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1 Ergodicity and ergodic theorems

A huge part of this course is devoted to a study of ergodic decompositions of very general dynamical
systems. The main result is the Theorem of Raugi [15] that gives an ergodic decomposition in the
context of a countable family of Borel-automorphisms acting non-singularly on a standard probability
space (also Lebesgue-Rohlin space)[] Along the way a number of more sophisticated tools from
measure and ergodic theory must be introduced. We start nevertheless with some basic examples.

1.1 Introduction

1.1.1 Examples of dynamical systems

Let (€2, A, 1) be a probability space. We consider measurable maps 7" : €2 — (2 that leave the measure
class of y invariant, i.e. for which z1 o T~! ~ . In many cases we will even have 1o T~ = j - then
we call (2, A, u, T') a measure preserving dynamical system (mpds).

1.1.1 Example Q = T? := R%/Z?, A the o-algebra of Borel or Lebesgue sets, 1 Lebesgue measure.
All arithmetic operations are of course taken mod Z¢.

a) T(xz) = = + a for some a € R%. Then o T~' = p. In this case T~ (z) = = — a.

b) T'(xz) = Ax for some d x d integer matrix A with det(A) # 0. In this case 7 is invertible if and
only if |det(A)| = 1, and then T~ (x) = A~ 2.

In both cases p is T-invariant.

1.1.2 Example Q = {0,1}N or Q@ = {0, 1}% equipped with the product topology, A the Borel-o-
algebra, T : Q0 — € the left shift, i.e. (T'(w)), = wp41 for all n. This transformation is continuous.
In case of Q = {0, 1}, T'is not invertible; in case of Q = {0, 1}%, T'is a homeomorphism.

a) p is the p-Bernoulli measure i, for some p € (0, 1), that means 4 is the infinite product of the
marginal measure pd; + (1 — p)do.

b) u Sé fp dm(p) is a mixture of Bernoulli measures (m is any Borel probability measure on

(O,I)).

In both cases p is T-invariant. (For some background on Bernoulli measures see e.g. [10, items
1.3-1.5,1.9,1.11, 2.3, 2.16, 2.17, 2.28].)

1.1.3 Example = {0,1}%, A and T as before, but p = (pp 0 (725)7!) @ (g o (7?)~?) for
p # p'. This u is obviously not shift-invariant, but o 771 ~ p.

'The ergodic decomposition result is claimed even for uncountable families in [15]], but we will see in Example [3.2.12]that
at least the proof of this far reaching claim cannot be correct.



1.1.4 Example For a domain D < R? of finite volume let H € C2(D). Consider the system of
differential equations (Hamiltonian system)

) 0
q; = aiH(qh c5qd,P1y - - - 7pd)
bi 1.1.1
P (L.1.1)
p’i = _aiH(qb o5 qd,P1y - - - 7pd)
i
(i = 1,...,d) and suppose that for initial conditions in D the solution ®;(q, p) exists for all positive

and negative times ¢. Denote by p the normalized Lebesgue measure on D and by A the o-algebra of
Lebesgue measurable sets. By Liouville’s theorem eachT' = ®; : D — D preserves p.

1.1.5 Remark The action of an invertible 7" can be interpreted as a measure preserving action of the
group (Z,+) on (2, A, u): n-w := T"(w). It satisfies the flow equation

(n+m)-w=n-(m-w) foralln,meZ. (1.1.2)

Similarly the group (R, +) acts by the family (®;):cr and satisfies the corresponding flow equation
fort-w:= Py(w):
(s+t) - w=s-(t-w).

In the same way one can define more general group actions, for example for the action of (Z2, +)
2 . .
on {0, 1}Z by the left shift (73 (w))(i1,i2) = Wiy +1,iz) and the down shift (Tg(w))(ihh) = W(i) iz +1)
(note that 77 o To = Ty o TY):
(n1,mg) - w = T1 (T3 (W) -

1.1.6 Remark Each mpds (€2, A, 1, T') defines a linear operator on the Hilbert space L?(£2, A, 1) by
Urf:=foT

that preserves the scalar product: (Ur f,Urg) = {(foT) - (goT)du = § f-gdu = {f, g). Indeed,
if T" is invertible, U7 is unitary.

A basic question is whether such systems can be decomposed into subsystems that can be studied
separately. Here decomposition” does not necessarily mean a decomposition of the space (2 but rather
a decomposition of the measure p, although this sometimes yields a decomposition of the space as a
by-product. We tackle this question in the next subsection.

1.1.2 Ergodicity

Let us say that a mpds (€2, A, u, T') is decomposable, if there exists A € A with 0 < p(A) < 1
and T~'(A) = A. Then also T~1(A¢) = A®, and one can study the two subsystems 7} 4 and T} 4
independently from each other. For each w € €2, then A := {T"w : n € Z} is T-invariant, and naively
one might think that in a uncountable space there should always be many sets made up of complete
orbits. But, as we shall see, measurability of A can be a strong restriction to the construction of such
sets.

1.1.7 Definition Denote by Z(T) := {A € A: T~1(A) = A} the o-algebra of T invariant measur-
able sets, and by Z,,(T) := {A € A: T~ (A) = A mod u}. (They are both o-algebras, indeed).
A mpds (Q, A, u, T) is ergodic, if VAe Z(T') : u(A) € {0,1}.



1.1.8 Lemma Let (2, A, 11, T') be a mpds and let A € A. Then

B(A) =) U T ™A)eZ(T) and pu (U T"%A)) = u(B(A))VneN.
k=n

n=1k=n
Proof:  Let By, := | J;_, T %(A). Then T~Y(B,) = But1 S By . As p(T7YBy)) = u(By),
this implies /1(By,\Bp+1) = 0. Then B(A) = (\"_; Bn, T 'B(A) = B(A) and u(B,,) = u(B(A))
(neN). ]

1.1.9 Corollary Let 2 be a topological space with a countable basis, A its Borel o-algebra and
(Q, A, n, T) an ergodic mpds. If u(U) > 0 for each open set U, then (T"w)en is dense in €
for p-a.e. w.

Proof:  Let Uy, Uy, ... be a basis for the topology. By Lemmal|l.1.8} 1 (2, B(U;)) = 1, so that
almost every trajectory visits each U; infinitely often. O

1.1.10 Theorem The following conditions are equivalent to the ergodicity of (2, A, u, T'):

1) VAeZ,(T) : n(A) € {0,1}.

2) Forall A, B € A with u(A), u(B) > 0 there is n € N such that (" (A) n B) > 0.

3) For all u-integrable f : 2 — R holds: if f o T = f u-a.e., then f = const y-a.e.

4) If f € L*(2, A, p) satisfies Urf = f, then f = const in L?.

Proof:  The equivalence of 1) and of 2) follow from the foregoing lemma. The other equivalences

are an easy exercise, see e.g. [17, Theorems 1.6] O

We check the examples from subsection [I.1.T|for ergodicity.

1.1.11 Theorem Let 2 = T% and let A and y be as in Example
a) The mpds with T(z) = = + a, a € RY, is ergodic if and only if Vn € Z4\{0} : (n,a) ¢ Z.
b) The mpds with T'(x) = A x is ergodic if and only if A has no root of unity as an eigenvalue.

Proof:  We make use of the fact that each f € L?(T?, A, 1) has a unique Fourier series expansion
f(@) =, cpa cn €™ with coefficients ¢, € C (convergence in L?).

a) For f € L? we have

flx) = Z Cn 2™ and
nezd
UTf(l‘) _ f(:L‘ + a) _ 2 cn 62m’<n,m+a> _ 2 Cn e2m’<n,a> e27ri<n,m>’

nezd neZzd

so that Upf = f if and only if ¢, = ¢, 2™ <@ for all n € Z%. If {n,a) ¢ Z forall 0 # n € Z4,
then ¢,, = O for all n # 0 and f = const in L2. Tf, on the other hand, there is 0 % n € Z% such that
{(n,a) € Z, then f(x) = €™ <™ is a Up-invariant non-constant L>-function. The claim follows
now from Theorem



b) Consider again f € L%. Now

UTf(l’) = f(A .Z') = Z Cn 32ﬁi<nvA‘T> — Z Cn e?ﬂ'i<Atn,x> )

neza neza

Therefore, Ur f = f if and only if c4t,, = ¢, for all n € Z¢, and is equivalent to
VneZ'Vk e N: ciayey, = Cn .

As Y salen|? = |If3 < o, ¢, # 0 implies that (AY)*n = n for some k € N\{0}. If A has
no eigenvalue which is a root of unity, it follows that ¢,, = 0 for all n € Z\{0}, i.e. f = const in
L?. In view of Theorem this proves the ergodicity of T'. Conversely, if there A (and hence
A?) has a k-th root of unity as eigenvalue, then (A?)k has eigenvalue 1. As (A*) has only integer
coefficients, the it has an eigenvector v € Q\{0}, and multiplying it with the product of all its
denominators, we can even assume that v € Z%\{0}. Define f(z) = Z?;& e2mil(AY)v2)  Then
f # constbut Upf = f, so T is not ergodic.

O

Analogous characterizations of ergodicity are known for translations and endomorphisms of com-
pact metric groups equipped with Haar measure, see [17, §1.5]. Here we are more interested in
understanding the non-ergodic examples.

1.1.12 Remark Let Q = T, A and z be as in Example and the previous theorem. We focus on
the non-ergodic cases.

a) Let T'(z) = x + a. Consider first the case d = 1. Then non-ergodicity is equivalent to a being
rational, @ = p/q. Then T%(z) = x for all z, i.e. each set J U T'(J) U - -+ U T971(J) is invariant
such that there are plenty non-trivial measurable invariant sets. Denote by (i, the equi-distribution
on the closed orbit Op(z) := {z, T(x),...,T9  (2)}. Then p = §, pw dpe(a) in the sense that

u(A) = J Uy (A)du(x) forall Ae A. (1.1.3)
Q

(This statement includes the assertion that the functions x — . (A) are measurable.) As each
(O1(7), Aj0s(2), B> T 04 (2)) 18 an ergodic mpds, is an ergodic decomposition of the orig-
inal mpds. A more convincing way to write this down would be to consider the space O :=
{Or(x) : x € T} of all orbits of 7. (In this algebraic setting Q7 can be interpreted as the factor
group T/ [%] where [%] denotes the subgroup of T! generated by % So one might write

’= f@T o d(pp 0 1) ()

where 1, denotes the equidistribution on w € Qp and 7 : T! — Q7 maps x to w = Op(x).

In case d > 2 the situation is a bit more complex. For n € Z¢ denote

Gn:={xeT: (n,z)eZ}.

In more general situations this space may be rather awkward, and to deal with it properly is one of the things we will have
to learn.



G, is well defined, because for 2 € R? and m € Z? holds: (n,2) € Z < (n,z + m) € Z. G is a
subgroup of T¢. If T'is not ergodic, i.e. if (n, a) € Z, then (n, T(z)) = {(n, x)+{(n, a) € (n, 2)+7.
In particular, T'(G),) = G, and also all cosets of G, are invariant so that each subset A < Td
made up of cosets of G, is T-invariant. Let z € G, and v € R? with 0 < |(n,v)| < 1. Then
(n,x+v) = {(n,vy+{n,x) ¢ Zsuchthat z+v ¢ G,. Therefore G,, is a finite collection of parallel
hyperplanes separated by a distance at least 1/|n|2. This implies that GG, and also each coset is
a finite union of parallel closed d — 1-dimensional submanifolds. In many cases this is already
the ergodic decomposition, but that need not be the case: consider d = 2 and a € Q?, say a =
(p1/n1,pa/n2). Then(n,a) = p1+py € Zand T "2l(z2) = x4 |ning| a = z+ (napy, nips) =
in T2. Hence T acts like a rational rotation inside each coset.

b) Let T(x) = Az and assume that |det(A)| = 1, i.e. T is a group isomorphism of T?. If T is
not ergodic, then A has an eigenvalue which is a root of unity, and the proof of Theorem [I.1.1T]
shows that there are indeed & € N\{0} and n € Z% {0} such that (A*)*n = n. Hence, for all
x € T¢ we have (n, z) = ((A")*n,z) = (n, A¥z) = (n, T*(z)), in particular z € G,, & T*(x) €
G.,. The identity shows even more: T* leaves all cosets of G,, invariant, but again the ergodic
decomposition may be finer, just think of the case 1" = idta where the ergodic decomposition is
into single points (point masses on the level of measures).

1.1.13 Theorem The shift dynamical system ({0,1}2, A, p1,,, T) from Example is ergodic.

Proof:  Suppose A = T—1(A) € Aand let ¢ > 0. As the measure y is determined by the algebra
of sets that are specified on finitely many indices ¢ € Z, there are s € N and B < () specified by the
indices from {—s, ..., s} and such that u(AAB) < €. As u is T-invariant, it follows easily that

(T2 (A)AT~*(B)) < e and
(AT 25(A)A(B T *(B))) < 2.

Hence,

[1(A) — (A = [u(A 0 T7*(A)) — p(A)u(T~?(A))]
< (B A T(B)) — u(B)u(T>(B))] + dc

But as p is a product measure and as B is specified by indices from {—s, ..., s}, the last difference
is zero so that |u(A) — u(A)?| < 4e. As e was arbitrary, this implies u(A) = pu(A)? and hence
p(A) € {0,1}. O

1.1.14 Remark What about the measure u = Sé p dm(p) from Example ? It is explicitly de-
scribed as a mixture of ergodic invariant measures, so its integral representation should be already the
ergodic decomposition. This decomposition can also be realized as a decomposition of the underlying
space = {0,1}%: Forp € [0,1] let

1n 1
Qg = {weﬂ lim sup — Zw+k—p}

n—o T

pe[0.1] 2, . Furthermore, by the law of large numbers,

Obviously, © = 4, [ 162, and also Q = (4
= h1s shows a problem w1th the decomposition of the space: It is far from

NP(QZF) = NP(Q;)



unique, because Q; N Q;, # ¢ for all p,p’ € [0,1]. Observe also that each Qg is dense in {2 by
Corollary Indeed, for each p € (0, 1) the orbit (7" (w))nen is dense in 2 for ju,-a.e. w.

It remains to study the non-shift invariant measure p = (1, © (77:%0)_1) ® (py o (7)) from
Example[I.1.3] I do not know whether it is ergodic.

1.1.15 Remark For Hamiltonian flows as in Example [I.1.4]the Hamiltonian H itself is a constant of
motion:

d d
Siow) =Y (gH 0 di(t) + 5o ~pi<t>) = Y B @t) + @D (1) = 0

i=1 i=1

It follows that Ug, H = H for each t € R. If H is non-constant (otherwise there is no movement),
Hamiltonian flows and their time-t-maps are not ergodic. Whether the “energy shells” {H = E} for
E € R yield the ergodic decomposition or whether there are additional integrals of motion can be a
mathematically very deep problem — depending on the concrete example.

1.1.16 Remark If one does not just study the action of a single measure preserving transformation or
one-parameter flow but the action S = (Sy) 4 of a more general group on (2, A, 1), then ergodicity
of this action is defined in terms of the o-algebra

I(S):={AeA: S, (A) = AVge G} = [ |{Ae A: S, (A) = A},
geG

and if this o-algebra is not trivial, one would like to know its ergodic decomposition.

1.1.3 Exercises

1.1.1 Determine %~ Zi_l) in Example|1.1.3

1.1.2 Let (Q, A, 1, T) be a mpds - invertible or not. Prove that UjUr = id2 and that UpU7 is the
orthogonal projection onto Ur (L?).

1.1.3 Suppose that 7" is invertible on (2, A, 1) and that o T' ~ p but that x is not necessarily 7-

invariant. Define Uz f := d(ZZT) - (f o T) and prove that Ur is a unitary operator on L?(Q2, A, p).

1.14 Let (Q, A, u, T) be a mpds. Prove that the system is ergodic if and only if each for T-invariant
probability v on (2, A) holds: v « u = v = p. Hint: The proof for invertible systems is rather
straightforward; for non-invertible ones conditional expectations can help.

1.1.5 Let T be a rotation or an endomorphism of T?. Prove that T is ergodic if and only if Lebesgue-
almost all w € T have a dense orbit under 7.

1.1.6 LetQ = {0, 1}, u = p1/2 and A the Borel o-algebra (or its p-completion) of €2. For w €
denote
l(w) =inf{f e N: wy = 0} (= 400 if no such £ exists).



Define T : ) — Q as
0 ifi</(w)
(T(w))i=<1 ifi=/l(w)
Wj if i > E(w)

(This is the so called binary adding machine - addition with carry to the right. It is also called an
odometer.) Prove that y o T~! = 1 and that the system (€2, A, u, T) is ergodic.

1.2 Birkhoff’s ergodic theorem

1.2.1 Theorem Let (2, A, uu, T) be ampds and f € L*(€2, A, i1). Then
1 n—1
| N
) = Jm & 5, 57

exists for pi-a.e. w € ), and f is a version of the conditional expectation E,,[f | Z(T)], i.e.

(1) f is Z(T)-measurable mod i and

QVAeX(T): §,fdu="F,[fdu
(Observe that f is uniquely characterized ( mod p) by properties (1) and (2).)

There are many different proofs of this theorem. The one in [10, Satz 15.1] assumes that the concept
of a conditional expectation is known in the sense that a function f with properties (1) and (2) exists.
We recall briefly the main steps to the construction of this object.

Let 11 and v be o-finite measures on a measurable space (£2,.A4).

e v has density f w.r.t. u, inshort v = fpu,if VAe A: v(A) =§, fdu.
e v is absolutely continuous w.r.t. u, in short v « p, if YAe A: p(A) =0=v(A) =0.

Obviously v = fu implies v < . The converse is guaranteed by the Randon-Nikodym theorem|[10,
Satz 11.13].

1.2.2 Theorem If v « u, then v has density w.r.t. u. This density is uniquely determined mod i,
and it is denoted by g—z.

A surprising application is the following: Let (2, .4, 1) be a probability space and let 0 < f €
LY (9, A, 1). Then fy is a finite measure on (€2, A) and fu « p. Now consider a sub-c-algebra
F < A and restrict both measures to F. Then (fu)|r < p|r, and the Radon-Nikodym theorem can
be applied to these two measures on (€2, F). This results in the density

d(plF)

which is a 7 measurable function {2 — R (defined only mod p). This is property (1) in the ergodic
theorem. If A € F, then

[ mdr 1 7@ [ B Aaule = [ D e [ ariols = [ atsi - [ ran,

10



which is property (2) in the ergodic theorem. For more on conditional expectations see [[10, Kap. 12].
There you read in particular that E,[f | F] is the orthogonal projection of f onto the closed linear
subspace L?(Q, F, ).

If F is trivial, i.e. if  contains only sets of measure 0 or 1, then E,[ f | F] is constant because of
(1), and the constant value is { f dp because of (2). This yields the following corollary of the ergodic
theorem:

1.2.3 Corollary Let (2, A, u, T) be an ergodic mpds and f € L*(§2, A, 1). Then

lim — Z f( Tk = ffdu for p-a.e. w € (1.

n—o n,

1.2.4 Remark A far-reaching generalization of the ergodic theorem will be proved in the next chapter.
The starting point for this generalization is that the map f — f o 7' is a positive linear contraction on
LYQ, A, p):

o (af +Bg)oT =a(foT)+B(goT)
e f>20=foT >0
o [foT|y=(|foT|du="7F|fldu=]f]1 (Here ”<” would be sufficient for a contraction.)

Indeed, we will prove very general ergodic theorems for such linear operators on L'. A special case
will be Birkhoff’s ergodic theorem, and the more general statements will be used in later chapters.

1.2.1 Exercises
1.2.1 Consider the mpds ({0, 1}", A, 11, T') from Example with the left shift 7. Determine the
limit

lim #{k: €{0,...,n— 1} : wpwr1wr+2 = 101}

n—o N

for p,-a.e. w.

1.2.2 Consider the mpds ({0, 1}, A, u, T') from Example with the left shift 7" and the measure
1= §0.1) tp dm(p). Determine the limit

lim #{k‘ S {0 , N — 1} P WEWE1WE+2 = 101}

n—0 M

for p-a.e. w.

1.2.3 Consider T: Tl — T, T( ) = = + a with some irrational a € R and let f € C(T!,R). Prove
that lim,,_, o, + 3 f (TF(w = {1 f(z)dz forall w € T,

11



2 Ergodic theory of positive !-contractions

This chapter follows the corresponding parts of the textbooks by Neveu [13] and Krengel [[11], mostly
[11} §83.1-3.3]. Throughout the chapter we fix a o-finite measure space (£2,.4, m). We use the short-
hand notation L? for LP(Q, A, m).

2.1 The Hopf decomposition

2.1.1 Operators and kernels

2.1.1 Definition a) A mapp: Q x A — [0,1] is a substochastic kernel if
(K1) w+— p(w, A) is A-measurable for all A € A, and
(K2) A+ p(w, A) is a measure for all w € ).

p is a stochastic kernel if p(w, ) = 1 for all w € Q.

b) The kernel p is null-preserving, if p(w, A) = 0 for m-a.e. w if A € A and m(A) = 0.

2.1.2 Examples a) T : Q —  is measurable and m o T~! ~ m. Define p(w, A) = 0r(,)(A4). If
m(A) = 0, then m(T~*(A)) = 0 and hence p(w, A) = §,(T~1(A)) = 0 for p-ae. w.

b) Q = Z, m the counting measure and p(w, . ) = %(L_l + %&JH. This kernel describes the random
transitions of a symmetric nearest neighbour random walk on Z. p(w, A) is the probability to be
in A at time ¢ + 1 if the process is in w at time ¢.

A null-preserving substochastic kernel p defines the following linear operators:

d
Pitt I Pr@) = o ([ 50 an@)) @
dm
(2.1.1)
P*:L* - L* P*h(w)= fh(w/) p(w, dw’) .
Both operators are positive linear contractions. For P* this is quite obvious. For P observe first that
the integral expression is a finite measure (it is the mixture of the (sub-)probability measures P(w, .)

with the finite measure fm), and that this measure is « m, because the kernel is null-preserving. Then
linearity and positivity of P are obvious, and

IPAl = | (Prldm < [ Pifldm = [ |fG)p. 2 dmtw) < | 171dm = 151
shows that P is a contraction. Note also that for all A € A
| pram-| a ( | 1@ .>dm<w'>) - [ #pe, 4) dme) 2.12)
A A

and that this identity determines P uniquely.
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P* is indeed the dual to P: For f € L' and h € L® we have by Fubini’s theorem (version for
kernels)

[onegam = [( [ 1) pe.de) 1)) dme)
~ [ ([ i, ) dme ) @) dmie) @13
— fh . Pfdm

2.1.3 Remark In a later chapter we will see that on most “interesting” probability spaces each linear
contraction P : L' — L' is associated to a null-preserving kernel as above.

2.1.4 Examples a) The kernel p(w, A) = 67, (A) from Example 2.1.2

m)oT 1
and P* where P*h(w) = h(T(w)) and Pf = %

. . —1 d(moT~1)
written as Pf = fol™" - =———=.

b) The kernel p(w, .) = 30,1 + 30,41 on Z from Example gives rise to operators P and P*
where P*h(w) = 2h(w — 1) + 3h(w + 1) (conditional expectation of / one time step ahead) and
Pf(w) = 3f(w+1) + 5 f(w— 1) (here f is to be interpreted as a probability vector and P is
the new probability distribution after one step of time). For the determination of P f(w) one has to

use the translation invariance of m.

ﬂ gives rise to operators P

. If T is invertible this can also be

In the next sections it will play no role whether such a dual pair of contractions is defined using a
kernel or not. Later we will see that on most spaces all such operators stem from a kernel. Here are
two examples where this is not so obvious:

2.1.5 Example Let (2, A, 1, T) be a mpds and define P : L' — L' by Pf := f o T. This is
obviously a positive linear contraction, see Remark[1.2.4] Observe that the same composition - but on
L™ - occured in the previous example. Note that, for invertible 7', P* f = foT~!, hence P~ = P*,
and in particular P1 = 1 and also P*1 = 1 with 1 € L' n L®.

2.1.6 Example Let (€2, A, 1) be a probability space, F < A a sub-c-algebra, and define P : L' —
L'by Pf = E,[f | F]. Then P is linear, Pf > 0if f > 0, and |Pf[1 = §|EL[f | Flldp <
SELfl | Fldp = §|fldp = | flli, so P is a positive linear L'-contraction. P*h is uniquely
characterized by duality: for all f € L' we have

| Prhegau= [ Elr | Frau= [ B | Fldn = [ B0 7 £,

so that also P*h = E,[f | F].
It follows immediately that for two sub-o-algebras Fi, F2 and their corresponding conditional ex-
pectation operators P; and P also the composition P P is a positive linear contraction on L.

2.1.7 Lemma Let P be a positive linear contraction on L*(Q, A, m).
a) If0< f, /' fe L' m-ae., then0 < Pf, / Pfe L' m-ae. and |Pf — Pf,|1 — 0.

b) If hy, \, 0 m-a.e., h,, € L, then P*h,, \, 0 m-a.e. Equivalently, if0 < h,, /" h € L* m-a.e.,
then also P*h,, /" P*h m-a.e.
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Proof:

a) 0 < Pf, / g for some g by positivity of P. As sup,, Pf,dm < sup, { f,dm < §fdm < o,
Beppo Levi’s theorem implies |Pf, — Pf|1 < |fn — f|1 = 0and |g — Pf|1 < |g — Pful1 +
|Pfn— Pf|1 — 0,ie. Pf, /g = Pf m-ae.

b) P*h, \, h = 0 m-a.e. for some h € L™ follows from the monotonicity of P*. Let A € A with
m(A) < o0. Then 14P*h,, < 14P*hy < 14 |h1]le and hy,, P14 < hq Pl < |hi]loo P14 so
that we can use dominated convergence twice to get

J hdm = lim | P*h,dm = lim | h, Pladm =0.
A n—0oo

n—0o0 A
It follows that h = 0 m-a.e. If 0 < h,, /" h, consider 0 < (h — hy,) N\, 0.

O

2.1.8 Remark If h : Q — [0,00] is measurable, one can define h A n := min{n, h} such that
0<han / h Thenalso0 < P*(h A n) 7, and as we just saw, the limit of this sequence is P*h
if h € L. Otherwise we define P*h to be this limit. Then, if hy, € LY and hy, /" h, we have

sup P*hy, = supsup P*(hg A n) = supsup P*(hy A n) = sup P*(h A n) = P*h.
k kK n n k n

2.1.2 The conservative and dissipative part

We continue to work with a o-finite measure space (£2,.4, m) and a positive L' contraction P.

2.1.9 Definition a) A measurable function h : Q2 — R is called harmonic, if P*h = h.

b) A measurable function h : 0 — R_ is called superharmonic, if P*h < h. It is called strictly
superharmonic on A if P*h < h on A.

2.1.10 Theorem (Hopf decomposition: 1) There exists a decomposition ) = C'w D into measurable
sets determined uniquely mod p by:

(C1) If h is superharmonic, i.e. P*h < h, then P*h = h on C.

(D1) There exists a bounded superharmonic hg which is strictly superharmonic on D.

ho may be chosen with the additional properties hg = 0 on C, hg < 1, and P*""hy — 0 on D.

Proof:  As m is o-finite there exists a probability measure ;1 ~ m. Let
S := {A e A:3Jg < 1 which is superharmonic, strictly on A} .

S has the obvious property that for any A € S and any measurable A’ — A also A’ € S.
If Ay, Ay, --- € S with strict superharmonics g1, g2, ..., then A := |,y An € S, because 0 <
9= Den 27 "gn < 1 and on each set Ay we have

neN

P*g = Z 27" P*g, < 27 kg, + 2 27"g, < g.
neN neN\{k}
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Therefore the following supremum is attained by some set D € S with bounded strict superharmonic

gp:
a:=sup{u(A): AeS}.

Let C' := D¢ and consider any (also unbounded) superharmonic h. If it is not harmonic on C, then
there is a measurable B < C with u(B) > 0 such that A is strictly superharmonic on B. Choose some
B € R, for which B’ := B n {P*h < 8 < h} has positive measure. Then, because 0 < P*1 < 1,
the function 0 < g := min{37'h,1} < 1 is superharmonic and strictly superharmonic on B’:
P*g < min{B8 1P*h,1} < min{B7'h,1} = g with strict inequality on B’. Hence B’ € S and
therefore B’ < D in contradiction to B € B < C and u(B’) > 0. Therefore h is harmonic on C.
This proves (C1) and (D1).

Finally, as gp from above is superharmonic and as P* is positive, gp = P*gp = P*?gp > ...,
and the sequence converges to some g = 0. As gp is strictly superharmonic on D, g < gp on D.
By(Cl), § = gp on C. Finally, P*§ = lim,_o P*""lgp = §, and so hg := gp — § has the
additional required properties. O

2.1.11 Corollary P*1 =1onC.

For f e L', h e L® and n € N U {00} we use the notation

n—1 n—1
Suf = > P'f and Sih= ) P*h.
=0 =0

2.1.12 Theorem (Hopf decomposition: 2) The sets C' and D of the Hopf decomposition are deter-
mined uniquely mod p by

(C2) Forallhe LY: Sih =wonC n {Sih > 0}.

(D2) 3hp e LY: {hp >0} = D and Sihp < 1.

hp can be chosen such that S hp = 0 on C.

Proof:  Let hg be as in Theorem [2.1.10|and set hp := hg — P*hg. As hg is strictly superharmonic
onD,hp >0o0nD,andas hg = 0on C, also hp = 0 on C. Finally

n—1
Skhp = Y. P*(ho — P*hg) = hg — P*"hg < hg
i=0
and hence S¥ hp < ho < 1, which proves (D2) and also S¥hp =0onC. ‘
Now let h € LY. Consider h := min{1, S¥h}. As P*1 < 1 and P*(S%h) = >.2, P*'h < S%h,
we have P*h < h < 1 and P*itp < P*ip < 1forall j > 0. Hence P*/ 1), = P*I} on C for all
j =0,ie. P*h =hon C forall j > 0. Therefore, on C' n {S% h < o0},

Q0
h=Ph< Y P*h—0asj— o

i=i
so that S% h = h = 0 on this set. This implies {S*h > 0} n C n {S%h < ©0} = & mod m, which
is just (C2). ]

15



2.1.13 Theorem (Hopf decomposition: 3) The sets C' and D of the Hopf decomposition are deter-
mined uniquely mod p by

(C3) Forall f € L1 : Sy,f =0 onC n {Sxf > 0}.

(D3) Forall fe LY: Sy f <o onD.

Proof:  For hp from (D2) and f € L1 we have

(S f, hp) = (f, SEhp) < {(f,1) < 0.

As hp > 0 on D this implies (D3). . . 3
Now let f € LY. As m s o-finite, thereis h € L) withh < 1and {h > 0} = Cn{0 < S f < 0}.

Let h := ﬁ Then 0 < h < 1, {h > 0} = {h > 0}, and it follows from (C2) that S i = o on

Cn{S:h>0}2Cn{h>0}=Cn{h>0}={h>0}. Hence, for each n € N,
(P"f,S%hY = (Seu(P"f), h) < (S f, h) <J hdm < © .
Q

As S5 h = o0 on {h > 0}, this implies P"f = 0 for all n on {h > 0}. It follows that Soo f = 0 on
{h>0}=Cn{0<Syxf <w},ie. m(Cn{0<Syf <w})=0.This is (C3). O

2.1.14 Examples a) Let (2, A, i1, T) be ampds. Then P : L' — L', Pf = foT is a L'-contraction
(because proT~! = ). P is conservative, i.e. C' = £ mod p, because 1 € L}r, Pl =10T" =1
for all n and hence S,,1 = o0 everywhere. (If ;oo 7! ~ p but if y is not invariant, then this need
no longer hold.)

b) Let (2,4, i) be a probability space and let P : L' — L! be a composition of conditional expec-
tations, see Example Then P1 = 1, and as before it follows that P is conservative.

2.1.15 Example Let (€2, .A, 1) be a probability space and let T : @ — () be measurable with y o
T~ ~ p. The kernel p(w, A) = b7, (A) determines a L'-contraction P, see Example :

a) For s € Nlet Dy := {Sy,1 < s}. Then Dy /" D by (D3). For each s € N
o0 a0 Q0 a0
Z wlw: T"(w) € D} = Z J 1p, o T"du = Z J P*"1p, dy = Z f P"1du
n=0 n=0 Q n=0 Q n=0 Ds

= Swldy <s< .
D,

By the Borel-Cantelli Lemma, p-a.e. trajectory visits each Dy only finitely often.

b) Let U < C be measurable. Then (C2) applied to i = 17 yields
a0 e¢]
D 1p(T'w) = . P 1y (w) = o
n=0 n=0

for prae. we C N {SE1ly > 0} = C n U o T "(U). It follows that p-a.e. w that visits U at
all, visits U infinitely often.

2.1.16 Definition a) For B € A we denote LP(B) := {f € LP : {f # 0} < B}.
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b) B € A is P-absorbing, if P(L'(B)) < L'(B).

c) C:={BeA: Bc C and B is P-absorbing}.

d) P is called ergodic, if P*14 = 14 implies A = ¢ or A = {2 mod p.

2.1.17 Theorem C € C, i.e. the conservative part C' of a positive L'-constraction P is P-absorbing.

Proof: Let hp be as in (D2) with {hp > 0} = D and S%hp = 0 on C. Then, for each f € L'(C),
APl hpy < PUf1.h) = (1. P*ho) < [ 111 S5hp dm =0

sothat Pf = 0on D,ie. Pfe L'Y(C). (]

2.1.18 Theorem a) B is P-absorbing if and only if P*1gc < 1pe, i.e. 1ge is superharmonic.
b) It C = (), then B € C if and only if P*1p = 1p.
¢) C|c is a o-algebra.

Proof:  a) Let B be P-absorbing. There is f € L1 (B) such that {f > 0} = B. Then {f, P*1pc) =
(Pf,1gc) = 0, because also Pf € L'(B). Hence P*1gc = 0 on B. As P¥1gc < P*1 < 1, this
proves P*1pge < 1gc. On the other hand, if this inequality holds and if g belongs to L}r (B), then

0< <Pga 1BC> = <gaP*1Bc> < <ga 1BC> =0 )

so that Pg € L'(B). For general g € L'(B) use the decomposition g = g+ — g~.
b) P*1 = 1 by Corollary [2.1.11} Hence

BeC o Plge <lpe< Plge = lge < P*1 — P*lg =1 —1p < P*lg = 1p

where we used (C1) of Theoremfor the second equivalence.
¢) Suppose first that 2 = C. Then P*1 = 1 and B € C < P*1p = 1p. It follows that C is closed
under passing to the complement, and also under finite intersection: If A, B € C, then P*14~p <
P*14 =14 and P*14~p < P*1p = 1p. Hence P*14~p < la~p sothat (A n B)° € C. Hence C
is an algebra, and in view of Lemma [2.1.7p]it is even a o-algebra. (One can use the lemma to see that
it is a Dynkin-system or a monotone class.)

If C is a strict subset of €2, then the previous arguments apply to P| r1(c)- This operator is clearly
conservative, and B < C'is P-absorbing if and only if it absorbing under this restriction. O

2.1.19 Corollary If C' = €, then P is ergodic if and only if C is trivial.

2.1.20 Theorem If P is invertible and if also P~ is a positive L'-contraction, then P*1p = 15 for
each B € C. (So C is the o-algebra of invariant sets).
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Proof- As P*1 < 1and P* '1 < 1, we have P*1 = 1. Let B € C. Then P*lpc < lge so
t~hat P*1lg = P*1 — P*1lge > 1 — 1gec = 1~B- Let h := P*1p — 1. Then 0 < h < 1. Let
h:=P*'h=15— P* '15. Thenalso 0 < h < 1. Now

n

Z P*h = P*"1p — P* Mg <1iforalln>1,

k=0
so that also ;2 , P**h < 1. Therefore, by (D2) of Theorem [2.1.12, h = 0 on C. As B < C, this
implies P* 115 = 15, ie. P*lp = 13. O

2.1.3 Exercises

2.1.1 Let (€2, A, m) be a o-finite measure space and 7" : {2 — {2 a measurable map that satisfies m o
T—! ~ m. Consider the L'-contraction P whose dual is given by P*h = h o T (see Example ,
and denote its dissipative part by D. Prove that

1. #{neN:T"(w) e D} = 0 for m-a.e. w € C and

2. there are Dy, /" D such that #{n € N : T"(w) € Dy} < k forall k£ € N and m-a.e. w € Q.

2.1.2 Let (£2,.A, 1) be a probability space.
a) Prove that P is conservative if § P*h dp = {hdpu for each h € L®.
b) Prove that each L!-contraction given by a conditional expectation is conservative.

c) Let (9, A, 11) be a probability space and consider a L!-contraction which is a composition of two
(or more) conditional expectation operators. Prove that it is conservative. (The composition of
arbitrary conservative operators need not be conservative, though.)

2.1.3 Let (2, A u,T)beampdsand P : L' — L', Pf = f o T as in Example Determine
P*h.

2.1.4 Give an example of two conservative positive L!-contractions whose composition is not con-
servative. Hint: The simplest examples are based on composition operators.

2.1.5 Let Q) = Z with the counting measure m and consider Pf(w) = 5 f(w+1) + 3 f(w —1) asin

2
Example [2.1.4]

1. Determine the conservative and the dissipative part of P.
2. Do the same for the operator Pf(w) = af(w + 1) + (1 — a)f(w — 1) when a € (0, 1)\ {3}

2.2 Ergodic theorems

2.2.1 The Chacon-Ornstein theorem

LetfelLl,ge L}r. In this subsection we prove that % converges m-a.e. on {Syg > 0}.
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The filling scheme We need a number of notations.

e For f,ge L} wewrite f > g if Ir,se L} : f=r+sandg=r+ Ps.

o fBgifdgi:f™> grandg > g.

e U:L' - L' Uh:= Ph* — h™ is the nonlinear (!) filling operator.

o M,f :=max{Sif,...,S.f}.
2.2.1 Lemma For f,ge L', h = f — g andn € N there exists f, € L such thatU"h = f,, — g and
[ o

Proof: Forn = 0 take fy = f. Determine f, 1 inductively: let t,, := f,, — (U™h)" and observe
that t,, > 0 and (U"h)~ = (U™h)* —U"h = f, —ty — fu+9 = g — t,. Hence U""1h =

P((U™R)*) = (U™h)™ = P((U"A)") +tn — g =t far1—gand fo = fuiras fo = (U"h)* + b,

O
2.2.2 Lemma Forh e L' andn € N we have U"h = 0 on {M,1h > 0}.
Proof: By definition, (Uh)~ < h™ so that inductively h~ > (Uh)~ = (U?h)~ > .... Therefore
it is sufficient to show that for m-a.e. w € {M,+1h > 0} there exists some k € {0,...,n} such
that (U*h)*(w) > 0. This is equivalent to showing that ¢,(w) := Zk:O(Ukh) w) > 0 for some

€ {0,...,n}. We will show that
w¢ = Sgi1h forall 4. 2.2.1)

This implies maxy—g . n @¢(w) = maxe—1_ p41 Sch(w) = My, 41h(w) which proves the claim.
We turn to the proof of (2.2.1] - For ¢ = O it is the trivial fact that ™ > 0. Inductively,

Seioh =h+ PSpi1h

¢
< h+ Py = h+ZP ((U*h) Z (U h + (U*R)7)
k=0 k=0

l
2 UkJrlh (UkJrlh)f_"_(Ukh)f)

=h+pe1— h* +h™ — (Ueﬂh)_ = Pe+1 — (Uth)_ < Yot

P2 — 0 me-ae. on {Syg > 0}.

2.2.3 Lemma for f € L' and g € L} we have lim,, o, - o

Proof: ~ We may consider f* and f~ separately and thus assume that f > 0. We can also assume
that { g dm = 1 so that gmn is a probability measure. Fix ¢ > 0 and set , = P" f — €S,,41g and

An::{sj:i‘fg>e}m{g>0}:{rn>0}m{g>0}.

Then
n=Prn1—eg<Prl —eg (n=1)
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so that indeed
r;[ < Pr:{_l —€la,g.

JelAngdm < JPrqfl dm — frz dm < Jr;l dm — f’":{ dm .

Summing over n > 1 we obtain

o0
Z (gm)(A,) < e ! frar dm < e Jer dm < o .
n=1

Hence

By Borel-Cantelli, # {n eN: H;() > e} < o0 holds for gm-a.e. w and hence for m-a.e. w €
{g > 0}. As e > 0 was arbitrary this proves 0 < limsup,,_, sz{g < 0 m-ae. on {g > 0}.
Applying this argument to P’ f and P7g (any j € N) we obtain
pr prti pnti
0 < limsup / <limsup7f<limsup7f<0

n— oo n+19 n— 00 n+1(Pjg) n—0o0 n+j+19
Hence lim,,_, SP L — 0m-ae. on {Sewg > 0}. O
224Lemma Let f,ge L1, k> 1,9 gy andy > 1. Then

{limsup Sn(f—g) > 0} c {limsup Sn(vf—g1) > 0} (2.2.2)

n—0 n—aoo

Proof: ~ We prove the lemma first for & = 1. Then this result can be applied repeatedly with ~/*
instead of  to treat general k € N.

As g EX g1, there are r, s € Ll+ such that g = r + s and g; = r + Ps. Hence

n—1
Su(vf —g1) = D Pi(vf—g+g—r—Ps) = Sa(vf — g) ZPZS_PS
1=0

By Lemma[2.2.3] P"1(Ps)(w) < (7 —1)S,f(w) if Soo f(w) > 0 and n is suffciently large (depend-
ing on w). Hence limsup,,_,, Sn(7f — g1) = limsup,,_,, Sn(f — g) on {Sef > 0} and, restricted
to {S f = 0}, the inclusion (2.2.2) is trivial, because both sets are empty. ]

To proceed we need some more notation:

e For He A, f e L andn € N define
Uy f = sup{f gdm: f ﬁ»g} and VUgyf:= lim Uyf.
H n—aoo
(Observe that 0 < WL, f < U2 f < ..., because f -> g implies f "> )

e Asall g in the definition of W%, are nonnegative, we have \If’;h < \1”}1,2 if H € Ho.
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o As f > g implies §,, gdm < §rdm + {Psdm < {rdm + §sdm = |f
Vaf<|fl

e For o > 0 holds W, (af) = a¥’(f), and the same holds for V.

1, it 1s clear that

o Ep(h) =" {Mnh > 0}.

2.25Lemma Let f,ge L' ,h:= f—g,neNand H € A.
a) H < {My,11h > 0} implies U}, f = § .. gdm.

b) H < Ey(h) implies Uy f > {, gdm.

c¢) H < {limsup,,_,,, Sph > 0} implies Vg f > VYpg.

Proof: By Lemma[2.2.2] U™h = 0 on {M,+1h > 0}, and by Lemma2.2.1, U"h = f,, — g for

some f, € Lﬁr with f = fn.

a) If H < {M,41h > 0}, then 0 < {, U"hdm = §,(fn — g)dm sothat §,; gdm < { f,dm <
v f,

b) Let Hy := H n {My1h > 0}. Then Hy, / H and assertion a) implies

Upf=supVyf=>supVy f Zsupf
n n n

gdm=f gdm .
Hy, H

¢) Suppose that g LA g1 for some k € Nand g; € L', and choose v > 1 arbitrary. By Lemma ,

Hc {limSUP Sn(vf — 91)} S Er(vf—q1)-

n—o0

By assertion b), yWr f = Wy (vf) = §; 91 dm. As~ > 1 was arbitrary, Uy f > {,; g1 dm. As

this holds for all k£ and all g; with g X g1, we conclude that Uy f > Upg.
L]

2.2.6 Theorem (Chacon-Ornstein) Let P be a positive L'-contraction, f € L' and g € L. Then
. Sy .
L(f,g) := lim S € (—oo0,0) exists m-a.e. on {Syng > 0} .

Proof:  Again we may assume that f > 0. Observe that U yg > 0 for any H < {S,g > 0} with
m(H) > 0: in this situation there is some n € N with m(H n {P"g > 0}) > 0, and as g -> P"g, it
follows that W (g) = § P"gdm > 0.

On {Syg > 0} we define h := liminf, % and h := limsup,,_,, gzg. On {h > a} we have

lim sup,,_, ., %ﬁg‘lg) > 0. As S, g increases, this shows that {h > a} < {limsup,,_,,, Sn(f — ag) > 0}.

Let H := {h = ©} n {Syg > 0}. Then, by Lemma[2.2.5, we obtain for all o > 0

aVpg=Vg(ag) < Vgf<|fl1 <o,

so that Wgrg = 0. This implies m(H) = 0, i.e. h < o on {Syg > 0}. B
In order to prove that h = h, let « < $in Q and define H := {h < a < 8 < h} n {Sxg > 0}.
Then

n—o0 n—0o0

Hc {limsup Sn(f — Bg) > O} N {limsupSn(ag —f)> 0}
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and Lemma [2.2.5]implies W f > BV pgand aVpyg > Yy f. As a < 3 this implies W g = 0 and
hence m(H) = 0. As this is true for all &« < 8 in Q, it follows that h = h m-a.e. and the theorem is
proved. [l

The identification of the limit L( f, ¢) in full generality is a bit technical, see [11}, §3.3]. Below we
provide it in several special cases that are sufficient for our purposes.
2.2.2 The identification of the limit: Birkhoff’s ergodic theorem

Suppose that (€2, A, ;1) is a probability space and P is a positive contraction on L'(Q, A, i) If
P1 = 1, the Chacon-Ornstein theorem, applied with ¢ = 1 € L', simplifies to

B 1 n—1
fi:=lim — Z P¥f  exists and is finite p-a.e. (2.2.3)
e

One has indeed L'-convergence: For e > 0 choose s > 0 such that {(| f|—s)" dp < €. Then f = u+v
where |u| < s and {|v|du < e. Hence P*f = Pku + Pkv, and from P1 = 1, the positivity and
the contraction property of P it follows that | P¥u| < s and §|P*v|du < € for all k. Thus the P*f

are uniformly integrable and hence also the sequence (% 22;3 fo Tk) ) is uniformly integrable

=

so that L'-convergence follows at once, see [10, Lemma 6.17b, Satz 6.18]. Hence Pf = f u-a.e.

2.2.7 Corollary (Birkhoff’s ergodic theorem) If (2, A, 1, T') is ampds and f € L', then

f= lim — Z foT*=E,[f|Z(T)] p-ae andinL". (2.2.4)

n—ao N

Proof: ~ Pf := foT isapositive contraction satisfying P1 = 1, see Example [2.1.5] Therefore the
almost sure convergence follows from (2.2.3).

As foT = Pf = f p-a.e., the limit f is T-invariant mod p and hence Z(7")-measurable mod .
For any A € Z(T') we have in view of the L'-convergence and the T-invariance of

deu— hmZJ foTFdy = ffdu.
nmeon T-kA A

Hence f = E,[f | Z(T))]. [

2.2.3 The identification of the limit: Compositions of conditional expectations

Recall the notion of a complete probability space and of a completion: If (€2, .4, i) is a probability
space, its completion is the space (€2, .4, ;1) where

= {A cQ:3A0,A1 € Awith A € A< A; and /L(Al\Ao) = 0}

is the p-completion of A. The obvious extension of 4 to A, is again denoted by .. The space
(9, A, p) is complete, if A4, = A.
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2.2.8 Remark Let (2, A;, 1) be a probability space and let 4y < A; S Ag o-algebras. If Ay <
(Ao),., then the three spaces LP(Q, A;, ) (¢ = 0,1,2) are naturally identified for any p € [1, 0] —
we treat them as identical.

2.2.9 Corollary Let (Q2,.A, 1) be a probability space and let F1, Fo < A be sub-c-algebras, P; :=
E,[. | Fi] (see Example and f € L'. Then

n—1
f = lim % Z (PP f = EL[f | (Fi)u 0 (F2)u] p-ae. andin LY. (2.2.5)
k=0

Proof: Let P = P,P;. Then P1 = 1 and the convergence as well as Pf = f follow again from
As each % 22;3 (PoPy)Ef s (F) p-measurable, so is f no matter how it is defined on the null set

where there may be no convergence. Hence P f=f=Pf = PP, f pae. For bounded f (and
hence also bounded f) this implies

o [y ={f BPify =(Pof, Prf) ={f,PLf)

sothat P f = f p-ae., ie. fisalso (F) p-measurable. General f € L' can be L'-approximated by
bounded ones: f = u + v with bounded u and |v[l; < €. Then f = @ + v with a (F1), N (Fa) .-
measurable @ and |[7]; < |v;.

Finally, for A € (F1),, n (F2), we have

n—1
. 1
fdu= lim — f PP, ’“fdu:f fdu,
L ”*@"kz:o [(BP) )

because § ,(PaP))F fdp = §(PaP)F1a fdp = §, fdp. O

2.2.4 The identification of the limit: Hurewicz’s ergodic theorem

Suppose that (€2, A, ) is a probability space and that T :  — 2 is an invertible bi-measurable
transformation with 2 o T~! ~ p. We consider the stochastic kernel p(w, A) = d7(,)(A) as in

Example [2.1.4a. Recall that the associated contraction P satisfies Pf = fo T ! - d(%zil). Itis an
invertible linear operator, and its inverse is given by P~1f = f o T- d(’jii;T).
2.2.10 Theorem (Hurewicz’s ergodic theorem) For each f € L'
L(f,1) = lim Snf _ E,[f|C] p-ae. onC. (2.2.6)
n—w S,1

(This contains, as a special case, also Birkhoft’s theorem.)
Proof: ~ We begin with some preparatory observations:

e B e Cimplies 1;7-15 = 1goT = P*1lp = 1p and hence T-!B = B mod p by Theo-
rem [2.1.200

oIff—1>g,i.e. if f=r+sandg = r + Ps for some r,s € L, and if B € C, then
Spgdu="Sgrdu+ g Psdu="Srdu+ P 1p-sdu="grdu+ §1p-sdu= 1Sz fdpu.
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e Inductively: If f ©> gand B € C, then §, f du = §, gdu. Hence: ¥ f =, f dp.
Next observe that for all j, k € Z
d(p o TF) d(p o T)
apet ) Mper)

d(poT™) d(poTH)  du

TI = : 7. T9 = . : 2.2.7
O T Aot ) o i duer) 7
so that for allm € N
n—1 _
i d(uoT™F) dp
foT = Tk 2 ) oT = foT+8, 1f —t. 2.2.8
Snf © kZ_g(f G )T = foT+8uf oo (2238)

As S,1 /" o0 on C by (C3) of Theorem [2.1.13] it follows that

f T+Sn 1f o
Mﬂ)oT_lmlstTzlml d“T)—
n—>OOS oT n—00 1+Sn 11

L(f,1).
(uoT)
In particular, L( f, 1)|¢ is Z(T')-measurable mod 1 and hence C-measurable mod p, see Theorem[2.1.20]
In order to prove that L(f,1) = E,[f | C] on C, it suffices to show that for alle rational o < 3 we
have B, g := C n{a < L(f,1) < B} = {a < E,[f|C] <} modponC.
To thisend let H := By g n {E,[f | C] < a}. Then H € Csothat Wy f = §,, fdpforall f e L1
by the above considerations. Suppose p(H) > 0. As H < B, g < {limsup,_,,, Sn(f — a) > 0},

Lemma [2.2.5]implies
Jﬁm:%ﬁz%m=faw>fEMHﬂW=Jva
H H H H

a contradiction. Hence 1(H) = pu(Bag\{Eulf | C] < a}) = 0. similarly one proves ji( By g\{ Ep[ f |
C] > B}) = 0. This implies the required inclusion. O

In Chapter 3] we will need the following variant of the Hurewicz theorem:
2.2.11 Theorem (Proposition 7.4.2 in [3]) Forevery f € L'(Q, A, 1) and p-a.e. w,

n
lim 2i=—n

,kﬁmij:j‘jﬁj"thflllTﬂ- (2.2.9)

Proof:  On the conservative part C' the claim follows by applying the Hurewicz theorem separately
to P and to P~! and observing that Z(T) = Z(T~!) is at the same time the o-algebra of P-absorbing
sets and that of P~!-absorbing sets (mod 0), see Theorem [2.1.20

On the dissipative part D, both the enumerator and the denominator are a.s. converging series.
Equation (2.2.7) implies that
j dpoT *=9)  du - Pk_'jg

du d(poT7) P71

both for g = f and g = 1. Therefore the limit of the quotient in (2.2.9) is T-invariant on D, and for
every A € Z(T')|p we have

Pkg 0TI = go 7~ (k=

Shen PFF f J J f
Z]ezP” /é ZjezPil % A Djeg Pilo Tk

fk
> 1@=Jf@.
k‘GZJ\ Z]GZ le A
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On D the quotient of the series is therefore equal to £, f | Z(T')]. ]

2.2.5 Exercises

1. Let Q = Z with the counting measure m and consider Pf(w) = 3 f(w+1) + 3 f(w — 1) asin
Exercise Prove:

a) Snl{o} — 00 but lim,,_, 4 n_lSnl{O} = () pointwise.
b) lim,_,eo n~ 1S, f = 0 pointwise for each f € L.
¢) S;1lgy — oo butlimy, o n_ISZl{O} = ( pointwise.

2. Let (€2, A, 1) be a probability space, let P; be a linear L!-contraction, and let P := E,,[. | F]
for some sub-cg-algebra F. Then the Chacon-Ornstein theorem applies to P = P P;. In
Corollary @] the limit was identified for the case where also P is a conditional expectation
operator. For what other P; can you identify the limit?
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3 Ergodic decompositions

3.1 Background from measure theory

In a topological context, the continuous image of a closed set need not be closed, and similarly in
measure theoretical context the measurable image of a measurable set need not be measurable. How-
ever, in topological context, the continuous image of a compact set is always compact (and hence also
closed). This section is devoted to a class of measure spaces that play the role of compact spaces
in the category of measure spaces. The theory goes back to Rohlin, but we follow here mostly the
presentation of de la Rue [4]], who also gives further references. One should also note that much more
elaborateed versions of this theme - based on descriptive set theory - are available, see e.g. [2].

3.1.1 Lebesgue-Rohlin spaces

In this section a triple (£2,.4, i) always denotes a probability space. If C < A, then o(C) is the
smallest sub-o-algebra of A that contains C, and o(C),, denotes its z-completion.

3.1.1 Definition a) A probability space (2, A, 1) is a pre-Lebesgue-Rohlin space (pLR space) if
there is a Hausdorff topology T on () with a countable basis and such that

o(t)=A and (3.1.1)
VAeo(r): u(A) =sup{u(K): K < A, K compact for 7}. (3.1.2)

b) It is a Lebesgue-Rohlin space (LR space, also standard probability space or just Lebesgue space),
if is replaced by

T Aando(7), = A. (3.1.3)

(In particular A must be complete.)
In both situations each such topology T is called adapted to L.

3.1.2 Remark a) In the case of a LR space, (3.1.2) extends to all A € A.

b) If (2, A, pu) is pLR, then (€2, A, 1t) is LR (where 1 denotes also its extension to \A,,).

3.1.3 Lemma Ifeach G € T can be written as the union of countably many T-closed sets, then (3.1.2
can be replaced by
1 =sup{p(K) : K < Q, K compact for 7}. (3.1.4)

(This holds in particular, if T is metrizable.)

Proof:  (3.1.4) implies for each closed A that

w(A) = sup{u(A n K) : K € Q, K compact for 7} = sup{u(K) : K < A, K compact for 7},
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i.e. (3.1.2). The same follows for open sets, because they are countable increasing unions of of closed
subsets.

Denote by Ay the family of all sets A € A such that holds for A and also for A°. We
just saw that 7 < A. It remains to show that Ay is a o-algebra: 2 € Ag because of (3.1.4), and
Ae Ay < A° e Ay by definition. So let Ay, Ay, - - - € Ag. We must show that A := Ule A, € Ap.
To this end let € > 0 and choose compact sets K,, & A,, and L,,  A¢ such that u(A,\K,) < 27"
and u(AS\L,) < 2 "e. Fix N € N so large that p (A\ U7]1V=1 An> < €. Then U7]1V=1 K, and

(Mo_; Ly, are compact subsets of A and A€, respectively, and

N

N
[ (A\ U Kn) et D p(Ap\Ky) < 2€
n=1

u(Ac\ﬂLn>=u<

3.1.4 Example Let X := {0, 1}". Equipped with its product topology 7%, X is compact metrizable,
in particular Hausdorff. The collection Z of cylinder sets

and

(4° LZ)) < 3 u(ANL) < 3 (AL, <.

n=1 n=1

s

O

[a1,...,an] i ={xeX:x;=0a; (1=1,...,n)} (neN,q; €{0,1})

forms a countable basis of 7x and o(7x) = o(Z). Each cylinder is at the same time open and closed.
If 11 is a probability on o(Z), then (3.1.4) holds trivially because X is compact. So (X,0(Z), ) is a
pLR space and hence (X, 0(Z),, 1) is LR.

Let (2, A, 1) be a probability space and B = (B, ),en a countable family of sets in .4 that separates
points. Such a B defines an injection

op: Q2 —->X, w— (1, (W))nen - (3.1.5)
Observe that

o5t ([a1,. .. an]) = ﬂ Ba
k=1

where B} := By, and B := Bg. Here and in the sequel B¢ := Q\B. In particular, ¢ is o(B)-0(7x)-
measurable. Denote
ps = podgt, Ag:=0o(1x)us-

Then (X, o(7x), u5) is pLR and (X, Ag, up) is LR.

3.1.2 Polish spaces provide (p)LR spaces

3.1.5 Definition A topological space (£, 7) is polish, if 7 can be generated by a complete separable
metric d. (So it is in particular a Hausdorff space with a countable basis.)

3.1.6 Examples a) R? equipped with its usual topology is a polish space.
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b) (X, 7x) is polish.
¢) A separable Hilbert space is a polish space.

d) C([0,1],R) equipped with the topology of uniform convergence and C'(R ., R) equipped with the
topology of uniform convergence on compact subsets are polish spaces.

3.1.7 Lemma Let ) be polish and let B be a countable basis for its topology 7. Then ¢p(Q2) € o(7x).

Proof: ~ We characterize the points belonging to ¢5(2) in a measurable way: Let y = (Y, )nen € X.
Suppose that y = ¢(w) for some w € Q. As B is a basis of 7, each ball around w contains some set
B,, 3 w. Therefore,

(1) IneN:y, =1and diam(B,) <1
(2) VneN:y, =1= [ImeN:y, =1, B,, < B, and diam(B,,) < diam(B,)/2].
(3) Vne N:(j_, B} # &.

We claim that, vice versa, if y satisfies (1) - (3), then y = ¢p(w) for some w € Q). Indeed: for each
n € N there is w,, € ﬂgzl Bz’“ because of (3). Because of (1) and (2), (wy, )nen is a Cauchy sequence
that has a limit w since the metric d is complete. We show that w € (;_; Bi¥, ie. y = ¢p(w).
Suppose this is not the case. Then there is & € N such that w ¢ B}*. If y;, = 0, then w € By, and
hence w,, € B}, for all large n, contradicting w,, € ﬂZ=1 Bg’“. If y = 1, then w € BY, and because of
(2) there is m € N such that w € Q\B7m As before this leads to a contradiction, because w,, € Q\Bi,n
for all large n.

It remains to note that (1) - (3) specify a Borel measurable set of points in X. O

3.1.8 Lemma Let (2, 7) be polish with Borel-c-algebra A, let i be a probability measure on A, and
let (Fp)pen be a family of T-closed subsets of 2. Denote by 7' the topology on ) generated by T and
the F,. Then 7’ is adapted to y, in particular (Q, Ay, j1) is a LR space.

Proof: Tc 1 <A s0oA=o0(r)<o(r’) < A Hence holds for 7/. Let B be a countable
basis for 7 and let B’ be the countable family of all finite intersections of sets from 5 and sets F,. Then
B’ is a countable basis for 7/ and each element of B’ can be written as a countable union of 7-closed
sets - and hence of 7/-closed sets. As each set in 7’ is the countable union of sets in 3’, this shows
that each set in 7/ can be written as a countable union of 7/-closed sets. Hence, by Lemma [3.1.3] it
suffices to verify instead of (3.1.2).

Suppose now w.l.o.g. that all F7 belong to the basis B = {Bi1, Ba,...} of 7, and observe that
¢ (x) is a topology on . Observe also that B = ¢z'{y € X : y, = a} € ¢,'(rx) for all
B, € Band a € {0,1}, in particular B < ¢z () and F}, € ¢55* (%) for all p. Hence 7/ < ¢5" (7x).
Therefore, if K < ¢5(2) is 7x-compact, then ¢gl (K) is 7'-compact: To see this, suppose (ﬁgl(K )<
U,er Oi and O; € 7. Then O; = gbgl(Ui) for some U; € 1% and hence gzﬁgl(K) - qbgl (Uier Ui)-
As ¢p is injective and as K < ¢p(€2), this implies K < | J,.; U;, and as K is 7x-compact, there is a
finite subset .J of I such that K < J,; U;. Hence ¢' (K) € |, O:.

As (X, o (%), ug) is a pLR space and as ¢3(2) € o(7x) by Lemma/[3.1.7} we finally have (3.1.4):

1= pu(Q) = us(¢s(Q)) = supi{us(K) : K < ¢5(Q), K mx-compact}
= sup{u(¢5'K) : K < ¢5(Q), K mx-compact}
< sup{u(K') : K' < Q, K' ’'-compact} .
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3.1.9 Theorem If (2, 7) is polish and if (2, A, 1) satisfies o(7),, = A, then it is a LR space.

Proof:  Apply the previous lemma with no sets F}, added. O

3.1.10 Examples (Continuation of Examples [3.1.6)

a) R? and, more generally, any separable Hilbert space equipped with a Borel probability measure
and the completed Borel-o-algebra is a LR space.

b) C([0,1],R) and C'(R4,R) equipped with the Wiener measure are LR spaces. (Observe that one
has to make sure that the Borel-o-algebra of C' as a polish space coincides with the trace on C' of

the product o-algebra on RIO1 and RE+, respectively. See for example [1, Satz 38.6 and Korollar
40.4].)

3.1.3 The measurable image property in LR spaces

3.1.11 Lemma Let (Q, A, 1) be a LR space and B,, € A (n € N). Then there is a topology 7' on Q
which is adapted to . and such that B,, € 7' for all n € N,

Proof: ~ Let T be a p-adapted topology on €. Because of (3.1.2), there are K,-sets S, < B,
(countable unions of 7-compact sets) such that p(B,\S,) = 0 for all n € N. Denote by K the
countable family of compact sets used to construct the countably many .S,, and denote by 7’ the
topology generated by 7, I and the B,,.

As 7 has a countable basis, so does 7/. As 7 < 7’ and T separates points and satisfies , SO
does 7. It remains to prove for 7/. Let

N =]J(Bu\S:) and Qo= N°.

neN

Then p(N) = 0 so that (29) = 1, and B,, n Qy = S,, n Qg for all n, because

By Qo =By [ (BiuSk) S By Sy=5.
keN

Now let A € A and € € (0, u(A)). There exists a T-compact set X < A N Qp such that u(K) >
p(A) — e. With its trace topology 7k, K is a compact space with a countable basis that separates
points. Hence it is metrizable, and so it is polish. As K < €, all intersections K n (B,\S,,) are
empty, and so the trace topology 7{,- is generated by 7|k and the countable family Kz := {K "nK:
K’ € K}. Therefore, by Lemma @I there exists a 7{-compact set K’ < K such that u(K') >
u(K) — e = u(A) — 2e. To conclude observe that each 7'" -compact set K is also 7/-compact. [

3.1.12 Theorem Let (), A, u) and (', A’, 1//) be complete probability spaces and h : Q —
measurable such that o h™ = p/. Let also B' = (B),)nen be a family of A’-measurable sets that
separates points in §'. Then, if (2, A, p) is LR, also (', A’, i) is LR, A’ = o(B'),y and h(Qp) € A’
for each Qp € A with pu(29) = 1.

Proof: ~ W.l.o.g. one can assume that B’ contains with each B], also (B},)¢. As B3 separates points,
o5 : ' — Xis injective and measurable, see also (3.1.5). Let 7 := qﬁg,l (7x). The family B” :=

{Bj,n---nB; :neN,B],...,B; €B'}isacountable basis for 7’ and o(7') = o(B’).
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Let B, = h~!(B!) for all n. By Lemma there is a p-adapted topology 7 on {2 such that
B,, € 7 for all n. Then h=Y(B") < 7 so that h : Q — Q' is 7-7/ continuous. We are going to show
that 7/ is adapted to p’.

Let A’ € A’ and denote A := h~'(A’). Then

p (A = p(h™ A" = pu(A) = sup {u(K) : K € A, K T-compact} .

Let € > 0 and choose a 7-compact K < A such that p(K) > p/(A’) —e. Let K’ := h(K). Then
K’ < A’is 7'-compact and

p(K') = p(h™(K') = p(K) = @/ (A) e,

so that
p'(A") =sup {p/(K') : K' € A", K’ 7'-compact} .

As each 7'-compact set belongs to o(7'), it follows that o(B'),» = o(7"),» = A’. This shows that 7/
is adapted to p’.

Finally, because 7 is adapted to u, there is an increasing sequence of 7-compact sets K, < (g such
that u(Ky) / 1. As h is 7-7'-continuous, the sets h(K,,) are 7/-compact. Then S := |, .y R(K7)
is o(7')-measurable, S < h(€) < @ and 1/(S) = sup,, ' (h(K,)) = sup,, u(h~1(h(K,))) =
sup,, t(K;,) = 1. This proves h(€y) € A’ m

3.1.13 Definition A basis of a LR space (€2, A, uu) is a countable family of A-measurable sets that
separates the points of 2. (One can always assume that the basis is closed under finite intersections.)

3.1.14 Remark Each LR space has a basis: It has a Hausdorff topology with a countable basis.

3.1.15 Theorem If B is a basis of the LR space (2, A, it), then o(B), = A.
Proof:  Apply Theorem[3.1.12|to Q' = Q and h = idg. O

3.1.16 Theorem Let (2, A, 1) and (', A, i) be LR spaces. If h : Q — Q' is injective and measur-
able and satisfies y1 0 h™' = 1/, then h(A) € A’ for each A € A.

Proof:  Let B' = (By)nen be a basis of (', A, i) and set B,, := h~1(B},) for all n. As the B),
separate points in 2" and as h is injective, the family B := (B,,)nen separates points in ). Then, by
Theorem [3.1.12} h(2) € A’. Therefore, for all n € N, h(B,,) = B}, n h(2) € A’. As a formula,

QeH:={AecA:h(A)e A} and BcH.

As h is injective, the family H is a o-algebra. Hence o(B) — H so that finally A = o(B),, < H,.
Hence, for each A € A there are Hy, H; € H with Hy € A € H; and u(H1\Hy) = 0 so that
h(H()) < h(A) - h(Hl) with h(Ho), h(H1) e A" and

(! (R(H1)\h(Ho)) = p (b~ (h(H1)\h~ " (h(Ho))) = p(H1\Ho) = 0.

As A’ is p-complete, this shows that h(A) € A'. ]
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3.1.4 The classification of Lebesgue-Rohlin spaces

3.1.17 Definition Two probability spaces (2, A, u) and (', A’, /') are isomorphic mod 0 if there
are Qy € A and Q) € A’ with u(2) = 1/ (2)) = 1 and a bi-measurable bijection h : Qg — €Y, such
that juo h™1 = 4.

3.1.18 Theorem Let B be a basis of the LR space (2, A, 1) and define ¢ : Q — X as in (3.1.3).
Denote again jiz = po¢y" and Ag = o(7x)us- Then (2, A, p) is isomorphic mod 0 to (X, Ag, u5).

Proof: By Theorem [3.1.16] ¢ : 2 — ¢p(€2) is a bi-measurable bijection and ¢3(2) € Ap. By
definition, y15 = 10 ¢, and finally ps(d5(2)) = u(dg' (¢5(2))) = p(Q) = 1. O

In the remaining part of this chapter we classify LR spaces (2, .A, 1) up to isomorphism mod 0. To
this end we associate to such a space a decreasing sequence (my,)nen of reals in [0, 1] as follows: p
has at most countably many atoms wi, ws, . . ., i.e. points with u({wy}) > 0. (This may be a finite or
even empty sequence.) They can be enumerated in such a way that u({w1}) = pu({w2}) > .... For
n = 1let my, := p({wy}) if there are at least n atoms and otherwise let m,, = 0. The m,, are called
the invariants of (£2,.4, u). Obviously, if two spaces are isomorphic mod 0, then they have the same
invariants. The converse is part of the following theorem.

heorem A LR space (2, A, 1) with invariants (my, )nen is isomorphic mod 0 to the LR space

3.1
( ) where

A9T
yA
o QO =1[0,mo] u,enil + LY withmg =1 -3, mn,

® [i|{0,my] is the Lebesgue measure and ji({1 + 1}) = m,,
o Ais the f1-completion of the Borel o-algebra on Q.

Proof: ~ We restrict to the case where there are no atoms so that mg = 1.

I) Reduction to 2 = X: Because of Theorem [3.1.18]it suffices to consider Q = X = {0, 1} with
A= 0o(mx)u-

II) Reduction to Q = [0,1]: Define h : X — [0,1] by h(w) = >, w,2™™ (binary expan-
sion). h is continuous, hence o (7x)-F-measurable, where F := o(7[g]) denotes the Borel
o-algebra on [0, 1]. Its restriction to the set 2y := X\S is injective where S := {w e X : w,, =
0 for at most finitely many n}. Obviously, h(€y) = [0,1). As S is countable, it is measurable
and 1(S) = 0 because y has no atoms. Let i/ := p o h~! and denote A" = F,s. Then h is
A-A’-measurable because A = o (7x) .

As the countable family of all subintervals of [0, 1] with rational endpoints separates points, we
can apply Theorems [3.1.12|and [3.1.16| and conclude that ([0, 1], A", /) is a LR space and that
h:Qp — [0,1) is a bi-measurable bijection.

1) Final step: Now Q = [0, 1] and A = (79 1))y Define h : [0,1] — [0,1], h(z) := u([0,x])
to be the distribution function of . It is well known (from basic probability theory) that A
is monotone and continuous (1 has no atoms!). Let I1, I, ... be the at most countable many
maximal non-trivial closed intervals on which h is constant and denote €}y = Un I,,. Then
() = 1, hig, = Q0o — h() is bijective, and [0, 1]\h(€2) is at most countable. Finally,
poh='([0,a]) = p{z e [0,1] : h(z) = u([0,2]) < a} = a = ([0, a]).
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3.1.20 Remark For the LR space [0, 1] equipped with Lebesgue measure it is not so hard to prove
that conditional probabilities with respect to a sub-c-algebra can be represented by regular conditional
probability distributions. (This fact is proved in most textbooks on probability theory, see also [[10}
Satz 13.10].) In view of Theorem [3.1.19| the same is true for all LR spaces. In chapter 2] we will
provide an independent proof of a far reaching generalization of this fact.

3.1.5 Measure separability of Lebesgue-Rohlin spaces

3.1.21 Theorem Let (2, A, 1) be a LR space. Then:

a) (92, A, u) is separable, i.e. there is a countable sub-algebra 3 of A such that
VAe AVe> 034" e B: p(AAA) <e.

b) L*(Q, A, ) is separable.

Proof:  Recall that a LR space has a countable family By of (open) sets such that o(Bp),, = A.
Denote by B the algebra generated by By and observe that also 3 is countable. It is a corollary to the
Carathéodory construction that 53 is dense in A, see e.g. [10}, Satz 2.29]. Denote by G the space of all
rational linear combinations of indicator functions of sets from 3 and note that (G is a countable dense
subset of L'. Now let f € L. For n € N define

frn(w) = max{—n, min{n, f(w)}} .

Then |f — fu]2 — 0 asn — oo, and there are g, € G such that ||f, — g,]1 < n73, so that

I fn = gnl2 < /1| fa— gnli <n ' Hence |f — gn|o — 0asn — . O

3.1.22 Remark Let (€2, A4, 1) be a probability space. Define d : A x A — [0,1], d(A,B) =
uw(AAB). Tt is easily seen that d is a pseudo-metric on A. The equivalence relation A ~ B <
d(A, B) = 0 defines equivalence classes [A] such that d([A],[B]) := d(A, B) is a well defined
metric on the space A := {[A] : A € A}. One can easily prove:

(1) (A, d) is complete.
(2) If F is a sub-o-algebra of A, then F is closed in (fl, d).

(3) If (9, A, 1) is a LR space, then (A, d) is separable. (It is compact if and only if x is purely
atomic.)

(4) If h : Q — € is measurable and i/ = o h™!, then ¢ : (A, d) — (A, d), [A'] — [h~1(A)],
defines an isometric embedding.

Suppose now that (€2, A, i) and (€2, A’, ') are LR spaces. (For the following assertions one may
need some additional assumptions on the isometry, but I see a chance that they can be proved without.)

e Each isometric embedding ¢ : (A’,d') — (A, d) with ¢([z]) = ] is of the form in (4).

e If ¢ is even an isometry, then the two LR spaces are isomorphic mod 0 with an isomorphism
that determines ¢ as in (4).
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3.1.23 Corollary Let (2, A, 1) be a LR space and let (F;);c; be an arbitrary family of u-complete
sub-c-algebras of A. Then there is an at most countable subset J < I such that (,.; F; = ﬂjEJ Fi.

Proof:  As the F; are all y-complete, it suffices to prove the corresponding statements for the closed
subsets F; < A. But that is a 51mple consequence of the separability of the metric space (A d),
because .,4\ ﬂle T Fi = Uier A\f ) is open and hence the union of at most countably many sets from
a given countable basis of the topology.

O

For later use we also note the following lemma:

3.1.24 Lemma Let (Fj)ren be a sequence of sub-o-algebras of the LR space (2, A, i) satisfying
(Mee1(Fr)u = (=1 Fk), for alln € N. Then Ny (k) = (N~ 1.7-"116)

Proof:  The inclusion 2 is trivial. For the other direction let f € L'(, A, 1). From a two-fold
application of the decreasing martingale theorem we have p-a.e.

E, [f| ﬂ (Fk)#] = lim E, | f| ﬂ ('Fk)u] = lim E, | f| (ﬂ fk)
k=1 | k=1 k=1

7
£ ﬂfk] =B, |f] (ﬂﬂ)
k=1 k=1 m

As this holds for any f € L', the sub-c-algebras (), ( fk and (ﬂk 1 ]-“k) coincide mod p, so
that (), }—k)# = (ﬂk:1 (F#) N>H = (mk:1 fk)u- O

n—o0

= lim B, || () F
L k=1

3.1.6 Sub-s-algebras and factors of Lebesgue-Rohlin spaces

In general it is not true that a sub-c-algebra of a countably generated o-algebra is itself countably
generated. In LR spaces, however, this holds at least modulo null sets:

3.1.25 Definition A sub-o-algebra F of ({2, A, p) is countably generated mod 0 if there is a countable
family B < F such that F < o(B), (equivalently: F,, = o(B),).

3.1.26 Theorem Each sub-o-algebra F of a LR space (€2, A, 11) is countably generated mod 0.

Proof:  Let F be the space L*(2, F,pu) = L*(2, F,, u) considered as a closed subspace of
L?(Q, A, 11). Denote by 7 the orthogonal projection on F. Let (¢, )necn be a countable dense sub-
set of L2(Q, A, 1) (see Theorem , and choose F-measurable representatives vy, of the m(¢y,).
Denote by B the countable family of sets {¢,, < a} € F (n € N, a € Q). Obviously each v, is
o(B)-measurable. Now, for each A € F there is a sequence (¢, )ien such that [14 — ¢y, [2 — 0 as
i — oo. It follows that |1, — 1al2 = [|7(¢n;, — 1a)|2 < [Pn; — 1a]2 — 0as i — co. Therefore
Aeo(B),, O

3.1.27 Corollary Each sub-o-algebra of a pLR space (), A, 11) is countably generated mod 0.

33



Proof:  Let F be a sub-c-algebra of A and consider the LR-space (£2, A, 1) (see Remark 3.1.2b).
Then F < A, and so F is countably generated mod O in (€2, A,,, ;1) which implies at once that it is
countably generated mod 0 in (2, A, p). ]

Consider now two LR spaces (€2;,.4;, ;) (i = 1,2) and a measurable map h : Q; — Q9 with
po = pp o h~'. Then h~1(Ay) is a sub-o-algebra of A;. Conversely, the next theorem will show that
(up to completion) each sub-o-algebra arises from a factor system.

3.1.28 Theorem Let (2, A, 1) be a LR space, F < A a sub-o-algebra. Then there is a F-0(Tx)-
measurable map ¢ : Q — X such that F,, = o(¢ ™ (7x)) .-

Proof:  Let B — F be a countable family such that o(B),, = F, (Theorem [3.1.26). Define ¢5 :
) — Xasin (3.1.5). Then
Fu=0(B)u=0(d5" (%)) -

O

3.1.29 Remark Suppose now T : € — () leaves the measure class of y invariant, i.e. o T~ ~ p,
and consider F := Z(T). Let ¢ : Q — X be as in Theorem 3.1.28} and denote T, := ¢~ 1({z}) for
x € X. Then

i) €2 is the uncountable disjoint union of the sets I',,, x € X.

i) VeeX: I'y e Z(T).
iii) VAe Z(T) 3A" € ¢~ (o(1x)) : u(AAA") = 0.
The goal of the next two subsections is to define “restrictions” p,, of u to the sets I',, i.e. conditional
measures, and to show that the (I';, Ajr,, pt, T|r, ) are non-singular ergodic dynamical systems.

3.1.7 From positive L'-contractions to kernels on Lebesgue-Rohlin spaces

In this subsection we prove that each positive linear L'-contraction on a (p)LR space stems from a
substochastic kernel as in (2.1.1)). It suffices to treat only LR spaces because of the following simple
fact: if (€2, A, 11) is a probability space and if F = A is a o-algebra with A < F,,, then L' (Q, A, 1)
is trivially identified with L(Q, F, u| 7).

3.1.30 Theorem Let (2, A, ;1) be a LR space with basis B. Let P be a positive linear contraction on
LY(Q, A ) = LY, 0(B), 11). Then there is a substochastic kernel p on (2, o(B)) that determines
P by equation (2.1.2), i.e. that satisfies

f Pfdu= J f(W)p(w, A) du(w) forall Ae o(B) and all f € L' (3.1.6)
A Q
and

P*14=p(.,A) forall Aeo(B). (3.1.7)

If P*(L*(Q, A, ) < L*(Q,F,pn) for some sub-c-algebra F, then p(.,A) can be chosen F-
measurable for each A € o(B).

Proof:  Assume first that 2 = X and that A is the p-completion of o(7x) = o(Z).
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Foreach A € Z fix a F-measurable representative p(., A) : X — Rof P*(14) € L®(X, F, ).

e As P* is linear and positive, we can choose these representatives such that p(z, ) = 0 and
0<p(z,A) <lforallz e Xand Ae Z.

e As Z is countable, there is N € F with u(N) = 0 such that for all n € N, for all z € X\ V and
for all pairwise disjoint Ay, ..., A, € Z holds

pla, AL U U Ay) = PF(1a, +...14,)(x) = Z P*(14,)(x) = Zp(w,Ai) :

e For xz € N redefine p(z, A) = pu(A).

Then, for each z € X, p(z, .) : Z — [0,1] is a finitely additive and subadditive set function. (For
the subadditivity see e.g. [10, Lemma A.6].) The p(z, .) are even o-subadditive on Z: suppose
AcC UZ;O=1 Ay, for some A, A, € Z. As A is compact and all A, are open, there is n € N such that
A < |Jp_y Ak. Hence

n 0

p(:L‘,A) < Z p(ZL‘,Ak) < Z p(l‘,Ak) :

k=1 k=1
As Z is a semi-ring, all p(z, .) can be extended uniquely to finite measures on (X, o(Z2)), see e.g.
[10L Beispiel 1.3 and Satz 2.26]. By definition of p we have

L Plpdu = JB P*1dp = JlB(x)p(x,A) dp(z)

forall Ae Z and B € 0(2).

e For fixed B € o(Z), both sides of this equation describe finite measures in A. Hence the
identity extends to all A € o(Z2).

e For fixed A € o(Z2), both sides of this equation are linear, positive and o-additive in 1 5. Hence
equation (3.1.6) follows along standard lines (see e.g. the proof of [10, Satz 5.21]).

It remains to transfer the result from LR spaces with @ = X to arbitrary LR spaces (€, .4, u).
By Theorem 8 (€2, A, n) is isomorphic mod 0 to (X, .Ag, up) via a bi-measurable bijection
o5 Q — ¢B( ) c X. (Recall that up = ,uquB and Ag = o(7x) us-) ThenUf := fodpisa
positive isometric isomorphism from L' (X, Ag, ug) to L'(Q, A, 1), and P := U~'PU is a positive
linear contraction from L!(X, Ag, ug) to L' (X, ¢5(F), ug). é5(F) is a sub-c-algebra of Ap by
Theorem Therefore the first part of the proof yields a ¢;(F)-measurable substochastic kernel
p for P. Define p(w, A) := p(ép(w), p5(A)). As ¢p(c(B)) = o(rx), p is a substochastic kernel on
(Q,0(B), n), measurable w.r.t. ¢! (¢5(F)) = F, and for all o(3)-measurable f € L' and A € o(B)

| Prau=|  Pwpessdu=| PO dus
A b5 (6B(A)) ¢5(A)

= f (U_lf)(x)ﬁ(x,qbg( ) dup(x j flw w), pB(A)) du(w)
X

=JfWMWAMMM.
Q
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3.1.8 Regular conditional probabilities on pre-Lebesgue-Rohlin spaces

Let (2,.A, 1) be a pLR space. Fix a countable basis B of the Hausdorff topology 7 on 2. Then
A = o(7) = o(B). Observe that B is also a basis of the LR space (2, A, it).

3.1.31 Definition Let F be a sub-o-algebra of A. Any stochastic kernel p such that p(.,A) is a
JF-measurable representative of E,[14 | F] for all A € A is called a regular conditional probability
w.r.t. F and p.

3.1.32 Remark A F-measurable stochastic kernel p is a regular conditional probability w.r.t. F and
w if and only if

VAe AVFeF: p(AnF) =f p(w, A) du(w) ,
F

because this is equivalentto Ve A: E,[14 | F] = % =p(.,A).

3.1.33 Corollary Let F be a sub-o-algebra of A. There is a regular conditional probability pz w.r.t.
F and p1. Foreach A € A, " (., A) is a representative of the conditional expectation E,,[1, | F].

Proof:  Apply Theorem [3.1.30|to the positive L'-contraction P : f — E,[f | F] (Example|2.1.6)
on the LR space (€2, A, ;). Recall that also E,[14 | F| = P*14. As A = o(B), equation (3.1.7)
implies forall A € A

Eula| F]=Pla=p(.,A).
U

Notation: We write u?, (A) instead of u” (w, A), if convenient. We also denote A' := {A € A :
u(A) =1}

3.1.34 Lemma If i and v” are regular conditional probabilities w.r.t. F and i, then there is Qg €
A such that
i) ul (A) = v (A) forall Ae A = o(B) and all w € Qq, and
ii) For all w € Qg and u -a.e. w' the probabilities ;1; and uf, coincide on A.
iii) If Fy < F is a countably generated sub-o-algebra with F < (Fy),, €0y can be chosen such that
Vwe QVE e FoVAe A: ul (FnA)=6,(F) ul(A).

Proof: i) W.Lo.g. let B = {Bj, Ba, ...} be closed under finite intersections. Then, for each B; and
each F' € F,

| W By dute) = | BT Fl@)dute) = | 27w, B) due)
F F F
As the 7 (., B;) and v (., B;) are F-measurable, it follows that there is a set g € A' such that

p” (w, B;) = v” (w, B;) for the countably many B; € B and all w € g, so that u” (w, Mon) =
I/]:(w, . )|O’(B) for all w € Q.

ii) For p-a.e. w € QY and each B € B,

J(Mf(wB))Qduf = Bu[(” (-, B))* | Flw) = (4" (w, B))? = (Bulu” (., B) | Fl(w))*

- (juf<.,B>duf)2
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The Cauchy-Schwarz (or Jensen)-inequality implies that for these w the function w’ — ,uf, (B) is

p’-a.e. constant and equal to z; (B). Hence, for p-a.e. w and u -a.e. w’, the probabilities i, and

17, coincide on the countable N-stable family B and hence on A = o(B).

iii) Let F' € F. Then for py-a.e. w € 2 and each B € B
WL (F 0 B) = By[lplp | Fl(w) = 1p(w) Bullp | Fl(w) = 6u(F) - 1 (B) - (3.1.8)

As, for fixed F', both sides of this identity define a finite measure on A = o(B), the claim follows for
any B € A and all F from a countable generator of Fy. But for fixed B € A, both sides of the identity
define finite measures in F', so the identity extends to F' € Fy. ]

3.1.35 Remark For F' = (), item iii) of this lemma implies in particular
Ywe QVE e Fo: pl (F)=6,(F). (3.1.9)

On a technical level, the problem treated in the next section is to extend this to all F' € F, when F is
a suitable o-algebra of invariant sets.

3.1.36 Remark Recall the setting from Remark [3.1.29t T :  — Q is such that y o T~! ~ p, and
¢ Q— X = {0,1}" is such that Z(T),, = (¢ '(7x)),- Recall also the notation T, = ¢~ ({z}).
Then

i) Q=U,exTa
ii) Ve e X: T, e I(T).
Equation (3.1.9), applied to Fy = ¢! (o(7x)), implies that for p-a.e. w € Q and each z € X

1 ifopw) ==z

0 otherwise .

uo () = b0 ({2})) = {
Therefore the conditional measures . can be localized on the sets T,

3.1.9 Exercises

3.1.1 a) Let (9,41, 1) and (2, A2, p2) be pLR spaces. Prove that also (21 x Q9,41 ® Az, 11 ®
2) is a pLR space.

b) Let (2, Ay, pn) (n € N) be pLR spaces. Prove that also (X, 2n, Qpen Ans ey Min) 1s @
pPLR space.

3.1.2 Recall the shift example with the mixed Bernoulli measure from Remark Define explic-
itly amap ¢ : {0,1}2 — X such that Z(T), = o(¢5" (%)), see Remarkmmt is poog~1?
Describe the sets I';.. Do the same with [0, 1] instead of X. (This may be more meaningful than for X,
in particular the measure 1z o ¢! may have a simple and clear interpretation if ¢ is chosen properly.)

3.1.3 Verify i) - iii) of Remark (3.1.29
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3.1.4 Let (9, A, 1) be a LR space and F < A a pu-complete sub-o-algebra. Suppose that the space
(2, F, py ) has no atoms. Prove that (€2, A, 11) is isomorphic modulo 0 to ([0, 1]?, 0(7) x2, A?), where
o(7) is the Borel-o-algebra on [0, 1]? and A? the two-dimensional Lebesgue measure, with an iso-
morphism that maps J-measurable sets to sets of the form B x [0, 1].

3.1.5 Let (9,4, 1) be a LR space and let G be a countable family of .A-measurable sets. Prove the
following statements, which are essentially reformulations of a number of results of this section:
There is an (uncountable) partition I' = {T'; : = € Xy € X} of 2 such that

a) 0(G)={AeA:VeeXg: Ty, c Ao, n A= g}
b) There are probabiliy measures ji; on (I'y, A|r, ) such that all (I'y, A|r,, 1) are Lebesgue spaces.
c) x— uz(AnT,)is o(rx)-measurable for each A € A.

d) There is a probability measure v on (X, o(7x)) such that u(A) = §s (A N Ty) dv(z) for all
Ae A

3.1.6 Verify the claims made in Remark[3.1.22]

3.2 Raugi’s ergodic decomposition theorem

In this section we prove an ergodic decomposition theorem along the lines of the purely measure
theoretic/probabilistic approach of Raugi [[15]. But observe also the paper by Greschonig and Schmidt
(7).

3.2.1 Ergodically decomposing sub-c-algebras
Let (€2, A, 1) be a pre-Lebesgue-Rohlin space.

3.2.1 Definition Let F be a sub-c-algebra of A and let ;1" be a regular conditional probability w.r.t.
F and p.

a) F decomposes . ergodically, if there is a set 2, € A! such that

VFe FYwueQ: pul(F)e{0,1}.

b) F is conditionally countably generated mod 0, if there are a countable family £ — F and a set
Oy € A! such that

VFeFiEeo(§)Vwe Qy: ul (FAE)=0.

Both definitions are independent of the particular choice of the regular conditional probability 17 -
only the sets £, and ()3 depend on it, see Lemma|3.1.34

3.2.2 Remark a) If F is conditionally countably generated mod 0, then it is countably generated
mod 0, because (FAE) = § ul, (FAE) du(w).
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b) In view of there is always a sub-o-algebra 7o = F < (Fg), which decomposes (1 ergod-
ically. This does not imply that F decomposes p ergodically, as the following example shows:
Let Q = [0,1]?, let u be the two-dimensional Lebesgue measure on 2 and A the c-algebra of
Lebesgue-measurable sets. Consider the sub-o-algebra F consisting of all sets A x [0, 1] U N} x
[0,1/2) U Ny x [1/2,1] where A c [0, 1] is Lebesgue-measurable and Ny, No < [0, 1] are at most
countable. Denote also by Fy < F the sub-o-algebra of all sets of the form B x [0, 1] where B is a
Borel-subset of [0, 1]. Then F < (Fy),, Fo is countably generated and the measures A — A\(4,)
(X the one-dimensional Lebesgue measure) serve as regular conditional probabilities both for .0
and for . Obviously, Fy decomposes p ergodically. But for each 2 € [0, 1] each set F' € Fy can
be modified on its z-fibre into a set A from Fy such that u (A) = % So F does not decompose
w ergodically.

We will see that such local modifications are often impossible when F is a o-algebra of invariant
sets.

3.2.3 Theorem Let F be a sub-o-algebra of A and let i7" be a regular conditional probability w.r.t.
F and p. The following are equivalent:

(i) F decomposes 1 ergodically.

(ii) For any countably generated sub-c-algebra F < F with F .7-1 holds: There is Q23 € A such
that
VEe FIEe FVYwe Qy: ul (FAE)=0.

(iii) F is conditionally countably generated mod O.

(iv) There is a set Q3 € A such that for all w € Q3 holds: the kernel 17 is a regular conditional
probabilitiy for the probability measure 117, i.e.

VweVAe A: E,rla| Fl(W) = ul (A)  for pl -ae. ', equivalently

Vwe 3 VAe ANFeF: ul(AnF) =f ul (A)du? (W) .
F

As both sides of the last identity define a probability measure in A, it suffices to check either of
these conditions for all A from a countable n-stable generator of A.

(The equivalence between (i) and (iii) is from [15, Proposition 3.3].)

Proof: (i) = (ii): Let F < F be a countably generated sub-o-algebra with 7 < F,. By
Corollary there is a regular conditional probability ;7. As FCFc .7}“, this serves also as
regular conditional probability for Fand we denote it simply by 7.

Let €27 be as in the definition of ergodic decomposition by F. Then, for each F' € F, we can
decompose 2 disjointly as Q@ = FO U F' U N¥ where FO := {w e Q: u/(F) =0}, Fl .= {we
Q:pZ(F) =1}, and N < Q\Qy. As p” could be chosen F-measurable, we have FO, F' € F. In
particular, for all w € Q and all F € F, u (F n F°) € {0,1} and also i (F n F') € {0, 1}.

Let Oy = {w e Q : u/ () = 1}. Then u(Q) = 1. For w € Q5 and each F' € F we have
pl (NF) < puZ (9\Q1) = 0. Therefore, in view of Lemma

pl (F\F') = p (F A F%) = 6,(F°) - i, (F) = 0
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and
WL (F\F) = pf(F° n F') = 8,(FY) - pf (F) = 0,

so that p7 (FAF') = 0 for all w € Qy and all F € F with F' € F.
(#4) = (7i7): This follows from Corollary [3.1.27|which asserts the existence of at least one countably
generated sub-c-algebra as in (ii).

(iii) = (iv): Let F = (&), € from Deﬁnition By Lemmaand for all w € Q, all

FeFandall Ac A,
L WE(A)Y duE (&) = pE(A) - i (F) = p(A) - 6,(F) = pF (A F)

As F is conditionally countably generated mod 0, this extends to all F' € F.
(iv) = (i): Letw € Qo n Q3 with Qo from Lemma[3.1.34] Then p7, = 1) for u-a.e. w’, and for
each F € F and p/;-a.e. w' holds

WL (F) = ply(F) = E,z[1p | F(W) = 1p(w) -
Hence p (F) € {0,1}. O

3.2.4 Corollary LetG < F < A be sub-c-algebras. If F < G, and if F decomposes ji ergodically,
then also G decomposes p ergodically.

Proof: By Corollary 3.1.27) there is a countably generated sub-o-algebra G < G such that G < QNu,
hence G < F and F < G, = G,. As F decomposes u ergodically, Theorem ii) implies that
there is Q9 € A! such that

VFe FIEeGVYweQy: ul (FAE)=0.

This holds a fortiori for all F' € G, so G is conditionally countably generated mod 0, and another
application of Theorem [3.2.3|shows that G decomposes y ergodically.
O]

We finish this subsection by the following observation: for two sub-c-algebras F and G of A with
regular conditional probabilities 1 and ;9 define the stochastic kernel u9 x p” by

% o i, )i | (A (). (32.1)
In this situation we have the following lemma:
3.2.5 Lemma a) If 7 decomposes i ergodically and if
(ug x 1), = ug for p-a.e. w, (3.2.2)

then ;7 is a regular conditional probability w.r.t. F and ug for p-a.e. w.
b) holds in particular, if G < F.
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Proof:  a) As F decomposes p ergodically, there is, by Theorem iv), a set Q3 € A! such that
for all © € Qg

VAe AVFeF: uL(AnF) =f pl (A) dpl (W) .
F

As ;7 is a regular conditional probability w.r.t. F and i, there is Q4 € A' such that this identity holds
for all w € Q4 and p/;-a.e. @. Hence, integrating w.r.t. u; we have for all w € € that also satisfy
(9 x u?)y = pg and forall Ae Aand F € F

p(ANF) = (i  pP A0 F) = | iE(40 ) i)

= L (JF ul(A) dy (W’)) dug (@) = A d(p? w 7))

- [ i agw).
F

Hence, for p-a.e. w, 7 is a regular conditional probability w.r.t. F and ,u,g.
b) Let A € A. We have the p-a.e. identities

(1€ % pT ) (4) = fQ WE(A) S () = Buli (A) | G](w) = By [Bulla | F) 1 6] ()
— B, (14|61 () = u5(A) .

Hence for p-a.e. w the measures (19 ® p”),, and p¢ coincide on a countable generator of A and
therefore on all of A.

O

3.2.2 The ergodic decomposition for a single non-singular automorphism

3.2.6 Definition Let (2, A, m) be a o-finite measure space. A bijective and bi-measurable map T :
Q) — Q satisfying m o T~! ~ m is called a non-singular automorphism.

3.2.7 Theorem Let T be a non-singular automorphism of the pLR space (), A, ). Recall that
I(T)={Ae A: T71(A) = A}.

f

w

a) Let F < Z(T) be a sub-o-algebra with a regular conditional probability w” . Then ,uf oT 1~ p
for p-a.e. w.

b) Z(T) decomposes 1 ergodically.

Proof (following [ 15, Proposition 5.1]):
a) Let ¢ be a version of the Radon-Nikodym derivative

is also a version of %: let Ae Aand ' € F. Then

d(%z_l). We will prove that for p-a.e. w it

fF ph o T™HA) dp(w) = L By [1p-1ay | F] du = p(F 0 T7H(A)) = u(T7H(F n A))

- | wau=| Bnav - | (Lwd@ dplw)
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Hence, for each given A € A, puf; o T71(A) = §,  dp for p-a.e. w. Let € be a countable N-stable
generator for A. Then there is ' € A! such that the measures p7; o T~! and u, coincide on & -
and hence on A = o (&) —forallw € .
b) Recall from Example that Pf := f o T—! .4 defines a positive L'-contraction. Let again
B be a countable n-stable generator for 4. From Theorem (a variant of Hurewicz’s theorem)
we know that there is 2" € A! such that

 Dhen(PM1A)(W)
Vo' e Q"VA€ € ¢ lim ="
n—0 3 (PP (W)

where the regular conditional probability u” exists in view of Corollary Changing Q" (if
necessary), we can replace the “Vw' € Q" by “Vw € Q” and pl-a.e. w'”, because p” is a regular
conditional probability w.r.t. Z and p.

The same theorem, applied to the non-singular measures pZ (w € ') from part a), tells us that for
eachw € Q' and pZ-ae. o'

S (PP W)
n—o 3 (PR (W)

Hence, forallw e ' n Q" and all A € &, we have
p5(A) = Ez [14 | I] (') for pl-ace. o, (3.2.3)

and this extends to all A € 0(€) = A, because the family of sets A satisfying (3.2.3) forms a Dynkin-
System. Recall from Lemma that there is Qo € A! such that pf = i, for all w € Qg and
pl-ae. . Hence, forwe Qg n Q' n Q" andall A e A,

pL (A) = E,z[14]Z] () for pl-ae. o,

= Bulla | T)(w') = u(4)

=E,z[1a|Z](w) forall Aeé.

But his means that z” is a regular contitional probability for the probability measure pZ, and Theo-
rem implies that Z(T") decomposes p ergodically. O

3.2.3 The ergodic decomposition for countable families of non-singular
automorphisms

In this section (€2, A, p) is a pLR space.

3.2.8 Theorem [I5, Corollary 5.2] Let (T; : i € I) be an at most countable family of non-singular
automorphisms of the pLR space (2, A, 11). Then

a) the sub-o-algebraZ := (,.; Z(1;) decomposes p ergodically, and

b) for p-a.e. we Q holds: Vie I : put o T[l ~ k.

This theorem is essentially a corollary to the next theorem whose proof is postponed to the next
subsection.

3.2.9 Theorem [I5, Theorem 3.4] Let (F; : i € I) be an at most countable nonempty family of
sub-o-algebras that decompose i ergodically. If

(ﬂ .7-}) = ﬂ(}"i)ﬂ for all finite subsets J < I, (3.2.4)
ieJ 1 ieJ

then also (,.; F; decomposes . ergodically.
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3.2.10 Remark Raugi [15] formulates condition (3.2.4) not in terms of the p-completions but in
terms of relative ji-completions F := F,, n A. His condition reads

(7 =()F forall finite subsets J < I. (3.2.5)
ieJ ieJ

Obviously (3.2.5) follows from (3.2.4) by intersecting both sides of (3.2.4) with A. The converse is

an immediate consequence of the following two assertions:

a) (F), = Fp, which follows from F < F < F..

b) (Nies ]:i)u = (Vi (Fi)u. This can be seen as follows: (),c; Fi = (\ics(Fi)p 0 A S (Fj)p
for each j € J. On the other hand, if A € (),.;(F;),, then there are A; € F; < A such that
n(AAA;) = 0 (i € J). In particular A; € A and pu(A;AA;) = 0 for all 4,5 € J. Hence
Aj €(\ey Fiforeach je J,sothat A€ (e, Fi) -

One may notice that the above arguments remain valid f%r infinite sets J < I.

3.2.11 Remark Raugi claims both theorems for arbitrary (also uncountable) families of automor-
phisms or o-algebras, respectively. Below we give an example which shows that Theorem [3.2.9]
does not extend to uncountable families — at least not without additional assumptions. I do not know
whether Theorem3.2.8| extends to uncountable families. It would do in cases where the relative com-

pletions Z(7;) decompose p ergodically, but I have no indication that this is generally true.

3.2.12 Example Let (2, A, 11) be [0, 3) x {1, 2} equipped with its product Borel-c-algebra and the
probability u = Lebesgue x counting measure. Denote by N the family of all uncountable Borel
subsets of [0, 2) with zero Lebesgue measure. For N € \ let

Fn :={No x {1,2} U My x {1} U My x {2} U A; x {1} U Ag x {2} :
No, My, My < N, Ay, Ay < Q\N, Ny, A1, Ag Borel, M7, My at most countable} .
Then Fy is a o-algebra and Fy = A decomposes p ergodically for all N € N, because uf = 0. If

Ni,..., Ny € N, then
le MM FNk = leU...UNk .

Hence

leﬁ-“ﬁkaZleu...UNkZAZleﬂ“'ﬁ]:Nk.

Consider now F := |yepn Fn- We will show that F does not decompose 1 ergodically: Observe
first that

F = ﬂ Fn ={Ax{1,2} U M; x {1} U My x {2} : ABorel, M;, M, at most countable} .
NeN

(This follows from the fact that a Borel set B < [0, %) that has at most countable intersection with
any Borel Lebesgue-null set is itself at most countable. If B is a nul set, this is obvious. Otherwise
one uses the fact that each Borel set of positive Lebesgue measure contains an uncountable Borel
null set.) We have (7 '(Borelsets)) < F < (m;'(Borel sets))u, hence the family M(f )=

o x,a
% (5(%1) + 5(%2)) serves as regular conditional probability for F. (Let A be a Borel subset of {2
and F = Fy x {1,2}. Then {, u@a)(A) du(z,a) = %SFO(lA(x, 1) + 1a(z,2))d(ponyb)(x) =
§S(1mna, () + 1pna,(2)) do = p(F N A).) But for eachw = (z,a) € Q the set Q\{(z, a)} belongs
to F and i/, (Q\{(,@)}) = 4 ¢ {0,1}.

(z,0)
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Proof that Theorem[3.2.8 follows from Theorem[3.2.9;  Observing that I is at most countable, asser-
tion b) is a direct consequence of Theorem [3.2.7al We turn to assertion a). By Theorem [3.2.7p] each
Z(T;) decomposes 11 ergodically. So it suffices to prove that (., Z(Ti),, < ((Nies Z (T3)),, for all
finite subsets JJ < I. For this we will use the general identity among sets A\(AAB) = A n B.

Let A € (;c; Z(T),,- There are A; € Z(T;) (i € J) with u(AAA;) = 0. Hence

H(AATTTA) < w(ANA) + (T H(AAA)) =0 forallie J.

Denote by G the countable algebraic subgroup of all non-singular automorphisms on (€2, A, 1) which
is generated by the T;(i € J) and set N := J,cq Ujes g HANTA). Aspog ! ~ pfor all
ge G, wehave (N) =0. AsG = {goT;: g€ G}, we have T, ' (N) = N forall i € J, so that

T HAN) = T HANN = (TP A(AATTTA) \N = (A n T A)\N

and
AN = (A\(AATTA)\N = (An T PA)\N .

Hence A\N € (., Z(T;), and as A\N € A < Ay N it follows that A € ((,c; Z(T3)),,-

3.2.4 Proof of Theorem [3.2.9| (Raugi’s main theorem)
The case of two sub-c-algebras

Forie I:={1,2} and A € Alet (P;14)(w) := p(A). Then P;14 is a version of the conditional
expectation F,[14 | F;]. From Corollary we know that for each A € A

n—1

1
lim — > (PaP1)f1a = Eu[la | (Fi)u 0 (F2)u]  prace. (3.2.6)

n—oo n jrt
By the assumption of the theorem we have (F1), N (F2), = (F1 N F2)u. Let F = Fi n F and
denote 117 the corresponding regular conditional probability w.r.t. . Let £ be a countable N-stable
generator for A. Then (3.2.6) implies that there is €’ € A! such that

n—1
Vol e Y VAEE: lim — D (PP 1AW = pli(A) . (3.2.7)
Changing (Y’ (if necessary), we can replace the “Vw’ € 0 by “Vw € Q' and 11 -a.e. W', because p”
is a regular conditional probability w.r.t. F and p.
Because of Lemma [3.2.5| there is a set Q" € A' such that for all w € Q" holds: p”" is a regular
conditional probability w.r.t. F; and p (i = 1,2) so that we have for w € Q"

(P1a) (W) = ,uff(A) = E,7[la| F](W) for ul-ae. .

Hence, another application of Corollary tells us that, for any w € Q' n Q" and for any A € £,

1 n—1 B ~
lim — > (PyP)F1a(w) = E,#[1a | Fi 0 Fo](w')  for pf-ae. o, (3.2.8)
M0 ’
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where F; = (Fi) u7- Therefore Lemma implies that therer is Q” € A! such that for all
wenQ" Q" all Ae & and il -ae. o'

n—1

1 .
ul(A) = (A) = Jim DIPP) AW = B r[1a | Fi 0 B (W) . (3.2.9)
k=0

Hence, forwe X n Q' n Q" Fe F=FinFo S FinFrand A€ €&,
WA F) = | Ladi = | Bulial B n B W) = | i) dZ ).
F F F

and as for fixed F' both sides of this identity define finite measures in A, the identity extends to
all A € 0(£) = A and in particular to A = F. Therefore u/ (F) = ul (F)? € {0,1} for all
we nQ" Q" e Al ie. F decomposes i ergodically.

The case of a sequence of sub-c-algebras

Let (F,)nen be a sequence of sub-o algebras that are ergodic w.r.t. p and satisfy condition (3.2.4).
Forn € Nlet G, = (), Fi. Then, for any n > 2 we have G, = G,—1 N F, and

n—1 n
(Gn—1)p O (Fn)p = ﬂ (Fi)u 0 (Fn)p = (ﬂ Fi) = (Gn-1n fn)u .
i=1 i=1 "

Hence, from the case of two sub-co-algebras it follows inductively that all G,, decompose p ergodically.
Let G = [,y On and consider again a countable n-stable generator £ of A. By the decreasing
martingale theorem [[10} Satz C.4], there is 2 € A such that

Vo' e Q' VAeE ! lingo ,ug?(A) = lir{.lo E, 14 ] Gn](w') = Eu[14 | G](w') = ,ug,(A) .
Observing Lemma and changing €’ (if necessary) this implies
Vwe Y VAeE: lim por(A) = 9, (A) = pS(A)  for pd-ae. .

The dominated convergence theorem implies that forall G € G, A€ £, and w € 7/,

n—0o0 n—0o0

tim, [ %5 (A) ) = | lim 1% () dudw) = | pEA) ) = () 4G
G G G

Because of Lemma applied with G  F := G,,, there is Q" € A! such that ;9" is a regular
conditional probability w.r.t. G and pZ for allw € Q”, i.e.

VAe AVGeG: f pIr (A)dpd (W) = n(An Q).
G

Hence
Vwe Y nQ'VGeGVAeE: u9(AnG)=ud(A) 19(G).

Again, for fixed G and w, both sides of the identity are finite measures as functions of A, which
coincide on the n-stable generator £ of A, so that the identity extends to all A € A, in particular to
A = G. Therefore, 42(G) = p9(G)? € {0,1}, i.e. G decomposes  ergodically.
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Remarks on the case of an uncountable family of sub-o-algebras

Let (F; : i € I) be a nonempty family of sub-o-algebras decomposing p ergodically and satisfying

(ﬂ .7-}) = ﬂ(]—])u for all finite subsets J < I, (3.2.10)
ieJ uo ed

By Corollary 3.1.23] there is a countable subset J < [ such that

F)u = Fou (32.11)

el ieJ

and by Lemma|[3.1.24] the identity (3.2.10) carries over to this countable set .J, so that

(Fo)u = (ﬂ E) , (3.2.12)

el e

but there is no way to prove that (\,c ; 7i < ((;e; F3),,» which would be necessary for the further
proof. Indeed, Example [3.2.12] shows that this is not true in general: In that case ([),.; Fi) u S

(m1 " (Borel sets))u but ((\,e; Fi),, for countable J is again of the form (F), = Ay, for some k € I.
However, it the F; are o-algebras of invariant sets, such counter-examples may not exist.

3.2.5 The corresponding Hilbert space decomposition

Generalizing the idea of Remark [3.1.36} there is an injective map ¢ : 2 — X such that ¢~ (o (7))
T < (¢ Yo(mx))), and, writing I';, := ¢~ ({x}), we have

i) Q= J,ex e (disjointly),
ii) Ve e X: I'y € ¢~ (o(mx)) € Z, and
iii) for u-a.e. w e Q andeachz € X

W) = a0 (1)) = {1 o) =
0 otherwise .

Therefore the conditional measures 12 can be localized on the sets ;.. In particular, there is a set g €
Al such that for all w, w’ € Qg and all i € I holds: If z = ¢(w) = ¢(w’), then pi, := Ho(w) is uniquely
defined and T;|r, is an ergodic non-singular automorphism of the probability space (I, Alr,, tiz)-
Furthermore, 11(A) = {4 po(A N T'y) dv(x) for each A € A where v = o ¢~1. In the rest of this
subsection we transfer this decomposition to the corresponding L? spaces.

LetH = Sg? L*(Ty, Alr, , ptz:) dv(x). That means H is the linear space of all families ( f;),ex with
the following properties:

(1) Ve e X: f,is A|p,-measurable,

_ 12
(2) = | fel2 = (SFI folz d,ux) is o(7x),-measurable,

3) 1(fo)zex|® == §x | 213 dv(z) < co.
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In view of the polarization identity, property (3) implies for any (f5)zex, ( fx) zeX € H:
@) z — [z, fm> = er fxfz dp, is o(Tx),-measurable.

This allows to define a scalar product

U (Fedoer) = | i Fod @)
on H. (At this point we do not yet claim that H is complete, i.e. that H is a Hilbert space.)

3.2.13 Proposition G : L?(Q, A, u) — H, G(f) := (f|r, )zex, is unitary.

Proof:  The family G(f) clearly satisfies (1). As w — || flr, ., |* = SFWJ) ST dpgy = S £F di
is Z-measurable and as Z = ¢~ 1(0(7x)),, the map x — ||f|r, |? is o(7x),-measurable, i.e. G(f)
satisfies (2). Finally,

GO = [ 1) = | ( NG dm) o) = | ( | s7 d;&) aufw) = 1113

so that also (3) is satisfied and G is well defined and isometric. Obviously, G is linear. Therefore
V = G(L*(Q, A, i) is a linear subspace of H. As L?(2, A, 1) is a complete space, so is V. We
must show that V+ = {0}.

So let (fz)zex € V&, As (92, A, ) is a pLR space, there is a n-stable countable generator &£ of A.
For A € £ define g4 : X — R,

gax) = L  Fedie = (e Lalr)

By property (4), all g4 are measurable. Observing that ¢(w) = ¢(w’) for ,ug(w,)—a.e. w, we have

0={(G(1a-(gao®)),(fz)rex)
[ 0a6) T dunte >) v ()
Ar\Fz

LgA o @ duﬁ(w/)(w)> du()
e (j oo ) ) ) )

o) [, P )) dvta)
ga(z) ga(r) dv(z) .

I Il
I~ < < B =

It follows that g4(z) = O for v-almost all = € X. Hence there is a Borel set Y < X with v(Y) = 1
and such that 0 = ga(z) = § AnT, Jz dpe for all Ae&andall z € Y. As for fixed z, this expression
defines a finite measure as a function of A, and as the family B is a n-stable generator of o (7x), it
follows that SAsz fodp, = 0forall A e o(rx) and all x € Y so that f, = 0 u,-almost everywhere
for all € Y. But this means that (f)zex = 0in H. O
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4 The structure of (ergodic) mpds

This chapter deals exclusively with measure preserving dynamical systems (€2, A, 11, T') where T need
not be invertible. We give short glimpses of the following spects:

e System constructions like factors, extensions and products,
e Weak mixing and its various characterizations

e Kolmogorov-Sinai entropy.

4.1 Factors, extensions and products

Let (4, A;, pi, T;) (i = 1,2) be mpds.

4.1.1 Products

e The product of these two systems is the mpds (21 x Q2,41 ® A2, 11 ® po, T1 x Tz). Th x Ty
obviously preserves the measure of product sets, and as the collection of these sets is a Nn-stable
generator for the product o-algebra, the product measure is preserved.

e If both probability spaces are LR, one may pass to the completed o-algebra (A ® A2) 4, @u, tO
obtain a LR space as product space.

o To simplify the notation we will often just talk about T} x 75 and take the (completed) product
probability space for granted.

4.1.2 Factors and extensions

e If there are ) < Q; and 2, < Q5 of full measure and a measurable map ¢ : Q) — €2 such
that o = py 0~ and ¢poTi|g, = Tho¢, then (2, Ag, pio, Tb) is a factor of (1, Ay, pur, Th).
We often just say that 75 is a factor of 77 or that 77 is an extension of T5.

e Dealing with LR spaces we know that ¢(2}) € Ay (Theorem [3.1.16)), so that we can choose
2 = ().

e Both, T3 and T5 are factors of T x T5.

Sometimes, if a mpds is not invertible, it is desirable to have a smallest invertible extension. An ex-
ample of this situation is a two-sided Bernoulli shift which is clearly an extension of the corresponding
one-sided Bernoulli shift (Example [I.1.2)).
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4.1.3 The natural extension

4.1.1 Theorem Let (2, A, 1,T) be a mpds on a pLR or LR space (2, A, i1). Up to isomorphism
mod O there is a unique invertible extension (Q,fl,,&,f) of (2, A, 1, T) by a pLR or LR space
with the property that each invertible extension (', A', i/, T") of (Q, A, u, T') is also an extension
of (Q, A, i, T). More precisely: Each factor map from (', A, ji/, T") to (0, A, i, T') factorizes over
(Q, A, ib T) (Q, A, ib, T) is called the natural extension of (2, A, u, T). It is explicitly constructed
in the proof.

Attention: For the present proof I need an additional assumption on the existence of pre-images

that is discussed below!

Proof:  Inview of Theorem|3.1.12, T™(Q2) € A, foralln € N. As pu(T"(Q)) = p(T~"(T"™(Q))) >
() = 1, we have Qp := [,y T7(2) € A}, By definition, T'(€2) < Qo, but I think it may happen
that T'(Qg) # Qp. Of course one can repeat this construction with €2y instead of €2 etc., but I do not
see that countably many repetitions lead to a surjective map. So I will make the additional assumption
that T'(Q2y) = Qp. As the theorem only makes assertions about isomorphisms mod 0, we can then
assume w.l.o.g. that T'(2) = Q.

Consider  := {& = (wo,w1,...) € OV : T(wit1) = w; Vi € N} equipped with the trace of the
product o-algebra AN, Define

A~

T:0-Q, (wo, w1, wa,...) — (T(wo),wo,wiy---) -
T is obviously invertible and bi-measurable. Denote
Q-0 0w,
Fn i=0(m0y -, Tn) -
Let C,, be the family of all sets

[A(),...,An] = {@eQ:wieAi(i:O,...,n)}

— {w €eQ: wye ﬁ Ti(An_Z-)} e (ﬁ T"(An_i)>

=0

with A; € A. It is for the last identity that we need T'(Q2) = (2, because otherwise we can extend a
point wy, € ()T *(A,—;) to a potential starting segment (wy, . . . ,wy) of a point & € Q, but we
cannot guarantee that the segment can indeed be extended to such a point.

By definition, C,, < o(m,), and as 7,1 (A) = [Q,...,Q, A] for each A € A, we have indeed that
Cn = o(m,). So we can define a probability measure fi,, on C,, by

fin([Ao, ., An]) = fin (rgl (ﬂ T—2‘<An_i>>> = p <ﬂ T—%An_z-)) .
1=0 i=0

Obviously C,, < Cp,+1, and we will show that (/i ),en is @ projective family of probability measures:
If [Ag,...,An] = [Bo,...,Bn] and m < n, we extend the sequence By, ..., B,, to a sequence
By, ..., Bn,, ..., Qof length n + 1 and note that

m n—m—1 n
(T (Bmi) = T A () T (Bu)
i=0 i=0 i=n—m
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to see that /i, ([Ao, ..., An]) = fim([Bo, - - -, Bm])-

Now suppose first that = [0, 1] and that A is the Borel-o-algebra on R. Then Kolmogorov’s
extension theorem (a minor variant of [10, Satz 10.3]) guarantees the existence of a probability [
on € such that i([Ao, ..., An]) = fin([Ao,...,Ay]) for all n and all sets from C,,. In particular,
ﬂoﬁal Z[L()O?Tal = p and

fio T [Ao, ... An]) = fino1([A1 0 T A, Az, As, ..., Ay])

—u (T_("_l)(Al AT H(Ag)) N ﬁ:r—i(Ani))

for all sets in [ J,, C,. Hence i o -1 =

If (2, A, 1) is a non-atomic pLR or LP space, then it is isomorphic mod 0 to [0, 1] equipped with
Lebesgue measure \. Denote the isomorphism by & : Qg — [0,1]. Then 7 := h o T o h™! is defined
Lebesgue-a.e. on [0,1]and Ao7t = AohoTtoh™t = poTtoh™ = poh™t =\ As

e

7(h(wis1)) = M(T(wis1)) = h(w;), h extends to h : Qp — [0,1], & — (h(wn))nen and

(@) = (7(h(wo)), h(wo), h(w1), . .) = (A(T(w0)), hlwo), h(wr), - ..) = H(T(@)) .

Let i = Ao h. Then h is an isomorphism mod 0 and

ﬂof_lzj\o(foﬁ_l)_lzj\o(ﬁ_lof')_l:Xo?_lohz)\ohzﬂ.

let
¢: (VA W, T') — (A pu,T)

be such an invertible extension. Define ¢ : 2 — Q, d(w') = (¢(w'), (T (W), H(T"2(W")),...).
Then

(W o™ ([ Aoy, An) = (1 067 (m? 1 (,ﬂ T‘“f“n”))

so that y/ o qB*l = u, and obviously g o q} = Q. O

4.1.2 Remark In Example we introduced the left shifts T}y on {0, 1} and 77 on {0, 1}%,
equipped with invariant the p-Bernoulli measures ji, n and i, 7, respectively. One can show that
({0,132, u,, 7, T7,) is isomorphic mod O to the natural extension of ({0, 1}, 1, v, Tl), both equipped
with their product o-algebras.
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4.1.4 Exercises
1. Prove Remark d.1.2]

2. Prove that a factor of an ergodic mpds is ergodic.

3. Prove that a mpds is ergodic if and only if its natural extension is.

4.2 Weak mixing

4.2.1 Weak mixing and its various characterizations

Let (Q, A, 1, T') be a mpds and denote L3 := {f € L*(Q, A, u) : (f,1) =0} and U f := f o T. The
following lemma is a simple consequence of the L'-convergence in Birkhoft’s ergodic theorem:

4.2.1 Lemma (Q, A, u, T) is ergodic if and only if

o1y —k
VA,BeA.nlgrolon];)u(AmT (B)) = u(A) - u(B) .

An obviously stronger property than ergodicity is the following one, called mixing:
VA, Be A: lim p(AnT "(B)) = u(A) - u(B) .
n—o0
More important than this is the property defined next - situated between ergodicity and mixing:

4.2.2 Definition If lim,, oo 2 3770 [(ANT*(B))—u(A)u(B)| = 0 forall A, B € A, the system
(Q, A, u, T) is called weakly mixing.

The following theorem provides various characterization of weak mixing. Proofs of its different
parts can be found in the text-books [} (14} 17]. I will follow mostly [S].

4.2.3 Theorem The following properties are equivalent:
) (Q, A, u,T) is weakly mixing.
(i) limp oo 2 Y720 ((A 0 T7#(B)) — p(A)u(B))? = 0 forall A, B € A.

(iii) Given A, B € A, there is a subset L — N of asymptotic density O such that
limyscpngr (AT (B)) = p(A)p(B). i.e. limy e ngr, [1(ANT " (B))—u(A)u(B)| = 0

(i) timyco 5 35320 KURS ) = (f, 1) - (L, g)| = O forall f, g € L*.
) limyoo 2 SRS KUPF, £ = 0 for all f e LE.

(vi) IfUf = \f, then A\ = 1 and f = const.

(vii) T' x T is weakly mixing.

(viii) T' x S is ergodic on Q) x Y for each ergodic mpds (Y, B, v, S).

(ix) T x T is ergodic.
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(x) The system is ergodic and has no rational or irrational rotation as a factor, except for the identity.

4.2.4 Remark It suffices to check property (i) or (iii) for all A, B from a n-stable generator of the
o-algebra A. The proof proceeds via the two-fold application of a Dynkin system argument. (The
same holds for the property characterizing ergodicity in Lemma.2.1])

For the proof of Theorem [4.2.3| we need the following lemma about sequences of real numbers:

4.2.5 Lemma Let (a,)nen be a bounded sequence of non-negative real numbers. The following are
equivalent:

(i) limy o0 = 3370 a = 0.
(ii) There is a subset L — N of asymptotic density 0 such that lim,,_, n¢r, an = 0.

The elementary proof can be found e.g. in [17]. The implication (ii) = (i) is more or less trivial,
and for the reverse implication one has to note that non-negativity and boundedness of a sequence
satisfying (i) imply that for each € > 0 the fraction of the number of elements a,, > ¢ tends to zero.

Proof of Theorem[d.2.3;  We will prove the following equivalences separately:

1. () < (i) < (i) < (iv) = (v) = (vi) = (ix) = (ii)

2. (i) = (vii) = (ix)

3. (1) = (viii) = (ix)

4. (vi) & (x)
Most of these implications are trivial or elementary to prove. (vi) = (ix), however, uses a simple
consequence of the spectral theory of compact self-adjoint operators.

1. The equivalence of (i), (iii) and (ii) follows immediately from Lemma[.2.5]
(iv) = (i) is obvious.
(i) = (iv): For f € L? denote by R; the set of all g € L? that satisfy (iv), and for g € L? denote by S,
the set of all f € L? that satisfy (iv). All Ry and S, are closed linear subspaces of L?. Because of (i),
each Ry ,, A € A, contains the space of all measurable indicator functions 15. Hence Ry, = L?. This
means that for each g € L? the space S,y contains all measurable indicator functions 14, so S, = L.
(iv) = (v) is trivial.
(v) = (vi): Let Uf = Af, ||fll2 > 0. Then |f|2 = |Ufl2 = |Al|f]2, so that [\| = 1. Similarly,
Sfdu = SUfdu = XS fdu, whence A = 1 or f € L2 In both cases, fo := f — (f,1)is an
eigenfunction for the eigenvalue A\. Now (v) implies that || fo[2 = 0, i.e. f = {f,1) = const ¢ L2, so
that finally A = 1.
(vi) = (ix): All proofs of this implication that are known to me use some variant of spectral theory
for Hilbert space operators. The traditional proof uses knwoledge of the spectral measure for unitary
operators, see e.g. [14]. Here I present a proof from [5, pp.62] that uses the fact that kernel operators
are non-trivial self-adjoint compact operators on L? and thus have at least one eigenvalue \ with a
finite-dimensional eigenspace V), see [6] for a precise and short account.

The proof proceeds by contradiction: Suppose that 7" x T is not ergodic. Then there is a non-
constant function f € LZ(Q x 2, A® A, u ® p) that is almost invariant under 7' x T'. Let

f1($,y) = f(CU,y) + f(y,x) ) f2(-’E,y) =1 (f(x,y) - f(y,:c)) :

Both functions are almost invariant under 7" x T" and have the additional symmetry f;(z,y) = fi(y, x).
As fi —ifo = 2f and as f is non-constant, at least one of f; and fo is non-constant. Hence we
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can assume w.l.o.g. that f(z,y) = f(y,z). We may further assume (by subtracting § f du?) that
§ f du? = 0. Define the linear operator F on L (€, A, 11) by

) =J f(z,y)g(y) duly) -
Q

It is a non-trivial self-adjoint compact operator [6, Theorem 2.0.1] which, as such, has at least one
eigenvalue \ with a finite-dimensional space V) of eigenfunctions [6, Theorem 1.0.2]. We prove that
Ur(Vy) < Vy: assume that F'(g) = Ag. Then

F(Urg)(a) = | f@.9)(Ura)(s) duty)
= f [(Tz,Ty)g(Ty) du(y) (as fisT x T-invariant)

ffoy du(y) (aspoT ' = p)
F(g9))(Tx) = Ur(Ag)(z) = A(Urg)(z) .

It follows that Ur|y, is a non-trivial linear map of finite-dimensional vector space and therefore has a
non-trivial eigenfunction g e LC(Q A, ). By assumption (vi) g is constant, g = SQ g du. But then
A SQ gdu = SQ g)du = SQ gdu - SQ? fdu® = 0sothat g = SQ gdu = 0, a contradiction.

(ix) = (ii): If A, B € A, then

n—1

% DA TH(B)) — p(A)u(B))
k=0
LS 4 TR B2 - 2ua %j (AT H(B) + (u(A)u(B))?
k=0 k=0
n—1
_ % u® p((A x A) ~ (T x T)™(B x B))
k=0

n—1

—2u(A)p(B) - 3 p® ul(A x Q) (T x T)H(B x ) + (u(A)u(B))?
k=0

Since 1" x T'is ergodic by assumption, Lemma@4.2.1{implies that, as n — oo this tends to

p@uAxA) p@uB x B) = 2u(A)p(B) - p @ (A x Q) - @ u(B x Q) + (u(A)u(B))?
= (W(A)p(B))* = 2(u(A)(B))? + (u(A)u(B))?* = 0.

2. (iii) = (vii): Let Ay, Ao, By, B € A. By (iii) there are sets L, Ly < N of asymptotic density
zero such that

lim  p(A;inT7™(B;)) = u(A)u(B;) fori=1,2.

n—o0,n¢L;

Let L = Lj u Lo. then L has asymptotic density zero, too, and

lim Q@ u((Ar x Ag) A (T x T)™™(By x By))

n—oo,n¢L

= lim . (,u(Al NT"(By)) - u(Az N T—N(Bg)))

n—00,n¢

= u(A1)p(B1) - p(A2)p(Bz) = p® p(Ar x By) - p® p(Az x Ba) .
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In view of Remark this proves property (iii) for 7' x T' which, as already proved in part 1, is
equivalent to weak mixing.
(vii) = (ix) is trivial in view of Lemma[4.2.1]

3. (i) = (viii): Let (Y,B,v,S) be an ergodic mpds. In order to prove ergodicity of 7' x S the
following is sufficient in view of Remark4.2.4} for A, Be€ Aand C, D € B,

7112 <A><C) (TxS)‘k(BxD))
:ii (AnT*(B))-v(C n S7H(D))
k=0
n—1 —
= LV (WA~ THB) — w(A(B)) (€ o S7HD)) + u(A(B) - Z (€ n57H(D)

- pu(A)uB) - v(C)w(D)=pr(AxC) pn®v(B x D) asn— o,

because the first sum is bounded by % ZZ;S |W(A nT7*(B)) — p(A)p(B)| which tends to zero as
T is weakly mixing.

(viii) = (ix): Let (Y, B,v,S) be the trivial one-point mpds which is of course ergodic. Then the
systems (9, A, p, T) and (2 x Y, A® B, pn®v, T x S) are trivially isomorphic, so that (2, A, u, T')
is ergodic by (viii). Hence T' x T is ergodic by (viii).

4. (vi) = (x): The ergodicity of T" follows at once by applying (vi)to f = 14, A € A. Suppose now
that R, : S! — Slisafactor of T, S' = {2z € C : |z| = 1}. Then there is a measurable f : Q@ — S!
such that f o T = R, o f, that means U f(w) = f(T(w)) = €'*f(w), so that e’® = 1, and the factor
is the identity system. As a factor of an ergodic system it is ergodic, so it is a trivial one point system.
(x) = (vi): Suppose Uf = \f for some f € L? with |f|2 > 0. Then |A\| = 1 as in (v) = (vi),
and |f| o T = |Uf| = |f]. As T is ergodic, Birkhoff’s ergodic theorem implies |f| = {|f|du > 0.
Normalizing f we can assume that |f| = 1,i.e. f:Q — S'. Let A = €. Then foT'(w) = Af(w) =
R, o f(w) for p-ae. w,ie. R, :S' — Slisafactor of T. It follows from (x) that A = €'* =
Hence f o T = U f = f and, as before for | f|, the ergodicity of T" implies that f = { f du a.e., ie.
is constant in L.

Dxb‘l

4.2.2 The Kronecker factor

The equivalence of (vi) and (x) in Theorem@] shows the close connection between eigenfunctions
and rotation factors for mpds. Here we extend this point of view. Our general assumption is that
(9, A, p) is a LR-space.

Let (2, A, 1, T') be an ergodic mpds. Then:

o If Urf = Af, then |A\| = 1 as seen in the proof of (v) = (vi) of Theorem Hence
Ur|f| = |Urf| = |f] so that | f| is constant, and normalizing it we can assume that | f| = 1.

o If UTfi = )\Zfz (Z =1, 2), then UT(flfg) = UTf1 . UTf2 = A g- f1f2, so that the eigenvalues
of Ur form a multiplicative subgroup of {|z| = 1}, and the eigenfunctions form a multiplicative
subgroup of L2. Furthermore, A\ Xo{f1, fo) = (Urf1,Urfo) = {f1, fo), i.e. eigenfunctions
to distinct eigenvalues are orthogonal. Denote by E7 the subspace of L? generated by all
eigenfunctions of Ur. It has an orthonormal basis of eigenfunctions.
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o If Urf = Af, then o(f) is a T-invariant o-algebra: for each measurable A < C we have

T~ fe A} = {Urf € A} = {f € \"LA}. The same holds for K7 := o(Er).

As (92, A, ) is a LR-space, there is a countable mod p-generator B of . Then also B =
{T kB : B € B,k € N} is a countable mod p-generator of K7 and T-*(B) < B. Let

{BO7 B, By, ...} and consider the asociated coding map ¢~) : @ - X. Aseach B,
is the ¢-preimage of a cylinder set in X, we have B < ¢ !(0(7x))) < o(B) and hence
o(B) = ¢ (o(rx)) and K7 = ¢~'(o(rx)) mod x. This means that ¢~ describes a 1-1
correspondence between equivalence classes of measurable sets, and standard arguments yield
that for every f € E = L4(Q, Kr, p) there is a unique fe LE(X,0(Tx), 1), fit 1= p o o1,
such that fo gz~5 = f p-ae.

As T~Y(B) < B, there is amap  : N — N such that T7-1(B,,) = By for all n € N. define
S X — X, (8(x))n := Ty(n)- Then S is Borel-measurable,

(S(6(W))n = (9(wW)n(m) = 1By (@) = 1B, (T(W)) = #(T(W)),
and S preserves the measure fi.

IfUrf = A\f for f € L(2, A, ), then
Usfop=foSop=fopoT =Urf=A =Afod

so that i{Usf # Af} = p{Usfod # A\fod} =0,ie. fisa L4(X,0(7x), ii)-eigenfunction
of Ug.

On the other hand, if Usf = \f for some f € LL(X,0(7x), it), then Ur(fog)=fopoT =
Usfog=Afod).

Hence ¢ (Ks) = K7 = ¢~ (o(rx)) mod p so that Kg = o(x) mod ji. The factor sys-
tem (X, o(7x), i, 5)) is called the Kronecker factor of (2, A, u, T'). One can show that it is
isomorphic (as a mpds) to a rotation on a compact group equipped with Haar measure.

Restricting a system to K7 corresponds to the restriction of the linear operator Ur to the sub-
space E7 generated by its geometric eigenfunctions. In the latter case a better picture of the
dynamics associated with the discrete spectrum of the operator is obtained if one restricts the op-
erator to the space generated by its algebraic eigenfunctions. In finite-dimensional spaces this
is the complete picture described by the Jordan normal form. In infinite-dimensional spaces
the situation is more complicated because one may encounter “infinite Jordan blocks”. On the
dynamical systems side this situation is described by an invariant sub-o-algebra containing Kr,
which gives rise to another factor called the maximal distal factor. In a sense that can be made
precise one can say that each mpds is weakly mixing relative to its maximal distal factor.

4.2.3 Exercises

1.

2.

Prove that a factor of a weakly mixing mpds is weakly mixing.
Prove that a mpds is weakly mixing if and only if its natural extension is.

Give an example of an ergodic mpds (2, A, i, T') for which T' x T is not ergodic (and hence T’
is not weakly mixing).

55



4. Let (T%, A, 1) be as in Example , i.e. u is Lebesgue measure on T?. Give at least two
different proofs based on Theorem [#.2.3]for each of the following assertions:

a) Let T'(x) = = + a for some a € R%. Then T is not weakly mixing.
b) Let T'(z) = Ax for some d x d integer matrix A with det(A) # 0. Then T is weakly
mixing if and only if it is ergodic.

Hint: A look at Theorem [I.T.TT|may help to understand the situation.

5. Prove that the shift dynamical system ({0, 1}%, A, y1,,, T') from Example|1.1.2a is weakly mix-
ing.

6. Prove Remark4.2.41

7. [5) See also Exercise 2.7.2] Show that if a mpds (€2, A, u1, T') has the property that

n—1

Jim LS sup { (AR THB)) — w(Au(B)] - A, Be A} =
k=0

then the system is trivial in the sense that p(A) € {0, 1} for all A € A.

4.3 Entropy

For this section I refer to one of the many textbooks that treat the bascis of entropy theory for mpds,
e.g. [14, 117, [16] and to the monograph [12] that is totally devoted to entropy as a concept from
probability and information theory. Basics on entropy in a purely probabilistic, non-dynamical context
can be found in [9]].

In this course I will follow the very compact presentation of the main material in [16, Chapter 4]
and refer for some advanced classical results to [12]].

4.3.1 Information content and entropy

Motivational material, definitions and notations from [16, Section 4.1]. In particular: The word parti-
tion always means a finite or countable decomposition of €2 into measurable sets. For all our results
sets of measure zero can be neglected in any respect.

4.3.2 The entropy of a partition
More notation and basic results from [[16, Section 4.2], in particular:

Zj A|]-'log,uA|}'d,u—Zf WA | F))d

Aea Aea

Hu<a|f>=j9 (| Fyd

where ¢(t) := —tlog(t).

4.3.1 Theorem Suppose that o an d 3 are partitions with H,(«), H,(3) < oo and F is a sub-o-
algebra of A. Then

1. ] (avﬂ|]—")—l (| F)+1,8|Fva).

2H(av5|}') (Oz|.7-")~|—HM(B|]:voz).

3. Hu(ov B) = Hu(e) + Hu(B | ).
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4.3.2 Proposition Let o, 3 be partitions with finite entropy and F,G be sub-c-algebras of A. Then
I. IfF< G, thenH, (o | F) = Hy(o | G).
2. Ifa <@, then Hy(ao | F) < Hy (ﬁ|]—")
3. H(av B |F)<Hy(a|F)+H,(B|F).
4. o < F mod p if and only if H,(a | F) = 0.

This is slightly more general than Proposition 4.2 in [16]], but see [8, Theorem 3.1.8].

4.3.3 Theorem Let « be a partition with H,, (o) < o0 and let (F,)nen be a family of sub-o-algebras.
Then
1 The family (I, (¢ | Fr))nen is uniformly integrable.
22ifFL € Fo-or S FporFir 2 Fa-- N\, Foo, then limy, o0 Iy(a | Fp) = Iu(a | Foo) p-ace.
and in L}r
In both cases limy,, .o H, (v | Fp) = H,(o | Foo). (If the o-algebras are increasing, the family
(Iu(a | Fp))nen is even dominated by a L}L—function, see [16, Lemma 4.2] or [8, Theorem 3.1.10].)

Proof:  Applying the increasing or the decreasing martingale theorem to each p(A | F,,) separately
we see at once that I, (a | Fn) = Y eala - u(A | F) — Iu(a | Fy) p-ae. For the Lj-
convergence (and hence also the convergence of the conditional entropies) it suffices to show that the
family (1,,(« | F7))nen is uniformly integrable:

For ¢ > 1 we have with B, ; := {I,(a | F,) > t}:

[, w1 Eydn= 3 [ tatomnca| 7 dn

Aea

ZJ u(A | Fn) log pu(A | Fn) dp

Aea

< S min {w(e‘t), [| etutal 7 au

Aea

< Z min{gﬁ(e_t),@(H(A))}
Aea

— 0 ast— o

35 Y pen @ (1(A) = Hy(0) < o0, O

4.3.3 The entropy of a mpds (metric entropy or Kolmogorov-Sinai entropy)

Let (€2, A, u, T') be a mpds. For a partition « and for integers k& < ¢ let af =T Fav--v T-E Dy
(When T is not invertible, we require k& > 0.) Observe that H, (T« | T LF) = (a | F) (see
e.g. [8, Lemma 3.2.3]).

4.3.4 Definition a) h, (T, a) := lim, o - H, ().

b) hy(T) :=sup {h,(T,a) : Hy(a) < oo}

(The limit in a) exists because (Hﬂ(a()‘))neN is a subadditive sequence: H,(a{™™) = H,(af' v
T "ag) < Hy(og') + Hu(T""ag) = Hu(ag') + Hy(og).

hy,(T) is called the metric entropy or Kolmogorov-Sinai entropy (KS-entropy) of the mpds (2, A, i1, T).
It is obviously an isomorphism invariant and can only decrease when passing to a factor system.
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4.3.5 Theorem Let « be a partition with H,,(c) < o0 and let F be a sub-c-algebra of A. Then
(@) Hy(ag | T "J'") Hy(or| F) = 2y Hule| of v T7hF)
(b) Hy(of) — Hy(a) = X5y Hu(or| of)
(c) hu(T, a) = limy o0 Hy(a | al) H, (o | o) where af := o (s T "a).
Proof: Foreach k e N,
Hy(af | T™*F) = Hylog ™" | T-070F) = Hy(a v o} | T™5F) = Hy(af | TVF)
= Hy(a| o vTFF).

Summing over k we obtain (a), and (b) is just the special case F = {F, 2}. Dividing (b) by n and
passing to the limit n — o0, we obtain

h(Ta)—gl_{rgoﬁZH a\al)—hmH (a]af)=Hy(a|af)
k=1

where the second identity is due to the fact that the sequnce is decreasing and the third one follows
from Theorem #.3.3] O

4.3.6 Theorem (Shannon - McMillan - Breiman) Let (2, A, 1, T') be an ergodic mpds and « a par-
tition with H,(a)) < co. Then

lim —I( 0) = hu(T,a) p-ae. andin Li.

n—inf N

Proof:  (See [16, Theorem 4.3] or [8, Theorem 3.2.7b].) The main steps are:

e the purely computational decomposition
ZI (a| af™ k oTk R, + S, with

with
— n—1

Z (] aP)oT® and S”:Z( (o] aF) — (a|ai°))oTk,

k=0 k=0
o lim, oo 1R, = {Iy(av | o) dp = Hy(a | o) = hy(T, ) by Birkhoff’s ergodic theorem,

o lim, 4 %Sn = (0 p-a.e. and in LL. The L}L—convergence is easy, because

1 n—1 -
[1sdu< 23 [l ot~ 1uta [a?)]du—o0
k=0

by Theorem[4.3.5] From this one passes to a.e. convergence as follows:
Let Fiy := sup,>y [[u(a | @f) — I (e | of)]. Then (Fiy)nen is uniformly integrable and
Fy — 0 p-a.e. by Theorem|4.3.3| hence limy_,, { Fv dpp = 0. On the other hand,

1 n—1
<limsup( ZFNOTM— > FloTk>

n—0 k=0 k=n—N+1

lim sup
n—a0

1
-8,
n

1 n
< JFNd,u—i—limsup Z FyoTk

n
n—w k=n—N+1
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where, for each fixed IV, the last limit is 0 a.e. because F} € L}L.

O

4.3.7 Lemma For partitions «, 8 with finite entropy we have h, (T, o v 3) < h,(T, o) + h, (T, B)
and
hu(T,a) < hy (T, oo v B) < hy (T, B) + Hu(a | B) .

Proof:  In view of Theorem [d.3.T|and Proposition 4.3.2] we have
Hy(ag) < Hu((a v B)g) = Hulag v B) = Hu(Bg) + Hulag | 5y)
n—1 n—1
< Hu(B3) + Y Hu(T o | B5) < Hu(By) + Y Hu(T Fa | T7FB)
k=0 k=0

=H,(6y)+nHu(a| B) .

Dividing by n and taking the limit yields the lemma. O

4.3.8 Theorem h,(T) = sup {h,(T,B) : B afinite partition}.

Proof:  Only “<” must be proved: Let o« = {A1, Ay, ...} be any partition with H, (o) < 0. Let
Bn = {A1,..., An, Uk~ Ak} It is not hard to prove that H,(c« | 3,) — 0. Then the previous
lemma shows that b, (T, &) < sup,, h, (T, B,) < sup {hu(T, ) : B afinite partition}. ]

4.3.9 Definition Let (2, A, u,T') be a mpds, « a finite or countable partition.
(a) « is a strong generator for T', if g’ = A mod p.
(b) IfT is invertible, then « is a generator for T', if a®,, = A mod p.

4.3.10 Remark If (2, A, 11) is a LR-space and if « separates points under 7', i.e. if for all  # y in
Q there is n € N (or Z) such that T"x and T"y are in diffeerent elements of «, then the countable
collection | J,, 77" («x) separates points in 2 so that « is a (strong) generator, see Theorem |3.1.15

4.3.11 Theorem (Sinai’s generator theorem) Let (2, A, uu, T') be a mpds. If « is a strong generator
for T' (or, in the invertible case, a generator), then h,,(T') = h, (T, «).

Proof:  Fix a finite partition 3. It suffices to show that h, (T, 8) < h,(T, ). Observe that (o )? =

N+n—1 . : : N \n _ +N-1
Qg and, in the invertible case, (a2 5 ) = oy . Hence

1 1
N ; N+n—1 : 2N+n—1
hu(T,aly) = nhHolo nH#(a N ) = nhm nHu(O‘O ) =hu(T, o)

in the invertible case, and similarly, h, (T, a}’) = h, (T, «) in the general case. Therefore,
hu(Ta/B) < hu(Ta @]—VN) + Hu(ﬁ ‘ Oéj—vN) - hu(T7 a) + H;L(B ’ ao—ooo) = hu(Ta a).

In the general case one argues similarly with ozév instead of a¥ N- O
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4.3.12 Remark Using ideas of this proof, it is an easy exercise to show that A, (T",«) = |N| -
hu(T, ) forall N € N, and if T is invertible, even for all N € Z:

o vT N v TN — gy Ty vy TN

Taking H,(.) on both sides, dividing by n and taking the limit n — oo yields h,(TV, o) =

N h, (T, «), and the proof is easily finished.

4.3.4 Examples

The first two examples are directly taken from [16, Section 4.4].
4.3.13 Example Bernoulli shifts

4.3.14 Example Markov measures on shift spaces

For the next two examples the following Lemma is useful.

4.3.15 Lemma Let (2, A, 1, T) be a mpds. If « is a strong generator for T and if Ty := T|4 is
bijective, then there are measurable functions ¢4 : @ — [0,1] such that 4 o T is a version of
w(A | af’) (A € a). The p4 have the following properties:
1. ppoT >0 on A.
2. Let J,T: Q — R, J,T = ¥y, > 1a. Then J,T = 2A) s the “Jacobian” of Ty w.r:t.
1, in the following sense:

VAeaVBeA:u(T(AmB))—J JuTdp .
AnB

3. hy(T) = §log J, T dp.

Proof: 1. For each A € « there is a version py4 of the conditional expectation ;(A | af). As
af =T tad = T~ 1A (mod p), pa can be chosen T~!.A-measurable so that there are measurable
pasuchthat (A | o) =pa = paoT. Asu(An{paoT =0}) = S{(pAoT:O} w(A| T71A) du =
S{pAz(]} padu =0, g4 can be chosen such that o 4 0 T4y > 0 on A. Next, let B € A and A € o.. Then

1 1
M(T(AQB))ZJ W.¢Adﬂzf “TANB) o ady
{pa>0} PA {paoT>0} PA

1rian 1an
f T(AB)onu:f AnD du:f log J, T dp
An{ppoT>0} PA ApaoT AnB

which proves the second assertion. Finally,

H,(a | af) ZfloguAal dﬂ—ZJlAlog

Aea Aea

d,u Jlog Ju T dp

so that, by Sinai’s generator theorem, h,(T) = h,(T,«) = H,(a | o) = {log J, T dp. O

4.3.16 Example Irrational rotations T}, : T — T<. Let a be the partition into 2¢ squares obtained by
cutting each coordinate direction in two semi-circles. It is not hard ot see that « is a strong generator
if T,, is ergodic w.r.t. Lebesgue measure 1, i.e. if ¥n € Z9\{0} : (n,a) ¢ Z (see Theorem|1.1.11). As
J, T, = 1, we conclude that h,(7},) = 0.
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4.3.17 Example Piecewise expanding maps 7" : [0,1] — [0,1]. These are maps for which there
is a partition o of [0, 1] into intervals such that the restrictions T'|4, A € a are C! and uniformly
expanding. Then, for two points # < y in [0, 1], [Tz — T™y| = §Y |(T™)'(t)| dt — oo if T"x and
T™ are always in the same monotonicity interval of 7'. But this contradicts to [Tz — T"y| < 1 for
all n. Hence « is a strong generator. Suppose now that ;1 « m where m denotes Lebesgue measure
and denote h := 9. Then J,T = |T"| 22T 5o that

hy(T) = jlogJqup = J(loghoT —logh) dp + Jlog|T'| du = Jlog|T'| du .

This is obvious, if log h is p-integrable. Sometimes it is only possible to prove that the positive or the
negative part of log hoT is p-integrable. Also in this case {(logh o T — log h) du = 0, see [8, Lemma
4.1.13].

4.3.18 Example (Continued fraction transformation) A special casse of the previous setting is the
Gauss map T : (0,1] — (0,1], T(x) = 2 mod 1. The associated partition is given by the intervals

A = (k_lﬂ, 1], and inf |(T2)| > 1. An elementary calculation shows that du(z) = @1‘% is an
invariant measure. Hence
-2 (t1 2
ho(T) = h(Ta:f v = J B2 = |
1+x log2 Jo 1+ 6log 2

as the last integral evaluates to —5-. Observe that

1 1 1

k(z) + Tz k(x) + m k(z) + k;(]l“a;) + k(T295+T3x

converges to the continued fraction expansuion of x, where x € Jy (). Hence h,(T) gives the average
information content per digit in the continued fraction expansion of a Lebesgue typical point x.

, ho eigenvalue

(4) =

4.3.19 Example Linear torus automorphisms 7' : T¢ — T¢ Tz = A-x,
of modulus 1. Then [[17], with respect to Lebesgue measure i,

2 log | Ai]

|>\i|>1

where the sum extends over all eigenvalues of A of modulus bigger than 1, counted with multiplicities.

4.3.5 K(olmogorov)-systems and the Pinsker algebra

In this section we study only invertible mpds (£2,.4, i, T') on a LR-space. The material goes back to
Kolmogorov, Pinsker, Rohlin and Sinai and is taken from [12} Section 4.3].

Notation: If « is a finite or countable partition, then a®, := o (|J,,cz 7" ). Recall that « is a
generator, if «®,, = A mod p. We also denote Tail(7', o) := (), o @i Observe that

T (Tail(T, o)) = Tail(T, o) = T~ (Tail(T, a))
4.3.20 Theorem ( [12, Theorem 2.52]) The collection
P(T):={Ae A: h,(T,{A,Q\A}) = 0}

of measurable sets is a I'-invariant o-algebra, the Pinsker-algebra of the system. For each finite or
countable measurable partition o with H,,(«v) < o0 holds: h, (T, «) = 0 if and only if o < P(T).
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Proof:  For A € A denote by A the partition { A, Q\A}.
e Let h,(T,a) = 0. Then h, (T, A) = 0 forall A€ a,as A < a. Hence a < P(T).

o Leta € P(T). Then o = \/ 4, A. Hence h,(T,a) < 3 4., hu(T, A) = 0. Here we used
Lemma[4.3.7]in the case of a finite partition , and for countable partitions one proceeds as in
the proof of Theorem4.3.8]

e P(T) is T-invariant, because h,, (7, 5?174) = hu(T, T14) = h(T, A).

e By definition, Q € P(T) and A € P(T) & QA € P(T). Solet Ay,..., A, € P(T). Then
Ay v . Ay e A v v Ay sothat by (T, Up_y Ax) < Sp_; hu(T, Ay) = 0. Hence
Ay v+ U A, € P(T). Finally, if Ay, Ag,--- € P(T), then

O n o n © n
T’UAk éhu T,UAkaAk T,UAk +HM UAk|UAk
k=1 k=1 k=1 k=1 k=1 k=1

for each n in n. But the first summand is 0 as | J;_; Ax € P(T'), and the second one tends to 0
for n — o0 as in the proof of Theorem

N

O

4.3.21 Theorem Let o be a partition with H,,(c)) < co. Then
(a) Tail(T, ) < P(T).
(b) If « is a generator, then Tail(T, o) = P(T') mod p.

Proof:  (a) Let B € Tail(7T, «) and denote 5 = { B, Q\B}. We have to show that 1, (T, 3) = 0. As
Tail(T, «v) is T-invariant, we have f,, < Tail(T, o) € af°, in particular

o H\(B|af") =0,

o (av PP =af v i =af and

e of vT7FBY caf v B, =af.
Hence

hu(Tyav B) = Hy(aov B | (av B)Y) = Hu(a v 8| o)
< Hy(a | off) + Hu(B | af?) = hu(T, a) .

On the other hand, by Theorem 4.3.5(a),

Hy((ov B)g) = Hu(88) + Hulag | B5) = Hu(53) + Hulag | T7"B2,,)
n—1
= Hu(B3) + Hula | B2,) + Y, Hula | of v TF82,)
k=0
n—1

H,(8) + Hu(er| 82,,) Z pla|af?)
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Dividing by n and passing to the limit this yields, together with the first estimate,
hu(T,e) = hy (T, oo v B) = hy (T, B) + hy (T, )

As h, (T, ) < o0, we conclude that b, (T, 5) = 0.

Claim A: If 7 is a P(T") measurable partition, then 73" = 7{° = Tail(T, 7).
Proof: The inclusions ‘2” are trivial, and

0=mn-h,(T,7)=h,(T" 7) = H, (5 | o ( T"%)) > H,(r | )
1

k=

forall n € Nso that 7 is 7, -measurable mod . for all n and hence 7 < (), oy 7o’ = Tail(T', 7) mod u
The claim follows now from the 7-invariance of Tail(T', 7).

Claim B: H,(B | 57" v F) = H,(B | B7°) for any sub-c-algebra F of P(T).
Proof: If 3, m are partitions with finite entropy and if 7 < P(T'), then

H,(B| B v mg’) =Hu(B |6y vr®) (byClaim A)

H,(B |87 val?)+Hy(r | ") (asmeP(T))
H,(B| BT val)+Hy(r| B v BT vap)
Hy(Bv | B val)=Hu(Bvr|(Bvm)Y)
= hu (T, v )

Vol

— lim SH, (8 v )

> lim ~H,(85) = hu(T, 5)

n—o0 M

:Hu(ﬁlﬁfo)
ZH#(BIBTO\/WSO).

Let F be a sub-o-algebra of P(T'). As (92,.A, u) is a LR-space, F is countably generated mod f.
Hence there is an increasing sequence of finite partitions m, such that o(m) € o(m) < -+ ~ F
mod p. Then also o((m1)§) € o((m2)f) € -+ / F mod p, and the preceding estimate implies

Hu(B| B v F) = Hu(B|BY) -

(b) Now let « be a generator. As Tail(T, ) € P mod p by part (a), we conclude that

Hy (8| 87 v Tall(T', o)) = Hu(B | 57°) = Hu(B | B v P(T)) .

If we apply this identity to 72" instead of 7" and if we observe that Tail(72", o) < Tail(T, «) and
P(T?") = P(T), then

H, (5 | \/T*’ﬂ"ﬁ v Tail(T,oz)) < H, (5 | \/ T7+"8 v P(T)) .
k=1 k=1

"To see this, let A € 7 so that there are A,, € 7 such that u(AAA,,) = 0 for all n. Replacing A,, by N, Ak we can
assume that A; D As D .... Let Ay 1= f:l An. Then A, € Tail(T, o) and u(AAAL) = 0.
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Let B := flozl (\/ZO=1 T—k2" ﬂ). The o-algebras on both sides of this inequality are decreasing to
B v Tail(T, ) and B v P(T'), respectively, so that Theorem [4.3.3]yields in the limit n — o0

H, (8| B v Tail(T, ) < H, (8| Bv P(T)) < H, (3| P(T)) .

Suppose now that 3 < o, for some p € N. Then Vi T-%2"g c a®, . on for all n and hence

o0 o0 o0
B=) (\/ Tk2n6> c () @%pson = Tail(T, ) .
n=1

k=1 n=1

Therefore, in this case
H, (B | Tail(T, o)) < H, (B | P(T)) - 4.3.1)

Now let B € P(T'). As a is a generator, there are sets B, € a®, such that u(BAB,) — 0 as
p — . Let 5, := {Bp,, Q\B,} and 8 = {B,Q\B}. Then holds for all 3, and carries over
to /3 in the limit p — oo. Hence H, (8 | Tail(T, o)) < Hu(B | P(T)) = 0, and we conclude that
B e Tail(T, «) mod p. O

4.3.22 Definition An invertible mpds (0, A, 1, T) is a K-system, if there is a generator o with
H, (o) < o0 and Tail(T, o) = {F, 2} mod p.

4.3.23 Theorem An invertible mpds is a K-system if and only if its Pinsker algebra is trivial.

The “only if” direction follows immediately from the previous theorem. The “if” direction requires
additionally the construction of a generating partition.
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