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1 Ergodicity and ergodic theorems

A huge part of this course is devoted to a study of ergodic decompositions of very general dynamical
systems. The main result is the Theorem of Raugi [15] that gives an ergodic decomposition in the
context of a countable family of Borel-automorphisms acting non-singularly on a standard probability
space (also Lebesgue-Rohlin space).1 Along the way a number of more sophisticated tools from
measure and ergodic theory must be introduced. We start nevertheless with some basic examples.

1.1 Introduction

1.1.1 Examples of dynamical systems

Let pΩ,A, µq be a probability space. We consider measurable maps T : Ω Ñ Ω that leave the measure
class of µ invariant, i.e. for which µ ˝ T´1 « µ. In many cases we will even have µ ˝ T´1 “ µ - then
we call pΩ,A, µ, T q a measure preserving dynamical system (mpds).

1.1.1 Example Ω “ Td :“ Rd{Zd, A the σ-algebra of Borel or Lebesgue sets, µ Lebesgue measure.
All arithmetic operations are of course taken mod Zd.

a) T pxq “ x` a for some a P Rd. Then µ ˝ T´1 “ µ. In this case T´1pxq “ x´ a.

b) T pxq “ Ax for some d ˆ d integer matrix A with detpAq ‰ 0. In this case T is invertible if and
only if | detpAq| “ 1, and then T´1pxq “ A´1x.

In both cases µ is T -invariant.

1.1.2 Example Ω “ t0, 1uN or Ω “ t0, 1uZ equipped with the product topology, A the Borel-σ-
algebra, T : Ω Ñ Ω the left shift, i.e. pT pωqqn “ ωn`1 for all n. This transformation is continuous.
In case of Ω “ t0, 1uN, T is not invertible; in case of Ω “ t0, 1uZ, T is a homeomorphism.

a) µ is the p-Bernoulli measure µp for some p P p0, 1q, that means µ is the infinite product of the
marginal measure pδ1 ` p1´ pqδ0.

b) µ “
ş1
0 µp dmppq is a mixture of Bernoulli measures (m is any Borel probability measure on

p0, 1q).

In both cases µ is T -invariant. (For some background on Bernoulli measures see e.g. [10, items
1.3-1.5, 1.9, 1.11, 2.3, 2.16, 2.17, 2.28].)

1.1.3 Example Ω “ t0, 1uZ, A and T as before, but µ “
`

µp ˝ pπ
´1
´8q

´1
˘

b
`

µp1 ˝ pπ
8
0 q
´1
˘

for
p ‰ p1. This µ is obviously not shift-invariant, but µ ˝ T´1 « µ.

1The ergodic decomposition result is claimed even for uncountable families in [15], but we will see in Example 3.2.12 that
at least the proof of this far reaching claim cannot be correct.
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1.1.4 Example For a domain D Ď R2d of finite volume let H P C2pDq. Consider the system of
differential equations (Hamiltonian system)

9qi “
B

Bpi
Hpq1, . . . , qd, p1, . . . , pdq

9pi “ ´
B

Bqi
Hpq1, . . . , qd, p1, . . . , pdq

(1.1.1)

pi “ 1, . . . , dq and suppose that for initial conditions in D the solution Φtpq, pq exists for all positive
and negative times t. Denote by µ the normalized Lebesgue measure on D and by A the σ-algebra of
Lebesgue measurable sets. By Liouville’s theorem each T “ Φt : D Ñ D preserves µ.

1.1.5 Remark The action of an invertible T can be interpreted as a measure preserving action of the
group pZ,`q on pΩ,A, µq: n ¨ ω :“ Tnpωq. It satisfies the flow equation

pn`mq ¨ ω “ n ¨ pm ¨ ωq for all n,m P Z . (1.1.2)

Similarly the group pR,`q acts by the family pΦtqtPR and satisfies the corresponding flow equation
for t ¨ ω :“ Φtpωq:

ps` tq ¨ ω “ s ¨ pt ¨ ωq .

In the same way one can define more general group actions, for example for the action of pZ2,`q
on t0, 1uZ

2
by the left shift pT1pωqqpi1,i2q “ ωpi1`1,i2q and the down shift pT2pωqqpi1,i2q “ ωpi1,i2`1q

(note that T1 ˝ T2 “ T2 ˝ T1):
pn1, n2q ¨ ω “ Tn1

1 pTn2
2 pωqq .

1.1.6 Remark Each mpds pΩ,A, µ, T q defines a linear operator on the Hilbert space L2pΩ,A, µq by

UT f :“ f ˝ T

that preserves the scalar product: xUT f, UT gy “
ş

pf ˝ T q ¨ pg ˝ T q dµ “
ş

f ¨ g dµ “ xf, gy. Indeed,
if T is invertible, UT is unitary.

A basic question is whether such systems can be decomposed into subsystems that can be studied
separately. Here ”decomposition” does not necessarily mean a decomposition of the space Ω but rather
a decomposition of the measure µ, although this sometimes yields a decomposition of the space as a
by-product. We tackle this question in the next subsection.

1.1.2 Ergodicity

Let us say that a mpds pΩ,A, µ, T q is decomposable, if there exists A P A with 0 ă µpAq ă 1
and T´1pAq “ A. Then also T´1pAcq “ Ac, and one can study the two subsystems T|A and T|Ac
independently from each other. For each ω P Ω, then A :“ tTnω : n P Zu is T -invariant, and naïvely
one might think that in a uncountable space there should always be many sets made up of complete
orbits. But, as we shall see, measurability of A can be a strong restriction to the construction of such
sets.

1.1.7 Definition Denote by IpT q :“ tA P A : T´1pAq “ Au the σ-algebra of T invariant measur-
able sets, and by IµpT q :“ tA P A : T´1pAq “ A mod µu. (They are both σ-algebras, indeed).

A mpds pΩ,A, µ, T q is ergodic, if @A P IpT q : µpAq P t0, 1u.
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1.1.8 Lemma Let pΩ,A, µ, T q be a mpds and let A P A. Then

BpAq :“
8
č

n“1

8
ď

k“n

T´kpAq P IpT q and µ

˜

8
ď

k“n

T´kpAq

¸

“ µpBpAqq @n P N .

Proof: Let Bn :“
Ť8
k“n T

´kpAq. Then T´1pBnq “ Bn`1 Ď Bn . As µpT´1pBnqq “ µpBnq,
this implies µpBnzBn`1q “ 0. Then BpAq “

Ş8
n“1Bn, T´1BpAq “ BpAq and µpBnq “ µpBpAqq

pn P Nq. l

1.1.9 Corollary Let Ω be a topological space with a countable basis, A its Borel σ-algebra and
pΩ,A, µ, T q an ergodic mpds. If µpUq ą 0 for each open set U , then pTnωqnPN is dense in Ω
for µ-a.e. ω.

Proof: Let U1, U2, . . . be a basis for the topology. By Lemma 1.1.8, µ
`
Ş8
i“1BpUiq

˘

“ 1, so that
almost every trajectory visits each Ui infinitely often. l

1.1.10 Theorem The following conditions are equivalent to the ergodicity of pΩ,A, µ, T q:

1) @A P IµpT q : µpAq P t0, 1u.

2) For all A,B P A with µpAq, µpBq ą 0 there is n P N such that µpT´npAq XBq ą 0.

3) For all µ-integrable f : Ω Ñ R holds: if f ˝ T “ f µ-a.e., then f “ const µ-a.e.

4) If f P L2pΩ,A, µq satisfies UT f “ f , then f “ const in L2.

Proof: The equivalence of 1) and of 2) follow from the foregoing lemma. The other equivalences
are an easy exercise, see e.g. [17, Theorems 1.6] l

We check the examples from subsection 1.1.1 for ergodicity.

1.1.11 Theorem Let Ω “ Td and let A and µ be as in Example 1.1.1.

a) The mpds with T pxq “ x` a, a P Rd, is ergodic if and only if @n P Zdzt0u : xn, ay R Z.

b) The mpds with T pxq “ Ax is ergodic if and only if A has no root of unity as an eigenvalue.

Proof: We make use of the fact that each f P L2pTd,A, µq has a unique Fourier series expansion
fpxq “

ř

nPZd cn e
2πi xn,xy with coefficients cn P C (convergence in L2).

a) For f P L2 we have

fpxq “
ÿ

nPZd
cn e

2πi xn,xy and

UT fpxq “ fpx` aq “
ÿ

nPZd
cn e

2πi xn,x`ay “
ÿ

nPZd
cn e

2πi xn,ay e2πi xn,xy,

so that UT f “ f if and only if cn “ cn e
2πi xn,ay for all n P Zd. If xn, ay R Z for all 0 ‰ n P Zd,

then cn “ 0 for all n ‰ 0 and f “ const in L2. If, on the other hand, there is 0 ‰ n P Zd such that
xn, ay P Z, then fpxq “ e2πi xn,xy is a UT -invariant non-constant L2-function. The claim follows
now from Theorem 1.1.10.
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b) Consider again f P L2. Now

UT fpxq “ fpAxq “
ÿ

nPZd
cn e

2πi xn,Axy “
ÿ

nPZd
cn e

2πi xAtn,xy .

Therefore, UT f “ f if and only if cAtn “ cn for all n P Zd, and is equivalent to

@n P Zd @k P N : cpAtqkn “ cn .

As
ř

nPZd |cn|
2 “ }f}22 ă 8, cn ‰ 0 implies that pAtqkn “ n for some k P Nzt0u. If A has

no eigenvalue which is a root of unity, it follows that cn “ 0 for all n P Zzt0u, i.e. f “ const in
L2. In view of Theorem 1.1.10 this proves the ergodicity of T . Conversely, if there A (and hence
At) has a k-th root of unity as eigenvalue, then pAtqk has eigenvalue 1. As pAtqk has only integer
coefficients, the it has an eigenvector v P Qdzt0u, and multiplying it with the product of all its
denominators, we can even assume that v P Zdzt0u. Define fpxq “

řk´1
j“0 e

2πixpAtqjv,xy. Then
f ‰ const but UT f “ f , so T is not ergodic.

l

Analogous characterizations of ergodicity are known for translations and endomorphisms of com-
pact metric groups equipped with Haar measure, see [17, §1.5]. Here we are more interested in
understanding the non-ergodic examples.

1.1.12 Remark Let Ω “ Td, A and µ be as in Example 1.1.1 and the previous theorem. We focus on
the non-ergodic cases.

a) Let T pxq “ x ` a. Consider first the case d “ 1. Then non-ergodicity is equivalent to a being
rational, a “ p{q. Then T qpxq “ x for all x, i.e. each set J Y T pJq Y ¨ ¨ ¨ Y T q´1pJq is invariant
such that there are plenty non-trivial measurable invariant sets. Denote by µx the equi-distribution
on the closed orbit OT pxq :“ tx, T pxq, . . . , T q´1pxqu. Then µ “

ş

Ω µx dµpxq in the sense that

µpAq “

ż

Ω
µxpAq dµpxq for all A P A . (1.1.3)

(This statement includes the assertion that the functions x ÞÑ µxpAq are measurable.) As each
pOT pxq,A|OT pxq, µx, T|OT pxqq is an ergodic mpds, (1.1.3) is an ergodic decomposition of the orig-
inal mpds. A more convincing way to write this down would be to consider the space OT :“
tOT pxq : x P T1u of all orbits of T . (In this algebraic setting OT can be interpreted as the factor
group T1{r1q s where r1q s denotes the subgroup of T1 generated by 1

q .2) So one might write

µ “

ż

OT
µω dpµ ˝ π

´1qpωq

where µω denotes the equidistribution on ω P OT and π : T1 Ñ OT maps x to ω “ OT pxq.

In case d ě 2 the situation is a bit more complex. For n P Zd denote

Gn :“ tx P Td : xn, xy P Zu .
2In more general situations this space may be rather awkward, and to deal with it properly is one of the things we will have

to learn.
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Gn is well defined, because for x P Rd and m P Zd holds: xn, xy P Zô xn, x`my P Z. Gn is a
subgroup of Td. If T is not ergodic, i.e. if xn, ay P Z, then xn, T pxqy “ xn, xy`xn, ay P xn, xy`Z.
In particular, T pGnq “ Gn, and also all cosets of Gn are invariant so that each subset A Ď Td
made up of cosets of Gn is T -invariant. Let x P Gn and v P Rd with 0 ă |xn, vy| ă 1. Then
xn, x`vy “ xn, vy`xn, xy R Z such that x`v R Gn. ThereforeGn is a finite collection of parallel
hyperplanes separated by a distance at least 1{}n}2. This implies that Gn and also each coset is
a finite union of parallel closed d ´ 1-dimensional submanifolds. In many cases this is already
the ergodic decomposition, but that need not be the case: consider d “ 2 and a P Q2, say a “
pp1{n1, p2{n2q. Then xn, ay “ p1`p2 P Z and T |n1n2|pxq “ x`|n1n2| a “ x`pn2p1, n1p2q “ x
in T2. Hence T acts like a rational rotation inside each coset.

b) Let T pxq “ Ax and assume that | detpAq| “ 1, i.e. T is a group isomorphism of Td. If T is
not ergodic, then A has an eigenvalue which is a root of unity, and the proof of Theorem 1.1.11
shows that there are indeed k P Nzt0u and n P Zdzt0u such that pAtqkn “ n. Hence, for all
x P Td we have xn, xy “ xpAtqkn, xy “ xn,Akxy “ xn, T kpxqy, in particular x P Gnô T kpxq P
Gn. The identity shows even more: T k leaves all cosets of Gn invariant, but again the ergodic
decomposition may be finer, just think of the case T “ idTd where the ergodic decomposition is
into single points (point masses on the level of measures).

1.1.13 Theorem The shift dynamical system pt0, 1uZ,A, µp, T q from Example 1.1.2a is ergodic.

Proof: Suppose A “ T´1pAq P A and let ε ą 0. As the measure µ is determined by the algebra
of sets that are specified on finitely many indices i P Z, there are s P N and B Ď Ω specified by the
indices from t´s, . . . , su and such that µpA4Bq ă ε. As µ is T -invariant, it follows easily that

µpT´2spAq4T´2spBqq ă ε and

µppAX T´2spAqq4pB X T´2spBqqq ă 2ε .

Hence,

|µpAq ´ µpAq2| “ |µpAX T´2spAqq ´ µpAqµpT´2spAqq|

ď |µpB X T´2spBqq ´ µpBqµpT´2spBqq| ` 4ε .

But as µ is a product measure and as B is specified by indices from t´s, . . . , su, the last difference
is zero so that |µpAq ´ µpAq2| ă 4ε. As ε was arbitrary, this implies µpAq “ µpAq2 and hence
µpAq P t0, 1u. l

1.1.14 Remark What about the measure µ “
ş1
0 µp dmppq from Example 1.1.2b? It is explicitly de-

scribed as a mixture of ergodic invariant measures, so its integral representation should be already the
ergodic decomposition. This decomposition can also be realized as a decomposition of the underlying
space Ω “ t0, 1uZ: For p P r0, 1s let

Ω˘p :“

#

ω P Ω : lim sup
nÑ8

1

n

n´1
ÿ

k“0

ω˘k “ p

+

Obviously, Ω “
Ţ

pPr0,1sΩ
`
p and also Ω “

Ţ

pPr0,1sΩ
´
p . Furthermore, by the law of large numbers,

µppΩ
`
p q “ µppΩ

´
p q “ 1. This shows a problem with the decomposition of the space: It is far from
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unique, because Ω`p X Ω´p1 ‰ H for all p, p1 P r0, 1s. Observe also that each Ω˘p is dense in Ω by
Corollary 1.1.9. Indeed, for each p P p0, 1q the orbit pTnpωqqnPN is dense in Ω for µp-a.e. ω.

It remains to study the non-shift invariant measure µ “
`

µp ˝ pπ
´1
´8q

´1
˘

b
`

µp1 ˝ pπ
8
0 q
´1
˘

from
Example 1.1.3. I do not know whether it is ergodic.

1.1.15 Remark For Hamiltonian flows as in Example 1.1.4 the Hamiltonian H itself is a constant of
motion:

d

dt
pH ˝ Φtq “

d
ÿ

i“1

ˆ

BH

Bqi
˝ Φt ¨ 9qiptq `

BH

Bpi
˝ Φt ¨ 9piptq

˙

“

d
ÿ

i“1

p´ 9piptq 9qiptq ` 9qiptq 9piptqq “ 0

It follows that UΦTH “ H for each t P R. If H is non-constant (otherwise there is no movement),
Hamiltonian flows and their time-t-maps are not ergodic. Whether the ”energy shells” tH “ Eu for
E P R yield the ergodic decomposition or whether there are additional integrals of motion can be a
mathematically very deep problem – depending on the concrete example.

1.1.16 Remark If one does not just study the action of a single measure preserving transformation or
one-parameter flow but the action S “ pSgqgPG of a more general group on pΩ,A, µq, then ergodicity
of this action is defined in terms of the σ-algebra

IpSq :“ tA P A : S´1
g pAq “ A @g P Gu “

č

gPG

tA P A : S´1
g pAq “ Au ,

and if this σ-algebra is not trivial, one would like to know its ergodic decomposition.

1.1.3 Exercises

1.1.1 Determine dpµ˝T´1q

dµ in Example 1.1.3.

1.1.2 Let pΩ,A, µ, T q be a mpds - invertible or not. Prove that U˚TUT “ idL2 and that UTU˚T is the
orthogonal projection onto UT pL2q.

1.1.3 Suppose that T is invertible on pΩ,A, µq and that µ ˝ T « µ but that µ is not necessarily T -

invariant. Define UT f :“
b

dpµ˝T q
dµ ¨ pf ˝ T q and prove that UT is a unitary operator on L2pΩ,A, µq.

1.1.4 Let pΩ,A, µ, T q be a mpds. Prove that the system is ergodic if and only if each for T -invariant
probability ν on pΩ,Aq holds: ν ! µ ñ ν “ µ. Hint: The proof for invertible systems is rather
straightforward; for non-invertible ones conditional expectations can help.

1.1.5 Let T be a rotation or an endomorphism of Td. Prove that T is ergodic if and only if Lebesgue-
almost all ω P Td have a dense orbit under T .

1.1.6 Let Ω “ t0, 1uN, µ “ µ1{2 and A the Borel σ-algebra (or its µ-completion) of Ω. For ω P Ω
denote

`pωq “ inft` P N : ω` “ 0u p“ `8 if no such ` exists).

9



Define T : Ω Ñ Ω as

pT pωqqi “

$

’

&

’

%

0 if i ă `pωq

1 if i “ `pωq

ωi if i ą `pωq

(This is the so called binary adding machine - addition with carry to the right. It is also called an
odometer.) Prove that µ ˝ T´1 “ µ and that the system pΩ,A, µ, T q is ergodic.

1.2 Birkhoff’s ergodic theorem

1.2.1 Theorem Let pΩ,A, µ, T q be a mpds and f P L1pΩ,A, µq. Then

f̄pωq :“ lim
nÑ8

1

n

n´1
ÿ

k“0

fpT kpωqq

exists for µ-a.e. ω P Ω, and f̄ is a version of the conditional expectation Eµrf | IpT qs, i.e.

(1) f̄ is IpT q-measurable mod µ and

(2) @ A P IpT q :
ş

A f̄ dµ “
ş

A f dµ.

(Observe that f̄ is uniquely characterized ( mod µ) by properties (1) and (2).)

There are many different proofs of this theorem. The one in [10, Satz 15.1] assumes that the concept
of a conditional expectation is known in the sense that a function f̄ with properties (1) and (2) exists.
We recall briefly the main steps to the construction of this object.

Let µ and ν be σ-finite measures on a measurable space pΩ,Aq.

• ν has density f w.r.t. µ, in short ν “ fµ, if @A P A : νpAq “
ş

A f dµ.

• ν is absolutely continuous w.r.t. µ, in short ν ! µ, if @A P A : µpAq “ 0 ñ νpAq “ 0.

Obviously ν “ fµ implies ν ! µ. The converse is guaranteed by the Randon-Nikodym theorem[10,
Satz 11.13].

1.2.2 Theorem If ν ! µ, then ν has density w.r.t. µ. This density is uniquely determined mod µ,
and it is denoted by dν

dµ .

A surprising application is the following: Let pΩ,A, µq be a probability space and let 0 ď f P
L1pΩ,A, µq. Then fµ is a finite measure on pΩ,Aq and fµ ! µ. Now consider a sub-σ-algebra
F Ď A and restrict both measures to F . Then pfµq|F ! µ|F , and the Radon-Nikodym theorem can
be applied to these two measures on pΩ,Fq. This results in the density

Eµrf | Fs :“
d ppfµq|F q

d pµ|F q
,

which is a F measurable function Ω Ñ R (defined only mod µ). This is property (1) in the ergodic
theorem. If A P F , then
ż

A
Eµrf | Fs dµ “

ż

A
Eµ | Fs dµ|F “

ż

A

d ppfµq|F q

d pµ|F q
dµ|F “

ż

A
dpfµq|F “

ż

A
dpfµq “

ż

A
f dµ ,

10



which is property (2) in the ergodic theorem. For more on conditional expectations see [10, Kap. 12].
There you read in particular that Eµrf | Fs is the orthogonal projection of f onto the closed linear
subspace L2pΩ,F , µq.

If F is trivial, i.e. if F contains only sets of measure 0 or 1, then Eµrf | Fs is constant because of
(1), and the constant value is

ş

f dµ because of (2). This yields the following corollary of the ergodic
theorem:

1.2.3 Corollary Let pΩ,A, µ, T q be an ergodic mpds and f P L1pΩ,A, µq. Then

lim
nÑ8

1

n

n´1
ÿ

k“0

fpT kpωqq “

ż

f dµ for µ-a.e. ω P Ω.

1.2.4 Remark A far-reaching generalization of the ergodic theorem will be proved in the next chapter.
The starting point for this generalization is that the map f ÞÑ f ˝ T is a positive linear contraction on
L1pΩ,A, µq:

• pαf ` βgq ˝ T “ α pf ˝ T q ` β pg ˝ T q

• f ě 0ñ f ˝ T ě 0

• }f ˝ T }1 “
ş

|f ˝ T | dµ “
ş

|f | dµ “ }f}1 (Here ”ď” would be sufficient for a contraction.)

Indeed, we will prove very general ergodic theorems for such linear operators on L1. A special case
will be Birkhoff’s ergodic theorem, and the more general statements will be used in later chapters.

1.2.1 Exercises

1.2.1 Consider the mpds pt0, 1uN,A, µp, T q from Example 1.1.2 with the left shift T . Determine the
limit

lim
nÑ8

1

n
#tk P t0, . . . , n´ 1u : ωkωk`1ωk`2 “ 101u

for µp-a.e. ω.

1.2.2 Consider the mpds pt0, 1uN,A, µ, T q from Example 1.1.2 with the left shift T and the measure
µ “

ş

p0,1q µp dmppq. Determine the limit

lim
nÑ8

1

n
#tk P t0, . . . , n´ 1u : ωkωk`1ωk`2 “ 101u

for µ-a.e. ω.

1.2.3 Consider T : T1 Ñ T1, T pxq “ x` a with some irrational a P R and let f P CpT1,Rq. Prove
that limnÑ8

1
n

řn´1
k“0 fpT

kpωqq “
ş

T1 fpxq dx for all ω P T1.

11



2 Ergodic theory of positive L1-contractions

This chapter follows the corresponding parts of the textbooks by Neveu [13] and Krengel [11], mostly
[11, §§3.1-3.3]. Throughout the chapter we fix a σ-finite measure space pΩ,A,mq. We use the short-
hand notation Lp for LppΩ,A,mq.

2.1 The Hopf decomposition

2.1.1 Operators and kernels

2.1.1 Definition a) A map p : ΩˆAÑ r0, 1s is a substochastic kernel if

(K1) ω ÞÑ ppω,Aq is A-measurable for all A P A, and

(K2) A ÞÑ ppω,Aq is a measure for all ω P Ω.

p is a stochastic kernel if ppω,Ωq “ 1 for all ω P Ω.

b) The kernel p is null-preserving, if ppω,Aq “ 0 for m-a.e. ω if A P A and mpAq “ 0.

2.1.2 Examples a) T : Ω Ñ Ω is measurable and m ˝ T´1 « m. Define ppω,Aq “ δT pωqpAq. If
mpAq “ 0, then mpT´1pAqq “ 0 and hence ppω,Aq “ δωpT

´1pAqq “ 0 for µ-a.e. ω.

b) Ω “ Z, m the counting measure and ppω, . q “ 1
2δω´1`

1
2δω`1. This kernel describes the random

transitions of a symmetric nearest neighbour random walk on Z. ppω,Aq is the probability to be
in A at time t` 1 if the process is in ω at time t.

A null-preserving substochastic kernel p defines the following linear operators:

P : L1 Ñ L1, Pfpωq “
d

dm

ˆ
ż

fpω1qppω1, . q dmpω1q

˙

pωq

P ˚ : L8 Ñ L8, P ˚hpωq “

ż

hpω1q ppω, dω1q .

(2.1.1)

Both operators are positive linear contractions. For P ˚ this is quite obvious. For P observe first that
the integral expression is a finite measure (it is the mixture of the (sub-)probability measures P pω, . q
with the finite measure fm), and that this measure is! m, because the kernel is null-preserving. Then
linearity and positivity of P are obvious, and

}Pf}1 “

ż

Ω
|Pf | dm ď

ż

Ω
P |f | dm “

ż

Ω
|f |pωqppω,Ωq dmpωq ď

ż

Ω
|f | dm “ }f}1

shows that P is a contraction. Note also that for all A P A
ż

A
Pf dm “

ż

A
d

ˆ
ż

fpω1qppω1, . q dmpω1q

˙

“

ż

fpω1qppω1, Aq dmpω1q (2.1.2)

and that this identity determines P uniquely.
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P ˚ is indeed the dual to P : For f P L1 and h P L8 we have by Fubini’s theorem (version for
kernels)

ż

P ˚h ¨ f dm “

ż
ˆ
ż

hpω1q ppω, dω1q ¨ fpωq

˙

dmpωq

“

ż

hpω1q
d

dm

ˆ
ż

fpωqppω, . q dmpω

˙

pω1q dmpω1q

“

ż

h ¨ Pf dm

(2.1.3)

2.1.3 Remark In a later chapter we will see that on most ”interesting” probability spaces each linear
contraction P : L1 Ñ L1 is associated to a null-preserving kernel as above.

2.1.4 Examples a) The kernel ppω,Aq “ δT pωqpAq from Example 2.1.2a gives rise to operators P

and P ˚ where P ˚hpωq “ hpT pωqq and Pf “
dppf mq˝T´1q

dm . If T is invertible this can also be

written as Pf “ f ˝ T´1 ¨
dpm˝T´1q

dm .

b) The kernel ppω, . q “ 1
2δω´1`

1
2δω`1 on Z from Example 2.1.2b gives rise to operators P and P ˚

where P ˚hpωq “ 1
2hpω ´ 1q ` 1

2hpω ` 1q (conditional expectation of h one time step ahead) and
Pfpωq “ 1

2fpω ` 1q ` 1
2fpω ´ 1q (here f is to be interpreted as a probability vector and Pf is

the new probability distribution after one step of time). For the determination of Pfpωq one has to
use the translation invariance of m.

In the next sections it will play no role whether such a dual pair of contractions is defined using a
kernel or not. Later we will see that on most spaces all such operators stem from a kernel. Here are
two examples where this is not so obvious:

2.1.5 Example Let pΩ,A, µ, T q be a mpds and define P : L1 Ñ L1 by Pf :“ f ˝ T . This is
obviously a positive linear contraction, see Remark 1.2.4. Observe that the same composition - but on
L8 - occured in the previous example. Note that, for invertible T , P ˚f “ f ˝T´1, hence P´1 “ P ˚,
and in particular P1 “ 1 and also P ˚1 “ 1 with 1 P L1 X L8.

2.1.6 Example Let pΩ,A, µq be a probability space, F Ď A a sub-σ-algebra, and define P : L1 Ñ

L1 by Pf “ Eµrf | Fs. Then P is linear, Pf ě 0 if f ě 0, and }Pf}1 “
ş

|Eµrf | Fs| dµ ď
ş

Eµr|f | | Fs dµ “
ş

|f | dµ “ }f}1, so P is a positive linear L1-contraction. P ˚h is uniquely
characterized by duality: for all f P L1 we have

ż

P ˚h ¨ f dµ “

ż

h ¨ Eµrf | Fs dµ “
ż

Eµrh f | Fs dµ “
ż

Eµrh | Fs ¨ f dµ ,

so that also P ˚h “ Eµrf | Fs.
It follows immediately that for two sub-σ-algebras F1,F2 and their corresponding conditional ex-

pectation operators P1 and P2 also the composition P2P1 is a positive linear contraction on L1.

2.1.7 Lemma Let P be a positive linear contraction on L1pΩ,A,mq.

a) If 0 ď fn Õ f P L1 m-a.e., then 0 ď Pfn Õ Pf P L1 m-a.e. and }Pf ´ Pfn}1 Ñ 0.

b) If hn Œ 0 m-a.e., hn P L8, then P ˚hn Œ 0 m-a.e. Equivalently, if 0 ď hn Õ h P L8 m-a.e.,
then also P ˚hn Õ P ˚h m-a.e.
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Proof:

a) 0 ď Pfn Õ g for some g by positivity of P . As supn Pfn dm ď supn
ş

fn dm ď
ş

f dm ă 8,
Beppo Levi’s theorem implies }Pfn ´ Pf}1 ď }fn ´ f}1 Ñ 0 and }g ´ Pf}1 ď }g ´ Pfn}1 `
}Pfn ´ Pf}1 Ñ 0, i.e. Pfn Õ g “ Pf m-a.e.

b) P ˚hn Œ h ě 0 m-a.e. for some h P L8 follows from the monotonicity of P ˚. Let A P A with
mpAq ă 8. Then 1AP

˚hn ď 1AP
˚h1 ď 1A }h1}8 and hn P1A ď h1 P1A ď }h1}8 P1A so

that we can use dominated convergence twice to get
ż

A
h dm “ lim

nÑ8

ż

A
P ˚hn dm “ lim

nÑ8

ż

hn P1A dm “ 0 .

It follows that h “ 0 m-a.e. If 0 ď hn Õ h, consider 0 ď ph´ hnq Œ 0.

l

2.1.8 Remark If h : Ω Ñ r0,8s is measurable, one can define h ^ n :“ mintn, hu such that
0 ď h^ nÕ h. Then also 0 ď P ˚ph^ nq Õ, and as we just saw, the limit of this sequence is P ˚h
if h P L8. Otherwise we define P ˚h to be this limit. Then, if hk P L8` and hk Õ h, we have

sup
k
P ˚hk “ sup

k
sup
n
P ˚phk ^ nq “ sup

n
sup
k
P ˚phk ^ nq “ sup

n
P ˚ph^ nq “ P ˚h .

2.1.2 The conservative and dissipative part

We continue to work with a σ-finite measure space pΩ,A,mq and a positive L1 contraction P .

2.1.9 Definition a) A measurable function h : Ω Ñ R` is called harmonic, if P ˚h “ h.

b) A measurable function h : Ω Ñ R` is called superharmonic, if P ˚h ď h. It is called strictly
superharmonic on A if P ˚h ă h on A.

2.1.10 Theorem (Hopf decomposition: 1) There exists a decomposition Ω “ CZD into measurable
sets determined uniquely mod µ by:
(C1) If h is superharmonic, i.e. P ˚h ď h, then P ˚h “ h on C.
(D1) There exists a bounded superharmonic h0 which is strictly superharmonic on D.
h0 may be chosen with the additional properties h0 “ 0 on C, h0 ď 1, and P ˚nh0 Ñ 0 on D.

Proof: As m is σ-finite there exists a probability measure µ « m. Let

S :“ tA P A : Dg ď 1 which is superharmonic, strictly on Au .

S has the obvious property that for any A P S and any measurable A1 Ă A also A1 P S .
If A1, A2, ¨ ¨ ¨ P S with strict superharmonics g1, g2, . . . , then A :“

Ť

nPNAn P S, because 0 ď
g :“

ř

nPN 2´ngn ď 1 and on each set Ak we have

P ˚g “
ÿ

nPN
2´nP ˚gn ă 2´kgk `

ÿ

nPNztku
2´ngn ă g .
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Therefore the following supremum is attained by some set D P S with bounded strict superharmonic
gD:

α :“ suptµpAq : A P Su .

Let C :“ Dc and consider any (also unbounded) superharmonic h. If it is not harmonic on C, then
there is a measurableB Ď C with µpBq ą 0 such that h is strictly superharmonic onB. Choose some
β P R` for which B1 :“ B X tP ˚h ă β ď hu has positive measure. Then, because 0 ď P ˚1 ď 1,
the function 0 ď g :“ mintβ´1h, 1u ď 1 is superharmonic and strictly superharmonic on B1:
P ˚g ď mintβ´1P ˚h, 1u ď mintβ´1h, 1u “ g with strict inequality on B1. Hence B1 P S and
therefore B1 Ď D in contradiction to B1 Ď B Ď C and µpB1q ą 0. Therefore h is harmonic on C.
This proves (C1) and (D1).

Finally, as gD from above is superharmonic and as P ˚ is positive, gD ě P ˚gD ě P ˚2gD ě . . . ,
and the sequence converges to some g̃ ě 0. As gD is strictly superharmonic on D, g̃ ă gD on D.
By(C1), g̃ “ gD on C. Finally, P ˚g̃ “ limnÑ8 P

˚n`1gD “ g̃, and so h0 :“ gD ´ g̃ has the
additional required properties. l

2.1.11 Corollary P ˚1 “ 1 on C.

For f P L1, h P L8 and n P NY t8u we use the notation

Snf “
n´1
ÿ

i“0

P if and S˚nh “
n´1
ÿ

i“0

P ˚ih .

2.1.12 Theorem (Hopf decomposition: 2) The sets C and D of the Hopf decomposition are deter-
mined uniquely mod µ by
(C2) For all h P L8` : S˚8h “ 8 on C X tS˚8h ą 0u.
(D2) DhD P L8` : thD ą 0u “ D and S˚8hD ď 1.
hD can be chosen such that S˚8hD “ 0 on C.

Proof: Let h0 be as in Theorem 2.1.10 and set hD :“ h0 ´ P
˚h0. As h0 is strictly superharmonic

on D, hD ą 0 on D, and as h0 “ 0 on C, also hD “ 0 on C. Finally

S˚nhD “
n´1
ÿ

i“0

P ˚iph0 ´ P
˚h0q “ h0 ´ P

˚nh0 ď h0

and hence S˚8hD ď h0 ď 1, which proves (D2) and also S˚8hD “ 0 on C.
Now let h P L8` . Consider h̃ :“ mint1, S˚8hu. As P ˚1 ď 1 and P ˚pS˚8hq “

ř8
i“1 P

˚ih ď S˚8h,
we have P ˚h̃ ď h̃ ď 1 and P ˚j`1h̃ ď P ˚j h̃ ď 1 for all j ě 0. Hence P ˚j`1h̃ “ P ˚j h̃ on C for all
j ě 0, i.e. P ˚j h̃ “ h̃ on C for all j ě 0. Therefore, on C X tS˚8h ă 8u,

h̃ “ P ˚j h̃ ď
8
ÿ

i“j

P ˚ihÑ 0 as j Ñ8

so that S˚8h “ h̃ “ 0 on this set. This implies tS˚8h ą 0u X C X tS˚8h ă 8u “ H mod m, which
is just (C2). l
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2.1.13 Theorem (Hopf decomposition: 3) The sets C and D of the Hopf decomposition are deter-
mined uniquely mod µ by
(C3) For all f P L1

`: S8f “ 8 on C X tS8f ą 0u.
(D3) For all f P L1

`: S8f ă 8 on D.

Proof: For hD from (D2) and f P L1
` we have

xS8f, hDy “ xf, S
˚
8hDy ď xf, 1y ă 8 .

As hD ą 0 on D this implies (D3).
Now let f P L1

`. Asm is σ-finite, there is h̃ P L1
` with h̃ ď 1 and th̃ ą 0u “ CXt0 ă S8f ă 8u.

Let h :“ h̃
1`S8f

. Then 0 ď h ď 1, th ą 0u “ th̃ ą 0u, and it follows from (C2) that S˚8h “ 8 on

C X tS˚8h ą 0u Ě C X th ą 0u “ C X th̃ ą 0u “ th̃ ą 0u. Hence, for each n P N,

xPnf, S˚8hy “ xS8pP
nfq, hy ď xS8f, hy ď

ż

Ω
h̃ dm ă 8 .

As S˚8h “ 8 on th̃ ą 0u, this implies Pnf “ 0 for all n on th̃ ą 0u. It follows that S8f “ 0 on
th̃ ą 0u “ C X t0 ă S8f ă 8u, i.e. m pC X t0 ă S8f ă 8uq “ 0. This is (C3). l

2.1.14 Examples a) Let pΩ,A, µ, T q be a mpds. Then P : L1 Ñ L1, Pf “ f ˝T is a L1-contraction
(because µ˝T´1 “ µ). P is conservative, i.e. C “ Ω mod µ, because 1 P L1

`, Pn1 “ 1˝Tn “ 1
for all n and hence S81 “ 8 everywhere. (If µ ˝ T´1 « µ but if µ is not invariant, then this need
no longer hold.)

b) Let pΩ,A, µq be a probability space and let P : L1 Ñ L1 be a composition of conditional expec-
tations, see Example 2.1.6. Then P1 “ 1, and as before it follows that P is conservative.

2.1.15 Example Let pΩ,A, µq be a probability space and let T : Ω Ñ Ω be measurable with µ ˝
T´1 « µ. The kernel ppω,Aq “ δT pωqpAq determines a L1-contraction P , see Example 2.1.2a.

a) For s P N let Ds :“ tS81 ď su. Then Ds Õ D by (D3). For each s P N

8
ÿ

n“0

µtω : Tnpωq P Dsu “

8
ÿ

n“0

ż

Ω
1Ds ˝ T

n dµ “
8
ÿ

n“0

ż

Ω
P ˚n1Ds dµ “

8
ÿ

n“0

ż

Ds

Pn1 dµ

“

ż

Ds

S81 dµ ď s ă 8 .

By the Borel-Cantelli Lemma, µ-a.e. trajectory visits each Ds only finitely often.

b) Let U Ď C be measurable. Then (C2) applied to h “ 1U yields

8
ÿ

n“0

1U pT
nωq “

8
ÿ

n“0

P ˚n1U pωq “ 8

for µ-a.e. ω P C X tS˚81U ą 0u “ C X
Ť8
n“0 T

´npUq. It follows that µ-a.e. ω that visits U at
all, visits U infinitely often.

2.1.16 Definition a) For B P A we denote LppBq :“ tf P Lp : tf ‰ 0u Ď Bu.
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b) B P A is P -absorbing, if P pL1pBqq Ď L1pBq.

c) C :“ tB P A : B Ď C and B is P -absorbingu.

d) P is called ergodic, if P ˚1A “ 1A implies A “ H or A “ Ω mod µ.

2.1.17 Theorem C P C, i.e. the conservative part C of a positive L1-constraction P is P -absorbing.

Proof: Let hD be as in (D2) with thD ą 0u “ D and S˚8hD “ 0 on C. Then, for each f P L1pCq,

x|Pf |, hDy ď xP |f |, hDy “ x|f |, P
˚hDy ď

ż

|f |S˚8hD dm “ 0

so that Pf “ 0 on D, i.e. Pf P L1pCq. l

2.1.18 Theorem a) B is P -absorbing if and only if P ˚1Bc ď 1Bc , i.e. 1Bc is superharmonic.

b) If C “ Ω, then B P C if and only if P ˚1B “ 1B .

c) C|C is a σ-algebra.

Proof: a) Let B be P -absorbing. There is f P L1
`pBq such that tf ą 0u “ B. Then xf, P ˚1Bcy “

xPf, 1Bcy “ 0, because also Pf P L1pBq. Hence P ˚1Bc “ 0 on B. As P ˚1Bc ď P ˚1 ď 1, this
proves P ˚1Bc ď 1Bc . On the other hand, if this inequality holds and if g belongs to L1

`pBq, then

0 ď xPg, 1Bcy “ xg, P
˚1Bcy ď xg, 1Bcy “ 0 ,

so that Pg P L1pBq. For general g P L1pBq use the decomposition g “ g` ´ g´.
b) P ˚1 “ 1 by Corollary 2.1.11. Hence

B P C ô P ˚1Bc ď 1Bc ô P ˚1Bc “ 1Bc ô P ˚1´ P ˚1B “ 1´ 1B ô P ˚1B “ 1B

where we used (C1) of Theorem 2.1.10 for the second equivalence.
c) Suppose first that Ω “ C. Then P ˚1 “ 1 and B P C ô P ˚1B “ 1B . It follows that C is closed
under passing to the complement, and also under finite intersection: If A,B P C, then P ˚1AXB ď
P ˚1A “ 1A and P ˚1AXB ď P ˚1B “ 1B . Hence P ˚1AXB ď 1AXB so that pAX Bqc P C. Hence C
is an algebra, and in view of Lemma 2.1.7b it is even a σ-algebra. (One can use the lemma to see that
it is a Dynkin-system or a monotone class.)

If C is a strict subset of Ω, then the previous arguments apply to P |L1pCq. This operator is clearly
conservative, and B Ď C is P -absorbing if and only if it absorbing under this restriction. l

2.1.19 Corollary If C “ Ω, then P is ergodic if and only if C is trivial.

2.1.20 Theorem If P is invertible and if also P´1 is a positive L1-contraction, then P ˚1B “ 1B for
each B P C. (So C is the σ-algebra of invariant sets).
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Proof: As P ˚1 ď 1 and P ˚´11 ď 1, we have P ˚1 “ 1. Let B P C. Then P ˚1Bc ď 1Bc so
that P ˚1B “ P ˚1 ´ P ˚1Bc ě 1 ´ 1Bc “ 1B . Let h :“ P ˚1B ´ 1B . Then 0 ď h ď 1. Let
h̃ :“ P ˚´1h “ 1B ´ P

˚´11B . Then also 0 ď h̃ ď 1. Now

n
ÿ

k“0

P ˚kh̃ “ P ˚n1B ´ P
˚´11B ď 1 for all n ě 1,

so that also
ř8
k“0 P

˚kh̃ ď 1. Therefore, by (D2) of Theorem 2.1.12, h̃ “ 0 on C. As B Ď C, this
implies P ˚´11B “ 1B , i.e. P ˚1B “ 1B . l

2.1.3 Exercises

2.1.1 Let pΩ,A,mq be a σ-finite measure space and T : Ω Ñ Ω a measurable map that satisfies m ˝
T´1 « m. Consider the L1-contraction P whose dual is given by P ˚h “ h ˝ T (see Example 2.1.4),
and denote its dissipative part by D. Prove that

1. #tn P N : Tnpωq P Du “ 0 for m-a.e. ω P C and
2. there are Dk Õ D such that #tn P N : Tnpωq P Dku ď k for all k P N and m-a.e. ω P Ω.

2.1.2 Let pΩ,A, µq be a probability space.

a) Prove that P is conservative if
ş

P ˚h dµ “
ş

h dµ for each h P L8.

b) Prove that each L1-contraction given by a conditional expectation is conservative.

c) Let pΩ,A, µq be a probability space and consider a L1-contraction which is a composition of two
(or more) conditional expectation operators. Prove that it is conservative. (The composition of
arbitrary conservative operators need not be conservative, though.)

2.1.3 Let pΩ,A, µ, T q be a mpds and P : L1 Ñ L1, Pf “ f ˝ T as in Example 2.1.5. Determine
P ˚h.

2.1.4 Give an example of two conservative positive L1-contractions whose composition is not con-
servative. Hint: The simplest examples are based on composition operators.

2.1.5 Let Ω “ Z with the counting measure m and consider Pfpωq “ 1
2fpω` 1q ` 1

2fpω´ 1q as in
Example 2.1.4.

1. Determine the conservative and the dissipative part of P .
2. Do the same for the operator Pfpωq “ αfpω ` 1q ` p1´ αqfpω ´ 1q when α P p0, 1qzt1

2u.

2.2 Ergodic theorems

2.2.1 The Chacon-Ornstein theorem

Let f P L1, g P L1
`. In this subsection we prove that SnfSng

converges m-a.e. on tS8g ą 0u.
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The filling scheme We need a number of notations.

• For f, g P L1
` we write f 1

Ñ g if Dr, s P L1
` : f “ r ` s and g “ r ` Ps.

• f n
Ñ g if Dg1 : f

n´1
Ñ g1 and g1

1
Ñ g.

• U : L1 Ñ L1, Uh :“ Ph` ´ h´ is the nonlinear (!) filling operator.

• Mnf :“ maxtS1f, . . . , Snfu.

2.2.1 Lemma For f, g P L1
`, h “ f ´ g and n P N there exists fn P L1

` such that Unh “ fn´ g and
f

n
Ñ fn.

Proof: For n “ 0 take f0 “ f . Determine fn`1 inductively: let tn :“ fn ´ pU
nhq` and observe

that tn ě 0 and pUnhq´ “ pUnhq` ´ Unh “ fn ´ tn ´ fn ` g “ g ´ tn. Hence Un`1h “

P ppUnhq`q ´ pUnhq´ “ P ppUnhq`q ` tn ´ g “: fn`1 ´ g and fn
1
Ñ fn`1 as fn “ pUnhq` ` tn.

l

2.2.2 Lemma For h P L1 and n P N we have Unh ě 0 on tMn`1h ą 0u.

Proof: By definition, pUhq´ ď h´ so that inductively h´ ě pUhq´ ě pU2hq´ ě . . . . Therefore
it is sufficient to show that for m-a.e. ω P tMn`1h ą 0u there exists some k P t0, . . . , nu such
that pUkhq`pωq ą 0. This is equivalent to showing that ϕ`pωq :“

ř`
k“0pU

khq`pωq ą 0 for some
` P t0, . . . , nu. We will show that

ϕ` ě S``1h for all `. (2.2.1)

This implies max`“0,...,n ϕ`pωq ě max`“1,...,n`1 S`hpωq “Mn`1hpωq which proves the claim.
We turn to the proof of (2.2.1). For ` “ 0 it is the trivial fact that h` ě 0. Inductively,

S``2h “ h` PS``1h

ď h` Pϕ` “ h`
ÿ̀

k“0

P ppUkhq`q “ h`
ÿ̀

k“0

pUk`1h` pUkhq´q

“ h`
ÿ̀

k“0

ppUk`1hq` ´ pUk`1hq´ ` pUkhq´q

“ h` ϕ``1 ´ h
` ` h´ ´ pU ``1hq´ “ ϕ``1 ´ pU

``1hq´ ď ϕ``1

l

2.2.3 Lemma for f P L1 and g P L1
` we have limnÑ8

Pnf
Sn`1g

“ 0 m-a.e. on tS8g ą 0u.

Proof: We may consider f` and f´ separately and thus assume that f ě 0. We can also assume
that

ş

g dm “ 1 so that gm is a probability measure. Fix ε ą 0 and set rn “ Pnf ´ εSn`1g and

An :“

"

Pnf

Sn`1g
ą ε

*

X tg ą 0u “ trn ą 0u X tg ą 0u .

Then
rn “ Prn´1 ´ εg ď Pr`n´1 ´ εg pn ě 1q
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so that indeed
r`n ď Pr`n´1 ´ ε1Ang .

Hence
ż

ε1Ang dm ď

ż

Pr`n´1 dm´

ż

r`n dm ď

ż

r`n´1 dm´

ż

r`n dm .

Summing over n ě 1 we obtain

8
ÿ

n“1

pgmqpAnq ď ε´1

ż

r`0 dm ď ε´1

ż

f` dm ă 8 .

By Borel-Cantelli, #
!

n P N : Pnfpωq
Sn`1gpω

ą ε
)

ă 8 holds for gm-a.e. ω and hence for m-a.e. ω P

tg ą 0u. As ε ą 0 was arbitrary this proves 0 ď lim supnÑ8
Pnf
Sn`1g

ď 0 m-a.e. on tg ą 0u.
Applying this argument to P jf and P jg (any j P N) we obtain

0 ď lim sup
nÑ8

Pnf

Sn`1g
ď lim sup

nÑ8

Pn`jf

Sn`1pP jgq
ď lim sup

nÑ8

Pn`jf

Sn`j`1g
ď 0 .

Hence limnÑ8
Pnf
Sn`1g

“ 0 m-a.e. on tS8g ą 0u. l

2.2.4 Lemma Let f, g P L1
`, k ě 1, g k

Ñ g1 and γ ą 1. Then
"

lim sup
nÑ8

Snpf ´ gq ą 0

*

Ď

"

lim sup
nÑ8

Snpγf ´ g1q ą 0

*

(2.2.2)

Proof: We prove the lemma first for k “ 1. Then this result can be applied repeatedly with γ1{k

instead of γ to treat general k P N.
As g 1

Ñ g1, there are r, s P L1
` such that g “ r ` s and g1 “ r ` Ps. Hence

Snpγf ´ g1q “

n´1
ÿ

i“0

P ipγf ´ g ` g ´ r ´ Psq “ Snpγf ´ gq `
n´1
ÿ

i“0

P ips´ Psq

“ Snpγf ´ gq ` s´ P
ns ě Snpf ´ gq ` pγ ´ 1qSnf ´ P

n´1Ps .

By Lemma 2.2.3, Pn´1pPsqpωq ă pγ´1qSnfpωq if S8fpωq ą 0 and n is suffciently large (depend-
ing on ω). Hence lim supnÑ8 Snpγf ´ g1q ě lim supnÑ8 Snpf ´ gq on tS8f ą 0u and, restricted
to tS8f “ 0u, the inclusion (2.2.2) is trivial, because both sets are empty. l

To proceed we need some more notation:

• For H P A, f P L1
` and n P N define

Ψn
Hf :“ sup

"
ż

H
g dm : f

n
Ñ g

*

and ΨHf :“ lim
nÑ8

Ψn
Hf .

(Observe that 0 ď Ψ1
Hf ď Ψ2

Hf ď . . . , because f n
Ñ g implies f n`1

Ñ g.)

• As all g in the definition of Ψn
H are nonnegative, we have Ψn

H1
ď Ψn

H2
if H1 Ď H2.
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• As f 1
Ñ g implies

ş

H g dm ď
ş

r dm `
ş

Ps dm ď
ş

r dm `
ş

s dm “ }f}1, it is clear that
ΨHf ď }f}1.

• For α ě 0 holds Ψn
Hpαfq “ αΨn

Hpfq, and the same holds for ΨH .

• E8phq :“
Ť8
n“1tMnh ą 0u.

2.2.5 Lemma Let f, g P L1
`, h :“ f ´ g, n P N and H P A.

a) H Ď tMn`1h ą 0u implies Ψn
Hf ě

ş

H g dm.
b) H Ď E8phq implies ΨHf ě

ş

H g dm.
c) H Ď tlim supnÑ8 Snh ą 0u implies ΨHf ě ΨHg.

Proof: By Lemma 2.2.2, Unh ě 0 on tMn`1h ą 0u, and by Lemma 2.2.1, Unh “ fn ´ g for
some fn P L1

` with f n
Ñ fn.

a) If H Ď tMn`1h ą 0u, then 0 ď
ş

H U
nh dm “

ş

Hpfn ´ gq dm so that
ş

H g dm ď
ş

H fn dm ď

Ψn
Hf .

b) Let Hk :“ H X tMk`1h ą 0u. Then Hk Õ H and assertion a) implies

ΨHf “ sup
n

Ψn
Hf ě sup

n
Ψn
Hnf ě sup

n

ż

Hn

g dm “

ż

H
g dm .

c) Suppose that g k
Ñ g1 for some k P N and g1 P L

1
`, and choose γ ą 1 arbitrary. By Lemma 2.2.4,

H Ď

"

lim sup
nÑ8

Snpγf ´ g1q

*

Ď E8pγf ´ g1q .

By assertion b), γΨHf “ ΨHpγfq ě
ş

H g1 dm. As γ ą 1 was arbitrary, ΨHf ě
ş

H g1 dm. As

this holds for all k and all g1 with g k
Ñ g1, we conclude that ΨHf ě ΨHg.

l

2.2.6 Theorem (Chacon-Ornstein) Let P be a positive L1-contraction, f P L1 and g P L1
`. Then

Lpf, gq :“ lim
nÑ8

Snf

Sng
P p´8,8q exists m-a.e. on tS8g ą 0u .

Proof: Again we may assume that f ě 0. Observe that ΨHg ą 0 for any H Ď tS8g ą 0u with
mpHq ą 0: in this situation there is some n P N with mpH X tPng ą 0uq ą 0, and as g n

Ñ Png, it
follows that ΨHpgq ě

ş

H P
ng dm ą 0.

On tS8g ą 0u we define h :“ lim infnÑ8
Snf
Sng

and h :“ lim supnÑ8
Snf
Sng

. On th ą αu we have

lim supnÑ8
Snpf´αgq

Sng
ą 0. As Sng increases, this shows that th ą αu Ď tlim supnÑ8 Snpf ´ αgq ą 0u.

Let H :“ th “ 8u X tS8g ą 0u. Then, by Lemma 2.2.5, we obtain for all α ą 0

αΨHg “ ΨHpαgq ď ΨHf ď }f}1 ă 8 ,

so that ΨHg “ 0. This implies mpHq “ 0, i.e. h ă 8 on tS8g ą 0u.
In order to prove that h “ h, let α ă β in Q and define H :“ th ă α ă β ă hu X tS8g ą 0u.

Then

H Ď

"

lim sup
nÑ8

Snpf ´ βgq ą 0

*

X

"

lim sup
nÑ8

Snpαg ´ fq ą 0

*
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and Lemma 2.2.5 implies ΨHf ě βΨHg and αΨHg ě ΨHf . As α ă β this implies ΨHg “ 0 and
hence mpHq “ 0. As this is true for all α ă β in Q, it follows that h “ h m-a.e. and the theorem is
proved. l

The identification of the limit Lpf, gq in full generality is a bit technical, see [11, §3.3]. Below we
provide it in several special cases that are sufficient for our purposes.

2.2.2 The identification of the limit: Birkhoff’s ergodic theorem

Suppose that pΩ,A, µq is a probability space and P is a positive contraction on L1pΩ,A, µq. If
P1 “ 1, the Chacon-Ornstein theorem, applied with g “ 1 P L1, simplifies to

f̄ :“ lim
nÑ8

1

n

n´1
ÿ

k“0

P kf exists and is finite µ-a.e. (2.2.3)

One has indeedL1-convergence: For ε ą 0 choose s ą 0 such that
ş

p|f |´sq` dµ ă ε. Then f “ u`v
where |u| ď s and

ş

|v| dµ ă ε. Hence P kf “ P ku ` P kv, and from P1 “ 1, the positivity and
the contraction property of P it follows that |P ku| ď s and

ş

|P kv| dµ ă ε for all k. Thus the P kf

are uniformly integrable and hence also the sequence
´

1
n

řn´1
k“0 f ˝ T

k
¯

ně1
is uniformly integrable

so that L1-convergence follows at once, see [10, Lemma 6.17b, Satz 6.18]. Hence P f̄ “ f̄ µ-a.e.

2.2.7 Corollary (Birkhoff’s ergodic theorem) If pΩ,A, µ, T q is a mpds and f P L1, then

f̄ “ lim
nÑ8

1

n

n´1
ÿ

k“0

f ˝ T k “ Eµrf | IpT qs µ-a.e. and in L1. (2.2.4)

Proof: Pf :“ f ˝ T is a positive contraction satisfying P1 “ 1, see Example 2.1.5. Therefore the
almost sure convergence follows from (2.2.3).

As f̄ ˝ T “ P f̄ “ f̄ µ-a.e., the limit f̄ is T -invariant mod µ and hence IpT q-measurable mod µ.
For any A P IpT q we have in view of the L1-convergence and the T -invariance of µ

ż

A
f̄ dµ “ lim

nÑ8

1

n

n´1
ÿ

k“0

ż

T´kA
f ˝ T k dµ “

ż

A
f dµ .

Hence f̄ “ Eµrf | IpT qs. l

2.2.3 The identification of the limit: Compositions of conditional expectations

Recall the notion of a complete probability space and of a completion: If pΩ,A, µq is a probability
space, its completion is the space pΩ,Aµ, µq where

Aµ :“ tA Ď Ω : DA0, A1 P A with A0 Ď A Ď A1 and µpA1zA0q “ 0u

is the µ-completion of A. The obvious extension of µ to Aµ is again denoted by µ. The space
pΩ,A, µq is complete, if Aµ “ A.
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2.2.8 Remark Let pΩ,A1, µq be a probability space and let A0 Ď A1 Ď A2 σ-algebras. If A2 Ď

pA0qµ, then the three spaces LppΩ,Ai, µq pi “ 0, 1, 2q are naturally identified for any p P r1,8s –
we treat them as identical.

2.2.9 Corollary Let pΩ,A, µq be a probability space and let F1,F2 Ď A be sub-σ-algebras, Pi :“
Eµr . | Fis (see Example 2.1.6) and f P L1. Then

f̄ “ lim
nÑ8

1

n

n´1
ÿ

k“0

pP2P1q
kf “ Eµrf | pF1qµ X pF2qµs µ-a.e. and in L1. (2.2.5)

Proof: Let P “ P2P1. Then P1 “ 1 and the convergence as well as P f̄ “ f̄ follow again from
(2.2.3).

As each 1
n

řn´1
k“0pP2P1q

kf is pF2qµ-measurable, so is f̄ no matter how it is defined on the null set
where there may be no convergence. Hence P2f̄ “ f̄ “ P f̄ “ P2P1f̄ µ-a.e. For bounded f (and
hence also bounded f̄ ) this implies

xf̄ , f̄y “ xf̄ , P2P1f̄y “ xP2f̄ , P1f̄y “ xf̄ , P1f̄y

so that P1f̄ “ f̄ µ-a.e., i.e. f̄ is also pF1qµ-measurable. General f P L1 can be L1-approximated by
bounded ones: f “ u ` v with bounded u and }v}1 ă ε. Then f̄ “ ū ` v̄ with a pF1qµ X pF2qµ-
measurable ū and }v̄}1 ď }v}1.

Finally, for A P pF1qµ X pF2qµ we have

ż

A
f̄ dµ “ lim

nÑ8

1

n

n´1
ÿ

k“0

ż

A
pP2P1q

kf dµ “

ż

A
f dµ ,

because
ş

ApP2P1q
kf dµ “

ş

pP2P1q
k1A f dµ “

ş

A f dµ. l

2.2.4 The identification of the limit: Hurewicz’s ergodic theorem

Suppose that pΩ,A, µq is a probability space and that T : Ω Ñ Ω is an invertible bi-measurable
transformation with µ ˝ T´1 « µ. We consider the stochastic kernel ppω,Aq “ δT pωqpAq as in

Example 2.1.4a. Recall that the associated contraction P satisfies Pf “ f ˝ T´1 ¨
dpµ˝T´1q

dµ . It is an

invertible linear operator, and its inverse is given by P´1f “ f ˝ T ¨ dpµ˝T qdµ .

2.2.10 Theorem (Hurewicz’s ergodic theorem) For each f P L1

Lpf, 1q “ lim
nÑ8

Snf

Sn1
“ Eµrf | Cs µ-a.e. on C. (2.2.6)

(This contains, as a special case, also Birkhoff’s theorem.)

Proof: We begin with some preparatory observations:

• B P C implies 1T´1B “ 1B ˝ T “ P ˚1B “ 1B and hence T´1B “ B mod µ by Theo-
rem 2.1.20.

• If f 1
Ñ g, i.e. if f “ r ` s and g “ r ` Ps for some r, s P L1

`, and if B P C, then
ş

B g dµ “
ş

B r dµ`
ş

B Ps dµ “
ş

B r dµ`
ş

P ˚1B ¨ s dµ “
ş

B r dµ`
ş

1B ¨ s dµ “
ş

B f dµ.
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• Inductively: If f n
Ñ g and B P C, then

ş

B f du “
ş

B g dµ. Hence: ΨBf “
ş

B f dµ.

Next observe that for all j, k P Z

dpµ ˝ T kq

dµ
˝ T j “

dpµ ˝ T kq

dpµ ˝ T´jq
˝ T j ¨

dpµ ˝ T´jq

dµ
˝ T j “

dpµ ˝ T k`jq

dµ
¨

dµ

dpµ ˝ T jq
(2.2.7)

so that for all n P N

Snf ˝ T “
n´1
ÿ

k“0

ˆ

f ˝ T´k ¨
dpµ ˝ T´kq

dµ

˙

˝ T “ f ˝ T ` Sn´1f ¨
dµ

dpµ ˝ T q
. (2.2.8)

As Sn1 Õ8 on C by (C3) of Theorem 2.1.13, it follows that

Lpf, 1q ˝ T “ lim
nÑ8

Snf ˝ T

Sn1 ˝ T
“ lim

nÑ8

f ˝ T ` Sn´1f ¨
dµ

dpµ˝T q

1` Sn´11 ¨ dµ
dpµ˝T q

“ Lpf, 1q .

In particular,Lpf, 1q|C is IpT q-measurable mod µ and hence C-measurable mod µ, see Theorem 2.1.20.
In order to prove that Lpf, 1q “ Eµrf | Cs on C, it suffices to show that for alle rational α ă β we

have Bα,β :“ C X tα ă Lpf, 1q ă βu Ď tα ď Eµrf | Cs ď βu mod µ on C.
To this end let H :“ Bα,β X tEµrf | Cs ă αu. Then H P C so that ΨHf “

ş

H f dµ for all f P L1
`

by the above considerations. Suppose µpHq ą 0. As H Ď Bα,β Ď tlim supnÑ8 Snpf ´ αq ą 0u,
Lemma 2.2.5 implies

ż

H
f dµ “ ΨHf ě ΨHα “

ż

H
αdµ ą

ż

H
Eµrf | Cs dµ “

ż

H
f dµ ,

a contradiction. Hence µpHq “ µpBα,βztEµrf | Cs ă αuq “ 0. similarly one proves µpBα,βztEµrf |
Cs ą βuq “ 0. This implies the required inclusion. l

In Chapter 3 we will need the following variant of the Hurewicz theorem:

2.2.11 Theorem (Proposition 7.4.2 in [3]) For every f P L1pΩ,A, µq and µ-a.e. ω,

lim
nÑ8

řn
k“´n P

kf
řn
k“´n P

k1
“ Eµrf | IpT qs . (2.2.9)

Proof: On the conservative part C the claim follows by applying the Hurewicz theorem separately
to P and to P´1 and observing that IpT q “ IpT´1q is at the same time the σ-algebra of P -absorbing
sets and that of P´1-absorbing sets (mod 0), see Theorem 2.1.20.

On the dissipative part D, both the enumerator and the denominator are a.s. converging series.
Equation (2.2.7) implies that

P kg ˝ T j “ g ˝ T´pk´jq ¨
dpµ ˝ T´pk´jqq

dµ
¨

dµ

dpµ ˝ T jq
“
P k´jg

P´j1

both for g “ f and g “ 1. Therefore the limit of the quotient in (2.2.9) is T -invariant on D, and for
every A P IpT q|D we have

ż

A

ř

kPZ P
kf

ř

jPZ P
j1
dµ “

ÿ

kPZ

ż

A

P kf
ř

jPZ P
j1
dµ “

ÿ

kPZ

ż

A

f
ř

jPZ P
j1 ˝ T k

dµ

“
ÿ

kPZ

ż

A

f
ř

jPZ P
j1
¨ P´k1 dµ “

ż

A
f dµ .
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On D the quotient of the series is therefore equal to Eµrf | IpT qs. l

2.2.5 Exercises

1. Let Ω “ Z with the counting measure m and consider Pfpωq “ 1
2fpω ` 1q ` 1

2fpω ´ 1q as in
Exercise 2.1.5. Prove:

a) Sn1t0u Ñ8 but limnÑ8 n
´1Sn1t0u “ 0 pointwise.

b) limnÑ8 n
´1Snf “ 0 pointwise for each f P L1

`.
c) S˚n1t0u Ñ8 but limnÑ8 n

´1S˚n1t0u “ 0 pointwise.

2. Let pΩ,A, µq be a probability space, let P1 be a linear L1-contraction, and let P2 :“ Eµr . | Fs
for some sub-σ-algebra F . Then the Chacon-Ornstein theorem applies to P “ P2P1. In
Corollary 2.2.9 the limit was identified for the case where also P1 is a conditional expectation
operator. For what other P1 can you identify the limit?
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3 Ergodic decompositions

3.1 Background from measure theory

In a topological context, the continuous image of a closed set need not be closed, and similarly in
measure theoretical context the measurable image of a measurable set need not be measurable. How-
ever, in topological context, the continuous image of a compact set is always compact (and hence also
closed). This section is devoted to a class of measure spaces that play the role of compact spaces
in the category of measure spaces. The theory goes back to Rohlin, but we follow here mostly the
presentation of de la Rue [4], who also gives further references. One should also note that much more
elaborateed versions of this theme - based on descriptive set theory - are available, see e.g. [2].

3.1.1 Lebesgue-Rohlin spaces

In this section a triple pΩ,A, µq always denotes a probability space. If C Ă A, then σpCq is the
smallest sub-σ-algebra of A that contains C, and σpCqµ denotes its µ-completion.

3.1.1 Definition a) A probability space pΩ,A, µq is a pre-Lebesgue-Rohlin space (pLR space) if
there is a Hausdorff topology τ on Ω with a countable basis and such that

σpτq “ A and (3.1.1)

@A P σpτq : µpAq “ suptµpKq : K Ď A,K compact for τu. (3.1.2)

b) It is a Lebesgue-Rohlin space (LR space, also standard probability space or just Lebesgue space),
if (3.1.1) is replaced by

τ Ă A and σpτqµ “ A. (3.1.3)

(In particular A must be complete.)
In both situations each such topology τ is called adapted to µ.

3.1.2 Remark a) In the case of a LR space, (3.1.2) extends to all A P A.

b) If pΩ,A, µq is pLR, then pΩ,Aµ, µq is LR (where µ denotes also its extension to Aµ).

3.1.3 Lemma If each G P τ can be written as the union of countably many τ -closed sets, then (3.1.2)
can be replaced by

1 “ suptµpKq : K Ď Ω,K compact for τu. (3.1.4)

(This holds in particular, if τ is metrizable.)

Proof: (3.1.4) implies for each closed A that

µpAq “ suptµpAXKq : K Ď Ω,K compact for τu “ suptµpKq : K Ď A,K compact for τu,
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i.e. (3.1.2). The same follows for open sets, because they are countable increasing unions of of closed
subsets.

Denote by A0 the family of all sets A P A such that (3.1.2) holds for A and also for Ac. We
just saw that τ Ď A0. It remains to show that A0 is a σ-algebra: Ω P A0 because of (3.1.4), and
A P A0 ô Ac P A0 by definition. So let A1, A2, ¨ ¨ ¨ P A0. We must show that A :“

Ť8
n“1An P A0.

To this end let ε ą 0 and choose compact sets Kn Ď An and Ln Ď Acn such that µpAnzKnq ă 2´nε

and µpAcnzLnq ă 2´nε. Fix N P N so large that µ
´

Az
ŤN
n“1An

¯

ă ε. Then
ŤN
n“1Kn and

Ş8
n“1 Ln are compact subsets of A and Ac, respectively, and

µ

˜

Az
N
ď

n“1

Kn

¸

ď ε`
N
ÿ

n“1

µ pAnzKnq ă 2ε

and

µ

˜

Acz
8
č

n“1

Ln

¸

“ µ

˜

8
ď

n“1

pAc X Lcnq

¸

ď

8
ÿ

n“1

µ pAczLnq ď
8
ÿ

n“1

µ pAcnzLnq ă ε .

l

3.1.4 Example Let X :“ t0, 1uN. Equipped with its product topology τX, X is compact metrizable,
in particular Hausdorff. The collection Z of cylinder sets

ra1, . . . , ans :“ tx P X : xi “ ai pi “ 1, . . . , nqu pn P N, ai P t0, 1uq

forms a countable basis of τX and σpτXq “ σpZq. Each cylinder is at the same time open and closed.
If µ is a probability on σpZq, then (3.1.4) holds trivially because X is compact. So pX, σpZq, µq is a
pLR space and hence pX, σpZqµ, µq is LR.

Let pΩ,A, µq be a probability space and B “ pBnqnPN a countable family of sets inA that separates
points. Such a B defines an injection

φB : Ω Ñ X, ω ÞÑ p1BnpωqqnPN . (3.1.5)

Observe that

φ´1
B pra1, . . . , ansq “

n
č

k“1

Bak
k

where B1
k :“ Bk and B0

k :“ Bc
k. Here and in the sequel Bc :“ ΩzB. In particular, φB is σpBq-σpτXq-

measurable. Denote
µB :“ µ ˝ φ´1

B , AB :“ σpτXqµB .

Then pX, σpτXq, µBq is pLR and pX,AB, µBq is LR.

3.1.2 Polish spaces provide (p)LR spaces

3.1.5 Definition A topological space pΩ, τq is polish, if τ can be generated by a complete separable
metric d. (So it is in particular a Hausdorff space with a countable basis.)

3.1.6 Examples a) Rd equipped with its usual topology is a polish space.
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b) pX, τXq is polish.

c) A separable Hilbert space is a polish space.

d) Cpr0, 1s,Rq equipped with the topology of uniform convergence and CpR`,Rq equipped with the
topology of uniform convergence on compact subsets are polish spaces.

3.1.7 Lemma Let Ω be polish and let B be a countable basis for its topology τ . Then φBpΩq P σpτXq.

Proof: We characterize the points belonging to φBpΩq in a measurable way: Let y “ pynqnPN P X.
Suppose that y “ φBpωq for some ω P Ω. As B is a basis of τ , each ball around ω contains some set
Bn Q ω. Therefore,

(1) Dn P N : yn “ 1 and diampBnq ď 1

(2) @n P N : yn “ 1 ñ
“

Dm P N : ym “ 1, Bm Ă Bn and diampBmq ď diampBnq{2
‰

.

(3) @n P N :
Şn
k“1B

yk
k ‰ H.

We claim that, vice versa, if y satisfies (1) - (3), then y “ φBpωq for some ω P Ω. Indeed: for each
n P N there is ωn P

Şn
k“1B

yk
k because of (3). Because of (1) and (2), pωnqnPN is a Cauchy sequence

that has a limit ω since the metric d is complete. We show that ω P
Ş8
k“1B

yk
k , i.e. y “ φBpωq.

Suppose this is not the case. Then there is k P N such that ω R Byk
k . If yk “ 0, then ω P Bk and

hence ωn P Bk for all large n, contradicting ωn P
Şn
k“1B

yk
k . If yk “ 1, then ω P Bc

k, and because of
(2) there is m P N such that ω P ΩzBm. As before this leads to a contradiction, because ωn P ΩzBm
for all large n.

It remains to note that (1) - (3) specify a Borel measurable set of points in X. l

3.1.8 Lemma Let pΩ, τq be polish with Borel-σ-algebra A, let µ be a probability measure on A, and
let pFpqpPN be a family of τ -closed subsets of Ω. Denote by τ 1 the topology on Ω generated by τ and
the Fp. Then τ 1 is adapted to µ, in particular pΩ,Aµ, µq is a LR space.

Proof: τ Ă τ 1 Ă A, so A “ σpτq Ď σpτ 1q Ď A. Hence (3.1.1) holds for τ 1. Let B be a countable
basis for τ and let B1 be the countable family of all finite intersections of sets from B and sets Fp. Then
B1 is a countable basis for τ 1 and each element of B1 can be written as a countable union of τ -closed
sets - and hence of τ 1-closed sets. As each set in τ 1 is the countable union of sets in B1, this shows
that each set in τ 1 can be written as a countable union of τ 1-closed sets. Hence, by Lemma 3.1.3, it
suffices to verify (3.1.4) instead of (3.1.2).

Suppose now w.l.o.g. that all F cp belong to the basis B “ tB1, B2, . . . u of τ , and observe that
φ´1
B pτXq is a topology on Ω. Observe also that Ba

n “ φ´1
B ty P X : yn “ au P φ´1

B pτXq for all
Bn P B and a P t0, 1u, in particular B Ă φ´1

B pτXq and Fp P φ´1
B pτXq for all p. Hence τ 1 Ď φ´1

B pτXq.
Therefore, ifK Ď φBpΩq is τX-compact, then φ´1

B pKq is τ 1-compact: To see this, suppose φ´1
B pKq Ď

Ť

iPI Oi and Oi P τ 1. Then Oi “ φ´1
B pUiq for some Ui P τX and hence φ´1

B pKq Ď φ´1
B p

Ť

iPI Uiq.
As φB is injective and as K Ď φBpΩq, this implies K Ď

Ť

iPI Ui, and as K is τX-compact, there is a
finite subset J of I such that K Ď

Ť

iPJ Ui. Hence φ´1
B pKq Ď

Ť

iPJ Oi.
As pX, σpτXq, µBq is a pLR space and as φBpΩq P σpτXq by Lemma 3.1.7, we finally have (3.1.4):

1 “ µpΩq “ µBpφBpΩqq “ suptµBpKq : K Ď φBpΩq,K τX-compactu

“ suptµpφ´1
B Kq : K Ď φBpΩq,K τX-compactu

ď suptµpK 1q : K 1 Ď Ω,K 1 τ 1-compactu .

l
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3.1.9 Theorem If pΩ, τq is polish and if pΩ,A, µq satisfies σpτqµ “ A, then it is a LR space.

Proof: Apply the previous lemma with no sets Fp added. l

3.1.10 Examples (Continuation of Examples 3.1.6)

a) Rd and, more generally, any separable Hilbert space equipped with a Borel probability measure
and the completed Borel-σ-algebra is a LR space.

b) Cpr0, 1s,Rq and CpR`,Rq equipped with the Wiener measure are LR spaces. (Observe that one
has to make sure that the Borel-σ-algebra of C as a polish space coincides with the trace on C of
the product σ-algebra on Rr0,1s and RR` , respectively. See for example [1, Satz 38.6 and Korollar
40.4].)

3.1.3 The measurable image property in LR spaces

3.1.11 Lemma Let pΩ,A, µq be a LR space and Bn P A pn P Nq. Then there is a topology τ 1 on Ω
which is adapted to µ and such that Bn P τ 1 for all n P N.

Proof: Let τ be a µ-adapted topology on Ω. Because of (3.1.2), there are Kσ-sets Sn Ď Bn
(countable unions of τ -compact sets) such that µpBnzSnq “ 0 for all n P N. Denote by K the
countable family of compact sets used to construct the countably many Sn and denote by τ 1 the
topology generated by τ , K and the Bn.

As τ has a countable basis, so does τ 1. As τ Ă τ 1 and τ separates points and satisfies (3.1.3), so
does τ 1. It remains to prove (3.1.2) for τ 1. Let

N “
ď

nPN
pBnzSnq and Ω0 “ N c .

Then µpNq “ 0 so that µpΩ0q “ 1, and Bn X Ω0 “ Sn X Ω0 for all n, because

Bn X Ω0 “ Bn X
č

kPN

`

Bc
k Y Sk

˘

Ď Bn X Sn “ Sn .

Now let A P A and ε P p0, µpAqq. There exists a τ -compact set K Ă A X Ω0 such that µpKq ě
µpAq ´ ε. With its trace topology τ|K , K is a compact space with a countable basis that separates
points. Hence it is metrizable, and so it is polish. As K Ď Ω0, all intersections K X pBnzSnq are
empty, and so the trace topology τ 1

|K is generated by τ|K and the countable family K|K :“ tK 1XK :

K 1 P Ku. Therefore, by Lemma 3.1.8 there exists a τ 1
|K-compact set K 1 Ď K such that µpK 1q ě

µpKq ´ ε ě µpAq ´ 2ε. To conclude observe that each τ 1
|K-compact set K 1 is also τ 1-compact. l

3.1.12 Theorem Let pΩ,A, µq and pΩ1,A1, µ1q be complete probability spaces and h : Ω Ñ Ω1

measurable such that µ ˝ h´1 “ µ1. Let also B1 “ pB1nqnPN be a family of A1-measurable sets that
separates points in Ω1. Then, if pΩ,A, µq is LR, also pΩ1,A1, µ1q is LR,A1 “ σpB1qµ1 and hpΩ0q P A1
for each Ω0 P A with µpΩ0q “ 1.

Proof: W.l.o.g. one can assume that B1 contains with each B1n also pB1nq
c. As B1 separates points,

φB1 : Ω1 Ñ X is injective and measurable, see also (3.1.5). Let τ 1 :“ φ´1
B1 pτXq. The family B2 :“

tB1i1 X ¨ ¨ ¨ XB
1
in

: n P N, B1i1 , . . . , B
1
in
P B1u is a countable basis for τ 1 and σpτ 1q “ σpB1q.
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Let Bn “ h´1pB1nq for all n. By Lemma 3.1.11 there is a µ-adapted topology τ on Ω such that
Bn P τ for all n. Then h´1pB2q Ď τ so that h : Ω Ñ Ω1 is τ -τ 1 continuous. We are going to show
that τ 1 is adapted to µ1.

Let A1 P A1 and denote A :“ h´1pA1q. Then

µ1pA1q “ µph´1A1q “ µpAq “ sup tµpKq : K Ď A, K τ -compactu .

Let ε ą 0 and choose a τ -compact K Ď A such that µpKq ě µ1pA1q ´ ε. Let K 1 :“ hpKq. Then
K 1 Ď A1 is τ 1-compact and

µ1pK 1q “ µph´1pK 1qq ě µpKq ě µ1pA1q ´ ε ,

so that
µ1pA1q “ sup

 

µ1pK 1q : K 1 Ď A1, K 1 τ 1-compact
(

.

As each τ 1-compact set belongs to σpτ 1q, it follows that σpB1qµ1 “ σpτ 1qµ1 “ A1. This shows that τ 1

is adapted to µ1.
Finally, because τ is adapted to µ, there is an increasing sequence of τ -compact setsKn Ď Ω0 such

that µpKnq Õ 1. As h is τ -τ 1-continuous, the sets hpKnq are τ 1-compact. Then S :“
Ť

nPN hpKnq

is σpτ 1q-measurable, S Ď hpΩ0q Ď Ω1 and µ1pSq “ supn µ
1phpKnqq “ supn µph

´1phpKnqqq ě

supn µpKnq “ 1. This proves hpΩ0q P A1. l

3.1.13 Definition A basis of a LR space pΩ,A, µq is a countable family of A-measurable sets that
separates the points of Ω. (One can always assume that the basis is closed under finite intersections.)

3.1.14 Remark Each LR space has a basis: It has a Hausdorff topology with a countable basis.

3.1.15 Theorem If B is a basis of the LR space pΩ,A, µq, then σpBqµ “ A.

Proof: Apply Theorem 3.1.12 to Ω1 “ Ω and h “ idΩ. l

3.1.16 Theorem Let pΩ,A, µq and pΩ1,A1, µ1q be LR spaces. If h : Ω Ñ Ω1 is injective and measur-
able and satisfies µ ˝ h´1 “ µ1, then hpAq P A1 for each A P A.

Proof: Let B1 “ pBnqnPN be a basis of pΩ1,A1, µ1q and set Bn :“ h´1pB1nq for all n. As the B1n
separate points in Ω1 and as h is injective, the family B :“ pBnqnPN separates points in Ω. Then, by
Theorem 3.1.12, hpΩq P A1. Therefore, for all n P N, hpBnq “ B1n X hpΩq P A1. As a formula,

Ω P H :“ tA P A : hpAq P A1u and B Ă H .

As h is injective, the family H is a σ-algebra. Hence σpBq Ă H so that finally A “ σpBqµ Ď Hµ.
Hence, for each A P A there are H0, H1 P H with H0 Ď A Ď H1 and µpH1zH0q “ 0 so that
hpH0q Ď hpAq Ď hpH1q with hpH0q, hpH1q P A1 and

µ1phpH1qzhpH0qq “ µ
`

h´1phpH1qqzh
´1phpH0qq

˘

“ µpH1zH0q “ 0 .

As A1 is µ-complete, this shows that hpAq P A1. l
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3.1.4 The classification of Lebesgue-Rohlin spaces

3.1.17 Definition Two probability spaces pΩ,A, µq and pΩ1,A1, µ1q are isomorphic mod 0 if there
are Ω0 P A and Ω10 P A1 with µpΩ0q “ µ1pΩ10q “ 1 and a bi-measurable bijection h : Ω0 Ñ Ω10 such
that µ ˝ h´1 “ µ1.

3.1.18 Theorem Let B be a basis of the LR space pΩ,A, µq and define φB : Ω Ñ X as in (3.1.5).
Denote again µB “ µ˝φ´1

B andAB “ σpτXqµB . Then pΩ,A, µq is isomorphic mod 0 to pX,AB, µBq.

Proof: By Theorem 3.1.16, φB : Ω Ñ φBpΩq is a bi-measurable bijection and φBpΩq P AB. By
definition, µB “ µ ˝ φ´1

B , and finally µBpφBpΩqq “ µpφ´1
B pφBpΩqqq “ µpΩq “ 1. l

In the remaining part of this chapter we classify LR spaces pΩ,A, µq up to isomorphism mod 0. To
this end we associate to such a space a decreasing sequence pmnqnPN of reals in r0, 1s as follows: µ
has at most countably many atoms ω1, ω2, . . . , i.e. points with µptωnuq ą 0. (This may be a finite or
even empty sequence.) They can be enumerated in such a way that µptω1uq ě µptω2uq ě . . . . For
n ě 1 let mn :“ µptωnuq if there are at least n atoms and otherwise let mn “ 0. The mn are called
the invariants of pΩ,A, µq. Obviously, if two spaces are isomorphic mod 0, then they have the same
invariants. The converse is part of the following theorem.

3.1.19 Theorem A LR space pΩ,A, µq with invariants pmnqnPN is isomorphic mod 0 to the LR space
pΩ̃, Ã, µ̃q where

• Ω̃ “ r0,m0s Y
Ť

nPNt1`
1
nu with m0 “ 1´

ř

nmn,

• µ̃|r0,m0s is the Lebesgue measure and µ̃pt1` 1
nuq “ mn,

• Ã is the µ̃-completion of the Borel σ-algebra on Ω̃.

Proof: We restrict to the case where there are no atoms so that m0 “ 1.

I) Reduction to Ω “ X: Because of Theorem 3.1.18 it suffices to consider Ω “ X “ t0, 1uN with
A “ σpτXqµ.

II) Reduction to Ω “ r0, 1s: Define h : X Ñ r0, 1s by hpωq “
ř8
n“1 ωn2´n (binary expan-

sion). h is continuous, hence σpτXq-F-measurable, where F :“ σpτr0,1sq denotes the Borel
σ-algebra on r0, 1s. Its restriction to the set Ω0 :“ XzS is injective where S :“ tω P X : ωn “
0 for at most finitely many nu. Obviously, hpΩ0q “ r0, 1q. As S is countable, it is measurable
and µpSq “ 0 because µ has no atoms. Let µ1 :“ µ ˝ h´1 and denote A1 “ Fµ1 . Then h is
A-A1-measurable because A “ σpτXqµ.

As the countable family of all subintervals of r0, 1s with rational endpoints separates points, we
can apply Theorems 3.1.12 and 3.1.16 and conclude that pr0, 1s,A1, µ1q is a LR space and that
h : Ω0 Ñ r0, 1q is a bi-measurable bijection.

III) Final step: Now Ω “ r0, 1s and A “ σpτr0,1sqµ. Define h : r0, 1s Ñ r0, 1s, hpxq :“ µpr0, xsq
to be the distribution function of µ. It is well known (from basic probability theory) that h
is monotone and continuous (µ has no atoms!). Let I1, I2, . . . be the at most countable many
maximal non-trivial closed intervals on which h is constant and denote Ω0 “

Ť

n In. Then
µpΩ0q “ 1, h|Ω0

: Ω0 Ñ hpΩ0q is bijective, and r0, 1szhpΩ0q is at most countable. Finally,
µ ˝ h´1pr0, asq “ µ tx P r0, 1s : hpxq “ µpr0, xsq ď au “ a “ µ̃pr0, asq.
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l

3.1.20 Remark For the LR space r0, 1s equipped with Lebesgue measure it is not so hard to prove
that conditional probabilities with respect to a sub-σ-algebra can be represented by regular conditional
probability distributions. (This fact is proved in most textbooks on probability theory, see also [10,
Satz 13.10].) In view of Theorem 3.1.19 the same is true for all LR spaces. In chapter 2 we will
provide an independent proof of a far reaching generalization of this fact.

3.1.5 Measure separability of Lebesgue-Rohlin spaces

3.1.21 Theorem Let pΩ,A, µq be a LR space. Then:
a) pΩ,A, µq is separable, i.e. there is a countable sub-algebra B of A such that

@A P A @ε ą 0 DA1 P B : µpA4A1q ă ε.
b) L2pΩ,A, µq is separable.

Proof: Recall that a LR space has a countable family B0 of (open) sets such that σpB0qµ “ A.
Denote by B the algebra generated by B0 and observe that also B is countable. It is a corollary to the
Carathéodory construction that B is dense in A, see e.g. [10, Satz 2.29]. Denote by G the space of all
rational linear combinations of indicator functions of sets from B and note that G is a countable dense
subset of L1. Now let f P L2. For n P N define

fnpωq “ maxt´n,mintn, fpωquu .

Then }f ´ fn}2 Ñ 0 as n Ñ 8, and there are gn P G such that }fn ´ gn}1 ď n´3, so that
}fn ´ gn}2 ď

a

n }fn ´ gn}1 ď n´1. Hence }f ´ gn}2 Ñ 0 as nÑ8. l

3.1.22 Remark Let pΩ,A, µq be a probability space. Define d : A ˆ A Ñ r0, 1s, dpA,Bq “
µpA4Bq. It is easily seen that d is a pseudo-metric on A. The equivalence relation A „ B :ô
dpA,Bq “ 0 defines equivalence classes rAs such that dprAs, rBsq :“ dpA,Bq is a well defined
metric on the space Â :“ trAs : A P Au. One can easily prove:

(1) pÂ, dq is complete.

(2) If F is a sub-σ-algebra of A, then F̂ is closed in pÂ, dq.

(3) If pΩ,A, µq is a LR space, then pÂ, dq is separable. (It is compact if and only if µ is purely
atomic.)

(4) If h : Ω Ñ Ω1 is measurable and µ1 “ µ ˝ h´1, then φ : pÂ1, d1q Ñ pÂ, dq, rA1s ÞÑ rh´1pA1qs,
defines an isometric embedding.

Suppose now that pΩ,A, µq and pΩ1,A1, µ1q are LR spaces. (For the following assertions one may
need some additional assumptions on the isometry, but I see a chance that they can be proved without.)

• Each isometric embedding φ : pÂ1, d1q Ñ pÂ, dq with φprHsq “ rHs is of the form in (4).

• If φ is even an isometry, then the two LR spaces are isomorphic mod 0 with an isomorphism
that determines φ as in (4).
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3.1.23 Corollary Let pΩ,A, µq be a LR space and let pFiqiPI be an arbitrary family of µ-complete
sub-σ-algebras of A. Then there is an at most countable subset J Ď I such that

Ş

iPI Fi “
Ş

jPJ Fj .

Proof: As the Fi are all µ-complete, it suffices to prove the corresponding statements for the closed
subsets F̂i Ď Â. But that is a simple consequence of the separability of the metric space pÂ, dq,
because Âz

Ş

iPI F̂i “
Ť

iPIpÂzF̂iq is open and hence the union of at most countably many sets from
a given countable basis of the topology.

l

For later use we also note the following lemma:

3.1.24 Lemma Let pFkqkPN be a sequence of sub-σ-algebras of the LR space pΩ,A, µq satisfying
Şn
k“1pFkqµ “ p

Şn
k“1Fkqµ for all n P N. Then

Ş8
k“1 pFkqµ “

`
Ş8
k“1Fk

˘

µ
.

Proof: The inclusion Ě is trivial. For the other direction let f P L1pΩ,A, µq. From a two-fold
application of the decreasing martingale theorem we have µ-a.e.

Eµ

«

f |
8
č

k“1

pFkqµ

ff

“ lim
nÑ8

Eµ

«

f |
n
č

k“1

pFkqµ

ff

“ lim
nÑ8

Eµ

»

–f |

˜

n
č

k“1

Fk

¸

µ

fi

fl

“ lim
nÑ8

Eµ

«

f |
n
č

k“1

Fk

ff

“ Eµ

«

f |
8
č

k“1

Fk

ff

“ Eµ

»

–f |

˜

8
č

k“1

Fk

¸

µ

fi

fl .

As this holds for any f P L1, the sub-σ-algebras
Ş8
k“1 pFkqµ and

`
Ş8
k“1Fk

˘

µ
coincide mod µ, so

that
Ş8
k“1 pFkqµ Ď

´

Ş8
k“1 pFkqµ

¯

µ
“

`
Ş8
k“1Fk

˘

µ
. l

3.1.6 Sub-σ-algebras and factors of Lebesgue-Rohlin spaces

In general it is not true that a sub-σ-algebra of a countably generated σ-algebra is itself countably
generated. In LR spaces, however, this holds at least modulo null sets:

3.1.25 Definition A sub-σ-algebraF of pΩ,A, µq is countably generated mod 0 if there is a countable
family B Ă F such that F Ď σpBqµ (equivalently: Fµ “ σpBqµ).

3.1.26 Theorem Each sub-σ-algebra F of a LR space pΩ,A, µq is countably generated mod 0.

Proof: Let F be the space L2pΩ,F , µq “ L2pΩ,Fµ, µq considered as a closed subspace of
L2pΩ,A, µq. Denote by π the orthogonal projection on F . Let pφnqnPN be a countable dense sub-
set of L2pΩ,A, µq (see Theorem 3.1.21), and choose F-measurable representatives ψn of the πpφnq.
Denote by B the countable family of sets tψn ă αu P F (n P N, α P Q). Obviously each ψn is
σpBq-measurable. Now, for each A P F there is a sequence pφniqiPN such that }1A ´ φni}2 Ñ 0 as
i Ñ 8. It follows that }ψni ´ 1A}2 “ }πpφni ´ 1Aq}2 ď }φni ´ 1A}2 Ñ 0 as i Ñ 8. Therefore
A P σpBqµ, l

3.1.27 Corollary Each sub-σ-algebra of a pLR space pΩ,A, µq is countably generated mod 0.
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Proof: Let F be a sub-σ-algebra of A and consider the LR-space pΩ,Aµ, µq (see Remark 3.1.2b).
Then F Ă Aµ and so F is countably generated mod 0 in pΩ,Aµ, µq which implies at once that it is
countably generated mod 0 in pΩ,A, µq. l

Consider now two LR spaces pΩi,Ai, µiq pi “ 1, 2q and a measurable map h : Ω1 Ñ Ω2 with
µ2 “ µ1 ˝ h

´1. Then h´1pA2q is a sub-σ-algebra of A1. Conversely, the next theorem will show that
(up to completion) each sub-σ-algebra arises from a factor system.

3.1.28 Theorem Let pΩ,A, µq be a LR space, F Ď A a sub-σ-algebra. Then there is a F-σpτXq-
measurable map φ : Ω Ñ X such that Fµ “ σpφ´1pτXqqµ.

Proof: Let B Ă F be a countable family such that σpBqµ “ Fµ (Theorem 3.1.26). Define φB :
Ω Ñ X as in (3.1.5). Then

Fµ “ σpBqµ “ σpφ´1
B pτXqqµ .

l

3.1.29 Remark Suppose now T : Ω Ñ Ω leaves the measure class of µ invariant, i.e. µ ˝ T´1 « µ,
and consider F :“ IpT q. Let φ : Ω Ñ X be as in Theorem 3.1.28, and denote Γx :“ φ´1ptxuq for
x P X. Then

i) Ω is the uncountable disjoint union of the sets Γx, x P X.

ii) @x P X : Γx P IpT q.

iii) @A P IpT q DA1 P φ´1pσpτXqq : µpA4A1q “ 0.

The goal of the next two subsections is to define ”restrictions” µx of µ to the sets Γx, i.e. conditional
measures, and to show that the pΓx,A|Γx , µx, T|Γxq are non-singular ergodic dynamical systems.

3.1.7 From positive L1-contractions to kernels on Lebesgue-Rohlin spaces

In this subsection we prove that each positive linear L1-contraction on a (p)LR space stems from a
substochastic kernel as in (2.1.1). It suffices to treat only LR spaces because of the following simple
fact: if pΩ,A, µq is a probability space and if F Ă A is a σ-algebra with A Ď Fµ, then L1pΩ,A, µq
is trivially identified with L1pΩ,F , µ|F q.

3.1.30 Theorem Let pΩ,A, µq be a LR space with basis B. Let P be a positive linear contraction on
L1pΩ,A, µq “ L1pΩ, σpBq, µq. Then there is a substochastic kernel p on pΩ, σpBqq that determines
P by equation (2.1.2), i.e. that satisfies

ż

A
Pf dµ “

ż

Ω
fpωqppω,Aq dµpωq for all A P σpBq and all f P L1 (3.1.6)

and
P ˚1A “ pp . , Aq for all A P σpBq. (3.1.7)

If P ˚pL8pΩ,A, µqq Ď L8pΩ,F , µq for some sub-σ-algebra F , then pp . , Aq can be chosen F-
measurable for each A P σpBq.

Proof: Assume first that Ω “ X and that A is the µ-completion of σpτXq “ σpZq.
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• For eachA P Z fix aF-measurable representative pp . , Aq : XÑ R of P ˚p1Aq P L8pX,F , µq.

• As P ˚ is linear and positive, we can choose these representatives such that ppx,Hq “ 0 and
0 ď ppx,Aq ď 1 for all x P X and A P Z .

• As Z is countable, there is N P F with µpNq “ 0 such that for all n P N, for all x P XzN and
for all pairwise disjoint A1, . . . , An P Z holds

ppx,A1 Y ¨ ¨ ¨ YAnq “ P ˚p1A1 ` . . . 1Anqpxq “
n
ÿ

i“1

P ˚p1Aiqpxq “
n
ÿ

i“1

ppx,Aiq .

• For x P N redefine ppx,Aq “ µpAq.

Then, for each x P X, ppx, . q : Z Ñ r0, 1s is a finitely additive and subadditive set function. (For
the subadditivity see e.g. [10, Lemma A.6].) The ppx, . q are even σ-subadditive on Z: suppose
A Ă

Ť8
k“1Ak for some A,Ak P Z . As A is compact and all Ak are open, there is n P N such that

A Ď
Ťn
k“1Ak. Hence

ppx,Aq ď
n
ÿ

k“1

ppx,Akq ď
8
ÿ

k“1

ppx,Akq .

As Z is a semi-ring, all ppx, . q can be extended uniquely to finite measures on pX, σpZqq, see e.g.
[10, Beispiel 1.3 and Satz 2.26]. By definition of p we have

ż

A
P1B dµ “

ż

B
P ˚1A dµ “

ż

1Bpxq ppx,Aq dµpxq

for all A P Z and B P σpZq.

• For fixed B P σpZq, both sides of this equation describe finite measures in A. Hence the
identity extends to all A P σpZq.

• For fixed A P σpZq, both sides of this equation are linear, positive and σ-additive in 1B . Hence
equation (3.1.6) follows along standard lines (see e.g. the proof of [10, Satz 5.21]).

It remains to transfer the result from LR spaces with Ω “ X to arbitrary LR spaces pΩ,A, µq.
By Theorem 3.1.18, pΩ,A, µq is isomorphic mod 0 to pX,AB, µBq via a bi-measurable bijection
φB : Ω Ñ φBpΩq Ď X. (Recall that µB “ µ ˝ φ´1

B and AB “ σpτXqµB .) Then Uf :“ f ˝ φB is a
positive isometric isomorphism from L1pX,AB, µBq to L1pΩ,A, µq, and P̃ :“ U´1PU is a positive
linear contraction from L1pX,AB, µBq to L1pX, φBpFq, µBq. φBpFq is a sub-σ-algebra of AB by
Theorem 3.1.16. Therefore the first part of the proof yields a φBpFq-measurable substochastic kernel
p̃ for P̃ . Define ppω,Aq :“ p̃pφBpωq, φBpAqq. As φBpσpBqq “ σpτXq, p is a substochastic kernel on
pΩ, σpBq, µq, measurable w.r.t. φ´1

B pφBpFqq “ F , and for all σpBq-measurable f P L1 andA P σpBq
ż

A
Pf dµ “

ż

φ´1
B pφBpAqq

pP̃ pU´1fqq ˝ φB dµ “

ż

φBpAq
P̃ pU´1fq dµB

“

ż

X
pU´1fqpxqp̃px, φBpAqq dµBpxq “

ż

Ω
fpωqp̃pφBpωq, φBpAqq dµpωq

“

ż

Ω
fpωqppω,Aq dµpωq .

l
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3.1.8 Regular conditional probabilities on pre-Lebesgue-Rohlin spaces

Let pΩ,A, µq be a pLR space. Fix a countable basis B of the Hausdorff topology τ on Ω. Then
A “ σpτq “ σpBq. Observe that B is also a basis of the LR space pΩ,Aµ, µq.

3.1.31 Definition Let F be a sub-σ-algebra of A. Any stochastic kernel p such that pp . , Aq is a
F-measurable representative of Eµr1A | Fs for all A P A is called a regular conditional probability
w.r.t. F and µ.

3.1.32 Remark A F-measurable stochastic kernel p is a regular conditional probability w.r.t. F and
µ if and only if

@A P A @F P F : µpAX F q “

ż

F
ppω,Aq dµpωq ,

because this is equivalent to @ P A : Eµr1A | Fs “ dp1Aµq|F
dµ|F

“ pp . , Aq.

3.1.33 Corollary Let F be a sub-σ-algebra of A. There is a regular conditional probability µF w.r.t.
F and µ. For each A P A, µF p . , Aq is a representative of the conditional expectation Eµr1A | Fs.

Proof: Apply Theorem 3.1.30 to the positive L1-contraction P : f ÞÑ Eµrf | Fs (Example 2.1.6)
on the LR space pΩ,Aµ, µq. Recall that also Eµr1A | Fs “ P ˚1A. As A “ σpBq, equation (3.1.7)
implies for all A P A

Eµr1A | Fs “ P ˚1A “ pp . , Aq .

l

Notation: We write µFω pAq instead of µF pω,Aq, if convenient. We also denote A1 :“ tA P A :
µpAq “ 1u.

3.1.34 Lemma If µF and νF are regular conditional probabilities w.r.t. F and µ, then there is Ω0 P

A1 such that
i) µFω pAq “ νFω pAq for all A P A “ σpBq and all ω P Ω0, and

ii) For all ω P Ω0 and µFω -a.e. ω1 the probabilities µFω and µFω1 coincide on A.
iii) If F0 Ď F is a countably generated sub-σ-algebra with F Ď pF0qµ, Ω0 can be chosen such that

@ω P Ω0 @F P F0 @A P A : µFω pF XAq “ δωpF q ¨ µ
F
ω pAq .

Proof: i) W.l.o.g. let B “ tB1, B2, . . . u be closed under finite intersections. Then, for each Bi and
each F P F ,

ż

F
µF pω,Biq dµpωq “

ż

F
Eµrf | Fspωq dµpωq “

ż

F
νF pω,Biq dµpωq .

As the µF p . , Biq and νF p . , Biq are F-measurable, it follows that there is a set Ω0 P A1 such that
µF pω,Biq “ νF pω,Biq for the countably many Bi P B and all ω P Ω0, so that µF pω, . q|σpBq “
νF pω, . q|σpBq for all ω P Ω0.

ii) For µ-a.e. ω P Ω and each B P B,
ż

pµF p . , Bqq2 dµFω “ Eµrpµ
F p . , Bqq2 | Fspωq “ pµF pω,Bqq2 “ pEµrµF p . , Bq | Fspωqq2

“

ˆ
ż

µF p . , Bq dµFω

˙2
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The Cauchy-Schwarz (or Jensen)-inequality implies that for these ω the function ω1 ÞÑ µFω1pBq is
µFω -a.e. constant and equal to µFω pBq. Hence, for µ-a.e. ω and µFω -a.e. ω1, the probabilities µFω and
µFω1 coincide on the countable X-stable family B and hence on A “ σpBq.

iii) Let F P F . Then for µ-a.e. ω P Ω and each B P B

µFω pF XBq “ Eµr1F 1B | Fspωq “ 1F pωqEµr1B | Fspωq “ δωpF q ¨ µ
F
ω pBq . (3.1.8)

As, for fixed F , both sides of this identity define a finite measure on A “ σpBq, the claim follows for
any B P A and all F from a countable generator of F0. But for fixed B P A, both sides of the identity
define finite measures in F , so the identity extends to F P F0. l

3.1.35 Remark For F “ Ω, item iii) of this lemma implies in particular

@ω P Ω0 @F P F0 : µFω pF q “ δωpF q . (3.1.9)

On a technical level, the problem treated in the next section is to extend this to all F P F , when F is
a suitable σ-algebra of invariant sets.

3.1.36 Remark Recall the setting from Remark 3.1.29: T : Ω Ñ Ω is such that µ ˝ T´1 « µ, and
φ : Ω Ñ X “ t0, 1uN is such that IpT qµ “ σpφ´1pτXqqµ. Recall also the notation Γx “ φ´1ptxuq.
Then

i) Ω “
Ť

xPX Γx.

ii) @x P X : Γx P IpT q.

Equation (3.1.9), applied to F0 “ φ´1pσpτXqq, implies that for µ-a.e. ω P Ω and each x P X

µFω pΓxq “ δωpφ
´1ptxuqq “

#

1 if φpωq “ x

0 otherwise .

Therefore the conditional measures µFω can be localized on the sets Γx.

3.1.9 Exercises

3.1.1 a) Let pΩ1,A1, µ1q and pΩ2,A2, µ2q be pLR spaces. Prove that also pΩ1ˆΩ2,A1bA2, µ1b

µ2q is a pLR space.

b) Let pΩn,An, µnq pn P Nq be pLR spaces. Prove that also p
Ś

nPN Ωn,
Â

nPNAn,
Â

nPN µnq is a
pLR space.

3.1.2 Recall the shift example with the mixed Bernoulli measure from Remark 1.1.14. Define explic-
itly a map φ : t0, 1uZ Ñ X such that IpT qµ “ σpφ´1

B pτXqqµ, see Remark 3.1.29. What is µ ˝ φ´1?
Describe the sets Γx. Do the same with r0, 1s instead of X. (This may be more meaningful than for X,
in particular the measure µ ˝ φ´1 may have a simple and clear interpretation if φ is chosen properly.)

3.1.3 Verify i) - iii) of Remark 3.1.29.
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3.1.4 Let pΩ,A, µq be a LR space and F Ă A a µ-complete sub-σ-algebra. Suppose that the space
pΩ,F , µ|F q has no atoms. Prove that pΩ,A, µq is isomorphic modulo 0 to pr0, 1s2, σpτqλ2 , λ2q, where
σpτq is the Borel-σ-algebra on r0, 1s2 and λ2 the two-dimensional Lebesgue measure, with an iso-
morphism that maps F-measurable sets to sets of the form B ˆ r0, 1s.

3.1.5 Let pΩ,A, µq be a LR space and let G be a countable family of A-measurable sets. Prove the
following statements, which are essentially reformulations of a number of results of this section:
There is an (uncountable) partition Γ “ tΓx : x P X0 Ď Xu of Ω such that

a) σpGq “ tA P A : @x P X0 : Γx Ď A or Γx XA “ Hu.

b) There are probabiliy measures µx on pΓx,A|Γxq such that all pΓx,A|Γx , µxq are Lebesgue spaces.

c) x ÞÑ µxpAX Γxq is σpτXq-measurable for each A P A.

d) There is a probability measure ν on pX, σpτXqq such that µpAq “
ş

X µxpA X Γxq dνpxq for all
A P A.

3.1.6 Verify the claims made in Remark 3.1.22.

3.2 Raugi’s ergodic decomposition theorem

In this section we prove an ergodic decomposition theorem along the lines of the purely measure
theoretic/probabilistic approach of Raugi [15]. But observe also the paper by Greschonig and Schmidt
[7].

3.2.1 Ergodically decomposing sub-σ-algebras

Let pΩ,A, µq be a pre-Lebesgue-Rohlin space.

3.2.1 Definition Let F be a sub-σ-algebra of A and let µF be a regular conditional probability w.r.t.
F and µ.

a) F decomposes µ ergodically, if there is a set Ω1 P A1 such that

@F P F @ω P Ω1 : µFω pF q P t0, 1u .

b) F is conditionally countably generated mod 0, if there are a countable family E Ă F and a set
Ω2 P A1 such that

@F P F DE P σpEq @ω P Ω2 : µFω pF4Eq “ 0 .

Both definitions are independent of the particular choice of the regular conditional probability µF -
only the sets Ω1 and Ω2 depend on it, see Lemma 3.1.34i.

3.2.2 Remark a) If F is conditionally countably generated mod 0, then it is countably generated
mod 0, because µpF4Eq “

ş

µFω pF4Eq dµpωq.

38



b) In view of (3.1.9) there is always a sub-σ-algebra F0 Ď F Ď pF0qµ which decomposes µ ergod-
ically. This does not imply that F decomposes µ ergodically, as the following example shows:
Let Ω “ r0, 1s2, let µ be the two-dimensional Lebesgue measure on Ω and A the σ-algebra of
Lebesgue-measurable sets. Consider the sub-σ-algebra F consisting of all sets Aˆ r0, 1s YN1 ˆ

r0, 1{2qYN2ˆr1{2, 1s whereA Ă r0, 1s is Lebesgue-measurable andN1, N2 Ă r0, 1s are at most
countable. Denote also byF0 Ă F the sub-σ-algebra of all sets of the formBˆr0, 1swhereB is a
Borel-subset of r0, 1s. Then F Ă pF0qµ, F0 is countably generated and the measures A ÞÑ λpAxq
(λ the one-dimensional Lebesgue measure) serve as regular conditional probabilities both for µF0

x

and for µFx . Obviously, F0 decomposes µ ergodically. But for each x P r0, 1s each set F P F0 can
be modified on its x-fibre into a set A from F0 such that µFx pAq “

1
2 . So F does not decompose

µ ergodically.

We will see that such local modifications are often impossible when F is a σ-algebra of invariant
sets.

3.2.3 Theorem Let F be a sub-σ-algebra of A and let µF be a regular conditional probability w.r.t.
F and µ. The following are equivalent:

(i) F decomposes µ ergodically.

(ii) For any countably generated sub-σ-algebra F̃ Ď F with F Ď F̃µ holds: There is Ω2 P A1 such
that

@F P F DE P F̃ @ω P Ω2 : µFω pF4Eq “ 0 .

(iii) F is conditionally countably generated mod 0.

(iv) There is a set Ω3 P A1 such that for all ω P Ω3 holds: the kernel µF is a regular conditional
probabilitiy for the probability measure µFω , i.e.

@ω P Ω3 @A P A : EµFω r1A | Fspω
1q “ µFω1pAq for µFω -a.e. ω1, equivalently

@ω P Ω3 @A P A @F P F : µFω pAX F q “

ż

F
µFω1pAq dµ

F
ω pω

1q .

As both sides of the last identity define a probability measure in A, it suffices to check either of
these conditions for all A from a countable X-stable generator of A.

(The equivalence between (i) and (iii) is from [15, Proposition 3.3].)

Proof: piq ñ piiq: Let F̃ Ď F be a countably generated sub-σ-algebra with F Ď F̃µ. By
Corollary 3.1.33, there is a regular conditional probability µF̃ . As F̃ Ď F Ď F̃µ, this serves also as
regular conditional probability for Fand we denote it simply by µF .

Let Ω1 be as in the definition of ergodic decomposition by F . Then, for each F P F , we can
decompose Ω disjointly as Ω “ F 0 Y F 1 Y NF where F 0 :“ tω P Ω : µFω pF q “ 0u, F 1 :“ tω P
Ω : µFω pF q “ 1u, and NF Ď ΩzΩ1. As µF could be chosen F̃-measurable, we have F 0, F 1 P F̃ . In
particular, for all ω P Ω1 and all F P F , µFω pF X F

0q P t0, 1u and also µFω pF X F
1q P t0, 1u.

Let Ω2 “ tω P Ω1 : µFω pΩ1q “ 1u. Then µpΩ2q “ 1. For ω P Ω2 and each F P F we have
µFω pN

F q ď µFω pΩzΩ1q “ 0. Therefore, in view of Lemma 3.1.34iii

µFω pF zF
1q “ µFω pF X F

0q “ δωpF
0q ¨ µFω pF q “ 0
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and
µFω pF

1zF q “ µFω pF
c X F 1q “ δωpF

1q ¨ µFω pF
cq “ 0 ,

so that µFω pF4F 1q “ 0 for all ω P Ω2 and all F P F with F 1 P F̃ .
piiq ñ piiiq: This follows from Corollary 3.1.27 which asserts the existence of at least one countably
generated sub-σ-algebra as in (ii).
piiiq ñ pivq: Let F̃ “ σpEq, E from Definition 3.2.1b. By Lemma 3.1.34ii and iii, for all ω P Ω0, all
F P F̃ and all A P A,

ż

F
µFω1pAq dµ

F
ω pω

1q “ µFω pAq ¨ µ
F
ω pF q “ µFω pAq ¨ δωpF q “ µFω pAX F q

As F is conditionally countably generated mod 0, this extends to all F P F .
pivq ñ piq: Let ω P Ω0 X Ω3 with Ω0 from Lemma 3.1.34. Then µFω1 “ µFω for µFω -a.e. ω1, and for
each F P F and µFω -a.e. ω1 holds

µFω pF q “ µFω1pF q “ EµFω r1F | Fspω
1q “ 1F pω

1q .

Hence µFω pF q P t0, 1u. l

3.2.4 Corollary Let G Ď F Ď A be sub-σ-algebras. If F Ď Gµ and if F decomposes µ ergodically,
then also G decomposes µ ergodically.

Proof: By Corollary 3.1.27 there is a countably generated sub-σ-algebra G̃ Ď G such that G Ď G̃µ,
hence G̃ Ď F and F Ď Gµ “ G̃µ. As F decomposes µ ergodically, Theorem 3.2.3(ii) implies that
there is Ω2 P A1 such that

@F P F DE P G̃ @ω P Ω2 : µFω pF4Eq “ 0 .

This holds a fortiori for all F P G, so G is conditionally countably generated mod 0, and another
application of Theorem 3.2.3 shows that G decomposes µ ergodically.

l

We finish this subsection by the following observation: for two sub-σ-algebras F and G of A with
regular conditional probabilities µF and µG define the stochastic kernel µG ˙ µF by

µG ˙ µF pω,Aq :“

ż

Ω
µFω1pAq dµ

G
ωpω

1q . (3.2.1)

In this situation we have the following lemma:

3.2.5 Lemma a) If F decomposes µ ergodically and if

pµG ˙ µF qω “ µGω for µ-a.e. ω, (3.2.2)

then µF is a regular conditional probability w.r.t. F and µGω for µ-a.e. ω.
b) (3.2.2) holds in particular, if G Ď F .

40



Proof: a) As F decomposes µ ergodically, there is, by Theorem 3.2.3(iv), a set Ω3 P A1 such that
for all ω̃ P Ω3

@A P A @F P F : µFω̃ pAX F q “

ż

F
µFω1pAq dµ

F
ω̃ pω

1q .

As µF is a regular conditional probability w.r.t. F and µ, there is Ω4 P A1 such that this identity holds
for all ω P Ω4 and µFω -a.e. ω̃. Hence, integrating w.r.t. µFω we have for all ω P Ω4 that also satisfy
pµG ˙ µF qω “ µGω and for all A P A and F P F

µGωpAX F q “ pµ
G ˙ µF qωpAX F q “

ż

Ω
µFω̃ pAX F q dµ

G
ωpω̃q

“

ż

Ω

ˆ
ż

F
µFω1pAq dµ

F
ω̃ pω

1q

˙

dµGωpω̃q “

ż

F
µFω1pAq dpµ

G ˙ µF qωpω
1q

“

ż

F
µFω1pAq dµ

G
ωpω

1q .

Hence, for µ-a.e. ω, µF is a regular conditional probability w.r.t. F and µGω.
b) Let A P A. We have the µ-a.e. identities

pµG ˙ µF qωpAq “

ż

Ω
µFω1pAq dµ

G
ωpω

1q “ Eµrµ
F
. pAq | Gspωq “ Eµ rEµr1A | Fs | Gs pωq

“ Eµ r1A | Gs pωq “ µGωpAq .

Hence for µ-a.e. ω the measures pµG b µF qω and µGω coincide on a countable generator of A and
therefore on all of A.

l

3.2.2 The ergodic decomposition for a single non-singular automorphism

3.2.6 Definition Let pΩ,A,mq be a σ-finite measure space. A bijective and bi-measurable map T :
Ω Ñ Ω satisfying m ˝ T´1 « m is called a non-singular automorphism.

3.2.7 Theorem Let T be a non-singular automorphism of the pLR space pΩ,A, µq. Recall that
IpT q “ tA P A : T´1pAq “ Au.

a) LetF Ď IpT q be a sub-σ-algebra with a regular conditional probability µF . Then µFω ˝T
´1 « µFω

for µ-a.e. ω.

b) IpT q decomposes µ ergodically.

Proof (following [15, Proposition 5.1]):
a) Let ψ be a version of the Radon-Nikodym derivative dpµ˝T´1q

dµ . We will prove that for µ-a.e. ω it

is also a version of dpµ
F
ω ˝T

´1q

dµFω
: let A P A and F P F . Then

ż

F
µFω ˝ T

´1pAq dµpωq “

ż

F
Eµ

“

1T´1pAq | F
‰

dµ “ µpF X T´1pAqq “ µpT´1pF XAqq

“

ż

FXA
ψ dµ “

ż

F
Eµ r1A ψ | Fs dµ “

ż

F

ˆ
ż

A
ψ dµFω

˙

dµpωq .
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Hence, for each given A P A, µFω ˝ T
´1pAq “

ş

A ψ dµ
F
ω for µ-a.e. ω. Let E be a countable X-stable

generator for A. Then there is Ω1 P A1 such that the measures µFω ˝ T
´1 and ψµFω coincide on E -

and hence on A “ σpEq – for all ω P Ω1.
b) Recall from Example 2.1.4a that Pf :“ f ˝ T´1 ¨ ψ defines a positive L1-contraction. Let again
B be a countable X-stable generator for A. From Theorem 2.2.11 (a variant of Hurewicz’s theorem)
we know that there is Ω2 P A1 such that

@ω1 P Ω2 @A P E : lim
nÑ8

řn
k“´npP

k1Aqpω
1q

řn
k“´npP

k1qpωq
“ Eµr1A | Ispω1q “ µIω1pAq ,

where the regular conditional probability µI exists in view of Corollary 3.1.33. Changing Ω2 (if
necessary), we can replace the “@ω1 P Ω2” by “@ω P Ω2 and µIω-a.e. ω1”, because µI is a regular
conditional probability w.r.t. I and µ.

The same theorem, applied to the non-singular measures µIω pω P Ω1q from part a), tells us that for
each ω P Ω1 and µIω-a.e. ω1

lim
nÑ8

řn
k“´npP

k1Aqpω
1q

řn
k“´npP

k1qpω1q
“ EµIω r1A | Ispω

1q for all A P E .

Hence, for all ω P Ω1 X Ω2 and all A P E , we have

µIωpAq “ EµIω r1A | Is pω
1q for µIω-a.e. ω1, (3.2.3)

and this extends to all A P σpEq “ A, because the family of sets A satisfying (3.2.3) forms a Dynkin-
System. Recall from Lemma 3.1.34ii that there is Ω0 P A1 such that µIω “ µIω1 for all ω P Ω0 and
µIω-a.e. ω1. Hence, for ω P Ω0 X Ω1 X Ω2 and all A P A,

µIω1pAq “ EµIω r1A | Is pω
1q for µIω-a.e. ω1,

But his means that µI is a regular contitional probability for the probability measure µIω, and Theo-
rem 3.2.3 implies that IpT q decomposes µ ergodically. l

3.2.3 The ergodic decomposition for countable families of non-singular
automorphisms

In this section pΩ,A, µq is a pLR space.

3.2.8 Theorem [15, Corollary 5.2] Let pTi : i P Iq be an at most countable family of non-singular
automorphisms of the pLR space pΩ,A, µq. Then
a) the sub-σ-algebra I :“

Ş

iPI IpTiq decomposes µ ergodically, and
b) for µ-a.e. ω P Ω holds: @i P I : µIω ˝ T

´1
i « µIω.

This theorem is essentially a corollary to the next theorem whose proof is postponed to the next
subsection.

3.2.9 Theorem [15, Theorem 3.4] Let pFi : i P Iq be an at most countable nonempty family of
sub-σ-algebras that decompose µ ergodically. If

˜

č

iPJ

Fi

¸

µ

“
č

iPJ

pFiqµ for all finite subsets J Ď I , (3.2.4)

then also
Ş

iPI Fi decomposes µ ergodically.
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3.2.10 Remark Raugi [15] formulates condition (3.2.4) not in terms of the µ-completions but in
terms of relative µ-completions F :“ Fµ XA. His condition reads

č

iPJ

Fi “
č

iPJ

Fi for all finite subsets J Ď I . (3.2.5)

Obviously (3.2.5) follows from (3.2.4) by intersecting both sides of (3.2.4) with A. The converse is
an immediate consequence of the following two assertions:
a)

`

F
˘

µ
“ Fµ, which follows from F Ď F Ď Fµ.

b)
`
Ş

iPJ Fi
˘

µ
“

Ş

iPJpFiqµ. This can be seen as follows:
Ş

iPJ Fi “
Ş

iPJpFiqµ X A Ď pFjqµ
for each j P J . On the other hand, if A P

Ş

iPJpFiqµ, then there are Ai P Fi Ď A such that
µpA4Aiq “ 0 pi P Jq. In particular Ai P A and µpAi4Ajq “ 0 for all i, j P J . Hence
Aj P

Ş

iPJ Fi for each j P J , so that A P
`
Ş

iPJ Fi
˘

µ
.

One may notice that the above arguments remain valid for infinite sets J Ď I .

3.2.11 Remark Raugi claims both theorems for arbitrary (also uncountable) families of automor-
phisms or σ-algebras, respectively. Below we give an example which shows that Theorem 3.2.9
does not extend to uncountable families – at least not without additional assumptions. I do not know
whether Theorem3.2.8 extends to uncountable families. It would do in cases where the relative com-
pletions IpTiq decompose µ ergodically, but I have no indication that this is generally true.

3.2.12 Example Let pΩ,A, µq be r0, 1
2q ˆ t1, 2u equipped with its product Borel-σ-algebra and the

probability µ “ Lebesgue ˆ counting measure. Denote by N the family of all uncountable Borel
subsets of r0, 1

2q with zero Lebesgue measure. For N P N let

FN :“tN0 ˆ t1, 2u YM1 ˆ t1u YM2 ˆ t2u YA1 ˆ t1u YA2 ˆ t2u :

N0,M1,M2 Ď N,A1, A2 Ď ΩzN,N0, A1, A2 Borel,M1,M2 at most countableu .

Then FN is a σ-algebra and FN “ A decomposes µ ergodically for all N P N , because µAω “ δω. If
N1, . . . , Nk P N , then

FN1 X ¨ ¨ ¨ X FNk “ FN1Y¨¨¨YNk .

Hence
FN1 X ¨ ¨ ¨ X FNk “ FN1Y¨¨¨YNk “ A “ FN1 X ¨ ¨ ¨ X FNk .

Consider now F :“
Ş

NPN FN . We will show that F does not decompose µ ergodically: Observe
first that

F “
č

NPN
FN “ tAˆ t1, 2u YM1 ˆ t1u YM2 ˆ t2u : A Borel,M1,M2 at most countableu .

(This follows from the fact that a Borel set B Ď r0, 1
2q that has at most countable intersection with

any Borel Lebesgue-null set is itself at most countable. If B is a nul set, this is obvious. Otherwise
one uses the fact that each Borel set of positive Lebesgue measure contains an uncountable Borel
null set.) We have

`

π´1
1 pBorel setsq

˘

µ
Ď F Ď

`

π´1
1 pBorel setsq

˘

µ
, hence the family µF

px,aq :“
1
2

`

δpx,1q ` δpx,2q
˘

serves as regular conditional probability for F . (Let A be a Borel subset of Ω

and F “ F0 ˆ t1, 2u. Then
ş

F µ
F
px,aqpAq dµpx, aq “

1
2

ş

F0
p1Apx, 1q ` 1Apx, 2qq dpµ ˝ π

´1
1 qpxq “

ş

p1F0XA1pxq` 1F0XA2pxqq dx “ µpF XAq.) But for each ω “ px, aq P Ω the set Ωztpx, aqu belongs
to F and µF

px,aqpΩztpx, aquq “
1
2 R t0, 1u.
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Proof that Theorem 3.2.8 follows from Theorem 3.2.9: Observing that I is at most countable, asser-
tion b) is a direct consequence of Theorem 3.2.7a. We turn to assertion a). By Theorem 3.2.7b each
IpTiq decomposes µ ergodically. So it suffices to prove that

Ş

iPJ IpTiqµ Ď p
Ş

iPJ IpTiqqµ for all
finite subsets J Ď I . For this we will use the general identity among sets AzpA4Bq “ AXB.

Let A P
Ş

iPJ IpTiqµ. There are Ai P IpTiq pi P Jq with µpA4Aiq “ 0. Hence

µpA4T´1
i Aq ď µpA4Aiq ` µpT´1

i pAi4Aqq “ 0 for all i P J .

Denote by G the countable algebraic subgroup of all non-singular automorphisms on pΩ,A, µq which
is generated by the Tipi P Jq and set N :“

Ť

gPG

Ť

iPJ g
´1pA4T´1

i Aq. As µ ˝ g´1 « µ for all
g P G, we have µpNq “ 0. As G “ tg ˝ Ti : g P Gu, we have T´1

i pNq “ N for all i P J , so that

T´1
i pAzNq “ T´1

i pAqzN “
`

T´1
i AzpA4T´1

i Aq
˘

zN “
`

AX T´1
i A

˘

zN

and
AzN “

`

AzpA4T´1
i Aq

˘

zN “
`

AX T´1
i A

˘

zN .

Hence AzN P
Ş

iPJ IpTiq, and as AzN Ď A Ď AYN it follows that A P p
Ş

iPJ IpTiqqµ. l

3.2.4 Proof of Theorem 3.2.9 (Raugi’s main theorem)

The case of two sub-σ-algebras

For i P I :“ t1, 2u and A P A let pPi1Aqpωq :“ µFiω pAq. Then Pi1A is a version of the conditional
expectation Eµr1A | Fis. From Corollary 2.2.9 we know that for each A P A

lim
nÑ8

1

n

n´1
ÿ

k“0

pP2P1q
k1A “ Eµr1A | pF1qµ X pF2qµs µ-a.e. (3.2.6)

By the assumption of the theorem we have pF1qµ X pF2qµ “ pF1 X F2qµ. Let F “ F1 X F2 and
denote µF the corresponding regular conditional probability w.r.t. µ. Let E be a countable X-stable
generator for A. Then (3.2.6) implies that there is Ω1 P A1 such that

@ω1 P Ω1 @A P E : lim
nÑ8

1

n

n´1
ÿ

k“0

pP2P1q
k1Apω

1q “ µFω1pAq . (3.2.7)

Changing Ω1 (if necessary), we can replace the “@ω1 P Ω1” by “@ω P Ω1 and µFω -a.e. ω1”, because µF

is a regular conditional probability w.r.t. F and µ.
Because of Lemma 3.2.5, there is a set Ω2 P A1 such that for all ω P Ω2 holds: µFi is a regular

conditional probability w.r.t. Fi and µFω pi “ 1, 2q so that we have for ω P Ω2

pPi1Aqpω
1q “ µFiω1 pAq “ EµFω r1A | Fispω

1q for µFω -a.e. ω1.

Hence, another application of Corollary 2.2.9 tells us that, for any ω P Ω1 X Ω2 and for any A P E ,

lim
nÑ8

1

n

n´1
ÿ

k“0

pP2P1q
k1Apω

1q “ EµFω r1A | F̃1 X F̃2spω
1q for µFω -a.e. ω1, (3.2.8)
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where F̃i “ pFiqµFω . Therefore Lemma 3.1.34ii implies that therer is Ω3 P A1 such that for all
ω P Ω1 X Ω2 X Ω3, all A P E and µFω -a.e. ω1

µFω pAq “ µFω1pAq “ lim
nÑ8

1

n

n´1
ÿ

k“0

pP2P1q
k1Apω

1q “ EµFω r1A | F̃1 X F̃2spω
1q . (3.2.9)

Hence, for ω P Ω1 X Ω2 X Ω3, F P F “ F1 X F2 Ď F̃1 X F̃2 and A P E ,

µFω pAX F q “

ż

F
1A dµ

F
ω “

ż

F
EµFω r1A | F̃1 X F̃2spω

1q dµFω pω
1q “

ż

F
µFω pAq dµ

F
ω pω

1q ,

and as for fixed F both sides of this identity define finite measures in A, the identity extends to
all A P σpEq “ A and in particular to A “ F . Therefore µFω pF q “ µFω pF q

2 P t0, 1u for all
ω P Ω1 X Ω2 X Ω3 P A1, i.e. F decomposes µ ergodically.

The case of a sequence of sub-σ-algebras

Let pFnqnPN be a sequence of sub-σ algebras that are ergodic w.r.t. µ and satisfy condition (3.2.4).
For n P N let Gn “

Şn
i“1Fi. Then, for any n ě 2 we have Gn “ Gn´1 X Fn and

pGn´1qµ X pFnqµ “
n´1
č

i“1

pFiqµ X pFnqµ “

˜

n
č

i“1

Fi

¸

µ

“ pGn´1 X Fnqµ .

Hence, from the case of two sub-σ-algebras it follows inductively that all Gn decompose µ ergodically.
Let G “

Ş

nPN Gn and consider again a countable X-stable generator E of A. By the decreasing
martingale theorem [10, Satz C.4], there is Ω1 P A1 such that

@ω1 P Ω1 @A P E : lim
nÑ8

µGnω1 pAq “ lim
nÑ8

Eµr1A | Gnspω1q “ Eµr1A | Gspω1q “ µGω1pAq .

Observing Lemma 3.1.34ii and changing Ω1 (if necessary) this implies

@ω P Ω1 @A P E : lim
nÑ8

µGnω1 pAq “ µGω1pAq “ µGωpAq for µGω-a.e. ω1.

The dominated convergence theorem implies that for all G P G, A P E , and ω P Ω1,

lim
nÑ8

ż

G
µGnω1 pAq dµ

G
ωpω

1q “

ż

G
lim
nÑ8

µGnω1 pAq dµ
G
ωpω

1q “

ż

G
µGωpAq dµ

G
ωpω

1q “ µGωpAq ¨ µ
G
ωpGq .

Because of Lemma 3.2.5 applied with G Ď F :“ Gn, there is Ω2 P A1 such that µGn is a regular
conditional probability w.r.t. G and µGnω for all ω P Ω2, i.e.

@A P A @G P G :

ż

G
µGnω1 pAq dµ

G
ωpω

1q “ µGωpAXGq .

Hence
@ω P Ω1 X Ω2 @G P G @A P E : µGωpAXGq “ µGωpAq ¨ µ

G
ωpGq .

Again, for fixed G and ω, both sides of the identity are finite measures as functions of A, which
coincide on the X-stable generator E of A, so that the identity extends to all A P A, in particular to
A “ G. Therefore, µGωpGq “ µGωpGq

2 P t0, 1u, i.e. G decomposes µ ergodically.
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Remarks on the case of an uncountable family of sub-σ-algebras

Let pFi : i P Iq be a nonempty family of sub-σ-algebras decomposing µ ergodically and satisfying
˜

č

iPJ

Fi

¸

µ

“
č

iPJ

pFiqµ for all finite subsets J Ď I , (3.2.10)

By Corollary 3.1.23, there is a countable subset J Ă I such that
č

iPI

pFiqµ “
č

iPJ

pFiqµ (3.2.11)

and by Lemma 3.1.24, the identity (3.2.10) carries over to this countable set J , so that

č

iPI

pFiqµ “

˜

č

iPJ

Fi

¸

µ

, (3.2.12)

but there is no way to prove that
Ş

iPJ Fi Ď p
Ş

iPI Fiqµ, which would be necessary for the further
proof. Indeed, Example 3.2.12 shows that this is not true in general: In that case p

Ş

iPI Fiqµ Ď
`

π´1
1 pBorel setsq

˘

µ
but p

Ş

iPJ Fiqµ for countable J is again of the form pFkqµ “ Aµ for some k P I .
However, it the Fi are σ-algebras of invariant sets, such counter-examples may not exist.

3.2.5 The corresponding Hilbert space decomposition

Generalizing the idea of Remark 3.1.36, there is an injective map φ : Ω Ñ X such that φ´1pσpτXqq Ď
I Ď pφ´1pσpτXqqqµ and, writing Γx :“ φ´1ptxuq, we have

i) Ω “
Ť

xPX Γx (disjointly),

ii) @x P X : Γx P φ
´1pσpτXqq Ď I, and

iii) for µ-a.e. ω P Ω and each x P X

µIωpΓxq “ δωpφ
´1ptxuqq “

#

1 if φpωq “ x

0 otherwise .

Therefore the conditional measures µIω can be localized on the sets Γx. In particular, there is a set Ω0 P

A1 such that for all ω, ω1 P Ω0 and all i P I holds: If x “ φpωq “ φpω1q, then µx :“ µφpωq is uniquely
defined and Ti|Γx is an ergodic non-singular automorphism of the probability space pΓx,A|Γx , µxq.
Furthermore, µpAq “

ş

X µxpA X Γxq dνpxq for each A P A where ν “ µ ˝ φ´1. In the rest of this
subsection we transfer this decomposition to the corresponding L2 spaces.

LetH “
ş

‘

X L
2pΓx,A|Γx , µxq dνpxq. That meansH is the linear space of all families pfxqxPX with

the following properties:

(1) @x P X : fx is A|Γx-measurable,

(2) x ÞÑ }fx}2 :“
´

ş

Γx
fxfx dµx

¯1{2
is σpτXqν-measurable,

(3) }pfxqxPX}2 :“
ş

X }fx}
2
2 dνpxq ă 8.
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In view of the polarization identity, property (3) implies for any pfxqxPX, pf̃xqxPX P H:

(4) x ÞÑ xfx, f̃xy :“
ş

Γx
fxf̃x dµx is σpτXqν-measurable.

This allows to define a scalar product

xpfxqxPX, pf̃xqxPXy :“

ż

X
xfx, f̃xy dνpxq

onH. (At this point we do not yet claim thatH is complete, i.e. thatH is a Hilbert space.)

3.2.13 Proposition G : L2pΩ,A, µq Ñ H, Gpfq :“ pf |ΓxqxPX, is unitary.

Proof: The family Gpfq clearly satisfies (1). As ω ÞÑ }f |Γφpωq}
2 “

ş

Γφpωq
ff dµφpωq “

ş

Ω ff dµ
I
ω

is I-measurable and as I “ φ´1pσpτXqqµ, the map x ÞÑ }f |Γx}
2 is σpτXqν-measurable, i.e. Gpfq

satisfies (2). Finally,

}Gpfq}2 “

ż

X
}f |Γx}

2
2 dνpxq “

ż

X

ˆ
ż

Γx

ff dµx

˙

dνpxq “

ż

Ω

ˆ
ż

Ω
ff dµIω

˙

dµpωq “ }f}22 ,

so that also (3) is satisfied and G is well defined and isometric. Obviously, G is linear. Therefore
V :“ GpL2pΩ,A, µqq is a linear subspace of H. As L2pΩ,A, µq is a complete space, so is V . We
must show that V K “ t0u.

So let pfxqxPX P V K. As pΩ,A, µq is a pLR space, there is a X-stable countable generator E of A.
For A P E define gA : XÑ R,

gApxq “

ż

AXΓx

fx dµx “ xfx, 1A|Γxy ,

By property (4), all gA are measurable. Observing that φpωq “ φpω1q for µIφpω1q-a.e. ω, we have

0 “ xG p1A ¨ pgA ˝ φqq , pfxqxPXy

“

ż

X

ˆ
ż

AXΓx

gApφpωqq fxpωq dµxpωq

˙

dνpxq

“

ż

Ω

ˆ
ż

A
gApφpωqq fφpω1qpωq dµ

I
φpω1qpωq

˙

dµpω1q

“

ż

Ω
gApφpω

1qq

ˆ
ż

A
fφpω1qpωq dµ

I
φpω1qpωq

˙

dµpω1q

“

ż

X
gApxq

ˆ
ż

AXΓx

fxpωq dµxpωq

˙

dνpxq

“

ż

X
gApxq gApxq dνpxq .

It follows that gApxq “ 0 for ν-almost all x P X. Hence there is a Borel set Y Ď X with νpY q “ 1
and such that 0 “ gApxq “

ş

AXΓx
fx dµx for all A P E and all x P Y . As for fixed x, this expression

defines a finite measure as a function of A, and as the family B is a X-stable generator of σpτXq, it
follows that

ş

AXΓx
fx dµx “ 0 for all A P σpτXq and all x P Y so that fx “ 0 µx-almost everywhere

for all x P Y . But this means that pfxqxPX “ 0 inH. l
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4 The structure of (ergodic) mpds

This chapter deals exclusively with measure preserving dynamical systems pΩ,A, µ, T qwhere T need
not be invertible. We give short glimpses of the following spects:

• System constructions like factors, extensions and products,

• Weak mixing and its various characterizations

• Kolmogorov-Sinai entropy.

4.1 Factors, extensions and products

Let pΩi,Ai, µi, Tiq pi “ 1, 2q be mpds.

4.1.1 Products

• The product of these two systems is the mpds pΩ1 ˆΩ2,A1 bA2, µ1 b µ2, T1 ˆ T2q. T1 ˆ T2

obviously preserves the measure of product sets, and as the collection of these sets is aX-stable
generator for the product σ-algebra, the product measure is preserved.

• If both probability spaces are LR, one may pass to the completed σ-algebra pA1bA2qµ1bµ2 to
obtain a LR space as product space.

• To simplify the notation we will often just talk about T1 ˆ T2 and take the (completed) product
probability space for granted.

4.1.2 Factors and extensions

• If there are Ω11 Ď Ω1 and Ω12 Ď Ω2 of full measure and a measurable map φ : Ω11 Ñ Ω12 such
that µ2 “ µ1 ˝φ

´1 and φ˝T1|Ω11
“ T2 ˝φ, then pΩ2,A2, µ2, T2q is a factor of pΩ1,A1, µ1, T1q.

We often just say that T2 is a factor of T1 or that T1 is an extension of T2.

• Dealing with LR spaces we know that φpΩ11q P A2 (Theorem 3.1.16), so that we can choose
Ω12 “ φpΩ11q.

• Both, T1 and T2 are factors of T1 ˆ T2.

Sometimes, if a mpds is not invertible, it is desirable to have a smallest invertible extension. An ex-
ample of this situation is a two-sided Bernoulli shift which is clearly an extension of the corresponding
one-sided Bernoulli shift (Example 1.1.2).
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4.1.3 The natural extension

4.1.1 Theorem Let pΩ,A, µ, T q be a mpds on a pLR or LR space pΩ,A, µq. Up to isomorphism
mod 0 there is a unique invertible extension pΩ̂, Â, µ̂, T̂ q of pΩ,A, µ, T q by a pLR or LR space
with the property that each invertible extension pΩ1,A1, µ1, T 1q of pΩ,A, µ, T q is also an extension
of pΩ̂, Â, µ̂, T̂ q. More precisely: Each factor map from pΩ1,A1, µ1, T 1q to pΩ,A, µ, T q factorizes over
pΩ̂, Â, µ̂, T̂ q. pΩ̂, Â, µ̂, T̂ q is called the natural extension of pΩ,A, µ, T q. It is explicitly constructed
in the proof.

Attention: For the present proof I need an additional assumption on the existence of pre-images
that is discussed below!

Proof: In view of Theorem 3.1.12, TnpΩq P Aµ for all n P N. As µpTnpΩqq “ µpT´npTnpΩqqq ě
µpΩq “ 1, we have Ω0 :“

Ş

nPN T
npΩq P A1

µ. By definition, T pΩ0q Ď Ω0, but I think it may happen
that T pΩ0q ‰ Ω0. Of course one can repeat this construction with Ω0 instead of Ω etc., but I do not
see that countably many repetitions lead to a surjective map. So I will make the additional assumption
that T pΩ0q “ Ω0. As the theorem only makes assertions about isomorphisms mod 0, we can then
assume w.l.o.g. that T pΩq “ Ω.

Consider Ω̂ :“ tω̂ “ pω0, ω1, . . . q P ΩN : T pωi`1q “ ωi @i P Nu equipped with the trace of the
product σ-algebra AbN. Define

T̂ : Ω̂ Ñ Ω̂, pω0, ω1, ω2, . . . q ÞÑ pT pω0q, ω0, ω1, . . . q .

T̂ is obviously invertible and bi-measurable. Denote

πi : Ω̂ Ñ Ω, ω̂ ÞÑ ωi ,

Fn :“ σpπ0, . . . , πnq .

Let Cn be the family of all sets

rA0, . . . , Ans :“ tω̂ P Ω̂ : ωi P Ai pi “ 0, . . . , nqu

“

#

ω̂ P Ω̂ : ωn P
n
č

i“0

T´ipAn´iq

+

“ π´1
n

˜

n
č

i“0

T´ipAn´iq

¸

with Ai P A. It is for the last identity that we need T pΩq “ Ω, because otherwise we can extend a
point ωn P

Şn
i“0 T

´ipAn´iq to a potential starting segment pω0, . . . , ωnq of a point ω̂ P Ω̂, but we
cannot guarantee that the segment can indeed be extended to such a point.

By definition, Cn Ď σpπnq, and as π´1
n pAq “ rΩ, . . . ,Ω, As for each A P A, we have indeed that

Cn “ σpπnq. So we can define a probability measure µ̂n on Cn by

µ̂nprA0, . . . , Ansq “ µ̂n

˜

π´1
n

˜

n
č

i“0

T´ipAn´iq

¸¸

:“ µ

˜

n
č

i“0

T´ipAn´iq

¸

.

Obviously Cn Ď Cn`1, and we will show that pµ̂nqnPN is a projective family of probability measures:
If rA0, . . . , Ans “ rB0, . . . , Bms and m ă n, we extend the sequence B0, . . . , Bm to a sequence
B0, . . . , Bm,Ω, . . . ,Ω of length n` 1 and note that

m
č

i“0

T´ipBm´iq “
n´m´1
č

i“0

T´ipΩq X
n
č

i“n´m

T´ipBn´iq
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to see that µ̂nprA0, . . . , Ansq “ µ̂mprB0, . . . , Bmsq.
Now suppose first that Ω “ r0, 1s and that A is the Borel-σ-algebra on R. Then Kolmogorov’s

extension theorem (a minor variant of [10, Satz 10.3]) guarantees the existence of a probability µ̂
on Ω̂ such that µ̂prA0, . . . , Ansq “ µ̂nprA0, . . . , Ansq for all n and all sets from Cn. In particular,
µ̂ ˝ π´1

0 “ µ̂0 ˝ π
´1
0 “ µ and

µ̂ ˝ T̂´1prA0, . . . , Ansq “ µ̂n´1prA1 X T
´1A0, A2, A3, . . . , Ansq

“ µ

˜

T´pn´1qpA1 X T
´1pA0qq X

n´2
č

i“0

T´ipAn´iq

¸

“ µ

˜

n
č

i“0

T´ipAn´iq

¸

“ µ̂nprA0, . . . , Ansq

“ µ̂prA0, . . . , Ansq

for all sets in
Ť

n Cn. Hence µ̂ ˝ T̂´1 “ µ̂.
If pΩ,A, µq is a non-atomic pLR or LP space, then it is isomorphic mod 0 to r0, 1s equipped with

Lebesgue measure λ. Denote the isomorphism by h : Ω0 Ñ r0, 1s. Then τ :“ h ˝ T ˝ h´1 is defined
Lebesgue-a.e. on r0, 1s and λ ˝ τ´1 “ λ ˝ h ˝ T´1 ˝ h´1 “ µ ˝ T´1 ˝ h´1 “ µ ˝ h´1 “ λ. As
τphpωi`1qq “ hpT pωi`1qq “ hpωiq, h extends to ĥ : xΩ0 Ñ

zr0, 1s, ω̂ ÞÑ phpωnqqnPN and

τ̂pĥpω̂qq “ pτphpω0qq, hpω0q, hpω1q, . . . q “ phpT pω0qq, hpω0q, hpω1q, . . . q “ ĥpT̂ pω̂qq .

Let µ̂ “ λ̂ ˝ ĥ. Then ĥ is an isomorphism mod 0 and

µ̂ ˝ T̂´1 “ λ̂ ˝ pT̂ ˝ ĥ´1q´1 “ λ̂ ˝ pĥ´1 ˝ τ̂q´1 “ λ̂ ˝ τ̂´1 ˝ ĥ “ λ̂ ˝ ĥ “ µ̂ .

It remains to show that each invertible extension of pΩ,A, µ, T q factorizes over pΩ̂, Â, µ̂, T̂ q. So
let

φ : pΩ1,A1, µ1, T 1q Ñ pΩ,A, µ, T q
be such an invertible extension. Define φ̂ : Ω1 Ñ Ω̂, φ̂pω1q “ pφpω1q, φpT 1´1

pω1qq, φpT 1´2
pω1qq, . . . q.

Then

pµ1 ˝ φ̂´1qprA0, . . . , Ansq “ pµ
1 ˝ φ̂´1q

˜

π´1
n

˜

n
č

i“0

T´ipAn´iq

¸¸

“ pµ1 ˝ T 1
´n
q

˜

φ´1

˜

n
č

i“0

T´ipAn´iq

¸¸

“ µ

˜

n
č

i“0

T´ipAn´iq

¸

“ µprA0, . . . , Ansq

so that µ1 ˝ φ̂´1 “ µ, and obviously π0 ˝ φ̂ “ φ. l

4.1.2 Remark In Example 1.1.2 we introduced the left shifts TN on t0, 1uN and TZ on t0, 1uZ,
equipped with invariant the p-Bernoulli measures µp,N and µp,Z, respectively. One can show that
pt0, 1uZ, µp,Z, TZq is isomorphic mod 0 to the natural extension of pt0, 1uN, µp,N, TNq, both equipped
with their product σ-algebras.
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4.1.4 Exercises

1. Prove Remark 4.1.2.

2. Prove that a factor of an ergodic mpds is ergodic.

3. Prove that a mpds is ergodic if and only if its natural extension is.

4.2 Weak mixing

4.2.1 Weak mixing and its various characterizations

Let pΩ,A, µ, T q be a mpds and denote L2
0 :“ tf P L2pΩ,A, µq : xf, 1y “ 0u and Uf :“ f ˝ T . The

following lemma is a simple consequence of the L1-convergence in Birkhoff’s ergodic theorem:

4.2.1 Lemma pΩ,A, µ, T q is ergodic if and only if

@A,B P A : lim
nÑ8

1

n

n´1
ÿ

k“0

µpAX T´kpBqq “ µpAq ¨ µpBq .

An obviously stronger property than ergodicity is the following one, called mixing:

@A,B P A : lim
nÑ8

µpAX T´npBqq “ µpAq ¨ µpBq .

More important than this is the property defined next - situated between ergodicity and mixing:

4.2.2 Definition If limnÑ8
1
n

řn´1
k“0 |µpAXT

´kpBqq´µpAqµpBq| “ 0 for allA,B P A, the system
pΩ,A, µ, T q is called weakly mixing.

The following theorem provides various characterization of weak mixing. Proofs of its different
parts can be found in the text-books [5, 14, 17]. I will follow mostly [5].

4.2.3 Theorem The following properties are equivalent:

(i) pΩ,A, µ, T q is weakly mixing.

(ii) limnÑ8
1
n

řn´1
k“0pµpAX T

´kpBqq ´ µpAqµpBqq2 “ 0 for all A,B P A.

(iii) Given A,B P A, there is a subset L Ă N of asymptotic density 0 such that
limnÑ8,nRL µpAXT

´npBqq “ µpAqµpBq, i.e. limnÑ8,nRL |µpAXT
´npBqq´µpAqµpBq| “ 0

(iv) limnÑ8
1
n

řn´1
k“0 |xU

kf, gy ´ xf, 1y ¨ x1, gy| “ 0 for all f, g P L2.

(v) limnÑ8
1
n

řn´1
k“0 |xU

kf, fy| “ 0 for all f P L2
0.

(vi) If Uf “ λf , then λ “ 1 and f “ const.

(vii) T ˆ T is weakly mixing.

(viii) T ˆ S is ergodic on Ωˆ Y for each ergodic mpds pY,B, ν, Sq.

(ix) T ˆ T is ergodic.
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(x) The system is ergodic and has no rational or irrational rotation as a factor, except for the identity.

4.2.4 Remark It suffices to check property (i) or (iii) for all A,B from a X-stable generator of the
σ-algebra A. The proof proceeds via the two-fold application of a Dynkin system argument. (The
same holds for the property characterizing ergodicity in Lemma 4.2.1.)

For the proof of Theorem 4.2.3 we need the following lemma about sequences of real numbers:

4.2.5 Lemma Let panqnPN be a bounded sequence of non-negative real numbers. The following are
equivalent:

(i) limnÑ8
1
n

řn´1
k“0 ak “ 0.

(ii) There is a subset L Ă N of asymptotic density 0 such that limnÑ8,nRL an “ 0.

The elementary proof can be found e.g. in [17]. The implication (ii) ñ (i) is more or less trivial,
and for the reverse implication one has to note that non-negativity and boundedness of a sequence
satisfying (i) imply that for each ε ą 0 the fraction of the number of elements an ą ε tends to zero.

Proof of Theorem 4.2.3: We will prove the following equivalences separately:
1. (i)ô (ii)ô (iii)ô (iv)ñ (v)ñ (vi)ñ (ix)ñ (ii)
2. (iii)ñ (vii)ñ (ix)
3. (i)ñ (viii)ñ (ix)
4. (vi)ô (x)

Most of these implications are trivial or elementary to prove. (vi) ñ (ix), however, uses a simple
consequence of the spectral theory of compact self-adjoint operators.

1. The equivalence of (i), (iii) and (ii) follows immediately from Lemma 4.2.5.
(iv)ñ (i) is obvious.
(i)ñ (iv): For f P L2 denote by Rf the set of all g P L2 that satisfy (iv), and for g P L2 denote by Sg
the set of all f P L2 that satisfy (iv). All Rf and Sg are closed linear subspaces of L2. Because of (i),
eachR1A ,A P A, contains the space of all measurable indicator functions 1B . HenceR1A “ L2. This
means that for each g P L2 the space Sg contains all measurable indicator functions 1A, so Sg “ L2.
(iv)ñ (v) is trivial.
(v) ñ (vi): Let Uf “ λf , }f}2 ą 0. Then }f}2 “ }Uf}2 “ |λ| }f}2, so that |λ| “ 1. Similarly,
ş

f dµ “
ş

Uf dµ “ λ
ş

f dµ, whence λ “ 1 or f P L2
0. In both cases, f0 :“ f ´ xf, 1y is an

eigenfunction for the eigenvalue λ. Now (v) implies that }f0}2 “ 0, i.e. f “ xf, 1y “ const R L2
0, so

that finally λ “ 1.
(vi) ñ (ix): All proofs of this implication that are known to me use some variant of spectral theory
for Hilbert space operators. The traditional proof uses knwoledge of the spectral measure for unitary
operators, see e.g. [14]. Here I present a proof from [5, pp.62] that uses the fact that kernel operators
are non-trivial self-adjoint compact operators on L2 and thus have at least one eigenvalue λ with a
finite-dimensional eigenspace Vλ, see [6] for a precise and short account.

The proof proceeds by contradiction: Suppose that T ˆ T is not ergodic. Then there is a non-
constant function f P L2

CpΩˆ Ω,AbA, µb µq that is almost invariant under T ˆ T . Let

f1px, yq :“ fpx, yq ` fpy, xq , f2px, yq :“ i
´

fpx, yq ´ fpy, xq
¯

.

Both functions are almost invariant under TˆT and have the additional symmetry fipx, yq “ fipy, xq.
As f1 ´ if2 “ 2f and as f is non-constant, at least one of f1 and f2 is non-constant. Hence we
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can assume w.l.o.g. that fpx, yq “ fpy, xq. We may further assume (by subtracting
ş

f dµ2) that
ş

f dµ2 “ 0. Define the linear operator F on L2
CpΩ,A, µq by

pF pgqqpxq :“

ż

Ω
fpx, yqgpyq dµpyq .

It is a non-trivial self-adjoint compact operator [6, Theorem 2.0.1] which, as such, has at least one
eigenvalue λ with a finite-dimensional space Vλ of eigenfunctions [6, Theorem 1.0.2]. We prove that
UT pVλq Ď Vλ: assume that F pgq “ λg. Then

F pUT gqpxq “

ż

Ω
fpx, yqpUT gqpyq dµpyq

“

ż

Ω
fpTx, TyqgpTyq dµpyq p as f is T ˆ T -invariantq

“

ż

Ω
fpTx, yqgpyq dµpyq p as µ ˝ T´1 “ µq

“ pF pgqqpTxq “ UT pλgqpxq “ λpUT gqpxq .

It follows that UT |Vλ is a non-trivial linear map of finite-dimensional vector space and therefore has a
non-trivial eigenfunction g P L2

CpΩ,A, µq. By assumption (vi) g is constant, g “
ş

Ω g dµ. But then
λ
ş

Ω g dµ “
ş

Ω F pgq dµ “
ş

Ω g dµ ¨
ş

Ω2 f dµ
2 “ 0 so that g “

ş

Ω g dµ “ 0, a contradiction.
(ix)ñ (ii): If A,B P A, then

1

n

n´1
ÿ

k“0

pµpAX T´kpBqq ´ µpAqµpBqq2

“
1

n

n´1
ÿ

k“0

µpAX T´kpBqq2 ´ 2µpAqµpBq
1

n

n´1
ÿ

k“0

µpAX T´kpBqq ` pµpAqµpBqq2

“
1

n

n´1
ÿ

k“0

µb µppAˆAq X pT ˆ T q´kpB ˆBqq

´ 2µpAqµpBq
1

n

n´1
ÿ

k“0

µb µppAˆ Ωq X pT ˆ T q´kpB ˆ Ωqq ` pµpAqµpBqq2

Since T ˆ T is ergodic by assumption, Lemma 4.2.1 implies that, as nÑ8 this tends to

µb µpAˆAq ¨ µb µpB ˆBq ´ 2µpAqµpBq ¨ µb µpAˆ Ωq ¨ µb µpB ˆ Ωq ` pµpAqµpBqq2

“ pµpAqµpBqq2 ´ 2pµpAqµpBqq2 ` pµpAqµpBqq2 “ 0 .

2. (iii) ñ (vii): Let A1, A2, B1, B2 P A. By (iii) there are sets L1, L2 Ă N of asymptotic density
zero such that

lim
nÑ8,nRLi

µpAi X T
´npBiqq “ µpAiqµpBiq for i “ 1, 2 .

Let L “ L1 Y L2. then L has asymptotic density zero, too, and

lim
nÑ8,nRL

µb µppA1 ˆA2q X pT ˆ T q
´npB1 ˆB2qq

“ lim
nÑ8,nRL

`

µpA1 X T
´npB1qq ¨ µpA2 X T

´npB2qq
˘

“ µpA1qµpB1q ¨ µpA2qµpB2q “ µb µpA1 ˆB1q ¨ µb µpA2 ˆB2q .
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In view of Remark 4.2.4 this proves property (iii) for T ˆ T which, as already proved in part 1, is
equivalent to weak mixing.
(vii)ñ (ix) is trivial in view of Lemma 4.2.1.

3. (i) ñ (viii): Let pY,B, ν, Sq be an ergodic mpds. In order to prove ergodicity of T ˆ S the
following is sufficient in view of Remark 4.2.4: for A,B P A and C,D P B,

1

n

n´1
ÿ

k“0

µb ν
´

pAˆ Cq X pT ˆ Sq´kpB ˆDq
¯

“
1

n

n´1
ÿ

k“0

µpAX T´kpBqq ¨ νpC X S´kpDqq

“
1

n

n´1
ÿ

k“0

´

µpAX T´kpBqq ´ µpAqµpBq
¯

¨ νpC X S´kpDqq ` µpAqµpBq
1

n

n´1
ÿ

k“0

νpC X S´kpDqq

Ñ µpAqµpBq ¨ νpCqνpDq “ µb νpAˆ Cq ¨ µb νpB ˆDq as nÑ8 ,

because the first sum is bounded by 1
n

řn´1
k“0

ˇ

ˇµpAX T´kpBqq ´ µpAqµpBq
ˇ

ˇ which tends to zero as
T is weakly mixing.
(viii) ñ (ix): Let pY,B, ν, Sq be the trivial one-point mpds which is of course ergodic. Then the
systems pΩ,A, µ, T q and pΩˆ Y,Ab B, µb ν, T ˆ Sq are trivially isomorphic, so that pΩ,A, µ, T q
is ergodic by (viii). Hence T ˆ T is ergodic by (viii).

4. (vi)ñ (x): The ergodicity of T follows at once by applying (vi) to f “ 1A, A P A. Suppose now
that Rα : S1 Ñ S1 is a factor of T , S1 “ tz P C : |z| “ 1u. Then there is a measurable f : Ω Ñ S1

such that f ˝ T “ Rα ˝ f , that means Ufpωq “ fpT pωqq “ eiαfpωq, so that eiα “ 1, and the factor
is the identity system. As a factor of an ergodic system it is ergodic, so it is a trivial one point system.
(x) ñ (vi): Suppose Uf “ λf for some f P L2 with }f}2 ą 0. Then |λ| “ 1 as in (v) ñ (vi),
and |f | ˝ T “ |Uf | “ |f |. As T is ergodic, Birkhoff’s ergodic theorem implies |f | “

ş

|f | dµ ą 0.
Normalizing f we can assume that |f | “ 1, i.e. f : Ω Ñ S1. Let λ “ eiα. Then f ˝T pωq “ λfpωq “
Rα ˝ fpωq for µ-a.e. ω, i.e. Rα : S1 Ñ S1 is a factor of T . It follows from (x) that λ “ eiα “ 1.
Hence f ˝ T “ Uf “ f and, as before for |f |, the ergodicity of T implies that f “

ş

f dµ a.e., i.e. f
is constant in L2. l

4.2.2 The Kronecker factor

The equivalence of (vi) and (x) in Theorem 4.2.3 shows the close connection between eigenfunctions
and rotation factors for mpds. Here we extend this point of view. Our general assumption is that
pΩ,A, µq is a LR-space.

Let pΩ,A, µ, T q be an ergodic mpds. Then:

• If UT f “ λf , then |λ| “ 1 as seen in the proof of (v) ñ (vi) of Theorem 4.2.3. Hence
UT |f | “ |UT f | “ |f | so that |f | is constant, and normalizing it we can assume that |f | “ 1.

• If UT fi “ λifi pi “ 1, 2q, then UT pf1f2q “ UT f1 ¨UT f2 “ λ1λ2 ¨f1f2, so that the eigenvalues
of UT form a multiplicative subgroup of t|z| “ 1u, and the eigenfunctions form a multiplicative
subgroup of L2. Furthermore, λ1λ2xf1, f2y “ xUT f1, UT f2y “ xf1, f2y, i.e. eigenfunctions
to distinct eigenvalues are orthogonal. Denote by ET the subspace of L2 generated by all
eigenfunctions of UT . It has an orthonormal basis of eigenfunctions.
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• If UT f “ λf , then σpfq is a T -invariant σ-algebra: for each measurable A Ď C we have
T´1tf P Au “ tUT f P Au “ tf P λ

´1Au. The same holds for KT :“ σpET q.

• As pΩ,A, µq is a LR-space, there is a countable mod µ-generator B of KT . Then also B̃ :“
tT´kB : B P B, k P Nu is a countable mod µ-generator of KT and T´1pB̃q Ď B̃. Let
B̃ “ tB0, B1, B2, . . . u and consider the asociated coding map φ̃ : Ω Ñ X. As each Bn
is the φ̃-preimage of a cylinder set in X, we have B̃ Ď φ̃´1pσpτXqqq Ď σpB̃q and hence
σpB̃q “ φ̃´1pσpτXqq and KT “ φ̃´1pσpτXqq mod µ. This means that φ̃´1 describes a 1-1
correspondence between equivalence classes of measurable sets, and standard arguments yield
that for every f P E “ L2

CpΩ,KT , µq there is a unique f̃ P L2
CpX, σpτXq, µ̃q, µ̃ :“ µ ˝ φ̃´1,

such that f̃ ˝ φ̃ “ f µ-a.e.

• As T´1pB̃q Ď B̃, there is a map κ : N Ñ N such that T´1pBnq “ Bκpnq for all n P N. define
S : XÑ X, pSpxqqn :“ xκpnq. Then S is Borel-measurable,

pSpφ̃pωqqqn “ pφ̃pωqqκpnq “ 1Bκpnqpωq “ 1BnpT pωqq “ φ̃pT pωqq ,

and S preserves the measure µ̃.

• If UT f “ λf for f P L2
CpΩ,A, µq, then

US f̃ ˝ φ̃ “ f ˝ S ˝ φ̃ “ f̃ ˝ φ̃ ˝ T “ UT f “ λf “ λf̃ ˝ φ̃

so that µ̃tUS f̃ ‰ λf̃u “ µtUS f̃ ˝ φ̃ ‰ λf̃ ˝ φ̃u “ 0, i.e. f̃ is a L2
CpX, σpτXq, µ̃q-eigenfunction

of US .

On the other hand, if US f̃ “ λf̃ for some f̃ P L2
CpX, σpτXq, µ̃q, then UT pf̃ ˝ φ̃q “ f̃ ˝ φ̃ ˝ T “

US f̃ ˝ φ̃ “ λpf̃ ˝ φ̃q.

• Hence φ̃´1pKSq “ KT “ φ̃´1pσpτXqq mod µ so that KS “ σpτXq mod µ̃. The factor sys-
tem pX, σpτXq, µ̃, Sq) is called the Kronecker factor of pΩ,A, µ, T q. One can show that it is
isomorphic (as a mpds) to a rotation on a compact group equipped with Haar measure.

• Restricting a system to KT corresponds to the restriction of the linear operator UT to the sub-
space ET generated by its geometric eigenfunctions. In the latter case a better picture of the
dynamics associated with the discrete spectrum of the operator is obtained if one restricts the op-
erator to the space generated by its algebraic eigenfunctions. In finite-dimensional spaces this
is the complete picture described by the Jordan normal form. In infinite-dimensional spaces
the situation is more complicated because one may encounter “infinite Jordan blocks”. On the
dynamical systems side this situation is described by an invariant sub-σ-algebra containingKT ,
which gives rise to another factor called the maximal distal factor. In a sense that can be made
precise one can say that each mpds is weakly mixing relative to its maximal distal factor.

4.2.3 Exercises

1. Prove that a factor of a weakly mixing mpds is weakly mixing.

2. Prove that a mpds is weakly mixing if and only if its natural extension is.

3. Give an example of an ergodic mpds pΩ,A, µ, T q for which T ˆ T is not ergodic (and hence T
is not weakly mixing).
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4. Let pTd,A, µq be as in Example 1.1.1, i.e. µ is Lebesgue measure on Td. Give at least two
different proofs based on Theorem 4.2.3 for each of the following assertions:

a) Let T pxq “ x` a for some a P Rd. Then T is not weakly mixing.
b) Let T pxq “ Ax for some d ˆ d integer matrix A with detpAq ‰ 0. Then T is weakly

mixing if and only if it is ergodic.

Hint: A look at Theorem 1.1.11 may help to understand the situation.

5. Prove that the shift dynamical system pt0, 1uZ,A, µp, T q from Example 1.1.2a is weakly mix-
ing.

6. Prove Remark 4.2.4.

7. [5, See also Exercise 2.7.2] Show that if a mpds pΩ,A, µ, T q has the property that

lim
nÑ8

1

n

n´1
ÿ

k“0

sup
!

|µpAX T´kpBqq ´ µpAqµpBq| : A,B P A
)

“ 0 ,

then the system is trivial in the sense that µpAq P t0, 1u for all A P A.

4.3 Entropy

For this section I refer to one of the many textbooks that treat the bascis of entropy theory for mpds,
e.g. [14, 17, 16] and to the monograph [12] that is totally devoted to entropy as a concept from
probability and information theory. Basics on entropy in a purely probabilistic, non-dynamical context
can be found in [9].

In this course I will follow the very compact presentation of the main material in [16, Chapter 4]
and refer for some advanced classical results to [12].

4.3.1 Information content and entropy

Motivational material, definitions and notations from [16, Section 4.1]. In particular: The word parti-
tion always means a finite or countable decomposition of Ω into measurable sets. For all our results
sets of measure zero can be neglected in any respect.

4.3.2 The entropy of a partition

More notation and basic results from [16, Section 4.2], in particular:

Hµpα | Fq “
ż

Ω
Iµpα | Fq dµ “ ´

ÿ

APα

ż

Ω
µpA | Fq logµpA | Fq dµ “

ÿ

APα

ż

Ω
ϕpµpA | Fqq dµ

where ϕptq :“ ´t logptq.

4.3.1 Theorem Suppose that α an d β are partitions with Hµpαq, Hµpβq ă 8 and F is a sub-σ-
algebra of A. Then

1. Iµpα_ β | Fq “ Iµpα | Fq ` Iµpβ | F _ αq.
2. Hµpα_ β | Fq “ Hµpα | Fq `Hµpβ | F _ αq.
3. Hµpα_ βq “ Hµpαq `Hµpβ | αq.
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4.3.2 Proposition Let α, β be partitions with finite entropy and F ,G be sub-σ-algebras of A. Then
1. If F Ď G, then Hµpα | Fq ě Hµpα | Gq.
2. If α ď β, then Hµpα | Fq ď Hµpβ | Fq.
3. Hµpα_ β | Fq ď Hµpα | Fq `Hµpβ | Fq.
4. α Ď F mod µ if and only if Hµpα | Fq “ 0.

This is slightly more general than Proposition 4.2 in [16], but see [8, Theorem 3.1.8].

4.3.3 Theorem Let α be a partition with Hµpαq ă 8 and let pFnqnPN be a family of sub-σ-algebras.
Then

1. The family pIµpα | FnqqnPN is uniformly integrable.
2. if F1 Ď F2 ¨ ¨ ¨ Õ F8 or F1 Ě F2 ¨ ¨ ¨ Œ F8, then limnÑ8 Iµpα | Fnq “ Iµpα | F8q µ-a.e.

and in L1
µ.

In both cases limnÑ8Hµpα | Fnq “ Hµpα | F8q. (If the σ-algebras are increasing, the family
pIµpα | FnqqnPN is even dominated by a L1

µ-function, see [16, Lemma 4.2] or [8, Theorem 3.1.10].)

Proof: Applying the increasing or the decreasing martingale theorem to each µpA | Fnq separately
we see at once that Iµpα | Fnq “

ř

APα 1A ¨ µpA | Fnq Ñ Iµpα | F8q µ-a.e. For the L1
µ-

convergence (and hence also the convergence of the conditional entropies) it suffices to show that the
family pIµpα | FnqqnPN is uniformly integrable:
For t ą 1 we have with Bn,t :“ tIµpα | Fnq ą tu:

ż

Bn,t

Iµpα | Fnq dµ “
ÿ

APα

ż

Bn,t

´1A logµpA | Fnq dµ

“
ÿ

APα

ż

Bn,t

´µpA | Fnq logµpA | Fnq dµ

ď
ÿ

APα

min

"

ϕpe´tq,

ż

Ω
ϕpµpA | Fnqq dµ

*

ď
ÿ

APα

min
 

ϕpe´tq, ϕpµpAqq
(

Ñ 0 as tÑ8

as
ř

APα ϕpµpAqq “ Hµpαq ă 8. l

4.3.3 The entropy of a mpds (metric entropy or Kolmogorov-Sinai entropy)

Let pΩ,A, µ, T q be a mpds. For a partition α and for integers k ď ` let α`k :“ T´kα_¨ ¨ ¨_T´p`´1qα.
(When T is not invertible, we require k ě 0.) Observe that HµpT

´1α | T´1Fq “ Hµpα | Fq (see
e.g. [8, Lemma 3.2.3]).

4.3.4 Definition a) hµpT, αq :“ limnÑ8
1
nHµpα

n
0 q.

b) hµpT q :“ sup thµpT, αq : Hµpαq ă 8u.
(The limit in a) exists because pHµpα

n
0 qqnPN is a subadditive sequence: Hµpα

n`m
0 q “ Hµpα

m
0 _

T´mαn0 q ď Hµpα
m
0 q `HµpT

´mαn0 q “ Hµpα
m
0 q `Hµpα

n
0 q.

hµpT q is called the metric entropy or Kolmogorov-Sinai entropy (KS-entropy) of the mpds pΩ,A, µ, T q.
It is obviously an isomorphism invariant and can only decrease when passing to a factor system.
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4.3.5 Theorem Let α be a partition with Hµpαq ă 8 and let F be a sub-σ-algebra of A. Then
(a) Hµpα

n
0 | T

´nFq ´Hµpα | Fq “
řn
k“1Hµpα | α

k
1 _ T

´kFq
(b) Hµpα

n
0 q ´Hµpαq “

řn
k“1Hµpα | α

k
1q

(c) hµpT, αq “ limnÑ8Hµpα | α
n
1 q “ Hµpα | α

8
1 q where α81 :“ σ

`
Ť8
n“1 T

´nα
˘

.

Proof: For each k P N,

Hµpα
k
0 | T

´kFq ´Hµpα
k´1
0 | T´pk´1qFq “ Hµpα_ α

k
1 | T

´kFq ´Hµpα
k
1 | T

´kFq
“ Hµpα | α

k
1 _ T

´kFq .

Summing over k we obtain (a), and (b) is just the special case F “ tH,Ωu. Dividing (b) by n and
passing to the limit nÑ8, we obtain

hµpT, αq “ lim
nÑ8

1

n

n
ÿ

k“1

Hµpα | α
k
1q “ lim

nÑ8
Hµpα | α

n
1 q “ Hµpα | α

8
1 q

where the second identity is due to the fact that the sequnce is decreasing and the third one follows
from Theorem 4.3.3. l

4.3.6 Theorem (Shannon - McMillan - Breiman) Let pΩ,A, µ, T q be an ergodic mpds and α a par-
tition with Hµpαq ă 8. Then

lim
nÑinf

1

n
Iµpα

n
0 q “ hµpT, αq µ-a.e. and in L1

µ .

Proof: (See [16, Theorem 4.3] or [8, Theorem 3.2.7b].) The main steps are:

• the purely computational decomposition

Iµpα
n
0 q “

n´1
ÿ

k“0

Iµpα | α
n´k
1 q ˝ T k “ Rn ` Sn with

with

Rn “
n´1
ÿ

k“0

Iµpα | α
8
1 q ˝ T

k and Sn “
n´1
ÿ

k“0

´

Iµpα | α
n´k
1 q ´ Iµpα | α

8
1 q

¯

˝ T k ,

• limnÑ8
1
nRn “

ş

Iµpα | α
8
1 q dµ “ Hµpα | α

8
1 q “ hµpT, αq by Birkhoff’s ergodic theorem,

• limnÑ8
1
nSn “ 0 µ-a.e. and in L1

µ. The L1
µ-convergence is easy, because

ż

|Sn| dµ ď
1

n

n´1
ÿ

k“0

ż

ˇ

ˇ

ˇ
Iµpα | α

n´k
1 q ´ Iµpα | α

8
1 q

ˇ

ˇ

ˇ
dµÑ 0

by Theorem 4.3.5. From this one passes to a.e. convergence as follows:
Let FN :“ supněN |Iµpα | α

n
1 q ´ Iµpα | α

8
1 q|. Then pFN qNPN is uniformly integrable and

FN Ñ 0 µ-a.e. by Theorem 4.3.3, hence limNÑ8

ş

FN dµ “ 0. On the other hand,

lim sup
nÑ8

ˇ

ˇ

ˇ

ˇ

1

n
Sn

ˇ

ˇ

ˇ

ˇ

ď lim sup
nÑ8

˜

1

n

n´N
ÿ

k“0

FN ˝ T
k `

1

n

n´1
ÿ

k“n´N`1

F1 ˝ T
k

¸

ď

ż

FN dµ` lim sup
nÑ8

1

n

n´1
ÿ

k“n´N`1

F1 ˝ T
k
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where, for each fixed N , the last limit is 0 a.e. because F1 P L
1
µ.

l

4.3.7 Lemma For partitions α, β with finite entropy we have hµpT, α _ βq ď hµpT, αq ` hµpT, βq
and

hµpT, αq ď hµpT, α_ βq ď hµpT, βq `Hµpα | βq .

Proof: In view of Theorem 4.3.1 and Proposition 4.3.2 we have

Hµpα
n
0 q ď Hµppα_ βq

n
0 q “ Hµpα

n
0 _ β

n
0 q “ Hµpβ

n
0 q `Hµpα

n
0 | β

n
0 q

ď Hµpβ
n
0 q `

n´1
ÿ

k“0

HµpT
´kα | βn0 q ď Hµpβ

n
0 q `

n´1
ÿ

k“0

HµpT
´kα | T´kβq

“ Hµpβ
n
0 q ` nHµpα | βq .

Dividing by n and taking the limit yields the lemma. l

4.3.8 Theorem hµpT q “ sup thµpT, βq : β a finite partitionu.

Proof: Only “ď” must be proved: Let α “ tA1, A2, . . . u be any partition with Hµpαq ă 8. Let
βn :“ tA1, . . . , An,

Ť

kąnAku. It is not hard to prove that Hµpα | βnq Ñ 0. Then the previous
lemma shows that hµpT, αq ď supn hµpT, βnq ď sup thµpT, βq : β a finite partitionu. l

4.3.9 Definition Let pΩ,A, µ, T q be a mpds, α a finite or countable partition.
(a) α is a strong generator for T , if α80 “ A mod µ.
(b) If T is invertible, then α is a generator for T , if α8´8 “ A mod µ.

4.3.10 Remark If pΩ,A, µq is a LR-space and if α separates points under T , i.e. if for all x ‰ y in
Ω there is n P N (or Z) such that Tnx and Tny are in diffeerent elements of α, then the countable
collection

Ť

n T
´npαq separates points in Ω so that α is a (strong) generator, see Theorem 3.1.15.

4.3.11 Theorem (Sinai’s generator theorem) Let pΩ,A, µ, T q be a mpds. If α is a strong generator
for T (or, in the invertible case, a generator), then hµpT q “ hµpT, αq.

Proof: Fix a finite partition β. It suffices to show that hµpT, βq ď hµpT, αq. Observe that pαN0 q
n
0 “

αN`n´1
0 and, in the invertible case, pαN´N q

n
0 “ αn`N´1

´N . Hence

hµpT, α
N
´N q “ lim

nÑ8

1

n
Hµpα

N`n´1
´N q “ lim

nÑ8

1

n
Hµpα

2N`n´1
0 q “ hµpT, αq

in the invertible case, and similarly, hµpT, αN0 q “ hµpT, αq in the general case. Therefore,

hµpT, βq ď hµpT, α
N
´N q `Hµpβ | α

N
´N q Ñ hµpT, αq `Hµpβ | α

8
´8q “ hµpT, αq .

In the general case one argues similarly with αN0 instead of αN´N . l
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4.3.12 Remark Using ideas of this proof, it is an easy exercise to show that hµpTN , αq “ |N | ¨
hµpT, αq for all N P N, and if T is invertible, even for all N P Z:

αN0 _ T
´NαN0 _ ¨ ¨ ¨ _ T

´pn´1qNαN0 “ α_ T´1α_ ¨ ¨ ¨ _ T´pnN´1qα .

Taking Hµp . q on both sides, dividing by n and taking the limit n Ñ 8 yields hµpTN , αN0 q “
N hµpT, αq, and the proof is easily finished.

4.3.4 Examples

The first two examples are directly taken from [16, Section 4.4].

4.3.13 Example Bernoulli shifts

4.3.14 Example Markov measures on shift spaces

For the next two examples the following Lemma is useful.

4.3.15 Lemma Let pΩ,A, µ, T q be a mpds. If α is a strong generator for T and if TA :“ T |A is
bijective, then there are measurable functions ϕA : Ω Ñ r0, 1s such that ϕA ˝ T is a version of
µpA | α81 q pA P αq. The ϕA have the following properties:

1. ϕA ˝ T ą 0 on A.
2. Let JµT : Ω Ñ R, JµT :“

ř

APα
1

ϕA˝T
1A. Then JµT “

dpµ˝TAq
dµ is the “Jacobian” of TA w.r.t.

µ, in the following sense:

@A P α @B P A : µpT pAXBqq “

ż

AXB
JµT dµ .

3. hµpT q “
ş

log JµT dµ.

Proof: 1. For each A P α there is a version pA of the conditional expectation µpA | α81 q. As
α81 “ T´1α80 “ T´1A p mod µq, pA can be chosen T´1A-measurable so that there are measurable
ϕA such that µpA | α81 q “ pA “ ϕA ˝T . As µpAXtϕA ˝T “ 0uq “

ş

tϕA˝T“0u µpA | T
´1Aq dµ “

ş

tpA“0u pA dµ “ 0, ϕA can be chosen such that ϕA ˝TA ą 0 on A. Next, let B P A and A P α. Then

µpT pAXBqq “

ż

tϕAą0u

1T pAXBq

ϕA
¨ ϕA dµ “

ż

tϕA˝Tą0u

1T pAXBq

ϕA
˝ T ¨ pA dµ

“

ż

AXtϕA˝Tą0u

1T pAXBq

ϕA
˝ T dµ “

ż

A

1AXB
ϕA ˝ T

dµ “

ż

AXB
log JµT dµ

which proves the second assertion. Finally,

Hµpα | α
8
1 q “ ´

ÿ

APα

ż

A
logµpA | α81 q dµ “

ÿ

APα

ż

1A log
1

ϕA ˝ T
dµ “

ż

log JµT dµ ,

so that, by Sinai’s generator theorem, hµpT q “ hµpT, αq “ Hµpα | α
8
1 q “

ş

log JµT dµ. l

4.3.16 Example Irrational rotations Ta : Td Ñ Td. Let α be the partition into 2d squares obtained by
cutting each coordinate direction in two semi-circles. It is not hard ot see that α is a strong generator
if Ta is ergodic w.r.t. Lebesgue measure µ, i.e. if @n P Zdzt0u : xn, ay R Z (see Theorem 1.1.11). As
JµTa “ 1, we conclude that hµpTaq “ 0.
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4.3.17 Example Piecewise expanding maps T : r0, 1s Ñ r0, 1s. These are maps for which there
is a partition α of r0, 1s into intervals such that the restrictions T |A, A P α are C1 and uniformly
expanding. Then, for two points x ă y in r0, 1s, |Tnx ´ Tny| “

şy
x |pT

nq1ptq| dt Ñ 8 if Tnx and
Tn are always in the same monotonicity interval of T . But this contradicts to |Tnx ´ Tny| ď 1 for
all n. Hence α is a strong generator. Suppose now that µ ! m where m denotes Lebesgue measure
and denote h :“ dµ

dm . Then JµT “ |T 1| h˝Th so that

hµpT q “

ż

log JµT dµ “

ż

plog h ˝ T ´ log hq dµ`

ż

log |T 1| dµ “

ż

log |T 1| dµ .

This is obvious, if log h is µ-integrable. Sometimes it is only possible to prove that the positive or the
negative part of log h˝T

h is µ-integrable. Also in this case
ş

plog h ˝ T ´ log hq dµ “ 0, see [8, Lemma
4.1.13].

4.3.18 Example (Continued fraction transformation) A special casse of the previous setting is the
Gauss map T : p0, 1s Ñ p0, 1s, T pxq “ 1

x mod 1. The associated partition is given by the intervals
Ak “ p

1
k`1 ,

1
k s, and inf |pT 2q1| ą 1. An elementary calculation shows that dµpxq “ 1

log 2
dx

1`x is an
invariant measure. Hence

hµpT q “ hµpT, αq “
1

log 2

ż 1

0
logpx´2q

1

1` x
dx “

´2

log 2

ż 1

0

log x

1` x
dx “

π2

6 log 2
,

as the last integral evaluates to ´π2

12 . Observe that

1

kpxq ` Tx
“

1

kpxq ` 1
kpTxq`T 2x

“
1

kpxq ` 1
kpTxq `

1
kpT 2xq`T 3x

“ . . .

converges to the continued fraction expansuion of x, where x P Jkpxq. Hence hµpT q gives the average
information content per digit in the continued fraction expansion of a Lebesgue typical point x.

4.3.19 Example Linear torus automorphisms T : Td Ñ Td, Tx “ A¨x, |detpAq “ 1|, no eigenvalue
of modulus 1. Then [17], with respect to Lebesgue measure µ,

hµpT q “
ÿ

|λi|ą1

log |λi|

where the sum extends over all eigenvalues ofA of modulus bigger than 1, counted with multiplicities.

4.3.5 K(olmogorov)-systems and the Pinsker algebra

In this section we study only invertible mpds pΩ,A, µ, T q on a LR-space. The material goes back to
Kolmogorov, Pinsker, Rohlin and Sinai and is taken from [12, Section 4.3].

Notation: If α is a finite or countable partition, then α8´8 :“ σ p
Ť

nPZ T
´nαq. Recall that α is a

generator, if α8´8 “ A mod µ. We also denote TailpT, αq :“
Ş

nPN α
8
n . Observe that

T pTailpT, αqq “ TailpT, αq “ T´1 pTailpT, αqq

4.3.20 Theorem ( [12, Theorem 2.52] ) The collection

PpT q :“ tA P A : hµpT, tA,ΩzAuq “ 0u

of measurable sets is a T -invariant σ-algebra, the Pinsker-algebra of the system. For each finite or
countable measurable partition α with Hµpαq ă 8 holds: hµpT, αq “ 0 if and only if α Ď PpT q.
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Proof: For A P A denote by Ã the partition tA,ΩzAu.

• Let hµpT, αq “ 0. Then hµpT, Ãq “ 0 for all A P α, as Ã ď α. Hence α Ď PpT q.

• Let α Ď PpT q. Then α “
Ž

APα Ã. Hence hµpT, αq ď
ř

APα hµpT, Ãq “ 0. Here we used
Lemma 4.3.7 in the case of a finite partition α, and for countable partitions one proceeds as in
the proof of Theorem 4.3.8.

• PpT q is T -invariant, because hµpT,ČT´1Aq “ hµpT, T
´1

rAq “ hµpT, rAq.

• By definition, Ω P PpT q and A P PpT q ô ΩzA P PpT q. So let A1, . . . , An P PpT q. Then
A1 Y . . . An P Ã1 _ ¨ ¨ ¨ _ Ãn so that hµpT, Č

Ťn
k“1Akq ď

řn
k“1 hµpT, Ãkq “ 0. Hence

A1 Y ¨ ¨ ¨ YAn P PpT q. Finally, if A1, A2, ¨ ¨ ¨ P PpT q, then

hµ

¨

˝T,
Č8
ď

k“1

Ak

˛

‚ď hµ

¨

˝T,
Čn
ď

k“1

Ak _
Č8
ď

k“1

Ak

˛

‚ď hµ

¨

˝T,
Čn
ď

k“1

Ak

˛

‚`Hµ

¨

˝

Č8
ď

k“1

Ak |
Čn
ď

k“1

Ak

˛

‚

for each n in n. But the first summand is 0 as
Ťn
k“1Ak P PpT q, and the second one tends to 0

for nÑ8 as in the proof of Theorem 4.3.8.

l

4.3.21 Theorem Let α be a partition with Hµpαq ă 8. Then
(a) TailpT, αq Ď PpT q.
(b) If α is a generator, then TailpT, αq “ PpT q mod µ.

Proof: (a) Let B P TailpT, αq and denote β “ tB,ΩzBu. We have to show that hµpT, βq “ 0. As
TailpT, αq is T -invariant, we have β8´8 Ď TailpT, αq Ď α81 , in particular

• Hµpβ | α
8
1 q “ 0,

• pα_ βq81 “ α81 _ β
8
1 “ α81 , and

• αk1 _ T´kβ0
´n Ď α81 _ β

8
´8 “ α81 .

Hence

hµpT, α_ βq “ Hµpα_ β | pα_ βq
8
1 q “ Hµpα_ β | α

8
1 q

ď Hµpα | α
8
1 q `Hµpβ | α

8
1 q “ hµpT, αq .

On the other hand, by Theorem 4.3.5(a),

Hµppα_ βq
n
0 q “ Hµpβ

n
0 q `Hµpα

n
0 | β

n
0 q “ Hµpβ

n
0 q `Hµpα

n
0 | T

´nβ0
´nq

“ Hµpβ
n
0 q `Hµpα | β

0
´nq `

n´1
ÿ

k“0

Hµpα | α
k
1 _ T

´kβ0
´nq

ě Hµpβ
n
0 q `Hµpα | β

0
´nq `

n´1
ÿ

k“0

Hµpα | α
8
1 q .
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Dividing by n and passing to the limit this yields, together with the first estimate,

hµpT, αq ě hµpT, α_ βq ě hµpT, βq ` hµpT, αq

As hµpT, αq ă 8, we conclude that hµpT, βq “ 0.

Claim A: If π is a PpT q measurable partition, then π80 “ π81 “ TailpT, πq.
Proof: The inclusions ‘Ě” are trivial, and

0 “ n ¨ hµpT, πq “ hµpT
n, πq “ Hµ

˜

β | σ

˜

8
ď

k“1

T´knπ

¸¸

ě Hµpπ | π
8
n q

for all n P N so that π is π8n -measurable mod µ for all n and hence π Ď
Ş

nPN π
8
n “ TailpT, πq mod µ.1

The claim follows now from the T -invariance of TailpT, πq.

Claim B: Hµpβ | β
8
1 _ Fq “ Hµpβ | β

8
1 q for any sub-σ-algebra F of PpT q.

Proof: If β, π are partitions with finite entropy and if π Ď PpT q, then

Hµpβ | β
8
1 _ π

8
0 q “ Hµpβ | β

8
1 _ π

8
1 q (by Claim A)

“ Hµpβ | β
8
1 _ π

8
1 q `Hµpπ | π

8
1 q (as π P PpT q)

ě Hµpβ | β
8
1 _ π

8
1 q `Hµpπ | β _ β

8
1 _ π

8
1 q

“ Hµpβ _ π | β
8
1 _ π

8
1 q “ Hµpβ _ π | pβ _ πq

8
1 q

“ hµpT, β _ πq

“ lim
nÑ8

1

n
Hµppβ _ πq

n
0 q

ě lim
nÑ8

1

n
Hµpβ

n
0 q “ hµpT, βq

“ Hµpβ | β
8
1 q

ě Hµpβ | β
8
1 _ π

8
0 q .

Let F be a sub-σ-algebra of PpT q. As pΩ,A, µq is a LR-space, F is countably generated mod µ.
Hence there is an increasing sequence of finite partitions πn such that σpπ1q Ď σpπ2q Ď ¨ ¨ ¨ Õ F
mod µ. Then also σppπ1q

8
0 q Ď σppπ2q

8
0 q Ď ¨ ¨ ¨ Õ F mod µ, and the preceding estimate implies

Hµpβ | β
8
1 _ Fq “ Hµpβ | β

8
1 q .

(b) Now let α be a generator. As TailpT, αq Ď P mod µ by part (a), we conclude that

Hµpβ | β
8
1 _ TailpT, αqq “ Hµpβ | β

8
1 q “ Hµpβ | β

8
1 _ PpT qq .

If we apply this identity to T 2n instead of T and if we observe that TailpT 2n , αq Ď TailpT, αq and
PpT 2nq “ PpT q, then

Hµ

˜

β |
8
ł

k“1

T´k2nβ _ TailpT, αq

¸

ď Hµ

˜

β |
8
ł

k“1

T´k2nβ _ PpT q

¸

.

1To see this, let A P π so that there are An P π8n such that µpA4Anq “ 0 for all n. Replacing An by
Ş8

k“nAk we can
assume that A1 Ě A2 Ě . . . . Let A8 :“

Ş8

n“1An. Then An P TailpT, αq and µpA4A8q “ 0.
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Let B :“
Ş8
n“1

`
Ž8
k“1 T

´k2nβ
˘

. The σ-algebras on both sides of this inequality are decreasing to
B _ TailpT, αq and B _ PpT q, respectively, so that Theorem 4.3.3 yields in the limit nÑ8

Hµ pβ | B _ TailpT, αqq ď Hµ pβ | B _ PpT qq ď Hµ pβ | PpT qq .

Suppose now that β Ď α8´p for some p P N. Then
Ž8
k“1 T

´k2nβ Ď α8´p`2n for all n and hence

B “
8
č

n“1

˜

8
ł

k“1

T´k2nβ

¸

Ď

8
č

n“1

α8´p`2n “ TailpT, αq .

Therefore, in this case
Hµ pβ | TailpT, αqq ď Hµ pβ | PpT qq . (4.3.1)

Now let B P PpT q. As α is a generator, there are sets Bp P α8´p such that µpB4Bpq Ñ 0 as
p Ñ 8. Let βp :“ tBp,ΩzBpu and β “ tB,ΩzBu. Then (4.3.1) holds for all βp and carries over
to β in the limit p Ñ 8. Hence Hµpβ | TailpT, αqq ď Hµpβ | PpT qq “ 0, and we conclude that
B P TailpT, αq mod µ. l

4.3.22 Definition An invertible mpds pΩ,A, µ, T q is a K-system, if there is a generator α with
Hµpαq ă 8 and TailpT, αq “ tH,Ωu mod µ.

4.3.23 Theorem An invertible mpds is a K-system if and only if its Pinsker algebra is trivial.

The “only if” direction follows immediately from the previous theorem. The “if” direction requires
additionally the construction of a generating partition.
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