

List of modules for the Master's degree programme Computational and Applied Mathematics

Not all of the listed modules are offered annually. On the other hand, additional modules may be offered in the future.

Department of Mathematics Friedrich-Alexander-Universität Erlangen-Nürnberg

Last updated:March 06, 2020Reference:Examination regulations dated July 15, 2019

Table of contents	
Curricular Overview	4
Module 1: ModAna1: Modeling and Analysis in Continuum Mechanics I	11
Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	12
Module 3: MoSi: Practical Course: Modeling, Simulation, Optimization	13
Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	14
Module 5: ArchSup: Architectures of Supercomputers	15
Module 6a: MaSe: Master's seminar MApA	
Module 6b: MaSe: Master's seminar NASi	17
Module 6c: MaSe: Master's seminar Opti	18
Module 7: Master's Thesis	
Module 8: NumPDE I: Numerics of Partial Differential Equations I	20
Module 9: AdDiscTech: Advanced Discretization Techniques	22
Module 10: AdSolTech: Advanced Solution Techniques	24
Module 11: RTpMNum: Transport and Reaction in Porous Media: Modeling	25
Module 12: RTpMNum: Transport and Reaction in Porous Media: Simulation	26
Module 13: NuIF1: Numerics of Incompressible Flows I	27
Module 14: NuIF2: Numerics of Incompressible Flows II	29
Module 15: IPReg: Inverse Problems and their Regularization	31
Module 16: MaDS: Mathematical Data Science 1	
Module 17: MaKiT: Mathematical Models of Kinetic Theory	33
Module 18: MaMM: Mathematics of Multiscale Models	
Module 19: ThSDE: Theory of Stochastic Evolution Equations	35
Module 20: NuSDE: Numerics of Stochastic Evolution Equations	
Module 21: PcFem: Practical Course on Finite Element Methods for Phase-Separation Equations	37
Module 22: RegPDE: Regularity theory of elliptic PDEs	
Module 23: MaMoLS: Mathematical Modeling in the Life Sciences	39
Module 24: IPro: Partial Differential Equations Based Image Processing	
Module 25: AnFBP: Analysis of free-boundary problems in continuum mechanics	
Module 26: PDFin: Partial Differential Equations in Finance	
Module 27: MSOpt: Introduction to Material and Shape Optimization	
Module 28: AlgNLOpt: Advanced Algorithms for Nonlinear Optimization	44
Module 29: DiscOpt I: Discrete Optimization I	45
Module 30: RobOpt II: Robust Optimization II	
Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	
Module 32: AdvNLOpt: Advanced Nonlinear Optimization	48
Module 33: OptPDE: Optimization with Partial Differential Equations	49
Module 34: DiscOpt II: Discrete Optimization II	50
Module 35: OptIE: Optimization in Industry and Economy	
Module 36: ProjO: Project Seminar Optimization	
Module 38: PdeConNum: Lecture Series Partial Differential Equations, Control and Numerics	
Module 39: NumPDE II: Numerics of Partial Differential Equations II	54

Dean of Studies (General questions about the programme)

Prof. Dr. Friedrich Knop

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstr.11, 91058 Erlangen, Room 03.345 Phone: +49 9131 8567021 E-mail: knop@mi.uni-erlangen.de

Examination Committee for Bachelor's and Master's degree courses in Mathematics (Examination matters for the programme)

Prof. Dr. Eberhard Bänsch

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.323 Phone: +49 9131 8567202, E-mail: baensch@am.uni-erlangen.de

Degree programme manager

Prof. Dr. Günther Grün

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.343 Phone: +49 9131 8567220 E-mail:gruen@math.fau.de

Degree programme administration (Procedures and organisation)

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.337 Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Subject advisor

Prof. Dr. Serge Kräutle

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 04.337 Phone: +49 9131 85 67213 E-mail:kraeutle@math.fau.de

Student Service Centre

Christine Gräßel

Department of Mathematics, Friedrich-Alexander-Universität Erlangen-Nürnberg Cauerstrasse 11, 91058 Erlangen, Room 01.385 Phone: +49 9131 8567024, E-mail:ssc@math.fau.de

Curricular Overview

elective	Master phase (MP) 30 ECTS	mandatory elective
modules	Mandatory Modules	modules
(EM)	(MM)	(MEM)
15 ECTS	35 ECTS	40 ECTS

Not all listed mandatory elective modules below will be offered in every semester. On the other hand, additional modules might be offered.

The minimum number of ECTS points is 120.

Study plan

Code	Title	Course		S١	NS		total ECTS	w	orkload-av	eraged in E	стѕ	spezification exam /ungraded task	Factor Grade
			٧	Ü	Р	S		1. Sem.	2. Sem.	3. Sem.	4. Sem.		
Mandat	tory Modules				_								
	Module 1: Modeling and Analysis in	Modeling and Analysis in Continuum Mechanics I	4				- 10	8				oral exam 20 min. 100%	1
N 4 4 4	Continuum Mechanics I	Tutorials to Part I		1			10	2					
МАрА	Module 2: Modeling and Analysis in	Modeling and Analysis in Continuum Mechanics II	2				5		4			oral exam 20 min. 100%	1
	Continuum Mechanics II	Tutorials to Part II		1/2			5		1				
MApA/ NASi/ Opti	Module 3: Modeling, Simulation and Optimization	Practical Course: Modeling, Simulation and Optimization				3	5		5			talk/presentation 45 min. (50%), and final report 10-15 pages (50%)	1
	Module 4:	Programming Techniques for Supercomputers	4				10		5				1
HPC	Programming Techniques for Supercomputers in CAM	Tutorials to Programming Techniques for Supercomputers		2			10		5			see examination regulations INF	1
nrc	Module 5:	Architectures of Supercomputers	2				- 5			2,5		see examination regulations INF	1
		Tutorials to Architectures of Supercomputers		2						2,5		See examination regulations INF	
			12	5,5	0	3	35	10	20	5	0		

Code	Title	Course			ws		total		orkload-av			spezification exam /ungraded task	Factor Grade
Coue	inte	Course	v	Ü	Р	S	ECTS	1. Sem.	2. Sem.	3. Sem.	4. Sem.	exam / ungraueu task	Glaue
Master	phase												
	Module 6a: Master's seminar MApA	Master's seminar MApA*				2	5			5		talk 70-80 min with written report 5–10 pages	1
MapA/	Module 6b: Master's seminar NASi	Master's seminar NASi*				2	5			5		talk 70-80 min with written report 5–10 pages	1
NASi/ Opti	Module 6c: Master's seminar Opti	Master's seminar Opti*				2	5			5		talk 70-80 min with written report 5–10 pages	1
	Module 7:	Master colloquium					25				2,5	oral exam 15 min. (10%)	1
	Masterthesis	Master thesis									22,5	Thesis (90%)	
			0	0	0	2	30	0	0	5	25		
manda	tory elective modules					i							
NAC'	Module 8:	Numerics of Partial Differential Equations I	4				10	7				written exam 90 min. (100%)	
NASi	Numerics of Partial Differential Equations I	Tutorials to Numerics of Partial Differential Equations I		2			- 10	3				with exercises (0%)	1
	Module 9:	Advanced Discretization Techniques	4					8		(8)			
NASi	Advanced Discretization Techniques	Tutorials to Advanced Discretization Techniques		1			- 10	2		(2)		oral exam 20 min. 100%	1
	Module 10:	Advanced Solution Techniques	2						4				
NASi	Advanced Solution Techniques	Tutorials to Advanced Solution Techniques		1/2			- 5		1			oral exam 15 min. 100%	1
	Module 11:	Transport and Reaction in Porous Media: Modelling	2						4				
МАрА	Transport and Reaction in Porous Media: Modelling	Tutorials to Transport and Reaction in Porous Media: Modelling		1/2			5		1			oral exam 15 min. 100%	1
	Module 12:	Transport and Reaction in Porous Media: Simulation	2							4			
NASi	Transport and Reaction in Porous Media: Simulation	Tutorials to Transport and Reaction in Porous Media: Simulation		1/2			5			1		oral exam 15 min. 100%	1
	Module 13:	Numerics of Incompressible Flows Part I	2				_		4				
NASi	Numerics of Incompressible Flows I	Tutorials to Numerics of Incompressible Flows Part I		1/2			- 5		1			oral exam 15 min. 100%	1
NAC:	Module 14:	Numerics of Incompressible Flows Part II	2				- 5			4			
NASi	Numerics of Incompressible Flows II	Tutorials to Numerics of Incompressible Flows Part II		1/2			5			1	oral exam 15 min. 100%	orai exam 15 min. 100%	1

Code	Title	Course		sv	VS		total	w	orkload-av	eraged in E	стѕ	spezification exam /ungraded task	Factor Grade
			V	Ü	Р	S	ECTS	1. Sem.	2. Sem.	3. Sem.	4. Sem.		
MApA	Module 15:	Inverse Problems and their Regularization	2				5	(4)		(4)		oral exam 15 min. 100%	
МАРА	Inverse Problems and their Regularization	Tutorials to Inverse Problems and their Regularization		1/2			5	(1)		(1)		orai exam 15 min. 100%	
	Module 16: Mathematical Methods for Learning and	Mathematical Methods for Learning and Ranking Large Data	2						4				
NASi	Ranking Large Data (Mathematical Data Science)	Tutorials to Mathematical Methods for Learning and Ranking Large Data		1/2			5		1			Oral exam 15 min. 100%	1
МАрА	Module 17:	Mathematical Models of Kinetic Theory	2				5			4		Oral exam 15 min. 100%	1
МАРА	Mathematical Models of Kinetic Theory	Tutorials to Mathematical Models of Kinetic Theory		1/2			5			1			
Mana	Module 18:	Mathematics of Multiscale Models	2				5			4		oral exam 15 min. 100%	
МАрА	Mathematics of Multiscale Models	Tutorials to Mathematics of Multiscale Models		1/2			3			1		orai exam 15 min. 100%	1

Code	Title	Course		۶V			total	W		eraged in E	стѕ	spezification exam /ungraded task	Factor Grade
			۷	Ü	Р	S	ECTS	1. Sem.	2. Sem.	3. Sem.	4. Sem.		
mandat	ory elective modules								-				1
МАрА	Module 19:	Theory of Stochastic Evolution Equations	2				- 5		4			oral exam 15 min. 100%	1
мара	Theory of Stochastic Evolution Equations	Tutorials to Theory of Stochastic Evolution Equations		1/2			5		1				
NASi	Module 20:	Numerics of Stochastic Evolution Equations	2				- 5			4		oral exam 15 min. 100%	1
NASI	Numerics of Stochastic Evolution Equations	Tutorials to Numerics of Stochastic Evolution Equations		1/2						1			
NASi	Module 21: Practical Course on Finite Element Methods for Phase-Separation Equations	Seminar Practical Course on Finite Element Methods for Phase- Separation Equations				3	5	(5)		(5)		oral exam 30 min. 100%	1
	Module 22:	Regularity Theory of Elliptic PDEs	3					(4)		(4)			
МАрА	Regularity Theory of Elliptic PDEs	Tutorials to Regularity Theory of Elliptic PDEs				1	5	(1)		(1)		oral exam 20 min. 100%	1
МАрА	Module 23:	Mathematical Modelling in the Life Sciences	2				- 5			4		oral exam 15 min. 100%	1
мара	Mathematical Modeling in the Life Sciences	Tutorials to Mathematical Modelling in the Life Sciences		1/2			,			1			
MApA/	Module 24: Partial Differential Equations based image	PDE based image processing	2				- 5		4			oral exam 15 min. 100%	1
NASi	processing	Tutorials to PDE based image processing		1/2			5		1				
	Module 25:	Analysis of free-boundary problems in continuum mechanics	2							4			
МАрА	Analysis of Free-Boundary Problems in Continuum Mechanics	Tutorials to Analysis of free- boundary problems in continuum mechanics		1/2			5			1		oral exam 15 min. 100%	1
MApA/	Module 26:	PDEs in Finance	2				- 5			4		oral exam 15 min. 100%	1
NASi	Partial Differential Equations in Finance	Tutorials to PDEs in Finance		1/2			5			1			1
Opti	Module 27: Introduction to Material- and Shape	Introduction to Material- and Shape Optimization	4				- 10		8			oral exam 20 min. 100%	1
Ори	Optimization	Tutorials to Material- and Shape Optimization		1			10		2				

Code	Title	Course		s١	VS		total ECTS	W	orkload-av	eraged in E	стѕ	spezification exam /ungraded task	Factor Grade
			٧	Ü	Р	S		1. Sem.	2. Sem.	3. Sem.	4. Sem.		
nandat	tory elective modules												
Opti	Module 28: Advanced Algorithms for Nonlinear	Advanced Algorithms for Nonlinear Optimization	2				- 5	4				oral exam 15 min. 100%	1
opti	Optimization	Tutorials to Advanced Algorithms for Nonlinear Optimization		1/2				1					-
Opti	Module 29:	Discrete Optimization I	2				- 5	(4)		(4)		oral exam 15 min. 100%	1
- F	Discrete Optimization I	Tutorials to Discrete Optimization I		1				(1)		(1)			
Opti	Module 30:	Robust Optimization II	2				5		4			oral exam 15 min. 100%	1
opu	Robust Optimization II	Tutorials to Robust Optimization II		1					1				-
Opti	Module 31: Numerical Aspects of Linear and Integer	Numerical Aspects of Linear and Integer Programming	2				- 5		4			oral exam 15 min. 100%	1
opti	Programming	Tutorials to Numerical Aspects of Linear and Integer Programming		1/2					1				
Onti	Module 32:	Advanced Nonlinear Optimization	4				- 10	(8)		(8)		oral exam 20 min. 100%	1
Opti	Advanced Nonlinear Optimization	Tutorials to Advanced Nonlinear Optimization		1			10	(2)		(2)			
Opti	Module 33: Optimization with Partial Differential	Optimization with Partial Differential Equations	2				- 5	(4)		(4))	oral exam 15 min. 100%	1
ορι	Equations	Tutorials to Optimization with Partial Differential Equations		1/2				(1)		(1)			
Opti	Module 34:	Discrete Optimization II	4				- 10		8			oral exam 20 min. 100%	1
Ορί	Discrete Optimization II	Tutorials to Discrete Optimization II		2			10		2				
Opti	Module 35: Optimization in Industry and Economy	Optimization in Industry and Economy	2				- 5	(4)		(4)		oral exam 15 min. 100%	1
Ορίι		Tutorials to Optimization in Industry and Economy		1			5	(1)		(1)			
Opti	Module 36: Project Seminar Optimization	Practical Course: Optimization				2	5		(5)	(5)		Talk/presentation 45 min. (50%), final report 10-15 pages (50%)	1
	Module 38: Lecture Series Partial Differential Equations,	Lecture Series Partial Differential Equations, Control and Numerics	2						2				
Onti	Control and Numerics	Tutorials to Lecture Series Partial Differential Equations, Control and Numerics applications		1			5		1			written exam 90 min. 100%	1
NASi	Module 39:	Numerics of Partial Differential Equations II	2						2			oral exam 15 min 100%	1
INASI	Numerics of Partial Differential Equations II	Tutorials to Numerics of Partial Differential Equations II		1					1		oral exam 15 min. 100%		1
			16	4	0	0	40	10	10	20	0		

Code	Title	Course		SM	/S		total ECTS	Wo	orkload-ave	eraged in E	CTS	spezification exam /ungraded task	Factor Grade
			V	Ü	Р	S		1. Sem.	2. Sem.	3. Sem.	4. Sem.		
elective	elective modules**												
EM	elective modules		0-2	0-2	0-2	0-2	5	5				according to the chosen module	1
EM	elective modules		0-2	0-2	0-2	0-2	5	5				according to the chosen module	1
EM	elective modules		0-2	0-2	0-2	0-2	5				5	according to the chosen module	1
			0-6	0-6	0-6	0-6	15	10	0	0	5		
								30	30	30	30		
			1	Total SWS	5: 42-48*		120		Total EC	CTS: 120	• • • • •		

HPC High Performance Computing

MApA Modeling and Applied Analysis

NASi Numerical Analysis and Simulation

Opti Optimization

* Master seminar MApA, Master seminar NASi or Master seminar Opti has to be chosen

** as selected from FAU-modules

1 Moo	dule name	Module 1: 10 ECTS credits							
2 Cou	rses/lectures	ModAna1: Modeling and Analysis in Continuum Mechanics I In Letter Streams a) Lectures: 4 semester hrs/week MApA							
3 Lect	urers	Profs. Drs. G. Grün, M. Burger, N.N.							
	4 Module coordinator	Prof. Dr. G. Grün							
	5 Content	 Theory of elasticity (geometrical non-linear modelling, objectivity and isotropy of energy functionals, linearised elasticity, polyconvexity, existence according to J. Ball) Non-equilibrium thermodynamics and modelling in hydrodynamics (basic concepts in thermodynamics, balance equations, constitutive relations) Parabolic function spaces and the Aubin-Lions lemma Weak solution theory for incompressible Navier-Stokes equations 							
	6 Learning objectives and skills	 Students derive mathematical models for fluid mechanics and elasticity theory, evaluate the predictive power of models using physical modelling assumptions and the qualitative characteristics of solutions, apply analytical techniques to rigorously prove qualitative properties of solutions. 							
•	7 Prerequisites	Basic knowledge in functional analysis and modelling is recommended.							
1	B Integration into curricu	lum 1st semester							
9	9 Module compatibility	 Mandatory module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the fields of study "Modelling, Simulation and Optimization", "Analysis and Stochastics" 							
1	0 Method of examinatior								
1	1 Grading procedure	100% based on oral exam							
1	2 Module frequency	Winter semester (annually)							
1	.3 Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits							
1	4 Module duration	One semester							
1	5 Teaching and examinat	ion English							
1	6 Recommended reading	 P.G. Ciarlet: Mathematical elasticity, North-Holland, S.R. De Groot & P. Mazur: Non-equilibrium thermodynamics, Dover, C. Eck, H. Garcke & P. Knabner: Mathematical Modeling, Springer, L.C. Evans: Partial differential equations, AMS, I. Liu: Continuum mechanics, Springer, R. Temam: The Navier-Stokes equations, AMS Chelsea Publishing. 							

	FAKULTÄT		
1	Module name	Module 2: ModAna2: Modeling and Analysis in Continuum Mechanics II	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 semester hrs/week	
2		b) Practical: 0.5 semester hrs/week	МАрА
3	Lecturers	Profs. Drs. G. Grün, M. Burger, N.N.	
4	Module coordinator	Prof. Dr. G. Grün	
5	Content	 At least two of the following three topics: Shear-thinning liquids and monotone operators: analytical concept example of the p-Laplace equation Poisson-Boltzmann equation: analysis of semilinear equations with nonlinearities Mathematical concepts of model reduction: homogenisation, gamr asymptotic analysis 	monotone
6	Learning objectives and skills	 Students explain various concepts for model reduction and apply them to de models, formulate and prove qualitative statements on solutions to quasilin partial differential equations in continuum mechanics. 	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory module for MSc in Computational and Applied N Mandatory elective module for MSc in Mathematics in the fi "Modeling, Simulation and Optimization", "Analysis and Stoce 	ields of study
10	Method of examination	oral exam (20 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
	Recommended reading	 A. Braides: Gamma-convergence for beginners, Oxford University P D. Cioranescu & P. Donato: An introduction to homogenization, Oxf Press R.E. Showalter: Monotone operators in Banach space and nonlinea differential equations, AMS 	ord University

	FAKULTÄT	Module 3:	
1	Module name	Module 3: MoSi: Practical Course: Modeling, Simulation, Optimization	5 ECTS credits
2	Courses/lectures	Seminar: 3 semester hrs/week	
3	Lecturers	Profs. Drs. M. Burger, G. Grün, A. Martin, N.N.	MapA/NASi/Opti
4	Module coordinator	Prof. Dr. M. Burger	
5	Content	 Modelling, analysis, simulation or optimisation of problems in engir natural sciences (Partial) differential equation models (also with additional aspects) numerical algorithms ((Mixed) Finite Element Method ((M)FEM), Fin Method (FVM), Discontinuous Galerkin (DG)) Mixed integer or continuous (non-)linear optimisation 	and corresponding
6	Learning objectives and skills	 Students work on a problem in engineering or the natural sciences as part of assigned independent tasks, by constructing a suitable mathematica solving it using analytical and numerical methods, are able to collect and evaluate relevant information and identify collect are able to implement processes using their own or specified software evaluate the results, are able to set out their approaches and results in a comprehensible manner, making use of appropriate presentation techniques, are able to develop and set out in writing the theories and problem have developed, develop their communication skills and ability to work as a team the work. 	al model and onnections, are and critically e and convincing solutions they
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory module for MSc in Computational Applied Mather Mandatory elective module for MSc in Mathematics in the fie "Modeling, Simulation and Optimization" 	
10	Method of examination	Talk/presentation (45 minutes) and final report (10 - 15 pages)	
11	Grading procedure	Talk/presentation 50% final report 50%	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Project-dependent. Will be published on StudOn at the beginning of the	ne semester.

	NATURWISSENSCHAFTLICHE FAKULTÄT									
1	Module name	Module 4: PTfS-CAM: Programming Techniques for Supercomputers in CAM	10 ECTS credits							
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 2 semester hrs/week	LIDC							
3	Lecturers	Prof. Dr. G. Wellein	HPC							
4	Module coordinator	Prof. Dr. Gerhard Wellein	·							
5	Content	 Introduction to the architecture of modern supercomputers Single core architecture and optimisation strategies Memory hierarchy and data access optimization Concepts of parallel computers and parallel computing Efficient "shared memory" parallelisation (OpenMP) Parallelisation approaches for multi-core processors including Efficient "distributed memory" parallelisation (MPI) Roofline performance model Serial and parallel performance modelling Complete parallel implementation of a modern iterative Pois 	_							
6	Learning objectives and skills	 Students acquire a comprehensive overview of programming modern efficiently for numerical simulations, learn modern optimisation and parallelisation strategies, gui performance modelling, acquire an insight into innovative programming techniques a supercomputer architectures, are able to implement numerical methods to solve partial direquations (PDEs) with finite difference (FD) discretization wite efficiency on parallel computers. 	ded by structured nd alternative fferential							
7	Prerequisites	Recommended: Experience in C/C++ or Fortran programming; basic kr and OpenMP programming	owledge of MPI							
8	Integration into curriculum	2nd semester								
9	Module compatibility	Mandatory module for MSc Computational and Applied Mathematics								
10	Method of examination	See examination regulations INF								
11	Grading procedure	See examination regulations INF								
12	Module frequency	Summer semester (annually)								
13	Workload	Contact hours: 120 hrs Independent study: 180 hrs Total: 300 hrs, corresponding to 10 ECTS credits								
14	Module duration	One semester								
15	Teaching and examination language	English								
16	Recommended reading	 G. Hager & G. Wellein: Introduction to High Performance Computing for Scientists a CRC Computational Science Series, 2010. ISBN 978-14398119 J. Hennessy & D. Patterson: Computer Architecture. A Quantitative Approach. Morgan Kaufmann Publishers, Elsevier, 2003. ISBN 1-55860-7 	924							

	NATURWISSENSCHAFTLICHE FAKULTÄT			
1	Module name	Module 5:	5 ECTS credits	
		ArchSup: Architectures of Supercomputers		
2	Courses/lectures	a) Lectures: 2 semester hrs/week		
		b) Practical: 2 semester hrs/week	HPC	
3	Lecturers	Prof. Dr. Dietmar Fey, Dr. Andreas Schäfer		
4	Module coordinator	Prof. Dr. Dietmar Fey		
5	Content	 Principles of computer and processor architectures Modern processor architectures Homogeneous and heterogeneous multi/many-core processo Parallel computer architectures Classification and principles of coupling parallel computers High speed networks in supercomputers Examples of supercomputers Programming of supercomputers 	Drs	
6	Learning objectives and skills	 Students can explain the functionality of modern processors used in supercomputers, recognise the special problems associated with energy consumption and programming in supercomputers, can explain the different ways of interconnecting parallel processes, can classify parallel computers with regard to their storage connection and basic processing principles, are able to make use of and run a supercomputer to solve their own technical or mathematical problem. Based on the examples demonstrated during the lecture, they are able to generalise challenges associated with the discovery of bottlenecks and use them to solve their specific problem, are able to characterise their problems (e.g. scientific or technical simulation experiments) with regard to the computing and memory requirements for a supercomputer in a way that is appropriate for the architecture, can make use of the performance-measuring methods for parallel computers to evaluate various computer architectures and select the appropriate 		
7	Prerequisites	None		
8	Integration into curriculum	3rd semester		
9	Module compatibility	 Mandatory module for MSc Computation and Applied Mathe Mandatory module for Computational Engineering degree pro (Computer-Assisted Engineering) (Master of Science) and Info Technology (Master of Science) 	ogrammes	
10	Method of examination	See examination regulations INF		
11	Grading procedure	See examination regulations INF		
12	Module frequency	Winter semester (annually)		
13	Workload	Contact hours: 60 hrs Independent study: 90 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	 Quinn: Parallel Programming in C with MPI and OpenMP, Mc Hennessy/Patterson: Computer Architecture - A Quantitative Morgen&Kaufmann 		

	FAKULTÄT			
1	Module name	Module 6a: MaSe: Master's seminar MApA	5 ECTS credits	
2	Courses/lectures	Seminar: 2 semester hrs/week		
3	Lecturers	Profs. Drs. G. Grün, M. Burger, E. Zuazua	МАрА	
4	Module coordinator	Prof. Dr. G. Grün		
5	Content	A topic from MApA that relates to the compulsory elective modules of	fered.	
6	Learning objectives and skills	 Students can use original literature to familiarise themselves with a current research topic, can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the MApA specialisation: make use of analytical techniques to rigorously prove the qualitative characteristics of solutions to mathematical models in applied sciences. 		
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Ma recommended	thematics	
8	Integration into curriculum	3rd semester		
9	Module compatibility	 Mandatory module for MSc in Computational and Applied Mathematics Mandatory module for MSc in Mathematics Mandatory module for MSc in Mathematics and Economics 		
10	Method of examination	talk/presentation (70-80 minutes) with handout (5-10 pages)		
11	Grading procedure	100 %talk/presentation with handout		
12	Module frequency	Winter semester (annually)		
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning of t	he semester.	

1	Module name	Module 6b: MaSe: Master's seminar NASi	5 ECTS credits
2	Courses/lectures	Seminar: 2 semester hrs/week	
3	Lecturers	Profs. Drs. E. Bänsch, G. Grün, M. Burger	NASi

4	Module coordinator	Prof. Dr. E. Bänsch
5	Content	A topic from NASi that relates to the compulsory elective modules offered.
6	Learning objectives and skills	 Students can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the NASi specification: can solve exemplary computational problems with given or self-developed software in order to illustrate or verify numerical methods under consideration.
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics rec- ommended
8	Integration into curriculum	3rd semester
9	Module compatibility	 Mandatory module for MSc in Computational and Applied Mathematics Mandatory module for MSc in Mathematics Mandatory module for Msc in Mathematics and Economics
10	Method of examination	talk/presentation (70-80 minutes) with handout (5-10 pages)
11	Grading procedure	100% talk/presentation with handout
12	Module frequency	Winter semester (annually)
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning of the semester.

1	FAKULTÄT Module name	Module 6c:	5 ECTS credits
-		MaSe: Master's seminar Opti	
2	Courses/lectures	Seminar: 2 semester hrs/week	Opti
3	Lecturers	Profs. Drs. F. Liers, A. Martin, M. Stingl	Ορι
4	Module coordinator	Prof. Dr. M. Stingl	
5	Content	A topic from Opti that relates to the compulsory elective modules offe	red.
6	Learning objectives and skills	 Students can use original literature to familiarise themselves with a current research topic, can structure the content acquired both verbally and in writing and make their own contributions to its presentation and/or substance, learn scientific content on the basis of academic lectures and actively discuss it at a plenary session. For the Opti specialisation: model theoretical and applied tasks as optimization problems and/or develop optimization algorithms for their solution and/or put these into practice. 	
7	Prerequisites	All compulsory modules for the MSc in Computational and Applied Mathematics recommended	
8	Integration into curriculum	3rd semester	
9	Module compatibility	 Mandatory module for MSc in Computational and Applied Mathematics Mandatory module for MSc in Mathematics Mandatory module for MSc in Mathematics and Economics 	
10	Method of examination	talk/presentation (70-80 minutes) with handout (5-10 pages)	
11	Grading procedure	100% talk/presentation with handout	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Depending on topic. Will be published on StudOn at the beginning of t	he semester.

	FAKULTÄT		
1	Module name	Module 7:	25 ECTS credits
		Master's Thesis	
2	Courses/lectures	Oral examination	
		Master's Thesis	MapA/NASi/Opti
3	Lecturers	The lecturers for the degree programme in Computational and	
		Applied Mathematics	
4	Module coordinator	Prof. Dr. G. Grün	
5	Content	The master's thesis is in the field of Modelling and Analysis, or Numer	ical Analysis and
5	content	Simulation, or Optimization, and deals with a current research topic.	
6	Learning objectives and skills	 Students are capable of independently follow up a scientific question in the fields of "Modelling and Analysis", "Numerical Analysis and Simulation" or "Optimization" over an extended, specified period, develop original ideas and concepts for solving scientific problems in these fields, apply and improve mathematical methods rather independently - also in unfamiliar and interdisciplinary contexts, present and explain mathematical or interdisciplinary contents clearly in a manner appropriate for the target audience, both in writing and orally, improve their ability to plan and structure by implementing a thematic project. 	
7	Prerequisites	Successful participation in all mandatory modules (35 ECTS) and at least 20 ECTS from mandatory elective modules	
8	Integration into curriculum	4th semester	
9	Module compatibility	Master's degree programme in Computational and Applied Mathemat	tics
10	Method of examination	Master's thesis (scope according to examination regulations) Oral exam (15 minutes)	
11	Grading procedure	90% Master's thesis 10% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 15 hrs Independent study: 735 hrs Total: 750 hrs, corresponding to 25 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Individual, depending on topic of Master's Thesis.	

1	Module name	Module 8: NumPDE I: Numerics of Partial Differential Equations I	10 ECTS credits
2	Courses/lectures	a) Lecture: 4 semester hrs/week b) Practical: 2 semester hr/week	NASi
3	Lecturers	Profs. Drs. E. Bänsch, G. Grün	

4	Module coordinator	Prof. Dr. E. Bänsch
5	Content	 Classical theory of linear elliptic boundary value problems (outline) Finite difference method (FDM) for Poisson's equation in two dimensions (including stability via inverse monotonicity) Finite element method (FEM) for Poisson's equation in two dimensions (stability and convergence, example: linear finite elements, implementation) Variational theory of linear elliptic boundary value problems (outline) FEM for linear elliptic boundary value problems (2nd order) (types of elements, affin-equivalent triangulations, order of convergence, maximum principle) Iterative methods for large sparse linear systems of equations (condition number of finite element matrices, linear stationary methods (recall), cg method (recall), preconditioning, Krylov subspace methods
6	Learning objectives and skills	 Students apply algorithmic approaches for models with partial differential equations and explain and evaluate them, are capable to judge on a numerical method's properties regarding stability and efficiency, implement (with own or given software) numerical methods and critically evaluate the results, explain and apply a broad spectrum of problems and methods with a focus on conforming finite element methods for linear elliptic problems, collect and evaluate relevant information and realize relationships.
7	Prerequisites	Recommended: basic knowledge in numerics, discretization, and optimization
8	Integration into curriculum	1st semester
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for BSc Mathematics Mandatory module for BSc Technomathematik Non-Physics elective module for MSc Physics
10	Method of examination	written exam (90 minutes) with exercises
11	Grading procedure	100% based on written exam
12	Module frequency	Winter semester (annually)
13	Workload	Contact hours: 90 hrs Independent study: 210 hrs Total: 300 hrs, corresponding to 10 ECTS credits
14	Module duration	One semester

15	Teaching and examination language	English
16	Recommended reading	 P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations, Springer 2003 S. Larssen & V. Thomee: Partial Differential Equations with Numerical Methods. Springer 2005 D. Braess: Finite Elements. Cambridge University Press 2010 lecture scripts on the homepage of the domain Modeling, Simulation, and Optimization of the department Mathematics, frequently updated

1	Module name	Module 9: AdDiscTech: Advanced Discretization Techniques	10 ECTS credits
2	Courses/lectures	a) Lecture: 4 semester hrs/week b) Practical: 1 semester hr/week	NASi
3	Lecturers	Profs. Drs. E. Bänsch, G. Grün, N.N.	
4	Module coordinator	Prof. Dr. E. Bänsch	
5	Content	 conforming and non-conforming finite element methods saddle point problems in Hilbert spaces mixed finite element methods for saddle point problems, in particular for Darcy and Stokes Streamline-Upwind Petrov-Galerkin (SUPG) and discontinuous Galerkin (dG) finite element methods (FEM) for convection dominated problems Finite Volume (FV) methods and their relation to FEM a posteriori error control and adaptive methods 	
6	Learning objectives and skills	 Students have a discriminating understanding, both theoretically and computationally of FE as well as FV methods for the numerical solution of partial differential equations (pde) (in particular of saddle point problems), are capable of developing problem dependent FE or FV methods and judge on their properties regarding stability and effectiveness, are familiar with a broad spectrum of pde problems and their computational solutions, are capable of designing algorithms for adaptive mesh control. 	
7	Prerequisites	Recommended: Introduction to numerical methods for pdes, functional analysis	
8	Integration into curriculum	1st or 3 rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization" 	
10	Method of examination	oral exam (20 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours:75 hrsIndependent study:225 hrsTotal:300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

16 Recommended reading	 A. Ern, JL. Guermond: Theory and Practice of Finite Elements A. Quarteroni & A. Valli: Numerical Approximation of Partial Differential Equations P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations, Springer D. A. Di Piettro & A. Ern: Mathematical aspects of discontinuous Galerkin methods. Springer 2012
------------------------	---

	NATURWISSENSCHAFTLICHE FAKULTÄT			
1	Module name	dule 10: 5 ECTS credits olTech: Advanced Solution Techniques		
2		ectures: 2 semester hrs/week ractical: 0.5 semester hrs/week NASi		
3	Lecturers Prof	Dr. E. Bänsch, N.N.		
4	Module coordinator	Prof. Dr. E. Bänsch		
5	Content	 Krylov subspace methods for large non-symmetric systems of equations Multilevel methods, especially multigrid (MG) methods, nested and non- nested grid hierarchies Parallel numerics, especially domain decomposition methods Inexact Newton/Newton-Krylov methods for discretized nonlinear partial differential equations Preconditioning and operator-splitting methods 		
6	Learning objectives and skills	 Students are able to design application-specific own MG algorithms with the theory of multigrid methods and decide for which problems the MG algorithm is suitable to solve large linear systems of equations, are able to solve sparse nonlinear/non-symmetric systems of equations with modern methods (also with parallel computers), are able to develop under critical assessment complete and efficient methods for application-orientated problems. 		
7	Prerequisites	Recommended: Advanced Discretization Techniques		
8	Integration into curriculum	2nd semester		
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization" 		
10	Method of examination	Oral exam (15 minutes)		
11	Grading procedure	100% Oral exam		
12	Module frequency	Summer semester (annually)		
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	 A. Quarteroni & A. Valli: Numerical Approximation of Partial Differential Equations P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations Further literature and scientific publications are announced during the lectures 		

1	FAKULT Module name	Module 11:	5 ECTS credits	
1	Module Hallie	RTpMNum: Transport and Reaction in Porous Media: Modeling	J ECTS CIEURS	
າ	Courses/lectures	a) Lectures: 2 semester hrs/week		
2		b) Practical: 0,5 semester hrs/week	MapA	
3	Lecturers	Prof. Dr. S. Kräutle, Drs. N. Ray, A. Prechtel		

4	Module coordinator	Prof. Dr. S. Kräutle	
5	Content	 Modelling of fluid flow through a porous medium: Groundwater models (Richards' equation), multiphase flow Advection, diffusion, dispersion of dissolved substances, (nonlinear) reaction-models (i.a. law of mass action, adsorption, kinetic / in local equilibrium, reactions with minerals) Models of partial (PDEs), ordinary (ODEs) differential equations, and local conditions Nonnegativity, boundedness, global existence of solutions, necessary model assumptions in the case of a pure ODE model as well as for a PDE model Existence of stationary solutions (i.a. introduction to the Feinberg network theory) 	
6	Learning objectives and skills	 Students are able to model flow and reaction processes in porous media on macro- and micro-scale using partial differential equations, possess the techniques and the analytical foundations to assess the global existence of solutions. 	
7	Prerequisites	Recommended: Basic knowledge in differential equations	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of "Modeling, Simulation, and Optimisation" Master Physics, non-physical elective module 	
10	Method of examination	Oral exam (15 minutes)	
11	Grading procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 S. Kräutle: lecture notes <u>math.fau.de/kraeutle/vorlesungsskripte/</u> C. Eck, H. Garcke, P. Knabner: Mathematical Modeling, Springer J.D. Logan: Transport Modeling in Hydrogeochemical Systems, Springer M. Feinberg: lecture notes crnt.osu.edu/LecturesOnReactionNetworks 	

1	Module name	AT Module 12: RTpMNum: Transport and Reaction in Porous Media: Simulation	5 ECTS creadits
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi
3	Lecturers	Prof. Dr. S. Kräutle, Drs. N. Ray, A. Prechtel	

4	Module coordinator	Prof. Dr. S. Kräutle	
5	Content	 Degenerate parabolic differential equations as multiphase flow models: formulation, nonlinear solution methods, discretization methods Models for transport and reactions in porous media, consisting of coupled PDEs and ODEs, if necessary coupled to algebraic equations (AEs) and inequalities for the description of local equilibria (differential-algebraic system) Different formulations of the system (operator splitting, change of variables, combination of the equations, elimination of AEs), as a basis for different software packages for numerical simulations, connection to optimisation (Gibbs energy) Treatment of numerical difficulties (Guarantee of nonnegativity of numerical solutions of the (nonlinear) problems, scaling problems, convection dominated problems 	
6	Learning objectives and skills	 Students use methods for the numerical solving of a class of problems whose complexity goes significantly beyond standard problems (Poisson and heat equation): coupled nonlinear partial and ordinary differential equations (PDEs, ODEs) and algebraic equations (AEs), put strategies for the treatment of possible difficulties during the numerical solving into practice. 	
7	Prerequisites	Recommended: Basic knowledge in differential equations, Transport and Reaction in Porous Media: Modeling	
8	Integration into curriculum	3rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of "Modeling, Simulation, and Optimisation" Master Physics, non-physical elective module 	
10	Method of examination	Oral exam (15 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16 Recommended reading Partial Differential Equations, Springe - Handbooks of Software Packages,		 P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer Handbooks of Software Packages, https://en.www.math.fau.de/angewandte-mathematik-1/forschung/software-2 	

1	Module name	Module 13: NuIF1: Numerics of Incompressible Flows I	5 ECTS credits
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi
3	Lecturers	Prof. Dr. E. Bänsch, Prof. Dr. G. Grün	

4	Module coordinator	Prof. Dr. E. Bänsch
5	Content	 Mathematical modelling of (incompressible) flows Variational formulation, existence and (non-)uniqueness of solutions to the stationary Navier-Stokes (NVS) equations Stable finite element (FE) discretization of the stationary (Navier-) Stokes equations Error estimates Solution techniques for the saddle point problem
6	Learning objectives and skills	 Students explain and apply the mathematical theory for the stationary, incompressible Navier-Stokes equations, analyse FE discretization for the stationary Stokes equations and apply them to practical problems, explain the meaning of the inf-sup condition, choose the appropriate function spaces, stabilisation techniques and solution techniques and apply them to concrete problem settings.
7	Prerequisites	Recommended: Advanced discretization techniques
8	Integration into curriculum	2nd semester
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization"
10	Method of examination	oral exam (15 minutes)
11	Grading procedure	100% based on oral examination
12	Module frequency	Summer semester (annually)
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	One semester
15	Teaching and examination language	English

16 Recommended reading	•	 V. Girault & PA. Raviart: Finite element methods for the Navier-Stokes equations. Theory and algorithms. Springer 1986 H. Elman, D. Silvester & A. Rathen: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press 2014 R. Temam: Navier-Stokes equations. Theory and numerical analysis. North Holland
------------------------	---	---

1	Module name	Module 14: NuIF2: Numerics of Incompressible Flows II	5 ECTS credits
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	NASi
3	Lecturers	Prof. Dr. E. Bänsch, Prof. Dr. G. Grün	

4	Module coordinator	Prof. Dr. E. Bänsch	
5	Content	 Variational formulation of the instationary Stokes and Navier-Stokes (NVS) equations Existence and uniqueness of solutions to the instationary Stokes and NVS equations Time discretisation methods Fully discrete equations and error estimates Solution techniques Operator splitting, projection methods More general boundary conditions Coupling of NVS with temperature equation Computational experiments with academic or commercial codes 	
6	Learning objectives and skills	 Students discretize the instationary NVS equations in time and space, explain and analyse discretisation schemes and operator splitting techniques, choose appropriate algorithms for given flow problems and solve them with academic or commercial software. 	
7	Prerequisites	Recommended: Advanced discretization techniques, Numerics of incompressible flows I	
8	Integration into curriculum	3rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	

	FAKULIAI	
16	Recommended reading	 V. Girault & PA. Raviart: Finite element methods for the Navier-Stokes equations. Theory and algorithms. Springer 1986 H. Elman, D. Silvester & A. Rathen: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press 2014 R. Glowinski: Finite Element Methods for Incompressible Viscous Flow, in : Handbook of Numerical Analysis vol. IX R. Temam: Navier-Stokes equations. Theory and numerical analysis. North Holland

1	Module name	Module 15: IPReg: Inverse Problems and their Regularization	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	MApA
3	Lecturers	Prof. Dr. M. Burger, Dr. D. Tenbrinck	Μάμα

4	Module coordinator	Prof. Dr. M. Burger	
5	Content	 Examples of inverse and ill-posed problems in engineering and medical imaging Linear regularization methods in Hilbert spaces and singular value decomposition Variational methods for regularization and image reconstruction problems Tomographic reconstruction and Radon transforms 	
6	Learning objectives and skills	 Students develop understanding for special aspects of inverse problems and ill-posedness, apply regularization methods to inverse problems and develop a basic understanding of their properties, derive and solve inverse problems arising from technical and biomedical applications. 	
7	Prerequisites	Recommended: basic knowledge in functional analysis	
8	Integration into curriculum	1 st or 3rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Compulsory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization" 	
10	Method of examination	Oral exam (15 minutes)	
11	Grading procedure	100% Oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered in the current semester, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 H. Engl, M. Hanke, A. Neubauer: Regularization Methods for Inverse Problems Kluwer 1996 M. Benning, M. Burger: Modern Regularization Methods for Inverse Problems Acta Numerica 2018 	

1	Module name	Module 16: MaDS: Mathematical Data Science 1	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 1/2 semester hrs/week	NASi
3	Lecturers	Prof. Dr. M. Burger, Dr. D. Tenbrinck	

4	Module coordinator	Prof. Dr. M. Burger
5	Content	 Clustering and Classification Models Machine learning: empirical risk minimization, kernel methods, and variational models Ranking problems Mathematical models of graph structured data
6	Learning objectives and skills	 Students develop understanding of modern big data and state of the art methods to analyze them, apply state of the art algorithms to large data sets, derive models for network / graph structured data.
7	Prerequisites	Recommended: basic knowledge in numerical methods and optimization
8	Integration into curriculum	2 nd or 4 th semester
9	Module compatibility	 Mandatory module for MSc in Data Science Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization"
10	Method of examination	Oral exam (20 minutes)
11	Grading procedure	100% Oral exam
12	Module frequency	Summer semester (not annually) To check whether the course is offered in the current semester, see UnivIS univis.fau.de or module handbook of current semester
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	One semester
15	Teaching and examination language	English
16	Recommended reading	 I. Goodfellow, Y. Bengio, A. Courville: Deep Learning, MIT Press, 2015 T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer, 2008

1	Module name	Module 17: MaKiT: Mathematical Models of Kinetic Theory	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	MApA
3	Lecturers	Prof. Dr. M. Burger	Мара

4	Module coordinator	Prof. Dr. M. Burger	
5	Content	 Microscopic stochastic interaction models and simulation Mean-field and Boltzmann-Grad limit Analysis of kinetic equations, linear and nonlinear Boltzmann equation Hydrodynamic limits Fokker-Planck and nonlinear diffusion equations 	
6	Learning objectives and skills	 Students develop understanding of modeling macroscopic phenomena emerging from local random interactions, understand the advantages and limitations of different continuum descriptions, derive and analyze models at different scales. 	
7	Prerequisites	Recommended: basic knowledge in modeling and partial differential equations	
8	Integration into curriculum	3rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization" 	
10	Method of examination	Oral exam (15 minutes)	
11	Grading procedure	100% Oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered in the current semester, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 L. Pareschi, G. Toscani: Interacting Multiagent Systems: Kinetik Equations and Monte Carlo Methods, Oxford University Press 2013 C. Cercignani, R. Illner, M. Pulvirenti: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, 106, Springer, 1994 	

1	∕lodule name	Module 18: MaMM: Ma	: athematics of Multiscale Models	5 ECTS credits
2 0	Courses/lectures		2 semester hrs/week : 0.5 semester hrs/week	МАрА
3 L	Lecturers Drs. M. Ne		uss-Radu, N. Neuß	мара
4	Module coordinat	or	Dr. N. Neuß	
5	Content		 Function spaces of periodic functions and asymptotic expan Two-scale convergence and unfolding method Application to differential equation models in continuum me Multi-scale finite element methods Numerical upscaling methods 	
6	Learning objective and skills	25	 Students have profound expertise about the basic methods in multi-s homogenisation, are able to derive rigorously homogenised (effective) model quality of the approximation. 	
7	Prerequisites		Recommended: Knowledge in modeling as well as analysis and nume differential equations	erics of partial
8	Integration into curriculum		3rd semester	
9	Module compatib	ility	 Mandatory elective module for MSc in Computational and A Mathematics Mandatory elective module for MSc in Mathematics in the f "Modeling, Simulation and Optimization" 	
10	Method of examir	nation	Oral exam (15 minutes)	
11	Grading procedure	e	100% Oral exam	
12	Module frequency	1	At least once every two years To check whether the course is offered in the current semester, see U or module handbook of current semester	InivIS univis.fau.de
13	Workload		Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration		One semester	
15	Teaching and exan language	nination	English	
16	Recommended rea	ading	 D. Cioranescu & P. Donato: An Introduction to Homogenizat U. Hornung (ed.): Homogenization and Porous Media Y. Efendiev & T. Hou: Multiscale Finite Element Methods 	ion

	NATURWISSENSCHAFTLICHE FAKULTÄT			
1	Module name	Module 19:	5 ECTS credits	
		ThSDE: Theory of Stochastic Evolution Equations		
2	Courses/lectures	Lecture: 2 semester hrs/week		
		Practical: 0.5 semester hrs/week	MApA	
3	Lecturers	Prof. Dr. G. Grün, N.N.		
4	Module coordinator	Prof. Dr. G. Grün		
5	Content	 Infinitely dimensional Wiener processes, Stochastic integral in Hilbert spaces, Ito-processes and stochastic differential equations, Optionally: existence results for stochastic partial differential equations or further results on stochastic ODE (Fokker-Planck equations,) 		
6	Learning objectives and skills	 Students characterize Gaussian measures on Hilbert spaces. They explain representation formulas for Q-Wiener processes as well as the derivation of the stochastic integral, successfully apply concepts to solve stochastic differential equations explicitly and prove existence of solutions to stochastic evolution equations. 		
7	Prerequisites	Basic knowledge in probability theory or functional analysis is recom	imended.	
8	Integration into curriculum	2nd semester		
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of "Analysis and Stochastics" Mandatory elective module for MSc in Mathematics and Economics in the field of "Stochastics and Risk Management" 		
10	Method of examination	oral exam (15 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	Summer semester (not annually) To check whether the course is currently offered, see UnivIS univis.fau.de or module handbook of current semester		
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	 G. Da Prato & J. Zabczyk: Stochastic equations in infinite di Cambridge University Press I. Karatzas & S.E. Shreve: Brownian motion and stochastic of B. Oksendal: Stochastic differential equations, Springer C. Prévôt & M. Röckner: A concise course on stochastic par equations, Springer 	calculus, Springer	

	FAKULTÄT				
1	Module name	Module 20: NuSDE: Numerics of Stochastic Evolution Equations	5 ECTS credits		
2	Courses/lectures	Lectures: 2 semester hrs/week			
		Practical: 0.5 semester hrs/week	NASi		
3	Lecturers	Prof. Dr. G. Grün, N.N.			
4	Module coordinator	Prof. Dr. G. Grün			
5	Content	 Strong and weak approximations, explicit and implicit schemes for stochastic differential equations (SDEs), Consistency, stability, convergence, Monte Carlo methods, variance-reduction schemes. 			
6	Learning objectives and skills	 Students have critical understanding of capabilities of numerical schemes for stochastic differential equations, are capable to use own or commercial software for SDEs and to judge results critically. 			
7	Prerequisites	Basic knowledge in probability theory and in numerics is recommended	ed.		
8	Integration into curriculum	3rd semester			
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of "Analysis and Stochastics" Mandatory elective module for MSc in Mathematics and Economics in the field of "Stochastics and Risk Management" 			
10	Method of examination	oral exam (15 minutes)			
11	Grading procedure	100% based on oral exam			
12	Module frequency	Winter semester (not annually) To check whether the course is currently offered, see UnivIS univis.fau.de or module handbook of current semester			
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS			
14	Module duration	One semester			
15	Teaching and examination language	English			
16	Recommended reading	 P.E. Kloeden & E. Platen: Numerical solution of stochastic di B. Lapeyre, E. Pardoux & R. Sentis: Introduction to Monte-Catransport and diffusion equations 			

	NATURWISSENSCHAFTLICHE FAKULTÄT				
1	Module name	Module 21: PcFem: Practical Course on Finite Element Methods for Phase- Separation Equations	5 ECTS credits		
2	Courses/lectures	Seminar: 3 semester hrs/week			
3	Lecturers	Dr. S. Metzger	NASi		
4	Module coordinator	Prof. Dr. G. Grün			
5	Content	 Finite element discretization for Cahn-Hilliard equations, Storage concepts for sparse matrices, Adaptive mesh refinement. 			
6	Learning objectives and skills	 Students implement a finite element solver for phase-separation equations, are able to compare and implement different storage concepts for sparse matrices, are able to implement finite element solvers based on adaptive meshes, are able to derive and implement efficient discretizations for phase-separation equations, are able to validate their implementation. 			
7	Prerequisites	Recommended: Numerics of Partial Differential Equations I			
8	Integration into curriculum	1 st or 3 rd semester			
9	Module compatibility	 Mandatory elective module for BSc in Mathematics Mandatory elective module for BSC in Technomathematics Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization" 			
10	Method of examination	Oral exam (30 minutes)			
11	Grading procedure	100% Oral exam			
12	Module frequency	Winter semester (not annually)			
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits			
14	Module duration	One semester			
15	Teaching and examination language	English			
16	Recommended reading	 P. Knabner & L. Angermann: Numerical Methods for Elliptic and Parabolic Differential Equations, Springer 2003 D. Braess: Finite Elements. Cambridge University Press 2010 B. Stroustrup: The C++ programming language, Addison-Wesley 2014 			

	NATURWISSENSCHAFTLICHE FAKULTÄT				
1	Module name	Module 22: 5 ECTS credits			
		RegPDE: Regularity theory of elliptic PDEs			
2	Courses/lectures	a) Lectures: 3 semester hrs/week b) Practical: 1 semester hrs/week			
3	Lecturers	D) Practical: 1 semester his/week MApA Dr. Cornelia Schneider			
	Ecclurers				
4	Module coordinator	Dr. Cornelia Schneider			
5	Content	 Elliptic partial differential equations Variational formulation Function spaces Regularity of solutions in Sobolev and Besov spaces 			
6	Learning objectives and skills	 Students see the relevance of regularity theory for practical problems, in particular, for the numerical treatment of PDEs; they get acquainted with the basic methods for proving regularity estimates learn how methods from functional analysis, numerics and approximation theory interact practice their mathematical skills (develop mathematical intuition and its formal justification, improve their ability to think about abstract problems, learn new methods of proof) 			
7	Prerequisites	Recommended: Analysis-modules of Bachelor programme, module NumPDE			
8	Integration into curricu	ulum 1 st or 3 rd semester			
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Analysis and stochastics" 			
10	Method of examinatio	n Oral exam (20 minutes)			
11	Grading procedure	100% Oral exam			
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester			
13	Workload	Contact hours: 60 hrs Independent study: 90 hrs Total: 150 hrs, corresponding to 5 ECTS credits			
14	Module duration	One semester			
15	Teaching and examinat language	tion English			
16	Recommended reading	 R. A. Adams, J. J. F. Fournier, Sobolev spaces, Pure and Applied mathematics 140, Elsevier, Academic Press (2003) W. Hackbusch, Elliptic differential equations, Springer Series in Computational Mathematics, vol 18 (1992). P. Grisvard, Elliptic problems in non smooth domains, Pitman, Boston (1985). V. Kozlov, V. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, AMS (1997). 			

1	Module name	Module 23: MaMoLS: Mathematical Modeling in the Life Sciences	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0,5 semester hrs/week	ΜΑφΑ
3	Lecturers	Dr. Neuss-Radu	Мара

4	Module coordinator	Dr. Neuss-Radu	
5	Content	 Biochemical reaction networks, enzyme kinetics Models for interacting populations (Predator-prey, competition, symbiosis) Diffusion, reactions, and transport in biological cell tissues and vessels Structured population models 	
6	Learning objectives and skills	 Students have profound knowledge in the area of mathematical modeling of processes in the life sciences, are able to identify significant mechanisms, and to apply suitable analytical and numerical methods for their analysis, are able to work interdisciplinary and problem-oriented. 	
7	Prerequisites	Recommended: Modeling and Analysis in Continuum Mechanics I	
8	Integration into curriculum	3rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modelling, Analysis and Optimization" 	
10	Method of examination	Oral exam (15 minutes)	
11	Grading procedure	100% Oral exam	
12	Module frequency	Winter semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 J. D. Murray: Mathematical Biology I: An Introduction, Mathematical Biology II: Spatial Models and Biomedical Applications G. de Vries, T. Hillen, et al.: A course in Mathematical Biology J. Prüss: Mathematische Modelle in der Biologie: Deterministische homogene Systeme 	

	NATURWISSENSCHAFTI FAKULTÄT			
1	Module name	Module 24: IPro: Partial Differential Equations Based Image Processing	5 ECTS credits	
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hr/week	MApA/NASi	
3	Lecturers	Prof. Dr. E.Bänsch, Dr. M. Fried		
4	Module coordinator	Dr. M. Fried		
5	Content	 basics of image processing deblurring using different partial differential equations Finite Element Method for variational methods in image restauration and image segmentation 		
6	Learning objectives and skills	 Students explain mathematical and algorithmic methods for image processing, apply above image processing methods in computerised practical exercises, apply analytical techniques to evaluate the qualitative characteristics of the above methods. 		
7	Prerequisites	Basic knowledge in functional analysis and numerical methods for pde- recommended.	s is	
8	Integration into curriculum	2nd semester		
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics Mandatory elective module for MSc Mathematics in the fields of study "Modeling, Simulation and Optimization" Mandatory elective module MSc Integrated Life Science 		
10	Method of examination	oral exam (15 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	if requested: every second summer semester To check whether the course is offered, see UnivIS univis.fau.de or m of current semester	if requested: every second summer semester To check whether the course is offered, see UnivIS univis.fau.de or module handbook	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	One semester		
15	Teaching and examination language	English		
16	Recommended reading	G. Aubert & P. Kornprobst: Mathematical problems in image processing	g, Springer	

1	Module name	Module 25: AnFBP: Analysis of free-boundary problems in continuum mechanics	ECTS 5 credits
2	Courses/lectures	Lecture: 2 semester hrs/week Practical: 0.5 semester hrs/week	МАрА
3	Lectures	Prof. Dr. G. Grün	
4	Module coordinator	Prof. Dr. G. Grün	
5	Content	Derivation of time-dependent free boundary problems in continuum mechanics, Basic results on existence and qualitative behaviour, Optimal estimates on the propagation of free boundaries, Other approaches, e.g. relaxation by phase-field models.	
6	Learning objectives and skills	Students formulate free-boundary problems in hydrodynamics and in porous-media flow,, explain analytical concepts for existence and nonnegativity results for degenerate parabolic equations as well as techniques for optimal estimates on spreading rates, validate different modeling approaches in a critical way.	
7	Prerequisites	Recommended: Basic knowledge of analysis of partial differential equations, corresponding to the syllabus of "Modeling and applied analysis in continuum mechanics" or that one of other pde-lectures.	
8	Integration into curriculum	3rd semester	
9	Module compatibility	 Mandatory elective module MSc Computational and Applied Mathematics, Mandatory elective module MSc Mathematics in the field of study "Analysis and Stochastics" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading Procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.c handbook of current semester	le or module
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	L.C. Evans: Partial Differential Equations, AMS, Original journal articles.	

1	Module name	Module 26: PDFin: Partial Differential Equations in Finance	5 ECTS credits
2	Courses/lectures	Lecture: 2 semester hrs/week Practical: 0.5 semester hrs/week	MApA/NASi
3	Lecturers	Profs. Drs. E. Bänsch, G. Grün	

4	Module coordinator	Prof. Dr. G. Grün	
5	Content	 models on pricing for financial derivatives, in particular for European and American-type options, selected deterministic equations of financial mathematics, practical knowledge Ito-calculus and stochastic differential equations, analysis and numerics for Black-Scholes equations, variational inequalities and American-type options. 	
6	Learning objectives and skills	 Students explain mathematical models for financial markets and derivatives pricing, apply Ito calculus, derive deterministic models based on pde or variational inequalities and discretize them numerically. 	
7	Prerequisites	Basis knowledge in differential equations, probability theory or functional analysis is recommended.	
8	Integration into curriculum	3rd semester	
9	Module compatibility	 Mandatory elective module MSc Computational and Applied Mathematics, Mandatory elective module MSc Mathematics in the field of study "Modelling, Analysis and Optimization" Compulsory elective module MSc Mathematics and Economics in the field of study "Stochastics and Risk Management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 M. Capiński & T. Zastawniak: Mathematics for finance, Springer, N. Hilber, O. Reichmann, C. Schwab & C. Winter: Computational methods for quantitative finance, Springer, B. Oksendal: Stochastic differential equations, Springer. 	

1	Module name	Module 27: MSOpt: Introduction to Material and Shape Optimization	10 ECTS credits
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 1 semester hr/week	Opti
3	Lecturers	Profs. Drs. M. Stingl, G. Leugering	Орл
4	Module coordinator	Prof. Dr. M. Stingl	
5	Content	 shape-, material- and topology optimization models linear elasticity and contact problems existence of solutions of shape, material and topology optimization problems approximation of shape, material and topology optimization problems by 	
6	Learning objectives and skills	 convergent schemes Students derive mathematical models for shape-, material and topology optimization problems, apply regularization techniques to guarantee to existence of solutions, approximate design problems by finite dimensional discretizations, derive algebraic forms and solve these by nonlinear programming techniques. 	
7	Prerequisites	Recommended: Knowledge in nonlinear optimization, Basic knowledge in numerics of partial differential equations	
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc Mathematics in the fields of study "Modelling, Analysis and Computation", "Analysis and Stochastics" 	
10	Method of examination	oral exam (20 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 J. Haslinger & R. Mäkinen: Introduction to shape optimization, SIAM, M. P. Bendsoe & O. Sigmund: Topology Optimization: Theory, Methods and Applications, Springer. 	

1	Module name	Module 28: AlgNLOpt: Advanced Algorithms for Nonlinear Optimization	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	Opti
3	Lecturers	Prof. Dr. M. Stingl	Ορτι
4	Module coordinator	Prof. Dr. M. Stingl	
5	Content	 Several of the following topics: Trust region methods Iterative methods in the presence of noisy data Interior point methods for nonlinear problems Modified barrier and augmented Lagrangian methods Local and global convergence analysis 	
6	Learning objectives and skills	 Students use methods of nonlinear constrained optimization in finite dimensional spaces, analyse convergence behaviour of these methods and derive robust and efficient realisations, apply these abilities to technical and economic applications. 	
7	Prerequisites	Basic knowledge in nonlinear optimization is recommended.	
8	Integration into curriculum	1st semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for the MSc in Mathematics and Economics in the field of study "Optimization and process management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current sememster	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	C.T. Kelley: Iterative Methods for Optimization, SIAM,J. Nocedal & S. Wright: Numerical Optimization, Springer.	

1	Module name	Module 29:	5 ECTS credits	
		DiscOpt I: Discrete Optimization I	J Let S creats	
2	Courses/lectures	a) Lectures: 2 weekly lecture hours		
		b) Practical: 1 weekly lecture hour	Opti	
3	Lecturers	Profs. Drs. F. Liers, A. Martin		
4	Module coordinator	Prof. Dr. A. Martin		
5	Content	Theoretical and practical fundamentals of solving difficult mixed-integer linear optimization problems (MIPs) constitute the main focus of this lecture. At first, the concept of NP-completeness and a selection of common NP-complete problems will be presented. As for polyhedral theory, fundamentals concerning the structure of faces of convex polyhedra will be covered. Building upon these fundamentals, cutting plane algorithms as well as branch-and-cut algorithms for solving MIPs will be taught. Finally, some typical problems of discrete optimization, e.g., the knapsack problem, the traveling salesman problem or the set packing problem will be discussed.		
6	Learning objectives and skills	 Students will gain basic theoretical knowledge of solving mixed-intege optimization problems (MIPs), are able to solve MIPs with the help of state-of-the-art optim 		
7	Prerequisites	Recommended: Linear and Combinatorial Optimization		
8	Integration into curriculum	1st or 3rd semester	1st or 3rd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Mandatory elective module for MSc in Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective module for the MSc in Mathematics and Economics in the field of study "Optimization and process management" 		
10	Method of examination	oral exam (15 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or m of current semester	odule handbook	
13	Workload	Attendance: 45 h Self-study: 105 h Total: 150 hrs, corresponding to 5 ECTS credits		
14	Module duration	one semester		
15	Teaching and examination language	English		
16	 Lecture notes Conforti, Cornuéjols & Zambelli: Integer Programming, Springer 201 B. Grünbaum: Convex Polytopes, Springer, 2003 B. Korte & J. Vygen: Combinatorial Optimization, Springer 2005 G. L. Nemhauser & L.A. Wolsey: Integer and Combinatorial Optimizat Wiley 1994 A. Schrijver: Theory of Linear and Integer Programming, Wiley 1986 L.A. Wolsey: Integer Programming, Wiley 1998 G. Ziegler: Lectures on Polytopes, Springer, 1995 		05 optimization,	

1	Module name	Module 30:	5 ECTS credits	
		RobOpt II: Robust Optimization II		
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 1 weekly lecture hour		
3	Lecturers	Prof. Dr. F. Liers	Opti	
4	Module coordinator	Prof. Dr. F. Liers		
5	Content	n practice, provided data for mathematical optimization problems is often not fully known. Robust optimization aims at finding the best solution which is feasible for input data varying within certain tolerances. The lecture covers advanced methods of robust optimization in theory and modeling. In particular, robust network flows, robust integer optimization and robust approximation are included. Further, state-of-the-art concepts, e.g., "light robustness" or "adjustable robustness" will be discussed by means of real- world applications.		
6	Learning objectives and skills	 Students will be able to identify complex optimization problems under uncertainties as well as suitably model and analyze the corresponding robust optimization problem with the help of advanced techniques of robust optimization, learn the handling of appropriate solving techniques and how to analyze the corresponding results. 		
7	Prerequisites	Recommended: Robust Optimization I		
8	Integration into curriculum	2nd semester		
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Mandatory elective module for MSc Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective module for the MSc in Mathematics and Economics in the field of study "Optimization and process management" 		
10	Method of examination	oral exam (15 minutes)		
11	Grading procedure	100% based on oral exam		
12	Module frequency	Summer semester (not annually) To check whether the course is offered in the current semester, see UnivIS univis.fau.de or module handbook of current semester		
13	Workload	Attendance: 45 h Self-study: 105 h	Attendance: 45 h	
14	Module duration	1 semester		
15	Teaching and examination language	English		
16	Recommended reading	Lecture notes, will be published on StudOn at the beginning of the sen	nester.	

1	Module name	Module 31: NALIP: Numerical Aspects of Linear and Integer Programming	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 0.5 weekly lecture hour	Opti
3	Lecturers	Prof. Dr. R. Bixby	
4	Module coordinator	Prof. Dr. A. Martin	
5	Content	 Revised Simplex (with bounds) Simplex Phase I Dual Simplex LP Presolve/Postsolve Scaling MIP Solution Techniques 	
6	Learning objectives and skills	Students are able to explain and use methods and numerical approaches for solving linear and mixed-integer programs in practice.	
7	Prerequisites	Knowledge in linear algebra and combinatorial optimization is recomm	ended.
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Mandatory elective module for MSc Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective Module for MSc Mathematics and Economics in the field of study "Optimization and Process Management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Summer semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or module handbook of current semester	
13	Workload	Attendance: 37.5 h Self-study: 122.5 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	
16	Recommended reading	 V. Chvátal: Linear Programming, W. H. Freeman and Company L.A. Wolsey: Integer Programming, John Wiley and Sons, Inc., 	

1	Module name	Module 32: AdvNLOpt: Advanced Nonlinear Optimization	10 ECTS credits
2	Courses/lectures	a) Lectures: 4 semester hrs/week b) Practical: 1 semester hr/week	
3	Lecturers	Profs. Drs. W. Achtziger, M. Stingl	Opti
4	Module coordinator	Prof. Dr. W. Achtziger	
5	Content	 advanced optimality conditions and constraint qualifications optimization problems penalty, barrier and augmented Lagrangian methods: theory interior point methods sequential quadratic programming 	
6	Learning objectives and skills	 Students explain and extend their knowledge on theory and algorithm optimization problems, apply solution techniques to different advanced types of opti problems, derive and solve optimization problems arising from technica applications. 	mization
7	Prerequisites	Basic knowledge in nonlinear optimization is recommended.	
8	Integration into curriculum	1st or 3rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective module for MSc in Mathematics and Economics in the field of study "Optimization and Process Management" 	
10	Method of examination	oral exam (20 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or mo of current semester	odule handbook
13	Workload	Contact hours: 75 hrs Independent study: 225 hrs Total: 300 hrs, corresponding to 10 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 M.S. Bazaraa, H.D. Sherali & C.M. Shetty: Nonlinear Programm Algorithms, Wiley, New York, J. Nocedal & S. Wright: Numerical Optimization, Springer. 	ning – Theory and

1	Module name	Module 33: OptPDE: Optimization with Partial Differential Equations	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	Opti
3	Lecturers	Profs. Drs. G. Leugering, M. Stingl	Ορι
4	Module coordinator	Prof. Dr. M. Stingl	
5	Content	 Several of the following topics: Optimization and control in Banach spaces Concepts of controllability and stabilization Optimal control of Partial differential equations Singular Perturbations and asymptotic analysis Numerical realizations of optimal controls Technical, medical and economic applications 	
6	Learning objectives and skills	 Students explain and use theory as well as numerical methods for opti and stabilization in the context of partial differential equatior apply these abilities to technical and economic applications. 	
7	Prerequisites	Basic knowledge in numerics, partial differential equations, and nonlinear optimization is recommended.	
8	Integration into curriculum	1 st or 3rd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective module for MSc in Mathematics and Economics in the field of study "Optimization and Process Management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Winter semester (not annually) To check whether the course is offered, see UnivIS univis.fau.de or m of current semester	odule handbook
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	 F. Tröltzsch: Optimal Control of Partial Differential Equations, AMS, G. Leugering & P. Kogut: Optimal Control of PDEs in Reticulated Dom. 	ains, Birkhäuser.

1	Module name	Module 34: DiscOpt II: Discrete Optimization II	10 ECTS credits
2	Courses/lectures	a) Lectures: 4 weekly lecture hours b) Practical: 2 weekly lecture hour	Opti
3	Lecturers	Profs. Drs. F. Liers, A. Martin	
4	Module coordinator	Prof. Dr. A. Martin	
5	Content	In this lecture we cover theoretical aspects and solution strategies for difficult integer and mixed-integer optimization problems. First, we point out the equivalence between separation and optimization. Second, fundamental results of integral polyhedra, lattices and lattice polyhedra as well as its importance to discrete optimization are discussed. Furthermore, we introduce solution strategies for large-scale optimization problems, e.g., decomposition methods or approximation algorithms and heuristics based on linear programming. In addition, we discuss applications arising in engineering, finance, energy management or public transport.	
6	Learning objectives and skills	 Students use basic terms of discrete optimization, model real-world discrete optimization problems, determine and solve them with appropriate mathematical methods. 	their complexity
7	Prerequisites	Recommended: Knowledge in linear and combinatorial optimization, discrete optimizat	tion I
8	Integration into curriculum	2nd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Appl Mandatory elective module for MSc Mathematics in the field "Modelling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Econo "Optimization and Process Management" 	d of study
10	Method of examination	oral exam (20 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Attendance: 90 h Self-study: 210 h	
14	Module duration	1 semester	
15	Teaching and examination language	English	
16	Recommended reading	 Lecture notes D. Bertsimas & R. Weismantel: Optimization over Integers, Dy 2005 Conforti, Cornuéjols & Zambelli: Integer Programming, Spring G. L. Nemhauser & L.A. Wolsey: Integer and Combinatorial O Wiley 1994 A. Schrijver: Combinatorial optimization Vol. A - C, Springer 2 A. Schrijver: Theory of Linear and Integer Programming, Wile L.A. Wolsey: Integer Programming, Wiley 	ger 2014 ptimization, 003

1	Module name	Module 35: OptIE: Optimization in Industry and Economy	5 ECTS credits
2	Courses/lectures	a) Lectures: 2 weekly lecture hours b) Practical: 1 weekly lecture hour	Opti
3	Lecturers	Profs. Drs. F. Liers, A. Martin	
4	Module coordinator	Prof. Dr. F. Liers	
5	Content	This course focuses on modeling and solving real-world optimization problems occurring n industry and economics. Advantages and disadvantages of different modeling techniques will be outlined. In order to achieve efficient solution approaches, different reformulations and their numerical results will be discussed. Students will learn how to present optimization results properly as well as how to interpret and evaluate these results for practical applications. The latter may include but is not limited to the optimization of transport networks (gas, water, energy), air traffic management and mathematical modeling/optimization of market mechanisms in the energy sector.	
6	Learning objectives and skills	 Students model complex real-world optimization problems with respect to efficient solvability, classify the models and use appropriate solution strategies, evaluate the achieved computational results. 	
7	Prerequisites	Recommended: Knowledge in linear and combinatorial optimization	
8	Integration into curriculum	1st or 3rd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Mandatory elective module for MSc Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Economics in the field "Optimization and Process Management" 	
10	Method of examination	oral exam (15 minutes)	
11	Grading procedure	100% based on oral exam	
12	Module frequency	Winter semester (annually)	
13	Workload	Attendance: 45 h Self-study: 105 h Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	1 semester	
15	Teaching and examination language	English	
16	Recommended reading	 Lecture notes (will be published on StudOn at the beginning Up-to-date research literature (will be published on StudOn a the semester) 	

1	Module name	Module 36: ProjO: Project Seminar Optimization	5 ECTS credits
2	Courses/lectures	Seminar: 2 semester hrs/week	
3	Lecturers	Profs. Drs. F. Liers, A. Martin	Opti
4	Module coordinator	Prof. Dr. A. Martin	
5	Content	A specific application is to be used to implement the knowledge of mathematical optimisation models and methods acquired during the degree programme thus far. The content is taken from a current problem, often in close collaboration with an industrial partner. Examples might be the water supply for a city, the design of an energy-efficient facade for an office building or railway construction site management.	
6	Learning objectives and skills	 Students organise themselves into teams to carry out a large project in which they independently model a real problem, develop and implement solutions and apply their results in practical situations, strengthen their communication skills by presenting and discussing the results of the project work, discuss information, ideas, problems and solutions at an academic level with each other and with the lecturers. 	
7	Prerequisites	Recommended: knowledge in combinatorial optimisation	
8	Integration into curriculum	2 nd or 3rd semester	
9	Module compatibility	 Mandatory elective module for MSc Computational and Applied Mathematics, Mandatory elective module for MSc Mathematics in the field of study "Modelling, Simulation and Optimization" Mandatory elective module for MSc Mathematics and Economics in the field "Optimization and Process Management" 	
10	Method of examination	Talk/presentation (45 minutes) with final report (10-15 pages)	
11	Grading procedure	Talk/presentation (50%) final report (50%)	
12	Module frequency	Summer or winter semester (annually) To check whether the course is offered in the current semester, see Ur or module handbook of current semester	nivIS univis.fau.de
13	Workload	Contact hours: 30 hrs Independent study: 120 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examination language	English	
16	Recommended reading	Project-dependent. Will be published on StudOn at the beginning of t	ne semester.

1	Module name	Module 38: PdeConNum: Lecture Series Partial Differential Equations, Control and 5 ECTS credits Numerics	
2	Courses/lectures	a) Lectures: 2 semester hrs/week b) Practical: 0.5 semester hrs/week	
3	Lecturers	Prof. Dr. E. Zuazua Opti	
4	Module coordinator	Prof. Dr. E. Zuazua	
5	Content	 Examples of PDE models arising in industrial applications, Biology and Social Sciences Long time asymptotics Control of trajectories Numerics for long time dynamics and control Some applications in the control of population dynamics 	
6	Learning objectives and skills	 Students develop understanding for special aspects of dynamical systems control, apply numerical methods to control problems and develop a basic understanding of their properties, derive and solve inverse problems arising from applications. 	
7	Prerequisites	Recommended: basic knowledge in functional analysis	
8	Integration into curricu	ulum 2nd semester	
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for MSc in Mathematics in the field of study "Modeling, Simulation and Optimization" Mandatory elective module for MSc in Mathematics and Economics in the field of study "Optimization and Process Management" 	
10	Method of examinatio		
11	Grading procedure	100% Oral exam	
12	Module frequency	Summer semester (annually)	
13	Workload	Contact hours: 37.5 hrs Independent study: 112.5 hrs Total: 150 hrs, corresponding to 5 ECTS credits	
14	Module duration	One semester	
15	Teaching and examinat language	tion English	
16	Recommended reading	 J.M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs, 143, AMS, 2009 E. Zuazua. Propagation, observation, and control of waves approximated by finite difference methods. SIAM Review, 47 (2) (2005), 197-243 	

1	Module name	Module 39: NumPDE II: Numerics of Partial Differential Equations II	5 ECTS credits
2	Courses/lectures	a) Lecture: 2 semester hrs/week b) Practical: 1 semester hr/week	NASi
3	Lecturers	Profs. Drs. E. Bänsch, G. Grün	

4	Module coordinator	Prof. Dr. G. Grün
5	Content	 Classical and weak theory for linear parabolic initial-boundary-value problems (IBVPs) (outline), finite-element method (FEM) for 2nd-order linear parabolic IVBPs (semi-discretisation in space, time discretisation by one-step methods, stability, comparison principles, order of convergence), FEM for semi-linear elliptic and parabolic equations (fixed-point- and Newton-methods, secondary iterations), higher-order time discretisation, extrapolation, time-step control.
6	Learning objectives and skills	 Students apply algorithmic approaches for models with partial differential equations and explain and evaluate them, are capable to judge on a numerical method's properties regarding stability and efficiency, implement (with own or given software) numerical methods and critically evaluate the results, explain and apply a broad spectrum of methods with a focus on conforming finite element methods for parabolic problems, extending these approaches also to nonlinear problems, collect and evaluate relevant information and realize relationships.
7	Prerequisites	Recommended: basic knowledge in numerics and numerics of pde
8	Integration into curriculum	2nd semester
9	Module compatibility	 Mandatory elective module for MSc in Computational and Applied Mathematics Mandatory elective module for BSc Mathematics Mandatory module for BSc Technomathematik Non-Physics elective module for MSc Physics
10	Method of examination	written exam (90 minutes) with exercises
11	Grading procedure	100% based on written exam
12	Module frequency	Summer semester (annually)
13	Workload	Contact hours: 45 hrs Independent study: 105 hrs Total: 150 hrs, corresponding to 5 ECTS credits
14	Module duration	One semester

15	Teaching and examination language	English
16	Recommended reading	 P. Knabner, L. Angermann, Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Springer, New York, 2003. S. Larsson, V. Thomée, Partial Differential Equations with Numerical Methods, Springer, Berlin, 2005.