Vorlesung "Diophantische Geometrie" (Sommersemester 2019)

Übungsblatt 13 (19.7.2019)

Aufgabe 61: Durch $y^2 = x^3 - 43x + 166$ wird eine elliptische Kurve E über \mathbb{Q} definiert, die den Punkt P = (3,8) enthält.

- (1) Bestimme die von P erzeugte Untergruppe.
- (2) Für welche Primzahlen p ist die modulo p reduzierte Kurve \widetilde{E} nichtsingulär? Bestimme $\#\widetilde{E}(\mathbb{F}_p)$ für eine dieser Primzahlen. Was folgt für $E_{\text{Torsion}}(\mathbb{Q})$?
- (3) Bestimme $E_{\text{Torsion}}(\mathbb{Q})$.

Aufgabe 62: Sei C die über \mathbb{Q} durch

$$x_0^2 x_1 - x_0 x_1^2 - x_0 x_2^2 + x_1^2 x_2 = 0$$

definierte ebene Kubik.

- (1) Bestimme alle Punkte $P \in C(\mathbb{Q})$, die sich in der Form $P = (p_0 : p_1 : p_2)$ mit $p_0, p_1, p_2 \in \mathbb{Z}$ und $\max(|p_0|, |p_1|, |p_2|) \le 1$ schreiben lassen.
- (2) Unter den in (1) gefundenen Punkten ist ein Wendepunkt. Bestimme ihn.
- (3) Transformiere C in eine Kurve E in Weierstraß-Normalform $y^2 = x^3 + ax + b$ mit $a, b \in \mathbb{Z}$.
- (4) Warum ist die Kurve C nichtsingulär? (Durch Wahl des Wendepunktes als neutrales Element wird dann $C(\mathbb{Q})$ mit der geometrischen Addition als Verknüpfung zu einer abelschen Gruppe.)
- (5) Bestimme $E_{\text{Torsion}}(\mathbb{Q})$.
- (6) Bestimme $C_{\text{Torsion}}(\mathbb{Q})$.

Aufgabe 63: Sei K ein Körper der Charakteristik $\neq 2, 3$ und $b \in K^*$. Durch

$$y^2 = x^3 + b$$

wird dann eine elliptische Kurve E definiert. Zeige, dass genau die 9 Punkte

$$O = (0:0:1), \quad (0,\sqrt{b}), \quad (0,-\sqrt{b}), \quad (-\sqrt[3]{4b},\sqrt{-3}\sqrt{b}), \quad (-\sqrt[3]{4b},-\sqrt{-3}\sqrt{b}),$$

$$(-\frac{-1+\sqrt{-3}}{2}\sqrt[3]{4b},\sqrt{-3}\sqrt{b}), \quad (-\frac{-1+\sqrt{-3}}{2}\sqrt[3]{4b},-\sqrt{-3}\sqrt{b}),$$

$$(-\frac{-1-\sqrt{-3}}{2}\sqrt[3]{4b},\sqrt{-3}\sqrt{b}), \quad (-\frac{-1-\sqrt{-3}}{2}\sqrt[3]{4b},-\sqrt{-3}\sqrt{b})$$

die Wendepunkte der Kurve E sind. Dabei bezeichen $\sqrt{b}, \sqrt{-3}$ und $\sqrt[3]{4b}$ festgewählte Elemente des algebraischen Abschlusses von K, für die gilt $(\sqrt{b})^2 = b, (\sqrt{-3})^2 = -3$ und $(\sqrt[3]{4b})^3 = 4b$.

Aufgabe 64: Sei $p \ge 5$ eine Primzahl und E die durch $y^2 = x^3 + 2$ über \mathbb{F}_p definierte elliptische Kurve.

- (1) Zeige, dass die 9 Wendepunkte der Kurve E genau dann über \mathbb{F}_p definiert sind, d.h. in $E(\mathbb{F}_p)$ liegen, wenn $p \equiv 1$ oder 7 mod 24 gilt.
- (2) Beweise die Implikation

$$p \equiv 1 \text{ oder } 7 \mod 24 \implies \#E(\mathbb{F}_p) \equiv 0 \mod 9.$$

(3) Untersuche experimentell, welche Werte $\#E(\mathbb{F}_p)$ mod 9 auftreten.

Aufgabe 65: Sei p eine Primzahl und E die durch $y^2 = x^3 + px$ über $\mathbb Q$ definierte elliptische Kurve. Bestimme die über $\mathbb Q$ definierten Torsionspunkte, d.h. $E_{\text{Torsion}}(\mathbb Q)$.