

List of modules for the Master's degree programme Computational and Applied Mathematics for the summer semester 2020

Not all of the listed modules are offered annually. On the other hand, additional modules may be offered.

Department of Mathematics Friedrich-Alexander-Universität Erlangen-Nürnberg

Last updated:March 23, 2020Reference:Examination regulations dated Feb 27, 2017

Table of contents

Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	5
Module 3: MoSi: Practical Course: Modeling, Simulation, Optimization	6
Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	8
Module 10: AdSolTech: Advanced Solution Techniques	10
Module 11: RTpMNum: Transport and Reaction in Porous Media: Modeling	12
Module 13: NuIF1: Numerics of Incompressible Flows I	14
Module 16: MaDS: Mathematical Data Science 1	16
Module 18: MaMM: Mathematics of Multiscale Models	17
Module 27: MSOpt: Introduction to Material and Shape Optimization	18
Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	20
Module 38: PdeConNum: Partial Differential Equations, Control and Numerics	21
Module 39: NumPDE II: Numerics of Partial Differential Equations II	23

Dean of Studies (General questions about the programme)

Prof. Dr. Friedrich Knop

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstr.11, 91058 Erlangen, Room 01.321 Phone: +49 9131 8567021 E-mail: knop@math.fsu.de

Examination Committee for Bachelor's and Master's degree courses in Mathematics (Examination matters for the programme)

Prof. Dr. Eberhard Bänsch

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.323

Phone: +49 9131 8567202, E-mail: baensch@am.uni-erlangen.de

Degree programme manager

Prof. Dr. Günther Grün

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.343

Phone: +49 9131 8567220 E-mail:gruen@math.fau.de

Degree programme administration (Procedures and organisation)

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 04.337

Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Subject advisor

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.337 Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Student Service Centre

Christine Gräßel, M. A.

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg

Cauerstrasse 11, 91058 Erlangen, Room 01.385

Phone: +49 9131 8567024, E-mail:ssc@math.fau.de

1	Module name	Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	МАрА
3	Lectures	Prof. Dr. M. Burger	
4	Module coordinator	Prof. Dr. G. Grün	
5	Content	 At least two of the following three topics: Shear-thinning liquids and monotone operators: analytical concepts, using the example of the p-Laplace equation Poisson-Boltzmann equation: analysis of semilinear equations with monotone nonlinearities Mathematical concepts of model reduction: homogenisation, gamma convergence, asymptotic analysis 	
6	Learning objectives and skills	 Students explain various concepts for model reduction and apply the mathematical models, formulate and prove qualitative statements on solutions to or semilinear partial differential equations in continuum results. 	o quasilinear
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc in Computational and Applied Mathematics in the fields of "Modeling, Simulation and Optimization" and "Analysis and Stochastics"	
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 Braides: Gamma-convergence for beginners, Oxford University D. Cioranescu & P. Donato: An introduction to homogeniz University Press R.E. Showalter: Monotone operators in Banach space and partial differential equations, AMS 	ation, Oxford

1	Module name	Module 3: MoSi: Practical Course: Modeling, Simulation, Optimization	ECTS 5
2	Courses/lectures	Seminar: 3 semester hrs/week	MApA/NASi/Opti
3	Lectures	Prof. Dr. M. Burger	
4	Module coordinator	Prof. Dr. M. Burger	
5	Content	 Modelling, analysis, simulation or optimisation of proceeding or the natural sciences (Partial) differential equation models (also with additi corresponding numerical algorithms ((Mixed) Finite El ((M)FEM), Finite Volume Method (FVM), Discontinuou Mixed integer or continuous (non-)linear optimisation 	onal aspects) and ement Method us Galerkin (DG))
6	Learning objectives and skills	 Students work on a problem in engineering or the natural scient team, but with assigned independent tasks, by construmathematical model and solving it using analytical an methods, are able to collect and evaluate relevant information a connections, are able to implement processes using their own or spand critically evaluate the results, are able to set out their approaches and results in a convincing manner, making use of appropriate presentare able to develop and set out in writing the theories solutions they have developed, develop their communication skills and ability to work project work. 	ucting a suitable d numerical and identify pecified software omprehensible and tation techniques, s and problem
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanic	is I
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc in Computational Applied Mathem Mandatory elective module for MSc in Mathematics in the field Simulation and Optimization"	
10	Method of examination	Talk/presentation (45 minutes) and final report (10 - 15 pages)	
11	Grading Procedure	Talk/presentation 50% final report 50%	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16	Recommended reading	Project-dependent. Will be published on StudOn at the beginning of the semester.	
----	---------------------	--	--

1	Module name	Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	ECTS 10
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 2 semester hrs/week	
3	Lecturers	Prof. Dr. G. Wellein	
4	Module coordinator	Prof. Dr. Gerhard Wellein	
5	Content	Introduction to the architecture of modern supercomputersSingle core architecture and optimisation strategiesMemory hierarchy and data access optimizationConcepts of parallel computers and parallel computingEfficient "shared memory" parallelisation (OpenMP)Parallelisation approaches for multi-core processors including GPUsEfficient "distributed memory" parallelisation (MPI)Roofline performance modelSerial and parallel performance modellingComplete parallel implementation of a modern iterative Poisson sol	
6	Learning objectives and skills	 Students acquire a comprehensive overview of programming modern supercomputers efficiently for numerical simulations, learn modern optimisation and parallelisation strategies, guided by structured performance modelling, acquire an insight into innovative programming techniques and alternative supercomputer architectures, are able to implement numerical methods to solve partial differential equations (PDEs) with finite difference (FD) discretization with high hardware efficiency on parallel computers. 	
7	Prerequisites	Recommended: Experience in C/C++ or Fortran programming; basic knowledge of MPI and OpenMP programming	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Compulsory module for MSc Computational and Applied Mathemati	cs
10	Method of examination	oral exam (30 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 120 hrs Independent study: 180 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	

15	Teaching and examination language	English
16	Recommended reading	 G. Hager & G. Wellein: Introduction to High Performance Computing for Scientists and Engineers. CRC Computational Science Series, 2010. ISBN 978-1439811924 J. Hennessy & D. Patterson: Computer Architecture. A Quantitative Approach. Morgan Kaufmann Publishers, Elsevier, 2003. ISBN 1-55860-724-2

1	Module name	Module 10: AdSolTech: Advanced Solution Techniques	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi
3	Lectures	Prof. Dr. E. Bänsch	
4	Module coordinator	Prof. Dr. P. E. Bänsch	
5	Content	 Krylov subspace methods for large non-symmetric system: Multilevel methods, especially multigrid (MG) methods, n non-nested grid hierarchies Parallel numerics, especially domain decomposition methors Inexact Newton/Newton-Krylov methods for discretized n partial differential equations Preconditioning and operator-splitting methods 	ested and ods
6	Learning objectives and skills	 Students are able to design application-specific own MG algorithms theory of multigrid methods and decide for which problem algorithm is suitable to solve large linear systems of equat are able to solve sparse nonlinear/non-symmetric systems with modern methods (also with parallel computers), are able to develop under critical assessment complete an methods for application-orientated problems. 	ns the MG ions, s of equations
7	Prerequisites	Recommended: Advanced Discretization Techniques	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied in the field of "Modeling, Simulation and Optimization"	Mathematics
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

		 Quarteroni & A. Valli: Numerical Approximation of Partial Differential Equations
16	Recommended reading	 P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations
		 Further literature and scientific publications are announced during the lectures

1	Module name	Module 11: RTpMNum: Transport and Reaction in Porous Media: Modeling	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	МАрА
3	Lectures	Dr. Alexander Prechtel	
4	Module coordinator	Prof. Dr. S. Kräutle	
5	Content	 Modeling of fluid flow through a porous medium: Grounds (Richards' equation), multiphase flow Advection, diffusion, dispersion of dissolved substances, (r reaction-models (i.a. law of mass action, adsorption, kinet equilibrium, reactions with minerals) Models of partial (PDEs), ordinary (ODEs) differential equa local conditions Nonnegativity, boundedness, global existence of solutions model assumptions in the case of a pure ODE model as we PDE model Existence of stationary solutions (i.a. introduction to the Fo network theory) 	nonlinear) ic / in local tions, and , necessary ell as for a
6	Learning objectives and skills	 Students are able to model flow and reaction processes in porous m macro- and micro-scale using partial differential equations possess the techniques and the analytical foundations to a global existence of solutions. 	, ,
7	Prerequisites	Recommended: Basic knowledge in differential equations	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module: MSc. Computational and Applied Mathematics MSc Mathematics with field of "Modelling, Simulation, and Optimization" Non-physical elective module: MSc Physics 	d
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

		S. Kräutle: lecture notes
		https://www.math.fau.de/kraeutle/vorlesungsskripte/
16	Performended reading	• C. Eck, H. Garcke, P. Knabner: Mathematical Modeling, Springer
10	16 Recommended reading	• J.D. Logan: Transport Modeling in Hydrogeochemical Systems, Springer
		M. Feinberg: lecture notes
		 crnt.osu.edu/LecturesOnReactionNetworks

1	Module name	Module 13: NuIF1: Numerics of Incompressible Flows I	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi
3	Lectures	Prof. Dr. E. Bänsch	
4	Module coordinator	Prof. Dr. E. Bänsch	
5	Content	 Mathematical modelling of (incompressible) flows Variational formulation, existence and (non-)uniqueness of the stationary Navier-Stokes (NVS) equations Stable finite element (FE) discretization of the stationary (N Stokes equations Error estimates Solution techniques for the saddle point problem 	
6	Learning objectives and skills	 Students explain and apply the mathematical theory for the stational incompressible Navier-Stokes equations, analyse FE discretization for the stationary Stokes equation them to practical problems, explain the meaning of the inf-sup condition, choose the appropriate function spaces, stabilisation techni solution techniques and apply them to concrete problem set 	s and apply iques and
7	Prerequisites	Recommended: Advanced discretization techniques	
8	Integration into curriculum	2nd semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied in the field of "Modeling, Simulation and Optimization"	Mathematics
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral examination	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours:37.5 hrsIndependent study:112.5 hrsTotal:150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

		• V. Girault1 & PA. Raviart: Finite element methods for the Navier-Stokes equations. Theory and algorithms. Springer 1986
16	Recommended reading	• H. Elman, D. Silvester & A. Rathen: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press 2014
		 R. Temam: Navier-Stokes equations. Theory and numerical analysis. North Holland

1	Module name	Module 16: MaDS: Mathematical Data Science 1	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 1/2 semester hrs/week	NASi
3	Lecturers	Prof. Dr. M. Burger	
4	Module coordinator	Prof. Dr. M. Burger	
5	Content	 Clustering and Classification Models Machine learning: empirical risk minimization, kernel meth variational models Ranking problems Mathematical models of graph structured data 	nods, and
6	Learning objectives and skills	 Students develop understanding of modern big data and state of the methods to analyze them, apply state of the art algorithms to large data sets, derive models for network / graph structured data. 	e art
7	Prerequisites	Recommended: basic knowledge in numerical methods and optimization	
8	Integration into curriculum	2 nd or 4 th semester	
9	Module compatibility	Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module in MSc in the field of "Modeling, Simulation and Optimization"	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Sommer semester (not annually) To check whether the course is offered in the current semester, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 Goodfellow, Y. Bengio, A. Courville: Deep Learning, MIT Press, 2015 T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer, 2008 	

1	Module name	Module 18: MaMM: Mathematics of Multiscale Models	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	МАрА
3	Lecturers	PD Dr. N. Neuß	
4	Module coordinator	PD Dr. N. Neuß	
5	Content	 Function spaces of periodic functions and asymptotic expa Two-scale convergence and unfolding method Application to differential equation models in continuum r Multi-scale finite element methods Numerical upscaling methods 	
6	Learning objectives and skills	 Students have profound expertise about the basic methods in multi analysis and homogenisation, are able to derive rigorously homogenised (effective) mod analyse the quality of the approximation. 	
7	Prerequisites	Recommended: Knowledge in modeling as well as analysis and num partial differential equations	erics of
8	Integration into curriculum	3 rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Mathematics Mandatory elective module for MSc in Mathematics in the "Modeling, Simulation and Optimization" Mandatory module for BSc Data Science 	
10	Method of examination	Oral exam (20 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	At least once every two years To check whether the course is offered in the current semester, see univis.fau.de	UnivIS:
13	Workload	Contact hours: 37,5 hrs Independent study: 112,5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 D. Cioranescu & P. Donato: An Introduction to Homogeniza U. Hornung (ed.): Homogenization and Porous Media Y. Efendiev & T. Hou: Multiscale Finite Element Methods 	ntion

1	Module name	Module 27: MSOpt: Introduction to Material and Shape Optimization	ECTS 10
		a) Lectures: 4 semester hrs/week	
2	Courses/lectures	b) Practical: 1 semester hr/week	Opti
3	Lecturers	Profs. Drs. M. Stingl	
4	Module coordinator	Prof. Dr. M. Stingl	
5	Content	 shape-, material- and topology optimization models linear elasticity and contact problems existence of solutions of shape, material and topology opproblems approximation of shape, material and topology optimization by convergent schemes 	
6	Learning objectives and skills	 Students derive mathematical models for shape-, material and topo optimization problems, apply regularization techniques to guarantee to existence approximate design problems by finite dimensional discreted derive algebraic forms and solve these by nonlinear progratechniques. 	of solutions, tizations,
7	Prerequisites	 Recommended: Knowledge in nonlinear optimization, Basic knowledge in numerics of partial differential equation 	ns
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applie Mathematics Mandatory elective module for MSc Mathematics in the fields "Modeling, Simulation and Optimization", "Analysis and Stoch Mandatory elective module for MSc Mathematics and Econom fields of study "Optimization and Process Management" 	of astics"
10	Method of examination	oral exam (20 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16	Recommended reading	 J. Haslinger & R. Mäkinen: Introduction to shape optimization, SIAM, M. P. Bendsoe & O. Sigmund: Topology Optimization: Theory, Methods and Applications, Springer.
----	---------------------	--

1	Module name	Module 31:	ECTS 5
-	Module name	NALIP: Numerical Aspects of Linear and Integer Programming	ECTS 5
		a) Lectures: 2 weekly lecture hours	
2	Courses/lectures	b) Practical: 0.5 weekly lecture hour	Opti
3	Lecturers	Prof. Dr.A. Martin	
4	Module coordinator	Prof. Dr. A. Martin	
5	Content	 Revised Simplex (with bounds) Simplex Phase I Dual Simplex LP Presolve/Postsolve Scaling MIP Solution Techniques 	
c	Looming chiestives and skills	Students	r colving linear
6	Learning objectives and skills	are able to explain and use methods and numerical approaches for and mixed-integer programs in practice.	r solving inear
7	Prerequisites	Knowledge in linear algebra and combinatorial optimization is recommended.	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics Mandatory elective module for MSc Mathematics in the field of "Modeling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Economics in the fields of "Optimization and Process Management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
		Summer semester (not annually)	
12	Module frequency	To check whether the course is offered, see UnivIS univis.fau.de or handbook of current semester	module
		Attendance: 45 h	
13	Workload	Self-study: 105 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	
16	Recommended reading	 V. Chvátal: Linear Programming, W. H. Freeman and Company, New York, 1983 L.A. Wolsey: Integer Programming, John Wiley and Sons, Inc., 1998 	

1	Module name	Module 38: PdeConNum: Partial Differential Equations, Control and Numerics	ECTS 5
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	МАрА
3	Lecturers	Prof. Dr. E. Zuazua	
4	Module coordinator	Prof. Dr. E. Zuazua	
5	Content	 Examples of PDE models arising in industrial applications, Bi Social Sciences Long time asymptotics Control of trajectories Numerics for long time dynamics and control Some applications in the control of population dynamics 	iology and
6	Learning objectives and skills	 Students develop understanding for special aspects of dynamosystems control, apply numerical methods to control problems and basic understanding of their properties, derive and solve inverse problems arising from appreciation of their properties of the properties of the	develop a
7	Prerequisites	Recommended: basic knowledge in functional analysis	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational an Mathematics Compulsory elective module for MSc in Mathematics in t study "Modeling, Simulation and Optimization" Mandatory elective module for MSc in Mathematics and in the field of "Optimization and Process Management" 	he field of
10	Method of examination	Oral exam (15 minutes)	
11	Grading Procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

		 J. M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs, 143, AMS, 2009
16	Recommended reading	 E. Zuazua. Propagation, observation, and control of waves approximated by finite difference methods. SIAM Review, 47 (2) (2005), 197-243

1	Module name	Module 39: NumPDE II: Numerics of Partial Differential Equations II	ECTS 5
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 1 semester hr/week	NASi
3	Lecturers	Prof. Dr. G. Grün	
4	Module coordinator	Prof. Dr. G. Grün	
5	Content	 Classical and weak theory for linear parabolic initial-bound problems (IBVPs) (outline), finite-element method (FEM) for 2nd-order linear parabol (semi-discretisation in space, time discretisation by one-st stability, comparison principles, order of convergence), FEM for semi-linear elliptic and parabolic equations (fixed-Newton-methods, secondary iterations), higher-order time discretisation, extrapolation, time-step 	ic IVBPs ep methods, point- and
6	Learning objectives and skills	 Students apply algorithmic approaches for models with partial differequations and explain and evaluate them, are capable to judge on a numerical method's properties restability and efficiency, implement (with own or given software) numerical method critically evaluate the results, explain and apply a broad spectrum of methods with a for conforming finite element methods for parabolic problem these approaches also to nonlinear problems, collect and evaluate relevant information and realize relations. 	regarding ds and us on s, extending
7	Prerequisites	Recommended: basic knowledge in numerics and numerics of pde	·
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Mathematics Mandatory elective module for BSc Mathematics Mandatory module for BSc Technomathematik Non-Physics elective module for MSc Physics 	Applied
10	Method of examination	written exam (90 minutes) with exercises	
11	Grading Procedure	100% based on written exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	

15	Teaching and examination language	English	
16	Recommended reading	 P. Knabner, L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer, New York, 2003. S. Larsson, V. Thomée, Partial Differential Equations with Numerical Methods, Springer, Berlin, 2005. 	