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Abstract

‘Lisp is a very flexible and powerful language, but up to now it
has not been used intensively for applications in scientific computing.
The main reason is the prejudice that Lisp is slow. While this prej-
udice may have been true in early stages of Lisp’s history, it is not
really true today. Furthermore, the virtues of Lisp are becoming more
and more important. In this contribution, we support this point of
view: first, by comparing the efficiency of BLAS routines written in C
and Common Lisp and second, by discussing the recently developed
toolbox FEMLISP for solving partial differential equations with finite
element methods and multigrid.

Key Words: Common Li:ép, floating-point performance, BLAS, run-time
compilation, partial differential equations, finite element methods, multi-
grid.

1 Introduction

Lisp is the second-oldest high-level computer language after Fortran. It is a

very flexible and powerful language, and many problems arising in the com-

putational sciences were first solved using Lisp as a vehicle. Besides being
well-known as the language for solving problems in artificial intelligence, Lisp
was often used for prototyping, i.e. as the language in which an application
was first implemented. For example, the world’s first computer algebra sys-
tem, MACSYMA, was implemented in Lisp. Lisp is also the language of the
CAD system AUTOCAD and the extensible editor EMACS. In spite of these
successes, Lisp has not yet become a mainstream language. The reasons are
mostly historical: in the first decades of computer history, resources were
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scarce, and a language for which the first implementations were interpreters,
which has automatic memory management as an essential component, and
which is used best inside large development environments could not compete
with lightweight languages that were more or less sufficient for solving the
problems of small complexity which could be treated at that time.

Nowadays, the situation is drastically different. Computing power has
increased tremendously, rendering it possible to have powerful Lisp environ-
ments on personal computers while still using only a fraction of the available
memory and CPU power. Due to Java, automatic memory management has
become a mainstream feature. In the meantime, Lisp itself has also grown
up into Common Lisp, which is a powerful, object-oriented language, suited
to real-world applications, with many implementations that support compi-
lation to native code. Thus, using Lisp also for problems outside its original
realm of artificial intelligence is a natural choice today. Indeed, this has been
known for some time and was discussed at several points in literature, e.g. in
[6], but, unfortunately, only with small impact outside the Lisp community.
Yet today, there seems to be a growing interest in Lisp especially in the math-
ematical community, as the recent applications KENZO [13] or FEMLIsP [12],
as well as the flourishing of the free computer algebra system MAaAXIimMA [9]
show.

The structure of this article is as follows. In Section 2, we give an overview
of Common Lisp. In Section 3, we study the floating-point efficiency for
compiled Lisp code and, in Section 4, we briefly sketch the FEMLISP toolbox.
We end with conclusions and acknowledgements.

2 Common Lisp

In this section, we want to give a brief overview of Common Lisp, which is
one dialect of Lisp. Lisp itself was designed at the end of the 1950s and is
thus the second-oldest high-level computer language after Fortran, which was
formulated some years earlier in 1954. Thus, it had a long time for growing-
up and changed considerably from its beginnings. During its first decades, it
diversified into a large variety of dialects which were then unified during the
1980s. The result of this unification effort is Common Lisp, which became
an ANSI Standard in 1994. Nowadays, it is the dominant dialect in the Lisp
family of languages, though other dialects coexist, notably Scheme (which has
a small language core and is adapted well to educational purposes), Emacs
Lisp (the configuration language of the Emacs editor), and AuTOLIsP (the
configuration language of AUTOCAD).
In brief, Common Lisp has the following features:



. It is an interactive language which is usually used in an integrated de-
velopment environment. That is, compiler, debugger, and application
all are parts of the same Lisp environment. The editor is tightly inte-
grated as well (often being a part of the same environment). This allows
expressions to be evaluated with one key stroke, as well as information
and documentation of functions to be available when editing.

. It has powerful commands for list handling. (This does not mean that
lists are the only data structure. Instead, Common Lisp possesses a
wealth of other built-in data structures, e.g. multi-dimensional arrays,
hash-tables, or bit-vectors.)

. It allows for symbolic manipulation: every token which is read is in-
terned as an entity called “symbol” in name spaces called “patkages”.
Thus, comparison of symbols is fast (equality of pointers), and com-
posite data structures can be constructed efficiently.

. Probably its most obvious characteristic is a consistent prefix syntax of
the form (operator argumentl ...),eg. (+ 3 5), (sin x) or (if
(< x0) (- x) x).

. Because of the three preceding points, Lisp programs have a tree repre-
sentation which can be efficiently built and manipulated. Consequently,
a very strong mechanism for syntactic transformations called “macros”
becomes feasible. Most of Common Lisp basic operators are indeed
macros. For example, the loop expressions from Table 2 are trans-
formed into more elementary expressions involving conditionals and
even jumps. '

. Lisp is dynamically typed: variables can contain data of arbitrary type,
and the data themselves contain type information which is analysed at
runtime.

. Common Lisp possesses a complete numerical tower: there are short
and long integers, rational numbers, real and complex floating-point
numbers, together with generic arithmetic operating on them.

. Lisp has automatic memory management, i.e. memory does not have to
be freed manually, but is reclaimed automatically by garbage collection
(GC) in case it is not referenced any more. GC has turned out to be a
crucial ingredient for many advanced software techniques and is built-in
in most computer languages designed in recent years.
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9. Lisp supports “functional programming”, i.e. every expression has a
return value, and functions are first-class objects: they can be generated
(and compiled) in a local environment and can appear as a value of a
variable or return-value of a function.

10. Common Lisp is also a very strong object-oriented programming lan-
guage. The Common Lisp Object System (CLOS) has multiple inheri-
tance, multiple dispatch, class redefinition, introspection, and a meta-
object protocol allowing for extension and modification.

11. Lisp supports low-level programming: C or Fortran code can usually
be translated into the equivalent Lisp code.

3 Numerical efficiency of Common Lisp

In this section, we test Common Lisp for its numerical efficiency. We do
this by considering two important operations from the Basic Linear Algebra
Subroutines (BLAS), see [8], [5].

Most computations in numerical analysis and scientific computing have
to perform at least one of the following operations:
Scalar product: Compute the scalar product or dot product between two vec-
tors z = (z1,...,Z,)" and y = (y1,---,yn)'. The formula for this dot-
operation is

dot(x,y) =2 -y= D Tili- (1)

=1

Matrix-vector multiplication: Compute b = Az for

ap .-- Oin T1 bl i
A= : o, z= b= |- (2)

Am1l .- Omn Ty . bm

The formula for this operation is
b,‘:ZAijIj,’i—_—l,...,m. (3)
1=1

From this formula, we can see that the computation of b can be done in two
different ways. The first possibility is to compute each component b; as the
dot product between z and the i-th row of A. Alternatively, one can sum



double ddot (double *x, double *y, void daxpy (double a, double *x,

int n) double *y, int n)
{ {
int j; . int j;
double sum = 0.0; for (j=0; j<n; j++)
for (j=0; j<m; j++) ‘ y[3]1 += a*x[3j];
sum += x[jl*y[j]; }

return sum;

Table 1: C code for ddot and daxpy.

(defun ddot (x y n)
(declare (type fixnum n)
(type (simple-array double-float (*)) x y))
(loop for j of-type fixnum below n ‘
summing (* (aref x j) (aref y j)) of-type double-float))

(defun daxpy (a x y n)-
(declare (type fixnum n) (type double-float a)
(type (simple-array double-float (*)) x y))

(loop for i of-type fixnum below n do
(incf (aref y i) (* a (aref x 1)))))

Table 2: Common Lisp code for ddot and daxpy.

up scalar multiples of columns of A. This latter operation is composed of
elementary axpy-operations

v =y tazr;, i=1,...,n. (4)

Solving linear equations: Solve Az = b for x where

a1 --.- Qin I b1

Ani ... Qpp Tn b, .

Often, this is done by transforming A into a product of a lower and an upper
triangular matrix. Here, the elementary operation is again a call to axpy.

Both dot and axpy have an operation count of n additions and n multi-
plications or n arithmetic operations where an arithmetic operation consists
of one addition and one multiplication.

An implementation of these routines in C for vectors of double-precision
floating-point numbers is given in Table 1 while an equivalent implemen-
tation in Common Lisp is given in Table 2.! We see that both versions
present the same information to their compiler, such that both compilers

1The C and Lisp code used in these tests can be downloaded from the author’s web
page [10]. The C code has been published in [11].
Note also that a translation of C or Fortran code to Common Lisp can be done automat-
ically for a large part of the existing code base, see e.g. [6].
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Pentium 2 (400 MHz) Pentium 4 (2.4 GHz)
n = 256 n = 10° n = 256 n = 106
ddot daxpy l ddot daxpy || ddot daxpy I ddot daxpy
C 172 117 45 24 || 910 1140 | 300 140
CMUCL | 94 87 ‘ 35 18 690 480 . 300 140

Table 3: Some BLAS performance results (MFLOPS).

should be able to produce optimal machlne code. The Lisp version is more
verbose, however. In fact, Lisp’s syntax was not designed for putting type
declarations everywhere, and Lisp programmers mostly write code without
type declarations. Also in this case, this would make the above code shorter
and more generally applicable, e.g. to complex-valued vectors. On the other
hand, it would result in lower performance, because the compiler is not able
to deduce this type information without help and has to produce code han-
dling general numbers. Thus, the type declarations become necessary if such
routines present a performance bottleneck for the respective application.

Now, we measure the speed with which those routines are performed
either on a pair of short vectors (n = 256) or on a pair of long vectors
(n = 10°). The size of n makes a crucial difference because of the higher
data locality in the first case. To see why, remember that the CPU can
usually process data at a higher speed than it can be delivered from main
memory by random access. As a remedy, the so-called cache consisting of
fast memory chips is installed as a buffer between CPU and main memory.
Now, in the case n = 256, both vectors fit in the so-called primary cache
whereas, in the second case, they do not even fit in the so-called secondary
cache (at least for the hardware which we used for our tests).

Table 3 shows the performance which we measured on two machines: a
two-year-old laptop (Pentium 2, 400 MHz) and a new PC (Pentium 4, 2.4
GHz). We compiled the C code with the GNU C compiler (gcc) and -03
optimization. The Lisp code was compiled with the optimization settings

(declaim (optimize (debug 0) (safety 0) (space 0)
(compilation-speed 0) (speed 3))

using CMU Common Lisp (CMUCL) from [4].

As a result of these tests, we see that the machine code produced by
CMUCL is upto 60% slower than the machine code produced by gcc if all data
is inside the cache (but equally fast if memory bandwidth is the limiting
factor). The reason is that the compiler back end of gcc is more elaborate,
presumably because many more people have improved on it. Further, writing




/* dynamic version: n, stencil_size, stencil_values unknown
~at compile time */

for (posl=n; posi<(n-1)#*n; posl+=n)
for (pos2=posl+l; pos2<posl+n-1; pos2++)
{

register double s = 0.0;
for (k=0; k<stencil_size; k++)
s += stencil_values[k]*u[pos2+stencil_shift[k]];
ufpos2] = s;

/* static version: n=1000, nine-point stencil for Laplace equation */
for (pos1=1000; pos1<(1000-1)*1000; pos1+=1000)
for (pos2=posl+l; pos2<posl+999; pos2++)
u[pos2] += 8.0/3.0 * ulpos2] - 1.0/3.0 *
(u[pos2-1001]+ulpos2-1]+ulpos2+999] +u[pos2-1000] +
u[pos2+1000]+u[pos2-999] +u[pos2+1]+ulpos2+1001]1);

Table 4: Applying a stencil to a function on a structured grid.

a good compiler for Common Lisp is a very demanding task, not because of
the compiler back end, but because of obtaining good efficiency for advanced
language features, for example CLOS. Thus, many commercial or free imple-
mentations put the emphasis there and accept a slightly reduced low-level
performance. ’

Nevertheless, it is interesting that judicious use of the advanced language
features of Common Lisp can also result in a higher performance than a pure
C implementation can obtain. The key feature here is that Common Lisp
source code can be generated and compiled to machine code at runtime, while
conventional languages do not allow this in a portable fashion. This allows
for the compilation of code adapted to some special runtime situation. This
is the equivalent of doing a controlled just-in-time compilation of arbitrary
complexity.

Examples where this can be used abound. For example, in interactive
programs for solving partial differential equations (see Section 4), coeflicient
functions can be read and compiled to native code. This presents a large
problem for other approaches, because interpreting those expressions is com-
plicated and may be too slow at runtime. Another example is the application
of stencils to functions defined on structured grids, which arises for filters
applied in image-processing, wavelet transformations, and finite-difference
discretizations. We elaborate this in the following.

Two versions of C code for applying a stencil to a function defined on a
structured two-dimensional grid of dimension n x n are shown in Table 4. In

the second version, the dimensions of the grid as well as the stencil are as-

sumed to be known (the stencil arises from discretizing the Laplace equation
with bilinear finite elements). It is obvious that the C compiler can produce
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| C (dynamic) C (static) CMUCL
P2 (400 MHz) 4.3 sec 1.1 sec 1.6 sec
P4 (2.4 GHz) 0.59 sec 0.30 sec  0.48 sec

Table 5: Timings of C and CL for 10 applications of a difference stencil.

much more efficient code for the second version, but this is only possible if
both n and the stencil are known at compilation time. In contrast, with
Common Lisp, it is easy to generate and compile the code for the second ver-
sion at runtime.? Comparing the efficiency of the dynamic and static C code
compiled by gcc with the efficiency of the code generated by CMUCL we
obtain the values shown in Table 5, and we see that the Lisp code performs
somewhat worse than the static C version because of the reasons mentioned
above, but better than the (dynamic) C code with the same functionality.

4 Femlisp

The theoretical and practical treatment of partial differential equations (PDEs)

is a highly complex domain of mathematics with a multitude of possible phe-

nomena arising. Consequently, the efficient numerical solution is also intri-

cate and the implementation of such methods inherits this intricacy. Thus,

1 originally, software in this domain could handle only special situations well

’ ‘ and was not applicable to different problems. But this changed in the last
decade, when more and more software packages appeared, claiming to be

multi-purpose tools for solving PDEs. Before C++4 became popular, this

work was done in Fortran (e.g. [1]) or C (e.g. [2]), but nowadays, most de-

velopments in this application area are done in C++.

Unfortunately, C++ is a double-edged sword. C++ improves on its pre-
decessor C, while still maintaining a very machine-oriented programming
style. It does not have most of the advanced features described in Section 2.
Additionally, it suffers from the compromises it has to make to ensure ef-
ficient code, see [7]. Thus, it appears to be a rather inadequate choice for
implementing a complicated framework for solving partial differential equa-
tions.

This observation was the reason for the development of the toolbox FEM-
LISP which can solve partial differential equations using the finite element

?0f course, compilation introduces an overhead (for our example about 0.02 seconds
(I on the P4), but these are fixed costs, independent of the size of the grid and independent
of the number of stencil applications.




method (FEM), see e.g. [3]. It benefits from the choice of Common Lisp as
the implementation language, especially because of the powerful interactive
environment and due to the expressiveness of the language which results in
a considerable reduction of source code.® ‘

At the moment, FEMLISP has the following functionality. It handles un-
structured meshes consisting of arbitrary tensor-product cells in arbitrary
space dimensions. This functionality has not yet been implemented in any
other software. At the moment, the discretization is done with Lagrange
finite elements of arbitrary order, but the extension to other types of fi-
nite elements should pose no problems. Isoparametric and non-parametric
cell mappings for obtaining a good resolution of boundaries and interfaces
are available. For the solution of the arising linear systems, geometric and
algebraic multigrid methods are available. The graphic display of meshes,
coefficients and finite element functions is done by linking to Gnuplot and
IBM’s Data Explorer.

FEMLISP was first presented at the CISC 2002 in Berlin and the EMG -
2002 in Hohenwart. It is described in more detail in [12]. Its first public
release is scheduled for January, 2003.

5 Conclusions

Lisp is certainly one of the most expressive computer languages available
today, if not the most expressive. Because of its long history, it is a very
mature language suited very well to large-scale applications. More and more,
such a language will become a necessity also for scientific computing, where
the complexity of real-world applications requires the combination of many
intricate algorithms to obtain a solution.

In this article, we have shown that the efficiency of Lisp code is no longer
a problem, whereas the strength of Common Lisp opens up new possibilities
for interesting applications in scientific computing. One of these applications
is the solution of partial differential equations, where this power is certainly
required for handling the multitude of phenomena and algorithms from a
software engineering standpoint.

3The amount of source code reduction is difficult to quantify exactly, but is said to
be in the order of 1.5-5. One hint for a large reduction factor is that the FEMLISP core
comprises only about 12.000 lines of source code, which appears to be very little when
compared with similar programs written in C or C++.

T
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