer 2014
		G. L. Nemhauser & L.A. Wolsey: Integer and Combinatorial Optimization, Wiley
		1994
		A. Schrijver: Combinatorial optimization Vol. A - C, Springer 2003
		A. Schrijver: Theory of Linear and Integer Programming, Wiley, 1986
		L.A. Wolsey: Integer Programming, Wiley