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Overview of the talk
▶ Main topic: Certain (half-sided modular, HSM) inclusions N ⊂M

(subfactors of type III1) of von Neumann algebras (equivalently
formulated as Borchers triples)

▶ Closely related to chiral conformal quantum field theories on the real
line R (or the circle S1 ≅ R ∪ {∞})

▶ This relation will guide us to the question whether a HSM N ⊂M is
singular (trivial relative commutant, N ′ ∩M = C) or not.

▶ Will construct examples of singular half-sided inclusions by a deformation
procedure (warped convolution, Rieffel deformation).
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Geometric preliminaries
▶ Symmetries of real line R:

translations x↦ x + a, dilations x↦ et ⋅ x, reflection x↦ −x
generate affine group Aff of R

▶ In conformal theories, have also conformal (Möbius) transformations

x↦ ax + b
cx + d

, x ∈ R ∪ {∞} ≅ S1

generate Möbius group Möb = PSL(2,R)
.
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Conformal nets
Idea: Consider unitary rep U of Möb on Hilbert space H and model quantum
fields localized in interval I by an algebra of operators A(I) ⊂ B(H).

Definition (or wishlist:)

▶ For every I ∈ I, there is a (von Neumann) algebra A(I) ⊂ B(H)
▶ I1 ⊂ I2 Ô⇒ A(I1) ⊂ A(I2)
▶ Locality: If I1 and I2 are disjoint, then A(I1) and A(I2) commute.
▶ Covariance: U(g)A(I)U(g)−1 = A(gI)
▶ Positivity: The translations U(x) = eiPx have positive generator P > 0
▶ Vacuum I: There is a unique (up to a scalar) vector Ω ∈H that is

invariant under U .
▶ Vacuum II: Ω is cyclic for all A(I)

Such a structure is called a conformal net.

▶ Although well motivated, it is a complicated definition. For a
classification, one would like to connect it to simpler data.
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Borchers triples and half-sided inclusions
Let us start from a simpler situation (on the real line):

only one algebra, the one corresponding to the half line R+
only translation symmetry

Definition
A (one-dimensional) Borchers triple (M, T,Ω) consists of a von Neumann
algebra M ⊂ B(H) and a unitary representation T of R on H s.t.
● T has positive generator. The subspace of T -invariant vectors is CΩ.
● T (x)MT (−x) ⊂M for x ≥ 0.
● Ω is cyclic and separating for M.

Gives rise to half-sided modular inclusion (Borchers, Wiesbrock)

N ⊂M, N ∶= T (1)MT (−1),

∆it
MN∆−itM ⊂ N t ≤ 0

To construct a map (Borchers triples) → (conformal nets), one needs
modular theory.
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The modular symmetry machine
With modular theory, we can extend a Borchers triple to a conformal net
[Borchers, Wiesbrock, Longo/Guido/Wiesbrock]

Define dilation symmetry by modular unitaries ∆it
M of (M,Ω).

Define interval algebras by

A(a, b) ∶= T (a)MT (−a) ∩ T (b)M′T (−b).

.

If Ω is cyclic for the interval algebras A(a, b) (“standard” situation),
use modular unitaries ∆it

A(a,b) to generate representation of Möbius
group.

Theorem ([Longo,Guido,Wiesbrock 98])

In the standard situation, this construction yields a conformal net on S1.
There exists a bijection between (strongly additive) conformal nets and
standard Borchers triples.

Unfortunately, the “standard” situation is not really standard ..
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The local subspace
Define the local subspace:

Hloc ∶= A(I)Ω ⊂H, I ⊂ R bounded interval

Theorem ([Bostelmann,GL,Morsella 11])
This space is independent of I and invariant under the net A.

Three cases:
1 Hloc =H. (standard situation)

Here we can construct a conformal net directly on H.
2 CΩ ⊊Hloc ⊊H.

Here the construction works as in (1) after restriction to Hloc.
3 Hloc = CΩ.

This is the case of a singular Borchers triple.
Here all data are trivial – this is the situation that we want to avoid.

(1) and (2) are known to occur frequently, many examples. Charley Scotford
has lots of examples arising from scaling limits.

Does case (3) occur? Answer from 2019: Yes. [Longo, Tanimoto, Ueda 19]
have free probability construction to get an example of (3).
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The algebra at infinity
Let (M, T,Ω) be a BT, write αx = AdT (x), σt = Ad∆it, N = α1(M).

The algebra at infinity:

X ∶= ⋂
t∈R

σt(N ∨ JNJ) = ⋂
I∈I
A(I)′.

.

Remarks/Lemmas:
The larger X , the smaller Hloc.
X = C1⇐⇒Hloc =H (standard case).
X = B(H)⇐⇒Hloc = CΩ (singular case)

⇐⇒ PΩ = ∣Ω⟩⟨Ω∣ ∈X

How to construct elements in X

Let A ∈M, B′ ∈M′, and let L be a weak limit point of σt(α1(A)α−1(B′)) as
t→ −∞. Then L ∈X . .
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Warping
Plan: Find a BT such that σt(α1(A)α−1(B′))→ PΩ weakly as t→ −∞.

This construction relies on a representation T (x, y) of two-dimensional
translation symmetry (view net A as chiral half of a 2d theory)

.

Fix a deformation parameter Q, an antisymmetric (2 × 2)-matrix.
Deform smooth operators A ∈ B(H) on smooth vects Ψ ∈H according to

AQΨ ∶= (2π)−2∬
R2×R2

e−ipxT (Qp)AT (−Qp) ⋅ T (x)Ψdpdx,

reminiscent of Weyl-Moyal product.
Facts [Buchholz,GL,Summers 2011]:

AQ extends to a bounded operator. A↦ AQ is a faithful representation
of the Rieffel-deformed C∗-algebra (CQ,×Q, ∥ ⋅ ∥Q).
Let MQ ∶= {AQ ∶ A ∈M smooth}′′. If κ ≥ 0, then also (MQ, T,Ω) is a
Borchers triple.
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Theorem ([GL/Scotford 2021] Deforming the free field leads to singular BTs)
Consider the free field triple (M, T,Ω). Then there exist operators A affiliated
to M and B′ affiliated to M′ such that for κ > 0

w-lim
t→−∞

∆itα1(AQ)α−1(B′−Q)∆−it = PΩ.

Hence (Hloc)Q = CΩ; this gives singular BTs.

Here A,B can be chosen as free quantum field operators.
The proof relies on a Riemann-Lebesgue type argument

∫ dp1⋯dpn dq′Φn(p)Ψn(p)f+(q′)g+(q′)
n

∏
l=1

ei(pl,QΛtq
′) Ð→ 0 as t→ −∞

Conjecture
Take any 2d Borchers triple with Hloc =H, then deform it with deformation
parameter κ > 0. Then (Hloc)Q = CΩ (singular case).

Outlook/Open Questions:
This result hints at Hloc being unstable under deformations.
What are the intrinsic properties of this example that distinguish it from
case (1) and (2)?
Are further deformation results possible? (→ quantum group symmetry)
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