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Independent of the field of application, one is often
interested in the solutions to the YBE.
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Solving the YBE

(R® id\/)(id\/@R)(R ® Id\/) = (Id\/ ®R)(R® idv)(idv@R)

After fixing a basis of V, the YBE amounts to (dim V)® cubic
equations for (dimV)* unknowns.

e completely solved in dimV =2 with computer algebra
[Hietarinta 1992]

e but this did not work already for dim V = 3 [Hietarinta 1993]

e Quantum groups [Drinfeld 86, Jimbo 86, ... ] give many solutions
of the YBE, but not a complete solution theory.

e Here: Consider solutions of YBE up to equivalence relation
suggested by group theory and integrable AQFT [Alazzawi, GL
2017] .
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Definition (for purpose of this talk)

V:finite-dim. Hilbert space. An R-matrix is a unitary R e End(V® V)
that solves the YBE and satisfies R = 1.

Such involutive R's appear in

e elastic two-body S-matrices in integrable QFT

symmetries of categories of vector spaces [Lyubashenko 1987]

representations of Thompson’s group V [Jones 2016]

constructions of certain non-commutative spaces
[Dubois-Violette, Landi 2017]
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The Yang-Baxter equation and the symmetric groups

Definition (for purpose of this talk)

V: finite-dim. Hilbert space. An R-matrix is a unitary R € End(V V)
that solves the YBE and satisfies R? = 1.

e R, := set of all R-matrices (with any V)

e S, :=symmetric group of n letters. Generators o;,i=1,..,n -1
satisfy

O0i+10i0j+1 = 0i0j110j
0i0j = 0;0j, |I—j|>1

O’i2=e.

e Any R € R, gives unitary rep. pf?”) of S, on V®" via

oM (o7) = id2 Y @ R idS"
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Equivalent R-matrices

Definition
R,S € Ry are called equivalent, written

R~ S,

p§”> > ,og”) forallneN.

e Example: Re Ry(V), U:V — Vunitary. Then
R~(UeURWUTaU™
But this does exhaust the equivalence class of [R].

e Aim: Determine all R-matrices up to equivalence ~.
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R-matrices and Young diagrams

e Recall = integer partitions
E}j:3+2+‘l, E:‘H‘H‘H’I, ‘t*“‘:5+2+2

e V: Set of all Young diagrams.

Theorem I: Structure of R/~

» Equivalence classes of R-matrices are in 1: 1 correspondence
with :

Ro/~ 2 (YxY)\{(2,2)}

> = total number of boxes in the two diagrams.

» To each pair (Y,Y’) of diagrams, an explicit
R-matrix Ry,y € Ro can be constructed.
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Partial traces of R-matrices

e Recall the ptr: End(Ve® V) - End(V) defined by
ptr(A® B) :=Tr(A)-B.
Theorem II: Characterization of ~
R.S € Ry.
» R~S < ptrR=zptrS( ).

» The eigenvalues of ptrR are non-zero integers determining the
Young diagrams of R.

Example: R:(if | ‘,HE)

eigenvalue | multiplicity
+4 4x1
+2 2x2
-3 3x2 10
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Yang-Baxter characters of S,

e S, :=inductive lim. of S, c Sy, c ... = infinite symmetric grp

e S, isa“wild” group. Representation theory [Borodin, Kerov,
Okounkov, Olshanski, Thoma, Vershik, .... ]

e The pf{') define a hom. into infinite tensor product

PrR:Seo > QENdV

n>1

e Normalized trace on tensor products (d = dim V):
Try  Try  Try
“d d - d
e Given R e Ry,

XR=TOopR:Sec — C
is a (normalized) character of S, (“Yang-Baxter character”).

1



Special property of Yang-Baxter characters: yr “factorizes”: For
0,0’ € S, with disjoint supports,

xr(a0") = xr(0) - xr(0") -
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Special property of Yang-Baxter characters: yr “factorizes”: For
0,0’ € S, with disjoint supports,

xr(00") = xr(0) - xr(0").
Theorem [Thoma 1964]

» A character x of S., is extremal if and only if it factorizes.
» T :=all real sequences {«;};, {5;}; such that

® aj>j;120,6 28,7120
o Yi(aj+p5;) <1
Extremal characters are in 1: 1 correspondence with T via

x(n-cycle) = > af + (-1)™"' S8, n>2
i i

12



Special property of Yang-Baxter characters: yr “factorizes”: For
0,0’ € S, with disjoint supports,

xr(00") = xr(0) - xr(0").
Theorem [Thoma 1964]

» A character x of S., is extremal if and only if it factorizes.
» T :=all real sequences {«;};, {5;}; such that

® 20120, 826,120
° Z,-(Oz,'+ﬂ,') <1

Extremal characters are in 1: 1 correspondence with T via

x(n-cycle) = > af + (-1)™"' S8, n>2
i i

e Each R defines a point (a, 3) € T. The a;, 5; are the good
parameters to characterize R. 2
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Theorem llI: Yang-Baxter characters of S,

Thoma parameters (o, 3) € T are given by a Yang-Baxter character
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(3) all o, B; are rational.
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Which «, 3 are realized by Yang-Baxter characters?

Theorem llI: Yang-Baxter characters of S,

Thoma parameters (o, 3) € T are given by a Yang-Baxter character
Xr, R € Ro, if and only if

(1) only finitely many «;, 3; are non-zero,
(2) Zi(a;j+6) =1, and

(3) all o, B; are rational.

e the proof of (1) and (2) relies on a result of [Wassermann 1981]
e the proof of (3) is more difficult (subfactors)

Example: B, F e Ny

,

B+F
This YB-character appears in superselection theory
[Doplicher, Haag, Roberts 1971]

Oé1=...=OéB=ﬂ-|:,“:6F=
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Yang-Baxter subfactors

RERO

e Normalized trace 7 = state on the *-algebra generated by all R;,
ieN.
e In GNS representation:
Mg =0 (pr(Se0))" = {mr (R}) + i € N}

o As yr is extremal, Mg is a factor (Il; unless R = +1).
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RERO

e Normalized trace 7 = state on the *-algebra generated by all R;,
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e In GNS representation:
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Yang-Baxter subfactors

RERO

e Normalized trace 7 = state on the *-algebra generated by all R;,
ieN.
In GNS representation:

Mg =0 (pr(Se0))" = {mr (R}) + i € N}

As g is extremal, Mg is a factor (11, unless R = +1).

Subgroup

S, ={0€Se : 0(1) =1} cSe
generates subfactor
N =10 (pr(S%))" = {mr(Ri) 122} c M.

Nin Mg =Cifand only if R e {+1, +F} -
[Gohm-K&stler 2010, Yamashita 2012]
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The 7-preserving conditional expectation E of AV, n Mg c Mg can be
computed.

Essential results:

(1) E(m-(R1))=ptr(R)®1®1®...
(2) Using results from [Gohm-K&stler 2010],

xr(n-cycle) = 7(ptr(R)"™"), n>2.

e With these results, one can prove Thm. Il and Thm. IlI

15



Normal form R-matrices

e So far: Given R, can compute «;, 5; as eigenvalues of ptr(R)/d.
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Normal form R-matrices

e So far: Given R, can compute «;, 5; as eigenvalues of ptr(R)/d.

e Now: Given finitely many rational 0 < «;, 8j < 1 such that
Yilai+ B;) =1, construct R with these parameters.

e Plan: Build R-matrix from simple blocks by “direct sum”

16



Setting: V, W Hilbert spaces, X e End(V® V), Y e End(W & W).
Define

XaYeEnd((VeW)e (Ve W))
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Setting: V, W Hilbert spaces, X e End(V® V), Y e End(W & W).
Define

XaYeEnd((VeW)e (Ve W))
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VeW)e (VeW)=(VeV)e WeW)e (VeaW)e (WeV)).
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Setting: V, W Hilbert spaces, X e End(V® V), Y e End(W & W).
Define

XaYeEnd((VeW)e (Ve W))
as
XsY=XeYe®F on
VeW)e (VeW)=(VeV)e WeW)e (VeaW)e (WeV)).
[Lyubashenko 87, Gurevich 91, Hietarinta 93]
Proposition

e @ is commutative and associative.
e @ preserves the YBE: R,Se€ Ry = RBS € Ry.
e ptr(R®S) = ptrR & ptrS.

17



Letdy,..

. dy dy, ..., dy € N. Normal form R-matrix

N:=1d1+E...El‘ld;El(—']dT)El...(—1d;).
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Letd{,...,d},d;y,...,dy € N. Normal form R-matrix

NZ:1d1+III...1d;E|(—1d1*)E|...(—1d;).

» letd:=df+...+d;+d; +...+dy. Then xy has Thoma
parameters
dr

Oéi:?', Bj=

Q‘\Q“
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Letd{,...,d},d;y,...,dy € N. Normal form R-matrix

NZ:1d1+E...E‘ld;lﬂ(—']d;)lﬂ...(—1d;).

» letd:=df+...+d;+d; +...+dy. Then xy has Thoma
parameters
dr

Oéi=?', Bj=

Q‘sg“

e This leads to the proof of Thm. I.
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Letd{,...,d},d;y,...,dy € N. Normal form R-matrix

NZ:1d1+III...1d;E|(—1d1*)E|...(—1d;).

» letd:=df+...+d;+d; +...+dy. Then xy has Thoma

parameters
d; 4
= ?a ﬂj = F
e This leads to the proof of Thm. I.
Example: Ro(C?)/ ~ has 5 elements:
= + +
+ + +
+ + +
+ +

(D2), (z.1) Ho). @H) ()

ar=1, 61 =1 m=m=3,M=F=3 oan=p=1




Repitition

Involutive R-matrices are governed by the following rules:

(~) Thereis a natural equivalence in terms of S..-representations.
) Ro/~=(YxY)\{(2,2)}.
() R~S < ptrR=zptrS.

(1) Thoma parameters («, 3) of Yang-Baxter characters are
characterized by:

(1) only finitely many «;, 8; are non-zero,
(2) Ti(aj+6)=1,and
(3) all aj, p; are rational.

(N) In each equivalence class, one can construct an explicit
representative by using m.



The following generalizations are on our agenda:

e Introduce a spectral parameter — QFT!
 Drop the assumption R? = 1 — braid groups!
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