INTERDISZIPLINARES ZENTRUM
FUR WISSENSCHAFTLICHES RECHNEN

SONDERFORSCHUNGSBEREICH 359
REAKTIVE STROMUNGEN, DIFFUSION UND TRANSPORT

4 A
FEMLISP - a tool box for solving
partial differential equations with

finite elements and multigrid

Nicolas NeuB

\ Preprint 2003 - 11 (SFB 359) August 2003 /
AT
@ i
A o
&5
>

UNIVERSITAT HEIDELBERG

Ruprecht-Karis-Universitat Heidelberg

Interdisziplindres Zentrum fir
Wissenschaftliches Rechnen

Sonderforschungsbereich 359
Reaktive Stromungen, Diffusion und Trans-
port

FEMLISP - a tool box for solving
partial differential equations with

finite elements and multigrid

Nicolas NeuB

{

|

| .

| Preprint 2003 - 11 (SFB 359) August 2003
] ,

|

|

}

{

Diese Arbeit wurde von der Deutschen Forschun gsgemeinschaft gefordert

eingereicht bei: Computing and Visualization in Science

Ruprecht-Karls-Universitat Heidelberg

Interdisziplinares Zentrum fir
Wissenschaftliches Rechnen

Sonderforschungsbereich 359
Reaktive Stromungen, Diffusion und Transport

Im Neuenheimer Feld 294 '
'D-69120 Heidelberg

Telefon: +49 (6221) 54-8977

Telefax: +49 (6221) 54-8652

e-mail sfb359@iwr.uni-heidelberg.de

URL http://www.sfb359.uni-heidelberg.de/

FEMLISP— a tool box for solving partial
differential equations with finite elements and
multigrid

Nicolas Neuf3
July 23, 2003

Abstract

In this article, we present the tool box FEMLISP for solving partial
differential equations. FEMLISP uses the finite element method on
unstructured meshes of arbitrary space dimensions and uses several
types of multigrid algorithms for solving the arising linear systems. It
is written in Common Lisp which has several important benefits. First,
FEMLISP is interactive without the need of an additional scripting
language. Second, the high expressiveness of Lisp leads to a very
compact repesentation of the underlying mathematical ideas.

2 o N. Neuf3

1 Introduction

This article is concerned with software for solving partial differential equa-
tions (PDEs). The theoretical and practical treatment of partial differential
equations is a highly complex domain of mathematics with a multitude of
possible phenomena. Consequently, the design of optimal numerical meth-
ods is also difficult, and the efficient implementation of such methods is an
even more challenging problem. Therefore, originally, software in this do-
main could handle only very special problems well and was not applicable to
other situations. But this changed in the last decade, when more and more
software packages appeared, claiming to be multi-purpose tools for solving
partial differential equations.

This paper presents such a multi-purpose tool. But in contrast to other
approaches, which are mostly written using machine-oriented languages like
Fortran, C, or C++, our application is written in Lisp, which is a language
long known from research in artificial intelligence.

Lisp is the second-oldest high-level computer language after Fortran. It
is a very flexible and powerful language, and a lot of problems arising in
computational science were first solved using Lisp as a vehicle. Besides being
well-suited for solving problems in artificial intelligence (AI), the world’s first
computer algebra system, Macsyma, was implemented in Lisp, and, more
recently, Lisp was used in the package Kenzo to solve difficult problems in
algebraic topology. Lisp is also the language of Autocad and the editor Emacs.
Astonishingly, up to now, Lisp has not been a mainstream language. The
reasons for this are mostly historical: in the first decades of computer history,
resources were scarce and a language for which the first implementations
were interpreters, which has automatic memory management as an essential
component, and which is used best inside large development environments
could not compete with lightweight languages for the computatlonally easy
problems which were tackled at that time.

Nowadays, the situation is drastically different. Computing power has
increased tremendously, thus making it possible to have powerful Lisp en-
vironments on personal computers while still using only a fraction of the
available memory. Due to Java, automatic memory management has be-
come a mainstream feature. In the meantime, Lisp itself has grown up into
Common Lisp, which is a powerful object-oriented language for handling
real-world applications, and for which many implementations support native
code compilation.

Consequently, using Lisp for problems outside its original realm of artifi- -
cial intelligence is a very natural choice today, see [7], [6], [12]. Comparing
FEMLISP [8] with other PDE toolboxes, we observe the following advantages

which cannot be easily obtained using conventional languages like Fortran,
C, or C++:

1. FEMLISP is interactive. Toolboxes written in conventional languages
have to implement this feature themselves or to be linked with some
scripting language like Perl or Python. In any case, an artificial inter-
face between scripting level and application language appears, which is
not easy to maintain.

2. The editor is integrated in a way that is very difficult to achieve for
conventional languages. For example, argument lists of functions ap-
pear when typing, and the documentation of functions and variables is
available at a keystroke. Also, the debug cycle is as short as can possi-
bly be: changing a function, recompiling it separately, and testing it in
the running environment is usually a matter of only a few keystrokes
and fractions of a second runtime.

3. Lisp is very expressive, and programming techniques can be used which
would introduce a large overhead in conventional languages (some ex-
amples are given in Section 6). This leads to a concise representation
of the underlying mathematical ideas and therefore to a very short and
maintainable source code. To achieve maximum benefit, the source
code is available under a liberal open source license.

The structure of this article is as follows: in Section 2, we list features
which a multi-purpose tool for solving PDEs should have. Next, Section 3
gives an overview of FEMLISP’s features and their implementation, focusing
on certain points where FEMLISP deviates from other approaches. Section 6
shows an application of FEMLISP to a certain problem. Finally, in Section 7,
we discuss how well FEMLISP meets the requirements posed at the beginning
and what remains to be done.

4 - N. Neuf

2 PDE software requirements

The following is a list of properties which we think important for a multi-
purpose tool box for solving partial differential equations. All of them are
fundamental and non-trivial to implement.

1. Arbitrary domains 2 C R™ can be handled, with n being at least 1,2,
and 3. In general, for n > 1, a good approximation of arbitrary do-
mains) will require either the use of unstructured grids or the use of
similarly complex constructions like locally smooth patches of struc-
tured grids. Note that other values of n are also interesting. The case
n = 0 represents ordinary differential equations, and the case n = 4
occurs, for example, when solving problems in space-time in general
relativity.

2. On subregions where the solution is smooth, approximations of higher
order are necessary for an optimal approximation. Additionally, the
boundary of the domain should also be approximated with the same
order of accuracy. For smooth problems and modest-to-high accuracy
requirements, this feature can be considered a necessity.

3. If the solution has distinct local features, grid adaptivity (h-adaptivity)
is necessary. In analogy to the previous point, there are problems in
practice where this is the most important quality a PDE solver should
have. An important ingredient here is good error estimators.

4. Usually, the solution of linear system appears at some place when solv-
ing problems in numerical analysis. In the case of finite element meth-
ods, the linear systems arising are very large and additionally quite
sparse, because the support of basis functions typically intersects only
a few elements. For such systems, the application of direct solvers is
suboptimal or even impossible on current hardware. Thus, it is impor-
tant for fast solvers to be available, especially iterative methods with
hierarchical preconditioners, e.g. multigrid.

5. Unstructured grids, local adaptivity and multigrid are rather complex
from a software engineering viewpoint and introduce a large adminis-
trative overhead in the implementation. It is possible to eliminate this
overhead in most situations; yet, up to now only very special cases have
been optimized in this way. ‘

6. Parallelization is essential for handling real-world applications involving
huge amounts of data.

7. Interactivity is a necessary requirement for user-friendly software in al-
most any field of applications, and it is also a very convenient feature
for the developer. Unfortunately, most academic software for solving
PDEs is not interactive. The rest usually achieves interactivity by
linking to some scripting language, e.g. Perl, Python, or TCL. Unfor-
tunately, this approach is suboptimal. First, programmer and/or user
have to learn an additional language. Second, this approach introduces
an artificial interface between scripting and application language which
is not easy to maintain. !

8. An important point which is often neglected is the quality of the soft-
ware from a software engineering viewpoint. Especially, the source
code should be compact and easy to understand (thus allowing for fast
modifications) while still being general and extensible. At first glance,
these may appear to be contradictory goals, but experience shows that
reasonable compromises can usually be found, provided that the right
formulation is chosen. In any case, they depend heavily on the expres-
sivity of the computer language in use. Note also that this quality can
only be determined if the source code is available; this rules out some
commercial software.

We think that it is very reasonable to judge PDE software by how well
it meets the requirements above in an integrated way. It is not sufficient if
only one or two of these properties are available, or if certain properties are
implemented in an incompatible way (i.e. there are separate versions of the
same program satisfying different properties of the above list).

!Commercial packages usually offer interactivity by means of a graphical user interface
(GUI), which can be regarded as a very simple scripting language. Nevertheless, it is a
different situation, because many users require exactly such a GUI and do not want to
be bothered with either application or scripting language. The main problem here is that
the GUI is usually too limited for sophisticated users, so that an additional interactive
scripting language level becomes necessary, see e.g. [5].

6 - o N. Neus

(MACROS) (UTILITIES) (MATLISP)

Figure 1: Important FEMLISP packages and their dependency.

3 Femlisp overview

In brief, FEMLISP [8] has the following features:

e Interactive environment

e Unstructured grids in arbitrary space dimensions n > 0. Elements can
be arbitrary products of simplices.

e Isoparametric and non-parametric element mappings
e Local grid refinement

¢ Lagrange finite elements of arbitrary order

e Geometric and algebraic multigrid methods

e Graphics (using Gnuplot, Data Ezplorer)

Fig. 1 shows the internal structure of Femlisp. It is grouped in modules
with module dependency indicated by arrows. The modules appear in this

F—-——_

~l

form in the project file start.lisp. They usually correspond to a Com-
mon Lisp package, but may sometimes comprise several packages, where a
package defines a namespace in Common Lisp.

The modules shown in this figure can be roughly ordered in levels. The
lowest level consists of the three modules MACROS, UTILITIES, and MATLISP.
MACROS and UTILITIES extend CL with some useful macro and function
definitions, while MATLISP contains a CL interface [11] to the Fortran BLAS
and LINPACK routines [4].

The second level consists of the modules ALGEBRA, MESH and GRAPHIC.
GRAPHIC provides a low-level interface to external graphic software; at the
moment both IBM’s OpenDX and Gnuplot are supported. ALGEBRA contains
the data structures and operations used for linear algebra and MESH contains
mesh management including domain definitions. Both the MESH and ALGEBRA
module will be discussed in more detail below.

The third level consists of the following modules:

1. The ITERATION module which includes the definition for the abstract
classes <solver>, iteration, as well as the generic function solve
which constitute the interface for linear and non-linear solving. Sev-
eral instances of these classes are implemented, including the conju-
gate gradient iteration and algebraic multigrid (AMG). The module
also contains the GEOMG package, which handles iterations that depend
on geometric information, e.g. from the discretization. At the mo-
ment, these are the geometric multigrid iteration, an AMG-like scheme
for preconditioning high-order discretizations with low-order ones, and
some smoothers of Vanka type.

2. The DISCRETIZATION module defines <discretization> as an ab-
stract class and <fe-discretization> as a concrete derived class. A
generic function get-fe is used for associating a cell with a finite el-
ement <fe>, which is a data structure containing information about
base functions and dual functionals on the corresponding cell. La-
grange finite elements of arbitrary order are implemented as a special
instance of <fe~-discretization>. Note that other discretizations as
finite differences or finite volumes could easily be incorporated as well.

3. The PROBLEM module introduces the <problem> class and methods.
Several derived problems are defined, e.g. <cdr-problem> for convection-
diffusion-reaction problems, <elasticity> for elasticity problems, and
<navier-stokes> for Navier-Stokes problems.

The third level provides another level of abstraction. It consists of the
modules STRATEGY and PLOT. STRATEGY provides methods for solving prob-

8 . N. Neuf3

lems by adaptive FEM, and PLOT defines generic functions and methods for
post-processing (plotting of coefficients, meshes, and functions).

The fourth level APPLICATION has access to a lot of basic modules, es-
pecially STRATEGY, DISCRETIZATION, and PLOT. There are several separate
directories and files containing applications of FEMLISP to special problems.

In Section 5, some of these modules will be discussed in more detail.

4 Advanced programming techniques

In FEMLISP, some advanced programming techniques are used which may
seem unusual to programmers used to other languages. We briefly explain
some of them. For more information, see [14].

4.1 Object-oriented programming

FEMLISP is implemented largely in an object-oriented manner using CLOS
(Common Lisp Object System). CLOS is very powerful, featuring, for ex-
ample, multiple inheritance, multi-argument dispatch, and class-redefinition
at runtime. We do not want to go into detail here, but refer to the books
[9] and [10]. Nevertheless, we want to discuss briefly some specialities of .
object-oriented ‘programming in Common Lisp which are not common in-
other programming languages.

Dispatch of a generic function on more than one argument is often useful.
One example is the following code for a matrix-vector multiplication taken
from sparse.lisp, where the method cannot be assigned clearly to either
the class <matrix> or the class <vector>.

(defmethod m* ((A <matrix>) (y <vector>))
(let ((x (make-row-vector-for A)))
(x+=Ay x A y)
x))

Method modification opens up a nice way for enhanced code re-use by
allowing a method for a derived class to modify methods for superclasses by
defining :before, :after, and :around methods. For example, the following
modifying method adds a compatibility check to the above matrix-vector
multiplication.

(defmethod m* :before (4 y)
(assert (= (mcols A) (length y))))

Multiple inheritance is usually not used as much as single inheritance,
so that some object-oriented programming languages, for example Java, do
not provide it at all. Nevertheless, it can be quite useful. In FEMLISP, it is
used, for example, to define so-called mizin classes which are used to dispatch
the behaviour of a multigrid scheme between the standard correction scheme
(CS) and Brandt’s full approzimation scheme (FAS), see the code at the end
of Subsection 5.5.

Class redefinition at runtime is very useful, especially in the development
phase of a program, since the same Lisp session is often used during several
days or even weeks. ‘

10 o N. Neuf3

4.2 Memoization

Quite often it happens that some time-intensive function is called very fre-
quently on only few values. Easy examples of this are simple recursive pro-
cesses as the computation of binomial or Fibonacci numbers. In FEMLISP,
this occurs at several places, e.g. when computing n-dimensional reference
elements and corresponding refinement rules, when computing finite element
data for those reference elements, and so on. A useful technique for acceler-
ating programs in this case is so-called “memoization”, which means storing
already computed values in a table and retrieving them from there if possible.

Now, in Common Lisp, it is easy to construct a language extension which
turns an existing function into a memoized one, see e.g. [14]. The code is
simply the following:

(defun memoize-symbol (funsym)
"Memoizes the function named by the given symbol."
(let ((unmemoized (symbol-function funsym))
(table (make-hash-table :test #’equalp)))
(setf (symbol-function funsym)
#’ (lambda (&rest args)
(multiple-value-bind (value found)
(gethash args table)
(if found
value
(setf (gethash args table)
(apply unmemoized args))))))))

An application of this technique to the recursive computation of Fibonacci
numbers then yields something like the following:

* (defun fib (n) * (memoize-symbol ’fib)
(case n
(0o (11 : * (time (fib 35))

Evaluation took:
0.0 seconds of real time
0.0 seconds of user run time
0.0 seconds of system run time
0 page faults and
552 bytes comnsed.

(t (+ (fib (- n 1))
(£ib (- n 2))))))
FIB
* (time (fib 35))
; Evaluation took:
- 1.31 seconds of real time
1.3 seconds of user run time ;
0.0 seconds of system run time 9227465
0 page faults and
0 bytes consed.

H
»
)
H
)
H

9227465

4.3 Flexible argument lists and assembly lines

In machine-oriented languages, it is usually required that both the number
of function arguments and their types are known and, as soon as functions
need a larger number of parameters, these are collected in some structure or

11

class. Because this is quite inflexible, functions in Common Lisp are allowed
to have a variable number of parameters of arbitrary type. Additionally,
the arguments can be named with certain keywords. This means that the
keyword part of the argument list has an even number of elements which
appear in pairs of the form symbol - value (such a list is called a property
list). This allows for a very flexible parametrization of a lot of operations.

In FEMLISP, a variant of this technique has proven useful in several places.
Here, instead of a standard result, the function adds its output to a property
list handed to the function as a parameter. We call such a property list an
“assembly line”. This has several benefits:

1. The function can grab arbitrary parameters from the assembly line.
2. A function can put (named) values on the assembly line.
3. The assembly line can then be passed to other functions.

Such assembly lines are used, for example, in the implementation of the
Stiiben AMG (algebraic multigrid) algorithm in stueben.lisp, and in the
implementation of the problem-solving strategy in strategy.lisp. For ex-
ample, the default strategy for solving problems reads as follows:

(defmethod solve-with ((strategy <strategy>) (problem <problem>)
assembly-line)
(loop (sufficient-p strategy assembly-line)
(wvhen (getf assembly-line :end-p) (return assembly-line))
(improve-guess strategy assembly-line)))

The methods initial-guess and improve-guess specialized for the
class <fe-strategy> are then in turn composed from assembly-line oper-
ations performing discretization, solution of the linear system, error estima-
tion, and mesh adaption.

4.4 Integrated documentation, testing, and demos

Common Lisp offers several interesting possibilities for integrating the docu-
mentation and testing phase with programming in a way which cannot easily
be done in languages that are not interactive or do not have sufficient intro-
spection features.

First, function and variable declarations may contain docstrings docu-
menting their use. These strings can be asked for in the interactive environ-
ment. There are also tools which extract those docstrings for composing a
reference manual. This is no substitute for a good user manual, of course,
but an important supplement.

12 o ‘ N. Neuf

i Second, regression test suites can be constructed easily. In FEMLISP, this
is done by putting a test function at the end of most files. This function
i then checks several critical features which the file or module provides. It is
added to the test suite by the command adjoin-femlisp-test. Then, after
loading FEMLISP, all these functions can be executed with the command
run-femlisp-tests. Errors and exceptions are registered and reported later
| on.

‘ Third, a demo suite is also built into FEMLISP in a similarly distributed
manner. Wherever something interesting could be demonstrated, a small
1 demo node is generated with make~demo and added to the tree of all demos
with adjoin-demo. After loading FEMLISP, the whole demo suite is available
‘\ and can be run with the command demo.

13

5 Details of some Femlisp modules

In the following subsections, we discuss some of the modules in more detail.
A note on the syntax: we have mostly used class names of the form <...>.
This makes the programs more readable, even if it differs from the notation
used for built-in classes.

5.1 The ALGEBRA module

This module contains definitions for doing linear algebra in FEMLISP and con-
sists of several files. Besides others, these are vector.lisp and matrix.1lisp,
where an abstract interface for linear algebra on vectors and matrices is de-
fined. In matlisp.lisp, this interface is realised for Matlisp matrices, and
in addition the matlisp is partially extended to arrays. In crs.lisp, the
well-known compact row-ordered storage is defined for storing sparse matri-
ces, tensor.lisp contains class and method definitions for full tensors of
arbitrary rank.

The file sparse.lisp then introduces a sparse storage scheme for block
vectors and block matrices over arbitrary index sets. This is very convenient
for functions and linear operators defined on unstructured grids because the
geometric grid objects themselves can index their degrees of freedom. It
also allows for local updates when advanced adaptive schemes like the one

proposed in [15] are used.
The definition of the classes <sparse-vector> and <sparse-matrix> is
as follows

(defclass <sparse-vector> ()
((blocks :initform (make-hash-table) :type hash-table)
(key->size :reader key->size :initarg :key->size
:type (function (t) positive-fixnum))
(multiplicity :reader multiplicity :initform 1
:initarg :multiplicity :type fixnum)
(print-key :reader print-key :initarg :print-key
:initform #’princ :type (function (t))))

(:documentation "The slot blocks contains a hash-table of vector blocks
indexed by keys. The function key->size determines the block size, the
function print-key determines how each key is printed. Multiplicity is
used for handling multiple right-hand sides/solutions simultaneously."))

(defclass <sparse-matrix> ()
((row-table :accessor row-table :initarg :row-table
:initform (make-hash-table) :type hash-table)
(column-table :accessor column-table :initarg :column-table
:initform (make-hash-table) :type hash-table)
(print-row-key :reader print-row-key :initarg :print-row-key
:initform #’princ :type function)
(print-col-key :reader print-col-key :initarg :print-col-key
:initform #’princ :type function)
(row-key->size :reader row-key->size :initarg :row-key->size
:type (function (t) positive~fixnum))

14 N N. Neuf

(col-key->size :reader col-key->size :initarg :col-key->size
:type (function (t) positive-fixnum))
(keys->pattern :reader keys->pattern :initarg :keys->pattern
:type function))
(:documentation "The <sparse-matrix> represents an unordered matrix
graph."))

Basic methods for those classes are also defined in sparse.lisp. An LU
decomposition for <sparse-matrix> is implemented in sparselu.lisp.

Unfortunately, the use of hash-tables instead of arrays is much slower
than working with, for example, compact row-ordered storage. Thus, good
performance can only be expected if the inner blocks are relatively large.
This is the case for systems of equations and/or approximations of higher
order. Future versions of FEMLISP will probably improve on that by using
an array-based scheme similar to the one in sparse-tensor.lisp. However,
to obtain a speed comparable to statically typed languages as C++, it will
also be necessary to avoid the type dispatch for operations on the blocks
(which can in principle be vectors/matrices of any kind). This can be done
by compiling type-adapted code for the cases encountered frequently.

5.2 The MESH module

This module contains the definitions of meshes and routines for mesh man-
agement. The meshes allowed in FEMLISP are more general than those of
most other software for solving PDEs. In FEMLISP, both mesh, domain and
problem definitions are defined over an underlying abstraction, the so-called
<skeleton>. A <skeleton> captures the mathematical idea of a cell com-
plez which builds a topological space by mapping from standard domains
in R*. Now, a <skeleton> can be seen as mapping the cells of such a cell
complex to arbitrary values. Then, a <domain> is a <skeleton> where each
cell (which we call patch in this case) is mapped to geometric properties, and
a <mesh> is a <skeleton> where each cell is mapped to the domain patch to

which it belongs.
The basic definitions of this module are

(defclass <cell> ()
((cell-class :reader cell-class :initarg :cell-class
:type <cell-class>)
(boundary :reader boundary :initarg :boundary :initform #()
:type cell-vec)
(mapping :reader mapping :initarg :mapping nil))

(:documentation "The basic cell class. Every cell consists of its
class collecting all class information, an array of boundary cells and a
mapping slot. That slot contains the position for vertices and a possibly
nonlinear mapping for other cells. A value of nil means that multilinear
interpolation between the cormers is used for constructing the mapping."))

15

(defclass <skeleton> ()
((dim :accessor dimension :initarg :dimension :type (integer -1))
(etables :accessor etables :type (array t (*))))

(:documentation "A skeleton is a vector of hash-tables containing the
cells of a certain dimension as keys. The information stored in the
values is different depending on the subclass derived from skeleton."))

(defclass <domain> (<skeletomn>)

((boundary :accessor domain-boundary))

(:documentation "A <domain> is a special <skeleton>. Its cells are
called patches, and the values are property lists carrying geometric
information, e.g. metric, volume-form, embedding or identification."))

(defclass <mesh> (<skeleton>)
((domain :accessor domain :initarg :domain :type <domain>)
(parametric :accessor parametric :initform nil :initarg :parametric))

(:documentation "A <mesh> is a special <skeleton> mapping cells to)
property lists with properties of the cell. The most important property of
a cell is its patch in the domain. Another one could be a list of possibly
identified cells. The slot parametric determines which kind of cell
mappings are used for approximating the domain. These can be the nonlinear
mappings used in the domain definition, but also arbitrary approximations,
to those mappings, e.g. isoparametric mappings. The special value NIL
means that multilinear mappings are used for all cells outside the
boundaries."})

(defclass <hierarchical-mesh> (<mesh>)

((levels :accessor levels :initarg :levels

:type (array <skeleton> (*))))

(:documentation "Hierarchical-meshes are those meshes which will be used
most often, because they remember the refinement history and therefore
allow for refinement and coarsening. The slot levels is an array of
skeletons containing the cells for different levels."))

Meshes can be refined either uniformly or locally using the Freudenthal
algorithm as presented in [2] and generalized to product elements. When
local refinement is used, hanging nodes may occur. In contrast to most
other finite element software, in FEMLISP the difference of refinement levels
of adjacent cells may be arbitrarily large. Up to now, anisotropic refinement
of tensorial cells has not yet been implemented.

5.3 The PROBLEM module

The problem module consists of the package PROBLEM together with packages
for special problems like convection-diffusion-reaction equations, elasticity or

Navier-Stokes.
The PROBLEM package defines especially the following basic interface:

(defclass <problem> ()
((domain :accessor domain :initform (ext:required-argument)
:initarg :domain :type <domain>)
(p->c :accessor patch->coefficients :initform (ext:required-argument)
:initarg :patch->coefficients)

16 . N. Neuf

(memoize :initform t :initarg :memoize)
(multiplicity :reader multiplicity :initform 1 :initarg :multiplicity))

(:documentation "Base-class for a pde-problem. The domain slot contains
the domain on which the problem lives. The p->c slot contains a map from
the domain patches to problem coefficients. Those are property lists of
the form (:NAME1 coefficienti :NAME2 coefficient2 ...). The multiplicity
slot can be chosen as n>1 if the problem is posed with n different right
hand sides simultaneously."))

(defgeneric coefficients (problem)
(:documentation "Yields a list of possible coefficients for problem."))

(defclass <coefficient-input> ()

((local :reader ci-local :initarg :local :initform nil :type t)

(global :reader ci-global :initarg :global :initform nil :type t)
(solution :reader ci-solution :initarg :solution
:initform nil :type t))

(:documentation "The <coefficient-input>-class represents the interface
between discretization and problem. It may be extended as needed, e.g. to
allow for coefficients depending on the solution gradient. This class is
also used to construct a sample input for a <coefficient> by giving the
‘ needed entries the value t or nil."))

L (defclass <coefficient> ()
((input :accessor sample-input :initarg :input
:type <coefficient-input>)
(eval :accessor coeff-eval :initarg :eval
:type function))
(:documentation "A class for coefficient-functions. input is a sample
input indicating the needed/non-needed fields with a true resp. false
value. eval is the evaluating function."))

(defmethod evaluate ((coeff <coefficient>) (ci <coefficient-input>))
"The pairing between coefficient function and input."
(funcall (coeff-eval coeff) ci))

Then, for example, the Navier-Stokes problem in navier-stokes.lisp
is derived as follows:

(defclass <navier-stokes—problem> (<problem>)
9)

(:documentation "Navier-Stokes problem."))
(defmethod coefficients ((problem <navier-stokes-problem>))

"Coefficients for the Navier-Stokes problem."
? (VISCOSITY REYNOLDS FORCE CONSTRAINT))

Several sample problems, for example the well-known driven cavity, are
defined in this file as well.

5.4 The DISCRETIZATION module

This module contains the following basic definitions for finite element dis-
cretizations in fe.lisp: ‘

17

(defclass <discretization> ()

Q)

(:documentation "Discretization base class."))

(defclass <fe-discretization> (<discretization>)
((nr-comps :reader nr-of-components :initform 1 :initarg :nr-comps))
(:documentation "The base class for fe discretizations.'"))

(defgeneric get-fe (fe-disc cell)
(:documentation "Returns the finite element for the given discretization
and reference cell."))

(defclass <standard-fe-discretization> (<fe-discretization>)

((order :reader discretization-order :initarg :order)

(cell->fe :initarg :cell->fe))

(:documentation "For this class the finite elements are obtained from a
cell->fe mapping given as a class slot. Also the order is predetermined,
thus excluding hp~methods."))

Obviously, there are possibilities for incorporating non-standard finite
element discretizations like hp-methods as well, or even very different dis-
cretizations like finite-volume or finite-difference schemes into this interface.
The key for local assembly is given by the generic function get-fe, which
yields a suitable finite element for a given cell. The value of get-fe is a
class <fe> for scalar problems or <vector-fe> for vector-valued problems
which contains information on base functions and node functionals. Another
generic function quadrature-rule computes memoized quadrature rules for
those finite elements.

In the file fedisc.lisp, the function fe-discretize is defined. This
function performs the standard steps for finite element discretization: interior
assembly, boundary-constraint assembly, hanging- node-constraint assembly,
and the ensuing constraint elimination. It works on an assembly line as
explained in Section 4.3.

5.5 The ITERATION module

This module consists of several packages. Basic concepts of iterations and
solvers are defined in the package ITERATION. An extract of the interface
looks as follows:

(defclass <iteration> ()
((damp :reader damping-factor :initform 1.0 :initarg :damp)
(output :reader output :initform nil :initarg :output))
(:documentation "The <iteration> base class."))

(defclass <linear-iteration> (<iteration>)

O

(:documentation "The <linear-iteration> class. Linear iterations are
e.g. <gauss-seidel>, <cg>, or <multigrid>."))

(defclass <iterator> ()

18 o N. Neuf3

((matrix :reader matrix :initarg :matrix)

(initialize :reader initialize :initarg :initialize :initform nil)
(iterate :reader iterate :initarg :iterate :type function)
(residual-before :reader residual-before :initarg :residual-before)
(residual-after :reader residual-after :initarg :residual-after))

(:documentation "An <iterator> object contains functions doing iteration
work or flags indicating which work has or has not to be done for calling
that iterator. It is generated by the generic function make-iterator."))

(defgeneric make-iterator (linit mat)
(:documentation "Constructs an iterator object given a linear iteration
and a matrix."))

(defclass <solver> ()

((maxsteps :reader maxsteps :initform nil :initarg :maxsteps)
(threshold :reader threshold :initform nil :initarg :threshold)
(reduction :reader reduction :initform nil :initarg :reduction)
(residual-norm :reader residual-norm :initform #’norm

:initarg :residual-norm)
(output :reader output :initform nil :initarg :output))

(:documentation "The base class of linear, nonlinear and whatever

iterative solvers."))

(defgeneric solve (solver &rest parameters)
(:documentation "Solve a problem specified through the parameter list."))

Several standard iterations are available, e.g. Gauss-Seidel, SOR, ILU
(in linit.1lisp) and CG (in krylow.lisp). A larger block of code is con-
tained in a separate package MULTIGRID and contains the multigrid iteration.
The basic definition of the multigrid iterations is the following (see the file
multigrid.lisp):

(defclass <mg-iteration> (<linear-iteration>)
((pre-smooth :reader pre-smooth :initform *default-smootherx
:injtarg :pre-smooth)
(pre-steps :reader pre-steps :initform 1 !initarg :pre-steps)
(post-smooth :reader post-smooth :initform *default-smootherx
:initarg :post-smooth)
(post-steps :reader post-steps :initform 1 :initarg :post-steps)
(gamma :reader gamma :initform 1 :initarg :gamma)
(base-level :reader base-level :initform O :initarg :base-level)
(coarse-grid-iteration :reader coarse-grid-iteration
:initform *default-coarse-grid-iteration*
:initarg :coarse-grid-iteration)
(fmg :reader fmg :initform nil :initarg :fmg))

(:documentation "The multigrid iteration is a linear iteration specially
suited for the solution of systems of equations incorporating elliptic
terms. In ideal situations, it solves such systems with optimal
complexity. It is a complicated linear iteration, which comnsists of
applying simple linear iterators as smoothers on a hierarchy of grids.
This grid hierarchy is obtained either by discretizing on successively
Tefined meshes (geometric multigrid) or it is constructed from matrix
information alone (algebraic multigrid).

The <mg-iteration> is not intended to be used directly. Incorporating
mixins like <correction-scheme> or <fas> results in concrete classes like
<algebraic-mg>."))

19

(defclass <correction-scheme> ()

0O

(:documentation "This is a mixin-class which yields the correction scheme
variant of multigrid."))

(defclass <fas> ()
O

(:documentation "This is a mixin-class for <mg-iteration> which yields
the behaviour of Brandt’s FAS scheme."))

From this class, an algebraic multigrid iteration is derived in amg.lisp
and a geometric multigrid iteration in geomg.lisp. For example, the defini-
tion for algebraic multigrid is the following:

(defclass <algebraic-mg> (<correction-scheme> <mg-iteration>)

((max-depth :reader max-depth :initform most-positive-fixnum

:initarg :max-depth)
(cg-max-size :reader cg-max-size :initform 1
:initarg :cg-max-size))

(:documentation "The algebraic multigrid iteration is a multigrid
iteration where the hierarchy of problems is derived from the fine-grid
matrix. Usually, an algebraic multigrid will use the same iterator as its
geometric counterpart."))

This definition is then refined further towards algebraic multigrid methods
of selection and aggregation type. Those are in turn refined towards variants,
for example the Ruge-Stiiben method described in [16], [17].

20 o N. Neuf§

6 A sample application

FEMLISP was used for computing effective coefficients for heterogeneous me-
dia in several situations with periodically arranged heterogeneities. These
calculations include effective diffusion coefficients, effective elasticity tensors,
and effective boundary layer constants for oscillating boundaries, see [13].
Here, we include results for the computation of an effective elasticity tensor
for a porous structure.

The geometry of the representative cell Y is obtained as

Y =(0,1)¢\ B, whereB := {y| (Z [yi — %‘2)1/2}. (1)

=1

Let now Af} Y =R, 4,5,k 1 €{1,...,n} be the coefficients of a tensor of
rank 4 satisfying the symmetry conditions

AMl(y) = A%(y) = AL (y) (2)

for all 4,7,k,1 € {1,...,n} and all y € Y. Further, we require ellipticity and
continuity in the sense that

TikTik S Al W)Tani S iknik (3)

for all y € Y and all symmetric matrices n = (ij)ij=1,..n where a < b means
a < Cb with some moderate constant C.
Following [1], the effective elasticity tensor is then computed by

At = [48 0) (6000 + 20 4)
iq v ij(y)(jgOlr + By, (y)) dy (
where NV is a tensor of rank 3 satisfying the cell problem
0 (4 ONy
— () (6407 =0, Y. 5
5y, (A5 () (Giedir + o) y € (5)

For our numerical test, we look at the special case of a constant isotropic
elasticity tensor

Afjl(y) = Aicjl = /\51]0(5]1 -+ Iu,((sij(Skl + 5kj5il) (6)

with the Lamé constants A = y = 1. First, we consider the two-dimensional
case. Since the solution is smooth in Y, it makes sense to use high-order
finite element approximations, provided that we approximate the domain

21

Figure 2: The eight components of the tensor Nér.

sufficiently well. For the simple geometry considered here, we have chosen
the (nonlinear) cell mappings in such a way that they cover the domain V'
exactly.

We now choose the ansatz space to be Lagrange finite elements of order
p = 5 for each component. As a solver for the discrete linear problem, we use
a W(2,2)-multigrid cycle with an overlapping block Gauss-Seidel smoother
where the blocks are associated with the vertices and consist of all degrees of
freedom whose geometric objects (cell, edge, and vertex in 2D) share a given
vertex. This smoother can be shown to be robust with respect to the dis-
cretization order, see [13], and leads to convergence rates below 1072 in our
test case. We obtain the results from Table 1 on a PC with a Pentium 4 (2.4
GHz) CPU and 1 GByte of RAM using CMUCL [3]. The table shows the
values of a sample component Al of the effective tensor which has 16 com-
ponents of which only six are independent due to (2). We see that we achieve
an accuracy of eleven digits in about two minutes. The eight components
of the solution N}™ to (5) are shown in Figure 2. Obviously, it would have
been possible to reduce the computational time significantly by exploiting
symmetry, but we do not follow this path here.

Finally, we show the result for solving the analogous problem in d = 3
dimensions. Here, Nér consists of 27 components and the effective tensor

A has 81 entries of which only 21 are independent due to symmetry. Here,
we choose Lagrange finite elements for p = 4 and use a block Gauss-Seidel
smoother inside a multigrid algorithm where the blocks are defined by degrees

22 _ N. Neu#f

Cells Unknowns Matrix entries Time (s) All
4 872 18836 3.2 1.7928477139
16 4224 78780 10.6 1.7925713781
64 17336 314716 34.3 1.7925694507
256 69168 1256636 136.6 1.7925694414
1024 275240 5022076 597.0 1.7925694414

Table 1: Results for computing a 2D elasticity tensor.

Cells Unknowns Matrix entries Time (s) Al
6 11583 660537 66.8 2.6261173098
48 99522 5987691 465.4 2.6231943967
384 783405 48023721 2960.7 2.6231430695

Table 2: Results for computing a 3D elasticity tensor.

of freedom belonging to geometric objects in the mesh. This smoother is not
robust with respect to p, but nevertheless more efficient than the Vanka
smoother on these rather coarse meshes. In this case, we can compute the
effective tensor with five-digit accuracy in about eight minutes.

23

7 Discussion

How well does FEMLISP satisfy the requirements posed in Section 27 Arbi-
trary domains in arbitrary dimensions can be handled, and approximations
of arbitrarily high order are also possible, though the step towards locally
varying orders has still to be taken. Local mesh adaptivity and multigrid are
available, as is algebraic multigrid. Since it is written in Common Lisp, FEM-
LISP is automatically interactive, and its source code comprises only about
20.000 lines at the moment, including documentation, testing and demon-
stration utilities.

However, two basic requirements have not yet been met satisfactorily.
First, I have not addressed parallelization up to now. Second, FEMLISP is
still very slow for several standard situations. This may seem astonishing,
because it is indeed possible to make Lisp code run almost as fast or even
faster than C code, see e.g. [12]. But, as pointed out in many places, for Lisp
this involves an additional optimization effort which also tends to make the
code inflexible if it is not done properly. Furthermore, it needs profiling on
interesting benchmark problems which I hope to obtain now when FEMLISP
is released to the public.

Which road will FEMLISP take from now on? There are two directions
which do not pose any fundamental obstacles and on which I will work
in the immediate future. One direction is implementing hp-adaptivity, the
other is augmenting FEMLISP with strategies for solving nonlinear and time-
dependent problems. While carrying out these improvements, I also hope to
resolve the efficiency problem mentioned above.

How will FEMLISP look in the more distant future? This depends very
much on what resonance FEMLISP receives from other researchers throughout
the world. The fact is that, up to now, the numerical analysis community
has more or less ignored Common Lisp, mainly for reasons which were valid
15 years ago, but are not valid any more today. I hope that FEMLISP will
be a reason to reconsider this decision. I think that scientific computing is
facing very difficult challenges right now, and it is simply careless to ignore
a powerful tool like Common Lisp on the basis of antiquated beliefs. I admit
that, at the moment, FEMLISP is still very young and can compete with
established finite element software only for special applications. Nevertheless,
I expect this to change rather soon.

24 o ’ N. Neuf$

Acknowledgements

This article was written while I was a research assistant in Heidelberg with
the Technical Simulation group of Prof. G. Wittum, whom I want to thank
for giving me the opportunity to work on this non-standard topic. I also
want to thank him and the University of Heidelberg for allowing me to dis-
tribute FEMLISP under a free software license. Further, I am indebted to the
interesting and entertaining comp.lang.lisp newsgroup as well as the CMUCL
mailing list for much information from the year 2000 onwards.

25

References

[

2]

8]

[5]
[6]

[10]

[11]

[12]

[13]

[14]

N. Bakhvalov and G. Panasenko. Homogenization: Averaging Processes
wn Periodic Media. Kluwer, Dordrecht, 1989.

J. Bey. Simplicial grid refinement: On Freudenthal’s algorithm and the
optimal number of congruence classes. Numer. Math., 85:1-29, 2000.

CMUCL. Homepage. http://www.cons.org/cmucl.

J. J. Dongarra. Performance of various computers using standard linear
equations software. Technical report, Computer Science Department,
University of Tennessee, 1998.

Data Explorer. Homepage. http://www.ibm.com/opendx.

R. Fateman. Software fault prevention by lan-
guage choice: why C is mnot my favorite language.
http://www.cs.berkeley. edu/ fateman/software.pdf, (unpublished).

R. Fateman, K. A. Broughan, D. K. Willcock, and D. Rettig. Fast
floating-point processing with Common Lisp. ACM Trans. on Math.
Software, 21:26-62, 1995.

Femlisp. Homepage. http://www.femlisp.org.

S. E. Keene. Object-Oriented Programming in Common Lisp: A Pro-
grammer’s Guide to CLOS. Addison-Wesley, 1989.

G. Kiczales, J. Des Rivieres, and D. Bobrow. The Art of the Metaobject
Protocol. MIT Press, 1991.

Matlisp. Homepage. http://matlisp.sourceforge.net.

N. Neuss. On using Common Lisp in scientific computing. In Proceedings
of the CISC 2002. Springer-Verlag, 2002.

N. Neuss. Fast computation of effective coefficients with an interactive
finite element tool boz. Habilitation thesis. Universitat Heidelberg, Hei-
delberg, 2003.

P. Norvig. Principles of Artificial Intelligence Programming. Morgan
Kaufmann Publishers, Inc., San Francisco, USA, 1992.

26 ‘ N. Neufi

[15] U. Ride. Mathematical and Computational Techniques for Multilevel
Adaptive Methods, volume 13 of Frontiers in Applied Mathematics.
SIAM, Philadelphia, 1993.

[16] J. W. Ruge and K. Stiiben. Algebraic multigrid (AMG). In S. F. Mc-
Cormick, editor, Multigrid Methods, volume 3 of Frontiers in Applied
Mathematics, pages 73-130. STAM, Philadelphia, PA, 1987.

[17] K. Stiiben. A review of algebraic multigrid. J. Comput. Appl. Math.,
128:281-309, 2001.

2003 - 01

2003 - 02
2003 - 03

2003 - 04

2003 - 05

2003 - 06

2003 - 07
2003 - 08
2003 - 09
2003 - 10

2003 - 11

Verfiigbar unter der URL:

r_——<—

Preprintreihe IWR 2003

(SFB 359) B. Cockburn, G. Kanschat, D. Schétzau

The Local Discontinuous Galerkin Method For Linear Incompressible Fluid Flow:
A Review

(SFB 359) S. Bonisch, V. Heuveline, P. Wittwer

Adaptive boundary conditions for exterior flow problems

(SFB 359) R. Wehrse, B. Baschek, W. von Waldenfels

The diffusion of radiation in moving media

IV. Flux vector, effective opacity, and expansion opacity

(SFB 359) 1. Surovtsova

Application of the one-dimensional model for blood flow through vascular
prosthesis

(SFB 359) E. Kostina, O. Kostyukova

A Primal-Dual Active-Set Method for Convex Quadratic Programming

(SFB 359) C. Surulescu

On the Stationary Motion of an Incompressible Fluid Flow Through an Elastic
Tube in 3D

O. Sterz '

Multigrid for Time-Harmonic Eddy Currents without Gauge

M. Dettweiler, S. Reiter

On the middle convolution

(SFB 359) V. Heuveline, R. Rannacher

Duality-based adaptivity in the hp-finite element method

(SFB 359) A. Renner

Anisotropic Diffusion in Riemannian Colour Space

(SFB 359) N. Neugp

FEMLISP - a tool box for solving partial differential equations with finite elements
and multigrid

http://www.iwr.uni-heidelberg.de/sfb/Preprints.html

