List of modules for the Master's degree programme Computational and Applied Mathematics

for the wintersemester 2019/20

Department of Mathematics Friedrich-Alexander-Universität Erlangen-Nürnberg

Last updated:October 15th 2019Reference:Examination regulations dated July 15, 2019

Table of contents

Module 1: ModAna1: Modeling and Analysis in Continuum Mechanics I	5
Module 5: ArchSup: Architectures of Supercomputers	6
Module 8: NumPDE: Numerics of Partial Differential Equations	8
Module 9: AdDiscTech: Advanced Discretization Techniques	10
Module 10a: MaSe: Master's seminar MApA	12
Module 10b: MaSe: Master's seminar NASi	13
Module 10c: MaSe: Master's seminar Opti	14
Module 11: Master's Thesis	15
Module 15: IPReg: Inverse Problems	16
Module 25: AnFBP: Analysis of free-boundary problems in continuum mechanics	17
Module 29: DiscOpt I: Discrete Optimization I	18
Module 33: OptPDE: Optimization with Partial Differential Equations	20
Module 35: OptIE: Optimization in Industry and Economy	21
Module 37: GraphR: Graph Routing and Applications	22

Dean of Studies (General questions about the programme)

Prof. Dr. Friedrich Knop

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstr.11, 91058 Erlangen, Room 01.321

Phone: +49 9131 8567021 E-mail: knop@math.fsu.de

Examination Committee for Bachelor's and Master's degree courses in Mathematics (Examination matters for the programme)

Prof. Dr. Eberhard Bänsch

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.323

Phone: +49 9131 8567202, E-mail: baensch@am.uni-erlangen.de

Degree programme manager

Prof. Dr. Günther Grün

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.343

Phone: +49 9131 8567220 E-mail:gruen@math.fau.de

Degree programme administration (Procedures and organisation)

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.337

Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Subject advisor

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.337

Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Student Service Centre

Christine Gräßel, M. A.

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 01.385

Phone: +49 9131 8567024, E-mail:ssc@math.fau.de

1	Module name	Module 1: ModAna1: Modeling and Analysis in Continuum Mechanics I	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 1 semester hr/week	
3	Lecturers	Prof. Dr. Martin Burger <u>martin.burger@math.fau.de</u>	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	 Theory of elasticity (geometrical non-linear modelling, objectivity and isotropy of energy functionals, linearised elasticity, polyconvexity, existence according to J. Ball) Non-equilibrium thermodynamics and modelling in hydrodynamics (basic concepts in thermodynamics, balance equations, constitutive relations) Parabolic function spaces and the Aubin-Lions lemma Weak solution theory for incompressible Navier-Stokes equations 	
6	Learning objectives and skills	Students derive mathematical models for fluid mechanics and elasticity theory, evaluate the predictive power of models using physical modelling assumptions and the qualitative characteristics of solutions, apply analytical techniques to rigorously prove qualitative properties of solutions.	
7	Prerequisites	Basic knowledge in functional analysis and modelling is recommended.	
8	Integration into curriculum	1st semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory elective module for MSc in Mathematics	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 P.G. Ciarlet: Mathematical elasticity, North-Holland, S.R. De Groot & P. Mazur: Non-equilibrium thermodynamics, Dover, C. Eck, H. Garcke & P. Knabner: Mathematical Modeling, Springer, L.C. Evans: Partial differential equations, AMS, I. Liu: Continuum mechanics, Springer, R. Temam: The Navier-Stokes equations, AMS Chelsea Publishing. 	

1	Module name	Module 5: ArchSup: Architectures of Supercomputers	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 2 semester hrs/week	
3	Lecturers	Johannes Hofmann johannes.hofmann@fau.de	
4	Module coordinator	Prof. Dr. Dietmar Fey	
5	Content	Principles of computer and processor architectures Modern processor architectures Homogeneous and heterogeneous multi/many-core processors Parallel computer architectures Classification and principles of coupling parallel computers High speed networks in supercomputers Examples of supercomputers Programming of supercomputers	
6	Learning objectives and skills	Students can explain the functionality of modern processors used in supercomputers, recognise the special problems associated with energy consumption and programming in supercomputers, can explain the different ways of interconnecting parallel processes, can classify parallel computers with regard to their storage connection and basic processing principles, are able to make use of and run a supercomputer to solve their own technical or mathematical problem. Based on the examples demonstrated during the lecture, they are able to generalise challenges associated with the discovery of bottlenecks and use them to solve their specific problem, are able to characterise their problems (e.g. scientific or technical simulation experiments) with regard to the computing and memory requirements for a supercomputer in a way that is appropriate for the architecture, can make use of the performance-measuring methods for parallel computers to evaluate various computer architectures and select the appropriate architecture for their architectures and select the appropriate	
7	Prerequisites	 Basic Linux skills Basic programming skills (C or C++) 	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc Computation and Applied Mathematics, Computational Engineering degree programmes (Computer-Assisted Engineering) (Master of Science) and Information Technology (Master of Science)	
10	Method of examination	oral exam (30 minutes):	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (annually)	

13	Workload	Contact hours: 60 hrs Independent study: 90 hrs
		Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	Quinn: Parallel Programming in C with MPI and OpenMP, McGraw-Hill Hennessy/Patterson: Computer Architecture - A Quantitative Approach, Morgen&Kaufmann

1	Module name	Module 8: NumPDE: Numerics of Partial Differential Equations	ECTS 10
2	Courses/lectures	a) Lecture: 4 semester hrs/week	
		b) Practical: 2 semester hr/week	
3	Lecturers	gruen@math.fau.de	
4	Module coordinator	Prof. Dr. Peter Knabner <u>knabner@math.fau.de</u>	
5	Content	 Classical theory of linear elliptic boundary value problems (outline) Finite difference method (FDM) for Poisson's equation in two dimensions (including stability via inverse monotonicity) Finite element method (FEM) for Poisson's equation in two dimensions (stability and convergence, example: linear finite elements, implementation) Variational theory of linear elliptic boundary value problems (outline) FEM for linear elliptic boundary value problems (2nd order) (types of elements, affin-equivalent triangulations, order of convergence, maximum principle) Iterative methods for large sparse linear systems of equations (condition number of finite element matrices, linear stationary methods (recall), cg method (recall), preconditioning, Krylov subspace methods 	
6	Learning objectives and skills	 Students apply algorithmic approaches for models with partial differential equations and explain and evaluate them, are capable to judge on a numerical method's properties regarding stability and efficiency, implement (with own or given software) numerical methods and critically evaluate the results, explain and apply a broad spectrum of problems and methods with a focus on conforming finite element methods for linear elliptic problems, collect and evaluate relevant information and realize relationships. 	
7	Prerequisites	Recommended: basic knowledge in numerics, discretization, and optimization	
8	Integration into curriculum	1st semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for BSc Mathematics mandatory module for BSc Technomathematik Non-Physics elective module for MSc Physics	
10	Method of examination	Weekly exercises and written exam (90 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours:90 hrsIndependent study:210 hrsTotal:300 hrs, corresponding to 10 ECTS credits	

14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	 P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations, Springer 2003 S. Larssen & V. Thomee: Partial Differential Equations with Numerical Methods. Springer 2005 D. Braess: Finite Elements. Cambridge University Press 2010 lecture scripts on the homepage of the domain Modeling, Simulation, and Optimization of the department Mathematics, frequently updated

1	Module name	Module 9: AdDiscTech: Advanced Discretization Techniques	ECTS 10	
2	Courses/lectures	a) Lecture: 4 semester hrs/week		
3	Lecturers	Prof. Dr. Peter Knabner knabner@math.fau.de		
А	Module coordinator	Prof. Dr. Eberhard Bänsch		
4		baensch@math.fau.de	baensch@math.fau.de	
5	Content	saddle point problems in Hilbert spaces mixed finite element methods for saddle point problems, in particular for Darcy and Stokes Streamline-Upwind Petrov-Galerkin (SUPG) and discontinuous Galerkin (dG) finite element methods (FEM) for convection dominated problems Finite Volume (FV) methods and their relation to FEM a posteriori error control and adaptive methods		
6	Learning objectives and skills	 Students have a discriminating understanding, both theoretically and computationally of FE as well as FV methods for the numerical solution of partial differential equations (pde) (in particular of saddle point problems), are capable of developing problem dependent FE or FV methods and judge on their properties regarding stability and effectiveness, are familiar with a broad spectrum of pde problems and their computational solutions, are capable of designing algorithms for adaptive mesh control. 		
7	Prerequisites	Recommended: Introduction to numerical methods for pdes, functional analysis		
8	Integration into curriculum	1st semester		
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied N Compulsory elective module for MSc in Mathematics	Aathematics	
10	Method of examination	oral exam (15 minutes)		
11	Grading Procedure	100% based on oral exam		
12	Module frequency	Winter semester (annually)		
13	Workload	Contact hours:75 hrsIndependent study:225 hrsTotal:300 hrs, corresponding to 10 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		

		 A. Ern, JL. Guermond: Theory and Practice of Finite Elements
		• A. Quarteroni & A. Valli: Numerical Approximation of Partial Differential
		Equations
16	Recommended reading	 P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations, Springer
		• D. A. Di Piettro & A. Ern: Mathematical aspects of discontinuous Galerkin methods. Springer 2012

1	Module name	Module 10a: MaSe: Master's seminar MApA	ECTS 5
2	Courses/lectures	Seminar: "Topics on control and numerics of Partial Differential Equations (PDE)"	
3	Lecturers	Prof. Dr. Enrique Zuazua <u>enrique.zuazua@fau.de</u>	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	A topic from MApA that relates to the compulsory elective modules	offered.
6	Learning objectives and skills	 Students can use original literature to familiarise themselves with a current research topic, can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the MApA specialisation: make use of analytical techniques to rigorously prove the qualitative characteristics of solutions to mathematical models in applied sciences. 	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for MSc in Mathematics and Economics	
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning of semester.	the

1	Module name	Module 10b: MaSe: Master's seminar NASi	ECTS 5
2	Courses/lectures	Seminar: "Topics on control and numerics of Partial Differential Equations (PDE)"	
3	Lecturers	Prof. Dr. Enrique Zuazua <u>enrique.zuazua@fau.de</u>	
4	Module coordinator	Prof. Dr. Eberhard Bänsch <u>baensch@math.fau.de</u>	
5	Content	A topic from NASi that relates to the compulsory elective modules o	ffered.
6	Learning objectives and skills	Students can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the NASi specification: can solve exemplary computational problems with given or self-developed software in order to illustrate or verify numerical methods under consideration.	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied N recommended	1athematics
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for Msc in Mathematics and Economics	
10	Method of examination	talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours:30 hrsIndependent study:120 hrsTotal:150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning of semester.	the

1	Module name	Module 10c: MaSe: Master's seminar Opti	ECTS 5
2	Courses/lectures	Seminar: "Topics on control and numerics of Partial Differential Equations (PDE)"	
3	Lecturers	Prof. Dr. Enrique Zuazua <u>enrique.zuazua@fau.de</u>	
4	Module coordinator	Prof. Dr. Michael Stingl michael.stingl@fau.de	
5	Content	A topic from Opti that relates to the compulsory elective modules of	fered.
6	Learning objectives and skills	 Students can use original literature to familiarise themselves with a current research topic, can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the Opti specialisation: model theoretical and applied tasks as optimization problems and/or develop optimization algorithms for their solution and/or put these into practice 	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics Compulsory module for MSc in Mathematics Compulsory module for MSc in Mathematics and Economics	
10	Method of examination	fexamination talk/presentation (90 minutes) and handout (5-10 pages)	
11	Grading Procedure	talk/presentation 75% handout 25%	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning of semester.	the

1	Module name	Module 11: Master's Thesis	ECTS 25	
2	Courses/lectures	Oral examination Master's Thesis		
3	Lectures	The lecturers for the degree programme in Computational and Applied Mathematics		
4	Module coordinator	Prof. Dr. G. Grün		
5	Content	The master's thesis is in the field of <i>Modelling and Analysis,</i> or <i>Nume Analysis and Simulation,</i> or <i>Optimization,</i> and deals with a current re topic.	The master's thesis is in the field of <i>Modelling and Analysis</i> , or <i>Numerical</i> <i>Analysis and Simulation</i> , or <i>Optimization</i> , and deals with a current research topic.	
6	Learning objectives and skills	Students are capable of independently follow up a scientific question in the fields of "Modelling and Analysis", "Numerical Analysis and Simulation" or "Optimization" over an extended, specified period, develop original ideas and concepts for solving scientific problems in these fields, apply and improve mathematical methods rather independently - also in unfamiliar and interdisciplinary contexts, present and explain mathematical or interdisciplinary contents clearly in a manner appropriate for the target audience, both in writing and orally, improve their ability to plan and structure by implementing a thematic project.		
7	Prerequisites	Successful participation in all mandatory modules (35 ECTS) and at le from mandatory elective modules	east 20 ECTS	
8	Integration into curriculum	4th semester		
9	Module compatibility	Master's degree programme in Computational and Applied Mathematics		
10	Method of examination	ethod of examination Master's thesis (scope according to examination regulations) Oral exam (15 minutes)		
11	Grading Procedure	90% Master's thesis 10% Oral exam		
12	Module frequency	Summer semester (annually)		
13	Workload	Vorkload Contact hours: 15 hrs Independent study: 735 hrs Total: 750 hrs, corresponding to 25 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	Individual, depending on topic of Master's Thesis.		

1	Module name	Module 15: IPReg: Inverse Problems	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week	
		b) Practical: 0.5 semester hrs/week	
3	Lecturers	Prof. Dr. Martin Burger <u>martin.burger@math.fau.de</u>	
4	Module coordinator	Prof. Dr. Martin Burger martin.burger@math.fau.de	
5	Content	 Examples of inverse and ill-posed problems in engineering and medical imaging Linear regularization methods in Hilbert spaces and singular value decomposition Variational methods for regularization and image reconstruction problems Tomographic reconstruction and Radon transforms 	
6	Learning objectives and skills	Students develop understanding for special aspects of inverse problems and ill- posedness, apply regularization methods to inverse problems and develop a basic understanding of their properties, derive and solve inverse problems arising from technical and biomedical applications.	
7	Prerequisites	Recommended: basic knowledge in functional analysis	
8	Integration into curriculum	1 st or 3 rd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Elective module for MSc in Mathematics Elective module for MSc in Mathematics and Economics	
10	Method of examination	Oral exam (15 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered in the current semester, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37,5 hrs Independent study: 112,5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 H. Engl, M. Hanke, A. Neubauer: Regularization Methods for Inverse Problems, Kluwer 1996 M. Benning, M. Burger: Modern Regularization Methods for Inverse Problems, Acta Numerica 2018 	

1	Module name	Module 25: AnFBP: Analysis of free-boundary problems in continuum mechanics	ECTS 5
2	Courses/lectures	Lecture: 2 semester hrs/week	
2	Courses/rectures	Practical: 0.5 semester hrs/week	
3	Lecturers	Prof. Dr. Günther Grün <u>gruen@math.fau.de</u>	
4	Module coordinator	Prof. Dr. Günther Grün gruen@math.fau.de	
5	Content	Derivation of time-dependent free boundary problems in continuum mechanics, Basic results on existence and qualitative behaviour, Optimal estimates on the propagation of free boundaries,	
6	Learning objectives and skills	Students formulate free-boundary problems in hydrodynamics and in porous-media flow, explain analytical concepts for existence and nonnegativity results for degenerate parabolic equations as well as techniques for optimal estimates on spreading rates, validate different modeling approaches in a critical way.	
7	Prerequisites	Recommended: Basic knowledge of analysis of partial differential equations, corresponding to the syllabus of "Modeling and applied analysis in continuum mechanics" or that one of other pde-lectures.	
8	Integration into curriculum	3rd semester	
9	Module compatibility	Mandatory elective module MSc Computational and Applied Mathematics, Elective module MSc Mathematics (Analysis and Stochastics)	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	L.C. Evans: Partial Differential Equations, AMS, Original journal articles.	

1	Module name	Module 29: DiscOpt I: Discrete Optimization I	ECTS 5
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 1 weekly lecture hour	
3	Lecturers	Dr. Andreas Bärmann andreas.bärmann@math.uni-erlangen.de	
4	Module coordinator	Prof. Dr. Alexander Martin	
-		alexander.martin@fau.de	
5	Content	Theoretical and practical fundamentals of solving difficult mixed-inter- optimization problems (MIPs) constitute the main focus of this lead the concept of NP-completeness and a selection of common NP-com- problems will be presented. As for polyhedral theory, fundamental concerning the structure of faces of convex polyhedra will be cover Building upon these fundamentals, cutting plane algorithms as we and-cut algorithms for solving MIPs will be taught. Finally, some ty problems of discrete optimization, e.g., the knapsack problem, the salesman problem or the set packing problem will be discussed.	eger linear ture. At first, omplete ls rred. Il as branch- vpical e traveling
6	Learning objectives and skills	Students will gain basic theoretical knowledge of solving mixed-integer linear optimization problems (MIPs),	
		are able to solve MIPs with the help of state-of-the-art optimization software.	
7	Prerequisites	Recommended: Linear and Combinatorial Optimization	
8	Integration into curriculum	1st or 3rd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Elective module for MSc in Mathematics, Elective module for MSc in Mathematics and Economics, Core/research module MSc Mathematics within "Modeling, simulation, optimization", MSc Mathematics and Economics within "Optimization and process management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS: univis fau.de	
13	Workload	Attendance: 45 h Self-study: 105 h	
14	Module duration	one semester	
15	Teaching and examination language	English	

		Lecture notes
16		Conforti, Cornuéjols & Zambelli: Integer Programming, Springer 2014
		B. Grünbaum: Convex Polytopes, Springer, 2003
		B. Korte & J. Vygen: Combinatorial Optimization, Springer 2005
	Recommended reading	G. L. Nemhauser & L.A. Wolsey: Integer and Combinatorial Optimization, Wiley
-		1994
		A. Schrijver: Theory of Linear and Integer Programming, Wiley 1986
		L.A. Wolsey: Integer Programming, Wiley 1998
		G. Ziegler: Lectures on Polytopes, Springer, 1995

1	Module name	Module 33: OptPDE: Optimization with Partial Differential Equations	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	
3	Lecturers	Prof. Dr. Günter Leugering guenter.leugering@fau.de	
4	Module coordinator	Prof. Dr. Michael Stingl michael.stingl@fau.de	
5	Content	Several of the following topics: Optimization and control in Banach spaces Concepts of controllability and stabilization Optimal control of Partial differential equations Singular Perturbations and asymptotic analysis Numerical realizations of optimal controls Technical, medical and economic applications	
6	Learning objectives and skills	Students explain and use theory as well as numerical methods for optimization, control and stabilization in the context of partial differential equations, apply these abilities to technical and economic applications.	
7	Prerequisites	Basic knowledge in numerics, partial differential equations, and nonlinear optimization is recommended.	
8	Integration into curriculum	1 st or 3rd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Elective module for MSc in Mathematics Elective module for MSc in Mathematics and Economics	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 - F. Tröltzsch: Optimal Control of Partial Differential Equations, AMS, - G. Leugering & P. Kogut: Optimal Control of PDEs in Reticulated Dor Birkhäuser. 	mains,

1	Module name	Module 35: OptIE: Optimization in Industry and Economy	ECTS 5
2	Courses/lectures	Lecture: Optimization in Industry and Economy	
		Exercises: Optimization in Industry and Economy	
3	Lecturers	Dr. Francisco Javier Zaragoza Martínez	
		<u>franz@azc.uam.mx</u>	
4	Module coordinator	Prof. Dr. Alexander Martin alexander.martin@fau.de	
5	Content	Graph routing problems consist usually of an agent that must achieve a certain goal while traversing the arcs or vertices of a graph. Practical applications of graph routing include vehicle routing, pick-up and delivery services, mail delivery, meter reading, snow plowing, waste collection, and many others. Perhaps the simplest graph routing problems are the postman problem and the traveling salesman problem (covered in "Graph routing and applications"). In this course we are going to present some more complicated graph routing problems with practical applications, we are going to cover the mathematical programming techniques used to model these problems (usually as integer programs), and we are going to describe algorithmic methods of solution for some of them.	
6	Learning objectives and skills	At the end of this course, students should be able to (a) recognize the basic arc and edge graph routing problems, (b) solve graph routing problems using well- known combinatorial algorithms, (c) model more complex graph routing problems using integer programming, (d) apply mathematical programming techniques to solve practical graph routing problems.	
7	Prerequisites	Recommended: Modul LKOpt: Linear and combinatorial optimization	
8	Integration into curriculum	Master: 1st semester or later	
9	Module compatibility	Master elective modul (M-MA, TM-MA, WM-MA, CAM-MA-NASi, CAM-MA-Opti, CAM-MA-MApA)	
10	Method of examination	Oral exam (15 min)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (2019/2020)	
13	Workload	150 hr as follows: Lecture: 4 SWS x 7.5 = 30 hr Exercises: 2 SWS x 7.5 = 15 hr Self-study: 105 hr	
14	Module duration	Half a semester	
15	Teaching and examination language	English	
16	Recommended reading	There is a script prepared by the lecturer which will be available on S	tudOn

1	Module name	Module 37: GraphR: Graph Routing and Applications	ECTS 5
2	Courses/lectures	Lecture: Graph Routing and Applications	
_		Exercises: Graph Routing and Applications	
3	Lecturers	Prof. Dr. Francisco Javier Zaragoza Martínez	
		franz@azc.uam.mx	
4	Module coordinator	Prof. Dr. Alexander Martin	
		alexander.martin@fau.de	
5	Content	The origins of graph theory are usually traced back to Euler's solutio famous amusement known as the Königsberg bridges problem, the problem of starting at some point, traversing each bridge exactly of returning to the original point. Since then, numerous generalization variants of this problem have been proposed. In this course we are present some basic graph routing problems (known as the postma and the traveling salesman problem), we are going to cover the ne graph theoretical concepts and mathematical programming techni to model these problems (usually as linear integer programs), and going to describe algorithmic methods for their solution.	n to the at is, the once, and ons and e going to in problem ecessary iques used we are
6	Learning objectives and skills	At the end of this course, students should be able to (a) recognize the basic arc and edge graph routing problems, (b) solve graph routing problems using well- known combinatorial algorithms, (c) model more complex graph routing problems using integer programming, (d) apply mathematical programming techniques to solve practical graph routing problems.	
7	Prerequisites	Recommended: Modul LKOpt: Linear and combinatorial optimization	
8	Integration into curriculum	Bachelor: 5th semester or later Master: 1st semester or later	
		Bachelor elective modul (M-BA, TM-BA, WM-BA)	
9	Module compatibility	Master elective modul (CAM-MA-NASi, CAM-MA-Opti, CAM-MA-MA	νpA)
10	Method of examination	Homeworks (weekly)	
10		Written examination (Klausur, 90 min.)	
11	Grading Procedure	Written examination (Klausur, 100%)	
12	Module frequency	equency Winter semester (2019/2020)	
13	Workload	 150 h as follows: Lecture: 4 SWS x 7.5 = 30 h Exercises: 2 SWS x 7.5 = 15 h Self-study: 105 h 	
14	Module duration	Half a semester	
15	Teaching and examination language	English	
16	Recommended reading	There is a script prepared by the lecturer which will be available on S	tudOn