Vorlesung Mathematische Physik I: Klassische Mechanik

Andreas Knauf* Ruedi Seiler[†]

27. September 2006

Zusammenfassung

Vorlesungsbegleitendes Skript. In diesem ersten Teil der dreiteiligen, vierstündigen Vorlesung über Mathematische Physik wird eine Einführung in die Klassische Mechanik gegeben, die geometrische und qualitative Aspekte der Dynamik betont. Anregungen und Kritik sind willkommen!

Inhaltsverzeichnis

1	Einleitung	3
2	Dynamische Systeme	5
3	Gewöhnliche Differentialgleichungen	10
4	Lineare Differentialgleichungen	15
5	Lineare Dynamische Systeme auf dem \mathbb{R}^2	19
6	Gradientenflüsse und Hamiltonsche Systeme	23
	6.1 Gradienten–Differentialgleichungen	23
	6.2 Hamiltonsche Systeme	25

^{*}Mathematisches Institut, Universität Erlangen-Nürnberg, Bismarckstr. $1\frac{1}{2}$, D–91054 Erlangen, Germany. e-mail: knauf@mi.uni-erlangen.de, web: www.mi.uni-erlangen.de/ \sim knauf

[†]Technische Universität Berlin, Fachbereich Mathematik, Str. des 17. Juni 136, D–10623 Berlin

7	Lineare Hamiltonsche Systeme	27
8	Symplektische Geometrie	28
9	Die symplektische Algebra	33
10	Stabilität linearer Differentialgleichungen	36
11	Liapunov-Funktionen	39
12	Verzweigungen	42
13	Lagrange- und Hamiltongleichungen	44
14	Legendretransformationen	47
15	Holonome Zwangsbedingungen	53
16	Das Hamiltonsche Variationsprinzip	56
17	Die Geodätische Bewegung	61
18	Die Jacobimetrik	69
19	Maßerhaltende dynamische Systeme	73
20	Ergodische dynamische Systeme	76
21	Mischende dynamische Systeme	79
22	Der Birkhoffsche Ergodensatz	83
23	Bewegung im periodischen Potential	85
24	Klassische Streutheorie	86
25	Der Poincarésche Wiederkehrsatz	92
26	Mannigfaltigkeiten	95
27	Das Tangentialbündel	99

28	Symplektische Mannigfaltigkeiten	104
29	Lieableitung und Poissonklammer	109
30	Kanonische Transformationen	116
31	Lagrange-Mannigfaltigkeiten	119
32	Erzeugende kanonischer Transformationen	124
33	Integrable Systeme	127
34	Winkel-Wirkungsvariablen	134
35	Störungstheorie	138
36	Störungstheorie für eine Winkelvariable	147
37	Hamiltonsche Störungstheorie	150
38	KAM-Theorie	155
A	Differentialformen auf Mannigfaltigkeiten	158
	A.1 Äußere Formen	
	A.2 Differentialformen	
	A.3 Integration von Differentialformen	
	A.4 Differentialformen auf Mannigfaltigkeiten	169
Lit	teratur	170
Inc	Index	

1 Einleitung

Ziel der Klassischen Mechanik ist es, aus der Form der zwischen den Massenkörpern wirkenden Kräfte auf die Gestalt ihrer Bewegungen zu schließen.

• Ein Beispiel ist die *Bewegung der Erde um die Sonne*. Dabei wird vorausgesetzt, dass die Anziehungskraft zwischen diesen beiden Himmelskörpern in

Richtung ihrer Schwerpunktes gemeinsamen wirkt und invers proportional zum Quadrat ihres Abstandes ist. Die Gesamtenergie ist konstant. Mit den Methoden der Klassischen Mechanik ist es dann möglich, die Ellipsenform der Erdbahn vorauszusagen.

• Ein anderes Beispiel ist das des auf der Erde *rollenden Balles*. Hier ist die Abbremsung proportional zur Geschwindigkeit. Der Ball gibt im Lauf der Zeit durch Reibung Energie an seine Umgebung ab und kommt daher irgendwann zur Ruhe.

Beide Beispiele werden mathematisch durch gewöhnliche Differentialgleichungen zweiter Ordnung modelliert, denn nach Newton ist die Beschleunigung, also die zweite Ableitung des Ortes nach der Zeit, gegeben durch die durch die Masse geteilte, am Körper angreifende Kraft.

Wir werden uns vorzugsweise mit Problemen des ersten Typs herumschlagen, in denen die Energie eine zeitlich erhaltene Größe ist. Wir werden im Laufe der Vorlesung sehen, dass diese so genannten Hamiltonschen Systeme eine geometrische Beschreibung zulassen, wobei diese so genannte symplektische Geometrie des Phasenraumes sich wesentlich von der gewohnteren Riemannschen Geometrie unterscheidet.

Trotzdem wollen wir auch, und gerade am Anfang, allgemeinere dynamische Systeme, z.B. solche mit Energieverlust, betrachten. Nur so können wir die Besonderheit der hamiltonschen Dynamik richtig erkennen.

Ein drittes Beispiel: In der Hochenergiephysik werden Teilchen auf hohe Energien beschleunigt, um sie dann kollidieren zu lassen. Aus verschiedenen Gründen möchte man die Teilchen oft nicht sofort zur Kollision bringen. Daher werden Speicherringe verwandt, in denen die bis fast auf Lichtgeschwindigkeit beschleunigten Teilchen durch ein im Idealfall konstantes Magnetfeld auf eine Kreisbahn senkrecht zur Magnetfeldrichtung gezwungen werden.

Leider ist das Magnetfeld in Wirklichkeit nicht konstant, was zu Abweichungen von der Kreisbahn führt. Um diese zu studieren, kann man an einer Stelle des Ringes Ort und Geschwindigkeit des Teilchens messen.

Wir erhalten so eine Abbildung, die es gestattet, aus Ort und Geschwindigkeit des Teilchens beim n—ten Umlauf auf die Werte dieser Größen beim n+1—ten Umlauf zu schließen:

$$q_{n+1} = f_1(q_n, v_n)$$
 , $v_{n+1} = f_2(q_n, v_n)$

oder kurz

$$x_{n+1} = F(x_n)$$
 mit $x_k := \begin{pmatrix} q_k \\ v_k \end{pmatrix}$ und $F := \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$.

Wo befindet sich das Teilchen nach z.B. 10^{11} Umläufen? Zur Beantwortung dieser Frage müssen wir die obige Abbildung iterieren. Wir setzen

$$F^{n+1} := F \circ F^n \quad \text{mit} \quad F^0 := \text{Id}.$$

Ist F invertierbar, dann definieren wir analog $F^{-n-1} := F^{-1} \circ F^{-n}$.

Auch ein solches sozusagen stroboskopisches Modell der Bewegung wollen wir betrachten. In diesem Fall nimmt also der Zeitparameter n Werte in den ganzen Zahlen $\mathbb Z$ an, während im ersten Fall $t \in \mathbb R$ war.

Wieder kann Energieerhaltung vorliegen oder, z.B. durch Abstrahlung, Energie verloren gehen.

Danksagung Die 1. Version dieser Skripte zum Vorlesungszyklus "Mathematische Physik" ist in der AG Mathematische Physik am FB Mathematik der TU Berlin entstanden.

Ich danke Tanja Dierkes, Herbert Lange und Christoph Schumacher, die viele Fehler im Manuskript fanden, und Frau I. Moch, die in detektivischer Arbeit meine Handschrift entzifferte und diese Skripte schrieb. A.K.

2 Dynamische Systeme

Die obigen Beispiele sollen in einer ersten versuchsweisen Definition zusammengefasst werden:

2.1 Definition Ein *dynamisches System* ist eine stetige Abbildung

$$\Phi: G \times M \to M$$
,

wobei $G = \mathbb{R}$ oder $G = \mathbb{Z}$ und M ein topologischer Raum¹ ist, und für die Familie von Zeit t-Abbildungen

$$\Phi_t: M \to M$$
 , $\Phi_t(m) := \Phi(t, m)$ $(t \in G)$

¹**Definition** Ein topologischer Raum ist ein Paar (M, \mathcal{O}) , bestehend aus einer Menge M und einer Menge \mathcal{O} von Teilmengen (genannt offene Mengen) von M derart, dass gilt

^{1.} beliebige Vereinigungen offener Mengen sind offen

$$\Phi_0 = \text{Id} \quad \text{und} \quad \Phi_{t_2} \circ \Phi_{t_1} = \Phi_{t_1 + t_2} \qquad (t_1, t_2 \in G)$$

gilt. M heißt Phasenraum. Im Fall $G = \mathbb{R}$ heißt Φ auch Fluss.

2.2 Bemerkungen 1. In allen einleitenden Beispielen ist M der Raum der Orte q und Geschwindigkeiten v des betrachteten Massenkörpers.

Im Fall der Erde im dreidimensionalen Raum ist also $M:=\mathbb{R}^3\times\mathbb{R}^3$ und m=(q,v). Wir werden zunächst annehmen, dass M eine offene Teilmenge des \mathbb{R}^n ist. Später werden uns noch allgemeinere topologische Räume M als Phasenräume begegnen. Beispiele sind die Niveaumengen konstanter Energie hamiltonscher Systeme. Für reguläre Werte der Energie sind diese so genannte Mannigfaltigkeiten.

Wir möchten aber auch z.B. die Bewegung einer Perle auf einem kreisförmigen Draht betrachten. Dort ist ihr Ort durch einen Punkt auf dem Kreis $S^1 := \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$ gegeben und der Phasenraum ist die Mannigfaltigkeit $M := S^1 \times \mathbb{R}$ (\mathbb{R} für die Geschwindigkeit der Kreisbewegung).

- 2. Der Wert $\Phi(t, m)$ gibt den Zustand (also hier Ort und Geschwindigkeit) des Körpers nach der Zeit t an, wenn er sich zur Zeit 0 im Zustand m befand.
- 3. Die Forderung $\Phi_0(m)=m$ ist nur billig, ebenso die Forderung $\Phi_{t_2}\circ\Phi_{t_1}=\Phi_{t_1+t_2}$ der Invarianz unter Zeittranslationen. Diese ist beispielsweise erfüllt, wenn Φ die Lösung eines autonomen Differentialgleichungssystems ist.

Um beispielsweise die Position und Geschwindigkeit der Erde in zehn Monaten zu berechnen, können wir zunächst ihren Zustand in sieben Monaten bestimmen, um danach diesen Zeitpunkt als neuen Zeitnullpunkt zu wählen und den Zustand in drei Monaten zu berechnen.

Für Lösungen Φ explizit zeitabhängiger Differentialgleichungen ist diese Forderung aber nicht erfüllt. Nehmen wir z.B. an, dass in acht Monaten ein schneller Komet die Erde ablenkt und sei $\Phi(t,m)$ der Zustand der Erde zum Zeitpunkt t. Dann erfüllt diese Abbildung Φ die obige Bedingung nicht.

- 4. Unsere Aufgabe wird es sein, Φ zu bestimmen, für die Gruppe $G=\mathbb{R}$ durch Integration gewöhnlicher DGLn und für $G=\mathbb{Z}$ durch Iteration einer Abbildung. Die Abbildungen Φ werden dabei nicht nur stetig, sondern beliebig
- 2. der Durchschnitt von je zwei offenen Mengen ist offen
- 3. \emptyset und M sind offen.

- oft differenzierbar ("glatt") sein, falls entsprechendes für die DGL bzw. für die zu iterierende Abbildung gilt.
- 5. Lässt man in Definition 2.1 beliebige Gruppen G zu (und schreibt verallgemeinert $\Phi_{t_2} \circ \Phi_{t_1} = \Phi_{t_2 \circ t_1}$), dann kommt man zum Begriff der *Gruppenwirkung*. Der Spezialfall dynamischer Systeme ist zwar einfacher, weil die Gruppen $\mathbb R$ und $\mathbb Z$ abelsch sind. Allerdings sind sie nicht kompakt, was die Analyse erschwert.
- **2.3 Beispiel** 1. Ein einfaches Beispiel für ein dynamisches System ist die *freie Bewegung* eines Himmelskörpers im Vakuum. Der Phasenraum ist wieder $M:=\mathbb{R}^3\times\mathbb{R}^3$. Da nach Voraussetzung am Körper keine Kräfte angreifen, ist seine Beschleunigung $\frac{d^2}{dt^2}q=0$. Damit ist die Geschwindigkeit, also die Ableitung $v=\frac{d}{dt}q$, des Ortes nach der Zeit, zeitlich konstant: $\frac{d}{dt}v=0$, und wir haben für den Anfangswert $m:=(q,v)\in M$ die Lösung

$$\Phi(t, m) = (q + v \cdot t, v) \qquad (t \in \mathbb{R}).$$

- 2. Das einleitende Beispiel des himmelsmechanischen Zweikörperproblems liefert dagegen im strengen Sinn kein dynamisches System, denn die beiden Himmelskörper können in endlicher Zeit kollidieren.
- Wir werden im nächsten Kapitel Bedingungen kennenlernen, unter denen ein autonomes Differentialgleichungssystem für alle Zeiten $t \in \mathbb{R}$ eindeutige Lösungen besitzt, und damit ein *kontinuierliches* dynamisches System $\Phi: \mathbb{R} \times M \to M$ definiert.
- Unter welchen Umständen definiert nun eine stetige Abbildung $H: M \to M$ durch Iteration ein *diskretes* dynamisches System $\Phi: \mathbb{Z} \times M \to M$? Zunächst können wir $\Phi(0,m) := m$ und $\Phi(1,m) := H(m)$, $(m \in M)$ setzen. Für $n \in \mathbb{N}$ definieren wir $\Phi(n+1,m) := H(\Phi(n,m))$.

Diese Abbildungen sind natürlich auch stetig. Um Φ auch für negative Zeiten zu definieren, muss aber H ein Homöomorphismus sein, d.h. auch $H^{-1}:M\to M$ muss als stetige Abbildung existieren. Wir setzen dann für $n\in\mathbb{Z}$, $n\le 0$ $\Phi(n-1,m):=H^{-1}(\Phi(n,m)).$

Einige Begriffe kommen im Zusammenhang dynamischer Systeme immer wieder vor:

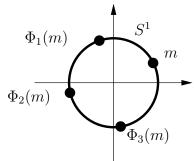
- **2.4 Definition** $m \in M$ heißt *Fixpunkt* oder *Ruhelage* eines dynamischen Systems $\Phi: G \times M \to M$, wenn $\forall g \in G$ $\Phi(g, m) = m$.
- **2.5 Beispiel** Für $H: \mathbb{R} \to \mathbb{R}, \ x \mapsto 2x$ ist x=0 ist der einzige Fixpunkt der iterierten Abbildung.
- **2.6 Definition** Für $m \in M$ heißt die Menge $\{\Phi(g,m) \mid g \in G\}$ Orbit oder Trajektorie (durch m), die Abbildung $F_m: G \to M$, $g \mapsto \Phi(g,m)$ heißt Bahnkurve (durch m).
 - Ein Orbit durch m heißt periodisch mit $Periode\ g \in G$, wenn g>0 und $\Phi(g,m)=m$. Eine Periode heißt Minimal periode, wenn $\Phi(\tilde{g},m)\neq m$ für $0<\tilde{g}< g$.
- **2.7 Proposition** Zugehörigkeit zu einem Orbit definiert eine Äquivalenzrelation auf dem Phasenraum.

Bew.: Wir definieren also für $m_1, m_2 \in M$

$$m_1 \sim m_2$$
 , falls $m_2 \in \Phi(G, m_1)$.

Diese Relation ist eine Äquivalenzrelation, denn

- Wegen $\Phi_0 = \text{Id ist immer } m \sim m$.
- Gilt $m_2 = \Phi_t(m_1)$, dann folgt $m_1 = \Phi_{-t}(m_2)$ aus $\Phi_{t_1} \circ \Phi_{t_2} = \Phi_{t_1+t_2}$ und $\Phi_0 = \text{Id.}$ Die Relation ist damit symmetrisch $(m_1 \sim m_2 \Rightarrow m_2 \sim m_1)$.
- Gilt $m_2 = \Phi_{t_1}(m_1)$ und $m_3 = \Phi_{t_2}(m_2)$, dann folgt $m_3 = \Phi_{t_1+t_2}(m_1)$. Die Relation ist damit transitiv $(m_1 \sim m_2, m_2 \sim m_3 \Rightarrow m_1 \sim m_3)$.
- **2.8 Beispiel** Sei $M:=S^1=\{c\in\mathbb{C}\mid |c|=1\}$ und für ein $\alpha\in\mathbb{R}$
- $\Phi: \mathbb{Z} \times M \to M$ gegeben durch die Drehung $\Phi(n,m) := e^{2\pi i \alpha n} \cdot m$, siehe Abbildung. Dann ist genau dann jeder Orbit periodisch, wenn $\alpha \in \mathbb{Q}$, also $\alpha = \frac{q}{p}, \ q \in \mathbb{Z}, \ p \in \mathbb{N}, \ q$ und p teilerfremd. Die Minimalperiode ist dann p.



Man ist nicht nur an einzelnen Orbits interessiert, sondern auch am Verhalten benachbarter Orbits. Z.B. ist es beruhigend, dass auch bei einer kleinen Veränderung der Geschwindigkeit der Erde, z.B. durch Meteoriteneinschlag, ihre neue Bahn auf Dauer in der Nähe der alten bleibt. Insbesondere können wir Stabilität von Fixpunkten untersuchen.

- **2.9 Definition** Sei m_0 ein Fixpunkt von $\Phi: G \times M \to M$.
 - 1. m_0 heißt Liapunov—stabil, wenn für jede Umgebung $U \subset M$ von m_0 eine (kleinere) Umgebung V von m_0 existiert, so dass für alle $t \ge 0$

$$\Phi_t(V) \equiv \{\Phi_t(m) \mid m \in V\} \subset U.$$

2. m_0 heißt asymptotisch stabil, falls m_0 Liapunov-stabil ist und eine Umgebung $V \subset M$ von m_0 existiert mit $\Phi_t(V) \subset \Phi_s(V)$ für t > s und

$$\lim_{t \to \infty} \Phi_t(m) = m_0 \qquad (m \in V).$$

2.10 Beispiel $G := \mathbb{Z}, M := \mathbb{C}, \lambda \in \mathbb{C} \setminus \{0\}, \Phi_t(m) := \lambda^t \cdot m.$ Für $|\lambda| < 1$ ist $0 \in M$ asymptotisch stabil.

Für $|\lambda| \le 1$ ist $0 \in M$ Liapunov-stabil.

- **2.11 Definition** Eine Teilmenge $A\subset M$ heißt Attraktor des Dynamischen Systems, wenn A abgeschlossen, $\Phi_t(A)=A$ für $t\in G$ und eine offene Umgebung $U_0\subset M$ von A existiert mit
 - 1. $\Phi_t(U_0) \subset U_0$ für $t \geq 0$
 - 2. Für jede offene Umgebung V von A, $A \subset V \subset U_0 \subset M$ ein $\tau > 0$ existiert mit $\Phi_t(U_0) \subset V$ für $t \geq \tau$.

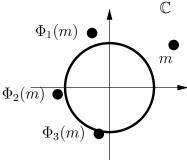
Das *Bassin* eines Attraktors *A* ist die Vereinigung aller offenen Umgebungen von *A*, die 1. und 2. erfüllen.

Damit ist das Bassin B selbst eine offene Umgebung von A, die die Eigenschaft 1. besitzt. Wie das nächste Beispiel zeigt, ist aber die Eigenschaft 2. für B i.A. nicht erfüllt.

2.12 Beispiel $M:=\mathbb{C}$, $G:=\mathbb{Z}$, $\lambda\in\mathbb{R}$.

$$\Phi(1,m) := \begin{cases} e^{i\lambda} \frac{m}{\sqrt{|m|}} &, & m \neq 0 \\ 0 &, & m = 0, \end{cases}$$

siehe Abbildung. Hier ist $S^1 \subset \mathbb{C}$ ein Attraktor, und sein Bassin ist $\mathbb{C} \setminus \{0\}$.



Die Lehrbücher von Katok und Hasselblatt [KH] und von Robinson [Ro] behandeln allgemeine (nicht notwendig Hamiltonsche) dynamische Systeme, und auch iterierte nicht invertierbare Abbildungen (die oft ebenfalls als dynamische Systeme bezeichnet werden).

3 Gewöhnliche Differentialgleichungen

Unsere erste Aufgabe besteht in der Diskussion der Lösungen von Systemen gewöhnlicher Differentialgleichungen (DGLn).

Wir betrachten der Einfachheit halber ein zeitunabhängiges explizites System von n Differentialgleichungen erster Ordnung, also das Gleichungssystem

$$\begin{cases} \dot{x}_1 &= f_1(x_1, \dots, x_n) \\ & \vdots \\ \dot{x}_n &= f_n(x_1, \dots, x_n) \end{cases}$$

oder kurz $\dot{x} = F(x)$, wobei $M \subset \mathbb{R}^n$ offen und das Vektorfeld

$$F \equiv \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} : M \to \mathbb{R}^n$$

stetig sei. Das DGL-System definiert offensichtlich einen Fluss $\Phi: \mathbb{R} \times M \to M$ auf M, wenn durch jeden Punkt $y \in M$ genau eine Lösungskurve $t \mapsto \Phi_t(y)$ geht mit

$$\frac{d}{dt}\Phi(t,y) = F(\Phi(t,y)) \quad , \quad (t \in \mathbb{R}).$$

Unter welchen Umständen ist dies nun der Fall?

3.1 Beispiel Wir orientieren uns an einigen Beispielen für $M = \mathbb{R}$, also

$$\dot{x} = f(x).$$

In diesem Fall können wir unter geeigneten Umständen die Lösung durch Integration finden, denn

- für f(x)=0 löst $\Phi(t,x):=x$ $(t\in\mathbb{R})$ die DGL, da $\Phi(0,x)=x$ und $\frac{d}{dt}\Phi(t,x)=0$, und
- für $f(x) \neq 0$ setzen wir an

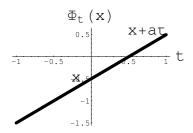
$$\int_{x}^{\Phi_{t}(x)} \frac{dy}{f(y)} = \int_{0}^{t} ds = t,$$

und lösen nach $\Phi_t(x)$ auf (Methode der Separation der Variablen).

1. Das Vektorfeld sei konstant,

d.h. für ein $a \in \mathbb{R}$ gelte $f(x) \equiv a$. Damit ist der Graph der Lösung des AWP die Gerade durch (0,x) mit Steigung a:

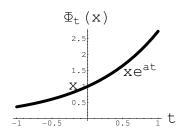
 $\Phi_t(x) = x + a \cdot t$, siehe Abb.



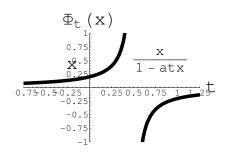
2. Das Vektorfeld sei linear,

d.h. für ein $a \in \mathbb{R}$ sei $f(x) := a \cdot x$. Es ergibt sich $\Phi_t(0) = 0$, und für Anfangswert $x \neq 0$

 $\ln\left(\frac{\Phi_t(x)}{x}\right) = at$, also für alle x $\Phi_t(x) = x \cdot e^{at}$, siehe Abb. (mit a=1).



3. Es sei $f(x) := ax^2$ mit Parameter $a \in \mathbb{R} \setminus \{0\}$. Dann ist $\Phi_t(0) \equiv 0$ und für $x \neq 0$: $\int_{x}^{\Phi_{t}(x)} \frac{dy}{y^{2}} = at$, also $\frac{1}{x} - \frac{1}{\Phi_{t}(x)} = at$ oder $\Phi_{t}(x) = \frac{x}{1 - atx}$, siehe Abb. Hier ist für a > 0 und x > 0 eine Lösung der DGL nur im Intervall $t \in \left(-\infty, \frac{1}{ax}\right)$ definiert und

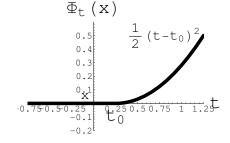


$$\lim_{t \nearrow \frac{1}{ax}} \Phi_t(x) = +\infty.$$

 $\lim_{t\nearrow\frac{1}{ax}}\Phi_t(x)=+\infty.$ Diese DGL definiert also kein Dynamisches System.

4. $f(x) := \sqrt{2|x|}$. Für x = 0 sind wir

versucht, $\Phi_t(0) := 0 \ (t \in \mathbb{R})$ anzusetzen, und diese Funktion erfüllt sicher das Anfangswertproblem. Wir finden aber, dass für alle $t_0 \ge 0$ auch die Funktionen



$$\Psi_{t_0}(t) := \left\{ \begin{array}{ll} 0 & , t \in [0,t_0] \\ \frac{1}{2}(t-t_0)^2 & , t \in (t_0,\infty) \end{array} \right. \quad \text{Graph einer Bahnkurve des AWP}$$

 $\dot{x} = \sqrt{2|x|}, x(0) = 0$

das AWP erfüllen, siehe Abb. Hier ist also noch nicht einmal die Eindeutigkeit der Lösung der DGL gegeben.

Unter den folgenden Voraussetzungen existiert aber zumindest für kleine Zeiten eine eindeutige Lösung eines DGL-Systems $\dot{x} = F(x)$ mit dem auf der offenen Teilmenge M des \mathbb{R}^n stetigen Vektorfeld $F \in C(M, \mathbb{R}^n)$.

3.2 Satz (Picard-Lindelöf) Für den Anfangswert $x_0 \in M$ existiere ein $\rho > 0$, sodass der Ball $B_{\rho}(x_0) := \{x \in \mathbb{R}^n \mid |x - x_0| \le \rho\}$ in M enthalten ist und für ein L>0 das Vektorfeld L-**Lipschitzstetig** auf $B_{\rho}(x_0)$ ist, d.h.

$$|F(x) - F(y)| \le L|x - y|$$
 $((x, y) \in B_{\rho}(x_0)).$

Dann hat das Anfangswertproblem (AWP)

$$\dot{x} = F(x)$$
 , $x(0) = x_0$ (3.1)

für Zeiten $|t| \leq T := \min\left(\frac{\rho}{v_{\max}}, \frac{1}{2L}\right)$ mit $v_{\max} \equiv v_{\max}(\rho) := \sup_{x \in B_{\rho}(x_0)} \|F(x)\|$ eine eindeutige Lösung $t \mapsto \Phi_t(x_0)$.

Bew.: Der Beweis findet sich in jedem Buch über gewöhnliche Differentialgleichungen (z.B. Arnol'd [Ar1]), und wir setzen ihn als bekannt voraus. Seine wesentlichen Schritte sind:

1. Das AWP (3.1) ist äquivalent zu der Integralgleichung

$$x(t) = x_0 + \int_0^t F(x(s)) ds.$$
 (3.2)

2. Die Existenz einer Lösung von (3.2) wird durch die *Picard-Iteration*

$$x_0(t) := x_0$$
 , $x_{n+1}(t) := (Px_n)(t)$

mit

$$(Py)(t) := x_0 + \int_0^t F(y(s)) ds$$

sichergestellt, wenn für eine geeignete Maximalzeit T>0 die ${\it Picard-Abbildung}$

$$P:X\to X$$

eine Kontraktion auf dem metrischen Raum (X, d) der stetigen Kurven

$$X := \{ y \in C([-T, T], B_{\rho}(x_0)) \mid y(0) = x_0 \}$$

mit Supremumsmetrik

$$d(y,z) := \sup_{t \in [-T,T]} |y(t) - z(t)| \qquad (y,z \in X)$$

darstellt. Dies ist nach Definition der Fall, wenn für ein c < 1

$$d(P(y), P(z)) \le c \cdot d(y, z) \qquad (y, z \in X) \tag{3.3}$$

gilt. Da der metrische Raum (X,d) vollständig ist, konvergiert nach dem Banachschen Fixpunktsatz die Cauchyfolge der x_n gegen den eindeutigen Fixpunkt

$$x = P(x) \in X$$
.

 v_{\max} kann als Maximalgeschwindigkeit einer Bahnkurve in $B_{\rho}(x_0)$ gedeutet werden. Die Bedingung $|t| \leq \frac{\rho}{v_{\max}}$ bewirkt, dass die Bahnkurve $\Phi(t,x_0)$, die für t=0 in der Mitte der Kugel $B_{\rho}(x_0)$ ist, diese nicht verlassen kann. Wegen $T \leq \frac{\rho}{v_{\max}}$ gilt nämlich

$$|P(y)(t) - x_0| \le \left| \int_0^t F(y(s)) \, ds \right| \le T v_{\text{max}} \le \rho \qquad (|t| \le T),$$

sodass mit $y \in X$ auch $P(y) \in X$ folgt.

3. Wegen $T \leq \frac{1}{2L}$ gilt für c := 1/2

$$d(P(y), P(z)) = \sup_{t \in [-T,T]} \left| \int_0^t [F(y(s)) - F(z(s))] ds \right|$$

$$\leq \frac{1}{2L} \cdot L \cdot d(y, z) = c \cdot d(y, z),$$

also (3.3).

3.3 Korollar Erfüllt das Vektorfeld $F : \mathbb{R}^n \to \mathbb{R}^n$ für ein geeignetes L > 0 sogar die globale Lipschitzbedingung

$$|F(x) - F(y)| \le L|x - y| \qquad (x, y \in \mathbb{R}^n)$$
(3.4)

so definiert das DGL-System $\dot{x} = F(x)$ ein eindeutiges dynamisches System.

Bew.: Wir können für jeden Startpunkt $x_0 \in \mathbb{R}^n$ das AWP

$$\dot{x} = F(x) \quad , \quad x(0) = x_0$$

für $|t| < \frac{1}{2L}$ eindeutig lösen, denn

$$|F(x)| \le |F(0)| + L|x|,$$

so dass für $ho>rac{L|x_0|+|F(0)|}{L}$

$$\frac{\rho}{v_{\text{max}}} \ge \frac{\rho}{|F(0)| + L(|x_0| + \rho)} = \frac{1}{L + \frac{L(x_0) + |F(0)|}{\rho}} \ge \frac{1}{2L}.$$

Durch Ausnutzen der Gruppeneigenschaft $\Phi_{t_2} \circ \Phi_{t_1} = \Phi_{t_1+t_2}$ des Flusses erhalten wir die eindeutige Lösung für alle Zeiten.

Wir sehen, dass $f(x)=ax^2$ in Beispiel 3.1.3 keiner globalen Lipschitzbedingung genügt, während für Beispiel 3.1.4 $f(x)=\sqrt{2|x|}$ bei x=0 noch nicht einmal einer lokalen Lipschitzbedingung genügt.

Wir interessieren uns für die Glattheit des dynamischen Systems zu einem gegebenen DGL-System.

3.4 Satz Gegeben sei auf der offenen Teilmenge $M \subset \mathbb{R}^n$ ein DGL-System

$$\dot{x} = F(x)$$
 mit $F \in C^r(M, \mathbb{R}^n)$,

das Vektorfeld F sei also $r \in \mathbb{N}$ -mal stetig differenzierbar.

Für $m \in M$ existiert dann auf einer Umgebung $U \subset \mathbb{R} \times M$ der Form $U = I \times U_m$ von (0, m) eine lokale Lösung $\Phi_U \in C^r(U, M)$, wobei

$$\Phi_U(0,x) = x$$
 und $\frac{d}{dt}\Phi_U(t,x) = F(\Phi_U(t,x)).$

Bew.: Z.B. in Arnol'd [Ar1].

Man beachte, dass die lokale Lösung Φ_U sowohl im Zeitparameter wie in den Anfangsbedingungen genauso oft differenzierbar ist wie das Vektorfeld.

Da wir es meistens mit unendlich oft differenzierbaren Vektorfeldern F zu tun haben, können wir i.A. von der Glattheit des (evtl. unvollständigen) Flusses ausgehen.

4 Lineare Differentialgleichungen

f(x)=ax aus Beispiel 3.1.2 besitzt die globale Lipschitzkonstante |a|. Ähnlich genügt das lineare zeitunabhängige DGL-System

$$\dot{x} = F(x)$$
 mit $F(x) := A \cdot x$, $A \in \mathcal{M}(n, \mathbb{R})$

der globalen Lipschitzbedingung (3.4) mit Konstante ||A||, woraus die globale Lösbarkeit folgt.

Bekanntlich existiert für solche lineare Systeme ein algebraisches Lösungsverfahren. Wir skizzieren dieses Verfahren, weil wir einerseits später in einfachen mechanischen Problemen auf lineare DGL-Systeme geführt werden und zum anderen diese auch sonst nützlich sind. Beispielsweise können wir für ein allgemeines DGL-System $\dot{x}=F(x)$ mit Fixpunkt x_0 , d.h. $F(x_0)=0$, das sogenannte linearisierte System $\dot{y}=DF(x_0)\cdot (y-x_0)$ betrachten und dessen bekannte Lösungen mit den wirklichen Lösungen vergleichen.

Im eindimensionalen Beispiel 3.1.2 wurden wir auf die Lösung $\Phi_t(x) = e^{at} \cdot x$ geführt.

In Verallgemeinerung dieser Lösung gilt für das lineare DGL-System

$$\dot{x} = A \cdot x$$
 $\Phi_t(x) = \exp(At) \cdot x$.

Dabei ist die Exponentialfunktion einer Matrix $B \in \mathcal{M}(n,\mathbb{C})$ durch

$$\exp(B) \equiv e^B := \sum_{n=0}^{\infty} \frac{B^n}{n!}$$

definiert. Die unendliche Summe von Matrizen $\frac{B^n}{n!}$ konvergiert, da

$$\left\| \frac{B^n}{n!} \right\| \le \frac{\|B\|^n}{n!} \quad \text{und} \quad |B_{ik}| \le \|B\| \qquad (i, k \in \{1, \dots, n\}).$$

Es sieht zunächst so aus, als ob wir große Schwierigkeiten bei der konkreten Berechnung von $\exp(At)$ hätten, denn es müssen dabei ja alle Potenzen von A berechnet werden. Das ist in Wirklichkeit nicht so, denn wir können uns die so genannte Jordansche Normalform von $A \in \mathcal{M}(n,\mathbb{R})$ zunutze machen. Dazu ist es hilfreich, A als Element von $\mathcal{M}(n,\mathbb{C})$ zu betrachten ($\mathcal{M}(n,\mathbb{R}) \subset \mathcal{M}(n,\mathbb{C})$). Als solches hat A n nicht notwendig verschiedene Eigenwerte $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$, denn das charakteristische Polynom $\det(A-\lambda\mathbb{1})$ hat im Komplexen n Nullstellen.

Sind die Eigenwerte paarweise verschieden, so können wir für jeden Eigenwert einen Eigenvektor finden. Diese bilden die Spalten einer regulären Matrix $P \in GL(n,\mathbb{C}) := \{M \in \mathcal{M}(n,\mathbb{C}) \mid \det M \neq 0\}$ und offensichtlich gilt

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}.$$

Allgemein können wir A zwar nicht diagonalisieren, aber in Jordan-Normalform bringen:

4.1 Definition a) Eine Matrix der Form

$$J_r(\lambda) := \begin{pmatrix} \lambda & 1 & \dots & 0 \\ & \ddots & \ddots & \vdots \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix} \in \mathcal{M}(r, \mathbb{C})$$

heißt $r \times r$ –Jordan-Block mit Eigenwert λ .

b) Eine Jordan-Matrix ist eine quadratische Matrix der Form

$$J = \begin{pmatrix} J_{r_1}(\lambda_1) & 0 & 0\\ \hline 0 & J_{r_2}(\lambda_2) & 0\\ \hline 0 & 0 & \ddots \end{pmatrix}$$
(4.1)

- c) Eine *Jordan-Basis* eines Operators $f: V \to V$ ist eine Basis von V, in der die darstellende Matrix von f eine Jordan-Matrix ist ("*Jordan-Normalform*").
- **4.2 Satz** Sei $f \in L(V)$ ein Endomorphismus eines endlich-dimensionalen \mathbb{C} -Vektorraumes V. Dann existiert für f eine Jordan-Basis.

Wir finden also ein $P \in GL(n, \mathbb{C})$ mit

$$P^{-1}AP = J \text{ und } J \text{ Jordan-Matrix.}$$

Wegen der Blockdiagonalform (4.1) von J gilt

$$\exp(At) = \sum_{n=0}^{\infty} \frac{A^n t^n}{n!} = P\left(\sum_{n=0}^{\infty} \frac{(P^{-1}AP)^n t^n}{n!}\right) P^{-1} = P\left(\sum_{n=0}^{\infty} \frac{J^n t^n}{n!}\right) P^{-1}$$

$$= P\left(\exp(J_{r_1}(\lambda_1)t) & 0 \\ \exp(J_{r_2}(\lambda_2)t) & 0 \\ 0 & \ddots & P^{-1}, \end{cases}$$
(4.2)

und es genügt, $\exp(J_r(\lambda)t)$ zu berechnen. Nun gilt $J_r(\lambda)=J_r(0)+\lambda\mathbb{1}$.

 $J_r(0)$ und $\lambda 1$ kommutieren aber, was die Berechnung von $\exp(J_r(\lambda)t)$ erleichtert:

4.3 Lemma Für $B, C \in \mathcal{M}(n, \mathbb{C})$ mit BC = CB gilt

$$\exp(B+C) = \exp(B) \cdot \exp(C).$$

Bew.: Durch Einsetzen in die Definition von exp:

$$\begin{split} \exp(B+C) &= \sum_{n=0}^{\infty} \frac{1}{n!} (B+C)^n \stackrel{(!)}{=} \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{i=0}^n \binom{n}{i} B^i C^{n-i} \\ &= \sum_{n=0}^{\infty} \sum_{i=0}^n \frac{1}{i!(n-i)!} B^i C^{n-i} \\ &= \left(\sum_{i=0}^{\infty} \frac{1}{i!} B^i \right) \left(\sum_{j=0}^{\infty} \frac{1}{j!} C^j \right) = \exp(B) \cdot \exp(C). \end{split}$$

Also gilt $\exp(J_r(\lambda)t) = \exp(J_r(0) \cdot t) \cdot \exp(\lambda t \mathbb{1}).$

 $\exp(\lambda t 1\!\!1)$ ist aber gleich $\exp(\lambda t)\cdot 1\!\!1$ und $\exp(J_r(0)\cdot t)=\sum_{n=0}^\infty \frac{1}{n!}(J_r(0))^n t^n$ mit

$$((J_r(0))^n)_{i,k} = \delta_{i,k-n} \qquad (i,k \in \{1,\ldots,r\}),$$

also

$$\exp\left(J_r(\lambda)t\right) = \exp(\lambda t) \cdot \begin{pmatrix} 1 & t & t^2/2 & \cdots & \frac{t^{r-1}}{(r-1)!} \\ 0 & 1 & t & \vdots \\ \vdots & \ddots & \ddots & t^2/2 \\ \vdots & & \ddots & \ddots & t \\ \vdots & & \ddots & \ddots & t \\ \vdots & & \ddots & \ddots & t \end{pmatrix}. \tag{4.3}$$

Wir fassen zusammen:

4.4 Satz Gilt $P^{-1}AP = J$ mit Jordan-Matrix J, so ist

$$\exp(At) = P \begin{pmatrix} \exp(J_{r_1}(\lambda_1)t) & 0 \\ & \ddots & \\ 0 & \exp(J_{r_s}(\lambda_s)t) \end{pmatrix} P^{-1},$$

mit $\exp(J_r(\lambda) \cdot t)$ aus (4.3).

Nun sind die Eigenwerte λ_i der als Element von $\mathcal{M}(n,\mathbb{C})$ aufgefassten Matrix A i.A. nicht reell.

Ist aber λ ein Eigenwert der Multiplizität m, so ist auch $\bar{\lambda}$ ein Eigenwert der Multiplizität m, denn das charakteristische Polynom

$$\det(A - \lambda \mathbb{1}) = (\lambda_1 - \lambda)^{m_1} \cdot \ldots \cdot (\lambda_k - \lambda)^{m_k} = \sum_{l=0}^n a_l \lambda^l$$

besitzt ja reelle Koeffizienten a_l .

Die nicht reellen Eigenwerte lassen sich also zu Paaren zusammenfassen. Durch Ausnutzen der Eulerschen Formel

$$e^{u+iv} = e^u(\cos v + i\sin v)$$
 $(u, v \in \mathbb{R})$

lassen sich bei der Berechnung von $\exp(At)$ komplex konjugierte Terme zusammenfassen. Diese reellen Jordan–Normalformen wollen wir uns im Spezialfall n=2 anschauen.

5 Lineare Dynamische Systeme auf dem \mathbb{R}^2

Um die vorausgegangene Behandlung zu veranschaulichen, wählen wir das Beispiel der DGL

$$\dot{x}_1 = ax_1 + bx_2$$
 , $\dot{x}_2 = cx_1 + dx_2$

oder kurz

$$\dot{x} = Ax$$
 mit $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ und $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}(2, \mathbb{R}).$

Dies ist nach dem in 3.1.2 diskutierten eindimensionalen Fall die einfachste Klasse linearer Differentialgleichungen. Iterierte lineare Abbildungen auf \mathbb{R}^2 lassen sich ähnlich wie die obige DGL diskutieren.

A kann die folgenden reellen Jordan–Normalformen besitzen:

5.1 Satz Sei
$$M = \mathbb{R}^2$$
, $A = \binom{a \ b}{c \ d} \in \mathcal{M}(2, \mathbb{R})$, $\delta := \det A$ und $s := \frac{1}{2} \operatorname{tr}(A) = \frac{a+d}{2}$. Wenn

1. A zwei linear unabhängige (reelle) Eigenvektoren besitzt, so gilt

$$A = B \left(\begin{array}{cc} s + \sqrt{s^2 - \delta} & 0 \\ 0 & s - \sqrt{s^2 - \delta} \end{array} \right) B^{-1} \quad \text{und} \quad s^2 \geq \delta$$

2. A keine (reellen) Eigenvektoren besitzt, gilt

$$A = B \begin{pmatrix} s & -\sqrt{\delta - s^2} \\ \sqrt{\delta - s^2} & s \end{pmatrix} B^{-1} \quad \text{und} \quad s^2 < \delta.$$

3. Sonst gilt

$$A = B \begin{pmatrix} s & 1 \\ 0 & s \end{pmatrix} B^{-1}$$
 und $s^2 = \delta$.

Dabei ist B eine geeignete Matrix aus $GL(2,\mathbb{R})$.

Bew.: Es gilt $\chi(\lambda) \equiv \det(A-\lambda) = \lambda^2 - 2s\lambda + \delta$. Die komplexen Nullstellen des charakteristischen Polynoms sind also

$$\lambda_{1/2} = s \pm \sqrt{s^2 - \delta}.$$

- Für $s^2 > \delta$ haben wir zwei voneinander verschiedene reelle Nullstellen und daher zwei linear unabhängige (reelle) Eigenvektoren $b_1, b_2 \in \mathbb{R}^2$. Bezüglich der durch die Spaltenvektoren b_1 und b_2 gegebenen Transformationsmatrix $B := (b_1, b_2)$ hat $B^{-1}AB$ daher die unter 1. angegebene Gestalt.
- Für $s^2 = \delta$ haben wir eine doppelte reelle Nullstelle s des charakteristischen Polynoms und mindestens einen Eigenvektor $b_1 \in \mathbb{R}^2$.

Existiert noch ein zweiter linear unabhängiger Eigenvektor, dann können wir wie oben vorgehen. Sonst gilt

$$Ab_1 = sb_1$$
 und $Ab_2 = \alpha b_1 + \beta b_2$

für einen von b_1 linear unabhängigen Vektor $b_2 \in \mathbb{R}^2$.

Also hat A bezüglich der Basis (b_1, b_2) die Form $B^{-1}AB = \begin{pmatrix} s & \alpha \\ 0 & \beta \end{pmatrix}$, und wegen $\operatorname{tr}(B^{-1}AB) = \operatorname{tr}(A) = 2s$ gilt $\beta = s$. Nach Voraussetzung ist $\alpha \neq 0$. Also können wir durch Multiplikation von b_2 mit einer geeigneten Konstante die unter 3. angegebene Gestalt erreichen.

• Ist $s^2 < \delta$, so sind die beiden Nullstellen λ_1, λ_2 des charakteristischen Polynoms komplex konjugiert:

$$\lambda_{1/2} = s \pm i\sqrt{\delta - s^2}.$$

Ist $x_1 \in \mathbb{C}^2$ Eigenvektor der als Element von $\mathcal{M}(2,\mathbb{C})$ aufgefassten Matrix A zum Eigenwert λ_1 , so ist $x_2 := \overline{x_1} \in \mathbb{C}^2$ Eigenvektor zu λ_2 . Die beiden Vektoren bilden zusammen eine Basis von \mathbb{C}^2 . Betrachten wir die Basis

$$b_+ := x_1 + x_2$$
 , $b_- := i(x_1 - x_2)$

in \mathbb{R}^2 , so ergibt sich

$$Ab_{+} = \lambda_{1}x_{1} + \overline{\lambda_{1}}\overline{x_{1}} = s(x_{1} + x_{2}) + i\sqrt{\delta - s^{2}}(x_{1} - x_{2})$$

$$Ab_{-} = i\lambda_{1}x_{1} - i\overline{\lambda_{1}}\overline{x_{1}} = -\sqrt{\delta - s^{2}}(x_{1} + x_{2}) + is(x_{1} - x_{2})$$

woraus sich Fall 2. ergibt.

5.2 Beispiel Wir betrachten einen Massenpunkt der Masse 1 am Ort $q \in \mathbb{R}$, der durch eine Kraft $F(q) := a \cdot q$ beschleunigt wird, $a \in \mathbb{R}$. Physikalisch kann man etwa an einen Gegenstand denken, der unter dem Einfluss der Schwerkraft reibungsfrei auf einer parabolisch geformten Unterlage gleitet. Nach Newton gilt

also die DGL zweiter Ordnung $\ddot{q}=aq$. Durch Einführung der Geschwindigkeit $p=\dot{q}$ ergibt sich das lineare DGL-System erster Ordnung

$$\dot{q} = p$$
 , $\dot{p} = aq$

oder

$$\dot{x} = A \cdot x$$
 mit $x = \begin{pmatrix} q \\ p \end{pmatrix}$ und $A := \begin{pmatrix} 0 & 1 \\ a & 0 \end{pmatrix}$.

1. Fall: a > 0, siehe Abbildung 1, das Teilchen wird also von der Ruhelage weg beschleunigt. Wir setzen $\omega := \sqrt{a}$.

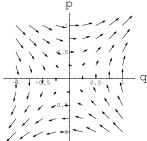
Eigenwerte $\pm \omega$ mit Eigenvektoren $\begin{pmatrix} 1 \\ \pm \omega \end{pmatrix}$ von A.

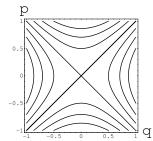
$$P = \begin{pmatrix} 1 & 1 \\ \omega & -\omega \end{pmatrix} \quad , \quad P^{-1} = -\frac{1}{2\omega} \begin{pmatrix} -\omega & -1 \\ -\omega & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2\omega} \\ \frac{1}{2} & \frac{-1}{2\omega} \end{pmatrix}$$

$$\exp(At) = P\left(\begin{smallmatrix} e^{\omega t} & 0 \\ 0 & e^{-\omega t} \end{smallmatrix}\right) P^{-1} = \frac{1}{2} \left(\begin{smallmatrix} e^{\omega t} & e^{-\omega t} \\ \omega e^{\omega t} & -\omega e^{-\omega t} \end{smallmatrix}\right) \left(\begin{smallmatrix} 1 & \frac{1}{\omega} \\ 1 & \frac{-1}{\omega} \end{smallmatrix}\right)$$
$$= \left(\begin{smallmatrix} \cosh \omega t & \frac{1}{\omega} \sinh \omega t \\ \omega \sinh \omega t & \cosh \omega t \end{smallmatrix}\right)$$

Es gilt also

 $\Phi_t((q_0, p_0)) = (q(t), p(t)) = \left(q_0 \cosh \omega t + \frac{p_0}{\omega} \sinh \omega t, \omega q_0 \sinh \omega t + p_0 \cosh \omega t\right).$





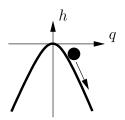


Abbildung 1: Vektorfeld $\dot{q} = p$, $\dot{p} = q$

2. Fall: a = 0, siehe Abbildung **2**.

 $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ ist ein Jordanblock zum Eigenwert 0. Damit ist

$$\exp(At) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
, also $\Phi_t((q_0, p_0)) = (q(t), p(t)) = (q_0 + p_0 t, p_0).$

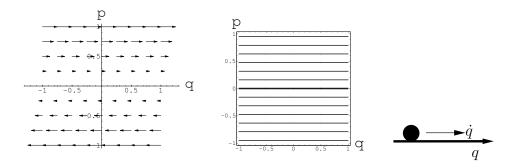


Abbildung 2: Vektorfeld $\dot{q}=p,\,\dot{p}=0$

3. Fall: a < 0, siehe Abbildung **3.** Wir setzen $\omega := \sqrt{-a}$.

Komplexe Eigenwerte $\pm i\omega$ mit Eigenvektoren $\begin{pmatrix} 1 \\ \pm i\omega \end{pmatrix}$ von A.

$$P = \begin{pmatrix} 1 & 1 \\ i\omega & -i\omega \end{pmatrix}$$
 , $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & \frac{1}{i\omega} \\ 1 & \frac{i}{\omega} \end{pmatrix}$

$$\exp(At) = P\begin{pmatrix} e^{i\omega t} & 0\\ 0 & e^{-i\omega t} \end{pmatrix} P^{-1} = \begin{pmatrix} \cos \omega t & \frac{1}{\omega} \sin \omega t\\ -\omega \sin \omega t & \cos \omega t \end{pmatrix},$$

also

$$\Phi_t((q_0, p_0)) = \left(q_0 \cos \omega t + \frac{p_0}{\omega} \sin \omega t, -q_0 \omega \sin \omega t + p_0 \cos \omega t\right).$$

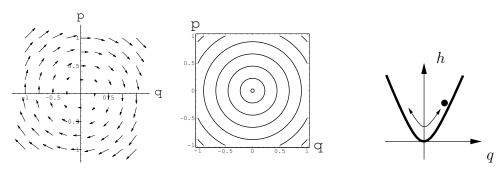


Abbildung 3: Vektorfeld $\dot{q}=p,\,\dot{p}=-q$

Wir bemerken, dass in allen drei Fällen

$$\det(\exp(At)) = 1 \qquad (t \in \mathbb{R})$$

ist. Das folgt für Fall 1. und 3. aus dem trigonometrischen Additionstheorem.

Eine anschauliche Interpretation dieser Tatsache ist die Feststellung, dass der Fluss in \mathbb{R}^2 flächenerhaltend ist.

Allgemein können wir ja für eine Basis (b_1,\ldots,b_n) des \mathbb{R}^n die Determinante der Matrix $B=(b_1,\ldots,b_n)$ als Volumen des von den Basisvektoren aufgespannten Parallelepipeds $\{\sum_{i=1}^n x_i b_i \mid x_i \in [0,1]\}$ auffassen.

Unter einem linearen Fluss $\exp(At)$ geht dieses Parallelepiped in das durch $\exp(At)B$ gegebene über. Aus der Determinantenproduktformel folgt dann, dass

$$\det(\exp(At)) = \frac{\det(\exp(At) \cdot B)}{\det B}$$

der Faktor ist, um den sich das Volumen vergrößert hat. Es gilt der Satz:

5.3 Satz Für $A \in L(\mathbb{C}^n)$ gilt

$$\det(\exp(A)) = \exp(\operatorname{tr}(A)).$$

Bew.: Dies folgt aus der Existenz einer Jordan-Basis, also von $P \in GL(n, \mathbb{C})$ mit $P^{-1}AP = J$ und Jordan-Matrix J. Es ist in der Notation (4.1) für J

$$\det(\exp(A)) = \det(P^{-1}\exp(A)P) = \det(\exp(P^{-1}AP)) = \det(\exp(J))$$
$$= \prod_{k} \det(\exp(J_{r_k}(\lambda_k))) = \prod_{k} \exp(r_k \lambda_k)$$

und andererseits

$$\operatorname{tr}(A) = \operatorname{tr}(P^{-1}AP) = \operatorname{tr}(J) = \sum_{k} \operatorname{tr}(J_{r_k}(\lambda_k)) = \sum_{k} r_k \lambda_k,$$

sodass sich die Aussage aus der Funktionalgleichung der komplexen Exponentialfunktion ergibt. $\hfill\Box$

Folgerung: Der von $A \in \mathcal{M}(n,\mathbb{R})$ erzeugte lineare Fluss $\Phi_t(x) = e^{At}x$ auf $M = \mathbb{R}^n$ ist genau dann volumenerhaltend, wenn $\operatorname{tr}(A) = 0$.

6 Gradientenflüsse und Hamiltonsche Systeme

6.1 Gradienten–Differentialgleichungen

Es sei $M \subset \mathbb{R}^n$ offen und $H \in C^2(M, \mathbb{R})$.

Wir betrachten die DGL des Gradientenflusses von H

$$\begin{cases} \dot{x}_1 &= \frac{\partial H}{\partial x_1}(x_1, \dots, x_n) \\ &\vdots & \text{oder kurz} \quad \dot{x} = \nabla H(x) \\ \dot{x}_n &= \frac{\partial H}{\partial x_n}(x_1, \dots, x_n) \end{cases}$$

(bezüglich der kanonischen Metrik auf dem \mathbb{R}^n).

Erfüllt H geeignete Bedingungen, so definiert die obige DGL ein dynamisches System $\Phi : \mathbb{R} \times M \to M$.

Wir stellen fest, dass H entlang der Trajektorien anwächst:

$$\frac{d}{dt}H(\Phi_t(m)) = DH_{\Phi_t(m)}\left(\frac{d}{dt}\Phi_t(m)\right) = DH_{\Phi_t(m)}(\nabla H(\Phi_t(m)))$$

$$= |\nabla H(\Phi_t(m))|^2 \ge 0.$$

Betrachten wir für $c \in \mathbb{R}$ die Menge

$$M_c := \{ m \in M \mid H(m) \ge c \},\$$

so gilt damit

$$\Phi_t(M_c) \subset M_c \qquad (t \ge 0),$$

die Trajektorien sind für positive Zeiten also gewissermaßen in M_c gefangen.

6.1 Beispiel Die durch $H(x) = \frac{1}{2}(x,Ax)$, $(A \in \mathcal{M}(n,\mathbb{R}), \text{ o.B.d.A.}$ (ohne Beschränkung der Allgemeinheit) $A^T = A$), gegebene quadratische Funktion H auf \mathbb{R}^n führt zur DGL

$$\dot{x} = \nabla H(x) = A \cdot x,$$

also zum Fluss

$$\Phi_t(x) = \exp(At) \cdot x.$$

Wir finden (da $A^T = A$) eine Basis des \mathbb{R}^n , in der A diagonal ist. Ist A diagonal, so gilt mit $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$

$$x_i(t) = e^{\lambda_i t} x_i(0)$$
 , siehe Abbildung 4.

Da, wie wir gesehen haben, H entlang der Trajektorien anwächst, gilt

Folgerung: Außer Fixpunkten besitzen Gradientensysteme keine periodischen Orbits.

6.2 Beispiel $H(x_1, x_2) := x_2^2 + (x_1^2 - 1)^2$.

Der Fluss existiert nur für *alle* negativen Zeiten und besitzt die Fixpunkte (0,0), (1,0) und (-1,0), siehe Abbildung 5.

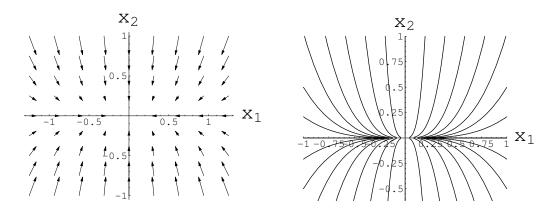


Abbildung 4: Links: Gradientenvektorfeld $\dot{x}=\nabla H(x)$ mit $H(x)=-x_1^2-0.3x_2^2$. Rechts: Orbits

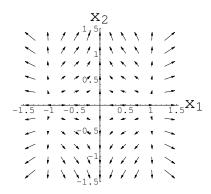


Abbildung 5: Gradientenvektorfeld $\dot{x} = \nabla H(x)$ mit $H(x) = x_2^2 + (x_1^2 - 1)^2$

6.2 Hamiltonsche Systeme

Durch eine kleine, aber entscheidende Änderung des Differentialgleichungssystems kommen wir zum für die Mechanik zentralen Begriff der Hamiltonschen Systeme:

6.3 Definition Es sei $M \subset \mathbb{R}^{2n}$ offen und $H \in C^2(M,\mathbb{R})$. Das DGL-System

$$\dot{p}_i = -\frac{\partial H(q, p)}{\partial q_i}$$
 , $\dot{q}_i = \frac{\partial H(q, p)}{\partial p_i}$ $(i = 1, \dots, n)$

oder, in den Koordinaten $x \equiv (p_1, \dots, p_n, q_1, \dots, q_n) \equiv (p, q)$

 $\dot{x} = X_H(x)$ mit dem Hamiltonschen Vektorfeld $X_H := J \nabla H$

und $J:=\begin{pmatrix}0&-1\\1&0\end{pmatrix}\in\mathcal{M}(2n,\mathbb{R})$ heißt System der Hamiltonschen Differentialgleichungen.

6.4 Bemerkung *H* wird *Hamiltonfunktion* genannt, was auf den Zusammenhang mit den obigen DGL hinweisen soll.

Wir setzen im Folgenden einfachheitshalber voraus, dass ${\cal H}$ ein Dynamisches System definiert.

6.5 Satz *H* ist entlang eines Orbits konstant.

Bew.:
$$\frac{d}{dt}H(\Phi(t,x)) = DH_y(\frac{d}{dt}\Phi(t,x)) = DH_y(J\cdot\nabla H(y)) = (\nabla H(y),J\nabla H(y))$$
 mit $y:=\Phi(t,x)\in M$. Es gilt aber für $v\in\mathbb{R}^{2n}$, also auch für $\nabla H(y)$

$$(v, Jv) = (J^T v, v) = -(Jv, v) = -(v, Jv) = 0.$$

Satz 6.5 erlaubt uns, das dynamische System auf die (oft *Energieschalen* genannten) Niveaumengen $H^{-1}(E)$ ($E \in \mathbb{R}$) zu restringieren. Nach dem Satz über die implizite Funktion sind dies für reguläre Werte E von H Untermannigfaltigkeiten von M.

Dies ermöglicht es für den Fall n=1, also $M=\mathbb{R}^2$, für eine gegebene Funktion H die Orbits, allerdings ohne Zeitparametrisierung, aufzufinden:

Zu $x \in M$ betrachten wir die Niveaumenge $H^{-1}(H(x))$. Ist $\nabla H(x) = 0$, so besteht der Orbit nur aus x. Sonst ist in einer Umgebung von x die Niveaumenge $H^{-1}(H(x))$ eine Kurve im Phasenraum \mathbb{R}^2 , was man durch Verwendung des Impliziten Funktionensatzes sehen kann. Um den Orbit zu bekommen, dehnen wir diese Kurve nach beiden Seiten so weit wie möglich aus. Die Orientierung erhalten wir durch die Richtung, die durch Drehung des Gradienten im Uhrzeigersinn um $\pi/2$ entsteht (J entspricht einer solchen Drehung).

6.6 Beispiel
$$H(q, p) := p^2 + (q^2 - 1)^2$$
, siehe Abbildung **6**.

Begriffe: Mit Phasenraum $M\subset \mathbb{R}^{2n}=\mathbb{R}_p^n\times \mathbb{R}_q^n$ nennen wir

- n Zahl der Freiheitsgrade
- $\bullet \ \ q \in \mathbb{R}_q^n \text{ Ort und } p \in \mathbb{R}_p^n \text{ Impuls}$
- $\dot{q} = \frac{\partial H}{\partial p}$ Geschwindigkeit und \ddot{q} Beschleunigung
- H Hamiltonfunktion oder Gesamtenergie

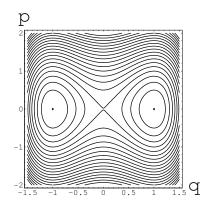


Abbildung 6: Niveaulinien von H

• Besitzt der Phasenraum die Form $M=\mathbb{R}_p^n\times N$, so heißt $N\subset\mathbb{R}_q^n$ Konfigurationsraum.

7 Lineare Hamiltonsche Systeme

Damit die Hamiltonschen DGL linear werden, muss $H:M\to\mathbb{R}$ von der Form

$$H(x) = H(0) + \frac{1}{2}(x, Ax)$$

sein mit $A \in \mathcal{M}(2n, \mathbb{R})$ und o.B.d.A. $A = A^T$.

Dann ergibt sich $\nabla H(x) = Ax$ und $\dot{x} = JA \cdot x$.

Die Differentialgleichungen bleiben invariant, wenn wir zu H eine Konstante dazuaddieren. Das entspricht physikalisch der Tatsache, dass nicht absolute Energiewerte, sondern nur Energiedifferenzen messbar sind. Wir setzen der Einfachheit halber H(0):=0. Setzen wir $u:=JA\in\mathcal{M}(2n,\mathbb{R})$, so stellen wir fest, dass $u^T\cdot J=A^TJ^TJ=-A^TJ\cdot J=A^T=A$ und $J\cdot u=J^2A$, also

$$u^T J + J u = 0$$

Das führt uns zu folgender Definition:

7.1 Definition Eine Matrix $u \in \mathcal{M}(2n, \mathbb{R})$ und der entsprechende Endomorphismus des \mathbb{R}^{2n} heißen *infinitesimal symplektisch*, wenn

$$u^T J + J u = 0. (7.1)$$

Da die Bedingung an u linear ist, bilden die infinitesimal symplektischen Endomorphismen einen Unterraum, $sp(2n) \subset L(\mathbb{R}^{2n})$.

7.2 Satz tr(u) = 0 für $u \in sp(2n)$.

Bew.:
$$\operatorname{tr}(u) = -\operatorname{tr}(uJ^2) = -\operatorname{tr}(JuJ) = -\operatorname{tr}(u^T) = -\operatorname{tr}(u).$$

Folgerung: (Lineare) Hamiltonsche Systeme sind volumenerhaltend.

Bew.:
$$\Phi(t,x) = \exp(ut)x$$
, und $\det(\exp(ut)) = \exp(\operatorname{tr}(u)t) = 1$.

Der Fluss eines linearen Hamiltonschen Systems hat nicht nur die Eigenschaft, volumenerhaltend zu sein. Es gilt auch

$$(\exp(ut))^T J \exp(ut) = J \qquad (t \in \mathbb{R}), \tag{7.2}$$

denn $(\exp(ut))^T = \exp(u^T t)$, also wegen (7.1)

$$(\exp(ut))^T J = J \exp(-ut) = J(\exp(ut))^{-1}.$$

Gleichung (7.2) besagt, dass ein linearer Hamiltonscher Fluss die schiefsymmetrische Bilinearform

$$\omega_0: \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$$
 , $\omega_0(u, v) := (u, Jv)$

invariant lässt, d.h. $\omega_0(\Phi_t(u), \Phi_t(v)) = \omega_0(u, v)$, ähnlich wie eine orthogonale Transformation das kanonische Skalarprodukt des \mathbb{R}^n invariant lässt. Den mechanischen Bewegungen entspricht damit eine besondere Art von Geometrie, die wir im nächsten Kapitel eingehender untersuchen.

8 Symplektische Geometrie

Die den mechanischen Bewegungen zugrundeliegende symplektische Geometrie besitzt gewisse Ähnlichkeiten mit der Riemannschen Geometrie. Diese werden wir im Folgenden herausarbeiten.

8.1 Definition Sei E ein \mathbb{R} -Vektorraum der Dimension $n < \infty$ und $\omega : E \times E \to \mathbb{R}$ eine Bilinearform.

- Die Transponierte ω^t von ω ist durch $\omega^t(e_1,e_2):=\omega(e_2,e_1)$ gegeben.
- ω heißt symmetrisch, wenn $\omega^t = \omega$, schiefsymmetrisch, wenn $\omega^t = -\omega$.
- Durch ω wird die lineare Abbildung $\omega^{\flat}: E \to E^*, \omega^{\flat}(e_1) \cdot e_2 := \omega(e_1, e_2)$ in den Dualraum E^* von E induziert.

- ω heißt *nicht degeneriert*, wenn $\omega^{\flat}(e) = 0$ nur für e = 0 gilt.
- Bezüglich einer Basis (b_1, \ldots, b_n) von E ist die darstellende Matrix $J \in \mathcal{M}(n, \mathbb{R})$ von ω durch $(J)_{ik} := \omega(b_i, b_k)$, $(i, k = 1, \ldots, n)$ gegeben.
- Der Rang von ω ist der (basisunabhängige) Rang der darstellenden Matrizen von ω .
- Ist ρ eine Bilinearform auf F und $f \in L(E, F)$, dann heißt die Bilinearform

$$f^*\rho: E \times E \to \mathbb{R}$$
 , $f^*\rho(e_1, e_2) := \rho(f(e_1), f(e_2))$

der pull-back von ρ mit f.

- **8.2 Satz** Sei E ein n-dimensionaler \mathbb{R} -Vektorraum.
 - 1. Ist ω symmetrisch mit Rang r, dann besitzt die darstellende Matrix von ω bezüglich einer geeigneten Basis die Form

$$J = \begin{pmatrix} \eta_1 & & & & \\ & \ddots & & & \\ & & \eta_r & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix} , \quad \eta_i \in \{\pm 1\}.$$

2. Ist ω schiefsymmetrisch mit Rang r, so ist $r=2m, m\in\mathbb{N}_0$ und die darstellende Matrix von ω besitzt bezüglich einer geeigneten Basis die Form

$$J = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}(n, \mathbb{R})$$

 $mit \ m \times m$ -Einheitsmatrix 1.

Bew.: Diese Aussagen werden oft in der Vorlesung Lineare Algebra bewiesen.

1. Es gilt die *Polarisationsidentität*

$$\omega(e,f) = \frac{1}{4}(\omega(e+f,e+f) - \omega(e-f,e-f)).$$

Ist also $\omega \neq 0$, dann existiert ein Vektor \hat{e}_1 mit $c_1 := \omega(\hat{e}_1, \hat{e}_1) \neq 0$. Setze $e_1 := \hat{e}_1/\sqrt{|c_1|}$.

Wir betrachten den von e_1 aufgespannten eindimensionalen Unterraum $E_1 \subset E$ und $E_2 := \{e \in E \mid \omega(e,e_1) = 0\}$. Es gilt $E_1 \cap E_2 = \{0\}$ und $E_1 + E_2 = E$, denn für $z \in E$ gilt

$$z - \omega(z, e_1)e_1 \in E_2.$$

Wir betrachten die Einschränkung von ω auf E_2 und fahren induktiv fort.

2. Für $\omega \neq 0$ existieren $\hat{e}_1, \hat{e}_{m+1} \in E$ mit $c_1 := \omega(\hat{e}_{m+1}, \hat{e}_1) \neq 0$. Setze $e_1 := \hat{e}_1/c_1$ und $e_{m+1} := \hat{e}_{m+1}$. Es ist

$$\omega(e_1, e_1) = \omega(e_{m+1}, e_{m+1}) = 0$$
 und $\omega(e_{m+1}, e_1) = -\omega(e_1, e_{m+1}) = 1$.

Sei $P_1 := Span(e_1, e_{m+1}) \subset E$ und

$$E_2 := \{ e \in E \mid \omega(e, f) = 0 \quad \text{für alle} \quad f \in P_1 \}.$$

Es gilt $E_2 \cap P_1 = \{0\}$ und $E_2 + P_1 = E$, denn für $z \in E$ gilt

$$z + \omega(e_1, z)e_{m+1} - \omega(e_{m+1}, z)e_1 \in E_2.$$

Wir behandeln induktiv die Einschränkung von ω auf E_2 etc.

- **8.3 Definition** Eine *symplektische Form* auf einem \mathbb{R} -Vektorraum E ist eine nicht degenerierte schiefsymmetrische Bilinearform $\omega: E \times E \to \mathbb{R}$.
- \bullet (E,ω) heißt dann symplektischer Vektorraum.
- Sind (E, ω) und (F, ρ) symplektisch, so heißt eine lineare Abbildung $f: E \to F$ symplektisch, wenn $f^*\rho = \omega$.
- **8.4 Bemerkung** 1. Die symplektischen Abbildungen $f \in L(E)$ sind diejenigen, die die symplektische Form ω erhalten, d.h. $f^*\omega = \omega$. Nach Satz 8.2 finden wir eine Basis von E, in der die darstellende Matrix von ω gleich $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ ist. Es sei A die darstellende Matrix von f. Dann gilt

$$A^T J A = J.$$

2. Zwar sind symplektische Abbildungen volumenerhaltend, aber i.A. volumenerhaltende Abbildungen nicht symplektisch.

Betrachten wir beispielsweise einen vierdimensionalen Vektorraum E mit Basis e_1, \ldots, e_4 und symplektischer Bilinearform ω mit Matrix $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Dann ist $f: E \to E$, $(e_1, e_2, e_3, e_4) \mapsto (-e_1, -e_2, e_3, e_4)$ volumenerhaltend, aber $\omega(f(e_1), f(e_3)) = -\omega(e_1, e_3)$.

Lässt aber ein Endomorphismus f des \mathbb{R}^2 die orientierte Fläche invariant, so ist f auch symplektisch. Denn für Matrizen $A \in \mathcal{M}(2,\mathbb{R})$ gilt $(J^TAJ)A^T = \det(A)\mathbb{1}$, also $J^TAJ = (A^{-1})^T$ genau dann, wenn der durch A gegebene Endomorphismus f eine flächenerhaltende Abbildung ist

- **8.5 Proposition** Sei (E,ω) ein symplektischer Vektorraum, dann bildet die Menge der symplektischen Endomorphismen $f:E\to E$ unter der Komposition eine Gruppe, genannt die **symplektische Gruppe** $Sp(E,\omega)$.
- **8.6 Bemerkung** Für einen Euklidischen Raum (E,ω) mit positiv definiter symmetrischer Bilinearform ω erhalten wir in ähnlicher Weise die *orthogonale Gruppe* $O(E,\omega)$.

Bew.: Ist f symplektisch, so ist $f \in GL(E)$, also existiert f^{-1} . Es gilt dann $(f^{-1})^*\omega = (f^*)^{-1}\omega = (f^*)^{-1}(f^*\omega) = \omega$ und für f,g symplektisch $(f \circ g)^*(\omega) = g^*\circ f^*(\omega) = g^*\omega = \omega$. Außerdem ist die Identische Abbildung symplektisch, also $Sp(E,\omega) \neq \emptyset$.

Wegen Satz 8.2 ist $Sp(E, \omega)$ isomorph zur Gruppe

$$Sp(\mathbb{R}^{2n}) := Sp(\mathbb{R}^{2n}, \omega_0),$$

wobei ω_0 bezüglich der kanonischen Basis des \mathbb{R}^{2n} die darstellende Matrix J besitzt (ganz analog braucht man nach Satz 8.2 statt $O(E,\omega)$ nur die orthogonale Gruppe $O(n):=O(\mathbb{R}^n,\omega_0)$ zu betrachten, deren kanonisches inneres Produkt ω_0 die darstellende Matrix 1 hat).

8.7 Beispiel Der Zeit-t-Fluss $\Phi_t(x) = \exp(ut)x$, u = JA eines linearen Hamiltonschen Systems mit Hamiltonfunktion $H(x) = \frac{1}{2}(x, Ax)$, $A \in \operatorname{Sym}(2n, \mathbb{R})$ ist Element der symplektischen Gruppe $Sp(\mathbb{R}^{2n})$, denn es gilt (7.2).

Der Betrag der Determinante eines symplektischen Endomorphismus ist gleich 1, denn es gilt ja

$$\det(A^T J A) = (\det A)^2 \det(J) = \det(J).$$

Es gilt sogar det(A) = +1, aber der einfachste Beweis dieser Tatsache verwendet den Kalkül der äußeren Formen, der erst später eingeführt werden soll.

Es folgt unmittelbar, dass das Produkt der C-Nullstellen des charakteristischen Polynoms eines symplektischen Endomorphismus 1 ist.

8.8 Satz Sei $f \in Sp(E, \omega)$ und $\lambda \in \mathbb{C}$ Eigenwert von f. Dann sind auch $\overline{\lambda}, 1/\lambda$ und $\overline{1/\lambda}$ Eigenwerte.

Bew.: Dass mit λ auch $\overline{\lambda}$ Eigenwert ist, folgt aus der Tatsache, dass f reell ist.

Wir beweisen, dass $1/\lambda$ Eigenwert ist, indem wir das charakteristische Polynom von f betrachten.

Wir wählen eine Basis von E, in der ω die darstellende Matrix J besitzt und f die Matrix A. Es gilt dann für $\lambda \in \mathbb{C} \setminus \{0\}$

$$\det(A - \lambda \mathbb{1}) = \det(J(A - \lambda \mathbb{1})J^{-1}), \qquad (\operatorname{da} \det J = 1 \neq 0)$$

$$= \det(JAJ^{-1} - \lambda \mathbb{1}) = \det((A^T)^{-1} - \lambda \mathbb{1}), \quad (\operatorname{da} A^TJA = J \operatorname{oder} JAJ^{-1} = (A^T)^{-1})$$

$$= \det(A^{-1} - \lambda \mathbb{1}) = \det(A^{-1}(\mathbb{1} - \lambda A))$$

$$= \det(A^{-1}) \cdot \det(\mathbb{1} - \lambda A) = \det(\mathbb{1} - \lambda A) = \lambda^{2n} \det(\lambda^{-1} \mathbb{1} - A)$$

$$= \lambda^{2n} \det(A - \lambda^{-1} \mathbb{1}) \quad \operatorname{mit} \quad n := \frac{1}{2} \dim(E).$$

Da A invertierbar ist, sind alle komplexen Eigenwerte λ von A ungleich 0 und die Aussage folgt. \Box

Auch die algebraischen Multiplizitäten der genannten Eigenwerte sind gleich:

8.9 Satz Sei $f \in Sp(E,\omega)$ und $\lambda \in \mathbb{C}$ Eigenwert von f mit Vielfachheit k. Dann sind auch $\overline{\lambda}, 1/\lambda, 1/\overline{\lambda}$ Eigenwerte mit Vielfachheit k. Die Multiplizitäten etwaiger Eigenwerte +1 und -1 sind gerade.

Bew.:

• Für $P(\lambda) := \det(A - \lambda \mathbb{1})$ gilt $P(\lambda) = \lambda^{2n} P(1/\lambda)$ mit $n := \frac{1}{2} \dim(E)$. Einen Eigenwert $\lambda_0 \in \mathbb{C}$ der Vielfachheit k ist können wir abspalten:

$$P(\lambda) = (\lambda_0 - \lambda)^k Q(\lambda),$$

so dass

$$P\left(\frac{1}{\lambda}\right)\lambda^{2n} = (\lambda_0 - \lambda)^k Q(\lambda) = (\lambda \lambda_0)^k \left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)^k Q(\lambda).$$

Da $Q(\lambda)$ ein Polynom vom Grad 2n-k in λ ist, ist $(\lambda_0^k/\lambda^{2n-k})\cdot Q(\lambda)$ ein Polynom in $1/\lambda$. Also ist $1/\lambda_0$ Nullstelle der Multiplizität $l\geq k$ von $P(1/\lambda)$.

Vertauschen der Rollen von λ_0 und $1/\lambda_0$ zeigt l=k.

Es gilt genau dann λ₀ = 1/λ₀, wenn λ₀ ∈ {±1}.
Da insgesamt 2n Eigenwerte existieren und die Zahl der Eigenwerte ≠ ±1 gerade ist, muss die Multiplizität der 1 zusammen mit der der −1 gerade sein. Wegen det A = 1 folgt dann auch einzeln gerade Multiplizität.

Für $\dim(E) = 2$ können also die in Abbildung 7 skizzierten Fälle auftreten.

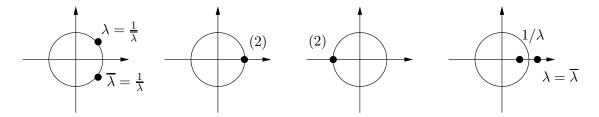


Abbildung 7: Komplexe Eigenwerte von $f \in Sp(\mathbb{R}^2)$

Es gilt $Sp(\mathbb{R}^{2n})\subset L(\mathbb{R}^{2n})$ und damit wird die symplektische Gruppe zum topologischen Raum, ja zur Untermannigfaltigkeit (Analogie $SO(2)\subset L(\mathbb{R}^2)$).

Die symplektische Gruppe ist sogar eine Liegruppe, d.h. Multiplikation und Inversenbildung induzieren glatte Abbildungen.

Da die symplektische Gruppe ein topologischer Raum ist, können wir Wege in $Sp(E,\omega)$, d.h. stetige Abbildungen $c:[0,1]\to Sp(E,\omega)$ einführen. Wie verhalten sich dann die Eigenwerte von c(t) bei Veränderung des Parameters t?

Offensichtlich können Eigenwerte auf der reellen Achse bzw. dem Einheitskreis diese nicht verlassen, solange sie isoliert bleiben, siehe Bild 8. Wir werden sehen, dass aus dieser Eigenschaft eine Form von Stabilität Hamiltonscher Systeme unter kleinen Störungen folgt.

9 Die symplektische Algebra

In Verallgemeinerung von Def. 7.1 definieren wir:

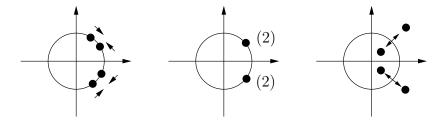


Abbildung 8: Komplexe Eigenwerte von $f \in Sp(\mathbb{R}^4)$

9.1 Definition Eine lineare Abbildung $u \in L(E)$ heißt *infinitesimal symplektisch* bezüglich einer symplektischen Bilinearform ω , wenn

$$\omega(ue_1, e_2) + \omega(e_1, ue_2) = 0 \qquad (e_1, e_2 \in E). \tag{9.1}$$

Die Menge dieser Abbildungen bezeichnen wir mit $sp(E, \omega)$.

Wegen der Linearität von (9.1) in u ist $sp(E, \omega)$ ein Unterraum von L(E). Es gilt sogar

9.2 Lemma Der Kommutator von $A, B \in L(E)$ ist [A, B] := AB - BA. $(sp(E, \omega), [\cdot, \cdot])$ ist eine Liealgebra².

Bew.: $(L(E), [\cdot, \cdot])$ ist eine Liealgebra, da der Kommutator bilinear und antisymmetrisch ist, und die Jacobi-Identität

$$[A,[B,C]] + [B,[C,A]] + [C,[A,B]] =$$

$$ABC - ACB - BCA + CBA + BCA - BAC - CAB + ACB$$

$$+CAB - CBA - ABC + BAC = 0$$

für $A, B, C \in L(E)$ erfüllt.

Da für $A,B\in sp(E,\omega)$

$$\omega([A, B]e_1, e_2) + \omega(e_1, [A, B]e_2)$$

$$= \omega(ABe_1, e_2) - \omega(BAe_1, e_2) + \omega(e_1, ABe_2) - \omega(e_1, BAe_2)$$

$$= -\omega(Be_1, Ae_2) + \omega(Ae_1, Be_2) - \omega(Ae_1, Be_2) + \omega(Be_1, Ae_2) = 0,$$

ist auch $[A, B] \in sp(E, \omega)$.

Analog zu der obigen Aussage über die Gruppe $Sp(E, \omega)$ erhält man:

 $^{^2}$ Eine Lie algebra ist ein Vektorraum E mit einer bilinearen schiefsymmetrischen Abbildung $[\cdot,\cdot]:E\times E\to E$, die die Jacobi-Identität [A,[B,C]]+[B,[C,A]]+[C,[A,B]]=0 erfüllt.

- **9.3 Satz** Sei (E, ω) ein symplektischer Vektorraum und $u \in sp(E, \omega)$.
- Ist $\lambda \in \mathbb{C}$ Eigenwert von u mit Multiplizität k, so sind auch $-\lambda, \overline{\lambda}, -\overline{\lambda}$ Eigenwerte der Multiplizität k.
- Ist Null Eigenwert, so besitzt er gerade Multiplizität.
- **9.4 Beispiel** $u \in sp(\mathbb{R}^2)$. Hier kann das Eigenwertpaar nur reell oder rein imaginär sein, siehe Abbildung 9.

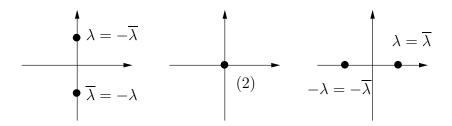


Abbildung 9: Eigenwerte von $u \in sp(\mathbb{R}^2)$

Eng verwandt mit dem Begriff der Liealgebra ist der der Liegruppe³.

9.5 Beispiel Das wichtigste Beispiel einer Liegruppe ist $G := GL(n,\mathbb{R})$, also die Gruppe der invertierbaren Matrizen in $\mathcal{M}(n,\mathbb{R})$. Hier ist G also als die offene Teilmenge derjenigen Matrizen A im n^2 -dim. Vektorraum $\mathcal{M}(n,\mathbb{R})$ definiert, für die $\det(A) \neq 0$. Dadurch wird G zu einer so genannten Untermannigfaltigkeit, und Matrizenmultiplikation und Inversion sind in den Matrizeneinträgen glatt. Betrachten wir die Abb.

$$\mathcal{M}(n,\mathbb{R}) \to GL(n,\mathbb{R})$$
 , $u \mapsto \exp(u)$,

dann liegt das Bild der Exponentialfunktion tatsächlich in G, denn

$$\det(\exp(u)) = \exp(\operatorname{tr}(u)) > 0.$$

Da $g \in G$ mit det(g) < 0 existieren, ist klar, dass exp nicht surjektiv ist.

Andererseits ist die Exponentialabbildung mindestens für $A \in G$ mit $\|A\| < 1$ invertierbar, denn die Potenzreihe der Umkehrfunktion konvergiert:

$$\ln(A) = \ln(\mathbb{1} + (A - \mathbb{1})) = \sum_{k=1}^{\infty} (-1)^{k-1} (A - \mathbb{1})^k / k.$$

³Eine *Liegruppe* ist eine glatte Mannigfaltigkeit G, die gleichzeitig eine Gruppe ist, und deren Multiplikation $(g_1, g_2) \mapsto g_1 \circ g_2$ und Inversion $g \mapsto g^{-1}$ glatte Abbildungen sind.

 $\mathcal{M}(n,\mathbb{R})$ mit dem Kommutator bildet eine Liealgebra. Der Kommutator misst den Mangel an Kommutativität in der Gruppenmultiplikation, denn für $u_1,u_2\in\mathcal{M}(n,\mathbb{R})$ ist

$$\exp(\varepsilon u_1)\exp(\varepsilon u_2)\exp(-\varepsilon u_1)\exp(-\varepsilon u_2) = 1 + \varepsilon^2[u_1, u_2] + \mathcal{O}(\varepsilon^3).$$

Man nennt daher $\mathcal{M}(n,\mathbb{R})$ die Liealgebra von $GL(n,\mathbb{R})$.

Analog können wir die Exponentialabbildung

$$sp(E,\omega) \to Sp(E,\omega)$$
 , $u \mapsto \exp(u)$

von der symplektischen Liealgebra in die symplektischen Liegruppe betrachten. Tatsächlich ist $\exp(u) \in Sp(E, \omega)$, denn wegen (9.1) ist

$$\omega(\exp(u)e_1, \exp(u)e_2) = \omega(e_1, \exp(-u)\exp(u)e_2) = \omega(e_1, e_2).$$

Wir sehen, dass die Eigenwerte λ mit $\operatorname{Re}(\lambda) > 0$ von u zu Eigenwerten $\exp(\lambda)$ mit Betrag > 1 von $\exp(u)$ werden.

Erinnern wir uns nun an die Tatsache, dass für die quadratische Hamiltonfunktion $H(x) = \frac{1}{2}(x, Ax)$ die DGL $\dot{x} = X_H(x) = JAx$ die Lösung $\Phi_t(x) = \exp(u)x$ mit $u := JAt \in sp(\mathbb{R}^{2n})$ besitzt, dann wird klar, dass der Fixpunkt 0 höchstens dann Liapunovstabil sein kann, wenn alle Eigenwerte von JA rein imaginär sind.

10 Stabilität linearer Differentialgleichungen

Bevor wir die linearen Differentialgleichungen verlassen, wollen wir uns noch die Frage ihrer Stabilität anschauen. Es wird dabei klar werden, dass Hamiltonsche Systeme ein ganz eigenes, für den allgemeinen Fall untypisches Verhalten zeigen.

- **10.1 Satz** Sei E ein endlich-dimensionaler \mathbb{R} -Vektorraum, und $A \in L(E)$. Dann ist der Nullpunkt bezüglich des von A erzeugten Flusses $\Phi_t = \exp(At)$ auf E
 - 1. asymptotisch stabil, wenn für alle Eigenwerte $\lambda_i \in \mathbb{C}$ von A gilt

$$\operatorname{Re}(\lambda_i) < 0.$$

2. Liapunov-stabil, wenn die Eigenwerte $\lambda_i \in \mathbb{C}$ gleiche algebraische wie geometrische Multiplizität besitzen und

$$\operatorname{Re}(\lambda_i) \leq 0.$$

Bew.: Wir identifizieren E durch Einführung einer Basis mit dem \mathbb{R}^n und betrachten das kanonische innere Produkt auf dem \mathbb{R}^n .

Die darstellende Matrix von A nennen wir bequemlichkeitshalber ebenfalls A. Wir wissen, dass dann $P \in \mathcal{M}(n,\mathbb{C})$ und eine Jordanmatrix J (nicht zu verwechseln mit der Matrix $J = \left(\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right)$) existieren, sodass

$$A = PJP^{-1}$$
 und damit $\exp(At) = P\exp(Jt)P^{-1}$, $(t \in \mathbb{R})$

gilt. Es gilt $\Phi(t,x) = \exp(At) \cdot x$, also $\|\Phi(t,x)\| \leq \|\exp(At)\| \, \|x\|$. Wir müssen also

$$\|\exp(At)\| \le \|P\| \|\exp(Jt)\| \|P^{-1}\|$$

abschätzen.

Zur Abschätzung der Norm von $\exp(Jt)$ genügt es, die einzelnen Jordan-Blöcke $J_r(\lambda)$ getrennt zu untersuchen, denn die ihnen zugeordneten Unterräume bleiben invariant.

Wie wir gesehen haben (Abschnitt 4), gilt

$$\exp\left(J_r(\lambda)t\right) = \exp(\lambda t) \cdot \begin{pmatrix} 1 & t & t^2/2 & \cdots & \frac{t^{r-1}}{(r-1)!} \\ 0 & 1 & t & & \vdots \\ \vdots & \ddots & \ddots & t^2/2 \\ \vdots & & \ddots & \ddots & t \\ \vdots & & \ddots & \ddots & t \end{pmatrix}.$$

Nun gilt für eine beliebige Matrix $B \in \mathcal{M}(n,\mathbb{R}): \|B\| \leq \sqrt{\sum_{i,j=1}^{n} (B)_{ij}^2}$.

Daher wächst die Norm des zweiten Faktors nur polynomial in |t|. Für den ersten Faktor gilt aber

$$\exp(\lambda t) = \exp(t \operatorname{Re}\lambda) \cdot (\cos(t \operatorname{Im}\lambda) + i \sin(t \operatorname{Im}\lambda)),$$

woraus für $\text{Re}\lambda < 0$ die erste Aussage folgt. Im zweiten Fall haben die Jordan-Blöcke die Größe 1, sodass $\|\exp(Jt)\| \equiv 1$.

Hamiltonsche Flüsse besitzen keine asymptotisch stabilen Fixpunkte, denn sie lassen das Phasenraumvolumen invariant (das gilt übrigens auch im nichtlinearen Fall).

Der Nullpunkt kann nur dann Liapunov-stabiler Fixpunkt eines linearen Hamiltonschen Flusses sein, wenn alle Eigenwerte des den Fluss erzeugenden infinitesimal symplektischen Endomorphismus auf der imaginären Achse liegen. Bei

Multiplizität $\neq 1$ ist die Liapunovstabilität von der Struktur der Jordan-Blöcke abhängig.

In einem gewissen Sinn neigen Hamiltonsche Systeme also weniger zur Stabilität als allgemeine dynamische Systeme. Es gibt aber auch andere Aspekte.

10.2 Definition Ein infinitesimal symplektischer Endomorphismus $A \in sp(E,\omega)$ heißt $stark\ stabil$, wenn eine Umgebung $U \subset sp(E,\omega)$ von A existiert, sodass für alle $B \in U$ der Nullpunkt bezüglich des Flusses $\exp(Bt)$ Liapunov-stabil ist.

Zunächst fällt bei der Definition auf, dass nicht von der Stabilität eines Fixpunktes, sondern von der eines flusserzeugenden Endomorphismus gesprochen wird. Natürlich hängt das mit der Tatsache zusammen, dass der Nullpunkt immer Fixpunkt eines linearen Flusses ist.

Die Idee, die der Definition starker Stabilität zugrunde liegt, ist, dass wir die Bewegungsgleichung eines konkreten mechanischen Systems nicht mit unendlicher Präzision kennen, da wir z.B. die Massen der wechselwirkenden Körper nur mit endlicher Genauigkeit kennen. Wir sind daher an der Frage interessiert, ob wir trotzdem entscheiden können, ob das mechanische System Liapunov-stabil ist.

10.3 Satz Wenn alle Eigenwerte $\lambda \in \mathbb{C}$ eines infinitesimal symplektischen Endomorphismus voneinander verschieden sind und auf der imaginären Achse liegen, ist A stark stabil.

Bew.: Der Minimalabstand zweier Nullstellen des charakteristischen Polynoms sei 4ε , $\varepsilon>0$. Wir betrachten für jede Nullstelle eine ε -Umgebung. Diese Umgebungen überlappen nicht, siehe Abbildung 10. Die Wurzeln des charakteristischen Polynoms einer Matrix hängen stetig von den Matrixelementen ab. Also muss ein genügend nahe bei A liegender Endomorphismus B Eigenwerte haben, von denen je einer in einer ε - Umgebung liegt. Würden diese Eigenwerte λ nicht gleichzeitig

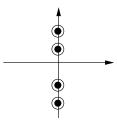


Abbildung 10: Die einfachen imaginären Eigenwerte einer Matrix $A \in sp(\mathbb{R}^4)$

auf der imaginären Achse liegen, so wäre $-\overline{\lambda} \neq \lambda$ in der gleichen ε -Umgebung. Widerspruch!

11 Liapunov-Funktionen

Wir verlassen jetzt den Fall linearer DGL-Systeme und wenden uns dem nicht linearen Fall zu.

Eine natürliche Fragestellung ist die, ob ein Fixpunkt dann asymptotisch stabil ist, wenn die Linearisierung der DGL um diesen Punkt zu einem asymptotisch stabilen linearen Fluss führt. Diese Frage wird unter Verwendung einer so genannten Liapunov-Funktion beantwortet.

Grob gesagt ist eine Liapunov-Funktion eine Funktion $f:M\to\mathbb{R}$, die entlang der Bahnkurven des betrachteten dynamischen Systems $\Phi:G\times M\to M$ monoton fallend ist. Eine Bahnkurve, die zu einem gegebenen Zeitpunkt die Menge $\{m\in M\mid f(m)\leq C\}$ trifft, kann diese in Zukunft nicht mehr verlassen. Natürlich lässt sich ein entsprechendes Argument für eine entlang Bahnkurven monoton wachsende Funktion anwenden. Andererseits hätte man gerne, dass die Funktion außer an Fixpunkten etc. streng monoton in der Zeit fällt (oder steigt).

11.1 Definition Sei $\Phi: G \times M \to M$ ein dynamisches System. $f \in C^0(M, \mathbb{R})$ heißt *Liapunov-Funktion* von Φ , wenn f (oder -f) entlang der Trajektorien monoton fällt.

Wir werden das Konzept in einer Anwendung kennen lernen.

11.2 Satz Ein Fixpunkt $x_0 \in M$ eines durch die DGL $\dot{x} = F(x)$ mit Vektorfeld $F \in C^{\infty}(M, \mathbb{R}^n)$ auf der offenen Menge $M \subset \mathbb{R}^n$ gegebenen dynamischen Systems ist asymptotisch stabil, wenn für die Eigenwerte $\lambda \in \mathbb{C}$ von $A := DF(x_0) \in L(\mathbb{R}^n)$ gilt, dass $Re(\lambda) < 0$.

Bew.: O.B.d.A. können wir $x_0 = 0$ annehmen (sonst Betrachtung von $\dot{y} = G(y)$ mit $y = x - x_0$, $G(y) := F(y + x_0)$).

Es gilt

$$F(x) = Ax + \tilde{F}(x)$$
 mit $\|\tilde{F}(x)\| = \mathcal{O}(\|x\|^2)$.

Sei $\Phi: \mathbb{R} \times M \to M$ das von F erzeugte dynamische System und

$$\Phi_0: \mathbb{R} \times M \to M$$
 , $\Phi_0(t, x) := \exp(At)x$

das zugehörige linearisierte dynamische System.

Die Beweisidee besteht darin, eine quadratische Form auf M zu finden, die eine Liapunov-Funktion $L:M\to\mathbb{R}$ für Φ_0 ist. Dann werden wir auch eine Umgebung des Fixpunktes finden, in der L entlang den Bahnkurven von Φ monoton abnimmt.

Wir konstruieren ein solches L durch Betrachtung einer Jordan-Matrix J von A. Da der von J erzeugte Fluss $\exp(Jt)$ auf \mathbb{C}^n die den Jordanblöcken zugeordneten Unterräume invariant lässt, reicht es, eine Liapunov-Funktion für $\exp(J_r(\lambda)t)$, $\operatorname{Re}(\lambda) < 0$ zu konstruieren, und danach die Liapunov-Funktion $\tilde{L}: \mathbb{C}^n \to \mathbb{R}$ durch Addition der Funktionen der einzelnen Blöcke zu gewinnen.

 $J_r(\lambda)$ hat bezüglich der kanonischen Basis (b_1,\ldots,b_r) die Gestalt

$$\begin{pmatrix} \lambda & 1 & \dots & 0 \\ & \ddots & \ddots & \vdots \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix}.$$

Für $\varepsilon > 0$ definieren wir $(\hat{b}_1, \dots, \hat{b}_r)$ durch $\hat{b}_l := b_l \cdot \varepsilon^{l-1}$. In dieser Basis besitzt der Jordanblock die Form

$$\tilde{J}_r(\lambda) := \begin{pmatrix} \lambda & \varepsilon & 0 \\ & \ddots & \ddots \\ & & \ddots & \varepsilon \\ & 0 & & \lambda \end{pmatrix}.$$

Betrachten wir nun die durch das kanonische innere Produkt bezüglich der Basis $(\hat{b}_1,\ldots,\hat{b}_r)$ gegebene quadratische Form $Q:\mathbb{C}^r\to\mathbb{R}$, die für $z\in\mathbb{C}^r$, $z=\sum_{i=1}^r z_i\hat{b}_i$ durch $Q(z):=\sum_{i=1}^r z_i\overline{z}_i$ gegeben ist, so gilt

$$\frac{d}{dt}Q\left(\exp(\tilde{J}_r(\lambda)t)z\right)|_{t=0} = (\tilde{J}_r(\lambda)z,z) + (z,\tilde{J}_r(\lambda)z)$$

$$= 2\operatorname{Re}(\lambda)\cdot(z,z) + \varepsilon \sum_{i=1}^{r-1} (\overline{z}_i z_{i+1} + \overline{z}_{i+1} z_i),$$

$$\leq 2\operatorname{Re}(\lambda)(z,z) + 2\varepsilon(z,z), \quad \text{was für} \quad \varepsilon < \frac{1}{2}|\operatorname{Re}(\lambda)|$$

$$< \operatorname{Re}(\lambda)\cdot(z,z) \leq 0 \quad \text{ist.}$$

Wir haben damit eine Liapunov-Funktion für $J_r(\lambda)$, J und letztlich A konstruiert. Letztere quadratische Form heißt $L: M \to \mathbb{R}$.

Wir wissen, dass ein c > 0 existiert, sodass

$$\frac{d}{dt}L(\Phi_0(t,x))|_{t=0} \le -c||x||^2 \qquad (x \in M),$$

siehe Abbildung 11. Dieser Ausdruck lässt sich als die Richtungsableitung von L in Richtung des den Fluss Φ_0 erzeugenden (linearen) Vektorfeldes Ax interpretieren: Das nicht lineare Vektorfeld F hatte die Gestalt $F(x) = A \cdot x + \tilde{F}(x)$.

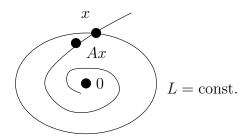


Abbildung 11: Liapunovfunktion L und Orbit $t \mapsto \Phi_0(t,x)$

Entsprechend ist $\frac{d}{dt}L(\Phi(t,x))|_{t=0}$ als Richtungsableitung von L in Richtung von F zu interpretieren. Da aber $\|\tilde{F}(x)\| = \mathcal{O}(\|x\|^2)$, ist $\frac{d}{dt}L(\Phi(t,x))|_{t=0} = -c\|x\|^2 + \mathcal{O}(\|x\|^3)$, was für $\|x\| < \varepsilon$ kleiner als $-\frac{c}{2}\|x\|^2$ ist.

Damit wird L zur Liapunovfunktion und die Aussage folgt.

- **11.3 Bemerkung** Es mag so aussehen, als ob das Konzept der Liapunov-Funktion im Hamiltonschen Fall keine Anwendung findet. In der Tat ist ja dort das Phasenraumvolumen erhalten, sodass wir sowieso keine asymptotische Stabilität erwarten können. Es gibt aber andere Anwendungen:
- 1) Nichtdegenerierte Extremalstellen x einer Hamiltonfunktion H sind liapunovstabile Fixpunkte. Denn einerseits ist $X_H(x)=0$, andererseits ist H selbst Liapunovfunktion, da der Wert von H sich entlang der Orbits nicht ändert. Zum dritten gibt es für eine Minimalstelle x zu jeder Umgebung U von x eine Umgebung $V \subset U$ von x der Form $V = H^{-1}([h,h+\varepsilon))$.
- 2) Betrachten wir z.B. die durch die Hamiltonfunktion

$$H:M:=\mathbb{R}^3_p\times\mathbb{R}^3_q o\mathbb{R}$$
 , $H(p,q)=\frac{1}{2}p^2$

gegebene Freie Bewegung $\dot{q}=p,\,\dot{p}=0$ oder $\Phi(t,(p_0,q_0))=(p_0,q_0+p_0t).$ $L(p,q):=p\cdot q$ ist dann eine Liapunov-Funktion, denn

$$\frac{d}{dt}L(\Phi_t(p,q)) = \dot{p} \cdot q + p \cdot \dot{q} = p \cdot \dot{q} = p^2 \ge 0.$$

Da $L(p,q) = \frac{1}{2} \frac{d}{dt} q^2$, ist $t \mapsto q^2(t)$ konvex. Das können wir zwar in diesem Fall auch direkt ausrechnen, denn $q^2(t) = (q_0 + p_0 t)^2$.

Wir können ähnlich argumentieren, wenn die Bewegung des Teilchens von einem Kraftfeld (schwach) abgelenkt wird. Unter geeigneten Voraussetzungen können wir dann schließen, dass die Bahn trotzdem nach räumlich unendlich geht.

Daher ist dieses Argument in der Streutheorie sehr beliebt. L heißt dort escape-Funktion.

12 Verzweigungen

In vielen Fällen hängt ein dynamisches System von Parametern ab, z.B. der Teilchenmasse oder auch der Gesamtenergie. Wir haben das Konzept des Phasenporträts kennen gelernt, d.h. der Zerlegung des Phasenraumes in (orientierte) Orbits. Unter Veränderung des Parameters wird sich i.A. das Phasenporträt ändern. Es kann sein, dass wir einen Homöomorphismus des Phasenraumes finden, der die Phasenporträts ineinander überführt, d.h. orientierte Orbits auf orientierte Orbits abbildet. Es kann aber auch sein, dass sich das Phasenporträt an einem bestimmten Parameterwert qualitativ ändert, dass es also nicht nur eine Deformation des Phasenporträts für andere Parameterwerte ist. Ein solches Phänomen wird *Verzweigung* oder auch *Bifurkation* genannt.

Konzentrieren wir uns auf den Fall eines Fixpunktes x_0 eines Differentialgleichungssystems

$$\dot{x} = F_p(x) \quad \text{,} \quad x \in M \quad \text{,} \quad p \in \mathbb{R} \quad \text{für Parameterwert} \quad p = 0.$$

Es ist also $F_0(x_0) = 0$.

Existiert für benachbarte Parameterwerte $|p| < \varepsilon$ ebenfalls ein Fixpunkt von $\dot{x} = F_p(x)$ in der Nähe von x_0 ?

Um diese Frage zu beantworten, betrachten wir die Linearisierung $A := DF_0(x_0)$ des Vektorfeldes am Fixpunkt für p = 0.

Ist die Mannigfaltigkeit M n-dimensional, so ist $A \in L(\mathbb{R}^n)$ und wir können untersuchen, ob A maximalen Rang (d.h. n) hat. Ist dies der Fall, so wissen wir nach dem Satz über die implizite Funktion, dass für ein $\varepsilon>0$ eine Abbildung $\varphi:(-\varepsilon,\varepsilon)\to M$ mit $\varphi(0)=x_0$ existiert, sodass für $|p|<\varepsilon$

$$F_p(\varphi(p)) = 0$$

ist, $\varphi(p)$ also ein Fixpunkt.

Dabei ist φ genauso glatt wie F_p .

In diesem Fall existiert der Fixpunkt also auch für benachbarte Parameterwerte, nur ändert er seine Lage ein wenig. Man kann auch sehen, dass kein zweiter Fixpunkt diesem ersten beliebig nahe kommen kann.

Anders ist die Situation in den folgenden Beispielen. Dass diese keine dynamischen Systeme erzeugen, tut nichts zur Sache.

12.1 Beispiel (Die Sattel-Knoten-Verzweigung) Wir betrachten eine Familie von Differentialgleichungen auf $M := \mathbb{R}$, parametrisiert durch $p \in \mathbb{R}$, mit $F_p(x) := p + \frac{1}{2}x^2$.

- Für p > 0 ist $F_p(x) \ge p > 0$, es existiert also kein Fixpunkt.
- Für p = 0 existiert genau der Fixpunkt $x_0 = 0$.
- Für p < 0 existieren die beiden Fixpunkte $x_{\pm,p} := \pm \sqrt{-2p}$.

Die Linearisierung der DGL an den Fixpunkten hat die Form

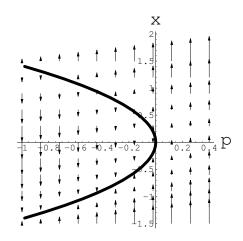
$$\dot{y} = x_+(p) \cdot y$$
 für $p < 0$

und

$$\dot{y} = 0$$
 für $p = 0$.

Genau für p=0 hat die Linearisierung also nicht mehr den maximalen Rang $\mathbf 1$

Man sieht an diesem Beispiel, dass sich ein Paar, bestehend aus einem stabilen und einem instabilen Fixpunkt, durch Kollision auslöschen kann.



Sattel-Knoten-Verzweigung $\dot{x} = p + \frac{1}{2}x^2$

12.2 Beispiel (Die Hopf-Verzweigung) Phasenraum $M:=\mathbb{R}^2$, Parameter $p\in\mathbb{R}$.

$$\dot{x}_1 = x_1(p - (x_1^2 + x_2^2)) - x_2$$
 , $\dot{x}_2 = x_2(p - (x_1^2 + x_2^2)) + x_1$, (12.1)

siehe Abbildung 12. Offensichtlich ist $0 \in M$ für alle Parameterwerte Fixpunkt. Er ist auch der einzige Fixpunkt, denn das Betragsquadrat des Vektorfeldes auf der rechten Seite ist

$$\dot{x}_1^2 + \dot{x}_2^2 = (x_1^2 + x_2^2)(1 + (p - (x_1^2 + x_2^2))^2) > 0 \quad \text{für} \quad (x_1, x_2) \neq (0, 0).$$

Auf $\mathbb{R}^2 \setminus \{0\}$ kann die DGL mit Polarkoordinaten (r, φ) ,

$$x_1 = r\cos\varphi$$
 , $x_2 = r\sin\varphi$

auf die Form

$$\dot{r} = r(p - r^2)$$
 , $\dot{\varphi} = 1$

gebracht werden, denn $\dot{r}=\frac{\frac{d}{dt}r^2}{2r}=\frac{x_1\dot{x}_1+x_2\dot{x}_2}{r}$ und $\dot{\varphi}=\frac{\dot{x}_2x_1-\dot{x}_1x_2}{x_1^2+x_2^2}=1.$ Damit wird für Radien mit $r^2>\max(0,p)$ die Zeitableitung $\dot{r}<0$, für 0<

 $r^2 < p$ aber $\dot{r} > 0$.

Für $r^2 = p > 0$ ist $\dot{r} = 0$ und wir haben einen periodischen Orbit gefunden.

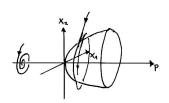


Abbildung 12: Hopf-Verzweigung (12.1)

13 **Lagrange- und Hamiltongleichungen**

Bisher haben wir uns auf den Standpunkt gestellt, die Zielsetzung der analytischen Mechanik bestehe darin, für eine gegebene Hamiltonfunktion die Lösungen der Hamiltonschen DGL zu finden, oder, falls dies nicht möglich sein sollte, zumindest qualitative Eigenschaften wie Fixpunkte, Stabilität etc. zu untersuchen.

Wie es dazu kommt, dass eine bestimmte Hamiltonfunktion ein gegebenes mechanisches System beschreibt, wurde nicht analysiert. Nun ist diese Fragestellung sicher zu einem Teil außermathematisch und fällt in den Bereich der Modellbildung in der Physik.

Andererseits lassen sich doch unter Annahme einer bestimmten Form elementarer Wechselwirkungen (wie Elektromagnetismus oder Gravitation) die Hamiltonfunktion gegebener physikalischer Systeme berechnen.

Es taucht dabei allerdings eine Problematik auf, die mit dem Begriff des Impulses zusammenhängt. Während der Ort und auch die Geschwindigkeit eines Teilchens wohldefinierte messbare Größen sind (nicht relativistische Situationen vorausgesetzt), ist der Impuls eine abgeleitete Größe, für die erst *nach* Kenntnis der Hamiltonfunktion eine Messvorschrift gefunden werden kann.

Es ist ja die Geschwindigkeit $\dot{q} = \frac{\partial H}{\partial p}(p,q)$, und nur für eine Hamiltonfunktion der Form $H(p,q) = c \cdot p^2 + V(q)$ ist der Impuls der Geschwindigkeit proportional.

Dies ist einer der Gründe, weswegen neben der Hamiltonfunktion auch die so genannte Lagrangefunktion in der Mechanik wichtig ist. Diese ist eine Funktion der Orte und Geschwindigkeiten (statt der Orte und Impulse).

Im betrachteten Beispiel ist die zugehörige Lagrangefunktion

$$L(\dot{q}, q) = \frac{1}{4c}\dot{q}^2 - V(q).$$

Der erste Summand wird auch *kinetische Energie*, der zweite *potentielle Energie* des Teilchens genannt. Da die beiden Terme voneinander subtrahiert statt addiert werden, ist die Lagrangefunktion i.A. keine Konstante der Bewegung.

Wir werden gleich die allgemeine Beziehung zwischen Lagrange- und Hamiltonfunktion kennen lernen.

Davor werden wir aber noch den Begriff der Potentiellen Energie und die Aufstellung der Lagrangefunktion eines mechanischen Systems besprechen.

Die direkteste Formulierung der Mechanik ist die Newtonsche:

$$\begin{array}{lll} \mathrm{Kraft} &=& \mathrm{Masse} \cdot \mathrm{Beschleunigung} & \mathrm{oder} \\ F(q) &=& m \cdot \ddot{q} & , & q \in \mathbb{R}_q^n & , & F \in C^\infty(\mathbb{R}_q^n,\mathbb{R}^n). \end{array}$$

Diese Formulierung führt unmittelbar auf die Bewegungsgleichungen.

13.1 Beispiel (Fall im konstanten Schwerefeld)

Z.B. kann man für kleine Abstände von einem gegebenen Punkt der Erdoberfläche die Anziehungskraft der Erde auf einen Massenkörper als konstant und in 3-Richtung verlaufend ansehen, sodass hier die Kraft $F \in C^{\infty}(\mathbb{R}^3_q, \mathbb{R}^3)$ durch $F(q) = \begin{pmatrix} 0 \\ -g \cdot m \end{pmatrix}$, mit Erdbeschleunigung $g := 9.81 \frac{m}{sec^2}$ gegeben ist.

Die Newtonschen Bewegungsgleichungen führen auf dem Phasenraum $M:=\mathbb{R}^n_{\dot{q}}\times\mathbb{R}^n_{\dot{q}}$ zum dynamischen System

$$\Phi(t, (v_0, q_0)) = \left(v_0^{(1)}, v_0^{(2)}, v_0^{(3)} - gmt, q_0^{(1)} + v_0^{(1)} \cdot t, q_0^{(2)} + v_0^{(2)} t, q_0^{(3)} + v_0^{(3)} t - \frac{1}{2}gmt^2\right),$$

siehe Abbildung 13.

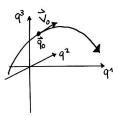


Abbildung 13: Fall im konstanten Schwerefeld

Es ist aber nützlich festzustellen, dass hier wie in vielen anderen Fällen die Kraft nicht nur allein eine Funktion des Ortes ist, sondern sie sich auch als Gradient einer reellwertigen Funktion V(q) darstellen lässt.

$$F(q) = -\nabla V(q)$$
 (hier mit $V(q) = -\frac{1}{2}mgq^{(3)}$).

Damit kommen wir mit Impuls p=mv dazu, festzustellen, dass die Newtonschen Gleichungen von der Hamiltonfunktion

$$H(p,q) = \frac{1}{2m}p^2 + V(q)$$

herrühren.

Allgemein lässt sich das Kraftfeld $F\in C^\infty(\mathbb{R}^3_q,\mathbb{R}^3)$ dann als Gradient einer reellwertigen Funktion $V\in C^\infty(\mathbb{R}^3_q,\mathbb{R})$ darstellen, wenn gilt, dass

$$\operatorname{rot} F = \begin{pmatrix} \frac{\partial F_2}{\partial q_3} - \frac{\partial F_3}{\partial q_2} \\ \frac{\partial F_3}{\partial q_1} - \frac{\partial F_1}{\partial q_3} \\ \frac{\partial F_1}{\partial q_2} - \frac{\partial F_2}{\partial q_1} \end{pmatrix} = 0.$$

Denn dann gilt für einen geschlossenen Weg $C:[0,1]\to\mathbb{R}^3_q$, dass

$$\oint_C F(q) \cdot dq \equiv \int_O \operatorname{rot} F(q) \cdot dO = 0$$

für eine von diesem Weg C berandete Fläche O, sodass

$$V(q) = \int_{C_q} F(q) \cdot dq$$

unabhängig von der Wahl des Weges $C_q:[0,1]\to\mathbb{R}_q^3$ mit Anfangspunkt $C_q(0):=0$ und Endpunkt $C_q(1):=q$ ist.

13.2 Definition Eine (glatte) Funktion $L: \mathbb{R}_q^n \times \mathbb{R}_v^n \to \mathbb{R}$ heißt *Lagrangefunktion*. Das DGL-System

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i}(q,\dot{q}) - \frac{\partial L}{\partial q_i} = 0 \qquad (i = 1,\dots,n)$$
(13.1)

heißt Lagrangegleichung von L. $p:=\frac{\partial L}{\partial v}(q,v)$ heißt Impuls.

13.3 Beispiel $L(q,v)=\frac{m}{2}|v|^2-V(q)$. Die Lagrangegleichung lautet dann $m\ddot{q}+\nabla V(q)=0$. Sie entspricht damit der Newtonschen Bewegungsgleichung eines Teilchens der Masse m im Potential V.

In diesem Beispiel können wir die Gleichung $p=\frac{\partial L}{\partial v}$ des Impulses nach v auflösen: $v\equiv v(p,q)=p/m$. Betrachten wir nun die Hamiltonfunktion

$$H(q,p) := p \cdot v(p,q) - L(q,v(p,q)) = \frac{p^2}{2m} + V(q), \tag{13.2}$$

und schreiben mithilfe des Impulses die Lagrangegleichungen in ein System von 2n Differentialgleichungen erster Ordnung um, so ergibt sich, dass diese Gleichungen

$$\begin{array}{c} m\dot{v} + \nabla V(q) = 0 \\ \dot{q} = v \end{array} \right\} \iff \left\{ \begin{array}{c} \dot{p} = -\nabla V(q) \\ \dot{q} = p/m \end{array} \right.$$

die Hamiltonschen Gleichungen von H sind.

Wir wollen diesen Zusammenhang auch für andere Lagrangefunktionen herstellen.

Es stellt sich die Frage, unter welchen Bedingungen an L(q,v) wir die Gleichung $p=p(q,v)=\frac{\partial L}{\partial v}(q,v)$ so umstellen können, dass v=v(p,q) die abhängige Variable wird. Für die Lagrangefunktionen, die die entsprechende Bedingung erfüllen, wird (13.2) eine Hamiltonfunktion liefern, deren Hamiltonsche DGL äquivalent zu der Lagrangegleichung von L ist.

Dazu müssen wir die so genannte Legendretransformation einführen.

14 Legendretransformationen

Wir fangen mit dem Fall einer Variablen an, denn dieser lässt sich graphisch einfach darstellen.

14.1 Definition Sei $J \subset \mathbb{R}$ ein offenes Intervall, $f \in C^2(J, \mathbb{R})$ und f'' > 0.

Die Legendretransformierte $g: I \to \mathbb{R}$ von f mit $I:=f'(J) \subset \mathbb{R}$ ist gegeben durch $g(p):=\max_{x\in J}(xp-f(x))$.

Zunächst ist zu klären, ob die Legendretransformierte überhaupt wohldefiniert ist, ob also das Maximum für p aus dem Wertebereich der Ableitung von f' überhaupt angenommen wird. Das ist der Fall, denn die Ableitung des Arguments nach x ist

$$p - f'(x)$$
.

Wir wissen, dass ein $x \in J$ existiert, sodass p = f'(x) ist.

Es handelt sich also um ein Extremum. Da die zweite Ableitung des Arguments gleich -f''(x) < 0 ist, handelt es sich um ein Maximum, und dieses ist eindeutig.

14.2 Beispiel $J := \mathbb{R}, f(x) := e^x,$

$$p \in I := (0, \infty)$$
 $g(p) = \max_{x} (px - e^{x})$ $\Longrightarrow p(x) = e^{x}$
= $p(\ln p - 1)$

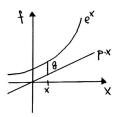


Abbildung 14: Definition der Legendretransformation

Wie wir in Abbildung 14 sehen, hat die Legendretransformierte von f eine anschauliche Bedeutung: g(p) ist der maximale Ordinaten-Abstand zwischen dem Graphen der Gerade $x \mapsto px$ durch den Ursprung und dem Graphen von f.

Das Maximum wird für einen Wert x=x(p) angenommen, der durch p=f'(x) gegeben ist und der wegen der aus f''>0 folgenden Monotonie von f' in p streng monoton (und stetig differenzierbar) wächst.

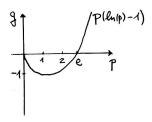


Abbildung 15: Legendretransformierte q(p) der Exponentialfunktion

Damit ist

$$g(p) = px(p) - f(x(p))$$

$$g'(p) = x(p) + px'(p) - f'(x(p)) \cdot x'(p)$$

$$= x(p) + (p - f'(x(p)))x'(p) = x(p),$$
(14.1)

sodass g'' > 0. Da g außerdem auf einem offenen Intervall, nämlich $I := f'(J) \subset \mathbb{R}$, definiert ist, können wir auf g wieder die Legendretransformation anwenden.

14.3 Satz Die Legendretransformierte ist involutiv: ist $g: I \to \mathbb{R}$ Legendretransformierte von $f: J \to \mathbb{R}$, so ist auch f Legendretransformierte von g.

Bew.: Da nach (14.1) g'(p) = x(p), ist g'(I) = J.

$$\max_{p \in I} (yp - g(p)) = \max_{p \in I} (yp - px(p) + f(x(p)))$$

mit $x(p) = (f')^{-1}(p)$.

Die Ableitung des Arguments nach p ist

$$y - x(p) - px'(p) + f'(x(p)) \cdot x'(p) = y - x(p) - (p - f'(x(p)))x'(p) = y - x(p).$$

Damit wird das Maximum bei y = x(p), also p = f'(y) angenommen, sodass

$$\max_{p \in I} (yp - g(p)) = yf'(y) - f'(y) \cdot y + f(y) = f(y). \qquad \Box$$

14.4 Korollar Die Einhüllende der Familie

$$y = px - g(p) \qquad (p \in I)$$

von Geraden ist die Legendretransformierte von g, siehe Abbildung 16.

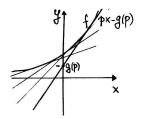


Abbildung 16: Die Legendretransformierte f von g

Im Fall mehrerer Variablen beginnen wir bequemlichkeitshalber mit einer auf ganz \mathbb{R}^n definierten Funktion $f \in C^2(\mathbb{R}^n, \mathbb{R})$ mit $\frac{\partial^2 f}{\partial x^2} > 0$, wobei unter der Hessematrix $\frac{\partial^2 f}{\partial x^2}$ die symmetrische Matrix

$$\frac{\partial^2 f}{\partial x^2} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

verstanden wird.

Zur Erinnerung: Eine symmetrische $n \times n$ -Matrix A heißt positiv definit (A > 0), wenn (v, Av) > 0 für $v \in \mathbb{R}^n \setminus \{0\}$.

14.5 Definition Sei $I:=\nabla f(\mathbb{R}^n)\subset\mathbb{R}^n$. Die Legendretransformierte $g:I\to\mathbb{R}$ ist durch

$$g(p) := \max_{x \in \mathbb{R}^n} p \cdot x - f(x) \qquad (p \in I)$$

gegeben.

14.6 Beispiel Für eine symmetrische Matrix $A \in \mathcal{M}(n,\mathbb{R}), A>0$ sei $f:\mathbb{R}^n \to \mathbb{R}$ die durch $f(x):=\frac{1}{2}(x,Ax)$ definierte quadratische Form. Damit ist $\frac{\partial^2 f}{\partial x^2}(x)\equiv A$ und

$$g(p) = \max_{x \in \mathbb{R}^n} \frac{1}{2}(x, 2p - Ax) = p \cdot x(p) - \frac{1}{2}(x(p), Ax(p))$$
 mit $x(p) = A^{-1}p$, also $g(p) = \frac{1}{2}(p, A^{-1}p)$.

Eine Anwendung findet dies z.B. in der Umrechnung der kinetischen Energie von Geschwindigkeits- auf Impulskoordinaten.

Allgemeiner wenden wir nun die Legendretransformation an, um die Lagrangefunktion in die Hamiltonfunktion umzuwandeln und umgekehrt. **14.7 Satz** Sei $L \in C^{\infty}(\mathbb{R}^n_q \times \mathbb{R}^n_v, \mathbb{R})$ und $\frac{\partial^2 L}{\partial v^2} > 0$. Dann ist mit Impuls $p \equiv p(q, v) = \frac{\partial L}{\partial v}(q, v)$

$$H(p,q) = pv - L(q,v)$$

die Legendretransformierte von L bezüglich v, und H ist ebenfalls C^{∞} .

Die Lagrangegleichungen (13.1) sind äquivalent zu den Hamiltongleichungen

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}$$
 , $\dot{q}_i = \frac{\partial H}{\partial p_i}$ $(i = 1, \dots, n)$.

Bew.: Dass H(p,q) Legendretransformierte von L(q,v) bezüglich v ist, wird offensichtlich, wenn man q als Parameter ansieht.

Dass H die gleiche Differenzierbarkeitsstufe wie L hat, ergibt sich aus folgendem Argument.

Betrachten wir die Abbildung

$$\Phi: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$$
 , $(q, v) \mapsto (q, p)$.

Am Punkt (q, v) mit Bild (q, p) ist ihre Linearisierung durch

$$D\Phi(q,v) \begin{pmatrix} \delta q \\ \delta v \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{\partial^2 L}{\partial q \partial v} & \frac{\partial^2 L}{\partial v^2} \end{pmatrix} \begin{pmatrix} \delta q \\ \delta v \end{pmatrix}$$

gegeben. Die Jacobimatrix hat Determinante $\det\left(\frac{\partial^2 L}{\partial v^2}\right)>0$ und ist damit invertierbar. Daher ist aber auch Φ lokal invertierbar. Damit wird Φ ein lokaler Diffeomorphismus.

Die Gleichheit der Bewegungsgleichungen ergibt sich aus der Bildung der totalen äußeren Ableitungen von H und L: Einerseits ist

$$dH = \frac{\partial H}{\partial p}dp + \frac{\partial H}{\partial q}dq,$$

andererseits wegen

$$\begin{array}{lcl} \frac{\partial L}{\partial v} & = & p \\ dH & = & d(v \cdot p - L(q,v)) \\ & = & vdp + pdv - \frac{\partial L}{\partial q}dq - \frac{\partial L}{\partial v}dv \\ & = & v(q,p)dp - \frac{\partial L}{\partial q}dq. \end{array}$$

Durch Koeffizientenvergleich ergibt sich

$$\dot{q} = v = \frac{\partial H}{\partial p}$$
 , $\frac{\partial H}{\partial q} = -\frac{\partial L}{\partial q} = -\frac{d}{dt}\frac{\partial L}{\partial v} = -\dot{p}$,

wenn wir die Lagrangegleichungen

$$\dot{q} = v$$
 , $\frac{\partial L}{\partial q} = \frac{d}{dt} \frac{\partial L}{\partial v}$

voraussetzen.

Wir können den Weg auch umgekehrt gehen, und aus einer Hamiltonfunktion H durch Legendretransformation bezüglich des Impulses p die Lagrangefunktion gewinnen.

14.8 Beispiel (Relativistische Hamiltonfunktion)

Bezeichnet c>0 die Lichtgeschwindigkeit, dann ist die Hamiltonfunktion eines relativistischen Teilchens mit Masse m>0 gleich

$$H: \mathbb{R}^3_p \times \mathbb{R}^3_q \to \mathbb{R} \quad \text{,} \quad H(p,q) = c \sqrt{p^2 + m^2 c^2}.$$

In der Interpretation von H als Gesamtenergie ergibt eine Taylorentwickung

$$H(p,q) = mc^2 + \frac{\|p\|^2}{2m} + \mathcal{O}(\|p\|^4),$$

wobei der erste Term als *Ruheenergie* bezeichnet wird und der zweite Term die nichtrelativistische Kinetische Energie ist. Hier nimmt die Geschwindigkeit

$$\dot{q} = \frac{\partial H}{\partial p} = c \frac{p}{\sqrt{p^2 + m^2 c^2}}$$

nur Werte an, die betragsmäßig kleiner als die Lichtgeschwindigkeit c sind. Die Lagrangefunktion ist gleich

$$L(q, v) = v \cdot p(v) - H(p(v), q) = -\frac{m^2 c^3}{\sqrt{p^2(v) + m^2 c^2}} = -mc^2 \sqrt{1 - \left(\frac{v}{c}\right)^2}.$$

15 Holonome Zwangsbedingungen

In vielen Fällen ist die Bewegung der zu beschreibenden Teilchen in der einen oder anderen Weise eingeschränkt. So werden wir das Beispiel der Perle diskutieren, die auf einen Draht aufgefädelt wurde.

Betrachten wir die Bewegung des Teilchens in einer m-dimensionalen Fläche $S \subset \mathbb{R}_q^n$. In $\mathbb{R}_q^n \times \mathbb{R}_v^n$ habe das Teilchen die Lagrangefunktion \tilde{L} . In der Nähe eines Punktes $q_0 \in S$ können wir eine lokale Parametrisierung q = q(x), $x = (x_1, \ldots, x_m)$ der Fläche vornehmen.

Das DGL-System mit $L(x, w) := \tilde{L}(q(x), Dq(x) \cdot w)$

$$\frac{d}{dt}\frac{\partial L(x,\dot{x})}{\partial \dot{x}_i} = \frac{\partial L(x,\dot{x})}{\partial x_i} \qquad (i=1,\dots,m)$$

heißt System mit (Konfigurationsraum S und) holonomen Zwangsbedingungen.

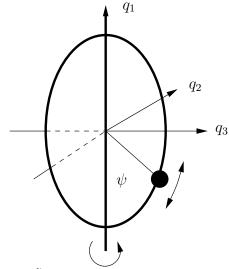
Wenn wir die Bewegung eines Teilchens einer Untermannigfaltigkeit S des Konfigurationsraumes beschreiben wollen, geben wir zunächst die Lagrangefunktion \tilde{L} des sich in \mathbb{R}_q^n frei bewegenden Teilchens an, berechnen dann L und daraus gegebenenfalls über die Legendretransformation die Hamiltonfunktion $H:T^*S\to\mathbb{R}$. Dabei ist T^*S das so genannte Kotangentenbündel von S, eine 2m-dimensionale Mannigfaltigkeit, deren Punkte aus Paaren (p,x) $x\in S$, p kanonischer Impuls, gebildet werden.

Zwar ist die obige Konstruktion zunächst nur in einer Umgebung von $q_0 \in S$ gültig, aber wir werden im Kapitel 26 den Begriff der Mannigfaltigkeit diskutieren, der es uns erlaubt, die globale Bewegung auf S zu diskutieren.

15.1 Beispiel (Perle am Draht) [PR].

Eine Perle gleitet ohne Reibung auf einem kreisförmigen Draht. Der Kreis vom Radius R hat den Mittelpunkt $0 \in \mathbb{R}^3$. Er rotiert mit Winkelgeschwindigkeit ω um die vertikale q_1 -Achse, und die Kreisebene enthält diese Achse (siehe Abbildung). Bezeichnet man mit ψ den Winkel zwischen der unteren Ruhelage und dem Ort q der Perle, dann gilt also

$$q = \begin{pmatrix} q_1 \\ q_2 \\ q_3 \end{pmatrix} = R \cdot \begin{pmatrix} -\cos\psi \\ \sin\psi \cdot \sin\omega t \\ \sin\psi \cdot \cos\omega t \end{pmatrix}.$$



Die Lagrangefunktion der Perle hat die Form $\tilde{L}(q,\dot{q})=\frac{m}{2}\dot{q}^2-V(q)$, ist also die Differenz von kinetischer und potentieller Energie. Letztere ist von der Form $V(q)=m\cdot g\cdot q_1$, wobei $g=9.81m/sec^2$ die Erdbeschleunigung bezeichnet.

Die Perle besitzt statt drei nur einen Freiheitsgrad. Entsprechend wollen wir die Lagrangefunktion als Funktion von $\psi, \dot{\psi}$ (und eventuell der Zeit t) schreiben. Es gilt

$$\dot{q} = \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{pmatrix} = R \begin{pmatrix} \sin(\psi)\dot{\psi} \\ \cos(\psi)\sin(\omega t)\dot{\psi} + \omega \cdot \sin(\psi)\cos(\omega t) \\ \cos(\psi)\cos(\omega t)\dot{\psi} - \omega \cdot \sin(\psi)\sin(\omega t) \end{pmatrix},$$

also

$$\dot{q}^2 = R^2 \left(\dot{\psi}^2 + \omega^2 \sin^2(\psi) \right).$$

Außerdem ist $V(q)=-mgR\cos\psi$, sodass in den neuen Koordinaten die Lagrangefunktion die Form

$$L(\psi, \dot{\psi}) = \frac{mR^2}{2}\dot{\psi}^2 + mR\left(g\cos\psi + \frac{\omega^2R}{2}\sin^2\psi\right)$$

besitzt. Damit ist der zum Winkel ψ konjugierte Impuls p_{ψ} gleich

$$p_{\psi} := \frac{\partial L}{\partial \dot{\psi}} = mR^2 \dot{\psi}.$$

Die Hamiltonfunktion besitzt also die Form

$$H(p_{\psi}, \psi) = \dot{\psi}p_{\psi} - L(\psi, \dot{\psi})$$
$$= \frac{p_{\psi}^2}{2mR^2} - mR(g\cos\psi + \frac{1}{2}\omega^2R\sin^2\psi).$$

Durch Veränderung von Längen-, Energie- und Zeitmaßstab können wir uns auf die Diskussion des Falls m=R=g=1 beschränken und mit der neuen Winkelgeschwindigkeit $\Omega:=\omega\cdot\sqrt{R/g}$ ergibt sich

$$H_{\Omega}(p_{\psi},\psi) = \frac{1}{2}p_{\psi}^2 + W_{\Omega}(\psi)$$

mit dem Potential $W_{\Omega}(\psi):=-\cos\psi-\frac{\Omega^2}{2}\sin^2\psi$. Der Phasenraum von H_{Ω} ist $M:=\mathbb{R}\times S^1$.

Für $\Omega=0$ ist $W_0(\psi)=-\cos\psi$, das Potential besitzt also in der unteren Ruhelage $\psi=0$ ein nicht degeneriertes Minumum.

Andererseits dominiert für große $|\Omega|$ die Zentrifugalkraft und $W_{\Omega}(\psi)$ besitzt für ψ -Werte nahe bei $\pm \pi/2$ Minimalstellen (siehe Abbildung 17).

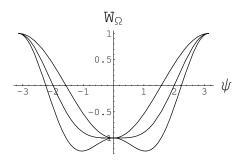


Abbildung 17: Potential W_Ω für $\Omega=0,\,\Omega=1$ und $\Omega=\sqrt{2}$

Dies übersetzt sich im Phasenraumportrait von H_Ω in eine Verzweigung (siehe Abbildung 18). Für alle Ω -Werte ist die untere Gleichgewichtslage in M, d.h. der Punkt mit den Koordinaten $(p_\psi,\psi)=(0,0)$ Fixpunkt des Vektorfeldes

$$X_H(p_{\psi}, \psi) = \begin{pmatrix} -W'_{\Omega}(\psi) \\ p_{\psi} \end{pmatrix} = \begin{pmatrix} -\sin\psi + \frac{1}{2}\Omega^2\sin(2\psi) \\ p_{\psi} \end{pmatrix}$$

von H_{Ω} . Wir berechnen dessen Stabilität durch Untersuchung der Linearisierung.

$$DX_H(p_{\psi}, \psi) = \begin{pmatrix} 0 & -W_{\Omega}''(\psi) \\ 1 & 0 \end{pmatrix}.$$

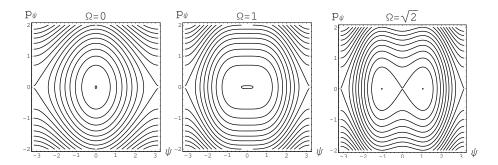


Abbildung 18: Phasenraumportraits für H_{Ω}

 DX_H besitzt die beiden Eigenwerte $\pm \sqrt{-\det(DX_H)}$. Wegen

$$\det(DX_H)(\psi) = W_{\Omega}''(\psi) = \cos \psi - \Omega^2 \cos(2\psi)$$

sind diese gleich $\pm \sqrt{-1 + \Omega^2}$, also imaginär für $|\Omega| \le 1$ und reell für $|\Omega| \ge 1$. Für Winkelgeschwindigkeiten, die betragsmäßig kleiner als der Bifurkationswert 1 sind, wird damit die untere Gleichgewichtslage nach Bemerkung 11.3 liapunovstabil, für größere Werte instabil.

16 Das Hamiltonsche Variationsprinzip

Die kürzeste Verbindung zweier Punkte $x_0, x_1 \in \mathbb{R}^n$ ist die diese Punkte verbindende Strecke. Das lässt sich beweisen, indem man alle möglichen Wege zwischen diesen Punkten betrachtet. Sind diese Wege γ nach dem Parameter stetig differenzierbar, so kommt ihnen eine Länge zu:

$$\gamma: [0,1] \to \mathbb{R}^n$$
 , $\gamma(0) = x_0, \, \gamma(1) = x_1$, $I(\gamma) := \int_0^1 L(\dot{\gamma}(t)) \, dt$

mit Lagrangefunktion

$$L(v) := ||v|| = \sqrt{v_1^2 + \ldots + v_n^2}.$$

Das $L\ddot{a}ngenfunktional\ I$ ist also eine Abbildung von den in Betracht kommenden Wegen in die reellen Zahlen. Wie eine Funktion auf einem endlich-dimensionalen Raum kann ein solches Funktional Minima - oder allgemeiner - Extrema besitzen. Wie im endlich-dimensionalen Fall ist dann die Linearisierung am Extremum die Null-Abbildung. Die Variation von I verschwindet.

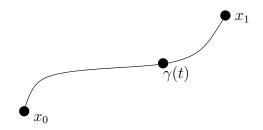


Abbildung 19: Weg γ

Wir wollen diesen Ansatz verallgemeinern. Wir setzen dabei voraus, dass die im Folgenden betrachteten Funktionen glatt sind, L wird eine allgemeine Lagrangefunktion sein, die zudem von der Zeit abhängen kann:

Lagrangefunktion
$$L: U \times \mathbb{R}^n_v \times \mathbb{R}_t \to \mathbb{R}$$
 $U \subset \mathbb{R}^n_q$ offen.
Wege $\gamma: [t_0, t_1] \to U$ $\gamma(t_0) = x_0, \ \gamma(t_1) = x_1$
Wirkung $I(\gamma) := \int_{t_0}^{t_1} L(\gamma(t), \dot{\gamma}(t), t) dt$.

Die Differenz $h := \gamma_1 - \gamma_2$ zweier Wege mit Anfangspunkt x_0 und Endpunkt x_1 ist eine Abbildung $h : [t_0, t_1] \to \mathbb{R}^n$ mit $h(t_0) = h(t_1) = 0$.

Das Funktional I ist (z.B.) auf dem Raum

$$X := \{ \gamma \in C^1([t_0, t_1], U) \mid \gamma(t_0) = x_0, \gamma(t_1) = x_1 \}$$

erklärt: $I: X \to \mathbb{R}$. X ist weder endlich-dimensional (wie man z.B. über die Fourier-Darstellung eines Weges leicht sieht), noch ist X ein linearer Raum.

Trotzdem steht X mit einem linearen Raum, und zwar

$$X_0 := \{ h \in C^1([t_0, t_1], \mathbb{R}^n) \mid h(t_0) = h(t_1) = 0 \}$$

in Zusammenhang, denn die Differenz zweier Wege γ_1 und $\gamma_2 \in X$ ist ein Element dieses linearen Raumes.

Auf dem linearen Raum X_0 können wir z.B. die Norm

$$||h||_0 := \sup_{t \in [t_0, t_1]} (||h(t)|| + ||Dh(t)||)$$

einführen.

16.1 Definition Ein Funktional $I: X \to \mathbb{R}$ heißt *differenzierbar*, wenn für alle $\gamma \in X$ eine lineare Abbildung $\mathcal{L}_{\gamma}: X_0 \to \mathbb{R}$ existiert, sodass

$$I(\gamma + h) - I(\gamma) = \mathcal{L}_{\gamma}(h) + \mathcal{O}(\|h\|_0^2) \qquad (h \in X_0 \quad \text{mit} \quad \gamma + h \in X).$$

16.2 Satz Für $L \in C^{\infty}(U \times \mathbb{R}^n \times \mathbb{R}, \mathbb{R})$ ist

$$I: X \to \mathbb{R}$$
 , $I(\gamma) := \int_{t_0}^{t_1} L(\gamma(t), \dot{\gamma}(t), t) dt$

ein differenzierbares Funktional mit Ableitung

$$\mathcal{L}_{\gamma}(h) = \int_{t_0}^{t_1} \left[\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial v} \right] h \, dt.$$

Bew.:

$$\begin{split} I(\gamma+h) - I(\gamma) &= \int_{t_0}^{t_1} L(\gamma(t) + h(t), \dot{\gamma}(t) + \dot{h}(t), t) dt - \int_{t_0}^{t_1} L(\gamma(t), \dot{\gamma}(t), t) dt \\ &= \int_{t_0}^{t_1} \left[\frac{\partial L}{\partial x} (\gamma(t), \dot{\gamma}(t), t) \cdot h(t) + \frac{\partial L}{\partial v} (\gamma(t), \dot{\gamma}(t), t) \cdot \dot{h}(t) \right] dt + \mathcal{O}(\|h\|_0^2). \end{split}$$

Nun ist

$$\int_{t_0}^{t_1} \underbrace{\frac{\partial L}{\partial v}(\gamma(t), \dot{\gamma}(t), t)}_{v} \underbrace{\dot{h}(t)}_{v'} dt = \frac{\partial L}{\partial v} \cdot h \bigg|_{t_0}^{t_1} - \int_{t_0}^{t_1} \frac{d}{dt} \left(\frac{\partial L}{\partial v}(\gamma(t), \dot{\gamma}(t), t) \right) \cdot h(t) dt,$$

wie durch partielle Integration folgt.

16.3 Satz $\gamma \in X$ ist genau dann Extremal des Funktionals

$$I(\gamma) = \int_{t_0}^{t_1} L(\gamma(t), \dot{\gamma}(t), t) dt,$$

wenn entlang $\gamma(t)$ die Euler-Lagrangegleichung

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0$$

gilt.

Zum Beweis dieses Satzes benutzen wir ein einfaches Lemma.

16.4 Lemma Wenn für $f \in C^0([t_0, t_1], \mathbb{R})$ gilt, dass für alle

$$h \in C^0([t_0, t_1], \mathbb{R})$$
 mit $h(t_0) = h(t_1) = 0$

$$\int_{t_0}^{t_1} f(t)h(t) dt = 0 \quad \text{, so ist} \quad f = 0.$$

Bew.: Sei stattdessen $f(t^*) > 0$ (oder < 0 entsprechend), dann existiert $\varepsilon > 0$ mit

$$t_0 < t^* - \varepsilon < t^* + \varepsilon < t_1$$
 und

$$f(t) \ge c > 0$$
 für $t \in [t^* - \varepsilon, t^* + \varepsilon]$.

Wähle eine so genannte Abschneidefunktion $h \in C^0([t_0, t_1], \mathbb{R})$ mit $h \ge 0$,

$$h(t) = \begin{cases} 0 & , t \leq t^* - \varepsilon \\ 1 & , t^* - \frac{\varepsilon}{2} < t < t^* + \frac{\varepsilon}{2} \\ 0 & , t \geq t^* + \varepsilon, \end{cases}$$

$$t_0 \quad t^* - \varepsilon \quad t^* \quad t^* + \varepsilon t_1$$

(siehe Abbildung). Dann ist $\int_{t_0}^{t_1} f(t) h(t) \, dt \geq c \cdot \varepsilon > 0.$

Bew. des Satzes 16.3:

$$I(\gamma + h) - I(\gamma) = \mathcal{O}(\|h\|_0^2) \Longrightarrow$$

$$\mathcal{L}_{\gamma}(h) \equiv \int_{t_0}^{t_1} \left[\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial v} \right] h \, dt = 0.$$

Anwenden des Lemmas auf die (unabhängig variierbaren) Komponenten von $h \in X_0$ ergibt die Aussage.

Wir sehen also, dass die Lösungen der Euler-Lagrangegleichungen die Wirkungsfunktion extremalisieren.

16.5 Notation Üblicher als $\mathcal{L}_{\gamma}(h)$ ist $\delta I(\gamma)(h)$.

Manchmal wird auch kurz geschrieben: $\delta I = 0$ für Extremale.

- **16.6 Bemerkungen** 1. Man kann bei Bedarf auch Wege auf Mannigfaltigkeiten und entsprechende Funktionale betrachten.
 - 2. Zweimalige stetige Differenzierbarkeit der Lagrangefunktion hätte überall ausgereicht.
 - 3. Nicht jedes Funktional besitzt ein Extremum (auch nicht jede Funktion besitzt ja ein solches!).
 - **16.7 Beispiel** $U := \mathbb{R}^2 \setminus \{0\}$, $L(x, v, t) := \|v\|$, $x_0 := \binom{-1}{0}$, $x_1 := \binom{1}{0}$. Die Strecke zwischen x_0 und x_1 enthält den Punkt $0 \in \mathbb{R}^2$. Es gibt also keine kürzeste Kurve zwischen x_0 und x_1 , die den Ursprung nicht trifft.

4. Extremale brauchen nicht eindeutig zu sein.

16.8 Beispiel Wir betrachten auf der Kugeloberfläche $S^2:=\{x\in\mathbb{R}^3\mid |x|=1\}$ den Raum

$$X:=\left\{\gamma\in C^1([0,1],S^2)\left|\gamma(0)=\left(\begin{smallmatrix}0\\0\\1\end{smallmatrix}\right)\right.,\;\gamma(1)=\left(\begin{smallmatrix}0\\0\\-1\end{smallmatrix}\right)\right\}$$

der Nordpol und Südpol verbindenden glatten Kurven, und das Funktional

$$I(\gamma) := \int_0^1 \left\| \frac{d\gamma}{dt}(t) \right\|^2 dt.$$

Die Segmente von Großkreisen, die am Nordpol $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ beginnen und am Südpol $\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$ enden, sind Extremale von I (Abbildung 20).

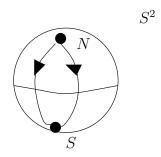


Abbildung 20: Nord- und Südpol verbindende Geodäten

5. Auch wenn das Bild der Kurve eindeutig ist, braucht die Parametrisierung noch nicht eindeutig zu sein.

Ein Beispiel ist das Längenfunktional $I(\gamma)=\int_0^1\|\dot{\gamma}(t)\|\,dt$, denn für einen Diffeomorphismus $c:[0,1]\to[0,1]$ mit c(0)=0, c(1)=1 ist

$$\int_0^1 \left\| \frac{d}{dt} (\gamma(c(t))) \right\| dt = \int_0^1 \left\| \frac{d}{ds} \gamma(s) \right\| ds \tag{16.1}$$

mit Parameter s = c(t).

Diese Uneindeutigkeit der Parametrisierung bereitet manchmal Ärger. Deshalb ist das $Energiefunktional \ \frac{1}{2} \int_0^1 \|\dot{\gamma}(t)\|^2 dt$ beliebter. Es besitzt die gleichen Extremale bis auf Parametrisierung wie das Längenfunktional, die Parametrisierung ist aber eindeutig.

Als nächstes untersuchen wir den Einfluss einer Koordinatentransformation $q\mapsto \psi(q)$ mit einem Diffeomorphismus ψ . Diese bewirkt eine Transformation des Phasenraumpunktes

$$x := (q, v)$$
 in $\Psi(x) := (\psi(q), D\psi(q) \cdot v)$.

Für das Bild $\tilde{y} := \Psi \circ \tilde{x}$ einer Kurve \tilde{x} und die glatte Funktion L_1 soll die Euler-Lagrangegleichung

$$D_1 L_1(\tilde{y}(t)) = \frac{d}{dt} D_2 L_1(\tilde{y}(t))$$

gelten, und es sei $L_2 := L_1 \circ \Psi$.

Beh.: Dann gilt auch für L_1 die Euler-Lagrangegleichung

$$D_1L_2(x(t)) = \frac{d}{dt}D_2L_2(x(t)).$$

Bew.: Aus $D_2L_2 = (D_2L_1) \circ \Psi \cdot D\psi$ folgt

$$\frac{d}{dt}D_2L_2\circ\tilde{x} = \frac{d}{dt}(D_2L_1)\circ\tilde{y} + (D_2L_1)\circ\tilde{y}\cdot(D^2\psi)\circ\tilde{x}.$$
 (16.2)

Wegen
$$D_1L_2 = (D_1L_1) \circ \Psi \cdot D\psi + (D_2L_1) \circ \Psi \cdot D^2\psi$$

gleicht der zweite Term in (16.2) dem zweiten in $D_1L_2 \circ \tilde{x}$. Damit folgt $\left(D_1L_2 - \frac{d}{dt}D_2L_2\right) \circ \tilde{x} = \left(D_1L_1 - \frac{d}{dt}D_2L_1\right) \circ \tilde{y} \cdot D\psi = 0.$

Dieses Transformationsverhalten wird uns gestatten, die Lagrangefunktion als Funktion auf dem so genannten Tangentialbündel der betrachteten Konfigurationsmannigfaltigkeit aufzufassen. Die Lösungen $t\mapsto (q(t),v(t))$ der Lagrangeschen Gleichungen sind dann Bahnkurven in diesem Raum. Die Wahl der Koordinaten in der Konfigurationsmannigfaltigkeit ist frei.

17 Die Geodätische Bewegung

Wir betrachten eine Teilmenge $M\subset\mathbb{R}_q^n$ des Konfigurationsraumes, die als Nullstellenmenge

$$M = F^{-1}(\{0\})$$

einer stetig differenzierbaren Funktion $F:W\to\mathbb{R}^m$ auf einer offenen Menge $W\subset\mathbb{R}^n_q$ definiert ist.

17.1 Definition Für $F \in C^1(W, \mathbb{R}^m)$ heißt $y \in \mathbb{R}^m$ regulärer Wert von F, wenn für alle $q \in W$ mit F(q) = y die Ableitung $D_q F : \mathbb{R}^n \to \mathbb{R}^m$ surjektiv ist.

Wir nehmen an, dass 0 regulärer Wert von F ist (und $0 \in F(W)$!). Dann muss offensichtlich $m \leq n$ sein, und wegen des Satzes über die implizite Funktion können wir für $q \in M$ eine Umgebung $U \subset W, q \in U$ und eine invertierbar glatte Abbildung (Diffeomorphismus) $\varphi: U \to \mathbb{R}^n$ finden, sodass $\varphi(z)_i = 0$ für $n-m < i \leq n$ und $z \in U \cap M$.

17.2 Definition Kann man für alle Punkte q einer Teilmenge $\tilde{M} \subset \mathbb{R}^n$ eine solche Umgebung U und Abbildung φ finden, dann heißt \tilde{M} Untermannigfaltigkeit der Dimension

$$d := n - m$$
.

17.3 Beispiel $F: \mathbb{R}^3 \to \mathbb{R}, F(x) := |x|^2 - 1$. Es ist $F^{-1}(\{0\}) = S^2$. Der Nordpol $q:=\begin{pmatrix}0\\1\\1\end{pmatrix}\in S^2$ besitzt die Umgebung $U:=\{x\in\mathbb{R}^3\mid x_3>0\}$.

Der Diffeomorphismus $\varphi(x) := (x_1, x_2, F(x))$ wird durch die Abbildung $\varphi^{-1}(y) = (y_1, y_2, \sqrt{y_3 + 1 - y_1^2 - y_2^2})$ invertiert.

Da wir durch Drehung in jedem Punkt $q \in S^2$ eine analoge Konstruktion durchführen können, haben wir gezeigt, dass S^2 eine 2-dim. Untermannigfaltigkeit des \mathbb{R}^3 ist.

17.4 Beispiel Ein Gegenbeispiel hierzu ist $F: \mathbb{R}^2 \to \mathbb{R}$, $F(x_1, x_2) := x_1^2 - x_2^3$, $F^{-1}(\{0\}) = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 = x_2^3\}$. Hier ist 0 kein regulärer Wert von F; siehe Abbildung 21.

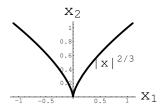


Abbildung 21: Niveaumenge $F^{-1}(\{0\})$ von $F(x)=x_1^2-x_2^3$

Es sei nun die Null regulärer Wert von $F \in C^{\infty}(W,\mathbb{R}^m)$ und

$$M := F^{-1}(\{0\}) \neq \emptyset.$$

Wir interessieren uns für die durch die Lagrangefunktion

$$\tilde{L}: W \times \mathbb{R}^n_v \to \mathbb{R}$$
 , $\tilde{L}(q, v) := \frac{1}{2} ||v||^2$

gegebene freie Bewegung auf W und ihre Einschränkung durch die holonome Zwangsbedingung $q \in M$.

Wir restringieren den Diffeomorphismus $\varphi:U\to\mathbb{R}^n$ auf die Umgebung $V:=U\cap M$ von q in M, und schreiben diesen in der Form

$$\varphi \upharpoonright_V (z) = (\psi(z), 0) \in \mathbb{R}^d \times \mathbb{R}^m.$$

Die Abbildung $\psi: V \to \mathbb{R}^d$ lässt sich auf ihrem Bild $V' := \psi(V) \subset \mathbb{R}^d \times \{0\} \cong \mathbb{R}^d$ glatt invertieren, und wir erhalten damit lokale Koordinaten

$$q := \psi^{-1} : V' \to V$$

in $V \subset M$, siehe Abbildung 22. Die durch

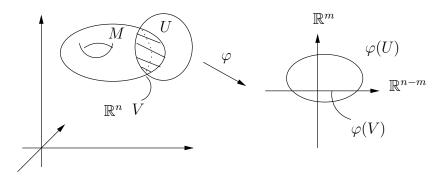


Abbildung 22: Konstruktion lokaler Koordinaten in $V \subset M$

$$L:V'\times\mathbb{R}^d\to\mathbb{R}$$
 , $L(x,w):=\tilde{L}(q(x),Dq(x)\cdot w)$

definierte Lagrangefunktion L besitzt die Form

$$L(x, w) = \frac{1}{2} \|Dq(x) \cdot w\|^2 = \frac{1}{2} \sum_{k=1}^{n} \sum_{i=1}^{d} \frac{\partial q_k}{\partial x_i}(x) w_i \sum_{j=1}^{d} \frac{\partial q_k}{\partial x_j}(x) w_j$$
$$= \frac{1}{2} \sum_{i,j=1}^{d} g_{ij}(x) w_i w_j$$

mit

$$g_{ij}(x) := \sum_{k=1}^{n} \frac{\partial q_k}{\partial x_i}(x) \frac{\partial q_k}{\partial x_j}(x).$$

17.5 Lemma Die matrixwertige Funktion $g: V' \to \mathcal{M}(d, \mathbb{R})$ ist eine **Riemann-sche Metrik** auf V, d.h. es gilt

$$g_{ij} = g_{ji} (i, j = 1, ..., d)$$
 und $g(x) > 0$ $(x \in V')$.

Bew.: • Die Symmetrie von g folgt unmittelbar aus der Definition.

ullet Für alle $x \in V'$ ist

$$\sum_{i,i=1}^{d} g_{ij}(x)w_i w_j = ||Dq(x) \cdot w||^2 > 0 \qquad (w \in \mathbb{R}^d \setminus \{0\}),$$

g also positiv definit, denn mit ψ ist auch $q:V'\to V$ ein Diffeomorphismus, es gilt also $\mathrm{rang}(Dq(x))=d$.

Ihre (koordinateninvariante) Funktion ist es, Längen von Kurven zu messen. Da wir M durch offene Mengen der Form V überdecken können, erhalten wir eine Metrik auf ganz M.

Die Länge einer Kurve $c:[0,1] \rightarrow V$ ist durch

$$\mathcal{L}(c) := \int_0^1 \sqrt{\sum_{i,j} g_{ij}(\tilde{c}(t)) \frac{d\tilde{c}_i}{dt}(t) \frac{d\tilde{c}_j}{dt}(t)} dt = \int_0^1 \sqrt{2L\left(\tilde{c}(t), \frac{d\tilde{c}_j}{dt}(t)\right)} dt$$

mit $\tilde{c} := \psi \circ c$ definiert (dabei sollte \mathcal{L} nicht mit der Lagrangefunktion L verwechselt werden!).

Die Extremale dieses gemäß (16.1) parametrisierungsinvarianten Funktionals stimmen bis auf Parametrisierung mit den Extremalen des Funktionals mit Lagrangefunktion L überein.

Wegen

$$D_1L(x,w) = \left(\frac{1}{2}\sum_{i,j=1}^d \frac{\partial g_{ij(x)}}{\partial x_1} w_i w_j, \dots, \frac{1}{2}\sum_{i,j=1}^d \frac{\partial g_{ij(x)}}{\partial x_d} w_i w_j\right)$$

und

$$D_2L(x, w) = \left(\sum_{j=1}^d g_{1j}(x)w_j, \dots, \sum_{j=1}^d g_{dj}(x)w_j\right)$$

lautet die Lagrangegleichung

$$\frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial g_{ij}(x)}{\partial x_k} \dot{x}_i \dot{x}_j = \sum_{j=1}^{d} \left(g_{kj}(x) \ddot{x}_j + \sum_{i=1}^{d} \frac{\partial g_{kj}}{\partial x_i} \dot{x}_j \dot{x}_i \right) \qquad (k = 1, \dots, d).$$

Wir definieren die Christoffelsymbole durch

$$\Gamma_{ij}^{h}(x) := \frac{1}{2}g^{hk}(x)\left(\frac{\partial g_{kj}}{\partial x_i}(x) + \frac{\partial g_{ik}}{\partial x_j}(x) - \frac{\partial g_{ij}}{\partial x_k}(x)\right) \qquad (i, j, h = 1, \dots, d),$$

wobei $(g^{hk})_{h,k=1}^d$ die zu $(g_{ki})_{k,i=1}^d$ inverse Matrix ist, und die **Einsteinsche Summenkonvention** verwendet wurde, d.h. über doppelt vorkommende Indizes summiert wurde.

Damit ergeben sich die Gleichungen

$$\left[\ddot{x}_h + \Gamma_{ij}^h(x)\dot{x}_i\dot{x}_j = 0\right] \qquad (h = 1, \dots, d).$$

Diese heißen die geodätischen Gleichungen, ihre Lösungen $t\mapsto x(t)$ geodätische Bewegung.

Zunächst fällt auf, dass der metrische Tensor g, und damit auch die geodätische Gleichung, nur Informationen über die *intrinsische* Geometrie der d-dimensionalen Fläche M unabhängig von ihrer (isometrischen) Einbettung enthält. Wir können also auch geodätische Bewegungen auf Riemannsche Mannigfaltigkeiten (d.h. Mannigfaltigkeiten mit metrischem Tensor) unabhängig von jeder Einbettung studieren.

Die Form der Matrixelemente g_{ih} ist natürlich von der Wahl des Koordinatensystems abhängig. Allerdings existieren in der Riemannschen Geometrie koordinatenfrei definierte Invarianten, die die (innere) Krümmung des Raumes M charakterisieren.

Daneben existieren noch Krümmungsvarianten (die sich ebenfalls koordinatenfrei definieren lassen), die die Form der *Einbettung* einer Untermannigfaltigkeit $M \subset \mathbb{R}^n$ charakterisieren. Es ist wichtig, diese beiden Aspekte zu unterscheiden.

17.6 Beispiel Eine 2-dim. Fläche $M\subset\mathbb{R}^3$ besitzt an einem Punkt q die innere Krümmung $K(q)=k_1\cdot k_2$, die das Produkt der inversen Krümmungsradien k_i zweier Kurven ist. Diese Kurven entstehen durch Schnitt von M mit einem 2-dim. affinen Raum durch q, der die Flächennormale an diesem Punkt enthält. Die Wahl der beiden affinen Räume erfolgt dabei so, dass die Krümmungsradien extremal werden.

Das Vorzeichen des Krümmungsradius k_i ist positiv, wenn sich die Kurve in Richtung der Flächennormale krümmt, sonst negativ. Während dadurch k_1 und k_2 von der Wahl der Normale abhängen, ist ihr Produkt K unabhängig davon (also auch für eine nicht orientierbare Fläche definiert).

- Ein Blatt Papier im \mathbb{R}^3 besitzt innere Krümmung K=0, obwohl wir es biegen können. Denn auch beim verbogenen Blatt verschwindet überall eine der beiden Hauptkrümmungen k_i (siehe Abb. 23).
- Kugel $\{x \in \mathbb{R}^3 \mid |x| = R\}$ vom Radius R: $K = k_1 \cdot k_2 = \frac{1}{R^2} > 0$
- Sattel: Hier sind die Vorzeichen von k_1 und k_2 verschieden, also K < 0.

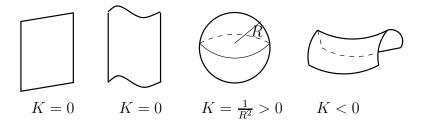


Abbildung 23: Gausssche Krümmung K von Flächen

Aus der Herleitung der Lagrangefunktion L ergibt sich, dass wir $\sqrt{2L(x,\dot{x})} = \sqrt{\sum_{i,j=1}^d g_{ij}(x)\dot{x}_i\dot{x}_j}$ als Betrag der Geschwindigkeit des Teilchens interpretieren können

Wie sich durch Einsetzen der geodätischen Gleichungen in die zeitliche Ableitung $\frac{d}{dt}L=\frac{\partial L}{\partial x}\dot{x}+\frac{\partial L}{\partial \dot{x}}\ddot{x}$ der Lagrangefunktion ergibt, ist diese Null, L also eine Konstante der Bewegung. Daraus folgt, dass der Betrag der Geschwindigkeit des Teilchens auf M ebenfalls konstant ist.

Eine besonders einfache Klasse eingebetteter Riemannscher Mannigfaltigkeiten bilden die Rotationsflächen.

Sei $R \in C^{\infty}(\mathbb{R}, \mathbb{R}^+)$. Dann heißt

$$M := \{ x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = (R(x_3))^2 \}$$

Rotationsfläche.

Die einfachste Rotationsfläche ist der Zylinder (mit konstantem R), siehe Abbildung 24.

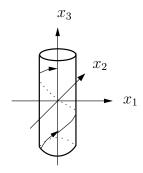


Abbildung 24: Geodäte auf einem Zylinder

Wir können eine Rotationsfläche durch $z = x_3$ und φ mit

$$x_1 = R(z)\cos\varphi$$
 , $x_2 = R(z)\sin\varphi$

parametrisieren. Damit ergibt sich

$$g(z,\varphi) = \begin{pmatrix} 1 + (R'(z))^2 & 0\\ 0 & R^2(z) \end{pmatrix}$$

und

$$L = \frac{1}{2} [(1 + (R'(z))^2)\dot{z}^2 + R^2(z)\dot{\varphi}^2].$$

Der zu φ konjugierte Impuls p_{φ} ist durch $p_{\varphi}=\frac{\partial L}{\partial \dot{\varphi}}=R^2(z)\cdot\dot{\varphi}$ gegeben, $p_z=\frac{\partial L}{\partial \dot{z}}=(1+(R'(z))^2)\dot{z}$. Damit ist die über die Legendretransformation mit L verknüpfte Hamiltonfunktion

$$H(p_{z}, p_{\varphi}, z, \varphi) = p_{z}\dot{z} + p_{\varphi}\dot{\varphi} - L(z, \varphi, \dot{z}, \dot{\varphi})$$

$$= L(z, \varphi, \dot{z}(p_{z}, z), \dot{\varphi}(p_{\varphi}, z))$$

$$= \frac{1}{2} \left(\frac{p_{z}^{2}}{1 + (R'(z))^{2}} + \frac{p_{\varphi}^{2}}{R^{2}(z)} \right).$$

Es ergibt sich unmittelbar, dass p_{φ} eine Konstante der Bewegung ist, denn

$$\dot{p}_{\varphi} = -\frac{\partial H}{\partial \varphi} = 0.$$

Wir können die Konstanz von p_{φ} auch verstehen, indem wir feststellen, dass p_{φ} die 3-Komponente des Drehimpulses ist. Dieser ist wegen der Drehinvarianz der Rotationsfläche um die 3-Richtung erhalten.

Bezeichnen wir mit α den Winkel der Teilchenrichtung mit dem lokalen Meridian (siehe Abbildung 25), so ergibt sich der

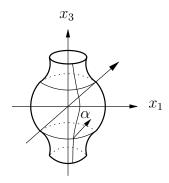


Abbildung 25: Definition des Winkels α

17.7 Satz (Clairot) $R(z) \cdot \sin \alpha$ ist zeitlich konstant.

Bew.: Es gilt $R(z)\cdot\dot{\varphi}=|v|\sin\alpha$ mit Geschwindigkeitsbetrag $|v|=\sqrt{2L}$. Also ist $p_{\varphi}=R^2\dot{\varphi}=R\cdot|v|\cdot\sin\alpha$, und wegen der Konstanz von |v| und p_{φ} ist $R\sin\alpha=\mathrm{const.}$

Da $|\sin \alpha| \le 1$, kann für einen vorgegebenen Wert der Konstante der Radius R nicht zu klein werden.

Das kann bedeuten, dass die Bewegung nur in einem Ring $z_0 \le z \le z_1$ mit $R(z_0) = R(z_1) = |\text{const}|$ verläuft, siehe Abbildung 26.

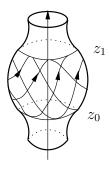


Abbildung 26: Geodäte auf einer Rotationsfläche

Eine Einführung in die Differentialgeometrie findet man in Klingenberg [Kl]; einen tieferen Einstieg in die Riemannsche Geometrie bietet das Buch [GHL] von Gallot, Hulin und Lafontaine.

18 Die Jacobimetrik

Die Riemannsche Geometrie und die Theorie der geodätischen Bewegung sind vergleichsweise gut ausgearbeitet.

Andererseits ist, wenn wir von der Umgebung schwarzer Löcher oder anderen kosmologischen Fragen absehen, der Raum der Klassischen Mechanik typischerweise euklidisch. Viele mechanische Probleme sind von dem durch die Hamiltonfunktion $H(p,q)=\frac{p^2}{2m}+V(q)$ beschriebenen Typ.

Es wäre daher von Vorteil, wenn wir die reichhaltige Theorie geodätischer Bewegung auf solche Potential-Probleme übertragen könnten. Das ist, wie von Jacobi und anderen im letzten Jahrhundert erkannt wurde, bis zu einem gewissen Grad möglich.

Der Grund für diese Beziehung liegt im folgenden Satz.

18.1 Satz Seien $H_1, H_2 \in C^{\infty}(M, \mathbb{R})$ auf dem Phasenraum $M := \mathbb{R}_p^n \times U$ ($U \subset \mathbb{R}_q^n$ offen), und es gelte für die regulären Werte h_i im Wertebereich von H_i , i = 1, 2

$$\Sigma := H_1^{-1}(\{h_1\}) = H_2^{-1}(\{h_2\}).$$

Dann sind die Orbits der von H_1 und H_2 auf Σ erzeugten Hamiltonschen Flüsse gleich.

Bew.: $\Sigma \subset M$ ist eine (2n-1)-dimensionale Untermannigfaltigkeit, da die $h_i \in H_i(M)$ regulär sind. Die von H_i erzeugten Hamiltonschen Vektorfelder haben in (p,q)-Koordinaten die Form

$$X_{H_i} = J \cdot \nabla H_i$$
 , wobei $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Sowohl ∇H_1 als auch ∇H_2 stehen an jedem Punkt der Energieschale Σ senkrecht auf der (2n-1)-dimensionalen Tangentialebene, denn diese ist Äquipotentialfläche beider Funktionen. Damit sind ∇H_1 und ∇H_2 parallel. Da h_1 und h_2 reguläre Werte von H_1 bzw. H_2 sind, gilt für alle $x \in \Sigma : \nabla H_i(x) \neq 0$. Damit ist die durch $\nabla H_1 = f \cdot \nabla H_2$ implizit definierte Funktion $f : \Sigma \to \mathbb{R}$ glatt und ungleich Null. Es gilt auf Σ

$$\nabla H_1(x) = f(x) \cdot \nabla H_2(x).$$

Damit wird auf der Niveaufläche

$$X_{H_1}(x) = f(x) \cdot X_{H_2}(x), \qquad (x \in \Sigma)$$

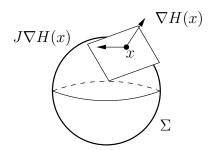


Abbildung 27: Gradient und Hamiltonsches Vektorfeld

d.h. die Hamiltonschen Vektorfelder sind (anti-) parallel und nicht verschwindend. Daraus ergibt sich die Aussage. □

Schon die Form der Energieschale bestimmt also die Orbits des Hamiltonschen Flusses. Andererseits ist die Zeitparametrisierung dadurch noch nicht festgelegt; im Fall des Satzes ergibt sich die Umparametrisierung durch Integration von f entlang der Orbits.

Wir wollen den obigen Satz nun auf Bewegungen im Potential anwenden.

18.2 Definition Es sei $V \in C^{\infty}(\mathbb{R}_q^n, \mathbb{R})$, $h \in \mathbb{R}$ und $U \subset \mathbb{R}_q^n$ offen. Gilt $V |_U < h$, so heißt die Metrik g_h auf U mit Komponenten

$$(g_h(q))_{ij} := (h - V(q)) \cdot \delta_{ij}$$
 $(i, j = 1, ..., n)$

Jacobimetrik auf U für Energie h.

Die Lagrangefunktion für die geodätische Bewegung in dieser Metrik ist

$$L(q, v) = \frac{1}{2}(g_h(q))_{i,j}v_iv_j.$$

Der kanonisch konjugierte Impuls ist $p = \frac{\partial L}{\partial v}$, also $p_k(q,v) = (g_h(q))_{k,j}v_j$. Damit ist die Hamiltonfunktion der geodätischen Bewegung gleich

$$H_2: \mathbb{R}_p^n \times U \to \mathbb{R}$$
 , $H_2(p,q) := \frac{1}{2(h-V(q))} \cdot p^2$.

18.3 Satz Für $M := \mathbb{R}_p^n \times \mathbb{R}_q^n$, $H(p,q) := \frac{1}{2}p^2 + V(q)$ sind die Lösungen $q:(a,b) \to U$ der Hamiltonschen Gleichungen mit $H(\dot{q}(t),q(t))=h$ bis auf Parametrisierung gleich den Lösungen der geodätischen Gleichung für die Jacobimetrik auf U für Energie h.

Bew.: Für die Energiewerte $h_1 := h$, $h_2 := 1$ und $H_1 := H$ gilt $H_1^{-1}(\{h_1\}) = H_2^{-1}(\{h_2\})$.

Durch Überführung der Hamiltonschen Gleichungen von H_2 in ein Differentialgleichungssystem zweiter Ordnung in den Koordinaten (q_1, \ldots, q_n) ergeben sich die geodätischen Gleichungen für die Jacobimetrik.

Der obige Satz 18.1 ergibt dann die Aussage.

18.4 Beispiel Eine typische Anwendung der Jacobimetrik bildet das Doppelpendel. Wir untersuchen den Fall, bei dem der am Nullpunkt befestigte Stab der Länge R_1 in der q_1-q_3 -Ebene schwingt, und der an seinem Ende befestigte Stab der Länge R_2 in der durch den ersten Stab und die q_2 -Achse gegebenen Ebene schwingt ⁴. Bei Annahme $R_1 > R_2 > 0$ ist die Menge der Orte

$$q(\varphi_1, \varphi_2) = \begin{pmatrix} \cos \varphi_1 & 0 - \sin \varphi_1 \\ 0 & 1 & 0 \\ \sin \varphi_1 & 0 & \cos \varphi_1 \end{pmatrix} \begin{pmatrix} R_1 \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + R_2 \begin{pmatrix} 0 \\ \sin \varphi_2 \\ \cos \varphi_2 \end{pmatrix} \end{pmatrix}$$
$$= R_1 \begin{pmatrix} \sin \varphi_1 \\ 0 \\ -\cos \varphi_1 \end{pmatrix} + R_2 \begin{pmatrix} \sin \varphi_1 \cos \varphi_2 \\ \sin \varphi_2 \\ -\cos \varphi_1 \cos \varphi_2 \end{pmatrix}$$

des Massepunktes ein in den \mathbb{R}^3 eingebetteter 2-Torus, und diffeomorph zu

$$\mathbb{T}^2 := S^1 \times S^1 \quad \text{mit} \quad S^1 := \{ x \in \mathbb{R}^2 \mid |x| = 1 \}$$

(Abb. 28). Die Lagrangefunktion

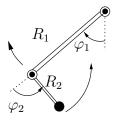


Abbildung 28: Doppelpendel (Schwingungsebenen stehen senkrecht aufeinander)

$$\tilde{L}(q,\dot{q}) := \frac{1}{2}\dot{q}^2 - \tilde{V}(q) \quad \text{mit} \quad \tilde{V}(q) := -gq_3$$

 $\left(g>0$ Erdbeschleunigung) nimmt nach Einsetzen der holonomen Zwangsbedingungen die Form

$$L(\varphi, \dot{\varphi}) = \frac{1}{2} \left((R_1 + R_2 \cos \varphi_2)^2 \dot{\varphi}_1^2 + R_2^2 \dot{\varphi}_2^2 \right) - V(\varphi)$$

⁴Die Diskussion in [Ar2], §45 des *planaren* Doppelpendels ist problematisch, da hier die Metrik auf dem Konfigurationsraum degeneriert.

mit Potential

$$V(\varphi) = -g\cos(\varphi_1)(R_1 + R_2\cos\varphi_2) \tag{18.1}$$

an. Für beliebige glatte Potentiale V erhalten wir damit $H:\mathbb{R}^2_p\times\mathbb{T}^2\to\mathbb{R}$ von der Form

$$H(p,q) = \frac{1}{2} \left((R_1 + R_2 \cos \varphi_2)^{-2} p_1^2 + R_2^{-2} p_2^2 \right) + V(q).$$

Wie man an der numerischen Lösung der Hamiltonschen Differentialgleichung

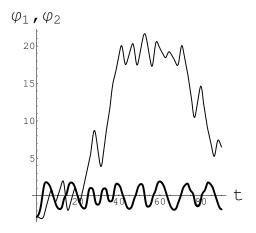


Abbildung 29: Numerische Lösung der Differentialgleichung des Doppelpendels (fett gezeichnet ist der Winkel φ_1)

für das Potential (18.1) in Abbildung 29 sieht, ist die Dynamik des Doppelpendels kompliziert. Trotzdem kann man mithilfe der Jacobimetrik die Existenz gewisser periodischer Lösungen nachweisen.

Für Gesamtenergie $h>\max_{\mathbb{T}^2}V$ (was im Fall des Gravitationspotentials (18.1) bedeutet: $h>g\cdot(R_1+R_2)$) besitzt die Jacobimetrik die Darstellung durch die folgende auf ganz \mathbb{T}^2 definierte positiv definite symmetrische Matrix

$$(h - V(\varphi)) \begin{pmatrix} (R_1 + R_2 \cos \varphi_2)^2 & 0 \\ 0 & R_2^2 \end{pmatrix} \qquad (\varphi \in \mathbb{T}^2).$$

Wir können ähnlich wie oben die geodätische Bewegung auf \mathbb{T}^2 in der Jacobimetrik untersuchen.

18.5 Satz Für $h > \max_{q \in \mathbb{T}^2} V(q)$ und $(m, n) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ existiert eine periodische Bewegung mit Energie h, bei der das erste Segment des Doppelpendels m-mal, das zweite n-mal rotiert.

Beweisidee: Wir suchen auf \mathbb{T}^2 eine geschlossene Geodäte der Jacobimetrik etwa der in Abbildung 30 skizzierten Form.

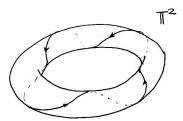


Abbildung 30: Geschlossene Geodäte auf einem Torus

Eine solche Geodäte existiert nach allgemeinen Prinzipien des Variationskalküls (bzw. Morsetheorie). Die Idee dabei ist eine geschlossene Kurve mit den gegebenen Umlaufzahlen soweit möglich zu verkürzen. Resultat ist eine geschlossene Geodäte mit gleichen Umlaufzahlen, denn diese ändern sich bei der Verkürzung nicht.

Die Details des Argumentes findet man z.B. in dem Buch [Mi] von Milnor. □

Eng verwandt mit der Jacobimetrik ist das so genannte Maupertuis-Prinzip, siehe §45D in [Ar2].

19 Maßerhaltende dynamische Systeme

Nach den topologischen und geometrischen Eigenschaften dynamischer Systeme werden wir uns jetzt mit den maß- und wahrscheinlichkeitstheoretischen Aspekten befassen. Dieser Gesichtspunkt ist besonders wichtig, wenn wir das Langzeitverhalten instabiler ("chaotischer") Systeme beschreiben wollen.

Im einfachsten Fall wird das betrachtete Maß das Lebesguemaß μ auf dem Phasenraum $M=\mathbb{R}^d$ sein. Da wir aber auch andere Maße betrachten wollen, beginnen wir mit einigen maßtheoretischen Grundbegriffen.

19.1 Definition Ein messbarer Raum (M, \mathcal{M}) ist eine Menge M mit einer Menge \mathcal{M} von Teilmengen von M (den messbaren Mengen), für die gilt:

- $M \in \mathcal{M}$.
- Falls $A_n \in \mathcal{M} \ (n \in \mathbb{N})$, dann ist auch $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{M}$.

• Falls $A \in \mathcal{M}$, dann ist auch $A^c := M \setminus A \in \mathcal{M}$.

 \mathcal{M} heißt dann σ -Algebra auf M.

- **19.2 Beispiel** 1. Die Potenzmenge $\mathcal{P}(M)$ ist die größte σ -Algebra auf M.
 - 2. Die Menge $\{M,\emptyset\}$ ist die kleinste σ -Algebra auf M.
 - 3. Ist (M,\mathcal{O}) ein topologischer Raum, dann existiert eine kleinste σ -Algebra \mathcal{M} auf M mit $\mathcal{O} \subset \mathcal{M}$, genannt die σ -Algebra der Borelmengen.

Dies ist die in der Klassischen Mechanik hauptsächlich benutzte σ -Algebra.

19.3 Definition • Ein $Ma\beta$ auf einem messbaren Raum (M, \mathcal{M}) ist eine Abbildung⁵ $\mu : \mathcal{M} \to [0, \infty]$ (die nicht nur den Wert ∞ annimmt), welche σ -additiv (auch abzählbar additiv genannt) ist, d.h.

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \sum_{n\in\mathbb{N}}\mu(A_n),\tag{19.1}$$

für disjunkte $(A_m \cap A_n = \emptyset \text{ für } m \neq n \in \mathbb{N}) A_n \in \mathcal{M}.$

- μ heißt $\mathit{Wahrscheinlichkeitsma\beta}$, wenn zusätzlich $\mu(M)=1$ gilt.
- Ein $Ma\beta raum\ (M, \mathcal{M}, \mu)$ ist ein messbarer Raum (M, \mathcal{M}) mit einem Maß $\mu: M \to [0, \infty].$
- Ist μ ein Wahrscheinlichkeitsmaß, dann heißt (M, \mathcal{M}, μ) Wahrscheinlichkeitsraum.
- 19.4 Beispiel 1. Ist (M,+) eine (lokalkompakte) abelsche Gruppe, dann existiert ein translationsinvariantes Maß μ auf einer die Borelmengen von M umfassenden σ -Algebra \mathcal{M} . Dieses Maß ist bis auf Multiplikation mit einer positiven Konstante eindeutig und wird $Haarma\beta$ genannt.

Im Fall der Gruppe $(\mathbb{R}^d,+)$ erhalten wir das Lebesguemaß.

⁵ Mit $[0, \infty]$ ist die Menge $[0, \infty) \cup \{\infty\}$ gemeint.

⁶Translations invariant von μ bedeutet $\mu(A+m)=\mu(A)$ für alle $A\in\mathcal{M}$ und $m\in M$.

2. Ist h ein regulärer Wert einer glatten Funktion $H:\mathbb{R}^d\to\mathbb{R}$, und ist die Niveaumenge $M:=\{x\in\mathbb{R}^d\mid H(x)=h\}$ kompakt (und $M\neq\emptyset$), dann wird durch

$$\lambda_h(B) := \lim_{\varepsilon \searrow 0} \frac{\lambda \left(\hat{B} \cap H^{-1}((h - \varepsilon, h + \varepsilon)) \right)}{2\varepsilon}$$

ein Maß auf M definiert. Dabei werden den Borelmengen $B \in \mathcal{M}$ die Mengen $\hat{B} \subset \mathbb{R}^d$ zugeordnet, die entstehen, wenn man alle um $b \in B$ zentrierten auf M senkrecht stehenden Strecken der (kleinen) Länge $2\delta > 0$ vereinigt, also anschaulich B "verdickt". Das Maß λ_h auf M heißt Liouvillemaß.

Beispielsweise erhalten wir so durch Betrachtung von $H: \mathbb{R}^{d+1} \to \mathbb{R}$, $H(x) := x^2$, ein rotationssymmetrisches Maß auf der Kugeloberfläche $S^d = H^{-1}(1)$.

19.5 Definition • Eine Abbildung $T: M_1 \to M_2$ zwischen Maßräumen $(M_i, \mathcal{M}_i, \mu_i)$ heißt *messbar*, wenn

$$T^{-1}(A_2) \in \mathcal{M}_1 \qquad (A_2 \in \mathcal{M}_2).$$

• Eine messbare Abbildung $T: M_1 \to M_2$ heißt maßerhaltend, wenn

$$\mu_1(T^{-1}(A_2)) = \mu_2(A_2) \qquad (A_2 \in \mathcal{M}_2).$$

• Ist $\Phi: G \times M \to M$ ein dynamisches System (mit Gruppe $G = \mathbb{R}$ oder \mathbb{Z}), und ist μ ein Maß auf der Borel- σ -Algebra \mathcal{M} von M, dann heißt $(M, \mathcal{M}, \mu, \Phi)$ ein maßerhaltendes dynamisches System, wenn Φ messbar und die Abbildungen $\Phi_t: M \to M$ $(t \in G)$ maßerhaltend sind.

19.6 Satz Es sei $H \in C^2(M,\mathbb{R})$ auf dem Phasenraum $M := \mathbb{R}_p^n \times \mathbb{R}_q^n$ eine Hamiltonfunktion, die einen hamiltonschen Fluss $\Phi_t : M \to M \ (t \in \mathbb{R})$ erzeugt. Dann ist der Fluss maßerhaltend.

Bew.: Für den Fall eines linearen Flusses wurde die Aussage schon im Korollar zu Satz 7.2 bewiesen. Analog folgt der Satz aus der Form $X_H = JDH$ des hamiltonschen Vektorfeldes von H, denn

$$\operatorname{tr}(DX_H) = \operatorname{tr}(JD^2H) = \operatorname{tr}((JD^2H)^T) = \operatorname{tr}(-JD^2H) = -\operatorname{tr}(DX_H),$$

die Spur des linearisierten Vektorfeldes ist also Null.

19.7 Bemerkung Analog erhält auch für reguläre Werte E von H der auf die Energiefläche $H^{-1}(E)$ eingeschränkte Fluss das Liouvillemaß λ_E .

20 Ergodische dynamische Systeme

Die meisten dynamischen Systeme besitzen die Eigenschaft, dass anfänglich benachbarte Trajektorien schnell auseinanderstreben, sodass eine langfristige Voraussage bei endlich genauer Kenntnis der Anfangsbedingungen unmöglich ist.

Trotzdem sind auch in diesen Fällen Aussagen über das Langzeitverhalten möglich, die dann allerdings statistischer Natur sind.

Diese Anwendung wahrscheinlichkeitstheoretischer Begriffe auf dynamische Systeme wird *Ergodentheorie* genannt.

Wir untersuchen also die Eigenschaften eines maßerhaltenden dynamischen Systems $(M, \mathcal{M}, \mu, \Phi)$, wobei wir annehmen, dass μ ein Wahrscheinlichkeitsmaß ist.

Eine wichtige Frage ist dabei, wie viele Φ -invariante messbare Mengen es gibt, also wie groß

$$\mathcal{I} := \{ A \in \mathcal{M} \mid \forall t \in G : \Phi_t(A) = A \}$$

ist. Offensichtlich gilt immer $\{M,\emptyset\} \subset \mathcal{I}$, und $\mathcal{I} \subset \mathcal{M}$ ist eine σ -Algebra von M.

Grob gesagt, ist $\mathcal I$ umso kleiner, je mehr Φ den Phasenraum M durcheinander mischt.

20.1 Definition Das dynamische System heißt *ergodisch*, wenn

$$\mu(A) \in \{0, 1\} \qquad (A \in \mathcal{I}).$$

- **20.2 Beispiel** Es sei $M:=S^1=\{c\in\mathbb{C}\mid |c|=1\}$. Da dieser Phasenraum gleichzeitig eine kompakte abelsche Gruppe ist, ist das geeignet normierte Haarsche Maß μ auf M ein Wahrscheinlichkeitsmaß.
 - 1. Die \mathbb{R} -Gruppenwirkung

$$\Phi: \mathbb{R} \times M \to M$$
 , $\Phi(t, m) := \exp(2\pi i \alpha t) m$

ist maßerhaltend und für $\alpha \in \mathbb{R} \setminus \{0\}$ ergodisch, denn falls $m \in S^1$ zu einer Φ -invarianten Menge $A \subset S^1$ gehört, dann ist $A = S^1$.

2. Für $\alpha \in \mathbb{Q}$ ist die \mathbb{Z} -Gruppenwirkung

$$\Phi: \mathbb{Z} \times M \to M$$
 , $\Phi(t, m) := \exp(2\pi i \alpha t) m$

nicht ergodisch, denn wenn $\alpha=p/q$ mit $q\in\mathbb{N}$ und $p\in\mathbb{Z}$ ist, ist die Menge

$$A := \bigcup_{k=0}^{q-1} \exp\left(2\pi i \left[\frac{k}{q}, \frac{k+\frac{1}{2}}{q}\right]\right) \subset M$$

 Φ -invariant, aber $\mu(A) = \frac{1}{2}$, siehe Abbildung 31.

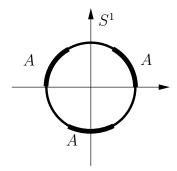


Abbildung 31: Φ -invariante Menge A für $\alpha = p/q$ mit q = 3

Im letzten Beispiel sind für $\alpha \in \mathbb{Q}$ alle Orbits periodisch, während für $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ kein Orbit periodisch ist. Ist dann dieses diskrete dynamische System auch ergodisch?

Dies ist nicht so einfach zu beantworten, denn jedenfalls gibt es mehr invariante Mengen als M und \emptyset (z.B. der Orbit $\{\exp(2\pi i\alpha t)\mid t\in\mathbb{Z}\}$ des Punktes $1\in M$).

Hier ist es nützlich zu betrachten, wie das dynamische System auf Phasenraumfunktionen, genauer den quadratintegrablen Funktionen auf M, wirkt.

20.3 Lemma *Ist* $(M, \mathcal{M}, \mu, \Phi)$ *ein maßerhaltendes dynamisches System, dann sind die linearen Endomorphismen*

$$\hat{\Phi}_t : L^2(M,\mu) \to L^2(M,\mu)$$
 , $\hat{\Phi}_t f := f \circ \Phi_t$ $(t \in G)$

unitär, das heißt

$$\langle \hat{\Phi}_t f, \hat{\Phi}_t g \rangle = \langle f, g \rangle \qquad (f, g \in L^2(M, \mu)),$$

und $\hat{\Phi}_t$ ist surjektiv.

Bew.: Wegen der Φ_t -Invarianz des Maßes μ ist

$$\left\langle \hat{\Phi}_t f, \hat{\Phi}_t g \right\rangle = \int_M f \circ \Phi_t(x) \overline{g} \circ \Phi_t(x) \, d\mu(x) = \int_M f(y) \overline{g}(y) \, d\mu(\Phi_{-t}(y))$$
$$= \int_M f(y) \overline{g}(y) \, d\mu(y) = \langle f, g \rangle.$$

 $\hat{\Phi}_t$ ist surjektiv, da die Umkehrabbildung existiert $(\hat{\Phi}_t)^{-1} = \hat{\Phi}_{-t}$.

20.4 Satz Die Gruppenwirkung Φ ist genau dann ergodisch, wenn alle $\hat{\Phi}$ -invarianten Funktionen

$$f \in L^2(M,\mu)$$
 , $\hat{\Phi}_t f = f$ $(t \in G)$

 μ -fast überall konstant sind.

Bew.:

• Für eine $\hat{\Phi}$ -invariante Funktion $f \in L^2(M, \mu)$ sind auch $\operatorname{Re}(f)$ und $\operatorname{Im}(f)$ $\hat{\Phi}$ -invariant. Wir können also gleich annehmen, dass f reell ist.

Für alle $n \in \mathbb{N}$ und $k \in \mathbb{Z}$ sind die Mengen

$$A_{n,k} := f^{-1}([k2^{-n}, (k+1)2^{-n}))$$

invariant $(A_{n,k} \in \mathcal{I})$. Für alle $n \in \mathbb{N}$ bilden sie außerdem eine Partition von M, d.h.

$$A_{n,k_1} \cap A_{n,k_2} = \delta_{k_1,k_2} A_{n,k_1}$$
 und $\bigcup_{k \in \mathbb{Z}} A_{n,k} = M.$ (20.1)

Ist nun Φ ergodisch, dann gilt $\mu(A_{n,k}) \in \{0,1\}$, sodass wegen (20.1) ein eindeutiger Index k_n mit $\mu(A_{n,k_n}) = 1$ existiert. Nun gilt

$$A_{n,k} = A_{n+1,2k} \dot{\cup} A_{n+1,2k+1},$$

weswegen die Folge $(k_n 2^{-n})_{n \in \mathbb{N}}$ gegen eine reelle Zahl z konvergiert, die von f μ -fast überall angenommen wird (d.h. $\mu(\{x \in M \mid f(x) \neq z\}) = 0$).

• Sind umgekehrt alle $\hat{\Phi}$ -invarianten Funktionen $f \in L^2(M,\mu)$ μ -fast überall konstant, dann gilt dies insbesondere für die charakteristischen Funktionen $\mathbb{1}_A$ der invarianten Mengen $A \in \mathcal{I}$. Da diese nur die Werte 0 und 1 annehmen können, folgt

$$\mu(A) = \int_M \mathbb{1}_A \, d\mu \in \{0, 1\}.$$

20.5 Beispiel Wir kehren zu Beispiel 20.2.2 zurück und nehmen an, dass der Kreis M um die Vielfachen des Winkels $2\pi\alpha$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ gedreht wird.

Ist nun $f \in L^2(M, \mu)$ invariant unter $\hat{\Phi}$ und ist

$$f = \sum_{k \in \mathbb{Z}} c_k e_k$$

die Fourierentwicklung von f mit den Charakteren

$$e_k: S^1 \to S^1$$
 , $e_k(m) := m^k$ $(k \in \mathbb{Z})$,

dann ist

$$\hat{\Phi}_t(f) = \sum_{k \in \mathbb{Z}} c_k \hat{\Phi}_t(e_k) = \sum_{k \in \mathbb{Z}} c_k \exp(2\pi i t k \alpha) e_k,$$

sodass $\sum_{k\in\mathbb{Z}} c_k (1-\exp(2\pi i k \alpha))e_k = 0$ für Zeit t=1 folgt.

Wegen der Irrationalität von α verschwindet die Klammer aber nur für k=0, sodass aus der Basiseigenschaft der Funktionen e_k folgt: $c_k=0$ $(k \in \mathbb{Z} \setminus \{0\})$.

f ist also μ -fast überall konstant. Damit ist Φ ergodisch.

21 Mischende dynamische Systeme

Wie das letzte Kapitel zeigte, können sehr reguläre und gut voraussagbare dynamische Systeme ergodisch sein. Dagegen ist die Dynamik mischender Systeme komplizierter.

Wir gehen wieder von einem messbaren dynamischen System $(M, \mathcal{M}, \mu, \Phi)$ mit Wahrscheinlichkeitsmaß μ aus.

21.1 Definition Das dynamische System heißt *mischend*, wenn gilt

$$\lim_{|t| \to \infty} \mu(\Phi_t(A) \cap B) = \mu(A) \cdot \mu(B) \qquad (A, B \in \mathcal{M}).$$

In einem maßtheoretischen Sinn wird also für große Zeiten t die Menge $\Phi_t(A)$ in M gleichverteilt, etwa so wie sich durch Rühren die Milch im Kaffee verteilt.

21.2 Lemma Mischende dynamische Systeme sind ergodisch.

Bew.: Ist $A \in \mathcal{I}$, dann ist $\Phi_t(A) = A$, also wegen der Mischungseigenschaft $\mu(A \cap B) = \mu(A) \cdot \mu(B)$, was für B := A die Gleichung $\mu(A) = \mu(A)^2$, also $\mu(A) \in \{0,1\}$ ergibt.

21.3 Beispiel Ist $T \in SL(2,\mathbb{Z})$, also T eine 2×2 -Matrix mit ganzzahligen Einträgen und $\det(T) = 1$, dann ist auch $T^{-1} \in SL(2,\mathbb{Z})$, und wir erhalten ein dynamisches System $\tilde{\Phi}: \mathbb{Z} \times \mathbb{R}^2 \to \mathbb{R}^2$, $\tilde{\Phi}(n,x) := T^n x$, das das Gitter $\mathbb{Z}^2 \subset \mathbb{R}^2$ auf sich abbildet.

Nun ist \mathbb{Z} eine Untergruppe der abelschen Gruppe \mathbb{R} , die Menge \mathbb{R}/\mathbb{Z} der Nebenklassen also ebenfalls eine abelsche Gruppe, und wir können die Zahlen aus [0,1) als die Repräsentanten dieser Gruppe wählen. Dabei geht die Addition reeller Zahlen in die Addition modulo 1 über.

Die Abbildung $x \mapsto \exp(2\pi i x)$ bildet \mathbb{R}/\mathbb{Z} isomorph auf die multiplikative Gruppe $S^1 = \{c \in \mathbb{C} \mid |c| = 1\}$, die Kreislinie, ab.

Komponentenweise Addition modulo 1 ergibt die Isomorphie der Faktorgruppe $\hat{\mathbb{T}}^2 := (\mathbb{R}^2/\mathbb{Z}^2) \cong (\mathbb{R}/\mathbb{Z})^2$ mit dem in Kapitel 18 eingeführten 2-Torus $\mathbb{T}^2 = S^1 \times S^1$.

Da die Abbildungen $\tilde{\Phi}_t$ linear sind und $\tilde{\Phi}_t(\mathbb{Z}^2)=\mathbb{Z}^2$ gilt, ergibt sich für alle Zeiten $t\in\mathbb{Z}$

$$\tilde{\Phi}_t(x+\ell) \equiv \tilde{\Phi}_t(x) \pmod{1} \qquad (x \in \mathbb{R}^2, \ell \in \mathbb{Z}^2).$$

Damit ergibt sich ein dynamisches System

$$\Phi_t: \hat{\mathbb{T}}^2 \to \hat{\mathbb{T}}^2 \quad , \quad \Phi_t(\pi(x)) := \pi(\tilde{\Phi}_t(x)) \qquad (x \in \mathbb{R}^2),$$

wobei

$$\pi: \mathbb{R}^2 \to \hat{\mathbb{T}}^2$$
 , $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_1 \pmod{1} \\ x_2 \pmod{1} \end{pmatrix}$

die Projektion auf die Faktorgruppe bezeichnet.

Man bezeichnet Φ_1 als *Torusautomorphismus*, und nennt diesen *hyperbolisch*, wenn $|\mathrm{tr}(T)|>2$ gilt, also wenn T reelle Eigenwerte λ_i mit $|\lambda_1|>1>|\lambda_2|$ besitzt. Die Abbildung T streckt dann in Richtung des ersten Eigenraum um den Faktor λ_1 und kontrahiert um $\lambda_2=1/\lambda_1$ in Richtung des zweiten Eigenraums.

Wir betrachten in Abbildung 32 die Wirkung von Φ_t auf eine Teilmenge des 2-Torus $\hat{\mathbb{T}}^2$.

21.4 Satz Hyperbolische Torusautomorphismen sind mischend.

Bew.: Der Hilbertraum $L^2(\hat{\mathbb{T}}^2)$ der (Äquivalenzklassen von) quadratintegrablen Funktionen $f,g:\hat{\mathbb{T}}^2\to\mathbb{C}$ mit Skalarprodukt $(f,g):=\int_{\hat{\mathbb{T}}^2}f(x)\overline{g}(x)\,d^2x$ besitzt die Orthonormalbasis $(e_k)_{k\in\mathbb{Z}^2}$ mit

$$e_k(x) := \exp(2\pi i k \cdot x) \qquad (x \in \hat{\mathbb{T}}^2).$$

Abbildung 32: Wirkung des Torusautomorphismus für die Matrix $T:=\binom{21}{11}$. Links: Teilmenge $A\subset \mathbb{T}^2$. Mitte: $\Phi_1(A)$, Rechts: $\Phi_3(A)$.

Es ist

$$e_k(\Phi_n(x)) = \exp(2\pi i k \cdot \Phi_n(x)) = \exp(2\pi i \tilde{\Phi}_n^{\top}(k) \cdot x) = e_{\tilde{\Phi}_n^{\top}(k)}(x),$$

denn mit T ist auch die transponierte Matrix T^{\top} in $SL(2,\mathbb{Z})$.

Nun existiert kein Gittervektor $k \in \mathbb{Z}^2 \setminus \{0\}$, der für irgendeine Zeit $t \in \mathbb{Z} \setminus \{0\}$ auf sich abgebildet würde, d.h. $\tilde{\Phi}_t^{\top}(k) \neq k$.

Betrachten wir daher für ein noch so großes r>0 die endliche Menge $\mathbb{Z}_r^2:=\{k\in\mathbb{Z}^2\mid |k|\leq r\}$, dann existiert eine Zeit $t_0(r)$, nach der alle $k\in\mathbb{Z}_r^2\setminus\{0\}$ diese Menge verlassen haben, d.h.

$$\tilde{\Phi}_t^{\top}(k) \not\in \mathbb{Z}_r^2 \qquad (|t| > t_0(r)).$$

Die linearen Abbildungen

$$\hat{\Phi}_t: L^2(\hat{\mathbb{T}}^2) \to L^2(\hat{\mathbb{T}}^2)$$
 , $\hat{\Phi}_t f = f \circ \Phi_t^{-1}$

sind unitär. Wir betrachten nun die charakteristischen Funktionen $f:=\mathbb{1}_A$ und $g:=\mathbb{1}_B\in L^2(\hat{\mathbb{T}}^2).$ Es ist

$$(\hat{\Phi}_t f, q) = \mu(\hat{\Phi}_t(A) \cap B)$$

und

$$(f, e_0) = \mu(A)$$
 , $(g, e_0) = (e_0, g) = \mu(B)$.

Zu zeigen ist damit

$$\lim_{|t| \to \infty} (\hat{\Phi}_t f, g) = (f, e_0) \cdot (e_0, g). \tag{21.1}$$

Sind $f=\sum_{k\in\mathbb{Z}^2}c_ke_k$ bzw. $g:=\sum_{k\in\mathbb{Z}^2}d_ke_k$ die Fourierreihen für f und g, (also $c_k,d_k\in\mathbb{C}$ und $\sum_{k\in\mathbb{Z}^2}|c_k|^2<\infty,$ $\sum_{k\in\mathbb{Z}^2}|d_k|^2<\infty$) dann schneiden wir diese ab, indem wir

$$f_r := \sum_{n \in \mathbb{Z}^2_x} c_n e_n \quad ext{und} \quad g_r := \sum_{n \in \mathbb{Z}^2_x} d_n e_n$$

setzen. Nun folgt für Zeiten $t \in \mathbb{Z}$ mit $|t| > t_0(r)$

$$(\hat{\Phi}_t f_r, g_r) = \sum_{k,\ell \in \mathbb{Z}_r^2} c_k \overline{d}_\ell \cdot (\hat{\Phi}_t e_k, e_\ell) = c_0 \overline{d}_0 = (f_r, e_0) \cdot (e_0, g_r),$$

denn $\hat{\Phi}_t e_k = e_{\tilde{\Phi}_t^\top(k)}$ ist dann für Gitterpunkte $k \in \mathbb{Z}_r^2 \setminus \{0\}$ orthonormal auf den e_ℓ , $\ell \in \mathbb{Z}_r^2$. Andererseits sind die Abbildungen $\hat{\Phi}_t$ unitär, sodass unter Verwendung der Dreiecksungleichung und der Schwarzschen Ungleichung

$$|(\hat{\Phi}_{t}f,g) - (\hat{\Phi}_{t}f_{r},g_{r})| \leq |(\hat{\Phi}_{t}(f-f_{r}),g)| + |(\hat{\Phi}_{t}f_{r},g-g_{r})|$$

$$\leq ||(\hat{\Phi}_{t}(f-f_{r})||_{2}||g||_{2} + ||\hat{\Phi}_{t}f_{r}||_{2}||g-g_{r}||_{2}$$

$$\leq \varepsilon(||g||_{2} + ||f_{r}||_{2}) \leq \varepsilon(||g||_{2} + ||f||_{2} + \varepsilon)$$

gilt, falls $r\equiv r(\varepsilon)$ so groß gewählt wird, dass $\|f-f_r\|_2<\varepsilon$ und $\|g-g_r\|_2<\varepsilon$ gilt. Das impliziert für $|t|>t_0(r(\varepsilon))$

$$|(\hat{\Phi}_t f, g) - (f, e_0) \cdot (e_0, g)| \le \varepsilon (||g||_2 + ||f||_2 + \varepsilon)$$

also (21.1).

21.5 Bemerkung Im Beispiel der hyperbolischen Torusautomorphismen haben wir uns zunutze gemacht, dass der Torus $\mathbb{R}^2/\mathbb{Z}^2$ eine abelsche Gruppe ist, und die untersuchten Abbildungen Gruppenautomorphismen sind.

In physikalischen Anwendungen kann man dies natürlich nicht erwarten, und andere Techniken müssen benutzt werden. Eine wichtige Beispielklasse mischender Hamiltonscher Systeme ist die der geodätischen Flüsse auf kompakten Mannigfaltigkeiten negativer Schnittkrümmung. Den Beweis der Ergodizität dieser Flüsse findet man im von M. Brin geschriebenen Anhang von Ballmann [Bal].

Eine weitere Beispielklasse bilden sogenannte *Billiards*, siehe Liverani und Wojtkowski [LW] und Kozlov und Treshchev [KT].

22 Der Birkhoffsche Ergodensatz

Dieser Satz untersucht die Existenz von Zeitmitteln von Funktionen auf einem Phasenraum M eines maßerhaltenden dynamischen Systems (M,\mathcal{M},μ,Φ) . Wir nehmen hier vereinfachend an, dass M ein kompakter metrischer Raum, \mathcal{M} seine σ -Algebra von Borelmengen, μ ein Wahrscheinlichkeitsmaß auf M ist und Φ von $T:M\to M$ erzeugt wird.

22.1 Satz (Birkhoffscher Ergodensatz) *Ist* $f \in L^1(M, \mu)$, dann existiert für μ -fast alle Anfangswerte $m \in M$ das Zeitmittel

$$\overline{f}(m) := \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k(m),$$

 $\overline{f} \in L^1(M,\mu)$, $\int_M \overline{f} \, d\mu = \int_M f \, d\mu$ und $\overline{f} \circ T = \overline{f}$ (μ -fast überall).

Bew.:

- 0. O.B.d.A. ist *f* reell.
- 1. Wir zeigen etwas mehr, nämlich, dass \overline{f} fast überall gleich dem wie folgt definierten "Raummittel" $f_{\mathcal{I}}$ von f ist.

Es sei dazu $\mathcal{I} \subset \mathcal{M}$ die Unter- σ -Algebra der T-invarianten Borelmengen und $f_{\mathcal{I}}$ eine Version von $\mathbb{E}(f,\mathcal{I})$ (also insbesondere konstant auf den Atomen von \mathcal{I}).

2. Es genügt nun, für alle $\varepsilon>0$ und $M_\varepsilon:=M_\varepsilon^+\cap M_\varepsilon^-$ mit

$$M_{\varepsilon}^{+} := M_{\varepsilon}^{+}(f) := \left\{ m \in M \mid \overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}(m) \leq f_{\mathcal{I}}(m) + \varepsilon \right\},$$

$$M_{\varepsilon}^{-} := M_{\varepsilon}^{-}(f) := \left\{ m \in M \mid \underline{\lim_{n \to \infty}} \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k}(m) \geq f_{\mathcal{I}}(m) - \varepsilon \right\}$$

zu zeigen, dass $\mu(M_\varepsilon)=1$ gilt. Dies folgt aus $\mu(M_\varepsilon^+)=1$, denn

$$M_{\varepsilon}^{-}(f) = M_{\varepsilon}^{+}(-f).$$

3. Es ist $M_{\varepsilon}^+(f)=M_{\varepsilon}^+(g)$ für $g:=f-f_{\mathcal{I}}-\varepsilon$, also $g_{\mathcal{I}}=-\varepsilon$. Wir setzen nun

$$G_n := \max_{k \le n} \sum_{l=0}^{k-1} g \circ T^l \qquad (n \in \mathbb{N}).$$

Da $n \mapsto G_n$ monoton wächst, ist

$$A_{\varepsilon} := \{ m \in M \mid \lim_{n \to \infty} G_n(m) < \infty \}$$

wohldefiniert, und es gilt

$$\overline{\lim_{n \to \infty}} \frac{1}{n} \sum_{l=1}^{n-1} g \circ T^l(m) \le \overline{\lim_{n \to \infty}} \frac{G_n(m)}{n} \le 0 \qquad (m \in A_{\varepsilon}),$$

also $M_{\varepsilon}^+ \supset A_{\varepsilon}$. Also folgt der Satz aus der Aussage $\mu(A_{\varepsilon})=1$ oder äquivalent $\mu(A_{\varepsilon}^c)=0$.

4. Wir müssen also das Wachstumsverhalten von G_n untersuchen. Es ist wegen der Monotonie von G_n und der T-Invarianz von A^c_ε

$$0 \le \int_{A_{\underline{c}}} (G_{n+1} - G_n) \, d\mu = \int_{A_{\underline{c}}} (G_{n+1} - G_n \circ T) \, d\mu.$$

Da G_{n+1} in der Form $G_{n+1} = \max(g, g + G_n \circ T)$ geschrieben werden kann, ist damit

$$0 \le \int_{A_{\varepsilon}^{c}} (g + \max(0, -G_n \circ T)) d\mu = \int_{A_{\varepsilon}^{c}} (g + \max(0, -G_n)) d\mu.$$

Da aus der Monotonie

$$0 \le \max(0, -G_n) \le \max(0, -G_1)$$

folgt, ist der Satz über die Dominierte Konvergenz anwendbar; wir wissen ja, dass für alle $x \in A_\varepsilon^c$ $\lim_{n \to \infty} \max(0, -G_n(x)) = 0$ ist. Damit erhalten wir $0 \le \int_{A_\varepsilon^c} g \, d\mu = \int_{A_\varepsilon^c} g_{\mathcal{I}} \, d\mu = -\varepsilon \mu(A_\varepsilon^c)$, also $\mu(A_\varepsilon^c) = 0$.

23 Bewegung im periodischen Potential

Wir betrachten hier die von der Hamiltonfunktion

$$H: P \to \mathbb{R}$$
 , $H(p,q) = \frac{1}{2}p^2 + V(q)$ (23.1)

auf dem Phasenraum $P:=T^*\mathbb{R}_q^d\equiv\mathbb{R}_p^d\times\mathbb{R}_q^d$ erzeugte Bewegung. Dabei soll das Potential $V\in C^2(\mathbb{R}_q^d,\mathbb{R})$ \mathcal{L} -periodisch bezüglich eines von Basisvektoren ℓ_1,\dots,ℓ_d des \mathbb{R}^d aufgespannten Gitters

$$\mathcal{L} := \operatorname{span}_{\mathbb{Z}}(\ell_1, \dots, \ell_d) = \left\{ \sum_{i=1}^d n_i \ell_i \mid n_i \in \mathbb{Z} \right\}$$

sein, d.h. es soll gelten

$$V(q+\ell) = V(q)$$
 $(q \in \mathbb{R}^d, \ \ell \in \mathcal{L}).$

Wegen dieser Periodizität können wir V auch als Funktion auf dem d-dimensionalen Torus

$$\mathbb{T} := \mathbb{R}^d / \mathcal{L} = \{ q + \mathcal{L} \mid q \in \mathbb{R}^d \}$$

auffassen. Diese Mannigfaltigkeit lässt sich mit dem kompakten Parallelotop

$$D := \left\{ \sum_{i=1}^{d} x_i \ell_i \mid x_i \in [0, 1] \right\},\,$$

dem so genannten *Elementargebiet*, identifizieren, wenn man mittels der Äquivalenzrelation $q \sim r$, falls $q - r \in \mathcal{L}$ deren gegenüberliegende Ränder identifiziert. Insbesondere ist \mathbb{T} kompakt. Die glatte Abbildung

$$\pi: \mathbb{R}_q^d o \mathbb{T}$$
 , $q \mapsto q + \mathcal{L}$

wickelt sozusagen den Konfigurationsraum auf dem Torus auf, und gestattet uns die Definition des Potentials

$$\widehat{V}: \mathbb{T} \to \mathbb{R}$$
 , $\widehat{V} = V \circ \pi^{-1}$

auf T. Der Phasenraum des Torus ist die Mannigfaltigkeit

$$\widehat{P} := T^* \mathbb{T} \equiv \mathbb{R}_p^d \times \mathbb{T}.$$

Mittels $\widehat{H}:\widehat{P}\to\mathbb{R},\ \widehat{H}(p,q)=\frac{1}{2}p^2+\widehat{V}(q)$ wird ein hamiltonscher Fluss $\widehat{\Phi}^t$ definiert:

23.1 Lemma Der Fluss $\widehat{\Phi}^t : \widehat{P} \to \widehat{P}$ existiert für alle Zeiten $t \in \mathbb{R}$, und

$$||p(t, x_0)|| \le \sqrt{2(\widehat{H}(x_0) - V_{\min})}.$$

Bew.: Für alle Energien $E \in \mathbb{R}$ sind die Energieflächen $\widehat{\Sigma}_E := \widehat{H}^{-1}(E)$ abgeschlossene Teilmengen von \widehat{P} . Da der Betrag $\|p\| = \sqrt{2(E-\widehat{V}(q))}$ des Impulses durch $\sqrt{2(E-V_{\min})}$ beschränkt ist, ist $\widehat{\Sigma}_E$ auch beschränkte Teilmenge der Mannigfaltigkeit \widehat{P} , und damit kompakt.

Andererseits ist aber das Hamiltonsche Vektorfeld $X_{\widehat{H}}$ tangential an $\widehat{\Sigma}_E$, wir können es also auf $\widehat{\Sigma}_E$ restringieren. Lipschitzstetige Vektorfelder wie dieses erzeugen aber auf kompakten Mannigfaltigkeiten Flüsse, die für alle Zeiten existieren.

24 Klassische Streutheorie

Ein Großteil unseres Wissens über Moleküle, Atome und Elementarteilchen stammt aus Streuexperimenten, in denen Teilchen definierter Anfangsgeschwindigkeit miteinander oder einem feststehenden Target kollidieren. Nach dem Streuprozess wird registriert, welche Teilchen mit welcher Geschwindigkeit auftreten. Auch wenn die richtige Sprache zur Beschreibung dieser Prozesse die Quantenmechanik ist, stimmen deren Voraussagen in manchen Situationen in guter Näherung mit denen der Klassischen Mechanik überein.

Ein klassischer Streuprozess ist z.B. der von zwei Billiardkugeln oder von einem Kometen im Schwerefeld unseres Sonnensystems. Wir werden nur den einfachsten Fall der Streuung eines (klassischen) Teilchens in einem lokalisierten Potential untersuchen. Um technische Komplikationen zu vermeiden, werden wir sogar die etwas unrealistische Annahme eines glatten Potentials $V \in C_0^\infty(\mathbb{R}_q^n,\mathbb{R})$ machen, das außerhalb eines Kompaktums verschwindet (das ist die Bedeutung des unteren Index "0" in C_0^∞). Wir untersuchen also die Hamiltonfunktion

$$H(p,q) := \frac{1}{2}p^2 + V(q)$$
 auf dem Phasenraum $M := \mathbb{R}_p^n \times \mathbb{R}_q^n$.

Da $V_{\min} := \inf_{q \in \mathbb{R}_q^n} V(q) > -\infty$ ist, ist für feste Anfangsenergie E der Betrag des Impulses durch $|p| \leq \sqrt{2(E-V_{\min})}$ nach oben beschränkt. Das Teilchen kann also nur dann eine große Norm $\|\Phi_t(x)\|$ bekommen, wenn mit $\Phi_t(x) = (p(t), q(t))$ der Ort q(t) nach unendlich geht. Dann muss die Bewegung aber der

freien gleichen, die bekanntlich für alle Zeiten definiert ist. Wir erhalten ein glattes dynamisches System

$$\Phi \in C^{\infty}(\mathbb{R} \times M, M) \qquad \Phi(t, x) = \Phi_t(x).$$

Diese Information ist für sich genommen etwas dürftig.

So werden durch Φ_t zwar alle Orbits des Systems beschrieben, aber die gebundenen wie die Streubahnen auf gleicher Stufe.

Insbesondere ist die Beschreibung weit von der eines (idealisierten) Streuexperiments entfernt, in dem wir den "weit entfernten Teilchen" gewisse "Anfangsdaten" geben und "lange nach dem Streuprozess" seinen Endzustand beschreiben. Offensichtlich ist es wenig sinnvoll, direkt den $\lim_{t\to\pm\infty}\Phi_t$ zu betrachten. Stattdessen gehen wir auch bei Potentialen unendlicher Reichweite davon aus, dass das gestreute Teilchen sich "anfangs" und "zum Schluss" frei, also gemäß dem von $H_0(p,q):=\frac{1}{2}p^2$ erzeugten Fluss $\Phi_t^0(p_0,q_0)=(p_0,q_0+p_0t)$ bewegt. Wir vergleichen also mit der Freien Bewegung.

24.1 Satz Die Møller-Transformationen

$$\Omega^{\pm} := \lim_{t \to +\infty} \Phi_{-t} \circ \Phi_t^0 \tag{24.1}$$

existieren auf dem Definitionsbereich

$$D^0 := M \setminus (\{0\} \times \mathbb{R}_q^n)$$

und sind glatte volumenerhaltende Abbildungen.

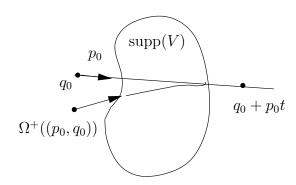


Abbildung 33: Definition der Møller-Transformation

Bew.: Außerhalb des kompakten Trägers $\operatorname{supp}(V) = \overline{\{q \in \mathbb{R}^n \mid V(q) \neq 0\}}$ des Potentials V stimmen die beiden Flüsse überein. Daher wird in diesem Fall der Limes in (24.1) schon nach endlicher Zeit erreicht. Es sei nämlich $x_0 = (p_0, q_0) \in D^0$. Dann ist $p_0 \neq 0$, sodass auch die Phasenraum-Umgebung

$$U := \{x \in M \mid |x - x_0| \le \frac{1}{2}|p_0|\}$$

von x_0 ganz in D^0 liegt. Weiter ist für $x=(p,q)\in U$ die Geschwindigkeit $|p|\geq \frac{1}{2}|p_0|>0$, sodass nach einer Minimalzeit

$$T := \operatorname{diam}(\sup(V))/|p_0| > 0$$

die freie Teilchenbewegung aus supp(V) herausgeführt hat⁷. Damit gilt

$$\Omega^{\pm}(x) = \Phi_{\mp T} \circ \Phi^{0}_{\pm T}(x) \qquad (x \in U),$$

was Existenz und Glattheit der Møller-Transformationen impliziert. Die Volumenerhaltung der Abbildung Ω^{\pm} folgt aus der entsprechenden Eigenschaft von Φ_t und Φ_t^0 .

Anschaulich entspricht das Bild von D^0 unter Ω^\pm aus den Phasenpunkten die in Zukunft bzw. in der Vergangenheit nach Unendlich entweichen. Umgekehrt wollen wir auch Bindungszustände definieren:

24.2 Definition Sei $k \in \mathbb{N}$.

$$b^{\pm,k} := \{x \in M \mid \|\Phi_t(x)\| < k \text{ für } 0 \le \pm t < \infty\}$$

$$b^{\pm} := \bigcup_{k \in \mathbb{N}} b^{\pm,k}$$

$$b := b^+ \cap b^- \text{ (Bindungszustände)}$$

$$s^{\pm} := \Omega^{\pm}(D^0)$$

$$s := s^+ \cap s^- \text{ (Streuzustände)}$$

Diese Definitionen gelten auch in allgemeineren Situationen als der hier betrachteten.

24.3 Satz Für die Streuung an Potentialen $V \in C_0^\infty(\mathbb{R}_q^n,\mathbb{R})$ gilt $s^\pm = M \setminus b^\pm$.

Bew.:

 $[\]overline{{}^7\mathrm{diam}(X) = \sup_{x_1, x_2 \in X} \|x_1 - x_2\|} \text{ bezeichnet den } \underline{Durchmesser} \text{ einer nicht leeren Teilmenge } X \subset \mathbb{R}^n.$

• Sei $x \in M \setminus b^{\pm}$. Dann existiert eine Folge von Zeiten $\{t_i\}_{i \in \mathbb{N}}$ mit $\lim_{i \to \infty} t_i = \pm \infty$ und $\|\Phi_{t_k}(x)\| > k$.

Daher muss ein $T \geq 0$ mit $\Phi_t(x) \notin \mathbb{R}_p^n \times \operatorname{supp}(V)$ für alle Zeiten t mit $\pm t \geq T$ existieren. Sei $y \equiv (p,q) := \Phi_{\pm T}^0 \circ \Phi_{\pm T}(x)$. Dann ist

$$0 < H(x) = H(\Phi_{\pm T}(x)) = H_0(\Phi_{\pm T}(x)) = H_0(\Phi_{\mp T}^0 \circ \Phi_{\pm T}(x)) = H_0(y) = \frac{1}{2}p^2$$
, also $y \in D^0$, und $x = \Omega^{\pm}(y)$.

• Ist umgekehrt $x \in s^{\pm} = \Omega^{\pm}(D^0)$, also $x = \Omega^{\pm}(y)$ für ein $y \equiv (p,q)$ mit $p \neq 0$, dann ist $H(x) = H_0(y) > 0$, und für $k \in \mathbb{N}$ $x \notin b^{\pm k}$, denn sonst könnte für x nicht gelten, dass

$$\forall t > T(y) : x = \Phi_{\pm t}(z_t) \quad \text{mit} \quad z_t = \Phi^0_{\pm t}(y).$$

Die Aussage des Satzes scheint banal. Man muss in diesen Dingen aber vorsichtig sein, denn es existieren in der Himmelsmechanik z.B. Bahnen q(t) mit

$$\lim_{t\in\mathbb{R}^+}\inf\|q(t)\|<\infty\quad\text{und}\quad\lim_{t\in\mathbb{R}^+}\sup\|q(t)\|=\infty,$$

die also qualitativ wie in der Skizze 34 aussehen. Solche Bahnen, die in positiver

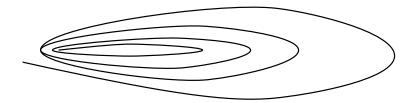


Abbildung 34: Eine weder gebundene noch streuende Bahn

Zeit weder gebunden sind noch streuen, kommen hier aber nicht vor. Dagegen sind i.A. $b^+ \neq b^-$ und $s^+ \neq s^-$.

24.4 Beispiel $M=\mathbb{R}_p\times\mathbb{R}_q$, Potential V wie in Abbildung 35. Die Phasenraumpunkte $x_1,x_3\in s=s^+\cap s^-$ sind Streuzustände, $x_5,x_6\in b=b^+\cap b^-$ Bindungszustände, während

$$\begin{array}{lll} x_2 \in b^+ \cap s^- & \text{, aber} & x_2 \not\in b^- & , & x_2 \not\in s^+ \\ x_4 \in b^- \cap s^+ & \text{, aber} & x_4 \not\in b^+ & , & x_4 \not\in s^- \end{array} \right\} \quad \text{also} \quad x_2, x_4 \not\in b \cup s.$$

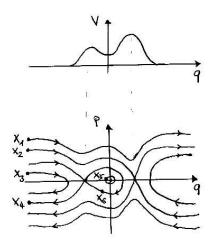


Abbildung 35: Bindungs-, Streu- und Einfangzustände

Ein in der Vergangenheit gebundenes Teilchen kann also durchaus in Zukunft frei werden und umgekehrt z.B. kann ein Meteorit vom System Erde-Mond eingefangen werden. Ist ein solcher Vorgang zu erwarten?

Um eine Antwort auf die Frage zu geben, wollen wir das Maß der Menge⁸ $\mu(s^+\Delta s^-)$ von Zuständen, die nur in einer Zeitrichtung streuen, betrachten. Dabei ist μ das Lebesgue-Maß auf M.

24.5 Satz Für die Streuung an Potentialen $V \in C_0^\infty(\mathbb{R}^n_q,\mathbb{R})$ gilt

$$\mu(s^+\Delta s^-)=0$$
 (asymptotische Vollständigkeit)

Der anschauliche Grund für die Richtigkeit des Satzes ist, dass sich das aus dem Unendlichen kommende Phasenraumvolumen wegen der maßerhaltenden Eigenschaft des Flusses Φ_t nicht im Endlichen stauen kann. Dies formuliert der Schwarzschildsche Einfangsatz:

24.6 Satz (Schwarzschildscher Einfangsatz) Es sei $\Phi: G \times M \to M$ ein das Maß μ auf M erhaltendes dynamisches System und $A \subset M$ messbar mit $\mu(A) < \infty$. Dann gilt für

$$A^{\pm} := \bigcap_{\pm t \ge 0} \Phi_t(A)$$

 $\mu(A^+) = \mu(A^+ \cap A^-) = \mu(A^-)$

⁸Die *symmetrische Differenz* zweier Teilmengen $A, B \subset M$ ist $A\Delta B := (A \setminus B) \cup (B \setminus A)$.

Bew.: Für alle $T \in G$ gilt

$$\mu(A^{\pm}) = \mu(\cap_{\pm t \ge 0} \Phi_t(A)) = \mu(\Phi_T(\cap_{\pm t \ge 0} \Phi_t(A))) = \mu(\cap_{\pm t \ge T} \Phi_t(A)),$$

also (wegen der Stetigkeit des Maßes μ von oben, siehe Bauer [Bau], Satz 3.2)

$$\mu(A^{\pm}) = \mu(\cap_{t \in G} \Phi_t(A)) = \mu(A^+ \cap A^-).$$

Beweis des Satzes 24.5. Für alle $k\in\mathbb{N}$ ist die Menge $b^{\pm,k}$ messbar und $\mu(b^{\pm,k})\leq (2k)^{2n}<\infty.$

Aus dem Schwarzschildschen Einfangsatz folgt

$$\mu(b^{+,k}) = \mu(b^{-,k}) = \mu(b^{+,k} \cap b^{-,k})$$

oder

$$\mu(b^{+,k} \setminus b^{-,k})) = 0 \tag{24.2}$$

Wegen $b^{\pm} = M \setminus s^{\pm}$ gilt

$$s^{+}\Delta s^{-} = (b^{+} \cap s^{-}) \cup (b^{-} \cap s^{+}). \tag{24.3}$$

Unter Ausnutzung von $b^{+,k+1} \supset b^{+,k}$ und der σ -Additivität (19.1) des Lebesguemaßes μ erhalten wir mit (24.2)

$$\mu(b^{+} \cap s^{-}) = \mu(\left(\bigcup_{k \in \mathbb{N}} b^{+,k}\right) \cap \left(M \setminus \bigcup_{l \in \mathbb{N}} b^{-,l}\right))$$

$$= \lim_{k \to \infty} \mu(b^{+,k} \cap \left(M \setminus b^{-,k}\right)) = 0.$$
(24.4)

Analog zu (24.4) gilt $\mu(b^- \cap s^+) = 0$, woraus mit (24.3) die Aussage folgt. \Box

Unter der Voraussetzung der Existenz der Møller-Transformationen und der asymptotischen Vollständigkeit können wir die *Streutransformation*

$$S: D \to D$$
 $x \mapsto (\Omega^+)^{-1} \circ \Omega^-(x)$ mit $D:=(\Omega^-)^{-1}(s)$

einführen, siehe Abbildung 36. Damit wird

$$\mathcal{S}(x) = \lim_{t \to \infty} \Phi^0_{-t} \circ \Phi_{2t} \circ \Phi^0_{-t}(x) \qquad (x \in D).$$

In der Streutransformation sind alle relevanten Informationen über das *Resultat* des Streuprozesses codiert.

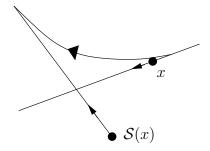


Abbildung 36: Definition der Streutransformation S

Um Kontakt mit Streuexperimenten herzustellen, muss typischerweise aus \mathcal{S} der Wirkungsquerschnitt berechnet werden. Denn bei (mikroskopischen) Streuexperimenten ist i.A. der Impaktparameter nicht bekannt.

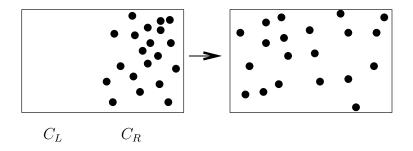
Eine solche weiterführende Theorie kann hier nicht entwickelt werden (siehe aber [KS]). Es sei aber darauf hingewiesen, dass ironischerweise die Nullmenge $s^+\Delta s^-$ eine zentrale Bedeutung besonders für den quantenmechanischen Streuprozess besitzt. Die so genannten Resonanzen lassen sich in vielen Fällen auf diese Nullmenge beziehen.

Der Gund ist folgender: Streubahnen in s mit kleinem Abstand zu $s^+\Delta s^-$ verweilen lange in der Nähe gebundener Bahnen und besitzen damit eine große Zeitverzögerung. Da in der Quantenmechanik wegen des Interferenzeffektes solche Laufzeitunterschiede zu Phasenverschiebungen und Amplitudenverstärkung bzw. -verminderung der auslaufenden Welle führen, können Resonanzen auftreten.

Die Struktur von $s^+ \Delta s^-$ kann sehr verwickelt sein. Im himmelsmechanischen n-Zentren-Problem beispielsweise, besitzt diese Menge für $n \geq 3$ Zentren lokal die Struktur einer Cantormenge [Kn].

25 Der Poincarésche Wiederkehrsatz

Stellen wir uns einen Container $C=C_L\dot{\cup}C_R\subset\mathbb{R}^3$ mit einer Trennwand vor, die diesen in zwei Kammern teilt. Die linke Seite C_L sei evakuiert, während die rechte Seite C_R mit Luft gefüllt ist. Wir entfernen die Trennwand. Ohne die genauen Orte und Geschwindigkeiten der Gasmoleküle zum Zeitpunkt der Trennung zu kennen, erwarten wir, dass sie nicht auf der rechten Seite bleiben, sondern sich auf beiden Seiten etwa gleich verteilen.



Niemand würde intuitiv erwarten, dass sich die Luft zu einem späteren Zeitpunkt wieder in der rechten Containerhälfte versammelt. Genau das ist aber Konsequenz des folgenden Satzes:

25.1 Satz (Poincaréscher Wiederkehrsatz) Es sei $\Phi: \mathbb{Z} \times M \to M$ ein das Maß μ auf M erhaltendes dynamisches System (siehe Def. 19.5). Weiter seien $B \subset \tilde{M} \subset M$ messbar, und \tilde{M} sei Φ -invariant $\mu(\tilde{M}) < \infty$.

Dann kehren fast alle Punkte aus B unendlich oft nach B zurück.

- **25.2 Bemerkungen** Ist $\mu(M) < \infty$, dann setzt man einfach $\tilde{M} := M$. Ohne die Einschränkung $\mu(\tilde{M}) < \infty$ ist der Satz aber falsch, wie man schon am Beispiel der Translation $\Phi_t(x) := x + t$ auf $M := \mathbb{R}$ mit Lebesguemaß μ sieht.
 - Wenn wir einen Fluß $\Phi: \mathbb{R} \times M \to M$ zu diskreten Zeiten $t \in \mathbb{Z}$ betrachten, können wir den Satz auf das restingierte System anwenden. In zeitdiskreten Fall ist es auch natürlicher, die umgangssprachliche Aussage "x kehrt unendlich oft nach B zurück" im Sinn von

$$|\{n \in \mathbb{N} \mid \Phi_n(x) \in B\}| = \infty$$

zu formalisieren.

Bew.: • Ist $\mu(B) = 0$, so ist die Aussage offensichtlich, wenn man bedenkt, dass in der Maßtheorie "fast alle" alle bis auf eine Menge vom Maß Null bedeutet.

• Es sei also $\mu(B) > 0$ und

$$K_n := \bigcup_{j=n}^{\infty} \Phi_{-j}(B) \qquad (n \in \mathbb{N}_0).$$

 $^{^{9}\}Phi_{t}(\tilde{M})=\tilde{M}$ für alle $t\in G$

 K_n ist als abzählbare Vereinigung messbarer Mengen messbar, und aus $\tilde{M}\supset K_n$ folgt $\mu(K_n)\leq \mu(\tilde{M})<\infty$. Es gilt

$$K_{n+1} = \Phi_{-1}(K_n)$$
 und $\tilde{M} \supset K_0 \supset K_1 \supset \ldots \supset K_n \supset K_{n+1} \supset \ldots$.

 $B \cap K_n$ ist die Menge der Punkte aus B die nach der Zeit n noch einmal nach B zurückkommen.

• $B \cap (\bigcap_{n \in \mathbb{N}_0} K_n)$ ist die Menge der Punkte aus B, die nach beliebig langer Zeit noch einmal nach B wiederkehren, d.h. unendlich oft wiederkommen. Diese Menge ist als abzählbarer Schnitt messbarer Mengen messbar. Wir wollen nun zeigen, dass

$$\mu(B \cap (\cap_{n \in \mathbb{N}_0} K_n)) = \mu(B) \tag{25.1}$$

gilt. Wegen der Schachtelung der K_n ist

$$\bigcap_{n\in\mathbb{N}_0} K_n = K_0 \setminus \left(\dot{\bigcup}_{n\in\mathbb{N}_0} K_n \setminus K_{n+1} \right),\,$$

also wegen der σ -Additivität (19.1) von μ

$$\mu\left(B\cap\left(\bigcap_{n\in\mathbb{N}_0}K_n\right)\right) = \mu(B\cap K_0) - \sum_{n=0}^{\infty}\mu(B\cap(K_n\setminus K_{n+1})). \tag{25.2}$$

Nun ist $B \cap K_0 = B$, und aus $K_n \supset K_{n+1}$ und $\mu(K_{n+1}) = \mu(\Phi_{-1}(K_n)) = \mu(K_n)$ folgt $\mu(K_n \setminus K_{n+1}) = 0$. Also impliziert (25.2) die Behauptung (25.1).

25.3 Beispiel Im Fall des Containers ist $(\mathbb{R}^3 \times C)^n$ der Phasenraum der n Gasatome. Wir modellieren mit einer glatten Funktion $V \in C^{\infty}(\mathbb{R}^3, \mathbb{R})$ die Wechselwirkung zwischen den Atomen. Dann ist die Hamiltonfunktion von der Form

$$H: (\mathbb{R}^3 \times C)^n \to \mathbb{R}$$
 , $H(p_1, q_1, \dots, p_n, q_n) = \sum_{k=1}^n \frac{1}{2} p_k^2 + \sum_{1 \le k < l \le n} V(q_l - q_k)$.

Bei Stößen mit den Containerwänden setzen wir fest, daß die Teilchen reflektiert werden (Ausfallswinkel = – Einfallswinkel). Damit erhalten wir ein das Lebesguemaß erhaltendes dynamisches System¹⁰.

Wir betrachten nun eine Energiefläche $\tilde{M}:=M:=H^{-1}(E)$ mit dem (endlichen) Liouvillemaß μ und setzen $B:=M\cap(\mathbb{R}^3\times C_R)^n$. Dies ist der Teil der Energieschale M, in dem alle n Teilchen auf der rechten Seite sind.

¹⁰Dieses ist nicht stetig, es ist aber ein dynamisches System im maßtheoretischen Sinn.

Natürlich ist der entscheidende Punkt, dass keine Aussage über die Wiederkehrzeiten gemacht wird. Im Fall des Containers ist die Wiederkehrzeit nach B (für realistische Container C, Teilchenzahlen n und Energien E) größer als das bisherige Alter des Universums.

Dieses Beispiel wird im Teil II der Vorlesung (Statistische Mechanik) ausführlicher diskutiert.

Der eben bewiesene Satz gehört wie auch der Satz 24.6 zur Ergodentheorie (also der Verknüpfung der Theorie dynamischer Systeme mit der Maß– und Wahrscheinlichkeitstheorie). Ein gutes Buch über Ergodentheorie ist Walters [Wa]; Anwendungen auf Probleme der Klassischen Mechanik findet man in Arnol'd und Avez [AA] und in [Bu].

26 Mannigfaltigkeiten

Es sollen nun differenzierbare Mannigfaltigkeiten formal eingeführt werden und zwar aus drei Gründen. Zum Ersten ist der Mannigfaltigkeitsbegriff in der Mechanik sehr nützlich; zum Zweiten sind in Übung und Vorlesung viele Einzelrechnungen im Zusammenhang mit Koordinatenwechsel schon vorgeführt worden und brauchen nicht wiederholt zu werden; zum Dritten tritt der geometrische Gehalt von Aussagen klarer hervor, wenn man sie (soweit möglich) für Mannigfaltigkeiten formuliert und nicht im \mathbb{R}^n . Denn in letzterem Fall rechnet man meistens doch in kanonischen Koordinaten, und außerdem besitzt der \mathbb{R}^n Zusatzstrukturen (Gruppe, kanonische Metrik etc.), von denen besser abstrahiert werden sollte.

Der zu zahlende Preis besteht darin, dass einige Zeit darauf verwendet werden muss, einen mathematischen Formalismus zu entwickeln, dessen Nützlichkeit erst im Lauf der Zeit klar werden wird. Eine empfehlenswerte Referenz zum Thema 'Mannigfaltigkeiten' ist Kapitel 1 von Abraham und Marsden [AM]; Globale topologische Fragen werden in Hirsch [Hi] behandelt.

26.1 Definition Sei M ein topologischer Raum.

- Eine Karte (U,φ) besteht aus einer offenen Teilmenge $U\subset M$ und einem Homöomorphismus aufs Bild $\varphi:U\to \varphi(U)\subset \mathbb{R}^n$, mit $\varphi(U)\subset \mathbb{R}^n$ offen.
- Zwei Karten (U_1, φ_1) , (U_2, φ_2) heißen *verträglich*, wenn die *Kartenwechsel* $\varphi_1 \circ \varphi_2^{-1} \upharpoonright_{V_2}$ und $\varphi_2 \circ \varphi_1^{-1} \upharpoonright_{V_1}$ glatte Abbildungen sind (mit $V_{1/2} := \varphi_{1/2}(U_1 \cap U_2)$).
- Ein Atlas von M ist eine Menge $\{(U_i, \varphi_i) \mid i \in I\}$ verträglicher Karten, die M überdecken, d.h. $M = \bigcup_{i \in I} U_i$.
- Zwei Atlanten heißen äquivalent, wenn je zwei Karten verträglich sind.

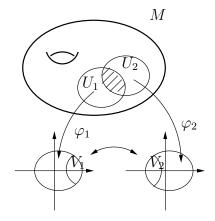


Abbildung 37: Kartenwechsel zwischen (U_1, φ_1) und (U_2, φ_2)

26.2 Bemerkung Äquivalenz von Atlanten ist offensichtlich eine Äquivalenzrelation.

26.3 Definition Ein topologischer Hausdorffraum M zusammen mit einer Äquivalenzklasse von Atlanten von M heißt (differenzierbare) Mannigfaltigkeit.

Man denke durchaus an einen Weltatlas. Er muss die ganze Erdoberfläche zeigen. Dazu reicht eine Karte bekanntlich nicht aus. Die Karten des Atlas können durch verschiedene Projektionsarten entstehen. Ein Objekt, das in der einen Karte rechteckig aussieht, kann in der anderen durch Kurven begrenzt sein. Knicke sind aber nicht erlaubt (siehe Abbildung 38).

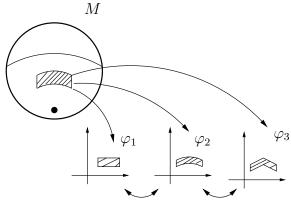
Von einer metrischen Struktur wird also abgesehen, nicht aber von der differenzierbaren Struktur.

- **26.4 Beispiel** 1. Jede offene Teilmenge $M \subset \mathbb{R}^n$ wird mit der Karte (M, Id_M) zu einer Mannigfaltigkeit.
 - 2. Als Teilmenge des \mathbb{R}^{n+1} ist $M=S^n:=\{x\in\mathbb{R}^{n+1}\mid \|x\|=1\}$ ein topologischer Raum. Für $j=1,\dots,n+1$ sei nun

$$U_{\pm i} := \{x \in S^n \mid \pm x_i > 0\}.$$

Diese 2n + 2 Kartengebiete und die Abbildungen

$$\varphi_{\pm j}: U_{\pm j} \to \mathbb{R}^n \quad , \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} \mapsto \varphi_{\pm j}(x) = \begin{pmatrix} x_1 \\ \vdots \\ \hat{x}_j \\ \vdots \\ x_{n+1} \end{pmatrix}$$



kompatibel inkompatibel

Abbildung 38: Verträgliche und nichtverträgliche Karten

bilden einen Atlas von M. Dabei zeigt der Hut über x_j an, dass diese Koordinate weggelassen wird.

3. Ein damit verträglicher Atlas auf S^n wird durch die beiden Karten der stereographischen Projektion gegeben (Abbildung 39).

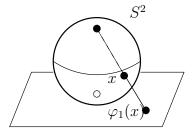


Abbildung 39: Stereographische Projektion

$$U_{1/2} := S^n \setminus \left\{ \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \pm 1 \end{pmatrix} \right\} \quad , \quad \varphi_{1/2}(x) := \frac{2}{1 \mp x_{n+1}} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Kartenwechsel auf $U_1 \cap U_2$:

$$\varphi_2 \circ \varphi_1^{-1}(y) = \frac{1 - x_{n+1}}{1 + x_{n+1}} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \frac{4}{\|y\|^2} y \qquad (y \in \varphi_1(U_1 \cap U_2)).$$

In der Mathematischen Physik taucht S^2 als Konfigurationsraum des sphärischen Pendels auf, und S^{2n-1} als Energieschale $H^{-1}(\frac{1}{2})$ des harmonischen Oszillators $H:\mathbb{R}_p^n\times\mathbb{R}_q^n$, $H(p,q):=\frac{1}{2}(p^2+q^2)$.

4. Man beachte, dass wir in Def. 26.3 von einer Einbettung der Mannigfaltigkeit völlig abgesehen haben. Wir können Mannigfaltigkeiten sogar allein dadurch definieren, indem wir Kartenbilder und verträgliche Übergangsfunktionen angeben.

Bsp.: Der Konfigurationsraum eines ebenen Pendels ist S^1 , Kartenbilder $= \varphi_1(U_1) = (-\pi, \pi), \varphi_2(U_2) = (0, 2\pi),$

$$V_1 := \varphi_1(U_1 \cap U_2) := (-\pi, 0) \cup (0, \pi)$$

$$\varphi_2 \circ \varphi_1^{-1} \upharpoonright_{V_1} (y) = \left\{ \begin{array}{ccc} y & , & y \in (0,\pi) \\ y + 2\pi & , & y \in (-\pi,0). \end{array} \right.$$

- 5. Die Konfigurationsmannigfaltigkeit zweier ebener Pendel ist der 2-Torus $\mathbb{T}^2:=S^1\times S^1.$
- **26.5 Bemerkungen** 1. Mit M und N mit Atlanten $\{(U_i, \varphi_i) \mid i \in I\}$ bzw. $\{(V_j, \psi_j) \mid j \in J\}$ ist auch der topologische Raum $M \times N$ eine differenzierbare Mannigfaltigkeit mit Atlas

$$\{(U_i \times V_j, \varphi_i \times \psi_j) \mid (i, j) \in I \times J\}.$$

2. Zusammenhängend heißt ein topologischer Raum M, wenn die einzigen gleichzeitig offenen und abgeschlossenen Teilmengen die leere Menge und M selbst sind. Ist eine Mannigfaltigkeit zusammenhängend, dann gilt für die Karten $\varphi_i: U_i \to \mathbb{R}^{n_i}$ immer $n_i = n_j$, $(i, j \in I)$. Man nennt $n := n_i$ die Dimension von M und schreibt

$$\dim(M) = n.$$

Wie können wir eine Abbildung $f:M\to N$ zwischen differenzierbaren Mannigfaltigkeiten angeben und beschreiben? Offenbar wieder unter Verwendung von Karten (U,φ) von M bei $x\in M$ und (V,ψ) von N bei $f(x)\in N$, die der (stetigen) Abbildung angepasst sind: Es muss $f(U)\subset V$ gelten. Dann ist die Abbildung

$$\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

definiert. Sie heißt *lokale Darstellung* von f bei x. Wegen der Stetigkeit von f können wir eine solche immer finden, indem wir notfalls zu einer kleineren Umgebung $U' \subset U$ von x übergehen (die Karte $(U', \varphi \upharpoonright_{U'})$ ist mit den anderen Karten verträglich).

26.6 Definition $f: M \to N$ heißt r-mal stetig differenzierbar ($f \in C^r(M, N)$), wenn für alle $x \in M$ die lokalen Darstellungen von f bei x r-mal stetig differenzierbar sind (siehe Abbildung 40).

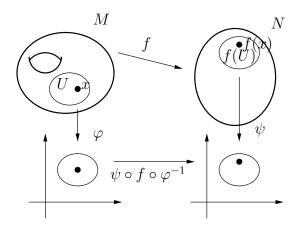


Abbildung 40: Differenzierbarkeit von $f: M \to N$

27 Das Tangentialbündel

Welche geometrische Struktur bilden die Zustände, also Orte und Geschwindigkeiten, eines mechanischen Systems, wenn sein Konfigurationsraum eine Mannigfaltigkeit M ist? Sie bilden das so genannte Tangentialbündel TM von M.

Ist M eine in den \mathbb{R}^n eingebettete Untermannigfaltigkeit, so ist klar, was wir unter dem Tangentialraum von M an einem Punkt $x \in M$ verstehen. Das ist dann der Unterraum T_xM der Vektoren des Tangentialraums $T_x\mathbb{R}^n \cong \mathbb{R}^n$ des \mathbb{R}^n bei x, die an M tangential sind. Ist insbesondere $M \subset \mathbb{R}^n$ offen, dann ist

$$TM \cong M \times \mathbb{R}^n. \tag{27.1}$$

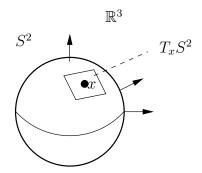


Abbildung 41: Tangentialraum T_xS^2

27.1 Beispiel $S^2 \subset \mathbb{R}^3$, siehe Abbildung 41.

Da nicht alle Mannigfaltigkeiten als Teilmengen eines \mathbb{R}^n definiert sind, müssen wir bei der allgemeinen Definition des Tangentialbündels anders vorgehen:

27.2 Definition • Ein *Tangentialvektor* einer Mannigfaltigkeit M am Punkt $x \in M$ ist eine Äquivalenzklasse von Kurven $c \in C^1(]-\varepsilon,\varepsilon[,M)$ mit c(0)=x, wobei zwei solche Kurven c_1,c_2 äquivalent heißen, wenn in einer Karte $(U,\varphi), x \in U$, gilt

$$\frac{d}{dt}\varphi \circ c_1(t)\mid_{t=0} = \frac{d}{dt}\varphi \circ c_2(t)\mid_{t=0}.$$

- Die Menge T_xM von Tangentialvektoren von M an x heißt Tangentialraum von M an x.
- Das Tangentialbündel TM von M ist die Vereinigung $\bigcup_{x \in M} T_x M$.
- Wir bezeichnen die Projektion der Tangentialvektoren in T_xM auf ihren $Fu\beta punkt\ x$ mit $\pi_M:TM\to M; \pi_M^{-1}(x)=T_xM$ heißt Faser über $x\in M.$
- Eine Abbildung $v: M \to TM$ mit $\pi_M \circ v = \mathrm{Id}_M$ heißt Vektorfeld auf M, siehe Abb. 43.

Der Tangentialvektor wird also durch die Menge aller Kurven definiert, die aneinander tangential im Sinn von

$$\varphi(c_1(t)) - \varphi(c_2(t)) = \mathcal{O}(t^2)$$
(27.2)

sind, siehe Abbildung 42. Die Tangentialitätseigenschaft (27.2) zweier Kurven ist zwar in einer Karte definiert, bleibt aber bei Kartenwechsel erhalten.



Abbildung 42: Tangentialvektor als Äquivalenzklasse von Kurven

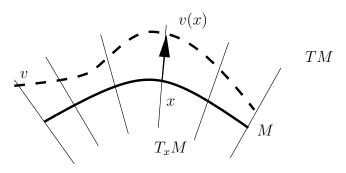


Abbildung 43: Ein Tangentialvektorfeld $v:M\to TM$; der Nullschnitt von TM wird mit M identifiziert

27.3 Beispiel
$$M \subset \mathbb{R}^n$$
 offen, Karte $(U, \varphi) := (M, \mathrm{Id})$. Dann ist

$$TM \cong M \times \mathbb{R}^n$$
,

sodass das Tangentialbündel von ${\cal M}$ eine differenzierbare Mannigfaltigkeit der doppelten Dimension ist.

Die Definition (27.1) von TM wird in Definition 27.2 von TM übergeführt, wenn man einem Tangentialvektor v an $m \in M$ die Äquivalenzklasse der Kurve $t \mapsto m + t \cdot v$ zugeordnet.

Allgemein sind die Zeitableitungen

$$\frac{d}{dt}\varphi\circ c(t)|_{t=0}$$

Vektoren im \mathbb{R}^n und im Kartenbild können wir diese Tangentialvektoren mit einer reellen Zahl multiplizieren und miteinander addieren. Diese Vektorraumstruktur überträgt sich kartenunabhängig auf Tangentialvektoren von M an x.

27.4 Definition Für $f \in C^1(M, N)$ heißt $Tf : TM \to TN$ mit

$$Tf([c]_x) := [f \circ c]_{f(x)}$$
 $(x \in M, c \text{ Kurve bei } x)$

die Tangentialabbildung von f (dabei bezeichnet $[\cdot]$ die Äquivalenzklasse).

27.5 Satz Der Tangentialraum T_xM von M an x ist ein reeller linearer Raum, und $\dim(T_xM) = \dim(M)$.

Das Tangentialbündel TM von M ist eine differenzierbare Mannigfaltigkeit, und $\dim(TM) = 2 \cdot \dim(M)$.

Bew.: Sei $\mathcal{A}:=\{(U_i,\varphi_i)\mid i\in I\}$ ein Atlas von M. Dann ist

$$TA := \{ (TU_i, T\varphi_i) \mid i \in I \}$$

ein Atlas von TM (genannt der natürliche Atlas).

Zwar können wir im Prinzip in der Mannigfaltigkeit TM beliebige Koordinaten benutzen. Es ist aber sinnvoll, in den Tangentialvektoren lineare Koordinaten zu verwenden, um in den Karten Tangentialvektoren an einem Punkt wie üblich zu addieren. Eine Karte (U,φ) von M induziert auf U die $n=\dim(M)$ Vektorfelder

$$\frac{\partial}{\partial \varphi_1}, \dots, \frac{\partial}{\partial \varphi_n} : U \to TU,$$

die unter der Tangentialabbildung die Bilder

$$T\varphi\left(\frac{\partial}{\partial\varphi_l}\right)(u) = (\varphi(u), e_l) \qquad (u \in U, l = 1, \dots, n)$$

haben $(e_l$ bezeichnet den l-ten kanonischen Basisvektor des \mathbb{R}^n). Für $x \in U$ bilden die Tangentialvektoren $\frac{\partial}{\partial \varphi_1}(x), \ldots, \frac{\partial}{\partial \varphi_n}(x)$ eine Basis von T_xM .

27.6 Beispiel Für $M:=S^n=\{x\in\mathbb{R}^{n+1}\mid |x|=1\}$ ist allgemein

$$TS^n = \{(x, y) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \mid |x| = 1, (x, y) = 0\}.$$

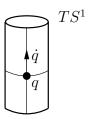


Abbildung 44: Tangentialraum der Kreislinie S^1

• n=1: Wegen $S^1=\{x\in\mathbb{C}\mid |x|=1\}$ können wir das Tangentialbündel mit

$$TS^1 = \left\{ (x, y) \in \mathbb{C} \times \mathbb{C} \mid |x| = 1, \ \frac{y}{x} \in i \cdot \mathbb{R} \right\}$$

identifizieren. Wir finden einen Diffeomorphismus

$$I: TS^1 \to S^1 \times \mathbb{R},$$

die sogenannte Parallelisierung von TS^1 , gegeben durch

$$(x,y)\mapsto (x,y/(ix))$$
, $I^{-1}:(x,z)\mapsto (x,ixz)$, siehe Abb. 44.

Wir haben von dieser Tatsache bei der Betrachtung des ebenen Pendels Gebrauch gemacht.

•n=2: **Beh.:** TS^2 ist *nicht* parallelisierbar, d.h. es gibt keinen Diffeomorphismus $I: TS^2 \to S^2 \times \mathbb{R}^2$ der faserweise (d.h. in T_xS^2 für alle x) linear wäre und bezüglich S^2 die Identität ist.¹¹

Bew.: Durch Widerspruch. Betrachte $I^{-1}\left(\left\{x\times\binom{1}{0}\right\}\right)$. Das ist ein Tangentialvektor an $x\in S^2$. Dieser Tangentialvektor verschwindet nach Voraussetzung nicht (Linearität). Betrachten wir für alle $x\in S^2$ diese Tangentialvektoren, so erhalten wir ein nicht verschwindendes Vektorfeld auf S^2 .

Ein solches Vektorfeld $Y:S^2\to TS^2$ existiert aber nicht (Abbildung 45). Denn sei Y(x) (notfalls durch Normierung) für alle $x\in S^2$ von der Länge 1 und $Y_\varepsilon:=\varepsilon\cdot Y$ von der Länge $|\varepsilon|$. Dann bildet

$$f_{\varepsilon}: S^2 \to \mathbb{R}^3$$
 , $x \mapsto x + Y_{\varepsilon}(x)$

auf die Sphäre $S^2(r)$ vom Radius $r:=\sqrt{1+arepsilon^2}$ ab. Wir betrachten auf \mathbb{R}^3 die 2-Form

 $^{^{11}\}mathrm{Der}$ folgende Beweis von Milnor lässt sich auf alle Sphären S^{2n} verallgemeinern, siehe [GHL]. Von den ungerad-dimensionalen Sphären ist außer S^1 nur noch S^3 und S^7 parallelisierbar. Daß S^3 parallelisierbar ist, sieht man daran, dass S^3 diffeomorph zur Liegruppe SU(2) ist.

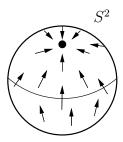


Abbildung 45: Tangentialvektorfeld auf S^2

(siehe Anhang)

$$\omega := x_1 dx_2 \wedge dx_3 + x_2 dx_3 \wedge dx_1 + x_3 dx_1 \wedge dx_2 = r^3 \cos(\theta) d\varphi \wedge d\theta$$

in Kugelkoordinaten $x_1=r\cos(\theta)\cos(\varphi)$, $x_2=r\cos(\theta)\sin(\varphi)$, $x_3=r\sin(\theta)$. Nun können wir die Fläche F(r) der Sphäre $S^2(r)$ einerseits durch

$$F(r) = \frac{1}{r} \int_{S^2(r)} \omega = 4\pi r^2 = 4\pi (1 + \varepsilon^2)$$

berechnen, andererseits aber nach unser Widerspruchsannahme durch

$$F(r) = \frac{1}{r} \int_{f_{\varepsilon}(S^2(1))} \omega = \frac{1}{r} \int_{S^2(1)} f_{\varepsilon}^*(\omega).$$

Letzterer Ausdruck ist aber ein Polynom in ε , dividiert durch $r=\sqrt{1+\varepsilon^2}$, wie man durch explizite Betrachtung von $f_{\varepsilon}^*(\omega)$ sieht.

Das Tangentialbündel TM einer Konfigurationsmannigfaltigkeit M ist der Raum der Orte und Geschwindigkeiten. Die Lagrangefunktion eines mechanischen Systems mit Konfigurationsraum M ist eine Funktion $L:TM\to\mathbb{R}$.

28 Symplektische Mannigfaltigkeiten

Für den Hamiltonschen Formalismus benötigen wir das Kotangentialbündel T^*M .

28.1 Definition Sei M eine differenzierbare Mannigfaltigkeit. Eine 1-Form auf dem Tangentialraum T_xM von M bei x heißt Kotangentialvektor von M bei x. Der lineare Raum T_x^*M dieser 1-Formen heißt Kotangentialraum von M bei x. Die Vereinigung $T^*M := \bigcup_{x \in M} T_x^*M$ heißt Kotangentialbündel von M.

Koordinaten. Wenn $q=(q_1,\ldots,q_n), n:=\dim(M)$, lokale Koordinaten auf $U\subset M$ sind, wird eine 1–Form p auf T_qM durch die n Zahlen $p_l:=p(\frac{\partial}{\partial q_l}(x))$ festgelegt. Wir identifizieren dann in diesen Koordinaten p mit dem Vektor (p_1,\ldots,p_n) und verwenden die Bündelkoordinaten (p,q) auf T^*U .

Offensichtlich gilt auch $\dim(T^*M) = 2 \cdot \dim M$.

 $T^{st}M$ ist sogar diffeomorph zu TM (allerdings nicht kanonisch diffeomorph). Wir haben schon einige Beispiele kennengelernt:

- 1. $T^*\mathbb{R}^n \cong \mathbb{R}^n \times \mathbb{R}^n$ (der übliche Phasenraum)
- 2. $T^*S^1 \cong \mathbb{R} \times S^1$ (planares Pendel)
- 3. T^*S^2 (sphärisches Pendel)

Die Hamiltonfunktionen waren Funktionen $H:T^*M\to\mathbb{R}$. Die rechte Seite der Hamiltonschen Differentialgleichung war durch das von H induzierte Hamiltonsche Vektorfeld X_H gegeben. Bezeichnet man mit $P:=T^*M$ den Phasenraum, so ist X_H insbesondere eine glatte Abbildung $X_H:P\to TP$ in das Tangentialbündel von P mit der Eigenschaft, dass $\pi_P\circ X_H:P\to P$ die identische Abbildung ist, also ein Tangentialvektorfeld. Bezüglich der lokalen (p,q)-Bündelkoordinaten besitzt X_H die Komponenten

$$X_{H} = \begin{pmatrix} -\partial H/\partial q_{1} \\ \vdots \\ -\partial H/\partial q_{n} \\ \partial H/\partial p_{1} \\ \vdots \\ \partial H/\partial p_{n} \end{pmatrix}.$$

Das Hamiltonsche Vektorfeld soll jetzt koordinatenfrei definiert werden. Ziel ist ein besseres geometrisches Verständnis.

28.2 Definition Eine *symplektische* 2–*Form* auf einer Mannigfaltigkeit P ist eine geschlossene, nicht degenerierte 2–Form ω auf P, d.h.

$$d\omega=0$$
 , und $\forall x\in P\ \forall \xi\in T_xP\setminus\{0\}\ \exists \eta\in T_xP:\ \omega(\xi,\eta)\neq 0.$

 (P, ω) heißt symplektische Mannigfaltigkeit.

28.3 Bemerkungen 1. Aus der Linearen Algebra ergibt sich, dass für $x \in P$ $\dim(T_x P)$ gerade sein muss, damit die 2-Form nicht degeneriert ist. Das ist natürlich für Phasenräume P der Form $P = T^*M$ der Fall.

- 2. Nicht jede geschlossene k-Form α (d.h. $d\alpha = 0$) ist exakt (d.h. $\alpha = d\beta$ für eine (k-1)-Form β). Falls ω exakt ist, heißt (P, ω) exakt symplektisch.
- 3. Im Fall $P=T^*\mathbb{R}^n$ haben wir die 2-Form $\omega_0:=\sum_{i=1}^n dq_i\wedge dp_i$ zur Verfügung. Es gilt $\omega_0=-d\Theta_0$ mit $\Theta_0:=\sum_{i=1}^n p_i dq_i$.

Wir wissen, dass eine beliebige (nicht notwendig antisymmetrische) nicht degenerierte Bilinearform einen Übergang von Vektorfeldern zu 1-Formen und umgekehrt ermöglicht. Angewandt auf die symplektische 2-Form ist der Zusammenhang durch die Gleichung

$$\omega(X,\cdot) = \alpha$$
 X Vektorfeld , α 1–Form auf P ,

gegeben. Wahlweise kann X aus α oder umgekehrt α aus X bestimmt werden.

28.4 Definition Ein Vektorfeld $X: P \to TP$ auf (P, ω) heißt Hamiltonsches Vektorfeld, wenn $\omega(X, \cdot)$ eine exakte 1–Form ist, lokal Hamiltonsches Vektorfeld, wenn $\omega(X, \cdot)$ geschlossen ist. Für $H: P \to \mathbb{R}$ heißt das Vektorfeld X_H mit $\omega(X_H, \cdot) = dH$ das von H erzeugte Hamiltonsche Vektorfeld.

Betrachten wir den Fall $(P, \omega) = (T^*\mathbb{R}^n, \omega_0)$, so ergibt sich in (p, q)–Koordinaten mit

$$X_{H} = \sum_{i=1}^{n} \left((X_{H})_{i} \frac{\partial}{\partial p_{i}} + (X_{H})_{n+i} \frac{\partial}{\partial q_{i}} \right)$$

$$\sum_{i=1}^{n} dq_{i} \wedge dp_{i}(X_{H}, \cdot) = \sum_{i=1}^{n} \left((X_{H})_{i+n} dp_{i} - (X_{H})_{i} dq_{i} \right)$$

und

$$dH = \sum_{i=1}^{n} \left(\frac{\partial H}{\partial q_i} dq_i + \frac{\partial H}{\partial p_i} dp_i \right),$$

durch Koeffizientenvergleich also

$$(X_H)_i = -\frac{\partial H}{\partial q_i}$$
 , $(X_H)_{i+n} = \frac{\partial H}{\partial p_i}$ $(i = 1, \dots, n)$,

d.h. die rechte Seite der Hamiltonschen Gleichungen.

Warum, so kann man fragen, haben wir gerade ω_0 benutzt? Tatsächlich werden wir später eine Formulierung der Bewegung eines Teilchens in einem Magnetfeld kennenlernen, in der eine abgeänderte symplektische Form $\omega \neq \omega_0$ verwendet

wird. Trotzdem besitzt ω_0 eine besondere Bedeutung, es lässt sich nämlich koordinatenfrei geometrisch definieren. Diese Definition lässt sich auf alle Phasenräume P, die Kotangentenbündel sind $(P = T^*M)$, übertragen.

Wir bezeichnen mit

$$\pi_M^*:P\to M\quad ,\quad \pi_M^*(T_q^*M)=\{q\}$$

die Fußpunktprojektion des Kotangentenbündels $P:=T^*M$ von M.

Wir wollen eine 1–Form auf dem Phasenraum P definieren, deren äußere Ableitung uns dann die kanonische symplektische Form liefert. Eine solche 1–Form Θ_0 ist durch ihre Anwendung auf ein beliebiges Tangentialvektorfeld $Y:P\to TP$ definiert. $\Theta_0(Y):P\to\mathbb{R}$ ist dann eine Funktion auf dem Phasenraum. Betrachten wir einen Punkt $x\in P$ des Phasenraumes, so lässt sich dieser als ein Kotangentialvektor der Konfigurationsmannigfaltigkeit M am Fußpunkt $q:=\pi_M^*(x)$ auffassen. Ein solcher Kotangentialvektor wiederum lässt sich auf einen Tangentialvektor an M am gleichen Punkt anwenden. Verknüpfen wir diese Beobachtungen, so lässt sich eine 1–Form Θ_0 auf P durch

$$\langle \Theta_0(x), Y(x) \rangle := \langle x, T\pi_M^*(Y(x)) \rangle \qquad (x \in P)$$
 (28.1)

definieren (Abbildung 46), denn die Tangentialabbildung $T\pi_M^*$ bildet Tangential-

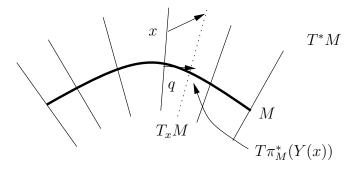


Abbildung 46: Zur Definition der kanonischen symplektischen Form Θ_0

vektoren des Phasenraumes P in solche des Konfigurationsraumes M ab, die wiederum durch Paarung mit der 1-Form x auf M in eine Zahl umgewandelt werden. Das folgende Diagramm von Mannigfaltigkeiten und Abbildungen kommutiert,

$$TP \xrightarrow{T\pi_M^*} TM$$

$$\pi_P \downarrow \qquad \qquad \downarrow \pi_M$$

$$P \xrightarrow{\pi_M^*} M.$$

d.h. die beiden verketteten Abbildungen von TP nach M sind einander gleich.

28.5 Definition Die durch (28.1) definierte Differentialform Θ_0 heißt *kanonische* 1–*Form*, $\omega_0 := -d\Theta_0$ *kanonische symplektische Form* auf $P = T^*M$.

In einer kanonischen Bündelkarte (p, q) ist

$$Y = \sum_{i=1}^{n} \left(Y_i \frac{\partial}{\partial p_i} + Y_{i+n} \frac{\partial}{\partial q_i} \right)$$

und

$$(T\pi_M^*)Y = \sum_{i=1}^n Y_{i+n} \frac{\partial}{\partial q_i}.$$

Der Vektor p lässt sich in der Form $p = \sum_{i=1}^n p_i dq_i$ schreiben, sodass wir $\Theta_0 = \sum_{i=1}^n p_i dq_i$ erhalten. Man beachte aber, dass p eine 1-Form auf M, Θ_0 aber eine 1-Form auf $P = T^*M$ ist!

Zusammenfassend lässt sich sagen, dass eine Hamiltonfunktion $H:T^*M\to\mathbb{R}$ auf dem Kotangentenbündel einer Konfigurationsmannigfaltigkeit M genügt, um durch die Relation

$$\omega_0(X_H,\cdot) = dH$$

ein Hamiltonsches Vektorfeld X_H auf dem Phasenraum T^*M zu definieren.

Nicht jede symplektische Mannigfaltigkeit (P,ω) entsteht auf die angegebene Weise, und es ist noch nicht einmal jede symplektische Mannigfaltigkeit exakt symplektisch:

28.6 Beispiel $P = \mathbb{T}^2$, in lokalen (!) Winkelkoordinaten φ_1, φ_2 ist die 'Volumenform' $\omega := d\varphi_1 \wedge d\varphi_2$ eine symplektische Form auf P. Es gilt $\int_P \omega = (2\pi)^2 \neq 0$. Daher ist die symplektische Mannigfaltigkeit (P,ω) nicht exakt symplektisch, denn sonst wäre nach der Formel von Stokes¹²

$$\int_{P} \omega = -\int_{P} d\Theta = -\int_{\partial P} \Theta = 0,$$

da die Mannigfaltigkeit $P=\mathbb{T}^2$ ja keinen Rand besitzt ($\partial P=\emptyset$).

$$\int_{M} d\Theta = \int_{\partial M} \Theta.$$

 $^{^{12}}$ Nach der Formel von Stokes gilt für das Integral der äusseren Ableitung einer (n-1)-Form Θ auf einer n-dimensionalen Mannigfaltigkeit M mit Rand ∂M

Es ist auch nicht jedes lokal Hamiltonsche Vektorfeld Hamiltonsch.

28.7 Beispiel $P = \mathbb{T}^2$ wie oben, $a_1, a_2 \in \mathbb{R}$, in lokalen Koordinaten sei das Vektorfeld $X : P \to TP$ gegeben durch $(\varphi_1, \varphi_2) \mapsto (\varphi_1, \varphi_2; a_1, a_2)$.

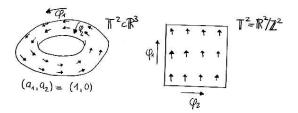


Abbildung 47: Lokal Hamiltonsches Vektorfeld auf dem Torus \mathbb{T}^2

X ist lokal Hamiltonsch, denn

$$\beta := \omega(X, \cdot) = d\varphi_1 \wedge d\varphi_2 \left(a_1 \frac{\partial}{\partial \varphi_1} + a_2 \frac{\partial}{\partial \varphi_2} \right)$$
$$= a_1 d\varphi_2 - a_2 d\varphi_1 \quad \text{, sodass} \quad d\beta = 0.$$

Aber es existiert für $(a_1,a_2) \neq (0,0)$ keine Funktion $H: P \to \mathbb{R}$ mit $\beta = dH$, denn die 1–Form β verschwindet nirgends, während eine Funktion H auf dem (kompakten!) Torus P eine Maximalstelle $x \in P$ haben muss und dort dH(x) = 0 gilt.

29 Lieableitung und Poissonklammer

Im letzten Kapitel war der Begriff der symplektischen Mannigfaltigkeit (P,ω) eingeführt worden. Dabei war P eine Mannigfaltigkeit und ω eine symplektische 2–Form, d.h. eine nicht degenerierte geschlossene Differentialform zweiter Stufe. Standardbeispiel ist $(P,\omega)=(T^*\mathbb{R}_q^n,\sum_{i=1}^n dq_i\wedge dp_i)$. Eine Hamiltonfunktion $H:P\to\mathbb{R}$ induziert dann das Hamiltonsche Vektorfeld X_H , das durch die Relation $\omega(X_H,\cdot)=dH$ definiert ist. Im Standardbeispiel gilt in (p,q)–Koordinaten

$$X_{H} = \begin{pmatrix} -\partial H/\partial q_{1} \\ \vdots \\ -\partial H/\partial q_{n} \\ \partial H/\partial p_{1} \\ \vdots \\ \partial H/\partial p_{n} \end{pmatrix}.$$

Ein Vektorfeld, also insbesondere X_H , erzeugt einen Fluss Φ_t , der zumindest für kleine Zeiten lokal existiert.

Die *Lieableitung* einer differenzierbaren Funktion $f:M\to\mathbb{R}$ auf einer Mannigfaltigkeit M in Richtung eines Vektorfeldes $X:M\to TM$ ist die durch

$$L_X f := df(X) \tag{29.1}$$

definierte reelle Funktion auf M. Wir wollen diese Definition verallgemeinern. Zunächst eine harmlose Notation.

29.1 Definition Es sei X ein Vektorfeld auf einer Mannigfaltigkeit M und ω eine (k+1)–Form. Dann heißt die durch

$$\mathbf{i}_X \omega(X_1,\ldots,X_k) := \omega(X,X_1,\ldots,X_k)$$

definierte k-Form $\mathbf{i}_X \omega$ inneres Produkt von X und ω .

Man hätte statt $\mathbf{i}_X \omega$ natürlich auch $\omega(X, \cdot, \dots, \cdot)$ schreiben können.

29.2 Definition Es sei X ein Vektorfeld auf einer Mannigfaltigkeit M. Dann heißt für eine k-Form ω die k-Form

$$L_X\omega := (\mathbf{i}_Xd + d\mathbf{i}_X)\omega$$

die *Lieableitung* von ω nach X.

Tatsächlich ist $L_X\omega$ eine k-Form, denn die äußere Ableitung erhöht den Formengrad um eins, während die innere Produktbildung den Formengrad um eins erniedrigt.

Definition 29.2 verallgemeinert die Definition (29.1) der Lieableitung einer Funktion $f: M \to \mathbb{R}$ in Richtung von X, denn

$$L_X f = \mathbf{i}_X df + d\mathbf{i}_X f = \mathbf{i}_X df = df(X),$$

da das innere Produkt eines Vektorfeldes mit einer Funktion definitionsgemäß Null ergibt (es gibt ja keine Differentialformen vom Grad - 1).

Für die Lieableitung ist eine geometrische Interpretation möglich. Sie beschreibt nämlich die Änderung der Form in Richtung des vom Vektorfeld erzeugten Flusses.

29.3 Satz Es sei Φ_t der von X erzeugte Fluss auf M und ω eine k–Form. Dann gilt

$$\frac{d}{dt}\left(\Phi_t^*\omega\right) = \Phi_t^* L_X \omega.$$

Bew.: • Allgemein müssen wir die Relation nur für t=0 nachweisen, denn

$$\frac{d}{dt}(\Phi_t^*\omega) = \frac{d}{ds}\Phi_{t+s}^*\omega|_{s=0} = \frac{d}{ds}\Phi_t^*\Phi_s^*\omega|_{s=0} = \Phi_t^*\left(\frac{d}{ds}\Phi_s^*\omega\right)|_{s=0}.$$

ullet Wir beginnen mit Funktionen $f:M \to \mathbb{R}.$ Es gilt

$$\frac{d}{dt}\Phi_t^* f(y) \upharpoonright_{t=0} = \lim_{t \to 0} \frac{f(\Phi_t(y)) - f(y)}{t}$$

$$= \sum_{i=1}^n \frac{\partial f}{\partial y_i}(y) \cdot X_i(y) = df(X)(y) = L_X f(y)$$

bezüglich lokaler Koordinaten $y = (y_1, \dots, y_n)$.

• Wählen wir für ω die (speziellen) 1-Formen dy_i , so ergibt sich

$$\frac{d}{dt}(\Phi_t^*dy_i)\upharpoonright_{t=0} = \frac{d}{dt}d(\Phi_t^*y_i)\upharpoonright_{t=0} = d\frac{d}{dt}(\Phi_t^*y_i)\upharpoonright_{t=0} = dX_i,$$

andererseits wegen $L_X d = \mathbf{i}_X dd + d\mathbf{i}_X d = d\mathbf{i}_X d = dL_X$

$$L_X dy_i = dL_X y_i = d\mathbf{i}_X dy_i = dX_i.$$

• Mit $\Phi_t^*(\varphi \wedge \omega) = (\Phi_t^*\varphi) \wedge (\Phi_t^*\omega)$ und dem folgenden Lemma ergibt sich der Satz, denn in lokalen Koordinaten $y = (y_1, \ldots, y_n)$ können wir jede k–Form ω in der Gestalt

$$\omega = \sum_{1 \le l_1 < \dots < l_k \le n} f_{l_1 \dots l_k} dy_{l_1} \wedge \dots \wedge dy_{l_k}$$

schreiben.

29.4 Lemma $L_X(\varphi \wedge \omega) = (L_X \varphi) \wedge \omega + \varphi \wedge L_X \omega$.

Bew.: Für k-Formen φ gilt

$$d(\varphi \wedge \omega) = (d\varphi) \wedge \omega + (-1)^k \varphi \wedge d\omega$$

und

$$\mathbf{i}_X(\varphi \wedge \omega) = (\mathbf{i}_X \varphi) \wedge \omega + (-1)^k \varphi \wedge \mathbf{i}_X \omega.$$

Daher ist

$$L_{X}(\varphi \wedge \omega)$$

$$= \mathbf{i}_{X}d(\varphi \wedge \omega) + d\mathbf{i}_{X}(\varphi \wedge \omega)$$

$$= \mathbf{i}_{X}((d\varphi) \wedge \omega + (-1)^{k}\varphi \wedge d\omega) + d((\mathbf{i}_{X}\varphi) \wedge \omega + (-1)^{k}\varphi \wedge \mathbf{i}_{X}\omega)$$

$$= (L_{X}\varphi) \wedge \omega + \varphi \wedge L_{X}\omega.$$

In der Mechanik hat der eben bewiesene Zusammenhang zwischen Fluss und Lieableitung folgende Konsequenz:

29.5 Satz Sei (M, ω) eine symplektische Mannigfaltigkeit $\dim M = 2n$ und X_H das von $H \in C^{\infty}(M, \mathbb{R})$ erzeugte Hamiltonsche Vektorfeld. Dann gilt für $k \in \{1, \ldots, n\}$ und den von X_H erzeugten Fluss Φ_t

$$\Phi_t^* \omega^k = \omega^k.$$

Bew.: $\Phi_0^* = \text{Id}$, also $\Phi_0^* \omega^k = \omega^k$.

$$\frac{d}{dt}\Phi_t^*\omega^k = \frac{d}{dt}(\underbrace{\Phi_t^*\omega\wedge\ldots\wedge\Phi_t^*\omega}_{k-\text{mal}}) = 0,$$

denn

$$\frac{d}{dt}\Phi_t^*\omega = \Phi_t^* L_{X_H}\omega = \Phi_t^* (\mathbf{i}_{X_H}d + d\mathbf{i}_{X_H})\omega = \Phi_t^* \left(\mathbf{i}_{X_H} \underbrace{d\omega}_0 + \underbrace{ddH}_0\right) = 0. \quad \Box$$

Hamiltonsche Flüsse lassen also die symplektische 2–Form invariant (dagegen wird, falls $\omega = -d\Theta$, Θ i.A. nicht invariant gelassen).

Insbesondere wird die Volumenform ω^n invariant gelassen. Hamiltonsche Flüsse sind also volumenerhaltend. Andererseits ist natürlich für n>1 nicht jeder volumenerhaltende Fluss Hamiltonsch.

Die Poissonklammer spielt eine wichtige Rolle in der Mechanik.

29.6 Definition Sei (M, ω) eine symplektische Mannigfaltigkeit und $f, g \in C^{\infty}(M, \mathbb{R})$. Die *Poissonklammer* von f und g ist die Funktion

$$\{f,g\} := \omega(X_f,X_g) \in C^{\infty}(M,\mathbb{R}).$$

29.7 Proposition *Es gilt*

$$\{f,g\} = -L_{X_f}g = +L_{X_g}f.$$

Bew.:
$$-L_{X_f}g = -\mathbf{i}_{X_f}dg = -\mathbf{i}_{X_f}\mathbf{i}_{X_g}\omega = -\omega(X_g, X_f) = \omega(X_f, X_g).$$

29.8 Proposition Es sei Φ_t der von f erzeugte Fluss. Dann sind äquivalent:

- 1. $\{f,g\} = 0$
- 2. g ist konstant auf den Orbits von Φ_t .

Bew.:
$$\frac{d}{dt}g \circ \Phi_t = \frac{d}{dt}\Phi_t^*g = \Phi_t^*L_{X_f}g = -\Phi_t^*(\{f,g\}).$$

29.9 Bemerkung In kanonischen Koordinaten $(p_1, \ldots, p_n, q_1, \ldots, q_n)$, d.h. $\omega = \sum_{i=1}^n dq_i \wedge dp_i$ gilt

$$\{f,g\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right).$$

Wenn wir ein Vektorfeld X in lokalen Koordinaten (z_1, \ldots, z_n) in der Form

$$X(z) = \sum_{i=1}^{n} X_i(z) \frac{\partial}{\partial z_i}$$

geschrieben haben, machten wir Gebrauch von der durch die Lieableitung von Funktionen gegebenen Isomorphie zwischen Vektorfeldern und Differentialoperatoren erster Ordnung.

Natürlich ist dann ein Produkt von Lieableitungen $L_X L_Y$ ein Differentialoperator zweiter Ordnung. Interessanterweise gilt aber:

29.10 Lemma Der Operator $L_X L_Y - L_Y L_X$ ist ein Differentialoperator erster Ordnung.

Bew.: In lokalen Koordinaten (z_1, \ldots, z_n) ist

$$L_X L_Y \varphi = \sum_{i=1}^n X_i \frac{\partial}{\partial z_i} \left(\sum_{j=1}^n Y_j \frac{\partial}{\partial z_j} \varphi \right)$$
$$= \sum_{i=1}^n \sum_{j=1}^n \left(X_i \frac{\partial Y_j}{\partial z_i} \frac{\partial \varphi}{\partial z_j} + X_i Y_j \frac{\partial^2}{\partial z_i \partial z_j} \varphi \right),$$

also

$$(L_X L_Y - L_Y L_X)\varphi = \sum_{i=1}^n \sum_{j=1}^n \left(X_i \frac{\partial Y_j}{\partial z_i} - Y_i \frac{\partial X_j}{\partial z_i} \right) \frac{\partial \varphi}{\partial z_j}.$$

Wir können somit wegen der obigen Isomorphie definieren:

29.11 Definition Der *Kommutator* zweier Vektorfelder $X,Y:M\to TM$ ist das Vektorfeld, genannt [X,Y], für das

$$L_{[X,Y]} = L_X L_Y - L_Y L_X.$$

In lokalen Koordinaten (z_1,\ldots,z_n) gilt nach unserem Lemma:

$$[X,Y] = \sum_{j=1}^{n} \sum_{i=1}^{n} \left(X_i \frac{\partial Y_j}{\partial z_i} - Y_i \frac{\partial X_j}{\partial z_i} \right) \frac{\partial}{\partial z_j}$$

29.12 Satz Die von X und Y erzeugten Flüsse Φ_t und Ψ_s vertauschen genau dann, wenn [X,Y]=0, siehe Abb. 48.

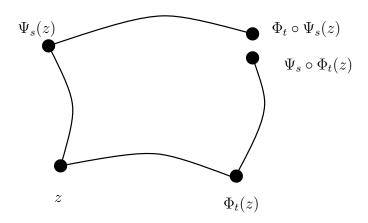


Abbildung 48: Nicht kommutierende Flüsse Φ und Ψ

Bew.: Wenn $\Phi_t \circ \Psi_s(z) = \Psi_s \circ \Phi_t(z)$, so gilt

$$L_{[X,Y]}f = L_X L_Y f - L_Y L_X f$$

$$= \frac{d}{dt} \Phi_t^* \frac{d}{ds} \Psi_s^* f \mid_{t=s=0} -\frac{d}{ds} \Psi_s^* \frac{d}{dt} \Phi_t^* f \mid_{t=s=0}$$

$$= 0$$

für alle Funktionen $f \in C^{\infty}(M, \mathbb{R})$.

Die Rückrichtung ist in [Ar2], §39 nachzulesen.

29.13 Proposition Sei (M, ω) eine symplektische Mannigfaltigkeit und $f, g \in C^{\infty}(M, \mathbb{R})$. Dann gilt

$$d\{f,g\} = -\mathbf{i}_{[X_f,X_g]}\omega.$$

29.14 Bemerkung Der Kommutator der Hamiltonschen Vektorfelder von f und g ist also selbst ein Hamiltonsches Vektorfeld mit Hamiltonfunktion $-\{f,g\}$:

$$X_{\{f,g\}} = -[X_f, X_g].$$

29.15 Lemma Für Vektorfelder $X, Y : M \to TM$ und k–Formen α auf M gilt

$$\mathbf{i}_{[X,Y]}\alpha = L_X\mathbf{i}_Y\alpha - \mathbf{i}_YL_X\alpha.$$

Bew.: Für Nullformen ist die Relation trivial, denn das innere Produkt zwischen einer Funktion und einem Vektorfeld verschwindet. Für ein lokales Koordinatensystem z_1, \ldots, z_n auf M gilt bezüglich der 1-Formen $\alpha := dz_k$

$$L_X \mathbf{i}_Y dz_k - \mathbf{i}_Y L_X dz_k =$$

$$= (L_X L_Y z_k - L_X d \underbrace{\mathbf{i}_Y z_k}_{0}) - \mathbf{i}_Y dL_X z_k$$

$$= L_X L_Y z_k - L_Y L_X z_k + d \underbrace{\mathbf{i}_Y L_X z_k}_{0}$$

$$= L_{[X,Y]} z_k = \underbrace{d\mathbf{i}_{[X,Y]} z_k}_{0} + \mathbf{i}_{[X,Y]} dz_k.$$

Allgemeine Formen setzt man durch äußere Produkte aus Funktionen und 1-Formen dz_k zusammen. \Box

Bew. der Proposition 29.13:

$$d\{f,g\} = d\mathbf{i}_{X_g}\mathbf{i}_{X_f}\omega = L_{X_g}\mathbf{i}_{X_f}\omega - \mathbf{i}_{X_g}d\mathbf{i}_{X_f}\omega$$
$$= L_{X_g}\mathbf{i}_{X_f}\omega - \mathbf{i}_{X_g}L_{X_f}\omega + \mathbf{i}_{X_g}\mathbf{i}_{X_f}\underbrace{d\omega}_{0}$$
$$= L_{X_g}\mathbf{i}_{X_f}\omega - \mathbf{i}_{X_f}L_{X_g}\omega = -\mathbf{i}_{[X_f,X_g]}\omega,$$

denn

$$L_{X_f}\omega = L_{X_g}\omega = 0.$$

Es ist also wesentlich die Geschlossenheit von ω in den Beweis der Proposition eingegangen.

29.16 Satz Für $f, g, h \in C^{\infty}(M, \mathbb{R})$ gilt

$$\{f,g\} = -\{g,f\}$$
 (Antisymmetrie)

und

$$\{\{f,g\},h\}+\{\{g,h\},f\}+\{\{h,f\},g\}=0$$
 (Jacobi-Identität)

Bew.: Die Antisymmetrie der Poissonklammer folgt aus der Antisymmetrie von ω .

Es gilt

$$\begin{aligned}
\{\{f,g\},h\} &= -L_{X_{\{f,g\}}}h \\
\{\{g,h\},f\} &= -L_{X_f}L_{X_g}h \\
\{\{h,f\},g\} &= L_{X_g}L_{X_f}h,
\end{aligned}$$

also ist die linke Seite der Jacobi-Identität gleich

$$(L_{X_g}L_{X_f} - L_{X_f}L_{X_g})h - L_{X_{\{f,g\}}}h = (L_{[X_g,X_f]} + L_{X_{\{g,f\}}})h = 0.$$

29.17 Bemerkung Damit bilden die Funktionen in $C^{\infty}(M, \mathbb{R})$ unter Addition und Poissonklammer eine Liealgebra (siehe Seite 34).

30 Kanonische Transformationen

30.1 Definition Es seien (P, ω) und (Q, ρ) symplektische Mannigfaltigkeiten mit $\dim M = \dim N$. Eine glatte Abbildung

$$F: P \to Q$$

heißt symplektisch oder kanonische Transformation, wenn

$$F^* \rho = \omega$$
.

Diese *Symplektomorphismen* sind die strukturerhaltenden Abbildungen symplektischer Mannigfaltigkeiten, ähnlich wie z.B. die linearen Abbildungen die Struktur der Vektorräume erhalten. Die Lehrbücher von McDuff und Salamon [DS], und von Hofer und Zehnder [HZ] behandeln weitergehende geometrische und topologische Aspekte.

30.2 Beispiel $(P, \omega) = (Q, \rho), F = \Phi_t, \{\Phi_t\}_{t \in \mathbb{R}}$ Hamiltonscher Fluss.

In diesem Kapitel beschränken wir uns der Einfachheit halber auf den Fall der Kotangentenbündel $(P,\omega)=(T^*M,\omega_0)$.

Wie bei allen Transformationen können wir auch bei den kanonischen den aktiven oder den passiven Standpunkt einnehmen.

Im ersten Fall interessieren wir uns dafür, wie Phasenraumpunkte durch F aufeinander abgebildet werden, im zweiten, wie das auf $\mathbb{R}_p^n \times \mathbb{R}_q^n$ gratis existierende Koordinatensystem $(p_1,\ldots,p_n,q_1,\ldots,q_n)$ durch F^* zu einem neuen Koordinatensystem wird.

Eine wichtige Motivation für die Anwendung kanonischer Transformationen besteht in der Lösung der Hamiltonschen Differentialgleichung

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}$$
 , $\dot{q}_i = \frac{\partial H}{\partial p_i}$ $(i = 1, \dots, n)$.

Es kann nämlich sein, dass in einem neuen Koordinatensystem (P,Q) die Differentialgleichungen eine einfachere Form besitzen, sodass wir sie lösen können. Dabei stellt sich heraus, dass es sich lohnt, nicht irgendwelche neue Koordinaten X_1, \ldots, X_{2n} zu benutzen, sondern solche, in denen die Form der Hamiltonschen Gleichung erhalten bleibt. Daher empfehlen sich zum Koordinatenwechsel *kanonische* Transformationen.

Für eine gegebene Hamiltonfunktion $H:P:=T^*M\to\mathbb{R}$ betrachten wir unter Verwendung der in Def. 28.5 eingeführten kanonischen 1–Form Θ_0 auf P die 1–Form

$$\Theta_H := \pi_1^* \Theta_0 - H \cdot dt$$

auf dem erweiterten Phasenraum $P \times \mathbb{R}_t$; \mathbb{R}_t repräsentiert dabei die Zeitachse, und $\pi_1 : P \times \mathbb{R}_t \to P$ die Projektion auf den ersten Faktor P.

Es gilt wegen $d\Theta_0 = -\omega_0$

$$d\Theta_H = -\pi_1^* \omega_0 - dH \wedge dt$$

Diese 2-Form muss degeneriert sein, denn sie ist ja eine antisymmetrische Bilinearform auf dem ungeraddimensionalen Raum $P \times \mathbb{R}_t$.

Insbesondere ist für das Vektorfeld V auf $P \times \mathbb{R}_t$

$$V(x,t) := X_H(x) + \frac{\partial}{\partial t}$$
 (30.1)

 $\mathbf{i}_V d\Theta_H \equiv d\Theta_H(V, \cdot) \equiv 0.$

Andererseits gilt:

30.3 Lemma Gilt für ein Vektorfeld W auf $P \times \mathbb{R}_t$

$$d\Theta_H(W,\cdot) \equiv 0,$$

so ist für eine geeignete Funktion f auf $P \times \mathbb{R}_t$ und das Vektorfeld V aus (30.1)

$$W = f \cdot V$$
.

Bew.: Die allgemeine Form eines Vektorfeldes auf $P \times \mathbb{R}$ ist

$$W = \sum_{i=1}^{n} \left(a_i \frac{\partial}{\partial q_i} + b_i \frac{\partial}{\partial p_i} \right) + c \frac{\partial}{\partial t}.$$

Damit folgt

$$d\Theta_{H}(W,\cdot) = \sum_{i=1}^{n} \left[-a_{i}dp_{i} + b_{i}dq_{i} - \left(\frac{\partial H}{\partial p_{i}}b_{i} + \frac{\partial H}{\partial q_{i}}a_{i} \right) dt + c \left(\frac{\partial H}{\partial q_{i}}dq_{i} + \frac{\partial H}{\partial p_{i}}dp_{i} \right) \right].$$

Durch Koeffizientenvergleich ergibt sich

$$a_i = +c\frac{\partial H}{\partial p_i}$$
 , $b_i = -c\frac{\partial H}{\partial q_i}$, $f = c$.

An jedem Punkt x von $P \times \mathbb{R}$ existiert im lokalen Tangentialraum $T_x(P \times \mathbb{R})$ also genau ein eindimensionaler Unterraum von Vektoren, die, in $d\Theta_H$ eingesetzt, eine verschwindende 1–Form ergeben.

Folgen wir diesen Richtungen, so erhalten wir Kurven $X : \mathbb{R} \to P \times \mathbb{R}$, die wir nach Lemma 30.3 sogar so wählen können, dass sie durch t parametrisiert sind; diese Linien heißen *charakteristische* oder *Vortexlinien*

$$X(t) = (p_1(t), \dots, p_n(t), q_1(t), \dots, q_n(t), t).$$

Es gilt offenbar $\dot{p}_i=-\frac{\partial H}{\partial q_i}$ und $\dot{q}_i=\frac{\partial H}{\partial p_i}$, also die Hamiltonschen Differentialgleichungen.

30.4 Satz Wenn die Koordinaten $P_i(p,q),\ Q_i(p,q),\ (i=1,\ldots,n)$ auf $P=\mathbb{R}^n_p\times\mathbb{R}^n_q$ eine kanonische Transformation $g:P\to\mathbb{R}^n_P\times\mathbb{R}^n_Q$ vermitteln, so transformieren sich die kanonischen Gleichungen $\dot{p}_i=-\frac{\partial H}{\partial q_i},\ \dot{q}_i=\frac{\partial H}{\partial p_i}$ für $H:P\to\mathbb{R}$ in $\dot{P}_i=-\frac{\partial K}{\partial Q_i},\ \dot{Q}_i=\frac{\partial K}{\partial P_i}$ mit K(P(p,q),Q(p,q))=H(p,q).

Bew.: Betrachten wir die 1-Form $\alpha := \sum_{i=1}^{n} (p_i dq_i - P_i dQ_i)$ auf P. Es gilt $d\alpha = 0$, da g kanonisch ist. Damit gilt auf dem erweiterten Phasenraum

$$\pi_1^* \sum_{i=1}^n p_i dq_i - H dt = \pi_1^* \sum_{i=1}^n P_i dQ_i - H dt + \pi_1^* \alpha.$$

Wenn man von der rechten Seite $\pi_1^*\alpha$ abzieht, so bleiben die Vortexlinien die gleichen, denn diese hängen ja nur von der äußeren Ableitung ab, und $d\pi_1^*\alpha = \pi_1^*d\alpha = 0$. Da die Vortexlinien sich gleichen, ist auch die Gestalt der Hamiltonschen Gleichung dieselbe.

Nicht nur die Hamiltonfunktion, die die Bewegungsgleichungen erzeugt, transformiert sich unter einer kanonischen Transformation in einfacher Weise, sondern auch die Poissonklammern:

30.5 Proposition Der Diffeomorphismus $F: P \to Q$ sei eine kanonische Transformation der symplektischen Mannigfaltigkeiten (P, ω) und (Q, ρ) . Dann gilt (unter Benutzung des pull-back¹³ F^*) für $f, g \in C^{\infty}(Q, \mathbb{R})$

$$F^*X_f = X_{F^*f}$$
 und $F^*(\{f,g\}_Q) = \{F^*f, F^*g\}_P$.

Bew.: • Die erste Identität folgt wegen der Nichtdegeneriertheit von ω aus

$$\mathbf{i}_{F^*X_f}\omega = \mathbf{i}_{F^*X_f}F^*\rho = F^*(\mathbf{i}_{X_f}\rho) = F^*(df) = d(F^*f) = \mathbf{i}_{X_{F^*f}}\omega$$

• Die zweite Identität folgt aus der ersten:

$$F^*(\{f,g\}_Q) = F^*(\mathbf{i}_{X_q}\mathbf{i}_{X_f}\rho) = \mathbf{i}_{F^*X_q}\mathbf{i}_{F^*X_f}F^*\rho = \mathbf{i}_{X_{F^*_q}}\mathbf{i}_{X_{F^*_f}}\omega = \{F^*f, F^*g\}_P.$$

31 Lagrange-Mannigfaltigkeiten

Die Hamiltonschen Bewegungsgleichungen unterscheiden sich von anderen Systemen gewöhnlicher Differentialgleichungen durch die Tatsache, dass die in ihnen steckende Information in einer einzigen Funktion, der Hamiltonfunktion, codiert ist. Ähnlich (wenn auch mit gewissen Einschränkungen) lassen sich kanonische Transformationen mithilfe einer einzigen, der so genannten erzeugenden,

 $^{^{13}}$ Der $pull-back\ F^*X$ eines Vektorfeldes X auf einer Mannigfaltigkeit Q bezüglich eines Diffeomorphismus $F:P\to Q$ ist durch $F^*X:=T(F^{-1})\circ X\circ F$ definiert.

Funktion darstellen. Um diese Darstellungsweise zu verstehen, führen wir den Begriff der Lagrange-Mannigfaltigkeit ein.

Erinnern wir uns zunächst an den linearen Fall:

31.1 Definition Sei (E,ω) ein symplektischer Vektorraum und $F\subset E$ ein Unterraum. Das ω -orthogonale Komplement von F ist der durch

$$F^{\perp} := \{ e \in E \mid \omega(e, f) = 0 \qquad \forall f \in F \}$$

definierte Unterraum.

Ein Unterraum $F \subset E$ heißt isotrop, wenn $F^{\perp} \supset F$, Lagrangesch, wenn $F^{\perp} = F$.

- **31.2 Beispiel** $(E,\omega) = \left(\mathbb{R}_p^n \times \mathbb{R}_q^n, \left\langle \cdot, \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix} \right) \cdot \right\rangle \right)$
 - 1. $F_1 := E$, $F_1^{\perp} = \{0\}$
 - 2. $F_2 := \mathbb{R}_p^k \times \{0\}_{n-k} \times \mathbb{R}_q^k \times \{0\}_{n-k}$, k < n. $F_2^{\perp} = \{0\}_k \times \mathbb{R}_p^{n-k} \times \{0\}_k \times \mathbb{R}_q^{n-k}$
 - 3. $F_3 := \mathbb{R}_p^n \times \{0\}_q$, $F_3^{\perp} = F_3$
 - 4. $F_4:=\{0\}\times\mathbb{R}_q^n$, $F_4^\perp=F_4$
- **31.3 Satz** 1. dim $F + \dim F^{\perp} = \dim E$.

um 90° in allen (p_i, q_i) -Ebenen.

2. $F \subset E$ ist genau dann Lagrangesch, wenn F isotrop und dim $F = \frac{1}{2} \dim E$.

Bew.:

1. Wir wählen kanonische Koordinaten (p,q) auf E. Dann ist bezüglich des kanonischen inneren Produktes $\langle \cdot, \cdot \rangle$ auf E, (in dem für $X = \sum_{i=1}^n p_i e_{p_i} + q_i e_{q_i}$, $\langle X, X \rangle = \sum_{i=1}^n (p_i^2 + q_i^2)$ ist), $\omega(X,Y) = \langle X,JY \rangle$ mit $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Für n=1 ist J eine Drehung der E-Ebene um 90° , für n>1 eine Drehung

$$F^{\perp} = \{ X \in E \mid \forall Y \in F : \langle X, JY \rangle = 0 \}.$$

Damit ist F^{\perp} der auf JF senkrecht stehende Unterraum (senkrecht bezüglich $\langle \cdot, \cdot \rangle$). Daraus ergibt sich die 1. Behauptung.

2. Ist F isotrop, also $F \subset F^{\perp}$ und $\dim F = \frac{1}{2} \dim E$, so ist wegen 1. auch $\dim F^{\perp} = \frac{1}{2} \dim E$, sodass $F = F^{\perp}$. Die umgekehrte Richtung ist trivial.

31.4 Bemerkung Ist dim E=2, so ist jeder lineare eindimensionale Unterraum Lagrangesch, da ω antisymmetrisch ist.

31.5 Definition Seien (E_1, ω_1) und (E_2, ω_2) symplektische Vektorräume und π_i : $E_1 \times E_2 \to E_i, i = 1, 2$, die Projektionen.

Dann ist

$$\omega_1 \ominus \omega_2 := \pi_1^* \omega_1 - \pi_2^* \omega_2.$$

31.6 Bemerkung $\omega_1 \ominus \omega_2$ ist eine symplektische Form auf $E_1 \times E_2$.

31.7 Satz Ein Isomorphismus $A: E_1 \to E_2$ ist genau dann symplektisch, wenn sein Graph

$$\Gamma_A = \{(e_1, Ae_1) \mid e_1 \in E_1\} \subset E_1 \times E_2$$

Lagrangesch ist.

Bew.: Da Γ_A ein linearer Unterraum der Dimension dim $\Gamma_A = \frac{1}{2} \dim(E_1 \times E_2)$ ist, ist er Lagrangesch genau dann, wenn er isotrop ist, d.h.

$$\omega_1 \ominus \omega_2((e_1, Ae_1), (e'_1, Ae'_1)) = 0 \qquad (e_1, e'_1 \in E_1),$$

oder äquivalent

$$\omega_1(e_1, e_1') - \omega_2(Ae_1, Ae_1') = 0$$
 $(e_1, e_1' \in E_1)$

gilt. Das ist genau dann der Fall, wenn A symplektisch ist.

Die obigen Begriffe sollen jetzt vom linearen auf den allgemeinen Fall übertragen werden. Das gelingt ohne Schwierigkeiten.

31.8 Definition Sei (P,ω) eine symplektische Mannigfaltigkeit und $I:L\to P$ die Einbettung einer Untermannigfaltigkeit $L.^{14}$

L heißt isotrop, wenn $I^*\omega=0$ und Lagrangesch, wenn außerdem $\dim L=\frac{1}{2}\dim P.$

 $^{^{14}}$ Untermannigfaltigkeiten von Mannigfaltigkeiten P definiert man analog zum Fall $P = \mathbb{R}^n$ (Def. 17.2).

- **31.9 Beispiel** 1. Für dim P=2 ist jede eindimensionale Untermannigfaltigkeit L Lagrangesch, da $I^*\omega$ eine 2-Form auf L und damit $I^*\omega=0$.
 - 2. Es sei dim P = 2n und $F_1, \ldots, F_n \in C^{\infty}(P, \mathbb{R})$. Wir betrachten

$$F := \begin{pmatrix} \stackrel{F_1}{\vdots} \\ \stackrel{\vdots}{\dot{F_n}} \end{pmatrix} : P \to \mathbb{R}^n.$$

 $f \in F(P)$ sei ein regulärer Wert von F. Dann ist $L := F^{-1}(f)$ eine n-dimensionale Untermannigfaltigkeit von P.

Gilt $\{F_i, F_k\} = 0$ für $i, k \in \{1, ..., n\}$, so ist L Lagrangesch.

Denn wegen der Regularität ist für $x \in L$ die n-Form $dF_1 \wedge \ldots \wedge dF_n(x) \neq 0$, und wegen der Relation $\mathbf{i}_{X_{F_i}}\omega = dF_i$ sind für $x \in L$ die Hamiltonschen Vektorfelder X_{F_1}, \ldots, X_{F_n} bei $x \in L$ linear unabhängig. Außerdem sind sie tangential an L, denn $dF_i(X_{F_k}) = \mathbf{i}_{X_{F_k}} dF_i = \mathbf{i}_{X_{F_k}} \mathbf{i}_{X_{F_i}} \omega = \{F_i, F_k\} = 0$.

Da $\dim(T_xL)=n$ ist, spannen die Vektoren $X_{F_1}(x),\ldots,X_{F_n}(x)$ den Tangentialraum T_xL von L bei x auf. Tangentialvektorfelder Y,Z an L können also als Linearkombinationen $Y=\sum_{i=1}^n Y_i\cdot X_{F_i}$ mit Funktionen $Y_i:L\to\mathbb{R}$ und entsprechend für Z geschrieben werden.

Daher gilt $\omega(Y, Z) = 0$, also $I^*\omega = 0$, d.h. L ist isotrop und wegen $\dim(L) = n$ Lagrangesch.

3. Sei M eine n-dimensionale Mannigfaltigkeit und $P:=T^*M$ ihr Kotangentialbündel. Dann existieren auf P die in Def. 28.5 eingeführte kanonische 1-Form Θ_0 und die kanonische symplektische Form $\omega_0=-d\Theta_0$ (für das Bsp. $M=\mathbb{R}_q^n$ ist $\Theta_0=\sum_{i=1}^n p_i dq_i$ und $\omega_0=\sum_{i=1}^n dq_i \wedge dp_i$).

Wir betrachten eine 1-Form α auf M.

Der Graph L von α ist eine n-dimensionale Untermannigfaltigkeit $L\subset P$.

Wir können also mittels der als Abbildung $\hat{\alpha}:M\to L\subset P$ aufgefassten 1–Form α die kanonische 1–Form Θ_0 zurückholen, und es gilt

$$\hat{\alpha}^* \Theta_0 = \alpha, \tag{31.1}$$

denn für jeden Vektor $\zeta\in T_{\hat{\alpha}(q)}P$ gilt unter Verwendung der Fußpunktprojektion $\pi_M^*:T^*M\to M$

$$\langle \Theta_0(\hat{\alpha}(q)), \zeta \rangle = \langle \alpha(q), T\pi_M^*(\zeta) \rangle,$$

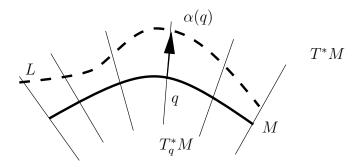


Abbildung 49: Lagrange-Untermannigfaltigkeit als Graph einer geschlossenen 1–Form

sodass wegen (28.1) und $\pi_M^* \circ \hat{\alpha} = \operatorname{Id}_M$ für $v_q \in T_qM$ gilt:

$$\begin{split} \langle \hat{\alpha}^* \Theta_0(q), v_q \rangle &= \langle \Theta_0(\hat{\alpha}(q)), T(\hat{\alpha})(v_q) \rangle = \langle \alpha(q), T(\pi_M^*) \circ T(\hat{\alpha})(v_q) \rangle \\ &= \langle \alpha(q), T(\pi_M^* \circ \hat{\alpha})(v_q) \rangle = \langle \alpha(q), T \mathrm{Id}_M(v_q) \rangle = \langle \alpha(q), v_q \rangle \,. \end{split}$$

Aus (31.1) folgt

$$d\alpha = d\hat{\alpha}^*\Theta_0 = \hat{\alpha}^*d\Theta_0 = -\hat{\alpha}^*\omega_0$$

L ist also genau dann Lagrangesch, wenn α geschlossen ist.

Ganz analog zum linearen Fall ergibt sich folgender Satz:

31.10 Satz Sei $F: P_1 \to P_2$ ein Diffeomorphismus und (P_i, ω_i) symplektische Mannigfaltigkeit. Dann ist F genau dann symplektisch, wenn der Graph

$$\Gamma_F := \{(x, F(x)) \mid x \in P_1\} \subset P_1 \times P_2$$

von F Lagrangesch ist bezüglich der symplektischen Form $\Omega := \omega_1 \ominus \omega_2$ auf $P_1 \times P_2$.

Bew.: Der Tangentialraum $T_{(x,F(x))}\Gamma_F$ von Γ_F am Punkt (x,F(x)) ist von der Form

$$T_{(x,F(x))}\Gamma_F = \{(V,TF(V)) \mid V \in T_x P_1\}.$$

Daher gilt für die Injektion $I:\Gamma_F\to P_1\times P_2$

$$(I^*\Omega)\big((V_1, TF(V_1)), (V_2, TF(V_2))\big) = \omega_1(V_1, V_2) - \omega_2(TF(V_1), TF(V_2)) = (\omega_1 - F^*\omega_2)(V_1, V_2).$$

32 Erzeugende kanonischer Transformationen

Wir wollen nun eine kanonische Transformation mithilfe einer einzigen Funktion, der so genannten Erzeugenden der kanonischen Transformation darstellen.

Wir wissen, dass kanonische Transformationen eng mit Lagrange-Untermannigfaltigkeiten zusammenhängen.

Sei (P,ω) eine symplektische Mannigfaltigkeit und $I:L\to P$ eine Lagrange-Untermannigfaltigkeit.

Dann existiert nach dem Poincaré-Lemma¹⁵ für alle $x \in L$ eine Umgebung $U \subset P$ von x und eine 1–Form Θ auf U mit $\omega|_U = -d\Theta$. Wegen

$$0 = I^* \omega \upharpoonright_U = -I^* d\Theta = -dI^* \Theta$$

ist $I^*\Theta$ ebenfalls geschlossen. Damit existiert auf einer geeigneten Umgebung $V \subset L$ von x eine Funktion S mit

$$-I^*\Theta|_V = dS.$$

Eine solche Funktion wird erzeugende Funktion für L genannt.

Betrachten wir speziell den Fall einer kanonischen Transformation F von (P_1, ω_1) nach (P_2, ω_2) , wobei die symplektischen Mannigfaltigkeiten exakt symplektisch seien, d.h. $\omega_i = -d\Theta_i$.

Dann gilt

$$\Omega := \omega_1 \ominus \omega_2 = -d\Theta$$

mit der 1-Form

$$\Theta := \Theta_1 \ominus \Theta_2 = \pi_1^* \Theta_1 - \pi_2^* \Theta_2$$
 auf $P_1 \times P_2$.

Zumindest lokal können also wir auf dem Graphen Γ_F eine erzeugende Funktion S finden mit $I^*\Theta=-dS$.

Wir benutzen lokale kanonische Koordinaten $(P_1, \ldots, P_n, Q_1, \ldots, Q_n)$ auf P_1 und $(p_1, \ldots, p_n, q_1, \ldots, q_n)$ auf P_2 , wobei

$$F(P_1, \ldots, P_n, Q_1, \ldots, Q_n) = (p_1, \ldots, p_n, q_1, \ldots, q_n)$$

¹⁵**Poincaré-Lemma:** Ist $\omega \in \Omega^k(M)$ geschlossen, dann existiert für jeden Punkt $x \in M$ eine Umgebung U, sodass $\omega \upharpoonright_U$ exakt ist (siehe z.B. Thm. 2.4.17 von [AM]).

gelte. Nach dem Satz von Darboux¹⁶ können wir annehmen dass (lokal) $\Theta_2 = \sum_i p_i dq_i$ und $\Theta_1 = \sum_i P_i dQ_i$, sodass

$$\Theta = \sum_{i} P_i dQ_i - p_i dq_i.$$

Fallunterscheidung:

1. Wir schreiben S als Funktion $S_1(q,Q)$ von $(q_1,\ldots,q_n,Q_1,\ldots,Q_n)$. Aus $dS_1=-I^*\Theta_1$ folgt

$$dS_1 = \frac{\partial S_1}{\partial q_i} dq_i + \frac{\partial S_1}{\partial Q_i} dQ_i = \sum_i p_i dq_i - P_i dQ_i \quad \text{, also}$$
$$p_i = \frac{\partial S_1}{\partial q_i} \quad , \quad P_i = -\frac{\partial S_1}{\partial Q_i} \qquad (i = 1, \dots, n).$$

2. Nicht immer lässt sich S als Funktion der q_i und Q_i schreiben. Wenn S als Funktion $S_2(q, P)$ angesetzt wird, empfiehlt es sich, zu Θ_1 eine exakte Form zu addieren:

$$\Theta_2 := \Theta_1 - d \left(\sum_i Q_i P_i \right) = \sum_i -Q_i dP_i - p_i dq_i$$

$$dS_2 = -I^* \Theta_2 \quad \text{, also}$$

$$Q_i = \frac{\partial S_2}{\partial P_i} \quad , \quad p_i = \frac{\partial S_2}{\partial q_i} \qquad (i = 1, \dots, n).$$

3. Setzen wir S als $S_3(p,Q)$ an, so ergibt sich mit

$$\Theta_3 := \Theta_1 + \sum_i d(p_i q_i) = \sum_i P_i dQ_i + q_i dp_i$$

$$P_i = -\frac{\partial S_3}{\partial Q_i} \quad , \quad q_i = -\frac{\partial S_3}{\partial p_i} \qquad (i = 1, \dots, n).$$

 $^{^{16}}$ Satz von Darboux: Für jeden Punkt $x \in P$ einer symplektischen Mannigfaltigkeit (P,ω) gibt es eine Karte (U,φ) bei x mit Koordinaten $\varphi=(p_1,\ldots,p_n,q_1,\ldots,q_n),\ n:=\frac{1}{2}\dim P,$ sodass $\omega\!\upharpoonright_U=\sum_{i=1}^n dq_i\wedge dp_i$ (siehe z.B. Thm. 3.2.2 von [AM]).

4. Für $\Theta_4:=\Theta_1+d\left(\sum -Q_iP_i+q_ip_i\right)=\sum_i-Q_idP_i+q_idp_i$ ist S, ausgedrückt durch $S_4(p,P)$,

$$- dS_4 = I^*\Theta_4$$

$$\Rightarrow q_i = -\frac{\partial S_4}{\partial p_i} , \quad Q_i = \frac{\partial S_4}{\partial P_i} \qquad (i = 1, \dots, n)$$

Für $i = 1, \ldots, 4$ gilt $\Omega = -d\Theta_i$.

Für n=1 läßt sich die kanonische Transformation in mindestens einer der vier angegebenen Formen schreiben.

Allgemein ist $P_1 \times P_2$ m := 2n-dimensional. Mindestens eine von 2^n Gruppen von Koordinaten-n-Tupeln läßt sich in diesem Fall zur lokalen Darstellung der kanonischen Transformation verwenden (siehe [Ar2], §48).

32.1 Beispiel $F: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^2$

$$(p,q) \mapsto (P,Q) = \left(\sqrt{\frac{p\omega}{\pi}}\cos(2\pi q), \sqrt{\frac{p}{\pi\omega}}\sin(2\pi q)\right)$$

$$dQ \wedge dP = \left(\frac{1}{2}\sqrt{\frac{1}{\pi\omega p}}\sin(2\pi q)dp + 2\sqrt{\frac{\pi p}{\omega}}\cos(2\pi q)dq\right) \wedge \left(\frac{1}{2}\sqrt{\frac{\omega}{p\pi}}\cos(2\pi q)dp - 2\sqrt{p\omega\pi}\sin(2\pi q)dq\right)$$
$$= dq \wedge dp.$$

Für $S_1(q,Q) := -\frac{\omega}{2}Q^2\cot(2\pi q)$ ist

$$\frac{\partial S_1}{\partial q} = \frac{\pi \omega Q^2}{\sin^2(2\pi q)}$$
 und $\frac{\partial S_1}{\partial Q} = -Q\omega \cot(2\pi q)$.

Damit erzeugt S_1 die kanonische Transformation F:

$$\frac{P}{Q} = \omega \cot(2\pi q) \quad \text{, also} \quad P = -\frac{\partial S_1}{\partial Q},$$

$$\frac{Q^2}{\sin^2(2\pi q)} = \frac{p}{\pi \omega} \quad \text{, also} \quad p = \frac{\partial S_1}{\partial q}.$$

Betrachten wir $H(P,Q):=\frac{1}{2}(P^2+\omega^2Q^2)$, so transformiert sich diese Hamiltonfunktion in

$$K(p,q) := \frac{\omega}{2\pi}p.$$

Die Bewegungsgleichungen sind dann

$$\dot{q} = \frac{\omega}{2\pi}$$
 , $\dot{p} = 0$.

33 Integrable Systeme

In einem heuristischen Sinn ist ein Differentialgleichungssystem integrabel, wenn wir in der Lage sind, die Lösungen "hinzuschreiben".

Aus zwei Gründen lässt uns diese "Definition" natürlich unbefriedigt. Zum einen hätten wir gerne einen Integrabilitätsbegriff, der etwas über das Differentialgleichungssystem statt über unsere mathematischen Fähigkeiten aussagt. Zum anderen ist nicht ganz klar, was "hinschreiben" bedeutet. Soll die Lösung durch "bekannte Funktionen", durch konvergente Reihen oder etwa durch einen Limesprozess angegeben werden?

Wir wollen so vorgehen, dass wir zunächst ein Beispiel eines Hamiltonschen Systems diskutieren, das wir als integrabel ansehen und danach den Integrabilitätsbegriff abstrahieren.

33.1 Beispiel (Bewegung im radialsymmetrischen Potential)

Phasenraum $P:=T^*\mathbb{R}_q^2$, symplektische Form $\omega_0=dq_1\wedge dp_1+dq_2\wedge dp_2$, Hamiltonfunktion $H(p,q):=\frac{1}{2}p^2+V(q)$ mit $V\in C^\infty(\mathbb{R}_q^2,\mathbb{R})$, V(q)=W(|q|). Der Drehimpuls $L(p,q):=-q_1p_2+q_2p_1$ kommutiert mit H:

$$\{H, L\} = 0.$$

Wir wissen also, dass die Bahn immer auf der zweidimensionalen Mannigfaltigkeit $\{(p,q) \mid H(p,q) = h, \ L(p,q) = l\}$ bleiben muss, wenn sie sich zur Zeit 0 dort befindet.

Wegen der Drehinvarianz der Hamiltonfunktion empfehlen sich Polarkoordinaten (r,φ) mit

$$q_1 = r\sin\varphi \quad , \quad q_2 = r\cos\varphi, \tag{33.1}$$

die wir zu kanonischen Koordinaten ausbauen können. Dazu setzen wir die erzeugende Funktion wie in Fall 2. des letzten Kapitels an:

$$(p_r, p_{\varphi}, q_1, q_2) = \left(\frac{\partial S}{\partial r}, \frac{\partial S}{\partial \varphi}, \frac{\partial S}{\partial p_1}, \frac{\partial S}{\partial p_2}\right).$$

Für $S(r, \varphi, p_1, p_2) := p_1 r \sin \varphi + p_2 r \cos \varphi$. ist (33.1) erfüllt. Weiter gilt dann

$$p_r = p_1 \sin \varphi + p_2 \cos \varphi,$$

$$p_{\varphi} = p_1 r \cos \varphi - p_2 r \sin \varphi = L.$$

Wegen der Identität $p_1^2+p_2^2=p_r^2+\frac{L^2}{r^2}$ ist $H(p,q)=\frac{1}{2}p_r^2+\frac{L^2}{2r^2}+W(r)$. Damit wird $\dot{p}_{\varphi}=\dot{L}=0$, also $p_{\varphi}(t)=p_{\varphi}(0)=:l$. Betrachte

$$K_l(p_r,r) := \frac{1}{2}p_r^2 + W_l(r)$$
 mit $W_l(r) := W(r) + \frac{l^2}{2r^2}$.

Das ist eine Hamiltonfunktion mit einem Freiheitsgrad. Da die Energie $h:=K_l(p_r(0),r(0))$ zeitlich konstant ist, kennen wir schon den oder die Orbits. Wir müssen nur noch die Zeitparametrisierung finden. Das ist durch Berechnung eines Integrals möglich, denn

$$\dot{r} = p_r = \sqrt{2(h - W_l(r))},$$

also

$$\int \frac{dr}{\sqrt{2(h-W_l(r))}} = \int dt = t.$$

Um die Differentialgleichung $\dot{\varphi}=\frac{\partial H}{\partial p_{\varphi}}=\frac{L}{r^2}$ zu lösen, müssen wir noch die Lösung r(t) in sie einsetzen und integrieren.

- **33.2 Definition** Es sei $H \in C^{\infty}(P, \mathbb{R})$ eine (Hamilton-)Funktion auf der symplektischen Mannigfaltigkeit (P, ω) der Dimension 2n.
 - Dann heißt $F \in C^{\infty}(P, \mathbb{R})$ Konstante der Bewegung, wenn

$$\{F,H\}=0.$$

- Eine Menge $\{F_1, \ldots, F_k\}$ von Funktion $F_i \in C^{\infty}(P, \mathbb{R})$ ist in *Involution*, wenn $\{F_i, F_j\} = 0 \ (i, j \in \{1, \ldots, k\}).$
- Sie heißt unabhängig, wenn die Menge

$$\{x \in P \mid dF_1(x) \wedge \ldots \wedge dF_k(x) = 0\}$$

das Liouvillemaß¹⁷ Null besitzt.

In Institute (P, ω) eine symplektische Mannigfaltigkeit, dann heißt für $n:=\frac{1}{2}\dim P$ das von der Volumenform $\frac{(-1)^{\lfloor n/2\rfloor}}{n!}\omega^n$ induzierte Maß auf P Liouvillemaß. Für $(P,\omega)=(T^*\mathbb{R}^n,\omega_0)$ stimmt es mit dem Lebesguemaß überein.

- $\{F_1, \ldots, F_k\}$ heißt *integrabel*, wenn die F_i in Involution und unabhängig sind, und k = n.
- Die Hamiltonfunktion H heißt dann *integrabel*, wenn zusätzlich zu $F_1 := H$ weitere n-1 Konstanten der Bewegung F_2, \ldots, F_n existieren, sodass $\{F_1, \ldots, F_n\}$ integrabel ist.

Die obige Definition von Integrabilität wirkt zunächst etwas abstrakt, ermöglicht es aber, durch Einführung geeigneter (halblokaler) kanonischer Koordinaten

$$(I_1,\ldots,I_n,\varphi_1,\ldots,\varphi_n)$$

die Bewegung zu linearisieren. Die Hamiltonschen Gleichungen nehmen in diesen Koordinaten die Form

$$\dot{\varphi}_k = \omega_k(I)$$
 , $\dot{I}_k = 0$, $(k \in \{1, \dots, n\})$

an, womit sie durch

$$\varphi_k(t) = \varphi_k(0) + \omega_k(I) \cdot t$$
 , $I_k(t) = I_k(0)$

gelöst werden.

Wir beginnen mit folgender Aussage.

33.3 Satz (Arnol'd) Es sei (P, ω) symplektische Mannigfaltigkeit mit dim P = 2n und $\{F_1, \ldots, F_n\}$ integrabel. $f \in F(P) \subset \mathbb{R}^n$ sei regulärer Wert der Funktion

$$F:=\left(\begin{array}{c}F_1\\\vdots\\\dot{F_n}\end{array}\right),$$

also F_1, \ldots, F_n auf der Niveaumenge

$$F^{-1}(f) := \{ x \in P \mid F(x) = f \}$$

unabhängig (d.h. $dF_1 \wedge \ldots \wedge dF_n(x) \neq 0$ für $x \in F^{-1}(f)$).

Dann ist jede kompakte Zusammenhangskomponente M_f von $F^{-1}(f)$ diffeomorph zu einem n-dimensionalen Torus $\mathbb{T}^n = (S^1)^n$.

Bew.: Wir wissen schon (Beispiel 31.9.2), dass M_f eine n-dimensionale Lagrange-Mannigfaltigkeit ist.

Wir bezeichnen mit Φ_t^k den von dem Hamiltonschen Vektorfeld X_{F_k} der kten Konstanten der Bewegung F_k erzeugten Fluss (der wegen der Kompaktheit

von M_f und Regularität von f in einer offenen Umgebung von M_f existiert). Wir wissen, dass für alle Zeiten t_i

$$\Phi_{t_1}^k \circ \Phi_{t_2}^l = \Phi_{t_2}^l \circ \Phi_{t_1}^k \qquad (k, l \in \{1, \dots, n\}),$$

denn nach Satz 29.12 kommutieren die von Vektorfeldern X,Y erzeugten Flüsse genau dann, wenn [X,Y]=0 und wir wissen (Bemerkung 29.14), dass der Kommutator $[X_{F_k},X_{F_l}]=-X_{\{F_k,F_l\}}=0$ ist, denn $\{F_k,F_l\}=0$.

Nun betrachten wir die Abbildung

$$\Psi: \mathbb{R}^n \times M_f \to M_f$$
 , $((t_1, \dots, t_n), x) \mapsto \Phi_{t_1}^1 \circ \dots \circ \Phi_{t_n}^n(x)$.

Tatsächlich ist dies eine Abbildung in M_f , denn die Flüsse Φ_t^k lassen M_f invariant (die Vektorfelder X_{F_k} sind ja tangential an M_f wegen $L_{X_{F_k}}F_l=dF_l(X_k)=\{F_k,F_l\}=0$).

Außerdem gilt für $\Psi_t:M_f\to M_f$, $\Psi_t(x):=\Psi(t,x)$

$$\Psi_0 = \mathrm{Id}_{M_f}$$
 , $\Psi_s \circ \Psi_t = \Psi_{s+t}$ $(s, t \in \mathbb{R}^n)$.

Damit ist Ψ eine so genannte *Gruppenwirkung* der Gruppe \mathbb{R}^n auf M_f .

Wegen der Unabhängigkeit der dF_k sind auch die n Vektorfelder X_{F_k} auf M_f unabhängig. Damit (und wegen Kompaktheit von M_f) existiert eine Umgebung $U \subset \mathbb{R}^n$ der Null, sodass für alle $x \in M_f$ die Abbildung $U \to M_f$, $t \mapsto \Psi(t,x)$ ein Diffeomorphismus aufs Bild $\Psi(U,\{x\})$ ist (Abbildung 50).

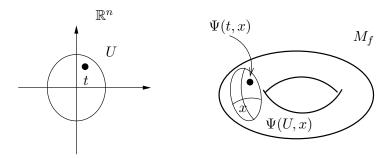


Abbildung 50: Gruppenwirkung Ψ

Die Gruppenwirkung ist also *lokal frei*. Das Bild $\Psi(\mathbb{R}^n, \{x\})$ der Abbildung $\mathbb{R}^n \to M_f$, $t \mapsto \Psi(t,x)$ ist damit offen in M_f (und nicht leer!). Aber auch sein Komplement $M_f \setminus \Psi(\mathbb{R}^n, \{x\})$ ist offen, denn wenn y im Komplement des Bildes liegt, dann muss auch die Umgebung $\Psi(U, \{y\})$ von y im Komplement liegen, da

sonst ein $z \in \Psi(\mathbb{R}^n, \{x\}) \cap \Psi(U, \{y\})$ existierte, also $z = \Psi_t(x) = \Psi_s(y)$ mit $s, t \in \mathbb{R}^n$ geeignet, woraus $y = \Psi_{t-s}(x)$ folgte.

Da also $\Psi(\mathbb{R}^n, \{x\})$ offen und abgeschlossen und außerdem nicht leer ist, muss es eine Zusammenhangskomponente von M_f sein. Da aber nach Voraussetzung M_f zusammenhängend ist, ist $\Psi(\mathbb{R}^n, \{x\}) = M_f$, die Gruppenwirkung also, wie man sagt, transitiv.

Die Isotropiegruppe Γ eines Punktes $x \in M_f$ (siehe untenstehende Abbildung) ist durch

$$\Gamma \equiv \Gamma_x := \{ t \in \mathbb{R}^n \mid \Psi_t(x) = x \}$$

definiert. Γ ist von der Wahl von x unabhängig, denn wegen der Transitivität von Ψ existiert für $y \in M_f$ ein $s \in \mathbb{R}^n$ mit $y = \Psi_s(x)$. Da Ψ eine Gruppenwirkung der abelschen Gruppe \mathbb{R}^n ist, gilt $\Gamma_y = \{t \in \mathbb{R}^n \mid \Psi_{t+s}(x) = \Psi_s(x)\} = \Gamma_x$.

Da die Gruppenwirkung lokal frei ist, existiert eine Umgebung $U \subset \mathbb{R}^n$ von $0 \in \Gamma$ mit $U \cap \Gamma = \{t\}$. Für $t \in \Gamma$ ist daher t der einzige Punkt in der Umgebung U + t, der zur Isotropiegruppe gehört. Damit ist Γ eine so genannte $diskrete^{18}$ Untergruppe des \mathbb{R}^n .

33.4 Lemma Sei $\Gamma \subset \mathbb{R}^n$ eine diskrete Untergruppe und $k := \dim(\operatorname{span}_{\mathbb{R}}(\Gamma))$. Dann existieren linear unabhängige Vektoren $\ell_1, \ldots, \ell_k \in \Gamma$ mit

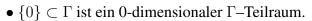
$$\Gamma = \operatorname{span}_{\mathbb{Z}}(\ell_1, \dots, \ell_k) := \left\{ \sum_{i=1}^k z_i \ell_i \middle| z_i \in \mathbb{Z} \right\}.$$

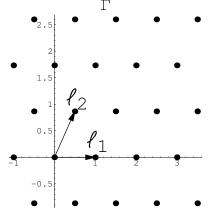
Bew.: Wir bezeichnen einen Unterraum $U \subset \mathbb{R}^n$ als Γ -*Teilraum*, wenn

$$\operatorname{span}_{\mathbb{R}}(U \cap \Gamma) = U,$$

und wir konstruieren induktiv Basen $\ell_1, \ldots, \ell_m \in \Gamma$ für geeignete Γ -Teilräume $U_m \subset \mathbb{R}^n$ der Dimensionen $m \leq k$, die gleichzeitig \mathbb{Z} -Basen von $U_m \cap \Gamma$ sind, d.h.

$$U_m \cap \Gamma = \operatorname{span}_{\mathbb{Z}}(\ell_1, \dots, \ell_m).$$





¹⁸**Def.:** Eine Teilmenge $N \subset M$ eines topologischen Raumes M heißt *diskret*, wenn für alle $m \in M$ eine Umgebung U von m mit $|N \cap U| < \infty$ existiert.

- Haben wir für m < k einen Γ -Teilraum U_m mit Basis ℓ_1, \ldots, ℓ_m konstruiert, dann existiert ein von diesen linear unabhängiger Vektor $\ell_{m+1} \in \Gamma$, der minimalen Abstand a > 0 zum Unterraum $\operatorname{span}_{\mathbb{R}}(\ell_1, \ldots, \ell_m)$ besitzt. Denn $\Gamma \setminus \operatorname{span}_{\mathbb{Z}}(\ell_1, \ldots, \ell_m) \neq \emptyset$, und wir können aus ℓ_{m+1} durch Translation
- mit einem Vektor $\ell \in \operatorname{span}_{\mathbb{Z}}(\ell_1, \ldots, \ell_m) \neq \emptyset$, und wir konnen aus ℓ_{m+1} durch Translation mit einem Vektor $\ell \in \operatorname{span}_{\mathbb{Z}}(\ell_1, \ldots, \ell_m)$ einen Vektor der Länge $|\ell_{m+1} \ell| \leq a + \sum_{i=t}^m |\ell_i|$ gewinnen. Wäre das Infimum der Abstände zum Unterraum gleich Null, dann würde dies der Diskretheit von Γ widersprechen.
- $U_{m+1} = \operatorname{span}_{\mathbb{R}}(\ell_1, \dots, \ell_{m+1})$ ist nach Konstruktion ein Γ -Teilraum.
- $\ell_1, \ldots, \ell_{m+1}$ ist eine \mathbb{Z} -Basis von U_{m+1} , denn jedes $\ell \in U_{m+1} \cap \Gamma$ läßt sich eindeutig in der Form

$$\ell = z\ell_{m+1} + u \quad \text{mit} \quad u \in U_m \quad \text{und} \quad z \in \mathbb{R}$$

zerlegen. Der Vektor $\ell - \lfloor z \rfloor \ell_{m+1} \in U_{m+1} \cap \Gamma$ hat den Abstand $(z - \lfloor z \rfloor) \cdot a$ vom Unterraum U_m . Da dieser nicht echt zwischen 0 und a liegen kann, ist $z \in \mathbb{Z}$. Damit ist $u \in \operatorname{span}_{\mathbb{Z}}(\ell_1, \ldots, \ell_m)$, und letztlich $\ell \in \operatorname{span}_{\mathbb{Z}}(\ell_1, \ldots, \ell_{m+1})$.

Ende des Bew. (Thm. 33.3): Ergänzen wir die \mathbb{Z} -Basis ℓ_1, \ldots, ℓ_k aus Lemma 33.4 zu einer \mathbb{R} -Basis ℓ_1, \ldots, ℓ_n von \mathbb{R}^n , so ergibt sich durch Basiswechsel der Gruppenisomorphismus und Diffeomorphismus

$$\mathbb{R}^n/\Gamma \cong \mathbb{R}^n/\mathbb{Z}^k \cong \mathbb{R}^{n-k} \times (\mathbb{R}/\mathbb{Z})^k \cong \mathbb{R}^{n-k} \times \mathbb{T}^k$$
.

Da nach Voraussetzung M_f kompakt, und $M_f \cong \mathbb{R}^n/\Gamma$, gilt k = n und $M_f \cong \mathbb{T}^n$.

Da M_f also diffeomorph zum n-Torus ist, folgt, dass man die Punkte auf M_f durch n Winkel $\varphi_1,\ldots,\varphi_n$ parametrisieren kann. Dies ist sogar in einer Weise möglich, in der der von $H=F_1$ erzeugte Fluss eine besonders einfache Form besitzt.

33.5 Korollar Es existieren Winkelkoordinaten $\varphi_1, \ldots, \varphi_n$ auf M_f und Frequenzen $\omega_1, \ldots, \omega_n \in \mathbb{R}$, in denen der von H erzeugte Fluss auf M_f die Form

$$\varphi_k(t) = \varphi_k(0) + \omega_k \cdot t \pmod{2\pi}$$
 , $(k \in \{1, \dots, n\})$

besitzt.

¹⁹Statt dessen einen von ℓ_1, \dots, ℓ_m linear unabhängigen *kürzesten* Vektor ℓ_{m+1} ∈ Γ zu wählen, führt in hohen Dimensionen i.A. nicht zum Ziel, siehe z.B. [Qu], §5.1

Bew.: Es sei ℓ_1, \ldots, ℓ_n eine Basis von $\Gamma \subset \mathbb{R}^n$ und $x \in M_f$ fest. Dann ist für $\varphi_k \in [0, 2\pi[$ die Abbildung

$$(\varphi_1, \dots, \varphi_n) \mapsto \Psi\left(\sum_{i=1}^n \frac{\varphi_i \ell_i}{2\pi}, x\right)$$

injektiv und surjektiv. Der Vektor $\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} \in \mathbb{R}^n$ besitze die Darstellung

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \sum_{i=1}^{n} \frac{\omega_i}{2\pi} \ell_i.$$

Dann ist der von H erzeugte Fluss

$$\Phi_{t_1}^1(y) = \Psi((t_1, 0, \dots, 0), y) = \Psi\left(\sum_{i=1}^n t_1 \frac{\omega_i \ell_i}{2\pi}, y\right),$$

also $(\text{mod } 2\pi): \varphi_k(t) = \varphi_k(0) + \omega_k t$ für die Koordinaten $\varphi_1(t), \dots, \varphi_n(t)$ von $\Phi^1_t(y)$.

33.6 Bemerkung Eine Bewegung von dem im Corollar gegebenen Typ auf einen n-Torus heißt bedingt-periodische Bewegung.

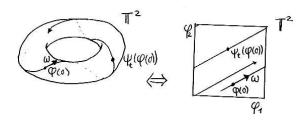


Abbildung 51: Bedingt-periodische Bewegung auf \mathbb{T}^n

Als nächsten Schritt wollen wir nicht nur auf einem einzelnen Torus M_f Winkelkoordinaten einführen, sondern diese auf ein offenes Phasenraumgebiet ausdehnen und durch n so genannte Wirkungskoordinaten zu kanonischen Koordinaten ergänzen.

33.7 Satz Unter den Voraussetzungen des Satzes von Arnol'd existieren auf einer Umgebung $U \subset P$ jeder kompakten Zusammenhangskomponente von M_f Wirkungskoordinaten $I_1, \ldots, I_n : U \to \mathbb{R}$ und Winkelkoordinaten $\varphi_1, \ldots, \varphi_n : U \to \mathbb{R}/(2\pi\mathbb{Z})$, mit $\omega = \sum_{k=1}^n dI_k \wedge d\varphi_k$, sodass die Hamiltonschen Differentialgleichungen die Form

$$\dot{I}_k = 0$$
 , $\dot{\varphi}_k = \omega_k(I)$ $(k = 1, \dots, n)$

annehmen.

Die Wirkungs- und Winkelkoordinaten lassen sich durch "Quadraturen", d.h. Integration finden.

34 Winkel-Wirkungsvariablen

Ausgangspunkt unserer Überlegungen sind der Satz von Arnol'd (Satz 33.3) und sein Corollar 33.5.

Unser Ziel ist es, zumindest in der Nähe von der (als kompakt und zusammenhängend vorausgesetzten) Niveaumenge M_f sogenannte Winkel-Wirkungs-Variablen $I_j, \varphi_j, \ j=1,\ldots,n$ auf $U\supset M_f$ einzuführen, das sind glatte Phasenraumvariablen mit

$$\{I_i, I_k\} = \{\varphi_i, \varphi_k\} = 0$$
 , $\{I_i, \varphi_k\} = \delta_{i,k}$ $(i, k = 1, \dots, n)$.

Dabei sollen die Wirkungskoordinaten als geeignete Funktionen der Konstanten der Bewegung schreiben lassen, d.h. $I_k = \tilde{I}_k \circ F|_U$.

Die Winkelvariablen — aufgefaßt als reelle Funktionen $\varphi_k:U\to [-\pi,\pi)$ statt als $\mathbb{R}/(2\pi\mathbb{Z})$ —wertige Abbildungen — sind genau genommen nicht auf ganz U stetig, aber man kann die Lage des Bezugspunktes $x\in M_f$ mit $\varphi_k(x)=0$ für alle $k=1,\ldots,n$ beliebig wählen. Ihre Existenz ist durch den Satz 33.3 sichergestellt. Er gibt aber noch keine Berechnungsvorschrift.

Warum interessiert man sich überhaupt für diese Variablen, und warum ist man nicht mit den Konstanten der Bewegung F_k zufrieden?

Zum einen sind die F_i , zusammen mit "geeigneten" Winkelvariablen φ_k i.A. keine kanonischen Variablen, denn mit F_i ist auch $G(F_i)$ für $G: \mathbb{R} \to \mathbb{R}$ streng monoton eine Konstante der Bewegung, aber

$$\{G(F_i), \varphi_k\} = \frac{\partial G}{\partial F_i} \{F_i, \varphi_k\}.$$

Die Poissonklammern $\{F_i, \varphi_k\}$ haben also keine Veranlassung, gleich $\delta_{i,k}$ zu sein. Kanonische Variablen sind aber für diverse weiterführende Überlegungen sehr vorteilhaft.

Zum anderen ist der von der Hamiltonfunktion I_k erzeugte Fluss auf M_f besonders einfach, denn er variiert ja nur den k-ten Winkel.

Dagegen wird der von F_k erzeugte Fluss auf M_f i.A. alle Winkel gleichzeitig variieren.

Wie konstruieren wir nun diese Variablen aus den Konstanten der Bewegung F_1, \ldots, F_n ? Betrachten wir für einen fest gewählten Punkt $x_0 \in M_f$ zunächst die "Funktion"

$$S(x) := \int_{x_0}^x \theta \upharpoonright_{M_f}.$$

Unter diesem Ausdruck soll das Wegintegral der symplektischen 1-Form θ entlang eines x mit x_0 verbindenden Weges $\gamma:[0,1]\to M_f,\ \gamma(0)=x_0,\ \gamma(1)=x$ verstanden werden.

Hängt nun S, wie die Schreibweise suggeriert, nur von x, nicht aber von der Wahl von γ ab?

Betrachten wir dazu zwei Wege γ_0 und $\gamma_1:[0,1]\to M_f$ mit den gegebenen Endpunkten. Wir setzen zunächst einmal voraus, dass γ_0 unter Beibehaltung der Endpunkte in γ_1 deformiert werden kann, d.h. wir setzen die Existenz einer stetigen *Homotopie* $H:I\times I\to M_f,\,I:=[0,1]$ mit

$$H(t,0) = \gamma_0(t)$$
 , $H(t,1) = \gamma_1(t)$, $H(0,y) \equiv x_0$, $H(1,y) \equiv x$

voraus.

Dann ist aber

$$\int_{\gamma_0}\theta\!\upharpoonright_{M_f}=\int_{\gamma_1}\theta\!\upharpoonright_{M_f},$$

denn

$$\int_{\gamma_0} \theta \upharpoonright_{M_f} - \int_{\gamma_1} \theta \upharpoonright_{M_f} = \int_{\partial (I \times I)} H^*(\theta) = \int_{I \times I} dH^*(\theta) = \int_{I \times I} H^*(d\theta) = 0$$

nach dem Satz von Stokes, und weil die symplektische 2–Form $\omega=-d\theta$ auf der Lagrange-Untermannigfaltigkeit M_f identisch verschwindet.

Es sieht so aus, als ob wir bewiesen hätten, dass S(x) nicht von der Wahl des Weges abhängt. Aber Vorsicht! Wir haben vorausgesetzt, dass die Wege zueinander homotop sind. Nun sind aber nicht alle Wege auf dem Torus zueinander homotop. Insbesondere finden wir ja n nur bei x_0 kreuzende Wege $\gamma_1 \dots \gamma_n$ mit

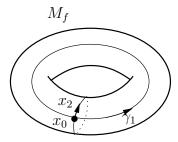


Abbildung 52: Basis $\gamma_1 \dots \gamma_n$ der Fundamentalgruppe des n-Torus M_f

 $\gamma_i(0)=\gamma_i(1)=x_0$, wobei γ_i gerade die i-te Winkelrichtung einmal im positiven Sinn durchläuft. Wir können also das Integral " $S(x_0)$ " auf viele verschiedene Weisen berechnen bzw. interpretieren, indem wir es z.B. als Schreibweise für $\int_{\gamma_k}\theta$ auffassen. Bezeichnen wir einmal versuchsweise diese Integrale mit

$$I_k := \frac{1}{2\pi} \int_{\gamma_k} \theta. \tag{34.1}$$

Sind die I_k Null? Sie denken gar nicht daran.

34.1 Beispiel Betrachten wir doch einmal den besonders einfachen Fall eines Freiheitsgrades, und Phasenraum $P:=\mathbb{R}^2$. Dann ist M_f einfach eine geschlossene Kurve in P (siehe Abbildung 53) und

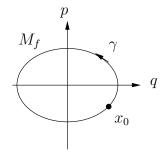


Abbildung 53: Invarianter 1-Torus $M_f = \gamma([0,1])$

$$I = \int_{\gamma} p dq = -\int_{F} \omega,$$

wobei $F\subset \mathbb{R}^2$ nach dem Satz von Stokes die von $\gamma=\partial F$ eingeschlossene Fläche ist.

Wir können nicht nur auf M_f , sondern auch auf benachbarten Tori $M_{\tilde{f}}$ mit $|\tilde{f}-f|$ klein, Wege γ_1,\ldots,γ_n einführen und die Ausdrücke I_k werden nach dem, was wir gerade bewiesen haben, nur Funktionen $I_k=\tilde{I}_k(F_1,\ldots,F_n)$ der Konstanten der Bewegung sein.

Die I_k sind unsere Kandidaten für die Wirkungsvariablen.

Um die Winkelvariablen einzuführen, betrachten wir in der Nähe eines typischen Punktes $x_0=(p_0,q_0)\in M_f$ die Darstellung von M_f als Graph der Funktion p=p(I,q) mit $I=\tilde{I}(f)$, siehe Abb. 54. Diese wird natürlich nicht für **alle** $x_0\in M_f$ möglich sein.

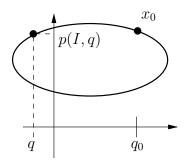


Abbildung 54: Lokale Darstellung von M_f als Graph einer Funktion

Wir setzen

$$\varphi_k(q) := \sum_{l=1}^n \int_{q_0}^q \frac{\partial p_l(I, q)}{\partial I_k} dq_l = \frac{\partial \tilde{S}}{\partial I_k}$$
 (34.2)

mit der (für ein einfach zusammenhängendes Gebiet des Torus definierten) Funktion

$$\tilde{S}(I,q) := \int_{q_0}^q p(I,q) \cdot dq.$$

Es ist also $p=\frac{\partial \tilde{S}}{\partial q}$ und $\varphi=\frac{\partial \tilde{S}}{\partial I}$, sodass die Transformation $(q,p)\mapsto (I,\varphi)$ lokal kanonisch ist.

Die lokalen Koordinaten φ_k lassen sich nun tatsächlich als Winkel interpretieren, d.h. wir können $\exp(i\varphi_k)$ als Funktion $M_f\to S^1\cong\{c\in\mathbb{C}\mid |c|=1\}$ auffassen. Denn in einer Umgebung von $x_0\in M_f$ stimmt

$$\exp(i\varphi_k(x)) = \exp\left(i\frac{\partial}{\partial I_k} \int_{x_0}^x \theta \upharpoonright_{M_f}\right) \qquad (x \in M_f)$$
 (34.3)

mit der Definition (34.2) überein, und wegen (34.1) ist modulo $2\pi i$ das Argument der Exponentialfunktion in (34.3) unabhängig von der Wahl des Weges $\gamma:I\to M_f$ zwischen $\gamma(0)=x_0$ und $\gamma(1)=x$.

35 Störungstheorie

Es lässt sich zeigen, dass nicht alle Hamiltonschen Systeme integrabel sind. Für mehr als einen Freiheitsgrad ist Nichtintegrabilität sogar in einem präzisen Sinn typisch ("generisch")²⁰.

In nicht integrablen Systemen findet die Bewegung auf der Energieschale für ein positives Liouvillemaß von Anfangsbedingungen nicht auf n-dimensionalen Lagrange-Tori der (2n-1)-dimensionalen Energieschale statt statt und kann sehr verwickelt ("chaotisch") aussehen. Um das Langzeitverhalten der Orbits zu beschreiben, müssen ganz neue Begriffe entwickelt werden.

Statt dies zu tun, wenden wir uns zunächst Systemen zu, die "beinahe integrabel" sind, in denen die Hamiltonfunktion also die Form $H_{\varepsilon}(I,\varphi)=H_0(I)+\varepsilon H_1(I,\varphi), |\varepsilon|$ klein, besitzt. Ziel ist zunächst die Beschreibung der Orbits für nicht allzu lange Zeiten.

Wir schauen uns also Differentialgleichungssysteme der Form

$$\dot{I}_k = 0 + \varepsilon f_k(I, \varphi) \quad (k \in \{1, \dots, m\})
\dot{\varphi}_l = \omega_l(I) + \varepsilon g_l(I, \varphi) \quad (l \in \{1, \dots, n\})$$
(35.1)

an. Verallgemeinernd setzen wir nicht voraus, dass das System Hamiltonsch ist; insbesondere braucht es nicht gleich viele Winkel- wie Wirkungsvariablen zu geben.

Es ist in diesem Zusammenhang auch besser, von **langsamen** (I)-Variablen und **schnellen** (φ) -Variablen zu sprechen, denn offensichtlich gilt allgemein für jedes ε -unabhängige T>0:

$$|I(t) - I(0)| = \mathcal{O}(\varepsilon)$$
 , $|\varphi(t) - \varphi(0)| = \mathcal{O}(1)$, $|t| \le T$.

Graphisch können wir die Situation so darstellen.

In vielen Fällen interessiert uns hauptsächlich die zeitliche Entwicklung der langsamen Variablen I.

²⁰L. Markus, K.R. Meyer: Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Memoirs of the AMS. **144** (1974)

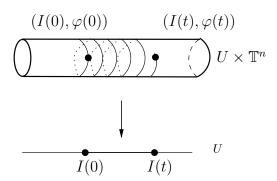


Abbildung 55: Schnelle und langsame Variablen

Das so genannte Mittelungsprinzip besteht nun darin, die Lösung I(t) des Differentialgleichungssystems zu vorgegebenen Anfangsbedingungen (I_0, φ_0) mit der Lösung J(t) des so genannten gemittelten Systems

$$\dot{J}_k = \varepsilon \langle f_k \rangle(J)$$
 $(k = 1, \dots, m)$

mit Anfangswerten $J_k(0):=I_k(0)$ zu vergleichen. Dabei ist das Mittel $\langle F \rangle$ einer Phasenraumfunktion $F:U\times \mathbb{T}^n\to \mathbb{R}$ durch

$$\langle F \rangle : U \to \mathbb{R} \quad , \quad \langle F \rangle (J) := \int_{\mathbb{T}^n} F(J, \varphi) \frac{d^n \varphi}{(2\pi)^n}$$

gegeben.

Unter bestimmten Umständen ist die Differenz |I(t)-J(t)| für eine lange Zeitspanne klein.

35.1 Beispiel Für $(I,\varphi)\in\mathbb{R}\times S^1,\,\omega\neq 0$ und $f(I,\varphi):=1+\cos\varphi$ sei

$$\dot{I} = \varepsilon f(I, \varphi)
\dot{\varphi} = \omega$$

(d.h. $g \equiv 0$ in (35.1)). Die Lösung des DGL-Systems ist

$$I(t) = I_0 + \varepsilon t + \frac{\varepsilon}{\omega} \sin(\omega t + \varphi_0)$$

$$\varphi(t) = \varphi_0 + \omega t$$

Das gemittelte "System" (in Wahrheit haben wir nur noch eine Variable) ist

$$\dot{J} = \varepsilon \langle f \rangle(J) = \varepsilon,$$

also

$$J(t) = I_0 + \varepsilon t.$$

In diesem Fall gilt also für alle Zeiten $t \in \mathbb{R}$

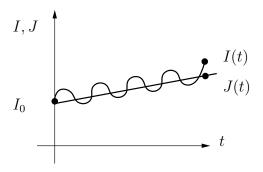


Abbildung 56: Langsame Variable I und gemittelte Variable J

$$|I(t) - J(t)| \le \frac{\varepsilon}{\omega} = \mathcal{O}(\varepsilon),$$

siehe Abbildung 56.

Natürlich können wir in diesem einfachen Beispiel das Differentialgleichungssystem durch Quadraturen lösen, sodass wir auf eine Näherungslösung nicht angewiesen sind. Trotzdem zeigt uns das Beispiel, worauf es ankommt. Zwar schwankt I(t) kurzfristig um $\mathcal{O}(\varepsilon)$ wegen des $\cos\varphi$ -Terms, dieser trägt aber zu einer langfristigen Veränderung nicht bei. Das Raummittel $\frac{1}{2\pi}\int_0^{2\pi}f(I,\varphi)d\varphi=1$ entspricht hier exakt dem Zeitmittel

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T f(I(t), \varphi(t)) dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_0^T (1 + \cos(\varphi_0 + \omega t)) dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \left(T + \frac{\sin(\varphi_0 + \omega T) - \sin(\varphi_0)}{\omega} \right) = 1.$$

Wenn im allgemeinen Fall Raummittel und Zeitmittel von f übereinstimmen würden, wären wir sicher, dass das Mittelungsprinzip uns eine gute Näherung für I(t) für $t \in \mathbb{R}$ liefern würde (vorausgesetzt genügend schnelle Konvergenz des Zeitmittels). Dies ist aber leider nicht immer der Fall:

35.2 Beispiel Auf dem Phasenraum $\mathbb{R}^2 \times \mathbb{T}^2$ betrachten wir das DGL-System

$$\dot{I}_1 = -\varepsilon \sin(\varphi_1 - 2\varphi_2)$$
 , $\dot{I}_2 = \varepsilon(\cos(\varphi_1 - 2\varphi_2) + \sin\varphi_2)$
 $\dot{\varphi}_1 = 2$, $\dot{\varphi}_2 = 1 + I_1$.

Das gemittelte System ist also

$$\dot{J}_1 = \dot{J}_2 = 0.$$

Es gilt aber für Anfangswerte mit $\varphi_1(0) = \varphi_2(0) = 0$ und $I_1(0) = 0$

$$I_1(t) = I_1(0) = 0$$
 , $I_2(t) = I_2(0) + \varepsilon(t - \cos t + 1)$
 $\varphi_1(t) = 2t$, $\varphi_2(t) = t$,

während

$$J_1(t) = I_1(0) = 0$$
 und $J_2(t) = I_2(0)$,

also $|I(t) - J(t)| = \varepsilon |t - \cos(t) + 1| \sim \varepsilon |t|$ für |t| groß, siehe Abbildung 57.

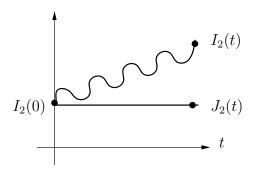
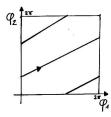


Abbildung 57: Beispiel für das Scheitern des Mittelungsprinzips

Hier führt also die Anwendung des Mittelungsprinzips nicht zu einer guten Annäherung der Wirkungen I_k durch die gemittelten Wirkungen J_k , zumindest nicht für die angegebenen Anfangsbedingungen.

Wenn wir nach Kriterien suchen, unter denen wir das Mittelungsprinzip erfolgreich anwenden können, müssen wir analysieren, warum im zweiten Beispiel die Differenz zwischen I_2 und J_2 schon für $t = \mathcal{O}(1/\varepsilon)$ nur von der Ordnung 1, also groß ist. Wir betrachten dazu die in Beispiel 35.2 auftretende Bewegung

$$\varphi_1(t) = 2t$$
 , $\varphi_2(t) = t$



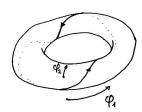


Abbildung 58: 2π -periodische Bewegung auf \mathbb{T}^2

auf dem Torus \mathbb{T}^2 . Diese Bewegung ist 2π -periodisch, siehe Abb. 58.

Wir können also nicht erwarten, dass Raummittel und Zeitmittel einer Funktion f auf \mathbb{T}^2 gleich sind.

Insbesondere ist für den Koeffizienten $f:=f_2$ des DGL-Systems (mit $f_2(I,\varphi)=\cos(\varphi_1-2\varphi_2)+\sin\varphi_2$)

$$\langle f_2 \rangle(I) \equiv 0,$$

aber

$$\lim_{t \to \infty} \frac{1}{T} \int_0^T f_2(I, \varphi(t)) dt = 1.$$

Wir müssen also zunächst nach Kriterien suchen, die Gleichheit von Raum- und Zeitmittel einer Bewegung auf dem Torus erzwingen.

- **35.3 Definition** Es seien $(\varphi_1, \ldots, \varphi_n)$ Winkelkoordinaten auf dem Torus \mathbb{T}^n . Dann heißt für $\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{R}^n$ der Fluss $\psi_t : \mathbb{T}^n \to \mathbb{T}^n$ zum Vektorfeld $\dot{\varphi} = \omega$ bedingt-periodische Bewegung.
- Die $\omega_l \in \mathbb{R}$ heißen die *Frequenzen* der bedingt-periodischen Bewegung.
- Sie heißen (rational) unabhängig, falls für $k \in \mathbb{Z}^n$ nur dann $\langle k, \omega \rangle = 0$ gilt, wenn k = 0.

Offensichtlich ist der Fluss auf \mathbb{T}^n gleich

$$\psi_t(\varphi(0)) \equiv \varphi(t) \equiv (\varphi_1(t), \dots, \varphi_n(t))$$

= $(\varphi_1(0) + \omega_1 t, \dots, \varphi_n(0) + \omega_n t) \pmod{2\pi}.$

35.4 Definition • Das *Raummittel* einer integrablen Funktion $f: \mathbb{T}^n \to \mathbb{R}$ ist die Zahl

$$\langle f \rangle := \int_{\mathbb{T}^n} f(\varphi) \, \frac{d^n \varphi}{(2\pi)^n}.$$

• Das Zeitmittel von f ist die Funktion $f^*: \mathbb{T}^n \to \mathbb{R}$,

$$f^*(\varphi_0) := \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\varphi_0 + \omega t) dt.$$

- **35.5 Satz** *Ist* $f: \mathbb{T}^n \to \mathbb{R}$ *Riemann-integrabel*²¹, so existieren Raum- und Zeitmittel.
- Falls die Frequenzen ω_l rational unabhängig sind, sind Raum- und Zeitmittel gleich, es gilt also

$$f^*(\varphi) = \langle f \rangle \qquad (\varphi \in \mathbb{T}^n),$$

Der Beweis dieses Satzes wird am Ende dieses Kapitels nachgeliefert.

35.6 Bemerkung Ist n=1 wie in unserem ersten Beispiel 35.1, so ist die Unabhängigkeit von ω gleichbedeutend mit $\omega \neq 0$. Diese Bedingung ist in Beispiel 35.1 erfüllt.

Ist dagegen n=2 wie in Beispiel (35.2), dann ist die Unbhängigkeit von ω_1 und ω_2 gleichbedeutend damit, dass $\omega_1 \neq 0 \neq \omega_2$ und $\omega_1/\omega_2 \notin \mathbb{Q}$. Diese Bedingung ist in Beispiel 35.2 für $I_1(0)=0$ verletzt, denn dann ist $\omega_1/\omega_2=2.$.

35.7 Korollar Falls die Frequenzen unabhängig sind, ist jeder Orbit auf \mathbb{T}^n dicht.

Bew.: [Widerspruchsbeweis]

Es existiere ein Orbit $\varphi(t)$ und eine Umgebung $U \subset \mathbb{T}^n$, sodass $\forall t \in \mathbb{R} \ \varphi(t) \notin U$. Für die charakteristische Funktion

$$1_U: \mathbb{T}^n \to \mathbb{R}$$
 , $1_U(x) := \begin{cases} 1 & , x \in U \\ 0 & , x \notin U \end{cases}$.

von
$$U$$
 gilt $\langle \mathbb{1}_U \rangle > 0$, aber $\mathbb{1}_U^*(\varphi(0)) = 0$.

35.8 Korollar Falls die Frequenzen unabhängig sind, ist jeder Orbit auf \mathbb{T}^n gleichverteilt, d.h. für jede (Jordan-messbare) Menge $U \subset \mathbb{T}^n$ ist die Aufenthaltszeit des Orbits in U proportional zum Maß von U.

Bew.: Die Aufenthaltszeit $\tau_U(T)$ des Orbits in U während des Zeitintervalls [0,T] ist durch $\tau_U(T) := \int_0^T \mathbb{1}_U(\varphi(t)) \, dt$ gegeben. Es gilt

$$\lim_{T \to \infty} T^{-1} \tau_U(T) = \mathbb{1}_U^*(\varphi_0) = \langle \mathbb{1}_U \rangle = \frac{\operatorname{Maß}(U)}{(2\pi)^n}.$$

 $^{^{21}}$ Eine entsprechende Aussage gilt nicht für jede *Lebesgue*-integrable Funktion. Insbsondere ist jeder Orbit $O:=\psi(\mathbb{R},\varphi)\subset\mathbb{T}^n$ eine Lebesgue-messbare Teilmenge mit Maß 0, aber $\mathbb{1}_O^*(\varphi)=1.$

Zunächst soll noch folgende Umkehrung des Satzes 35.5 gezeigt werden:

35.9 Bemerkung Wenn es ein $k \in \mathbb{Z}^n \setminus \{0\}$ mit $k \cdot \omega = 0$ gibt, dann existiert ein stetiges $f : \mathbb{T}^n \to \mathbb{C}$ mit nicht konstantem Zeitmittel f^* .

Bew.: Setze $f(\varphi) := \exp(ik \cdot \varphi)$. Dann ist

$$f^*(\varphi) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(\varphi + \omega t) dt = \lim_{T \to \infty} \frac{1}{T} \int_0^T \exp(ik \cdot (\varphi + \omega t)) dt$$
$$= \frac{1}{T} \int_0^T \exp(ik \cdot \varphi) dt = f(\varphi).$$

Die nicht konstante Funktion f ist also gleich ihrem Zeitmittel.

Umgekehrt beweisen wir den Satz 35.5 zunächst für die Exponentialfunktionen.

35.10 Lemma Die Aussage des Satzes 35.5 gilt für $f(\varphi) := \exp(ik \cdot \varphi)$.

Bew.: Für $k \in \mathbb{Z}^n \setminus \{0\}$ gilt (k = 0 trivial):

$$f^*(\varphi) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \exp(ik \cdot (\varphi + \omega t)) dt$$
$$= \lim_{T \to \infty} \frac{1}{T} \cdot \exp(ik \cdot \varphi) \cdot \frac{e^{ik \cdot \omega T} - 1}{ik \cdot \omega} = 0.$$

35.11 Lemma Die Aussage des Satzes 35.5 gilt für trigonometrische Polynome $\varphi \mapsto \sum_{|k| < N} f_k e^{ik \cdot \varphi}$.

Bew.: Folgt aus Linearität der Abbildung $f \mapsto f^*$.

35.12 Lemma Sei $f: \mathbb{T}^n \to \mathbb{R}$ eine stetige (oder zumindest Riemann-integrable) Funktion. Dann existieren für $\varepsilon > 0$ zwei trigonometrische Polynome

$$p_1, p_2: \mathbb{T}^n \to \mathbb{R} \quad \textit{mit} \quad p_1 < f < p_2 \quad \textit{und} \quad (2\pi)^{-n} \int_{\mathbb{T}^n} (p_2 - p_1) \, d\varphi < \varepsilon.$$

Bew.: Sei f zunächst stetig. Dann existiert nach dem Weierstraßschen Approximationssatz ein trigonometrisches Polynom p mit $|f-p|<\frac{1}{2}\varepsilon$. Durch Übergang

von p zu $\frac{1}{2}(p+\bar{p})$ können wir annehmen, dass p reell ist. Die Polynome $p_1:=p-\frac{\varepsilon}{2}$ und $p_2:=p+\frac{\varepsilon}{2}$ erfüllen die Aussage.

Für f Riemann-integrierbar existieren zwei stetige Funktionen f_1, f_2 mit $f_1 < f < f_2$ und $\left(\frac{1}{2\pi}\right)^n \int (f_2 - f_1) \, d\varphi < \frac{1}{3}\varepsilon$. (Man kann beispielsweise f zunächst durch eine endliche Summe $\sum_{i \in I} \lambda_i \chi_i$ von charakteristischen Funktionen auf Quadern majorisieren und diese wie α in nachstehender Zeichnung durch stetige Funktionen majorisieren.)

Zeichn.

Indem wir nun wiederum f_1 und f_2 durch trigonometrische Polynome

$$p_1 < f_1 < f_2 < p_2$$

mit

$$\left(\frac{1}{2\pi}\right)^n \int |p_i - f_i| \, d\varphi < \frac{1}{3}\varepsilon \quad , \quad (i = 1, 2)$$

annähern, erfüllen p_1 und p_2 die Aussage.

Bew. des Satzes 35.5: Wir betrachten für $\varepsilon > 0$ die trigonometrischen Polynome $p_1 < f < p_2$ von Lemma 35.12. Wegen Lemma 35.11 finden wir ein $T_0(\varepsilon)$, sodass für $T > T_0(\varepsilon)$

$$\left| \langle p_i \rangle - \frac{1}{T} \int_0^T p_i \cdot \psi_t(\varphi) \, dt \right| < \varepsilon \quad , \quad (i = 1, 2).$$

Zusammengefasst haben wir folgende Ungleichungen und maximale Differenzen:

$$\frac{1}{T} \int_0^T p_1 \circ \psi_t(\varphi) \, dt \qquad < \qquad \frac{1}{T} \int_0^T f \circ \psi_t(\varphi) \, dt \qquad < \qquad \frac{1}{T} \int_0^T p_2 \circ \psi_t(\varphi) \, dt$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

Wir folgern also, dass $\left| \frac{1}{T} \int_0^T f \cdot \psi_t(\varphi) \, dt - \langle f \rangle \right| < 2\varepsilon.$

Exkurs: Der Virialsatz

Wir betrachten zunächst ganz allgemein eine Hamiltonfunktion $H: \mathbb{R}^{2n} \to \mathbb{R}$, für die die Energieschale

$$\Sigma_E := \{ x \in \mathbb{R}^{2n} \mid H(x) = E \}$$

für den Wert E der Energie kompakt ist.

Für eine beliebige Funktion $f \in C^{\infty}(\mathbb{R}^{2n}, \mathbb{R})$ ist dann das Zeitmittel von

$$\{f, H\} \in C^{\infty}(\mathbb{R}^{2n}, \mathbb{R})$$

auf Σ_E Null. Denn wenn Φ_t den von H erzeugten Fluss bezeichnet, dann ist $\{f,H\}=\frac{d}{dt}f\circ\Phi_t|_{t=0}$, und damit das Zeitmittel für $x\in\Sigma_E$ gleich

$$\{f, H\}^*(x) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \{f, H\} \circ \Phi_t(x) dt$$

= $\lim_{T \to \infty} \frac{f \circ \Phi_T(x) - f(x)}{T} = 0.$

Wir schauen uns nun einige Beispiele für den einfachen Fall der Hamiltonfunktion

$$H(p,q) := T(p) + V(q)$$
 mit kinetischer Energie $T(p) := \frac{1}{2}p^2$

an und setzen voraus, dass die Energieschale Σ_E kompakt ist.

35.13 Beispiele 1. $f(p,q) := p_i, i = 1, ..., n$

 \Longrightarrow Das Zeitmittel der auf den Massenpunkt wirkenden Kraft $-\nabla V(q)$ verschwindet.

2. $f(p,q) := q_i, i = 1, ..., n$

⇒ Das Zeitmittel des Impulses bzw. der Geschwindigkeit ist Null, was ja nun auch nicht weiter erstaunt.

3. Etwas interessanter ist $f(p,q) := \sum_{i=1}^{n} p_i q_i, \ T(p) = \frac{1}{2} p^2$

$$\{f, H\}(p, q) = 2T(p) - q \cdot \nabla V(q).$$

Der zweite Term hat nun zunächst keine anschauliche Interpretation. Setzen wir aber das Potential als homogenes Polynom k—ten Grades in den q_i (mit geradem k) an, so erhalten wir in Multiindexnotation

$$V(q) = \sum_{\alpha \in \mathbb{N}_0^n, |\alpha| = k} c_{\alpha} q^{\alpha} \quad , \quad q_l \frac{\partial}{\partial q_l} V(q) = \sum_{\alpha \in \mathbb{N}_0^n, |\alpha| = k} \alpha_l c_{\alpha} q^{\alpha}$$

also $q \cdot \nabla V(q) = kV(q)$. Damit ergibt sich also für die Zeitmittel vonpotentieller und kinetischer Energie (die nach dem Birkhoffschen Ergodensatz Satz 22.1 fast überall auf Σ_E existieren):

$$kV^*(x) = 2T^*(x),$$

oder auch

$$T^*(x) = \frac{k}{k+2}H(x)$$
 , $V^*(x) = \frac{2}{k+2}H(x)$.

Ganz analog kann man auch für den Fall eines homogenen Zentralpotentials $V(q)=|q|^C$ argumentieren, insbesondere für C=-1, d.h. die Keplerbewegung. Dort ist also $T^*(x)=-H(x)$ und $V^*(x)=2H(x)<0$. (Man beachte, dass T^* und V^* von allen Phasenraumvariablen abhängen!)

Der Virialsatz hat in der statistischen Mechanik Bedeutung. Dort stellt sich nämlich die Frage, wie sich die Gesamtenergie auf die verschiedenen Freiheitsgrade verteilt.

36 Störungstheorie für eine Winkelvariable

Bevor wir Hamiltonsche Systeme betrachten, untersuchen wir die Störungstheorie in einem Fall, in dem das Mittelungsprinzip besonders gut anwendbar ist. Das gestörte Differentialgleichungssystem auf dem Phasenraum $G \times S^1$, $G \subset \mathbb{R}^l$ offen, sei

$$\dot{I} = \varepsilon g(I, \varphi)$$

 $\dot{\varphi} = \omega(I) + \varepsilon f(I, \varphi).$

Das gemittelte System ist also

$$\dot{J} = \varepsilon \langle g \rangle(J).$$

Wir bezeichnen mit $(I(t), \varphi(t))$ die Lösung des gestörten und mit J(t) die Lösung des gemittelten Systems mit Anfangsbedingung $I(0) = J(0) = I_0$, $\varphi(0) = \varphi_0$. Da die Variation

$$\tilde{g}(I,\varphi):=g(I,\varphi)-\left\langle g\right\rangle (I)$$

von g i.A. nicht verschwindet, würde man vielleicht erwarten, dass sich für Zeiten t, die grösser als von der Ordnung $\mathcal{O}(\varepsilon^0) = \mathcal{O}(1)$ sind, gemitteltes und ungemitteltes System um mehr als $\mathcal{O}(\varepsilon)$ unterscheiden. Dies ist aber nicht der Fall. Um dies zu beweisen, benutzen wir die Ungleichung von Gronwall. Diese ist für viele Abschätzungen in der Differentialgleichungstheorie nützlich.

36.1 Lemma (Gronwall) Für $f, B \in C([0,T),[0,\infty))$ gelte für ein $A \ge 0$

$$f(t) \le A + \int_0^t f(s)B(s) ds$$
 $(0 \le t < T).$ (36.1)

Dann ist

$$f(t) \le A \exp\left(\int_0^t B(s) \, ds\right) \qquad (0 \le t < T).$$

Bew.: Es ist $f(t) \leq h(t) := A + \int_0^t f(s)B(s) \, ds$ und, falls A > 0,

$$\frac{h'(t)}{h(t)} \le B(t)$$
 $(0 \le t < T).$ (36.2)

Integration von (36.2) ergibt $h(t) \le A \exp\left(\int_0^t B(s) \, ds\right)$.

Der Fall A=0 ergibt daraus sich durch Limesbildung.

- **36.2 Satz** 1. Es seien $\omega, f \in C^1(G \times S^1, \mathbb{R})$ und $g \in C^1(G \times S^1, \mathbb{R}^l)$ zusammen mit ihren Ableitungen beschränkt und $\omega > C > 0$.
 - 2. Es existiere ein C' > 0 sodass für $0 \le t \le 1/\varepsilon$

$$\{J' \in \mathbb{R}^l \mid |J' - J(t)| < C'\} \subset G.$$

Dann ist für genügend kleine ε ($0 \le \varepsilon < \varepsilon_0$):

$$|I(t) - J(t)| = \mathcal{O}(\varepsilon)$$
 $(0 \le t \le 1/\varepsilon).$

Bew.: Der Ansatz des Beweises besteht darin, neue Koordinaten

$$\tilde{I}(I,\varphi) := I + \varepsilon K(I,\varphi)$$
 (36.3)

einzuführen, in denen die winkelabhängige Störung nur noch von der Ordnung ε^2 ist. Eine Störung dieser Größe können wir dann über die Zeitspanne $1/\varepsilon$ integrieren und erhalten eine Maximalabweichung vom ungestörten System von der Ordnung ε .

Wir setzen (36.3) in das Differentialgleichungssystem ein und erhalten

$$\dot{\tilde{I}} = \dot{I} + \varepsilon \left[D_1 K(I, \varphi) \dot{I} + D_2 K(I, \varphi) \dot{\varphi} \right]
= \varepsilon \left[g(I, \varphi) + D_2 K(I, \varphi) \omega(I) \right] + \varepsilon^2 R(I, \varphi)$$
(36.4)

mit

$$R(I,\varphi) := D_1 K(I,\varphi) g(I,\varphi) + D_2 K(I,\varphi) f(I,\varphi).$$

Wir setzen nun, um die Klammer in (36.4) φ -unabhängig zu machen,

$$K(I,\varphi) := -\frac{1}{\omega(I)} \int_0^{\varphi} \tilde{g}(I,\psi) d\psi.$$

Dies ist wegen $\omega(I) \neq 0$ möglich. Da $\langle \tilde{g} \rangle(I) \equiv 0$, ist K in φ 2π -periodisch, und nach den Voraussetzungen des Satzes ist $K \in C^1(G \times S^1, \mathbb{R}^l)$ zusammen mit seiner Ableitung beschränkt.

Entsprechendes gilt damit auch für R.

Weiter folgern wir, dass wir für kleine ε (36.3) invertieren können, und dass die urspüngliche Wirkung $I(\tilde{I}, \varphi)$ ebenfalls zusammen mit ihrer Ableitung beschränkt ist (allerdings auf dem Definitionsbereich $\{(\tilde{I}(I, \varphi), \varphi) \mid (I, \varphi) \in G \times S^1\}$).

$$\begin{split} \dot{\tilde{I}} &= \varepsilon \left\langle \tilde{g} \right\rangle (I) + \varepsilon^2 R(I,\varphi) = \varepsilon \left\langle \tilde{g} \right\rangle (\tilde{I}) + \varepsilon^2 R(I,\varphi) + \varepsilon \left(\left\langle \tilde{g} \right\rangle (I) - \left\langle \tilde{g} \right\rangle (\tilde{I}) \right). \\ \Delta I &:= \tilde{I} - J, \, \text{sodass} \, \Delta I(0) = \tilde{I}(0) - I(0) = \mathcal{O}(\varepsilon) \\ &\frac{d}{dt} \Delta I \quad = \quad \varepsilon \left(\left\langle \tilde{g} \right\rangle (\tilde{I}) - \left\langle \tilde{g} \right\rangle (J) \right) + \varepsilon^2 R(I,\varphi) + \varepsilon \left(\left\langle \tilde{g} \right\rangle (I) - \left\langle \tilde{g} \right\rangle (\tilde{I}) \right) \\ &= \quad \varepsilon D \left\langle \tilde{g} \right\rangle (J) \cdot \Delta I + \varepsilon^2 R(I,\varphi) + \varepsilon \left(\left\langle \tilde{g} \right\rangle (I) - \left\langle \tilde{g} \right\rangle (\tilde{I}) \right) + \\ &\quad \varepsilon \left(\left\langle \tilde{g} \right\rangle (\tilde{I}) - \left\langle \tilde{g} \right\rangle (J) - D \left\langle \tilde{g} \right\rangle (J) \cdot \Delta I \right) \end{split}$$

Da $\tilde{g}\in C^1(G)$, ist nach der Taylorformel der letzte Term von der Ordnung $o(\varepsilon)$, falls $\Delta I=\mathcal{O}(\varepsilon)$. Dies setzen wir nun für das Zeitintervall $[0,1/\varepsilon]$ voraus und überprüfen die Konsistenz dieser Annahme.

 ΔI erfüllt die Integralgleichung

$$\Delta I(t) = \Delta I(0) + \int_{0}^{t} \left[\varepsilon D \left\langle \tilde{g} \right\rangle (J(s)) \cdot \Delta I(s) + \tilde{R}(s, \varepsilon) \right] ds, \tag{36.5}$$

wobei nach Voraussetzung

$$\begin{split} \tilde{R}(s,\varepsilon) := \\ \varepsilon^2 R\left(I(\tilde{I}(s),\varphi(s)),\varphi(s)\right) + \varepsilon\left(\left\langle \tilde{g}\right\rangle \left(I(\tilde{I}(s),\varphi(s)),\varphi(s)\right) - \left\langle \tilde{g}\right\rangle \left(\tilde{I}(s)\right)\right) \\ + \varepsilon\left(\left\langle \tilde{g}\right\rangle \left(\tilde{I}(s)\right) - \left\langle \tilde{g}\right\rangle \left(J(s)\right) - D\left\langle \tilde{g}\right\rangle \left(J(s)\right) \cdot \Delta I(s)\right) \end{split}$$

von der Ordnung $\mathcal{O}(\varepsilon^2)$ ist. Wir schätzen ΔI mithilfe von (36.5) ab und setzen dazu in der Voraussetzung (36.1) des Gronwall-Lemmas

$$f:=\left|\Delta I\right|,\;A:=\Delta I(0)+\int_{0}^{1/\varepsilon}\left|\tilde{R}(s,\varepsilon)\right|ds\quad\text{und}\quad B:=\varepsilon\left|D\left\langle \tilde{g}\right\rangle \left(J\right)\right|.$$

Damit ergibt sich

$$f(t) \le c_1 \varepsilon \exp(c_2 \varepsilon \cdot t),$$

was für $0 \le t \le 1/\varepsilon$ konsistent mit unser Annahme ist. Wir können ε_0 so klein wählen, dass

$$c_1 \varepsilon_0 \exp(c_2) < \frac{1}{2}C'$$
 und $\varepsilon_0 \cdot \sup_{(I,\varphi) \in G \times S^1} |K(I,\varphi)| < \frac{1}{2}C'$

gilt, also |I(t) - J(t)| < C' gilt und der Phasenraum somit nicht verlassen wird. \Box

37 Hamiltonsche Störungstheorie

Wir betrachten ein Hamiltonsches System mit Hamiltonfunktion

$$H_{\varepsilon}(I,\varphi) := H_0(I) + \varepsilon H_1(I,\varphi)$$

auf dem Phasenraum $G \times \mathbb{T}^n$, $G \subset \mathbb{R}^n$ offen und beschränkt, und mit Störparameter $|\varepsilon| < \varepsilon_0$. Die Differentialgleichungen sind also

$$\dot{I} = -\varepsilon D_2 H_1(I, \varphi)$$

 $\dot{\varphi} = \omega(I) + \varepsilon D_1 H_1(I, \varphi)$

mit Frequenzvektor

$$\omega := DH_0.$$

Das gemittelte System ist trivial: J = 0.

Wir wollen eine kanonische Transformation

$$T_{\varepsilon}: (I, \varphi) \mapsto (\tilde{I}, \tilde{\varphi})$$

finden, die die Winkelabhängigkeit bis auf einen Term der Ordnung ε^2 eliminiert. Dazu benutzen wir die Methode der erzeugenden Funktion, setzen also an

$$I = \tilde{I} + \varepsilon D_2 S(\tilde{I}, \varphi)$$
 $\tilde{\varphi} = \varphi + \varepsilon D_1 S(\tilde{I}, \varphi).$

Einsetzen in die Hamiltonfunktion ergibt mit $K_{\varepsilon}\circ T_{\varepsilon}=H_{\varepsilon}$ formal

$$K_{\varepsilon}(\tilde{I}, \tilde{\varphi}) = H_{\varepsilon}\left(\tilde{I} + \varepsilon D_{2}S(\tilde{I}, \varphi(\tilde{I}, \tilde{\varphi})), \tilde{\varphi} - \varepsilon D_{2}S(\tilde{I}, \varphi(\tilde{I}, \tilde{\varphi}))\right)$$
(37.1)
$$= H_{0}(\tilde{I}) + \varepsilon \left[DH_{0}(\tilde{I}) \cdot D_{2}S(\tilde{I}, \tilde{\varphi}) + H_{1}(\tilde{I}, \tilde{\varphi})\right] + \mathcal{O}(\varepsilon^{2}).$$

Es müsste also S so gewählt werden, dass

$$\omega(\tilde{I}) \cdot D_2 S(\tilde{I}, \tilde{\varphi}) + H_1(\tilde{I}, \tilde{\varphi})$$

nur eine Funktion von \tilde{I} , nicht den Winkeln wird. Dazu benutzt man die Fouriertransformation, schreibt also

$$H_{1}(\tilde{I}, \tilde{\varphi}) = \sum_{\ell \in \mathbb{Z}^{n}} h_{\ell}(\tilde{I}) e^{i\ell \cdot \tilde{\varphi}},$$

$$S(\tilde{I}, \tilde{\varphi}) = \sum_{\ell \in \mathbb{Z}^{n}} S_{\ell}(\tilde{I}) e^{i\ell \cdot \tilde{\varphi}}.$$
(37.2)

Wegen $\omega(\tilde{I})\cdot D_2S(\tilde{I},\tilde{\varphi})=i\sum_{\ell\in\mathbb{Z}^n}S_\ell(\tilde{I})\omega(\tilde{I})\cdot\ell\exp(i\ell\cdot\tilde{\varphi})$ ergeben sich die Bedingungsgleichungen

$$iS_{\ell}(\tilde{I})\omega(\tilde{I})\cdot\ell+h_{\ell}(\tilde{I})=0.$$
 $(\ell\in\mathbb{Z}^n\setminus\{0\}).$ (37.3)

Diese sind i.A. nicht lösbar, denn

- wir können durch eine beliebig kleine Veränderung des Frequenzvektors $\omega \in \mathbb{R}^n$ immer erreichen, dass für ein geeignetes $\ell \in \mathbb{Z}^n \setminus \{0\}$ das Skalarprodukt $\omega \cdot \ell = 0$ wird, und
- falls $D\omega$ den maximalen Rang n besitzt, können wir eine solche Veränderung von ω durch Variation von \tilde{I} bewerkstelligen.

Setzen wir aber voraus, dass für ein festes $\hat{I} \in G$ die Komponenten des Frequenzvektors $\omega(\hat{I}) \in \mathbb{R}^n$ rational unabhängig sind, d.h.

$$\omega(\hat{I}) \cdot \ell \neq 0 \qquad (\ell \in \mathbb{Z}^n \setminus \{0\}),$$

dann können durch die $(\tilde{I}$ -unabhängigen!) Fourierkoeffizienten

$$S_{\ell}(\tilde{I}) := i \frac{h_{\ell}(\hat{I})}{\omega(\hat{I}) \cdot \ell} \qquad (\ell \in \mathbb{Z}^n \setminus \{0\}) \quad \text{und} \quad S_0(\tilde{I}) := 0$$
 (37.4)

der erzeugenden Funktion S die Gleichungen (37.3) immerhin an der Stelle $\tilde{I}=\hat{I}$ lösen.

Es taucht aber das Problem der kleinen Nenner in (37.4) auf. Zwar sind die Fourierkoeffizienten S_{ℓ} definiert, aber es ist nicht klar, ob die Fourierreihe (37.2) konvergiert.

Dazu verschärfen wir die Unabhängigkeitsbedingung zur Forderung daß $\omega(\hat{I}) \in \mathbb{R}^n$ diophantisch ist, d.h. für geignete $\gamma > 0$ und $\tau > 0$ in der Menge

$$\Omega_{\gamma,\tau} := \left\{ \hat{\omega} \in \mathbb{R}^n \mid \forall \ell \in \mathbb{Z}^n \setminus \{0\} : |\hat{\omega} \cdot \ell| \ge \gamma |\ell|^{-\tau} \right\}$$
 (37.5)

liegt. Ob eine solche Bedingung überhaupt für einen Frequenzvektor $\hat{\omega} \in \mathbb{R}^n$ erfüllt ist, soll uns erst später interessieren.

Außerdem fordern wir, um die Konvergenzchancen in (37.2) zu vergrößern, daß die Fourierkoeffizienten h_{ℓ} schnell abfallen. Dies ist bei genügender Differenzierbarkeit von H_1 der Fall:

37.1 Lemma Für $g \in C^k(\mathbb{T}^n, \mathbb{R})$ mit Fourier-Darstellung

$$g(\varphi) = \sum_{\ell \in \mathbb{Z}^n} g_\ell \exp(i\ell \cdot \varphi)$$

sind die Fourierkoeffizienten von der Ordnung

$$|g_{\ell}| = \mathcal{O}(|\ell|^{-k}). \tag{37.6}$$

Bew.: Es ist für Multiindex $\alpha \in \mathbb{N}_0^n$ mit $|\alpha| := \sum_{j=1}^n \alpha_j \le k$

$$D^{\alpha}g(\varphi) = i^{|\alpha|} \sum_{\ell \in \mathbb{Z}^n} g_{\ell} \ell^{\alpha} \exp(i\ell \cdot \varphi).$$

Es sei $\ell \in \mathbb{Z}^n \setminus \{0\}$ und ℓ_j eine betragsmäßig größte Komponente von ℓ , d.h. insbesondere $|\ell_j| \geq |\ell|/n$. Durch inverse Fouriertransformation der k-ten Ableitung

$$g_{\ell} = \frac{1}{(i\ell_{j})^{k}} \int_{\mathbb{T}^{n}} \exp(-i\ell \cdot \varphi) \partial_{\varphi_{j}}^{k} g(\varphi) \frac{d\varphi}{(2\pi)^{n}}$$

nach φ_j zeigen wir (37.6), denn $\max_j \sup_{\varphi} |\partial_{\varphi_j}^k g(\varphi)| < \infty$.

Wie hängt umgekehrt die Differenzierbarkeitsstufe einer Funktion von den Abfallseigenschaften ihrer Fourierkoeffizienten ab?

37.2 Lemma Falls $c: \mathbb{Z}^n \to \mathbb{C}$ für $k > r + n, r \in \mathbb{N}_0$ von der Ordnung

$$c(\ell) = \mathcal{O}(|\ell|^{-k})$$

ist, dann ist die durch

$$f(\varphi) := \sum_{\ell \in \mathbb{Z}^n} c(\ell) \exp(i\ell \cdot \varphi)$$
 (37.7)

definierte Funktion $f \in C^r(\mathbb{T}^n, \mathbb{C})$.

Bew.: Es genügt, die Behauptung für r=0 zu zeigen, also die Stetigkeit von f. Es existiert also ein C>0 mit $|c(\ell)|\leq C|\ell|^{-k}$. Zunächst konvergiert (37.7) für alle φ absolut, denn

$$\sum_{\ell \in \mathbb{Z}^n} |c(\ell)| \le c(0) + C \sum_{\ell \in \mathbb{Z}^n \setminus \{0\}} |\ell|^{-k} < \infty.$$

Für $\varepsilon > 0$ sei N so gewählt, dass

$$\sum_{\ell \in \mathbb{Z}^n, \, |\ell| > N} |c(\ell)| \le \varepsilon/3,\tag{37.8}$$

und f_N die Partialsumme

$$f_N(\varphi) := \sum_{\ell \in \mathbb{Z}^n, |\ell| \le N} c(\ell) \exp(i\ell \cdot \varphi).$$

Dann ist für alle $\varphi, \psi \in \mathbb{T}^n$

$$|f(\varphi) - f(\psi)| \leq |f(\varphi) - f_N(\varphi)| + |f_N(\varphi)| - f_N(\psi)| + |f_N(\psi) - f(\psi)|$$

$$\leq \frac{\varepsilon}{3} + |f_N(\varphi)| - f_N(\psi)| + \frac{\varepsilon}{3}.$$

Andererseits ist unter der Bedingung $|\varphi-\psi|<\delta:=\frac{\varepsilon}{3CN}$

$$|f_{N}(\varphi)| - f_{N}(\psi)|$$

$$= \left| \sum_{\ell \in \mathbb{Z}^{n}, |\ell| \leq N} c(\ell) (\exp(i\ell \cdot \varphi) - \exp(i\ell \cdot \psi)) \right|$$

$$\leq C \sum_{\ell \in \mathbb{Z}^{n} \setminus \{0\}, |\ell| \leq N} |\ell|^{-k} |1 - \exp(i\ell \cdot (\psi - \varphi))|$$

$$\leq C \sum_{\ell \in \mathbb{Z}^{n} \setminus \{0\}, |\ell| \leq N} |\ell|^{-k} |\ell \cdot (\psi - \varphi)| < C \sum_{\ell \in \mathbb{Z}^{n} \setminus \{0\}, |\ell| \leq N} |\ell|^{-k} |\ell| \delta \leq \frac{\varepsilon}{3}$$

wegen (37.8), sodass dann $|f(\varphi) - f(\psi)| < \varepsilon$.

37.3 Korollar Für $H_1 \in C^k(G \times \mathbb{T}^n, \mathbb{R})$ $k > n + \tau, \tau \notin \mathbb{N}$ und eine Wirkung $\hat{I} \in G$, die (37.5) erfüllt, ist die erzeugende Funktion²²

$$S \in C^{k-\lceil \tau \rceil - n}(G \times \mathbb{T}^n, \mathbb{R}).$$

 $[\]frac{1}{2^{2}\operatorname{mit}\left[\cdot\right]:\mathbb{R}\to\mathbb{Z},\ x\mapsto\min\{z\in\mathbb{Z}\mid z\geq x\}}$

Bew.: Nach Lemma 37.1 ist $S_{\ell} = \mathcal{O}(|\ell|^{\tau-k})$, nach Lemma 37.2 ist $S \in C^{k-\lceil \tau \rceil - n}$.

Die diophantische Bedingung (37.5) ist, falls $\tau > n-1$, für Lebesgue-fast-alle $\omega \in \mathbb{R}^n$ erfüllt (allerdings mit einer ω -abhängigen Konstante γ):

37.4 Lemma Für $\tau > n-1$ ist das Lebesguemaß der diophantischen Menge

$$B_{\gamma,\tau} := \Omega_{\gamma,\tau} \cap B$$

in der Vollkugel $B:=\{\omega\in\mathbb{R}^n\mid |\omega|\leq 1\}$ für kleine Werte von γ groß: Es gibt ein $\alpha(\tau)<\infty$ mit

$$\lambda(B_{\gamma,\tau}) \ge \lambda(B) \cdot (1 - \gamma \cdot \alpha(\tau)).$$

Bew.:

$$\lambda(B_{\gamma,\tau}) \ge \lambda(B) - \sum_{\ell \in \mathbb{Z}^n \setminus \{0\}} \lambda(G_\ell)$$

für $G_{\ell} := \{ \omega \in B \mid |\omega \cdot \ell| < \gamma |\ell|^{-\tau} \}$. Es ist $\lambda(G_{\ell}) < 2c_{n-1}\gamma |\ell|^{-\tau-1}$, wobei c_k das Volumen der k-dimensionalen Vollkugel vom Radius 1 bezeichnet. Es ist

$$\sum_{\ell \in \mathbb{Z}^n \setminus \{0\}} \lambda(G_\ell) \le c_n \cdot \gamma \cdot \alpha(\tau) \quad \text{für} \quad \alpha(\tau) := 2 \frac{c_{n-1}}{c_n} \sum_{\ell \in \mathbb{Z}^n \setminus \{0\}} |\ell|^{-\tau - 1} < \infty.$$

Wir sammeln jetzt unsere Teilergebnisse:

37.5 Satz Falls die Frequenzen $\omega = DH_0$ unabhängig variieren, d.h. die

$$\det(D\omega)(I) \neq 0 \qquad (I \in G),$$

und $H_0, H_1 \in C^{2n+3}(G \times \mathbb{T}^n, \mathbb{R})$, gibt es eine Teilmenge $G_{\varepsilon} \subset G$ mit asymptotisch vollem Maß $(\lim_{\varepsilon \to 0} \lambda(G_{\varepsilon}) = \lambda(G))$, für die das Mittelungsprinzip bis zur Zeit $1/\varepsilon$ anwendbar ist:

$$\sup |I(t) - I(0)| < \text{const} \cdot \varepsilon \qquad (0 \le t \le 1/\varepsilon).$$

Bew.: Unter den genannten Voraussetzungen ist die erzeugende Funktion $S \in C^3$, sodass die Abschätzung (37.1) mit dem konstanten zu ε proportionalen Term $\varepsilon h_1(\hat{I})$ in einer ε -Umgebung von \hat{I} gilt, d.h. durch Einführung der neuen Koordinaten $(\tilde{I}, \tilde{\varphi})$ die Hamiltonfunktion bis auf Fehlerterme R_i der Ordnung ε^2 integrabel ist:

$$K_{\varepsilon}(\tilde{I}, \tilde{\varphi}) = H_0(\tilde{I}) + \varepsilon h_1(\hat{I}) + R_1(\tilde{I}, \tilde{\varphi}) + R_2(\tilde{I}, \tilde{\varphi})$$

mit

$$R_{1}(\tilde{I}, \tilde{\varphi}) := \left(H_{0}(\tilde{I} + \varepsilon D_{2}S(\tilde{I}, \tilde{\varphi})) - H_{0}(\tilde{I}) - \varepsilon DH_{0}(\tilde{I}) \cdot D_{2}S(\tilde{I}, \tilde{\varphi}) \right)$$
$$+ \varepsilon \left(H_{1}(\tilde{I} + \varepsilon D_{2}S(\tilde{I}, \tilde{\varphi}), \tilde{\varphi}) - H_{1}(\tilde{I}, \tilde{\varphi}) \right) = \mathcal{O}(\varepsilon^{2})$$

und

$$R_{2}(\tilde{I}, \tilde{\varphi}) := \varepsilon \left(\omega(\tilde{I}) \cdot D_{2}S(\tilde{I}, \tilde{\varphi}) - \omega(\hat{I})D_{2}S(\hat{I}, \tilde{\varphi}) \right) + \varepsilon \left(H_{1}(\tilde{I}, \tilde{\varphi}) - H_{1}(\hat{I}, \tilde{\varphi}) \right) = \mathcal{O}(\varepsilon^{2}).$$

Integration der Hamiltonischen Differentialgleichungen mithilfe des Gronwall-Lemmas analog zum letzten Kapitel liefert das Resultat.

Da die Gesamtmasse der Planeten etwa $\varepsilon:=1/1000$ der Sonnenmasse beträgt, könnte durch diese Störung nach etwa $1/\varepsilon=1000$ Jahren eine bedeutende Veränderung der Ellipsenbahn der Erde einreten.

Wären die Voraussetzungen dieses Satzes gegeben, dann würde er immerhin voraussagen, daß solche Veränderungen nach 1000 Jahren noch $\mathcal{O}(\varepsilon)$ sind, und sich — überschlägig — erst nach einer Million Jahren deutlich bemerkbar machen.

Der Satz ist zwar nicht direkt anwendbar, denn $\det(D\omega) = 0$ (im Keplerproblem sind die Bahnen negativer Energie immer periodisch). Es gibt aber Varianten des Satzes, die für das himmelsmechanische Problem greifen.

38 KAM-Theorie

Wir haben gesehen, dass wir für genügend unabhängige Frequenzen $\omega(I)$ neue Koordinaten einführen können, in denen die Störterme von der Ordnung ε^2 statt ε sind. Es stellt sich die Frage, ob man diese Transformation iterieren kann, um die Störung in geeigneten Koordinaten vollständig zu eliminieren. Damit wäre dann die Existenz eines flussinvarianten Torus gezeigt, auf dem die Bewegung bedingtperiodisch mit Frequenz ω ist.

Dieses Ziel verfolgt die Theorie, die von Kolmogorov, Arnold und Moser aufgestellt wurde und die daher kurz **KAM-Theorie** genannt wird.

Formal ergibt die Transformation bei n-facher Iteration einen Fehler von ε^{2^n} . Sie ist daher dem Newtonverfahren zum Auffinden von Nullstellen verwandt.

38.1 Bemerkung Beim Newtonverfahren werden Nullstellen von $f \in C^2(\mathbb{R})$ ausgehend von $x_0 \in \mathbb{R}$ aufgesucht, indem

$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}$$

gesetzt wird. Nach Taylor ist hier

$$f(x_{n+1}) = f(x_n) - f'(x_n) \cdot \left(\frac{f(x_n)}{f'(x_n)}\right) + \mathcal{O}\left(\left(\frac{f(x_n)}{f'(x_n)}\right)^2\right)$$
$$= \mathcal{O}\left(\left(\frac{f(x_n)}{f'(x_n)}\right)^2\right),$$

also $\mathcal{O}(f(x_n)^2)$, falls f' in einer geeigneten Umgebung von Null weg beschränkt ist. Eine solche formale quadratische Konvergenz muss allerdings durch Normabschätzungen bestätigt werden.

Die Durchführung der KAM-Theorie ist im Rahmen einer Vorlesung über Klassische Mechanik möglich (siehe z.B. den 1. Band des Lehrbuches [Th] von W. Thirring, wo eine vereinfachte Situation durchgerechnet wird).

Sie ist aber etwas mühsam und technisch, weswegen wir darauf verzichten. Stattdessen soll einfach das Resultat dargestellt werden. Den Beweis findet man im Artikel [Po] von J. Pöschel.

Es sei wieder

$$H_{\varepsilon}(I,\varphi) := H_0(I) + \varepsilon H_1(I,\varphi)$$

auf dem Phasenraum $G \times \mathbb{T}^n$, $G \subset \mathbb{R}^n$ und mit Störparameter $|\varepsilon| < \varepsilon_0$. Diesmal setzen wir voraus, dass die integrable Hamiltonfunktion H_0 reell-analytisch ist. Weiter fordern wir wieder die unabhängige Variation der Frequenzen $\omega := DH_0$: $G \to \mathbb{R}^n$:

$$\det(D\omega)(I) \neq 0 \qquad (I \in G),$$

und ω sei ein Diffeomorphismus auf das Bild

$$\Omega := \omega(G)$$
.

Wegen dieser Eigenschaft können wir mittels der Abb.

$$\Psi:\Omega\times\mathbb{T}^n\to G\times\mathbb{T}^n\quad,\quad (\hat{\omega},\varphi)\mapsto (\omega^{-1}(\hat{\omega}),\varphi)$$

die Hamiltonfunktion H_{ε} als Funktion

$$\mathcal{H}_{\varepsilon} := H_{\varepsilon} \circ \Psi : \Omega \times \mathbb{T}^n \to \mathbb{R}$$

auffassen, und die symplektische 2-Form mittels Ψ^* auf diesen neuen Phasenraum zurückziehen.

Der Vorteil dieses Koordinatenwechsels ist, dass bei der Iteration der kanonischen Transformationen direkt an den neuen Wirkungen $\hat{\omega}$ abgelesen werden kann, ob sie zur diophantischen Teilmenge $\Omega_{\gamma,\tau}$ (siehe (37.5)) gehören.

Wir setzen $\tau:=n$ und nennen die diophantische Teilmenge der Menge Ω unserer Frequenzen einfachheitshalber

$$\Omega_{\gamma} := \Omega_{\gamma,\tau} \cap \Omega.$$

Die Stör-Hamiltonfunktion H_1 sei glatt auf $G \times \mathbb{T}^n$, also $\mathcal{H}_1 = H_1 \circ \Psi \in C^{\infty}(\Omega \times \mathbb{T}^n)$.

38.2 Satz Unter den obigen Bedingungen existiert ein $\varepsilon_0 > 0$, sodass für $|\varepsilon| < \varepsilon_0$ ein Diffeomorphismus T_{ε} auf dem Phasenraum $\Omega \times \mathbb{T}^n$ existiert, der auf der Teilmenge

$$\Omega_{\sqrt{\varepsilon}} \times \mathbb{T}^n \subset \Omega \times \mathbb{T}^n$$

die Hamiltonschen Differentialgleichungen in die Form

$$\frac{d}{dt}\hat{\omega}(t) = 0$$
 , $\frac{d}{dt}\varphi(t) = \hat{\omega}(t)$ (38.1)

transformiert. Das Lebesgue-Maß dieser Teilmenge ist für kleine Störungenn groß:

$$\lambda \left(\Omega_{\sqrt{\varepsilon}} \right) = \lambda(\Omega) \cdot \left(1 - \mathcal{O}(\sqrt{\varepsilon}) \right)$$

(falls $\overline{\Omega}$ eine berandete Mannigfaltigkeit ist).

• Die Gleichungen (38.1) sind integrabel und haben die Lösungen

$$\hat{\omega}(t) = \hat{\omega}(0)$$
 , $\varphi(t) = \varphi(0) + \hat{\omega}(0)t \pmod{2\pi}$ $(t \in \mathbb{R}).$

- Ω_{γ} hat die Form einer Cantormenge.
- Über die 'resonanten Tori', d.h. das Komplement von $\Omega_{\sqrt{\varepsilon}} \times \mathbb{T}^n$, wird im Satz nichts ausgesagt. Dort können die Tori überleben (wenn H_{ε} integrabel ist) oder sich durch die Störung auflösen, siehe Abb. 59.

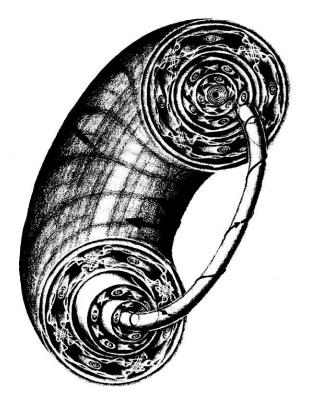


Abbildung 59: Phasenraumportrait eines Hamiltonschen Systems mit zwei Freiheitsgraden, mit ineinander geschachtelten KAM-Tori (aus [AM])

A Differentialformen auf Mannigfaltigkeiten

In zahlreichen physikalischen Anwendungen der Analysis wird *über Untermannigfaltigkeiten* des \mathbb{R}^n , insbesondere des \mathbb{R}^3 *integriert*, z.B. zur Bestimmung

- des durch eine von einer Leiterschleife berandete Fläche dringenden magnetischen Flusses
- der entlang eines Weges aufgewandten Energie etc.

Um solche Integrationen durchzuführen, ist der Kalkül der Differentialformen auf Mannigfaltigkeiten entwickelt worden.

Dieser Kalkül lässt aber auch den *geometrischen Gehalt* physikalischer Theorien wie Klassische Mechanik, Elektrodynamik oder Allgemeine Relativitätstheorie klar hervortreten (die Maxwellschen Gleichungen beispielsweise lassen sich

mit Differentialformen als dF = 0, $\delta F = j$ schreiben). Eine gute Einführung gibt das Buch [Ar2] von Arnol'd.

Der erste Schritt ist die algebraische Theorie der äußeren Formen, denn diese beschreiben das lokale Verhalten der Differentialformen an einem Punkt der Mannigfaltigkeit.

A.1 Äußere Formen

A.1 Definition Es sei E ein n-dimensionaler reeller Vektorraum. Eine Abbildung $\varphi: E \times \ldots \times E \to \mathbb{R}$ heißt multilinear, wenn sie in jedem Argument linear ist, d.h. für $\lambda \in \mathbb{R}$ und $x_i, x_i^{I/II} \in E$

$$\varphi(x_1,\ldots,x_{j-1},\lambda x_j,x_{j+1},\ldots,x_k)=\lambda\varphi(x_1,\ldots,x_k)$$

und

$$\varphi(x_1, ..., x_{j-1}, x_j^I + x_j^{II}, x_{j+1}, ..., x_k) = \varphi(x_1, ..., x_j^I, ..., x_k) + \varphi(x_1, ..., x_j^{II}, ..., x_k).$$

Genauer spricht man von einer k-linearen Abbildung

Auf $E := \mathbb{R}^n$ mit Standardbasis $e_1, \dots, e_n \in E$ bezeichne $\alpha_1, \dots, \alpha_n \in E^*$ die *Dualbasis* (d.h. $\alpha_i(e_i) = \delta_{ii}$).

- **A.2 Beispiel** 1. k=1. Dann ist φ eine *Linearform* auf E, und für $\varphi \neq 0$ ist $\varphi^{-1}(0) \subset E$ ein Unterraum der Dimension n-1.
 - 2. $k=2, E:=\mathbb{R}^n$ mit innerem Produkt $\langle \cdot, \cdot \rangle$. Für $A \in \mathcal{M}(n,\mathbb{R})$ ist $\varphi: E \times E \to \mathbb{R}, \varphi(x,y) := \langle x,Ay \rangle$ eine Bilinear-form. Sie heißt (anti)symmetrisch, wenn $\varphi(x,y) = \pm \varphi(y,x)$ $(x,y \in E)$.
 - 3. $k = n, E = \mathbb{R}^n$. $\varphi(x_1, \dots, x_n) := \det(x_1, \dots, x_n) \ (x_i \in E)$ heißt *Determinantenform*. Sie gibt das orientierte Volumen des von x_1, \dots, x_n aufgespannten Parallelotops an.

Offensichtlich können wir zwei k-lineare Abbildungen φ_1, φ_2 addieren, indem wir

$$(\varphi_1 + \varphi_2)(x_1, \dots, x_k) := \varphi_1(x_1, \dots, x_k) + \varphi_2(x_1, \dots, x_k)$$

setzen und eine k-lineare Abbildung φ mit $\lambda \in \mathbb{R}$ multiplizieren

$$(\lambda \varphi)(x_1,\ldots,x_k) := \lambda(\varphi(x_1,\ldots,x_k)).$$

Damit wird die Menge $L^k(E, \mathbb{R})$ der k-linearen Abbildungen in \mathbb{R} zu einem \mathbb{R} -Vektorraum.

A.3 Definition Es sei E ein n-dimensionaler \mathbb{R} -Vektorraum. Dann heißt $\varphi \in L^k(E,\mathbb{R})$ **äußere** k-**Form**, wenn sie *antisymmetrisch* ist, d.h.

$$\varphi(x_1,\ldots,x_i,\ldots,x_l,\ldots,x_k) = -\varphi(x_1,\ldots,x_l,\ldots,x_i,\ldots,x_k), (x_1,\ldots,x_k \in E).$$

Der Raum der äußeren k–Formen wird mit $\Omega^k(E) \subset L^k(E,\mathbb{R})$ bezeichnet.

A.4 Beispiel 1. $\Omega^{1}(E) = L^{1}(E) \cong E^{*}$.

- 2. $(x,y) \mapsto \langle x,Ay \rangle$ definiert eine äußere 2-Form auf \mathbb{R}^n genau, wenn die Matrix A antisymmetrisch ist.
- 3. Die Determinantenform ist bis auf ihre Vielfachen die einzige n-Form.

A.5 Definition Das äußere Produkt von $\omega_1, \ldots, \omega_k \in \Omega^1(E)$ wird durch

$$\omega_1 \wedge \ldots \wedge \omega_k(x_1, \ldots, x_k) := \det \begin{pmatrix} \omega_1(x_1) & \ldots & \omega_k(x_1) \\ \vdots & & \vdots \\ \omega_1(x_k) & \ldots & \omega_k(x_k) \end{pmatrix}$$

 $(x_1,\ldots,x_k\in E)$ definiert.

Offensichtlich ist $\omega_1 \wedge \ldots \wedge \omega_k$ eine k-Form, also in $\Omega^k(E)$. Insbesondere ist damit

$$\alpha_{i_1} \wedge \ldots \wedge \alpha_{i_k} \in \mathbf{\Omega}^k(E).$$

Diese äußere Form stimmt bis auf Vorzeichen mit derjenigen überein, bei der i_1, \ldots, i_k aufsteigend geordnet sind und ist genau dann $\neq 0$, wenn alle Indizes voneinander verschieden sind.

Wir können nun jede k-Form $\omega \in \Omega^k(\mathbb{R}^n)$ eindeutig als Linearkombination

$$\omega = \sum_{1 \le i_i < \dots < i_k \le n} \omega_{i_1 \dots i_k} \alpha_{i_1} \wedge \dots \wedge \alpha_{i_k}$$

mit $\omega_{i_1...i_k}:=\omega(e_{i_1},\ldots,e_{i_k})\in\mathbb{R}$ darstellen. Für $\dim(E)=n$ ist daher

$$\dim \left(\Omega^k(E)\right) = \binom{n}{k}.$$

Das *Produkt* der k-Form ω mit einer l-Form

$$\psi = \sum_{1 \le j_1 < \dots < j_l \le n} \psi_{j_1 \dots j_l} \alpha_{j_1} \wedge \dots \wedge \alpha_{j_l}$$

wird nun als

$$\omega \wedge \varphi := \sum_{1 \leq i_1 < \dots < i_k \leq n} \sum_{1 \leq j_1 < \dots < j_l \leq n} \omega_{i_1 \dots i_k} \psi_{j_1 \dots j_l} \alpha_{i_1} \wedge \dots \wedge \alpha_{i_k} \wedge \alpha_{j_1} \wedge \dots \wedge \alpha_{j_l}$$

definiert. All diejenigen Summanden, bei denen ein $i_r=j_s$ ist, sind gleich Null, denn $\alpha_l \wedge \alpha_l = -\alpha_l \wedge \alpha_l = 0$. Die anderen Summanden tragen zu der äußeren Form $\omega \wedge \psi \in \Omega^{k+l}(\mathbb{R}^n)$ bei.

Offensichtlich ist das äußere Produkt *assoziati*v, d.h. $(\omega \wedge \psi) \wedge \rho = \omega \wedge (\psi \wedge \rho)$. Weiter gilt für eine k-Form ω und eine l-Form ψ

$$\omega \wedge \psi = (-1)^{k \cdot l} \psi \wedge \omega,$$

denn wir müssen $k \cdot l$ -mal 1-Formen kommutieren, um von der einen zur anderen Form zu gelangen.

A.6 Beispiel Symplektische Form auf dem \mathbb{R}^{2n}

$$\omega := \sum_{i=1}^{n} \alpha_i \wedge \alpha_{i+n} \in \Omega^2(\mathbb{R}^{2n})$$

Für n=2 ergibt sich

$$\omega = \alpha_1 \wedge \alpha_3 + \alpha_2 \wedge \alpha_4$$

also

$$\omega \wedge \omega = (\alpha_1 \wedge \alpha_3 + \alpha_2 \wedge \alpha_4) \wedge (\alpha_1 \wedge \alpha_3 + \alpha_2 \wedge \alpha_4)
= \underbrace{\alpha_1 \wedge \alpha_3 \wedge \alpha_1 \wedge \alpha_3}_{0} + \alpha_2 \wedge \alpha_4 \wedge \alpha_1 \wedge \alpha_3
+ \alpha_1 \wedge \alpha_3 \wedge \alpha_2 \wedge \alpha_4 + \underbrace{\alpha_2 \wedge \alpha_4 \wedge \alpha_2 \wedge \alpha_4}_{0}
= (-1)^3 \alpha_1 \wedge \alpha_2 \wedge \alpha_3 \wedge \alpha_4 + (-1)^1 \alpha_1 \wedge \alpha_2 \wedge \alpha_3 \wedge \alpha_4
= -2\alpha_1 \wedge \alpha_2 \wedge \alpha_3 \wedge \alpha_4.$$

Die symplektische Form ω hat eine Schlüsselrolle in der Klassischen Mechanik. Dort bezeichnet man die Koordinaten $x_1 \dots x_n$ als Impulskoordinaten, die Koordinaten $x_{n+1} \dots x_{2n}$ als Ortskoordinaten.

A.7 Beispiel Wir betrachten einen Vektor $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 e_1 + v_2 e_2 + v_3 e_3$ des \mathbb{R}^3 . Bisher haben wir bei unserer Betrachtung das innere Produkt nicht erwähnt und auch nicht benutzt. Jetzt benutzen wir das kanonische innere Produkt und bemerken, dass durch

$$\omega_v^1(w) := \langle v, w \rangle = v_1 w_1 + v_2 w_2 + v_3 w_3 \qquad (w \in \mathbb{R}^3)$$

 $\begin{array}{l} \text{dem Vektor } v \text{ die } 1\text{--Form } \omega_v^1 \in \mathbf{\Omega}^1(\mathbb{R}^3) \text{ zugeordnet wird.} \\ \text{ Ähnlich wird } v \text{ die } 2\text{--Form } \omega_v^2 \in \mathbf{\Omega}^2(\mathbb{R}^3), \end{array}$

$$\omega_v^2(x,y) := \det(v,x,y) \qquad (x,y \in \mathbb{R}^3)$$

zugeordnet. Wir finden

$$\omega_v^1 = v_1 \alpha_1 + v_2 \alpha_2 + v_3 \alpha_3 \quad \text{und} \quad \omega_v^2 = v_1 \alpha_2 \wedge \alpha_3 + v_2 \alpha_3 \wedge \alpha_1 + v_3 \alpha_1 \wedge \alpha_2.$$

Das äußere Produkt zweier so gewonnener 1-Formen ergibt

$$\omega_v^1 \wedge \omega_w^1 = (v_1 \alpha_1 + v_2 \alpha_2 + v_3 \alpha_3) \wedge (w_1 \alpha_1 + w_2 \alpha_2 + w_3 \alpha_3)
= (v_1 w_2 - v_2 w_1) \alpha_1 \wedge \alpha_2 + (v_2 w_3 - v_3 w_2) \alpha_2 \wedge \alpha_3
+ (v_3 w_1 - v_1 w_3) \alpha_3 \wedge \alpha_1
= \omega_{v \times w}^2.$$

Wir haben auf diese Weise das *Kreuzprodukt* zweier Vektoren im \mathbb{R}^3 gewonnen.

A.8 Satz Die Vektoren $\omega_1, \ldots, \omega_k \in E^*$ sind genau dann linear abhängig, wenn $\omega_1 \wedge \ldots \wedge \omega_k = 0.$

Bew.:

• Wenn sie linear abhängig sind, können wir einen Index $i \in \{1, ..., k\}$ mit $\omega_i = \sum_{\substack{l=1 \ l \neq i}}^k c_l \omega_l$ finden. Damit gilt aber

$$\omega_1 \wedge \ldots \wedge \omega_k = \sum_{\substack{l=1\\l \neq i}}^k c_l \omega_1 \wedge \ldots \wedge \omega_l \wedge \ldots \wedge \omega_k = 0,$$

denn in jedem Summanden kommt ω_l doppelt vor.

• Andernfalls können wir die Vektoren zu einer Basis

$$\omega_1, \ldots, \omega_n$$
 mit $n := \dim(E^*)$

ergänzen, sodass $\omega_1 \wedge \ldots \wedge \omega_n \neq 0$ ist. Dann ist aber auch $\omega_1 \wedge \ldots \wedge \omega_k \neq 0$.

A.9 Definition Der reelle Vektorraum $\Omega^*(E) := \bigoplus_{k=0}^{\dim(E)} \Omega^k(E)$ (mit $\Omega^0(E) := \mathbb{R}$) mit der durch das Dachprodukt gegebenen Multiplikation heißt die *äußere* oder *Grassmannalgebra* über E.

- **A.10 Bemerkungen** dim($\Omega^*(E)$) = $2^{\dim(E)}$, denn $\sum_{k=0}^n \binom{n}{k} = 2^n$.
 - Es gilt für beliebige $k, l \in \mathbb{N}_0$, dass für $\omega \in \Omega^k(E)$, $\varphi \in \Omega^l(E)$ $\omega \wedge \varphi \in \Omega^{k+l}(E)$, aber
 - für $m > \dim(E)$ ist $\dim(\Omega^m(E)) = 0$.

A.11 Definition Für eine lineare Abbildung $f:E\to F$ endlich dimensionaler \mathbb{R} – Vektorräume und $\omega\in\Omega^k(F)$ heißt die durch

$$f^*(\omega)(v_1,\ldots,v_k) := \omega(f(v_1),\ldots,f(v_k))$$

definierte k-Form $f^*(\omega)$ die Zurückziehung (engl. pull-back) von ω mit f.

Es gilt offensichtlich $f^*(\omega)\in \Omega^k(E)$, denn $f^*(\omega)$ ist k-linear und antisymmetrisch.

A.12 Satz 1. Die Abbildung $f^*: \Omega^k(F) \to \Omega^k(E)$ ist linear.

- $\text{2. } \operatorname{F\"{u}r} g \in L(F,G) \operatorname{ist} (g \circ f)^* = f^* \circ g^*.$
- 3. Für $f = \operatorname{Id}_E$ ist $f^* = \operatorname{Id}_{\mathbf{\Omega}^*(E)}$.
- 4. Für $f \in GL(E, F)$ ist $(f^*)^{-1} = (f^{-1})^*$.
- 5. $f^*(\alpha \wedge \beta) = f^*(\alpha) \wedge f^*(\beta)$.

Bew.:

1. $\sqrt{}$

2.
$$(g \circ f)^* \alpha(v_1, \dots, v_k) = \alpha(g \circ f(v_1), \dots, g \circ f(v_k)) = g^* \alpha(f(v_1), \dots, f(v_k)) = f^* \circ g^* \alpha(v_1, \dots, v_k)$$

- 3. √
- 4. folgt aus 2. und 3.
- 5. Hausaufgabe

A.2 Differentialformen

Wir wollen nun Differentialformen auf Mannigfaltigkeiten einführen, und zwar zunächst auf offenen Teilmengen $U \subset \mathbb{R}^n$. Dieser Spezialfall beschreibt das Verhalten einer allgemeinen Differentialform auf einem Kartengebiet.

Eine $Differentialform\ \omega$ auf U ist eine von Ort zu Ort variierende äußere Form, deren Variation wir als glatt voraussetzen.

Wir schreiben eine allgemeine k–Form ω in der Gestalt

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k} \in \Omega^k(U),$$

wobei die $\omega_{i_1...i_k} \in C^\infty(U,\mathbb{R})$ sind und die dx_i den Koordinatenfunktionen $x_i:\mathbb{R}^n \to \mathbb{R}$ zugeordnete 1-Differentialformen sind $(dx_i \in \Omega^1(\mathbb{R}^n))$. (Dabei wollen wir den Raum der äußeren k-Formen ab jetzt zur Unterscheidung mit einem nicht fetten Ω schreiben.)

Die dx_i sind durch ihre Wirkung auf ein Vektorfeld $v:\mathbb{R}^n\to\mathbb{R}^n$ definiert und $dx_i(v)(y):=v_i(y)$. 1–Differentialformen machen also aus Vektorfeldern Funktionen und für k Vektorfelder $v^{(l)}:U\to\mathbb{R}$ ist für $\omega\in\Omega^k(U)$

$$\omega(v^{(1)}, \dots, v^{(k)}) := \sum_{1 \le i_1 < \dots < i_k \le k} \omega_{i_1 \dots i_k} \cdot \det \begin{pmatrix} dx_{i_1}(v^{(1)}) & \dots & dx_{i_k}(v^{(1)}) \\ \vdots & & \vdots \\ dx_{i_1}(v^{(k)}) & \dots & dx_{i_k}(v^{(k)}) \end{pmatrix}$$

definiert. Das Ergebnis ist eine reelle Funktion auf dem \mathbb{R}^n .

Die Rechenregeln übertragen sich von den äußeren Formen auf die Differentialformen.

Auf $\Omega^*(U) = \bigoplus_{k=0}^n \Omega^k(U)$ betrachten wir jetzt den *Differentialoperator* d, der durch

•
$$df := \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$$
 für Funktionen $f \in C^{\infty}(U, \mathbb{R}) =: \Omega^0(U)$

• und $d\omega:=\sum_{1\leq i_1<\ldots< i_k\leq n}d\omega_{i_1\ldots i_k}\wedge dx_{i_1}\wedge\ldots\wedge dx_{i_k}$ für k–Formen

$$\omega = \sum_{1 \le i_1 \le \dots \le i_k \le n} \omega_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

definiert ist. d verwandelt eine k-Form also in eine (k + 1)-Form.

A.13 Definition $d: \Omega^*(U) \to \Omega^*(U)$ heißt äußere Ableitung.

A.14 Beispiel 1. $\omega \in \Omega^1(\mathbb{R}^n)$, $\omega := x_2 dx_1$

$$d\omega = dx_2 \wedge dx_1 = -dx_1 \wedge dx_2.$$

2. Für $\omega=\omega_1 dx_1+\omega_2 dx_2+\omega_3 dx_3\in\Omega^1(\mathbb{R}^3)$ ist

$$d\omega = (d\omega_1) \wedge dx_1 + (d\omega_2) \wedge dx_2 + (d\omega_3) \wedge dx_3$$

$$= \left(\frac{\partial \omega_2}{\partial x_1} - \frac{\partial \omega_1}{\partial x_2}\right) dx_1 \wedge dx_2 + \left(\frac{\partial \omega_3}{\partial x_2} - \frac{\partial \omega_2}{\partial x_3}\right) dx_2 \wedge dx_3$$

$$+ \left(\frac{\partial \omega_1}{\partial x_3} - \frac{\partial \omega_3}{\partial x_1}\right) dx_3 \wedge dx_1.$$

3. Für $\omega = \omega_{12}dx_1 \wedge dx_2 + \omega_{23}dx_2 \wedge dx_3 + \omega_{31}dx_3 \wedge dx_1 \in \Omega^2(\mathbb{R}^3)$ ist

$$d\omega = \left(\frac{\partial \omega_{12}}{\partial x_3} + \frac{\partial \omega_{23}}{\partial x_1} + \frac{\partial \omega_{31}}{\partial x_2}\right) dx_1 \wedge dx_2 \wedge dx_3.$$

4. Für $\omega \in \Omega^3(\mathbb{R}^3)$ ist $d\omega = 0$.

A.15 Satz d ist eine **Antiderivation**, d.h. für $\alpha \in \Omega^k(U)$ und $\beta \in \Omega^l(U)$ ist $d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge d\beta$.

Bew.: Wegen der Linearität von d genügt es, diese Gleichung für Monome $\alpha:=f\underbrace{dx_{i_1}\wedge\ldots\wedge dx_{i_k}}_{\hat{\alpha}}, \beta:=g\underbrace{dx_{j_1}\wedge\ldots\wedge dx_{j_l}}_{\hat{\beta}}, f,g\in C^\infty(\mathbb{R}^n,\mathbb{R})$ zu beweisen.

Es gilt
$$d(\alpha \wedge \beta) = d(f \cdot g)\tilde{\alpha} \wedge \tilde{\beta} = ((df)g + f(dg))\tilde{\alpha} \wedge \tilde{\beta} = (df)\tilde{\alpha} \wedge g\tilde{\beta} + (-1)^k f\tilde{\alpha} \wedge (dg)\tilde{\beta} = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta.$$

A.16 Satz dd = 0.

Bew.:

• Für $f \in \Omega^0(U)$ ist $ddf = d\left(\sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i\right) = \sum_{i=1}^n \sum_{l=1}^n \frac{\partial^2 f}{\partial x_l \partial x_i} dx_l \wedge dx_i = \sum_{1 \leq r < s \leq n} \left(\frac{\partial^2 f}{\partial x_r \partial x_s} - \frac{\partial^2 f}{\partial x_s \partial x_r}\right) dx_r \wedge dx_s = 0$, da wir wegen der Glattheit von f die partiellen Ableitungen vertauschen können.

• Für
$$\omega = \sum_{i=1,\dots,i_k} \omega_{i_1\dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k} \in \Omega^k(U)$$
 ist
$$dd\omega = \sum_{i=1}^k \underbrace{(dd\omega_{i_1\dots i_k})}_{0} \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k} = 0.$$

Ein weiterer Aspekt von Differentialformen ist ihr Verhalten unter Abbildungen.

A.17 Definition Es seien
$$U\subset\mathbb{R}^m,\,V\subset\mathbb{R}^n$$
 offen und $\varphi=\begin{pmatrix} \varphi_1\\ \vdots\\ \varphi_n \end{pmatrix}:U\to V$

glatt. Die Zurückziehung (pull-back) $\varphi^*\omega$ von

$$\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1 \dots i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k} \in \Omega^k(V)$$

ist durch

$$\varphi^*\omega = \sum_{1 \le i_1 < \dots < i_k \le n} \omega_{i_1 \dots i_k} \circ \varphi \cdot d\varphi_{i_1} \wedge \dots \wedge d\varphi_{i_k}$$

definiert.

Der Pull-back ist also eine k-Form auf $U \subset \mathbb{R}^m$.

$$\begin{array}{ccc} \varphi^*\omega & \longrightarrow & \omega \\ & \varphi & \\ U & & V \end{array}$$

A.18 Beispiel
$$\varphi: \mathbb{R}^+ \times (0, 2\pi) \to \mathbb{R}^2, \varphi = \begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix}, \begin{cases} \varphi_1(r, \psi) = r \cos \psi \\ \varphi_2(r, \psi) = r \sin \psi \end{cases}$$
.

Es soll die 2-Form $\omega = f dx_1 \wedge dx_2$ zurückgezogen werden. Mit $\hat{f} := f \circ \varphi$, also der in Polarkoordinaten geschriebenen Funktion f, ergibt sich wegen

$$d\varphi_1 = dr \cos \psi - r \sin \psi d\psi,$$

$$d\varphi_2 = dr \sin \psi + r \cos \psi d\psi$$

$$\varphi^* \omega = \tilde{f} d\varphi_1 \wedge d\varphi_2 = \tilde{f} r(\cos^2 \psi + \sin^2 \psi) dr \wedge d\psi = \tilde{f} r dr \wedge d\psi.$$

A.19 Satz $\varphi^*d = d\varphi^*$

Bew.: Durch Anwendung der Kettenregel:

$$d\varphi^*(fdx_{i_1} \wedge \ldots \wedge dx_{i_k}) = d((f \circ \varphi) \cdot d\varphi_{i_1} \wedge \ldots \wedge d\varphi_{i_k})$$
$$= d(f \circ \varphi) \wedge d\varphi_{i_1} \wedge \ldots \wedge d\varphi_{i_k}.$$

Andererseits ist

$$\varphi^* d(f dx_{i_1} \wedge \ldots \wedge dx_{i_k}) = \varphi^* \left(\sum_{l=1}^n \frac{\partial f}{\partial x_l} dx_l \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k} \right)$$
$$= \underbrace{\sum_{l=1}^n D_l f \circ \varphi d\varphi_l \wedge d\varphi_{i_1} \wedge \ldots \wedge d\varphi_{i_k}}_{d(f \circ \varphi)}.$$

Durch Spezialisierung auf Diffeomorphismen φ sehen wir, dass die äußere Ableitung unabhängig vom verwendeten Koordinatensystem definiert ist.

A.3 Integration von Differentialformen

Wir integrieren zunächst n-Formen auf dem \mathbb{R}^n und danach k-Formen auf k-dimensionalen Flächen im \mathbb{R}^n .

A.20 Definition Es sei $U \subset \mathbb{R}^n$ offen und $\omega \in \Omega^n(U)$ habe kompakten Träger (d.h. für $\omega = f dx_1 \wedge \ldots \wedge dx_n$ ist f(x) = 0 außerhalb eines Kompaktums in U).

Wir setzen dann

$$\int_{U} \omega := \int_{U} f(x) dx_{1} \dots dx_{n}.$$

A.21 Satz Es sei $\varphi:V \to U$ ein Diffeomorphismus, mit $\det(D\varphi)>0$. Dann gilt

$$\int_{V} \varphi^* \omega = \int_{U} \omega.$$

Bew.: Wegen A.5 ist $\int_V \varphi^* \omega = \int_V f \circ \varphi \cdot \det(D\varphi) \cdot dx_1 \wedge \ldots \wedge dx_n$, und wegen der Orientierungserhaltung entspricht dies genau der Transformationsformel. \square

Wir sehen insbesondere, dass das Integral über die k-Form nicht von der Wahl des (orientierten) Koordinatensystems abhängt.

Betrachten wir $dx_1 \wedge \ldots \wedge dx_n$ als die Standard-Volumenform auf dem \mathbb{R}^n , dann können wir $\int_U \omega$ auch als Integral der *Funktion f* über U auffassen.

Weil wir als nächstes Funktionen über k-dimensionale Flächen im \mathbb{R}^n integrieren wollen, müssen wir uns zunächst über die Standard-Volumenform klar werden. Es sei $U \subset \mathbb{R}^k$ offen und

$$\varphi: U \to \mathbb{R}^n$$

eine glatte Abbildung mit $D\varphi(x)$ vom Rang k. φ parametrisiert die k-dimensionale Fläche $V:=\varphi(U)\subset\mathbb{R}^n$.

Gesucht ist nun eine $k\text{--}\mathrm{Form}\ \omega\in\Omega^k(U),$ für die für jede in V offene Teilmenge $V'\subset V$

$$\int_{\varphi^{-1}(V')} \omega$$

die Fläche von V' beschreibt. Drei vernünftige Forderungen an ω sind, dass

- $V' := (0,1)^k \times \{0\}^{n-k} \subset \mathbb{R}^n$ die Fläche 1 besitzt.
- sich unter einer orthogonalen Transformation $O \in O(n)$ die Fläche von V' nicht ändert und ebenso unter Translationen.
- sich bei Vereinigung $V'\dot{\cup}V''$ disjunkter Flächen V',V'' die Flächeninhalte addieren.

Diese Forderungen werden von

$$\omega := \sqrt{|g|} dx_1 \wedge \ldots \wedge dx_k$$

erfüllt, wobei die symmetrische $k \times k$ -Matrix q durch

$$g = (D\varphi)^t (D\varphi)$$

definiert ist. Da $D\varphi$ nicht degeneriert ist, gilt g(x) > 0 für alle $x \in U$, die Matrix ist also positiv definit. g heißt metrischer Tensor, und |g| bezeichnet $\det(g)$.

Ist beispielsweise $\psi:U\to\mathbb{R}^n$ durch $\psi=O\circ\varphi$ mit $O\in O(n)$ gegeben, dann gilt

$$g_{ij}(x) = \sum_{l=1}^{n} \frac{\partial \psi_l}{\partial x_i} \frac{\partial \psi_l}{\partial x_j} = \sum_{l,s,t=1}^{n} O_{ls} \frac{\partial \varphi_s}{\partial x_i} O_{lt} \frac{\partial \varphi_t}{\partial x_j}$$
$$= \sum_{s,t=1}^{n} \delta_{st} \frac{\partial \varphi_s}{\partial x_i} \frac{\partial \varphi_t}{\partial x_j} = \sum_{s=1}^{n} \frac{\partial \varphi_s}{\partial x_i} \frac{\partial \varphi_s}{\partial x_j}.$$

Wir können eine Funktion $f:V\to\mathbb{R}$ integrieren, indem wir das Integral

$$\int_{U} f \circ \varphi \cdot \omega$$

bilden. Dieser Ausdruck ist invariant unter einer Veränderung der Parametrisierung.

A.4 Differentialformen auf Mannigfaltigkeiten

A.22 Definition Eine *Differentialform* ω auf der Mannigfaltigkeit M mit Atlas $\{(U_i, \varphi_i) \mid i \in I\}$ ist eine Familie von Differentialformen

$$\omega_i \in \Omega^*(V_i)$$
 , $V_i := \varphi_i(U_i) \subset \mathbb{R}^n$ $(i \in I)$,

die in folgendem Sinn kompatibel sind: Für $i,j\in I$ ist $V_{ij}:=\varphi_i(U_i\cap U_j)\subset V_i$ Definitionsbereich des Kartenwechsels

$$\psi_{ij} := \varphi_j \circ \varphi_i^{-1} \upharpoonright_{V_{ij}} : V_{ij} \to V_{ji}.$$

Es gelte nun

$$\psi_{ij}^*(\omega_j \upharpoonright_{V_{ji}}) = \omega_i \upharpoonright_{V_{ij}} \qquad (i, j \in I).$$

Literatur

- [AM] R. Abraham, J.E. Marsden: Foundations of Mechanics. Reading: Benjamin/Cummings 1982
- [Ar1] V.I. Arnol'd: Gewöhnliche Differentialgleichungen. Berlin: Springer 1980
- [Ar2] V.I. Arnol'd: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics **60**. Berlin: Springer
- [AA] V.I. Arnol'd, A. Avez: Ergodic Problems of Classical Mechanics. Reading: Benjamin 1968
- [Bal] W. Ballmann: Lectures on Spaces of Nonpositive Curvature. Basel: Birkhäuser 1995
- [Bau] H. Bauer: Maß- und Integrationstheorie. Berlin: de Gruyter 1992
- [Bu] L.A. Bunimovich et al: Dynamical Systems, Ergodic Theory and Applications. Encyclopaedia of Mathematical Sciences **100**, Springer, 2000
- [DFN] B.A. Dubrovin, A.T. Fomenko, S.P. Novikov: Modern Geometry Methods and Applications. Berlin: Springer 1992
- [DS] D. McDuff, D. Salamon: Introduction to Symplectic Topology. Oxford: Oxford University Press 1999
- [GHL] S. Gallot, D. Hulin, J. Lafontaine: Riemannian Geometry. Berlin: Springer 1993
- [Hi] M. Hirsch: Differential Topology. Graduate Texts in Mathematics **33** Berlin: Springer 1988
- [HZ] H. Hofer, E. Zehnder: Symplectic Invariants and Hamiltonian Dynamics. Basel: Birkhäuser 1994
- [KH] A. Katok, B. Hasselblatt: Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press 1997
- [Kl] W. Klingenberg: Eine Vorlesung über Differentialgeometrie. Berlin: Springer 1973

- [Kn] A. Knauf: The *n*-Centre Problem of Celestial Mechanics for large Energies. Journal of the European Mathematical Society **4**, 1–114 (2002)
- [KS] A. Knauf, Ya. Sinai: Classical Nonintegrability, Quantum Chaos. DMV–Seminar Band 27. Basel: Birkhäuser 1997
- [KT] Kozlov, V.V.; Treshchev, D.V.: Billiards: a genetic introduction to the dynamics of systems with impacts. AMS Translations of mathematical monographs 89, 1991
- [LW] C. Liverani, M.P. Wojtkowski: Ergodicity in Hamiltonian Systems. Dynamics Reported IV, 130–202. Berlin: Springer 1995
- [Mi] J. Milnor: Morse Theory. Annals Math. Stud.51. Princeton: Princeton University Press 1963
- [PR] I. Percival, D. Richards: Introduction to Dynamics. Cambridge: Cambridge University Press 1983
- [Po] J. Pöschel: Integrability of Hamiltonian Systems on Cantor Sets. Commun. Pure Appl. Math. **35**, 635–695 (1982)
- [Ro] C. Robinson: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press 1999
- [Qu] E. Quaisser: Diskrete Geometrie. Heidelberg: Spektrum, Akad. Verl. 1994
- [Th] W. Thirring: Lehrbuch der Mathematischen Physik, Band 1. Klassische Dynamische Systeme. Wien: Springer 1988
- [Wa] P. Walters: An Introduction to Ergodic Theory. Graduate Texts in Mathematics **79**. Berlin, Heidelberg, New York: Springer 1982

Index

Anfangswertproblem 12	escape-Funktion 42
Atlas 95	Euler-Lagrangegleichung 58
äquivalente Atlanten 95	Extremal 58
natürlicher 102	Fixpunkt 8
Attraktor 9	Fluss 6
Bahnkurve 8	Freiheitsgrad 26
Bassin 9	Fußpunkt 100
bedingt-periodische Bewegung 133, 142	geodätische Bewegung 65
Frequenzen der 142	Geschwindigkeit 26
unabhängige 142	Gradientenfluss 24
Beschleunigung 26	Gronwall 148
Bifurkation 42	Gruppenwirkung 7
Bilinearform 28	transitive 131
schiefsymmetrische 28	Haarmaß 74
charakteristische Linien 118	Hamiltonfunktion 26, 52
Christoffelsymbol 65	relativistische 52
darstellende Matrix 29	holonome Zwangsbedingung 71
Diffeomorphismus 62	Impuls 47
Differentialgleichung 10	infinitesimal symplektisch 27, 34
geodätische 65	inneres Produkt 110
Hamiltonsche 26	Involution 128
lineare 15	Isotropiegruppe 131
Doppelpendel 71	Jacobi-Identität 34
dynamisches System 5	Jacobimetrik 70
diskretes 7	Jordan-Matrix 17
ergodisches 76	Jordan-Normalform 17
mischendes 79	kanonische Transformation 116
maßerhaltendes 75	Karte 95
Einsteinsche Summenkonvention 65	Kartenwechsel 95
Energie 45	Kommutator 34, 114
kinetische 45	Konfigurationsraum 27
potentielle 45	Konstante der Bewegung 128
Energiefunktional 60	Kontraktion 13
Energieschale 26	Kotangentialbündel 104
Ergodentheorie 76	Kotangentialraum 104

Kotangentialvektor 104	Polarisationsidentität 29
Krümmung 65	pull-back 29
innere 65	Raummittel 142
Längenfunktional 56	regulärer Wert 62
Lagrangefunktion 47	Riemannsche Metrik 64
Lagrangegleichung 47	Rotationsfläche 66
Legendretransformierte 48, 50	Satz über
Liapunov-Funktion 39	Asymptotische Vollständigkeit 90
Lieableitung 110	Eigenwerte symplektischer Abbildun-
Liealgebra 34	gen 32, 32
Liegruppe 35	Energieerhaltung 26
Liouvillemaß 75, 128	Normalform reeller Bilinearformen
Lipschitzbedingung	29
globale 14	Møller Transformation 87
lokale 12	Viriale 145
Maß 74	Satz von
Haar-Maß 74	Arnol'd 129
Liouvillemaß 75, 128	Birkhoff 83
Wahrscheinlichkeitsmaß 74	Clairot 68
Mechanik 45	Picard-Lindelöf 12
Newtonsche 45	Poincaréscher Wiederkehrsatz 93
Menge	Schwarzschild 90
integrable 129	stabil
messbare 73	asymptotisch 9, 36
offene 5	Liapunov 9, 36
unabhängige 128	stark 38
metrischer Tensor 168	stereographische Projektion 97
Mittelungsprinzip 139	Streutransformation 91
Morsetheorie 73	symplektische Form 30
Orbit 8	symplektische Gruppe 31
periodischer 8	symplektische Transformation 116
Ort 26	symplektischer Vektorraum 30
Parallelisierung 103	symplektische Zweiform 105
Periode 8	topologischer Raum 5
Phasenraum 6	Tangentialabbildung 102
erweiterter 117	Tangentialbündel 100
Picard-Iteration 13	Tangentialvektor 100
Poissonklammer 112	Torus 85, 71

Torusautomorphismus 80
Trajektorie 8
Untermannigfaltigkeit 62
Vektorfeld 100
Verzweigung 42
Vortexlinien 118
Zeitmittel 143