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Zusammenfassung

Das Anderson-Modell, welches zur quantenmechanischen Beschreibung ungeordneter
Festkörper entwickelt wurde [7], wird in Abschnitt 1.1 definiert. Daraufhin wird erklärt, welche
Transporteigenschaften im Anderson-Modell von der Fachwelt der Physiker größtenteils erwartet
werden (siehe Abschnitt 1.2). Je nach Dimension, Energie und Stärke der Unordnung werden
entweder Anderson-Lokalisierung oder Anderson-Delokalisierung vermutet. Bestimmte mathe-
matische Begriffe ermöglichen es, einige der erwarteteten Transporteigenschaften präzise zu
formulieren (siehe Abschnitt 1.3). Das Phänomen der Anderson-Lokalisierung wurde bereits
weitgehend mathematisch verstanden, die Anderson-Delokalisierung stellt die Fachwelt der
Mathematiker allerdings bislang noch vor große Herausforderungen [94]. Ein Überblick über
die bedeutendsten Ergebnisse zur Anderson-Lokalisierung ist in Abschnitt 1.4 zu finden. Im
Jahr 2000 formulierte Barry Simon drei Vermutungen und listete damit die wesentlichen offenen
Fragen zur Anderson-Delokalisierung auf [93] (siehe Abschnitt 1.5). Bisherige Herangehenswei-
sen an diese offenen Fragen sind in Abschnitt 1.6 zusammengefasst. Bei einer der von Simon for-
mulierten Vermutungen geht es um die dynamische Delokalisierung im Anderson-Modell. Die-
se Vermutung steht im Mittelpunkt eines Langzeitprojekts des Verfassers und dessen Betreuers.

Eine Wiederholung relevanter Definitionen, Begriffe und wohlbekannter Tatsachen erfolgt in
Abschnitt 2.

Das Langzeitprojekt zur dynamischen Delokalisierung basiert auf der Idee, das Anderson-
Modell mit Näherungen endlichen Volumens zu betrachten, innerhalb derer formale Lösungen
der zugehörigen Eigenwertgleichung mithilfe von Transfermatrizen entlang einer bestimmten
Raumrichtung entwickelt werden können (siehe Abschnitt 3.1). Genaueres hierzu findet sich in
Abschnitt 3.2. Die Kernaufgabe besteht darin, delokalisierte Zustände zu finden. Im Gegensatz
zu lokalisierten Zuständen handelt es sich bei delokalisierten Zuständen um formale Lösungen,
die trotz der Unordnung nahezu gleichmäßig räumlich ausgebreitet sind. Bei der Suche nach
delokalisierten Zuständen ist die Betrachtung des quasi-eindimensionalen Grenzfalls hilfreich
(siehe Abschnitt 3.3). Dies erfordert die Analyse einer assoziierten Zufallsdynamik auf der
komplexen Graßmann-Mannigfaltigkeit, die durch eine hyperbolische Matrix induziert wird,
welche wiederum mit einer zufälligen Störung versehen ist (siehe Abschnitt 3.4).

Um sich an diese diffizile Herausforderung heranzutasten, wurde zunächst eine vergleich-
bare Zufallsdynamik auf dem reell-projektiven Raum untersucht (siehe Abschnitt 4.1). Hierbei
entstand die Publikation [31]. In Abschnitt 4.2 wird ein bestimmter Beweis aus [31] skizziert
und diskutiert, warum die skizzierte Beweisführung das Interesse an durch hyperbolische Zu-
fallsmatrizen induzierte Zufallsdynamiken auf einem mit einer semipermeablen Barriere ausge-
statteten Kreis wecken kann. Die Analyse von derartigen Zufallsdynamiken mit Methoden der
Erneuerungstheorie ist ein wesentlicher Bestandteil der Publikation [29], in der Pseudo-Lücken
der integrierten Zustandsdichte in zufälligen Hopping-Modellen bewiesen werden (siehe Ab-
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schnitt 4.3). In Abschnitt 4.4 wird genauer erörtert, wie delokalisierte Zustände tatsächlich mit
dynamischer Delokalisierung zusammenhängen. Hierbei wird ersichtlich, dass die Durchführung
der Strategie des Langzeitprojekts auf dem geplanten Wege die Benutzung von Transferma-
trizen bei Energien mit kleinem, nicht-verschwindenden Imaginärteil erfordert. Als Spezialfall
gehören 2 × 2 Transfermatrizen bei Energien mit kleinem, nicht-verschwindenden Imaginärteil
und nicht zu großem Realteil zu einer bestimmten Klasse von zweiparametrigen, zufälligen
Störungen von elliptischen Zufallsmatrizen, deren assoziierte Möbiusdynamik im Jahr 2009 von
Barthel untersucht wurde [12] (siehe Abschnitt 4.5). Das Preprint [30] enthält eine Analyse des
Furstenberg-Maßes dieser Möbiusdynamik, welche unter anderem eine Verallgemeinerung einer
approximativen Formel für den Lyapunov-Exponenten der induzierenden Zufallsmatrizen von
Barthel hervorbringt (siehe Abschnitt 4.6).

Erklärungen zu Beiträgen in Koautorenschaft zu [31, 29, 30] sind in Abschnitt 5 zu finden.
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Abstract

The Anderson model, which was constructed to explain quantum mechanical effects of dis-
order [7], is defined in Section 1.1. Thereafter we summarize the transport properties that the
physics community expects to occur in the Anderson model (see Section 1.2). Depending on the
dimension, the energy and the strength of disorder, either Anderson localization or Anderson
delocalization is expected. Certain mathematical notions allow to formulate some of the expected
transport properties precisely (see Section 1.3). The phenomenon of Anderson localization is
widely understood mathematically, but Anderson delocalization is still a major challenge for
the mathematics community [94]. An overview of the most important results on Anderson lo-
calization is given in Section 1.4. In 2000, Barry Simon catalogued the central open questions
on Anderson delocalization by formulating three conjectures [93] (see Section 1.5). Some former
attempts to address these open questions are summarized in Section 1.6. One of the conjectures
formulated by Simon is about dynamical delocalization in the Anderson model. This conjecture
is in the focus of a long-term project of the author and his supervisor.

Relevant definitions, notions and well-known facts are recapitulated in Section 2.

The long-term project on the dynamical delocalization is based on the idea to work with finite
volume approximations of the Anderson model, in which formal solutions of the corresponding
eigenvalue equation can be produced by the transfer matrix technique in a certain direction of
space (see Section 3.1). For details, see Section 3.2. The core task is to find extended states.
In contrast to localized states, extended states are formal solutions that are somewhat evenly
spread out in space despite the disorder. When looking for extended states, it is insightful
to consider the quasi-one-dimensional limit (see Section 3.3). This requires the analysis of
an associated random dynamics on the complex Grassmannian that is induced by randomly
perturbed hyperbolic matrices (see Section 3.4).

To approach this difficult challenge, a comparable random dynamics on the real projective
space was studied primarily (see Section 4.1). These studies gave rise to the publication [31]. In
Section 4.2, we sketch a certain proof in [31] and discuss why the latter may awake the interest
in random dynamical systems that are induced by hyperbolic random matrices and defined on a
circle endowed with a semipermeable barrier. The analysis of such random dynamical systems
by means of renewal theory is a major part of the publication [29], in which pseudo-gaps of the
integrated density of states in random hopping models are proven (see Section 4.3). We then
explain in greater detail, how extended states are actually related to dynamical delocalization
(see Section 4.4). At this, it becomes clear that the implementation of the long-term project
in the planned manner requires the use of transfer matrices at energies whose imaginary part
is small but non-zero. As a special case, 2 × 2 transfer matrices at energies whose imaginary
part is small but non-zero and whose real part is not too large belong to a certain class of two
parameter perturbations of elliptic random matrices, whose associated Möbius dynamics was
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studied in 2009 by Barthel [12] (see Section 4.5). The preprint [30] contains an analysis of the
Furstenberg measure of this Möbius dynamics, which yields among others a generalization of
Barthel’s approximate formula for the Lyapunov exponent of the inducing random matrices (see
Section 4.6).

Section 5 contains statements on the authors’ contributions to the publications [31, 29, 30].
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1 Introduction

This thesis presents the achievements within a long-term project that the author (Florian
Dorsch) and his supervisor (Prof. Dr. Hermann Schulz-Baldes) have been working on in close
collaboration since 2016. The introduction summarizes the scientific context, the long-range
objective and the long-range strategy (originating from the supervisor) that motivated them to
focus on the concrete scientific works exhibited below up to this point. The collaboration on
the long-range objective is ongoing and other partial projects are being under way.

This introduction is a revised version of the first three sections of a research proposal [28]
written by the author at the beginning of his doctoral studies for the purpose of a scholarship
application.

1.1 The Anderson Model

The Anderson model was constructed in 1958 by the physicist P.W. Anderson [7] to explain
quantum mechanical effects of disorder. It was intended to be the simplest model that still rep-
resents real physical disordered systems to a suitable extent [7]. The (d-dimensional) Anderson
model is given by a random discrete Schrödinger operator

(Hωψ)(n) = (∆ψ)(n) + λVω(n)ψ(n) , ψ ∈ `2(Zd) , n ∈ Zd (1)

(cf. e.g. [94]). Here, ∆ denotes the (negative) discrete Laplacian1, defined by

(∆ψ)(n) = −
∑
m∈Zd
|n−m|=1

ψ(m) , ψ ∈ `2(Zd) , n ∈ Zd , (2)

and {Vω(n)}n∈Zd is a sequence of independent and identically distributed and compactly sup-
ported random variables (see Section 2.1), which is called the random potential. Each Vω(n)
assigns a random energy to a site of the lattice Zd. The strength of these random energies is con-
trolled by a non-negative disorder parameter λ also called the coupling constant (see e.g. [61]).

In the following Section 1.2, we summarize the transport properties that the physics com-
munity expects to occur in the Anderson model.

1.2 Physicists’ Expectations

The belief in a strong dependence of the transport properties on the dimension, the coupling con-
stant and the energy was expressed by Anderson already [7]. While a mathematical description
follows in the subsequent sections, we now recall some expectations of the physics community.

At sufficiently large disorder λ or extreme energies, Hω is expected to be dynamically local-
ized with exponentially localized eigenstates [5]. This is called Anderson localization [9] or strong
localization [99]. Moreover, at arbitrary disorder and at all energies, Anderson localization is ex-
pected in the one-dimensional case and (in a possibly weaker form) also in the two-dimensional

1The choice of the sign of ∆ in (2) varies in the literature.
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case [94]. In higher dimensions d ≥ 3, however, and for small disorder λ and away from extreme
energies, Hω is expected to exhibit diffusive transport [5] with extended eigenstates [94]. This
is called Anderson delocalization2 or weak localization [71]. The boundary between the two
regimes is called mobility edge [5]. The expectations for higher dimensions d ≥ 3 are summa-
rized in Figure 1. As will be outlined below, some of these expectations have reached the status
of mathematical results (see Section 1.4), others remain open (see Section 1.5).

λ (disorder)

E (energy)

ac spectrum
diffusive transport

pp spectrum
dynamical localization

2d−2d

Figure 1: Expected phase diagram of the Anderson model in dimensions d ≥ 3 (see e.g. [5]).

In the next Section 1.3, we recall a basic mathematical result on the spectrum of the Ander-
son model and introduce time-averaged moments of the position operator in order to define the
notions of spectral and dynamical localization. These notions allow to consider transport prop-
erties in the mathematical language. Thereafter, we present the most important mathematical
results on the strong localization regime in Section 1.4. The definitions, facts and techniques
on the Anderson model stated in Sections 1.3 and 1.4 can be found in the original works from
the 1970’s, 1980’s and 1990’s [62, 77, 54, 52, 70, 4, 44, 43, 17] and also in a number of more
recent reviews [20, 94, 67, 5, 61, 68]. Some of the former results were achieved by means of the
transfer matrix technique, which we briefly sketch in the course of Section 1.4, since this tech-
nique is crucial for our long-term project. We refrain from quoting all the respective necessary
assumptions on the random potential in this introduction, since it is supposed to provide rather
an overview than a pedantic catalogue of results. For a typical example, the reader may think
of the random variables Vω(n) being uniformly distributed on some interval, which is the case
that was originally discussed by Anderson.

1.3 Spectral and Dynamical Localization

For the purpose of a mathematical formulation of the transport properties, we recall a basic
theorem on the spectrum of the Anderson model and introduce the time-averaged q-th moment.

2This term is used rather rarely in the literature, e.g., by Huang et al, who sudied quasi-periodic lattices [60].
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Theorem 1. The spectrum σ(Hω) of Hω is almost surely given by

Σ := [−2d, 2d] + λ supp(Vω(1)) .

Moreover, Σ can be decomposed almost surely into absolutely continuous, singular continuous
and pure point part, namely more precisely, there exist Σac,Σsc,Σpp ⊂ Σ, for which one has

σac(Hω) = Σac , σsc(Hω) = Σsc , σpp(Hω) = Σpp (3)

almost surely.

Definition 1. For q > 0, we define the time-averaged q-th moment of the position operator of
a state initially localized at the origin and evolved with states energetically in a measurable set
I ⊂ R as

Mq(T, I) = E

∫ ∞
0

dt

T
e−2 t

T

∑
j∈Zd

|j|q
∣∣∣〈δj,·∣∣∣ exp[−itHω]χI(Hω)δ0,·

〉∣∣∣2 ,
where E denotes the average, χI the indicator function of I and δ·,· the Kronecker symbol.

The almost sure decomposition (3) and the quantity of time-averaged q-th moment allows
to introduce two notions of localization: the spectral localization and the dynamical localization.

Definition 2. Let I ⊂ R be an open interval. We say that Hω exhibits spectral localization in
I if I ⊂ Σpp. Furthermore, we say that Hω exhibits dynamical localization in I if Mq(T, I) is
uniformly bounded in T for all q > 0.

As for dynamical localization, there are actually various technical notions used in the liter-
ature. For sake of concreteness, we chose one of them.

Remark 1. By variants of the so-called RAGE theorem, dynamical localization in some open
interval I ⊂ R implies spectral localization in I. The converse is false, see e.g. [81].

1.4 Mathematical Results on the Strong Localization Regime

In the one-dimensional case, dynamical localization with exponentially decaying eigenstates has
been proven at arbitrary disorder and energies, and this also leads to spectral localization in all
Σ. This was also extended to strips, as will be described shortly. Furthermore, dynamical and
hence spectral localization was proven in any dimension at large disorder and, additionally, at
arbitrary disorder near the band edges of the almost-sure spectrum (see Figure 1).

1.4.1 Localization in One Dimension and on a Strip

In 1973, Ishii [62] demonstrated the absence of absolutely continuous spectrum in the one-
dimensional case for all energies and at any strength of disorder. In the continuum version
of the model, a full proof of spectral and dynamical localization was first given in 1977 by
Goldsheid, Molchanov and Pastur [54]. For the discrete model described above, the first proof
of these facts is due to Kunz and Souillard [70] in 1980.
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The techniques used for the proof in the one-dimensional case is relevant for our long-term
project, so we describe them in more detail. The solution ψ ∈ `2(Z) of the eigenvalue equation

Hωψ = Eψ , E ∈ R , (4)

is determined by its values at two suceeding points Ψ(n) := (ψ(n+ 1), ψ(n))ᵀ, n ∈ Z, via

Ψ(n) = T Eω (n)Ψ(n− 1) , n ∈ Z , (5)

where the (random) 2× 2-matrices

T Eω (n) :=

(
λVω(n)− E −1

1 0

)
, n ∈ Z , (6)

belong to the symplectic group SP(2,R). The matrices T Eω (n) are called transfer matrices. By
iteration, one obtains

Ψ(n) =

(
n∏

l=m+1

T Eω (l)

)
Ψ(m) , n,m ∈ Z . (7)

A way to show localization in one dimension, therefore, is to apply the theory of products
of random matrices (see [15], Part A) on the products of the random transfer matrices as in
the bracket in (7) (see [15], Part B, Chapter II & III). In the 1960’s substantial results on
products of random matrices were achieved by Furstenberg and Kesten [46], Furstenberg [45]
and Osseledec [75]. Later on, building on these methods, a lot of efforts were made to address
the localization on a strip, i.e., on the Anderson model on `2(Z × {1, . . . , N}) ∼= `2(Z) ⊗ CN ,
e.g., by Goldsheid and Margulis [53]. Many results obtained for the one-dimensional Schrödinger
operator turned out to be adaptable to that more general case (see [15], Part B, Chapter IV).

1.4.2 Localization in Higher Dimensions

In 1983, Fröhlich and Spencer [44] initially developed the method of multiscale analysis, whose
essential ingredient is the exponential decay of the resolvent kernel in the distance of its entries.
Two years later, Fröhlich, Martinelli, Scoppola and Spencer [43] proved spectral localization in
arbitrary dimension for large disorder or near the band tails by means of this method. For the
case of large disorder, the result in [43] was refined by Carmona, Klein and Martinelli [17] in 1987.
The basic ideas in [43] were adapted in 1989 by von Dreifus and Klein [32], who implemented
them in a technically simpler way. In 1993, Aizenman and Molchanov [4] introduced the new
fractional moments method, which includes the use of low moments of the resolvent kernel and
provides a mathematically less involved way to prove spectral localization in higher dimensions.
In 1998, Germinet and De Biévre [48] proved dynamical localization in higher dimensions using
multiscale analysis, but in a weaker sense than defined above. In 2001, the result in [48] was
strengthened by Damanik and Stollmann [21], who proved the uniform boundedness of the q-th
moment for subcritical q < q0. Shortly after, Germinet and Klein [50] extended the result
in [21] to arbitrary q > 0, whereby they actually proved dynamical localization in the sense
defined above. Also the fractional moments method was used to address dynamical localization
in higher dimensions [2, 80] and for continuum models [3]. Localization results for continuum
models on the case of Bernoulli random potentials were obtained by Bourgain and Kenig [16]
and on the case of Poisson random potentials by Germinet, Hislop and Klein [49].
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1.5 Simon’s List of Open Problems

A list of open problems on the Anderson model has been put forward in 2000 by Simon [93]. It
is just a mathematical formulation of the physicists’ expectations.

In the two-dimensional case, spectral localization is expected in the whole spectrum:

Conjecture 1 (Localization in two dimensions). If d = 2, one has Σ = Σpp for all λ > 0.

Proving localization in two dimensions is likely the most difficult problem on the list. Indeed,
dimension two is critical and thus very fragile. For instance, adding a magnetic field leads to the
quantum Hall effect and divergence of the localization length, i.e., the rate of exponential decay
of the eigenfunctions, at certain energies [69]. Even in the two-dimensional Anderson model in
the strict sense described above, the localization length is expected to behave like e1/λ in the
coupling constant [1], which indicates that any perturbative approach may run into difficulties.

Our focus is rather on the (expected) weak localization regime in the higher-dimensional
case d ≥ 3 about which Simon formulated the following two open problems:

Conjecture 2 (Extended states). For d ≥ 3, there exist λ > 0 such that Σac is non-empty.

Conjecture 3 (Quantum diffusion). For d ≥ 3, there exist λ > 0 such that M2(T,R) ∼ T
as T →∞.

The main purpose of the long-term project the author and his supervisor are working on is
to prove the following rather modest version of Conjecture 3:

Conjecture 4. For some d ≥ 3, there exist λ > 0 and q > 0 such that one has

lim inf
T→∞

log[Mq(T,R)]

log(T )
> 0 . (8)

Remark 2. The positivity of the left side of (8) for some q > 0 implies that all q > 0 fulfil

lim inf
T→∞

log[Mq(T,R)]

log(T )
≥ 1

2

[q
d
− 11

]
if Hω satisfies a Wegner estimate in R (see [50], Theorem 2.10).

Before we describe our strategy for a proof of Conjecture 4 in more detail in Section 3,
we recollect some attempts by the mathematical physics community which aimed at a better
understanding of the weak localization regime.

1.6 Contributions to the Weak Localization Regime

1.6.1 Wegner’s N-Orbital Model

The Wegner N -orbital model modifies the Anderson model by supposing that over every lattice
site there are N atomic levels. All these levels are connected by a full random matrix, for
example, taken from the Gaussian orthogonal ensemble. Wegner argued that there should be
diffusion in this model, at least in the limit N → ∞ [101]. A rigorous analysis based on free
probability was given by Neu and Speicher [74]. This led to closed formulas for the 2-point and
4-point Green functions. This was then indeed sufficient to deduce diffusion [91].
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1.6.2 Universality in Full Random Matrices

Beginning in the mid 2000’s, substantial progress was made by Erdös, Ramirez, Schlein, Tao,
Vu, Yau and Yin (see [39, 38, 41, 40, 97, 98, 37, 35, 42]) and others, who studied the eigen-
value statistics of (full) Wigner matrices. It was proven that under certain assumptions the
local spectral statistics in the bulk are universal, i.e., it coincides with that of the associated
Gaussian ensemble (GOE or GUE) in the thermodynamic limit. Finite volume approximations
of the Anderson model, however, give rise to ensembles of very sparsely filled random matrices.
Numerous numerical studies were performed earlier [34], which supported the conjecture that
the eigenvalue statistics of the Anderson model is the same as the one of full matrices. Never-
theless, so far no one succeeded in proving these numerical results. Stated in a different way, it
has not been possible to show why full random matrices are relevant for the Anderson model.

1.6.3 Random Band Matrices

A way to improve our understanding of the weak localization regime is to change the model and
study random band matrices. In 2009, Schenker [85] extended the fractional moment method by
Aizenman and Molchanov (see above) to prove localization of operators associated to random
band matrices in a regime of subcritical width, i.e., provided the band width is sufficiently small
relative to the system size. On the other hand, Erdös et al [36] proved spectral delocalization
(in the sense of GOE statistics of the eigenvalue process) in a regime in which the band width
increases sufficiently fast relative to the system size. Further substantial contributions were
made by Disertori, Pinson and Spencer [26], who proved that the expectation of the density of
states of Gaussian band matrices coincides with Wigner’s semicircle law up to an error depending
on the band width. Again it is not clear how to connect these results to the Anderson model.

1.6.4 Stochastic Differential Equations

Bachmann and De Roeck [10] conducted further research on the Anderson model on a strip in
the context of the DMPK-Theory of disordered quantum wires. Its principal postulate is that
the random transfer matrix as a function of the wire length satisfies an Ito stochastic differen-
tial equation motivated by the ”Maximum Entropy” Assumption. Exploiting two symmetries
of the transfer matrix (see [10], eq. 9), one obtains a diagonal matrix which fully describes the
eigenvalue statistics via the so-called DMPK equation (see [10], eq. 24). Almost at the same
time and independently, Valko and Virag [100] obtained very similar results when also studying
stochastic differential equations related to the Anderson model. The results in [10] and [100] are
applicable to cases in which the unperturbed transfer matrices are (conjugated to) unitary ma-
trices. Later on, Sadel and Virag [84] extended the results in [10] and [100] to cases in which the
unperturbed transfer matrices have eigenvalues with moduli different from 1. In fact, the moduli
of the eigenvalues of the unperturbed transfer matrices will play an important role below, namely
under the heading of so-called elliptic and hyperbolic channels, which will be introduced later.
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2 Preliminaries

We now recollect basic definitions, introduce notations for later use and recall well-known facts.
This section does not contain any yet unknown scientific result.

The symbol K will always denote either the real line R or the complex plane C. Moreover,
we will assume that L and q are positive integers for which one has q ≤ L.

2.1 Random Matrices3 and Random Operators4

Definition 3. Let (Σ,A ,P) be a probability space and (X,X ) be a measurable space. Then, we
call an (A ,X )-measurable map Σ→ X , σ 7→ Yσ an X-valued random variable over (Σ,A ,P).

If X is a locally compact Hausdorff space5 and if P is a regular Borel measure6, we call
the complement supp(Yσ) = X \ X0 of the largest open set X0 satisfying P(Yσ ∈ X0) = 0 the
support7 of Yσ. If supp(Yσ) is compact, we call Yσ compactly supported.

A sequence Yσ1 , Yσ2 , . . . of X-valued random variables Ω → X , (σ1, σ2, . . . ) 7→ Yσn over
the infinite product space (Ω,A,P) =

⊗
n∈N(Σ,A ,P) is called independent and identically

distributed (i.i.d.). We write Yω(n) = Yσn , where the stochastic label ω = (σ1, σ2, . . . ) lies in Ω.

We denote the expectation w.r.t. P and P by E and E, respectively.

Definition 4. We call a KL×L-valued random variable Tσ a (real or complex ) L × L random
matrix. We call Tσ invertible if it is GL(L,K)-valued and — for even L ≡ 2L — we call Tσ
symplectic if it is SP(2L,R)-valued. Here, SP(2L,R) denotes the symplectic group defined by

SP(2L,R) =
{
T ∈ R2L×2L : T ᵀJ T = J

}
, J =

(
0 −1L
1L 0

)
.

We endow the set L(H ) of self-adjoint bounded operators on a Hilbert space H with the σ-field
of Borel sets with respect to the weak operator topology (see e.g. [78]). We call an L(H )-valued
random variable over a probability space (Σ,A ,P) a random operator on H over (Σ,A ,P).

We are now prepared to formulate the precise definition of the Anderson model.

Definition 5. Let (Ω,A,P) =
⊗

n∈Zd(Σ,A ,P) be the infinite product space as in Definition 3
and denote the stochastic label by ω = {σn}n∈Zd ∈ Ω, where σn ∈ Σ. Then, a sequence
Vσn ≡ Vω(n), n ∈ Zd of i.i.d., real-valued and compactly supported random variables defines the
Anderson model as the random operator Hω by equation (1) (cf. [94], Section 2.2).

Definition 6. A family {Sx}x∈I of measure preserving transformations Sx : Σ → Σ on a
probability space (Σ,A ,P) is called ergodic if all A ∈ A satisfy the implication

S−1
x (A) = A ∀ x ∈ I =⇒ P(A) ∈ {0, 1} .

3The definitions of (sequence of i.i.d.) random variable(s) and random matrix can e.g. be found in §1.1 of [96].
4For the definitions of random operator, ergodicity and (integrated) density of states, see §3.1 and §3.4 of [5].
5For the definitions of Hausdorff and local compactness, see e.g. Ch. 5, Sec. 13 and Ch. 6, Sec. 18 of [102].
6For the definition of regular measure, see Chapter II, Section 1 of [76].
7For the definition of the support of a measure, see e.g. [57]. It can be readily transferred to random variables.
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Definition 7. We call a random operator Hσ on `2(Zd) over (Σ,A ,P) ergodic8 if there exists
an ergodic group {Sx}x∈Zd of measure preserving transformations Sx : Σ→ Σ such that

HSx(σ) = Ux,σHσU
∗
x,σ and (Ux,σψ)(x′) = exp [ıφx,σ(x′)] Ψ(x′ − x) ∀ ψ ∈ `2(Zd)

hold for some unitary operator Ux,σ and some φx,σ(x′) ∈ R for all x, x′ ∈ Zd and all σ ∈ Σ.

Remark 3. By setting Sx : Ω → Ω , {σn}n∈Zd 7→ {σn−x}n∈Zd and (Uxψ)(x′) = ψ(x′ − x), one
shows that the Anderson model is an ergodic operator (see [5], §3.1).

An important quantity for ergodic operators Hσ defined on `2(Zd) is a probability measure
called density of states, which measures, in a sense, the distribution of the eigenvalues of Hσ;
its cumulative distribution function is called integrated density of states, which then measures
the fraction of eigenvalues of Hσ below a certain energy (see e.g. [20], Section 9.2).

Definition 8. For an ergodic operator Hσ on `2(Zd) over (Σ,A ,P), the density of states n is
defined as the (unique and existent) probability measure on R satisfying

∃ Σ0 ∈ A : P(Σ0) = 1 ∧ lim
L→∞

tr
[
f
(
Λd
LHσΛd

L

)]
Ld

=

∫
R

dn(x) f(x) ∀ (σ, f) ∈ Σ0 × C0(R) ,

where Λd
L denotes the projection onto `2([0, L)d ∩ Zd) given by (Λd

Lψ)(n) = χ[0,L)d(n)ψ(n).
The integrated density of states N is defined as the cumulative distribution function of n, i.e.,

N : R −→ [0, 1] , E 7−→ n((−∞, E]) .

2.2 The Stiefel Manifold, the Grassmannian and the Exterior Power9

Definition 9. For a vector space V over K, we define an equivalence relation ∼ on V \ {0} by

v ∼ v′ :⇐⇒ Kv = Kv′ .

The set (V \ {0})
/
∼ of equivalence classes is called the projective space over V (cf. e.g. [47],

Chapter 5) and can be identified by

P(V ) = {Kv : v ∈ V \ {0}} .

If V is endowed with a norm ‖ · ‖V , we call the set of unit vectors

S (V ) = {v ∈ V : ‖v‖V = 1}

the unit sphere of V (see e.g. [23], Chapter II, §1).

8In §3.1 of [5], the term standard ergodic operator is used instead.
9In this section, the author used Chapter IV.2 of [18] and Chapter 8 of [27] to recapitulate the definitions

and facts related to the exterior power unless otherwise stated.
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Definition 10. The non-compact Stiefel manifold F̂L,q(K) is defined by

F̂L,q(K) =
{

Ψ ∈ KL×q : rank(Ψ) = q
}

and consists of all non-singular q-frames, which are the L× q matrices whose column vectors
are linearly independent; the compact Stiefel manifold FL,q(K) is defined by

FL,q(K) =
{

Φ ∈ KL×q : Φ∗Φ = 1
}

and consists of all orthonormal q-frames, which are the L× q matrices whose column vectors
are orthonormal (see [63], Section 2).

Remark 4. Given some non-singular q-frame Ψ ∈ F̂L,q(K), the Gram-Schmidt procedure (applied
to its column vectors from the left to the right) allows to compute the thin QR factorization,
which yields a unique couple (Φ, S) of an orthonormal q-frame Φ ∈ FL,q(K) and an upper
triangular q × q matrix with positive diagonal entries S for which one has

Ψ = ΦS

(see [55], Sections 5.2.6 & 5.2.7). This defines a projection

$ : F̂L,q(K) −→ FL,q(K) , Ψ 7−→ Φ (9)

from the non-compact Stiefel manifold onto the compact one.

Definition 11. We identify the Grassmannian GL,q(K) of q-dimensional linear subspaces of KL as

GL,q(K) = {ΦΦ∗ : Φ ∈ FL,q(K)} ,

which is the set of all KL×L-valued orthogonal projections with rank q (cf. [33], Section 2.5).

Remark 5. The projection

Π : FL,q(K)→ GL,q(K) , Φ 7→ ΦΦ∗

maps an orthogonal q-frame to the orthogonal projection onto its range (see [33], Section 2.5).

Remark 6. We endow FL,q(K) and GL,q(K) with the Frobenius norm ‖·‖F (see [55], Section 2.3.1).

Definition 12. For v1, . . . , vq ∈ KL, the alternating q-linear functional

v1 ∧ · · · ∧ vq :
[ (

KL
)∗ ]×q −→ C ,

(f1, . . . , fq) 7−→ det ((fj(vk))j,k) ,

where (·)∗ denotes the dual, is called a decomposable q-vector, for which we also write

ΛΦ = v1 ∧ · · · ∧ vq , (10)

where Φ = (v1, . . . , vq) is the L× q matrix whose columns are v1, . . . , vq. The linear span

ΛqKL = span
(
Λq

0KL
)
, Λq

0KL =
{

ΛΦ : Φ ∈ KL×q}
of the decomposable q-vectors is called q-th exterior power.
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Remark 7. The identity (10) defines the map

Λ : KL×q −→ Λq
0KL , (v1, . . . , vq) 7−→ v1 ∧ · · · ∧ vq .

Remark 8. The bi- or sesquilinear extension of

〈·, ·〉∧ : Λq
0KL × Λq

0KL −→ K ,

(ΛΦ1,ΛΦ2) 7−→ det (Φ∗1Φ2)

to ΛqKL is an inner product, which then also induces a norm ‖ · ‖∧ =
√
〈·, ·〉∧ on ΛqKL.

Remark 9. Two decomposable q-vectors v1 ∧ · · · ∧ vq and w1 ∧ · · · ∧ wq are proportional if and
only if the sets of vectors {v1, . . . , vq} and {w1, . . . , wq} span the same linear subspace of KL.
Therefore the Grassmannian GL,q(K) can be embedded into the projective space of the exterior
power ΛqKL by the Plücker embedding, which is defined with the aid of the compact Stiefel
manifold FL,q(K) as

J : GL,q(K) −→P
(
ΛqKL

)
, Π(Φ) 7−→ K ΛΦ , Φ ∈ FL,q(K) .

In our representation, the Plücker embedding maps the orthogonal projection onto the range of
some Φ ∈ FL,q(K) to the (one-dimensional) linear span of the decomposable q-vectors v1∧· · ·∧vq
for which the set {v1, . . . , vq} spans the range of Φ. In particular, the image of J is given by

J (GL,q(K)) =
{
Ku : u ∈ Λq

0KL
}
. (11)

The set Λp
0KL is not a linear subspace of ΛpKL. Due to (11), however, we call the image of J

the projective space over Λp
0KL and define — in abuse of the above notation — the expressions

P
(
Λq

0KL
)

:= J (GL,q(K)) , S
(
Λq

0KL
)

:=
{
u ∈ Λq

0KL : ‖u‖∧ = 1
}
.

An overview is given by the following commutative diagram10:

FL,q(K) GL,q(K)

S
(
Λq

0KL
)

P
(
Λq

0KL
)

Π

Λ J

[·]∼

(12)

2.3 Random Dynamical Systems Generated by Sequences of i.i.d.
Invertible Random Matrices

In Section 2.3.1, we define an action of the group GL(L,K) on the spaces occurring in (12).

10The author could not find the diagram in this form in the literature. However, it is well-known and easy to
verify that this diagram commutes. This is not a new discovery of the author.
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2.3.1 The Action of the General Linear Group11

Definition 13. The compact Stiefel manifold FL,q(K) is acted on by GL(L,K) via

GL(L,K)× FL,q(K) −→ FL,q(K) , (T ,Φ) 7−→ T · Φ := $(T Φ) , (13)

where $ was defined by (9) in the previous section (see Section 2 of [82]).

Remark 10. If q′ ∈ N is such that q + q′ ≤ L and Φ ∈ FL,q(K) and Φ′ ∈ FL,q′(K) are such that
(Φ,Φ′) ∈ FL,q+q′(K), then one has

T · (Φ,Φ′) = (T · Φ,Φ′′) ∈ FL,q+q′(K) (14)

for some Φ′′ ∈ FL,q′(K) which is typically different from T · Φ′.

Definition 14. The action (13) induces an action of GL(L,K) on the Grassmannian GL,q(K) via

GL(L,K)×GL,q(K) −→ GL,q(K) , (T ,Π(Φ)) 7−→ T • Π(Φ) := Π(T · Φ) (15)

(see Section 2 of [90]).

To define an action of GL(L,K) on P
(
Λq

0KL
)

and S
(
Λq

0KL
)
, we first recall how an invertible

matrix T ∈ GL(L,K) generates a linear operator ΛqT on the exterior power ΛqKL.

Definition 15. For T ∈ GL(L,K), we define the operator ΛqT on ΛqKL as the linear extension of

Λq
0KL −→ Λq

0KL , v1 ∧ · · · ∧ vq 7−→ T v1 ∧ · · · ∧ T vq

to ΛqKL (see [18], Chapter IV.2).

Remark 11. The operator ΛqT leaves the set of decomposable q-vectors Λq
0KL invariant and its

operator norm is realized on the decomposable q-vectors already, i.e.,

‖ΛqT ‖Λ := sup
{
‖ΛqT u‖∧ : u ∈ S

(
ΛqKL

)}
= sup

{
‖ΛqT u‖∧ : u ∈ S

(
Λq

0KL
)}

(see [19]).

The set of all such maps ΛqT then induces an action of GL(L,K) on P
(
Λq

0KL
)

and S
(
Λq

0KL
)
.

11The actions · and ? defined in (13) and (17) were defined for a special case in the references provided
here. The generalization to the situation herein is straightforward and can presumably be found elsewhere in
the literature. This also applies to the action • defined in (15), where even the representation is different in the
reference. As for the action ∗ defined in (16), the author did not find this very form in the literature but it is
easily reconstructable after reading Sections 5.4 & 9.1 of the named reference.
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Definition 16. The projective space P
(
Λq

0KL
)

over Λq
0KL is acted on by GL(L,K) via

GL(L,K)×P
(
Λq

0KL
)
−→P

(
Λq

0KL
)
,

(T ,Ku) 7−→ T ∗ (Ku) := K ΛqT u , u ∈ Λq
0KL \ {0}

(16)

(cf. [27]) and the set of decomposable unit q-vectors S
(
Λq

0KL
)

is acted on by GL(L,K) via

GL(L,K)×S
(
Λq

0KL
)
−→ S

(
Λq

0KL
)
,

(T , u) 7−→ T ? u := ΛpT u ‖ΛpT u‖−1
∧

(17)

(see Section 3.2 of [88]).

All these actions are closely related to each other by the following commuting diagrams12:

FL,q(K) FL,q(K)

S
(
Λq

0KL
)

S
(
Λq

0KL
)

T ·

Λ Λ

T ?

GL,q(K) GL,q(K)

P
(
Λq

0KL
)

P
(
Λq

0KL
)

T •

J J

T ∗

(18)

2.3.2 The Lyapunov Exponents

We let {Tω(n)}n∈N be a sequence of i.i.d. invertible real L × L random matrices (throughout
Section 2.3.2). The following Hypothesis holds e.g. in case of compactly supported Tω(n).

Hypothesis 1. The averages E max {log ‖Tω(1)‖ , 0} and E max {log ‖Tω(1)−1‖ , 0} are finite.

Theorem 2. Under Hypothesis 1, the numbers γ1, . . . , γL specified by the equations

q∑
l=1

γl = lim
N→∞

1

N
E log ‖Λq (Tω(N) . . . Tω(1))‖Λ , q = 1, . . . , L , (19)

are well-defined and finite. Moreover, l 7→ γl is non-increasing (see [15], Part A, Section III.5).

Definition 17. The numbers γ1, . . . , γL specified by the equations (19) under Hypothesis 1 are
called Lyapunov exponents associated to {Tω(n)}n∈N (see [15], Part A, Section III.5).

The following two hypotheses hold in many situations:

Hypothesis 2. The semigroup T generated by supp (Tω(1)) is q-strongly irreducible, i.e., for
any finite union F of proper linear subspaces of ΛqRL, there is some T ∈ T such that ΛqT F 6⊂ F .

12As with (12), the author could not find these diagrams in the depicted forms in the literature. Likewise, the
diagrams are well-known and it is easy to verify that they commute. This is not a new discovery of the author.
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Hypothesis 3. The semigroup T generated by supp (Tω(1)) is q-contracting, i.e., there exists
a sequence {Tn}n∈N ⊂ T for which ΛqTn ‖ΛqTn‖−1 converges to an operator of rank one.

Proposition 1. Under Hypotheses 1, 2 and 3, all u ∈ ΛqRL \ {0} satisfy

q∑
l=1

γl = lim
N→∞

1

N
log ‖Λq (Tω(N) . . . Tω(1))u‖∧ , q = 1, . . . , L (20)

for P-almost every ω (see [15], Part A Section IV.1, Theorem 1.2.iii) so that one has in particular

q∑
l=1

γl = lim
N→∞

1

N
E log ‖Λq (Tω(N) . . . Tω(1))u‖∧ , q = 1, . . . , L . (21)

Another interesting property of the Lyapunov exponents is provided by the Osseledec theorem:

Theorem 3. Assume Hypothesis 1. For P-almost all ω there is decreasing sequence of subspaces

RL = V 1
ω ⊃ V 2

ω ⊃ · · · ⊃ V L
ω ⊃ V L+1

ω = {0}

for which all l = 1, . . . , L satisfy

lim
N→∞

1

N
log ‖Tω(N) . . . Tω(1) v‖ = γl ∀ v ∈ V l

ω \ V l+1
ω

(cf. [18], Section IV.2).

A plenty of special properties in the case of symplectic Tω(n) is discussed in Section 2.3.5.

2.3.3 Random Dynamical Systems

In Section 2.3.1, we defined an action of the group of invertible matrices GL(L,K) on the spaces
FL,q(K), GL,q(K), S

(
Λq

0KL
)

and P
(
Λq

0KL
)
, respectively. Now a sequence {Tω(n)}n∈N of i.i.d.

invertible (real or complex) L × L random matrices can be used to define random dynamical
systems on these spaces, namely as

Φω(n) = Tω(n) · Φω(n− 1) ∀ n ∈ N , where Φω(0) ≡ Φ(0) ∈ FL,q(K) , (22)

on the compact Stiefel manifold, as

Qω(n) = Tω(n) •Qω(n− 1) ∀ n ∈ N , where Qω(0) ≡ Q(0) ∈ GL,q(K) , (23)

on the Grassmannian, as

uω(n) = Tω(n) ? uω(n− 1) ∀ n ∈ N , where uω(0) ≡ u(0) ∈ S
(
Λq

0KL
)
, (24)



14

on the decomposable unit q-vectors and

uω(n) = Tω(n) ∗ uω(n− 1) ∀ n ∈ N , where uω(0) ≡ u(0) ∈P
(
Λp

0KL
)
, (25)

on the projective space over the decomposable q-vectors13. All these random dynamical systems
are closely related to each other via the commuting diagrams in (12) and (18).

Remark 12. A telescoping argument14 allows to rewrite the identities (20) or (21) for the Lya-
punov exponents (under Hypotheses 1, 2 and 3) in terms of the random dynamical system (24).
Indeed, all u(0) ∈ S (Λp

0R) satisfy

q∑
l=1

γl = lim
N→∞

1

N

N−1∑
n=0

log ‖ΛqTω(n+ 1)uω(n)‖∧ , q = 1, . . . , L (26)

for P-almost every ω and one has

q∑
l=1

γl = lim
N→∞

1

N
E
N−1∑
n=0

log ‖ΛqTω(n+ 1)uω(n)‖∧ , q = 1, . . . , L . (27)

The dynamics (23) or (25) can also be used to rewrite (26) and (27), namely by choosing repre-
sentatives of uω(n) in S

(
Λq

0RL
)
. Clearly, the choice has no impact on the norms in (26) and (27).

Remark 13. As the first diagram in (18) commutes, (26) implies that all Φ(0) ∈ FL,q(R) obey

q∑
l=1

γl = lim
N→∞

1

N

N−1∑
n=0

log ‖ΛqTω(n+ 1)ΛΦω(n)‖∧ , q = 1, . . . , L (28)

for P-almost every ω (whenever Hypotheses 1, 2 and 3 are fulfilled) so that one has in particular

q∑
l=1

γl = lim
N→∞

1

N
E
N−1∑
n=0

log ‖ΛqTω(n+ 1)ΛΦω(n)‖∧ , q = 1, . . . , L . (29)

Henceforth, we will mainly work with the random dynamical system (22) on the compact
Stiefel manifold, since it is the most informative. The other systems (23), (24) and (25) can
readily be obtained from (22) with the aid of the projections Π, Λ and [·]∼ ◦ Λ (see (12)).

13These types of random dynamical systems can be found in the literature, see e.g. [19] for the Grassmannian
or Section 3.3 of [88] for a special case of (24).

14The standard telescoping argument to rewrite (20) and (21) can e.g. be found in the introduction of [15]
for the case q = 1. The derivation works also if q > 1, where the result remains valid (see Section 4.2 of [88]).
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2.3.4 Invariant Measures and the Furstenberg Measure

We let Tσ be an invertible L× L random matrix and suppose that {Tω(n)}n∈N is a sequence of
independent copies of Tσ (throughout Section 2.3.4).

Definition 18. A probability measure µ on FL,q(K) for which all indicator functions f = χA of
Borel sets A ⊂ FL,q(K) satisfy∫

FL,q(K)

dµ(Φ) f(Φ) =

∫
FL,q(K)

dµ(Φ) E f(Tσ · Φ) (30)

is called (Tσ·)-invariant15. In an analogous way, we define the notions of (Tσ•)-, (Tσ?)- and (Tσ∗)-
invariant probability measure on the spaces GL,q(K), S (Λq

0KL) and P(Λq
0KL), respectively.

Remark 14. Let %0 be a probability measure on FL,q(K) and consider the sequence

(ξN)N∈N , where ξN =
1

N

N∑
n=1

%n , with %n = ((Tσ·)∗)
(n) (%0) ,

where ((Tσ·)∗)
(n) (%0) is the n-th iterate of the image of %0 under Tσ· (see e.g. [14], Chapter 3.6).

Every weak limit point of (ξN)N∈N is a (Tσ·)-invariant probability measure and, as FL,q(K) is
compact, at least one such weak limit point exists (see [15], Part A, Chapter I.3, Lemma 3.5).

If %0 is the Dirac measure (see e.g. [14], Section 1.3) at some Φ(0) ∈ FL,q(K), then %n is the
probability measure according to which the random dynamics Φω(n) given by (22) is distributed.

Remark 15. We call a unique (Tσ•)- or (Tσ∗)-invariant measure the Furstenberg measure16.

Proposition 2. Suppose that Tσ is GL(L,R)-valued and that {Tω(n)}n∈N fulfils Hypotheses 1, 2
and 3. Then there is a unique (Tσ∗)-invariant Furstenberg measure µF on P

(
Λq

0RL
)

and any
corresponding probability measure µ̃F on S

(
Λq

0RL
)

satisfying µ̃F ◦ ([·]∼)−1 = µF is linked to the
associated Lyapunov exponents via

q∑
l=1

γl =

∫
S (Λq

0RL)
dµ̃F(u) E log ‖ΛqTσ u‖∧

(see [15], Part A, Section IV.1, Theorem 1.2.ii).

15The notion of invariant measure is common in the literature. However, the assumptions on the function f
in (30) are varying. For example, the definition in [15], Part A, Section III.2 requires the validity of (30) for all f
being indicator functions of Borel sets, whereas there are simply made no assumptions on f in [88], Section 3.3.

16This wording is repeatedly used in the literature, see e.g. [58].
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Remark 16. In the special case q = 1, where P(Λ1
0RL) = RPL−1, and again under Hypothe-

ses 1, 2 and 3, the distribution of the dynamics uω(n) given by (25) converges to µF even
uniformly in the starting point u(0), namely one has

sup
u(0)∈RPL−1

∣∣∣∣E f(uω(n))−
∫
RPL−1

dµF(u) f(u)

∣∣∣∣→ 0 as n→∞

for all continuous functions f : RPL−1 → R (see [15], Part A, Chapter III.4, Theorem 4.3).

2.3.5 The Case of Symplectic Matrices17

Random dynamical systems that are generated by i.i.d. symplectic matrices in the way described
in Section 2.3.3 are of particular importance for the long-term project of the author and his
supervisor. In the following, we set L ≡ 2L and q ≤ L and recapitulate relevant related facts.

We define certain subspaces of F2L,q(R) and G2L,q(R) that play an important role in the
context of random dynamical systems generated by symplectic random matrices.

Definition 19. We call a q-frame Φ ∈ F2L,q(R) isotropic if it satisfies Φ∗JΦ = 0. The set of all
isotropic q-frames is called the isotropic Stiefel manifold IF2L,q(R) and the set of all isotropic
L-frames is called the Lagrangian Stiefel manifold LFL(R) = IF2L,L(R). Accordingly, we de-
fine the isotropic Grassmannian by IG2L,q(R) = {Π(Φ) : Φ ∈ IF2L,q(R)} and the Lagrangian
Grassmannian by LGL(R) = IG2L,L(R).

Remark 17. The sets IF2L,q(R) and IG2L,q(R) are invariant under the action of SP(2L,R).

The symmetry of the eigenvalues of symplectic matrices is recognizable in the Lyapunov
exponents of sequences of i.i.d. symplectic random matrices that fulfil Hypothesis 1:

Proposition 3. Let {Tω(n)}n∈N be a sequence of i.i.d. symplectic 2L × 2L random matrices
that fulfils Hypothesis 1. Then, the associated Lyapunov exponents exhibit the symmetry

γl = −γ2L−l+1 , l = 1, . . . , L . (31)

One must consider that Hypothesis 2 is always violated for q = 2 if the Tω(n) are symplectic.
Nevertheless, it is convenient to replace it by the following alternative Hypothesis:

Hypothesis 4. The semigroup T generated by supp (Tω(1)) is IF2L,q(R)-strongly irreducible,
i.e., for any finite union F of proper linear subspaces of span (Λ (IF2L,q(R))), there is some
T ∈ T such that ΛqT F 66= F .

Under Hypothesis 4 (together with Hypotheses 1 and 3), the identities (28) and (29) remain
true for all isotropic q-frames Φ(0) ∈ IF2L,q(R). Similarly, Proposition 2 can be adapted:

17The author used [88], [90] and [15], Part A, Section IV.3 to recapitulate the facts stated in this section.
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Proposition 4. Let Tσ be a symplectic 2L× 2L random matrix. Moreover, let {Tω(n)}n∈N be a
sequence of independent copies of Tσ that fulfils Hypotheses 1, 3 and 4. Then there is a unique
(Tσ∗)-invariant Furstenberg measure µF on the subset ([·]∼ ◦ Λ) (IF2L,q(R)) of P

(
Λq

0R2L
)

and
any corresponding probability measure µ̃F on the subset Λ (IF2L,q(R)) of S

(
Λq

0R2L
)

satisfying
µ̃F ◦ ([·]∼)−1 = µF is linked to the associated Lyapunov exponents via

q∑
l=1

γl =

∫
Λ(IF2L,q(R))

dµ̃F(u) E log ‖ΛqTσ u‖∧ .

2.3.6 Symplectic Channels

The values of the random matrices the author and his supervisor deal with in their long-term
project are not only symplectic but even belong to the subclass of matrices of the form

T =

(
A −1L
1L 0

)
, A = Aᵀ ∈ RL×L . (32)

These matrices are decomposable into L two-dimensional eigenspaces of eigenvalue pairs called
symplectic channels as e.g. considered in [88], Section 2.3.

Proposition 5 follows by mimicking the proof of Proposition 11.1 in [92] in this special case.

Proposition 5. Let T be of the form (32). Then, there is an S ∈ SP(2L,R) such that one has

S−1T S = U (S(d1)⊕ · · · ⊕ S(dL)) U −1 , S(d) =

(
d −1
1 0

)
∈ SP(2,R) , (33)

where d1, . . . , dL ∈ R are such that |d1| ≥ · · · ≥ |dL| and U is an isomorphism given by

U :
L⊕
l=1

C2×2 → U

(
L⊕
l=1

C2×2

)
⊂ C2L×2L ,

L⊕
l=1

(
αl βl
γl δl

)
7→



α1 β1

. . . . . .

αL βL
γ1 δ1

. . . . . .

γL δL


.

Remark 18. An eigenvalue pair {κl, κ−1
l } of some S(dl) is given by

{
1
2

[
dl ±

√
d2
l − 4

]}
. We set

κl =
1

2

[
dl + sgn(dl)

√
d2
l − 4

]
without loss of generality, which implies |κl| ≥ 1 and the sequence of inequalities

|κ1| ≥ · · · ≥ |κL| ≥ |κ−1
L | ≥ · · · ≥ |κ

−1
1 | > 0 . (34)
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Definition 20. Based on |dl|, we subdivide the matrices S(dl) into three types18:

� If |dl| > 2, the matrix S(dl) is called hyperbolic and κl and κ−1
l lie on the real line.

� If |dl| = 2, the matrix S(dl) is called parabolic and κl and κ−1
l are either +1 or −1.

� If |dl| < 2, the matrix S(dl) is called elliptic and κl and κ−1
l lie on the complex unit circle.

We call the associated eigenspaces symplectic channels and denote them by Cl. A symplectic
channel Cl is then spanned by the l-th and the (L+ l)-th canonical unit vector and is also called
hyperbolic, parabolic and elliptic for |dl| > 2, |dl| = 2 and |dl| < 2, respectively.

Proposition 6 describes a phenomenon called symplectic blocking in [88].

Proposition 6. The intersection of a symplectic channel Cl and the range of some
Φ ∈ IF2L,q(K) or Q ∈ IG2L,q(K) is at most one-dimensional. In particular, the intersection
of Cl and the range of some Φ ∈ LFL(K) or Q ∈ LGL(K) is precisely one-dimensional.

The matrices S(dl) can be brought into a canonical form by a symplectic conjugation.

Lemma 7. For each S(dl), there is some M(dl) ∈ SP(2,R) such that M(dl)
−1S(dl)M(dl) reads

Rh(κl) =

(
κ−1
l

κl

)
or Rp(κl) = sgn(κl)

(
1 1

1

)
or Re(κl) =

(
cos(ηl) sin(ηl)
− sin(ηl) cos(ηl)

)
,

where ηl ∈ [0, π) is such that κl = e−ıηl, depending on whether S(dl) is hyperbolic or parabolic
or elliptic (see [24], Section 11.4 and [88], Section 2.1).

Remark 19. In the elliptic case, a diagonalization is possible by means of the Cayley transform,
albeit at the expense of leaving SP(2,R), viz.,

R̂e(κl) = CRe(κl)C
−1 =

(
κ−1
l

κl

)
, C =

√
−ı
2

(
1 −ı
1 ı

)
,

where R̂e(κl) lies in the generalized Lorentz group SU(1, 1) = C SP(2,R)C−1 given by

SU(1, 1) =
{
T ∈ C2×2 : T ∗GT = G , det(T ) = 1

}
, G =

(
1
−1

)
(see e.g. [89], Section 2).

To summarize Section 2.3.6, we formulate Corollary 8 and a subsequent remark19.

18One has SP(2,R) = SL(2,R) (see e.g. [51], Example 4.8.1). The subdivision of SL(2,R) into hyperbolic, pa-
rabolic and elliptic matrices can e.g. be found in [24] as the beginning of Section 11.4 combined with Exercise 11.2.

19The author could not find Corollary 8 or Remark 20 in this form in the literature. The statements therein
are easily verifiable and possibly findable in the literature. The author does not claim their novelty.
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Corollary 8. Each T of the form (32) can be decomposed as

T̃ =M−1TM = U

(
Lh⊕
l=1

Rh(κl)⊕
Lh+Lp⊕
l=Lh+1

Rp(κl)⊕
L⊕

l=L−Le+1

Re(κl)

)
U −1 , (35)

where M = SU
(⊕L

l=1M(dl)
)

U −1 lies in SP(2L,R) and S and U are as in Proposition 5.

Here, Lh, Lp and Le denotes the number of hyperbolic, parabolic and elliptic channels, respec-
tively. Further, if T has no parabolic channels, i.e., if Lp = 0, a diagonalization of T is given by

T̂ =WLh
T̃ W−1

Lh
= VU

(
L⊕
l=1

(
κ−1
l

κl

))
U −1V = diag

(
κ−1

1 , . . . , κ−1
L , κL, . . . , κ1

)
(36)

with WLh
= (CLh

V)−1 and CLh
= U

(⊕Lh

l=1 12 ⊕
⊕L

l=Lh+1C
)

U −1, where the permutation

V = diag

1L,

 1
...

1




makes the diagonal entries non-decreasing in modulus according to inequality (34).

Remark 20. Given some T ∈ SP(2L,R), the matrix T̃ obtained by (35) lies again in SP(2L,R)

but T̂ obtained by (36) lies in WLh
SP(2L,R)W−1

Lh
, which is a different subgroup of GL(2L,C).

The above statements on random dynamical systems generated by i.i.d. symplectic matrices
can be readily transposed. Similarly to Remark 17, the sets WLh

IF2L,q(R) ⊂ F2L,q(C) and
WLh

IG2L,q(R)W−1
Lh
⊂ G2L,q(C) are invariant under the action of WLh

SP(2L,R)W−1
Lh

. A trans-
formed symplectic channelWLh

Cl is spanned by the l-th and the (2L−l)-th canonical unit vector.
Similarly to Proposition 6, the intersection of a transformed channel WLh

Cl and the range of
some Φ ∈ WLh

IF2L,q(R) or Q ∈ WLh
IG2L,q(R)W−1

Lh
is at most one-dimensional. In particular,

the intersection of WLh
Cl and the range of some Φ ∈ WLh

LFL(K) or Q ∈ WLh
LGL(K)W−1

Lh
is

precisely one-dimensional.

Remark 21. We call a diagonal matrix whose diagonal entries are non-zero and non-decreasing
in modulus a hyperbolic matrix 20.

2.4 The Möbius Transformation and the Random Möbius Dynamics

In Sections 2.2 and 2.3, we introduced the spaces FL,q(K), GL,q(K), S
(
Λq

0KL
)

and P
(
Λq

0KL
)

and defined an action of the general linear group GL(L,K) on each of these spaces, on which a
sequence of i.i.d. invertible L× L random matrices then induces a random dynamical system.

In the case q = 1, L = 2 and K = C, the projective space over Λ1
0C2 = C2 is given by the

complex projective line CP1, which can be identified with C = C∪ {∞} (see [79], Section 17.1).

20This is not common in the literature, where the term ”hyperbolic matrix” is usually used for a square
matrix whose eigenvalues lie off the imaginary axis, see, e.g., [66], Chapter 3, Section 5 or [11], §2.5.3.
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The latter is called the Riemann sphere (see e.g. [65], Chapter 1). The unit sphere of C2 is
given by S1

C = {u ∈ C2 : ‖u‖ = 1}. For u ∈ S1
C, a point Cu ∈ CP1 is identified with π(u), where

π(u) =

{
ab−1 , b 6= 0 ,

∞ , b = 0 ,
where u =

(
a
b

)
(see [79], Section 17.1). The action (16) is then converted into the Möbius transformation

GL(2,C)× C −→ C ,((
a b
c d

)
, z

)
7−→

(
a b
c d

)
♦ z :=


∞ , z = −dc−1 ,

ac−1 , z =∞ ,
az+b
cz+d

, otherwise ,

(37)

i.e., all T ∈ GL(2,C) and all u ∈ S1
C satisfy the identity

T ♦ π(u) = π(T ? u) (38)

(see [79], Section 17.3).

Equipped with the Möbius transformation (37) and the relation (38), we now transfer some
notions and facts discussed in Section 2.3 to the case of invertible complex 2×2 random matrices.
For this, we let Tσ be an invertible complex 2× 2 random matrix and suppose that {Tω(n)}n∈N
is a sequence of independent copies of Tσ in the following.

Definition 21. A probability measure µ on C is called (Tσ ♦)-invariant if it satisfies∫
C

dµ(z) f(z) =

∫
C

dµ(z) E f(Tσ♦ z)

for all indicator functions f = χA of Borel sets A ⊂ C.

Remark 22. We call a unique (Tσ ♦)-invariant measure the Furstenberg measure (cf. Remark 15).

We introduce the upper Lyapunov exponent γ1 also for sequences of i.i.d. invertible complex
2× 2 random matrices.

Definition 22. Suppose that {Tω(n)}n∈N satisfies Hypothesis 1. Then the number

γ1 = lim
N→∞

1

N
E log ‖Tω(N) . . . Tω(1)‖

is (well-defined and finite and) called the upper Lyapunov exponent21.

21The definition of the upper Lyapunov exponent works for invertible complex 2× 2 random matrices just as
for real ones. For this, Definition 2.1 in [15], Part A, Section I.2 may be translated using natural realifications
C2 → R4 and GL(2,C)→ GL(4,R). E.g., for the case of SL(C)

/
{±}-valued random matrices, see [25], Section 4.
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The random dynamics (25) on CP1 can be converted into a random dynamics on C.

Definition 23. The sequence {Tω(n)}n∈N induces a random Möbius dynamics by

zω(n) = Tω(n) ♦ zω(n− 1) ∀ n ∈ N , where zω(0) ≡ z(0) ∈ C . (39)

The following two Hypotheses are similar to Hypotheses 2 and 3.

Hypothesis 5. For any finite set F ⊂ C, one has supp(Tω(1)) ♦F 6⊂ F .

Hypothesis 6. The semigroup generated by supp(Tω(1)) is not relatively compact.

If the values of Tω(1) lie in

SL(2,C) =
{
T ∈ C2×2 : det(T ) = 1

}
,

then the Hypotheses 5 and 6 imply the uniqueness of the (Tω(1) ♦)-invariant probability measure.

Proposition 9. Suppose that the Tω(n) are SL(2,C)-valued and satisfy Hypotheses 1, 5 and 6.
Then there is a unique (Tω(1) ♦)-invariant Furstenberg measure µF on C (see [13], Proposi-
tion 4.7). Moreover, any corresponding probability measure µ̃F on S1

C satisfying µ̃F ◦ π−1 = µF

is linked to the upper Lyapunov exponent associated to {Tω(n)}n∈N via

γ1 =

∫
S1C

dµ̃F(u) E log ‖Tω(1)u‖ (40)

(cf. [13], Theorem 4.28).

Such random Möbius dynamics have e.g. been studied by Ambroladze and Wallin [6], who
considered a situation, where the support of the Tω(n) is such that the actions Tω(n)♦ map the
complex upper half-plane H = {z ∈ C : =m(z) > 0} onto itself. Thus the orbit {zω(n)}n∈N lies
in H whenever z(0) does. Ambroladze and Wallin provide a certain assumption under which
this orbit is proven to tend to R = R ∪ {∞} almost surely (see [6], Theorem 1).

Now since the Möbius transformation C♦ under the Cayley transform (see Remark 19)
maps H bijectively onto the unit disc D := {z ∈ C : |z| < 1} (see [15], Part A, Section II.7),
a conjugation of the Tω(n) by C then yields a random Möbius dynamics on D because the
CTω(n)C−1 then leave D invariant.

For example, the Möbius transformation under the semigroup of sub-Lorentzian matrices

SU≤(1, 1) =
{
T ∈ C2×2 : T ∗GT ≤ G , det(T ) = 1

}
, G =

(
1
−1

)
,

leaves D invariant (see [30], eq. 3). This is the case dealt with in Section 4.6.
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2.5 A Few Basics of Renewal Theory22

As relevant in Section 4.3, we recall two basic definitions and a basic theorem of renewal theory.

Definition 24. For a sequence {Xω(n)}n∈N of i.i.d. [0,∞)-valued random variables, we define

Nω : [0,∞) −→ N0 , t 7−→ max

{
N ∈ N0 :

N∑
n=1

Xω(n) ≤ t

}

and call the Xω(n) interarrival times specifying the renewal process {Nω(t)}t≥0.

A renewal process {Nω(t)}t≥0 can be interpreted as the (random) number of occurrences of
some event in the time interval [0, t]. We call such an occurrence a renewal. After the n-th
renewal, the system starts renewed and it takes the (random) interarrival time Xω(n+ 1) until
the re-occurrence of the event, i.e., until the (n+1)-th renewal. This (random) interarrival time
is equal in each such cycle.

Definition 25. Associated to a renewal process {Nω(t)}t≥0, the renewal function is defined by

m : [0,∞) −→ [0,∞] , t 7−→ ENω(t) .

The elementary renewal theorem links the renewal function to the average interarrival time:

Theorem 4. If the interarrival time Xω(1) obeys P(Xω(1) = 0) = 0 and EXω(1) <∞, one has

lim
t→∞

m(t)

t
=

1

EXω(1)
.

22The author used Sections 10.1 and 10.2 of [56] to recall the definitions and the theorem stated in this section.
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3 The Long-Term Project of Anderson Delocalization

In this section, we describe the strategy with which the author and his supervisor pursue a
proof of Conjecture 4 stated above. The idea of this strategy is due to the supervisor and was
explained to the author in the course of many discussions. While the steps outlined below have
yet to be elaborated, the author and his supervisor have made progress in understanding some
of the expected phenomena, namely by the rigorous analysis of special cases of the problems
emerging in the plan described below.

This section contains (revised) parts of the author’s research proposal [28] (mentioned above).

3.1 Intuitive Description of the General Strategy

The strategy of our approach is to produce formal solutions of the Schrödinger equation of the
Anderson model in a finite volume, which will be chosen to be a d-dimensional cube. These
formal solutions will be produced by the transfer matrix technique23 in one particular chosen
direction of space. They become true eigenstates of the Schrödinger equation if and only if both
boundary conditions on the (d−1)-dimensional (finite) sides are satisfied. We plan to single out
those of the solutions which do not grow substantially under the application of the transfer matri-
ces. They produce so-called extended states, where, in contrast, exponentially growing (or decay-
ing) solutions lead to localized states24. Of course, the transfer matrices are random and there-
fore also the set of solutions produced is random. Thus one has to show that with sufficiently
large probability there are at least many ”almost extended states”. The more detailed descrip-
tion below will indicate where we plan to look for such states. Once they are at our disposal,
we aim at achieving our main goal by using the fact that the Green matrices, which are directly
related to the moments Mq(T,R), can be described by the same transfer matrix techniques25.

3.2 Producing the Formal Solutions by Transfer Matrices

As explained in Section 1.4.1 for the one-dimensional case, solutions of the Schrödinger equation
can be obtained via transfer matrices by an iterative expansion of some initially given values
that are next to one another. As for the higher-dimensional case, we consider the Anderson
model on a rod of the width K and the length N , i.e., on the Hilbert space `2({−N, . . . , N},CL),
where we choose L = Kd−1 to actually deal with a d-dimensional cube in the case K = 2N + 1.
The corresponding Hamiltonian can then be written as

(HL,N,ωψ)(n) = −ψ(n+ 1)− ψ(n− 1) + ∆Lψ(n) + λVω(n)ψ(n) , n = −N, . . . , N , (41)

with ψ ≡ {ψ(n)}Nn=−N , where the ψ(n) are CL-valued26. In the end, we will be mainly interested
in the case K = 2N + 1 but also the quasi-one-dimensional limit N →∞ is interesting in itself
and will be considered below. In equation (41), ∆L is the transverse discrete Laplacian with

23This technique was described in Section 1.4.1 for the one-dimensional Anderson model.
24For the notions ”extended” and ”localized states” (mentioned in Section 1.2 already), see, e.g., Ch. 1 of [5].
25For this, we refer to [21] and [64] but especially to the discussion in Section 4.4.
26The definition (41) of HL,N,ω and the eq. (42) can be found in Section 1 of [88] for the case d = 2 and N =∞.



24

adequate boundary conditions acting on each ψ(n) separately and the Vω(n) are i.i.d. diagonal
random matrices, whose L (real-valued) diagonal entries are i.i.d., respectively, and give rise to
a random potential. On top of that, one has to impose longitudinal boundary conditions on
HL,N,ω, namely define the yet undetermined values ψ(−N − 1) and ψ(N + 1) in terms of ψ(N)
and ψ(−N) (cf. [90], Section 4). The Schrödinger equation HL,N,ωψ = Eψ can be rewritten by
using transfer matrices T Eω (n) as(

ψ(n+ 1)
ψ(n)

)
= T Eω (n)

(
ψ(n)

ψ(n− 1)

)
, T Eω (n) =

(
∆L + λVω(n)− E1L −1L

1L 0

)
. (42)

For E ∈ R, the T Eω (n) are symplectic and even of the form (32) discussed in Section 2.3.6.
Now given some boundary values ψ(−N − 1) and ψ(−N), the rewritten eigenvalue equa-

tion (42) then produces a formal eigenfunction of the Schrödinger equation HL,N,ωψ = Eψ,
which is not necessarily a proper eigenvector of HL,N,ω because the obtained values ψ(N) and
ψ(N + 1) may violate the imposed longitudinal boundary conditions.

3.3 The Quasi-One-Dimensional Limit

To better explain the way we the plan to extract the ”almost extended states”, it is convenient
to first consider the quasi-one-dimensional limit, i.e., to look at a rod of a fixed width K <∞
and a divergent length N →∞. This is not the system we are eventually interested in. However,
it will be argued below why we expect the asymptotic phenomena in the quasi-one-dimensional
limit to occur already at finite length to an extend that may be sufficient for our purposes.

We start in the middle of the rod and focus here only on the expansion of solutions of (41)
in the positive direction. The negative direction can be dealt with in the same manner due to(

ψ(n− 1)
ψ(n)

)
= T Eω (n)

(
ψ(n)

ψ(n+ 1)

)
.

For the expansion of solutions in the positive direction, one uses the transfer matrices T Eω (n)
for n ∈ N. For E ∈ R, these specify a sequence of i.i.d. symplectic 2L × 2L random matrices.
Associated to this sequence are Lyapunov exponents γE1 , . . . , γ

E
2L as defined and discussed in

Section 2.3.2. According to the Osseledec theorem (Theorem 3), they determine all possible
values of the average (exponential) growth of a solution. More precisely, for each Lyapunov
exponent γEl , there is some initial condition, i.e., some values of ψ(0) and ψ(1), for which
the average growth of the logarithm of the modulus of the solution is equal to γEl . Thus a
solution is an ”almost extended state”, i.e., it hardly increases or decreases in modulus, if the
corresponding Lyapunov exponent is close to zero.

Now according to Proposition 3, the symplecticity of the T Eω (n) implies the symmetry

γEl = −γE2L−l+1 l = 1, . . . , L ,

so that we merely focus on the non-negative exponents γE1 , . . . , γ
E
L for the moment. They obey

γE1 ≥ γE2 ≥ . . . γEL−1 ≥ γEL ≥ 0 , (43)
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since the map l 7→ γEl is non-increasing according to Theorem 2. In fact, the Lyapunov exponents
associated to the transfer matrices for the Anderson model on a rod were proven to be mutually
distinct and non-zero (see [53], §7) so that (43) is strengthened to

γE1 > γE2 > . . . γEL−1 > γEL > 0 . (44)

Of course, our particular focus is now on the small Lyapunov exponents. A quantitative estimate
on the smallest positive Lyapunov exponent γEL for the Anderson model on a strip, i.e., d = 2,
was proven in a perturbative regime of small disorder λ for energies E in the spectrum of the
unperturbed Hamiltonian (see [88], Theorem 1.(i)). It shows that γEL is bounded from below
by a term of the order λ2/L, up to errors of the order O(λ3). In fact, under a supplementary
assumption called the random phase property, the lower Lyapunov exponents were proven to be
equidistant, namely one has γEl − γEl+1 ∼ λ2/L for 1� l < L (see [82], Theorem 1). This result
can be generalized to the Anderson model on a rod, i.e., to arbitrary d ≥ 2 (see [82], Section 10).

In fact, we aim at controlling a certain fraction of the lower Lyapunov exponents associated
to the transfer matrices T Eω (n) of the actual Anderson model on a rod. Our approach to this is
described in Section 3.4 below. Of course, the mere control of the Lyapunov exponents defined in
the quasi-one-dimensional limit N →∞ is not enough to make a conclusion on the behaviour of
the formal eigenfunctions up to a finite length N = (K−1)/2. However, a formal eigenfunction
ψ corresponding to an exponent γEl exhibits the asymptotic behaviour

|ψ(N)| ∼ exp
[
γEl N

]
as N →∞ ,

which indicates that this eigenfunction may not start to significantly decrease (or significantly
increase) on sample sizes K of the order O

(
(γEl )−1

)
. This intuitive point may be made precise

by following the argument for the limit N → ∞ only up to a finite length N = (K − 1)/2.
In [88], e.g., the finite length N contributes with terms of the order O(N−1) to the error
estimates. Therefore, if the Lae lowest Lyapunov exponents γEL , γ

E
L−1, . . . , γ

E
L−Lae+1 are of the

order O(K−1), then the corresponding Lae formal eigenfunctions may be ”almost extended”
within a cube of side length K. The number Lae clearly depends on L and thus, in turn, on K.
However, it is reasonable to expect Lae to be proportional to L, since this is, e.g., the case for
λ = 0 and d = 2 (see [88], Section 2).

3.4 Random Perturbations of Hyperbolic Dynamics

The starting point for the analysis sketched in Section 3.3 is the decomposition27 of the transfer
matrices T Eω (n) given by (42) into the deterministic parts and the random perturbations, viz.,

T Eω (n) = [1 + λPω(n)] T E = eλPω(n) T E .

Here, T E is the (deterministic) transfer matrix at λ = 0 and Pω(n) are i.i.d. random matrices,

T E =

(
∆L − E1L −1L

1L 0

)
, Pω(n) =

(
0 Vω(n)
0 0

)
.

27A very similar decomposition can e.g. be found in Section 2.2 of [88].
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Again, for E ∈ R, the T Eω (n) are of the form (32) and so is T E. Furthermore, the Pω(n) lie in
the Lie algebra sp(2L,R), which is the set of Hamiltonian matrices (see [73], Section 3.6), viz.,

sp(2L,R) =
{
P ∈ R2L×2L : P ᵀJ + JP = 0

}
.

As discussed in Section 2.3.6, the form (32) allows to decompose the matrix T E into L
two-dimensional symplectic channels, namely there is a symplectic conjugation transforming it
into the form T̃ E = (ME)−1T EME as given by the first statement (35) of Corollary 8. The
explicit transformation was performed in [88] for a strip and can be generalized to a rod (see [82],
Section 10). For sake of simplicity, we assume henceforth that T E has no parabolic channels,
which is indeed the generic case; in general, however, the fulfilment of this assumption depends
on L and E (see [88], Section 2.1). This allows to even diagonalize T E and obtain the form

T̂ E =WE
Lh
T̃ E(WE

Lh
)−1 = diag

(
(κE1 )−1, . . . , (κEL )−1, κEL , . . . , κ

E
1

)
(45)

as in the second statement (36) of Corollary 8, where Lh is the number of hyperbolic channels
of T E. From now on, we work with the representation (45) and hence we adapt the random
perturbations adequately by defining the random matrices

T̂ Eω (n) =
[
1 + λP̂Eω (n)

]
T̂ E , P̂Eω (n) =WE

Lh
(ME)−1Pω(n)ME(WE

Lh
)−1 .

For the remainder of the present Section 3.4, we fix L and pick an E ∈ R for which the matrix
T̂ E has relevant fractions of both hyperbolic and elliptic channels.

Now the Lyapunov exponents in the unperturbed case λ = 0 can readily be read off as the
logarithms of the diagonal entries of T̂ E, viz., γEl = log(κEl ) for l = 1, . . . , L. Again, we only
focus on the exponents γE1 , . . . , γ

E
L . Associated to the Le elliptic channels, there are Le vanishing

Lyapunov exponents γELh+1 = · · · = γEL = 0. An initial condition corresponding to one of them
then constitutes a formal eigenfunction whose modulus remains constant throughout the sample
and even in the quasi-one-dimensional limit, i.e., an extended state.

The task is now to control the deviation from this behaviour in the presence of some tiny
disorder λ > 0, i.e., to analyze how many initial conditions still constitute at least ”almost
extended states” (see Section 3.3) despite the random perturbation. As a quantitative statement
in the quasi-one-dimensional limit N → ∞, we pursue a suitable upper bound for the average
of the Le lowest Lyapunov exponents γEL , . . . , γ

E
L−Le+1. A reasonable upper bound would be

1

Le

L∑
l=L−Le+1

γEl ≤ log(κEp+1) + Cp λ
2 (46)

for some p that is such that Lh > p� 1 so that 0 < log(κp+1)� 1 and some constant Cp <∞
that does not depend on L or Le but is somehow increasing in p. If the right side of (46)
becomes small for some suitable p, such an upper bound would then indicate that there may be
at least Lae small Lyapunov exponents for some number Lae < Le, which can then be considered
as the number of ”almost elliptic channels”. A suitable p may then be regarded as the number
of ”strongly hyperbolic channels”. Again, the link to the finite system may be made precise by
following an argument for the limit N →∞ only up to a finite length N = (K − 1)/2.
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In fact, the argument requires the study of the associated random dynamical system given by

QE
ω (n) = T̂ Eω (n) •QE

ω (n− 1) (47)

for all n ∈ N, where QE
ω (0) ≡ Q(0) lies in WE

Lh
IG2L,Lh

(R)(WE
Lh

)−1 and hence so do all QE
ω (n).

Lemma 10. If the Vω(n) are centered and such that {T Eω (n)}n∈N fulfils Hypotheses 1, 2 and 4,

1

Le

L∑
l=L−Le+1

γEl ≤ log(κEp+1) +
1

2

(κE1 )2

(κEp+1)2

[
1

Le
lim
N→∞

1

N
E
N−1∑
n=0

tr
(
Pp

[
1−QE

ω (n)
]
Pp

)
+ λ2‖P̂E‖2

]
,

(48)

where ‖P̂E‖ := ess sup
ω
‖P̂Eω (1)‖ and Pp = diag (02L−p,1p), holds for all p = 1, . . . , Lh.

Proof. Let Φ(0) ∈ WE
Lh
IF2L,Lh

(R) such that Π(Φ(0)) = Q(0) and pick some Ψ(0) ∈ F2L,Le(C)
such that (Φ(0),Ψ(0)) ∈ WE

Lh
LFL(R). We then define

(ΦE
ω (n),ΨE

ω (n)) = T̂ Eω (n) · (ΦE
ω (n− 1),ΨE

ω (n− 1)) (49)

for all n ∈ N with (ΦE
ω (0),ΨE

ω (0)) ≡ (Φ(0),Ψ(0)). In view of Remark 10, one then has

ΦE
ω (n) = T̂ Eω (n) · ΦE

ω (n− 1) ∀ n ∈ N , (50)

but the ΨE
ω (n) do not fulfil a relation similar to (50). It follows from the identity (29) that

L∑
l=L−Le+1

γEl = 1
2 lim
N→∞

1
NE

N−1∑
n=0

[
log

(∥∥∥ΛLT̂ Eω (n)Λ(ΦE
ω (n),ΨE

ω (n))
∥∥∥2

∧

)
− log

(∥∥∥ΛLh T̂ Eω (n)ΛΦE
ω (n)

∥∥∥2

∧

)]
.

(51)

Now all Y ∈ GL(2L,C) and all (Φ,Ψ) ∈ F2L,Lh
(C)×F2L,Le(C) for which (Φ,Ψ) ∈ F2L,L(C) obey

log
(∥∥ΛLYΛ(Φ,Ψ)

∥∥2

∧

)
− log

(∥∥ΛLhYΛΦ
∥∥2

∧

)
= log

[
det (Φ∗Y∗YΦ)−1/2 det ((Φ,Ψ)∗Y∗Y(Φ,Ψ)) det (Φ∗Y∗YΦ)−1/2

]
= log

[
det

((
(Φ∗Y∗YΦ)−1/2

1Le

)(
Φ∗Y∗YΦ Φ∗Y∗YΨ
Ψ∗Y∗YΦ Ψ∗Y∗YΨ

)(
(Φ∗Y∗YΦ)−1/2

1Le

))]
= log

[
det

(
1Lh

(Φ∗Y∗YΦ)−1/2 Φ∗Y∗YΨ

Ψ∗Y∗YΦ (Φ∗Y∗YΦ)−1/2 Ψ∗Y∗YΨ

)]
= log

[
det
(
Ψ∗Y∗YΨ−Ψ∗Y∗YΦ (Φ∗Y∗YΦ)−1 Φ∗Y∗YΨ

)]
= tr

[
log
(
Ψ∗Y∗YΨ−Ψ∗Y∗YΦ (Φ∗Y∗YΦ)−1 Φ∗Y∗YΨ

)]
≤ tr [log (Ψ∗Y∗YΨ)]

= Le tr
[
L−1
e log (Ψ∗Y∗YΨ)

]
≤ Le log

[
L−1
e tr (Ψ∗Y∗YΨ)

]
,
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where we applied the concavity of the logarithm to the mean of the eigenvalues of Ψ∗Y∗YΨ. Thus,

E

[
log

(∥∥∥ΛLT̂ Eω (n)Λ(ΦE
ω (n),ΨE

ω (n))
∥∥∥2

∧

)
− log

(∥∥∥ΛLh T̂ Eω (n)ΛΦE
ω (n)

∥∥∥2

∧

)]
≤ Le E log

[
L−1
e tr

(
ΨE
ω (n)∗(T̂ Eω (n+ 1))∗T̂ Eω (n+ 1)ΨE

ω (n)
)]

≤ Le log
[
L−1
e E tr

(
ΨE
ω (n)∗(T̂ Eω (n+ 1))∗T̂ Eω (n+ 1)ΨE

ω (n)
)]

,

(52)

where we used the concavity of the logarithm to apply Jensen’s inequality. Moreover, since
P̂ω(n) is centered and due to the inequality (T̂ E)∗T̂ E ≤ (κEp+1)2 [1−Pp] + (κE1 )2 Pp, one has

E tr
(

ΨE
ω (n)∗(T̂ Eω (n+ 1))∗T̂ Eω (n+ 1)ΨE

ω (n)
)

= E tr
(

ΨE
ω (n)∗(T̂ E)∗T̂ EΨE

ω (n)
)

+ λ2 E tr
(

ΨE
ω (n)∗(T̂ E)∗P̂Eω (n+ 1)∗P̂Eω (n+ 1)T̂ EΨE

ω (n)
)

≤ Le (κEp+1)2 + (κE1 )2 E tr
(
ΨE
ω (n)∗PpΨ

E
ω (n)

)
+ Le λ

2 (κE1 )2 E
∥∥P̂Eω (n+ 1)

∥∥2

= Le (κEp+1)2
[
1 + (κE1 )2(κEp+1)−2 L−1

e

[
E tr

(
ΨE
ω (n)∗PpΨ

E
ω (n)

)
+ Le λ

2 E
∥∥P̂Eω (n+ 1)

∥∥2
]]

≤ Le (κEp+1)2 exp
[
(κE1 )2(κEp+1)−2 L−1

e

[
E tr

(
PpΨ

E
ω (n)ΨE

ω (n)∗Pp

)
+ Le λ

2 ‖P̂E‖2
]]

.

(53)

Combining (52), (53) and ΨE
ω (n)ΨE

ω (n)∗ ≤ 1− ΦE
ω (n)ΦE

ω (n)∗ = 1−QE
ω (n) yields

E

[
log

(∥∥∥ΛLT̂ Eω (n)Λ(ΦE
ω (n),ΨE

ω (n))
∥∥∥2

∧

)
− log

(∥∥∥ΛLh T̂ Eω (n)ΛΦE
ω (n)

∥∥∥2

∧

)]
≤ 2Le log(κEp+1) +

(κE1 )2

(κEp+1)2

[
E tr

(
Pp

[
1−QE

ω (n)
]
Pp

)
+ Le λ

2‖P̂E‖2
]
,

which implies (48) in view of (51). �

Now in order to apply the upper bound in (48), we need to control the first summand in the
square bracket of its right side. This term can be rewritten as

1

Le
lim
N→∞

1

N
E
N−1∑
n=0

d2(Pp|QE
ω (n)) , (54)

where we define the distance to the expanding directions of the strongly hyperbolic channels28 by

d(Pp|·) : G2L,Lh
(C) −→ [0, p] , Q 7−→ [tr (Pp [1−Q]Pp)]

1
2 .

If we had Lh = p, the map d(Pp|·) would be a proper distance obeying d(Pp|Q) = 2−
1
2‖Pp−Q‖F.

28The author is not aware of any work in the literature that has defined or considered this quantity.



3 THE LONG-TERM PROJECT OF ANDERSON DELOCALIZATION 29

We now discuss on an intuitive level why the distance to the expanding directions of the
strongly hyperbolic channels is part of the upper bound in (48) and why this quantity can be
expected to become typically small as the random dynamical system (50) or (47) evolves.

In the unperturbed case, i.e., at λ = 0, all ”typical” initial points Φ(0) ∈ WE
Lh
IF2L,Lh

(R) obey

ΦE
ω (n) −→ Φ̂ as n −→∞ , where Φ̂ =



0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0


∈ F2L,Lh

(R) ,

i.e., the dynamics converges to an Lh-frame whose range is the sum of all eigenspaces of the
hyperbolic channels associated with the eigenvalues whose moduli are larger than 1. In other
words, the dynamics converges to a frame spanning the ”increasing directions” of T̂ E. The
trivial reason for this convergence behaviour is the strict inequality |κELh

| > |κELh+1| meaning
that the lowermost Lh entries are more attractive than the 2L − Lh remaining entries. If we
now pair Φ(0) with some ”typical” Ψ(0) ∈ F2L,Le(C) satisfying (Φ(0),Ψ(0)) ∈ WE

Lh
IF2L,L(R)

(as in the proof of Lemma 10), the resulting extended dynamics (49) satisfies

(ΦE
ω (n),ΨE

ω (n)) −→ (Φ̂, Ψ̂) as n −→∞ ,

where the range of Ψ̂ is orthogonal to the range of Φ̂, i.e., it is orthogonal to the ”increasing di-
rections” of T̂ E. An a priori consequence of the latter fact is that the Le-dimensional range of Ψ̂
can consist of ”modulus-preserving directions” (eigenspaces of elliptic channels) and ”decreasing
directions” (eigenspaces of hyperbolic channels associated with the eigenvalues whose moduli are

smaller than 1). Now one way to exclude that the range of Ψ̂ contains ”decreasing directions”

is to exploit the symplectic blocking (described in Section 2.3.5). It avoids the range Ψ̂ from
containing ”decreasing directions”, since the corresponding ”increasing directions” belonging to
the same respective (hyperbolic) channels are already occupied in the range of Φ̂. Therefore,

the range of Ψ̂ definitely contains only ”modulus-preserving directions”, which then correspond
to the vanishing Lyapunov exponents and thus the extended states in the unperturbed case.

Now let us turn on a small perturbation so that we have 0 < λ � 1. If we choose λ
tiny with respect to the relative differences in the spectral gaps of |T̂ E|, then the perturbation
hardly affects the qualitative behaviour of the dynamics, which is then quasi-deterministic.
However, when eventually working with the d-dimensional Anderson model on a cube of size K
(as described in Section 3.2), we do not only need to take the limit (K − 1)/2 = N → ∞
in the longitudinal direction but also the limit Kd−1 = L → ∞ in the transversal direction.
Now, as L → ∞, the size of the T̂ Eω (n) increases and the spectrum of |T̂ E| becomes finer and
finer (see [88] for the case d = 2). In particular, the strict inequality |κELh

| > |κELh+1| gets
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closer and closer to an equality while the coupling constant λ is supposed to remain constant.
To circumvent this, we subdivide the hyperbolic channels into p strongly hyperbolic ones and
Lh− p weakly hyperbolic ones, where we require the fraction pL−1

h to be constant as L varies so
that the coupling constant λ can at least be chosen tiny with respect to the gap |κEp | > |κELh+1|.
The behaviour of the random dynamics (50) can then be expected to qualitatively differ from
the one in the unperturbed case. The range of the random Lh-frame ΦE

ω (n) does then (for

sufficiently large n) certainly not contain all Lh ”increasing directions” of T̂ E but it presumably
at least almost contains the Lh − p ”most increasing directions” typically, i.e., the distance

d(Pp|QE
ω (n)) , where QE

ω (n) = Π(ΦE
ω (n)) , (55)

is presumably typically small. In other words, while the lowermost Lh entries are more attractive
than the 2L − Lh remaining ones in the unperturbed case, we now only expect the lowermost
p entries to be typically more attractive than the 2L − Lh uppermost ones. The range of the
random Le-frame ΨE

ω (n) in the extended random dynamical system (49) is then (for sufficiently

large n) presumably typically almost orthogonal to the ”most increasing directions” of T̂ E and,
due to the symplectic blocking, almost orthogonal to its ”most decreasing directions”, too. The
range of ΨE

ω (n), therefore, presumably contains (for sufficiently large n) typically roughly only

at most ”weakly increasing” or ”weakly decreasing directions” of T̂ E, which then correspond to
small Lyapunov exponents and thus ”almost extended states”.

We are thus led to analyze how (55) evolves in order to obtain a suitable upper bound for
the expression (54) by merely using an assumption of the type

λ�
|κEp | − |κELh+1|
|κELh+1|

.

Due to prior results (see Section 3.3), we expect (54) to be of the orderO(λ2) as indicated in (46).

This makes the starting point of the journey from the first to the second to the third paper
of the author and his supervisor. This journey is summarized in Section 4.
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4 The Journey from the 1st to the 2nd to the 3rd Paper

To approach the challenge described in Section 3.4, the author and his supervisor primarily
investigated a concrete toy model in [31] (see Section 4.1), which is as simple as possible but
still contains the essence of the task. This makes the first of the three research papers this thesis
is based on. In Section 4.2, we outline how the author and his supervisor were led to conduct the
research from which the second paper arose. The second paper is then described in Section 4.3.
We then discuss the connection between the moment Mq(T,R) and the Green matrices and
how the desired lower bound for the former (Conjecture 4) may be achieved by dealing with
transfer matrices at complex energies (see Section 4.4). In Section 4.5, we consider 2×2 transfer
matrices at complex energies and recall some perturbative results on the Lyapunov exponent of
the latter. A generalization of these results is part of the third paper summarized in Section 4.6.

4.1 A Toy Model

We consider a random dynamical system on an (L−1)-dimensional sphere SL−1, L ≥ 3, given by

uω(n) = Tω(n) ? uω(n− 1) ∀ n ∈ N , where uω(0) ≡ u(0) ∈ SL−1 , (56)

which is defined as in (24) with q = 1 and K = R. Here, the Tω(n) are of the form

Tω(n) = R [1 + λ rω(n)Uω(n)] , (57)

where λ lies in (0, 1) and R is a deterministic and hyperbolic matrix, for which we write

R = diag(κL, . . . , κ1) , where κ1 ≥ · · · ≥ κL > 0 . (58)

Moreover, {rω(n)}n∈N and {Uω(n)}n∈N are assumed to be sequences of i.i.d. random variables
taking on values in the interval [0, 1] and in the orthogonal group O(L), respectively. Further,
we suppose that rω(1) 6≡ 0 and that Uω(1) is distributed according to the Haar measure on O(L).

Theorem 5. There is a unique (Tω(1)∗)-invariant Furstenberg measure µF on RPL−1 (see [15],
Part A, Theorem III.4.3) and any (Tω(1)?)-invariant probability measure µ̃F on SL−1 is absolutely
continuous with respect to the surface measure on SL−1 (see [31], Theorem 1.1).

As mentioned above for the actual transfer matrices in the Anderson model, choosing λ tiny
with respect to the relative differences in the spectral gaps of the unperturbed hyperbolic matrix
results in a quasi-deterministic behaviour. This makes the system more easily comprehensible
but, as for our actual long-term strategy, results within this case are inapplicable. The local
expansion rates δRi = κiκ

−1
i+1−1 allow to distinguish the latter case from the more difficult one.

Theorem 6. Let µ̃F be a (Tω(1)?)-invariant probability measure. If λ < 2−4 min{δRi,
1
2
} for

some i = 1, . . . , L − 1, then the support of µ̃F is a strict subset of SL−1; if λ > δRi for all
i = 1, . . . , L−1 and 1 ∈ supp(rω(1)), then the support of µ̃F equals SL−1 (see [31], Theorem 1.1).
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The system is only non-trivial if λ is large enough such that the effect of the hyperbolic
structure of the unperturbed matrix can be overcome on a local level. As discussed above for
the actual transfer matrices in the Anderson model, we are interested in how this hyperbolic
structure at least dominates on a global level. For this, we split each vector v = (v1, . . . , vL)ᵀ ∈ RL

into its upper part a(v) ∈ RLa , middle part b(v) ∈ RLb and lower part c(v) ∈ RLc via

a(v) = (v1, . . . , vLa)
ᵀ , b(v) = (vLa+1, . . . , vLa+Lb)

ᵀ , c(v) = (vLa+Lb+1, . . . , vL)ᵀ ,

where (La, Lb, Lc) ∈ N×3 is such that La + Lb + Lc = L. Associated to such a partition, we define
the macroscopic gap g = g (R, Lb, Lc) ∈ [0, 1] between the upper and lower part by

g = min
{

1 , κ2
Lcκ
−2
Lb+Lc+1 − 1

}
.

If g > 0, the entries of the upper part a can be seen as the repulsive entries of the hyperbolic
action R?. The deviation of the random path {uω(n)}n∈N from the attractive part of the phase
space can therefore be measured as the norm of the upper part ‖a(uω(n))‖. Our main result
provides a quantitative bound on the expectation value of ‖a(uω(N))‖2 for sufficiently large N .

Theorem 7. Assume (La, Lb) 6= (1, 1) and g> 0. Then, for all λ≤ 1
4
, there exist N0∈N such that

E ‖a(uω(N))‖2 ≤ 2

(
L

La + Lb

) La+Lb−2

Lc+2
(

6

g

La
Lc
λ2

) Lc
2+Lc

(59)

is satisfied for all N ≥ N0 and all u(0) ∈ SL−1 (see [31], Theorem 1.2).

The upper bound in (59) is an intensive quantity. In the thermodynamic limit L → ∞,
therefore, the upper bound does not explode provided that La, Lb and Lc are of the same order.
Moreover, in the limit Lc →∞, the upper bound is approximately of the expected order O(λ2).

Corollary 11. Assume (La, Lb) 6= (1, 1) and g > 0 and λ ≤ 1
4
. Then, the inequality∫

SL−1

dµ̃F(u) ‖a(u)‖2 ≤ 2

(
L

La + Lb

) La+Lb−2

Lc+2
(

6

g

La
Lc
λ2

) Lc
2+Lc

(60)

holds for any (Tω(1)?)-invariant probability measure µ̃F on SL−1 (see [31], Corollary 1.3).

Now the upper bound (60) allows, in turn, to deduce a lower bound for the top Lyapunov
exponent γ1 associated to the sequence defined by (57), namely by using Proposition 2. Such a
lower bound for the top Lyapunov exponent is obtained in Corollary 12 and is just the opposite
of the desired upper bound (46) for the lower Lyapunov exponents but it demonstrates, in
principle, that the deviation of a Lyapunov exponent at positive λ is controllable with the aid
of a macroscopic gap. Corollary 12 was not formulated in [31] and therefore we prove it below.

Corollary 12. Assume (La, Lb) 6= (1, 1) and g > 0 and λ ≤ 1
4
. Then, one has

γ1 ≥ log(κL−La)− 2
κ2
L−La
κ2
L

(
L

La + Lb

) La+Lb−2

Lc+2
(

6

g

La
Lc
λ2

) Lc
2+Lc

. (61)
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Proof. The sequence {Tω(n)}n∈N defined by (57) clearly satisfies Hypotheses 1, 2 and 3. Thus

γ1 =

∫
SL−1

dµ̃F(u) E log ‖Tω(1)u‖ =
1

2

∫
SL−1

dµ̃F(u) E log ‖R(1 + λ rω(1)Uω(1))u‖2 (62)

holds for any (Tω(1)?)-invariant probability measure µ̃F on SL−1 by Proposition 2. This implies

γ1 ≥ log(κL−La)

+
1

2

∫
SL−1

dµ̃F(u) E

[
log ‖(1 + λ rω(1)Uω(1))u‖2 −

κ2
L−La
κ2
L

‖a((1 + λ rω(1)Uω(1)) ? u)‖2

]
(63)

because all Y ∈ GL(L,R) and all u ∈ SL−1 satisfy the inequality

‖RYu‖2 ≥ κ2
L ‖a(Yu)‖2 + κ2

L−La

[
‖b(Yu)‖2 + ‖c(Yu)‖2

]
= κ2

L−La ‖Yu‖
2
[
1− (1− κ2

Lκ
−2
L−La)‖a(Y ? u)‖2

]
≥ κ2

L−La ‖Yu‖
2 exp

[
−κ−2

L κ2
L−La‖a(Y ? u)‖2

]
,

where we used that 1− x ≥ e−cx holds for all c ≥ 1 and x ∈ [0, 1− c−1] with c = κ−2
L κ2

L−La and
x = (1 − κ2

Lκ
−2
L−La)‖a(Y ? u)‖2. Next, we show that E log ‖(1 + λ rω(1)Uω(1))u‖2 is positive.

For this, we use the bound log(1 + w) ≥ w − w2

2
+ w3

3
− w4

2
for w ≥ −1

2
with w = λr [2S + λr],

where r = rω(1) and S = 〈u, Uω(1)u〉. Now the average of the second line on the right side of

w − w2

2
+
w3

3
− w4

2
= λ2r2

[
1− λ2r2

2
+
λ4r4

3
− λ6r6

2
− 2

[
1 + 2(2S2 − 1)λ2r2 + 6λ4r4

]
S2

]
+ 2λr

[
1− λ2r2 + λ4r4 − 2λ6r6

]
S + 8λ3r3

[
3−1 − 2λ2r2

]
S3

vanishes because all terms of odd order in the entries of Uω(1) are centered. Furthermore, one
has 2S2−1 ≤ 1, as |S| ≤ 1, and E S2 = L−1 ≤ 1

3
(see [31], p. 16, antepenultimate eq.). Therefore,

E log ‖(1 + λ rω(1)Uω(1))u‖2 ≥ λ2 E r2

[
1− λ2r2

2
+
λ4r4

3
− λ6r6

2
− 2

[
1 + 2λ2r2 + 6λ4r4

] 1

3

]
= 6−1 λ2 E r2

[
2− 11λ2r2 − 22λ4r4 − 3λ6r6

]
is indeed positive because λ|r| ≤ 1

4
. Hence and due to Lemma 2.9 in [31], inequality (63) implies

γ1 ≥ log(κL−La)−
1

2

κ2
L−La
κ2
L

( ∫
SL−1

dµ̃F(u) ‖a(u)‖2 + 3λ2La
L

)
. (64)

Combining the inequality (64) with the statement (60) of Corollary 11 yields

γ1 ≥ log(κL−La)−
κ2
L−La
κ2
L

( L

La + Lb

) La+Lb−2

Lc+2
(

6

g

La
Lc
λ2

) Lc
2+Lc

+
3

2

La
L
λ2

 ,

which, in turn, implies (61) due to

3

2

La
L
λ2 =

(
3

2

La
L
λ2

) Lc
2+Lc

(
3

2

La
L
λ2

) 2
2+Lc

≤
(

3

2

La
L
λ2

) Lc
2+Lc

≤
(

L

La + Lb

) La+Lb−2

Lc+2
(

6

g

La
Lc
λ2

) Lc
2+Lc

. �

The publication [31] contains further discussion and further results on this toy model and
the proofs of the results stated above. The notation in [31] is slightly different.
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4.2 An Excursion to Sisyphus & Renewal Processes

When we studied the dynamics {uω(n)}n∈N induced by randomly perturbed hyperbolic matrices

Tω(n) = R [1 + λ rω(n)Uω(n)] , R = diag(κL, . . . , κ1) , κ1 ≥ · · · ≥ κL > 0

described in Section 4.1, we were particularly interested in the case of medium-sized strengths of
perturbation, where the coupling constant λ exceeds the local expansion rates δRi = κiκ

−1
i+1− 1

only barely. In that case, the repulsive (upper) entries of uω(N) are typically only weakly
occupied for large N according to Theorem 7. Nonetheless, it is possible that these repulsive
entries are even fully occupied. In line with this, a (Tω(1)?)-invariant measure is supported by
the entire phase space according to Theorem 6. To prove the latter, it was demonstrated that
two arbitrary points in the phase space are always connected by finite paths:

Lemma 13. Suppose that λ > maxi=1,...,L−1 δRi and that 1 ∈ supp(rω(1)). Then, for every
couple v, w ∈ SL−1, there exist N ∈ N and {sn}Nn=1 ⊂ supp(rω(1)) and {Un}Nn=1 ⊂ O(L) such that

w =
N∏
n=1

R [1 + λ sn Un] ? v

(see [31], Lemma 2.7).

For the details of the proof of Lemma 13, the reader may look at the actual publication. How-
ever, a very rough sketch of this proof for L = 3 is already very insightful. The core of the proof
is to construct a path from the most attractive to the most repulsive point in the phase space:0

0
1

 −→ · · · −→ ? −→ · · · −→

1
0
0

 (65)

The perturbation can overcome the hyperbolicity locally, which allows to construct the paths0
0
1

 −→ · · · −→
0

1
0

 and

0
1
0

 −→ · · · −→
1

0
0


by gradually shifting the ”vector mass” from the lower entry into the middle one or from the
middle entry into the upper one. These paths are unlikely but possible and can be combined to
fill the gap in (65). A direct jump of the ”vector mass” from the lower entry to the upper one
without the occupation of the middle one is even more unlikely, since it requires the perturbation
to overcome the hyperbolicity globally. Now for large L � 3 and suitable values of κ1, . . . , κL,
the global hyperbolicity dominates over the perturbation so that such a direct jump becomes
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then actually impossible. In that case, one can still rely on the stepwise construction

0
0
...
0
...
0
1


−→ · · · −→



0
0
...
0
...
1
0


−→ · · · · · · · · · −→



0
0
...
1
...
0
0


−→ · · · · · · · · · −→



0
1
...
0
...
0
0


−→ · · · −→



1
0
...
0
...
0
0


.

(66)

Once the dynamics has arrived at the most repulsive point on the right of (66), it can reach
any other less repulsive point with the aid of an adequate kick by the perturbation and the
subsequent iterate hyperbolic action (again, for details, see [31]). More generally, a path from
some point to some more attractive point is rather likely and can happen quickly.

Heavily simplified, one can also think of (66) as a person, say the mythological Greek king
Sisyphus (see [59], Book XI), ascending a vertical ladder in the stormy weather of the underworld.
The gravitational field is supposed to be exceedingly strong in the underworld so that each step
requires a long period of time in which the storm is coincidentally beneficial to the ascension.
At any position, however, Sisyphus may lose his grip and fall down onto the bottom or at least
onto some inferior step, where he may try to ascend again. The higher the level, the more
laterally tumultuous the tempest is. When Sisyphus reaches the upper steps of the ladder, he is
in greatest danger of falling. This is the situation in which he deviates from the attractive part
of the phase space. One way of controlling the deviation from the attractive part of the phase
space in the actual dynamics {uω(n)}n∈N was elaborated in Theorem 7. Another criterion to
judge Sisyphus’ volatile success is the fraction of times at which he stands on one of the upper
steps or at least somewhere among the upper steps.

As a further simplification, we may assume that Sisyphus can lose his grip only after having
reached the top of the ladder but that he falls down then at once onto the bottom coercively.
After a fall, Sisyphus starts renewed and tries to ascend again. This is outlined in Figure 2.

Figure 2: Sisyphus tries to ascend (green arrow) the ladder (black bar) against the force of
gravity (blue arrows) and falls back (red arrow) onto the bottom once he has reached the top.
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As a suitable measure for Sisyphus’ success in the model depicted in Figure 2, one may ask
for the number of finished climbs within a certain time. Now this (random) number can in fact
be understood as a renewal process as discussed in Section 2.5. Here, the renewal corresponds
to a fall of Sisyphus and the (random) durations Sisyphus needs to accomplish the ascensions
correspond to the interarrival times. The expected number of ascensions achieved within a
certain time is then in fact the renewal function.

Now the dynamics on the line sketched in Figure 2 can be translated into a dynamics on a
one-dimensional sphere endowed with a semipermeable barrier, which is depicted in Figure 3.

Figure 3: Sisyphus tries to move counterclockwise (green arrow) on the sphere (black circle)
against a clockwise drift (blue arrows) and passes through (red arrow) a semipermeable barrier
(black square bracket) after each lap.

Admittedly, the model depicted in Figure 3 is only limitedly related to the original problem
presented above. Nevertheless, the described considerations made the author and his supervisor
become interested in random dynamical systems on a circle endowed with a semipermeable
barrier and a drift against the direction of permeability, in fact, especially when these systems
are induced by perturbed hyperbolic matrices and are investigable by means of renewal theory.

As chance would have it, Prof. Dr. Günter Stolz (University of Alabama at Birmingham,
USA) brang a certain open question on the random dimer hopping model (see Section 4.3) to
their attention29 in the spring of 2019. It turned out that a similar question was answerable if
one approximates a certain random dynamical system on a circle induced by certain perturbed
hyperbolic matrices by a model similar to the one depicted in Figure 3 and solves a certain
problem within this approximation by means of renewal theory. That is why the author and his
supervisor realized the project corresponding to [29] summarized in the following Section 4.3.

29Thank you again, Günter.
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4.3 Pseudo-Gaps for Random Hopping Models

The Su-Schrieffer-Heeger (SSH) model describes electrons hopping on a (finite) one-dimensional
lattice with staggered hopping amplitudes occuring naturally in many solid state systems as e.g.
polyacetylene; the infinite version of the SSH Hamiltonian acts on `2(Z) and is given by

(HSSHψ)(n) = −t(n+ 1)ψ(n+ 1)− t(n)ψ(n− 1) , ψ ∈ `2(Z) , (67)

(see [8], Chapter 1). Here, the hopping amplitudes t(n) are non-negative and staggered, i.e.,

t(n) ≥ 0 and t(n) = t(n+ 2) and t(n) 6= t(n+ 1) ∀ n ∈ Z .

We call the random version of (67) over (Σ,A ,P) the random dimer hopping model. It is given by

(Hσψ)(n) = −tσ(n+ 1)ψ(n+ 1)− tσ(n)ψ(n− 1) , ψ ∈ `2(Z) , (68)

where {tσ(n)}n∈Z is a sequence of independent non-negative random variables called hopping
terms30 such that, for all n ∈ Z, the distributions of tσ(n) and tσ(n+ 2) are equal, whereas the
distributions of tσ(n) and tσ(n+1) are different. Hypothesis 7 strengthens the latter assumption.

Hypothesis 7. The tσ(n) have compact support in (0,∞) and obey E log(tσ(1)) > E log(tσ(2)).

Moreover, Hypothesis 8 excludes a deterministic order between tσ(1) and tσ(2).

Hypothesis 8. The event tσ(1) < tσ(2) occurs with a non-zero probability.

Before we explain the connection to the system discussed in Section 4.2 (see Figure 3), we
formulate our main result on the integrated density of states (see Section 2.1) of random dimer
hopping models satisfying Hypotheses 7 and 8. As discussed in Section 2.1, the integrated
density of states is defined for ergodic operators. In fact, the random operator Hσ defined
by (68) is not ergodic, since the distributions of the even and odd hopping terms are different.
However, a certain redefinition of the underlying probability space yields an associated random

operator Ĥσ̂ on `2(Z) over another probability space (Σ̂, Â , P̂) which is then indeed ergodic.
This redefinition was performed in Section 4.1 of [64] for the more general random polymer
model and carried over to Section 3.1 of [29]. In some sense, it equalizes the even and odd sites
of the lattice but preserves the dimer structure and the distributions of the hopping terms of
the model (for details, see [29]). For the sake of a more accessible approach, this subtlety was
skipped in the introduction of [29], where the following statement was formulated.

Theorem 8. If Hσ, given by (68), fulfils Hypotheses 7 and 8, there is a unique ν > 0 such that

E
(
tσ(1)

tσ(2)

)ν
= 1

is satisfied. Moreover, the integrated density of states N of the ergodic operator Ĥσ̂ associated
to Hσ is Hölder continuous at zero with any Hölder exponent smaller than ν, i.e., for all δ > 0,
there exists some Cδ ∈ (0,∞) such that all E ∈ R obey the inequality

|N (E)−N (0)| ≤ Cδ |E|ν−δ (69)

(see [29], Theorem 1).
30The (non-Hermitian) SSH model with random hopping terms (and imaginary potentials) was studied in [72].



38

Remark 23. Theorem 8 can be generalized to the random polymer model (see [29], Theorem 8).

Remark 24. If the number ν is large, the density of states n has a pseudo-gap at zero, i.e., the
eigenvalues of Hσ are typically away from zero as in the numerical example depicted in Figure 4.

-2 -1 0 1 2
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250
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Figure 4: Eigenvalue histogram31 of a random realization of a finite volume approximation of Hσ

of length 6500, where the even and odd hopping terms are as in eq. 6 of [29] with cev = 1.3,
cod = 1.1, λev = 0.4 and λod = 0 resulting in ν ≈ 10.79.

We now elaborate on the connection to the system discussed in Section 4.2 (see Figure 3). To
prove Theorem 8, we rewrite the eigenvalue equationHσψ = Eψ in terms of the transfer matrices

TEσ (n) =
1

tσ(n)

(
−E −tσ(n)2

1 0

)
, n ∈ Z ,

as

ΞE
σ (n) = TEσ (n) ΞE

σ (n− 1) , where ΞE
σ (n) = (tσ(n+ 1)ψ(n+ 1), ψ(n))ᵀ .

The transfer matrices TEσ (n) as well as the vectors Ξσ(n) are similar to the T Eω (n) and Ψ(n)
given in Section 1.4.1. Under the above assumptions on the hopping terms tσ(n), the TEσ (n) are
independent of each other. However, in contrast to the T Eω (n), the TEσ (n) are not distributed
identically due to the dimer structure. This is different in case of the two-step transfer matrices

TEσ (n) = TEσ (2n)TEσ (2n− 1) =
1

tσ(2n− 1) tσ(2n)

(
E2 − tσ(2n)2 E tσ(2n− 1)2

−E −tσ(2n− 1)2

)
, n ∈ Z ,

which are then i.i.d. and can be used to rewrite the eigenvalue equation Hσψ = Eψ as

ΥE
σ (n) = TEσ (n) ΥE

σ (n− 1) , where ΥE
ω (n) = (tσ(2n+ 1)ψ(2n+ 1), ψ(2n))ᵀ .

31The histogram was computed by the author by using a Mathematica script written by his supervisor.
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Now the random dynamics {uEσ (n)}n∈N on S1 induced by {TEσ (n)}n∈N (as in Section 2.3) fulfils

uEσ (n) = ΥE
σ (n) ‖ΥE

σ (n)‖−1 for uEσ (0) = ΥE
σ (0) ‖ΥE

σ (0)‖−1 . (70)

We choose the initial conditions (ψσ(1), ψσ(0)) = (1, 0) so that uσ(0) = (1, 0)ᵀ and lift the uEσ (n)
to the real line by introducing the Prüfer variables θEσ (n) ∈ R (see [64], Section 3) defined by

uEσ (n) =

(
cos θEσ (n)
sin θEσ (n)

)
and − π

2
< θEσ (n)− θEω (n− 1) <

3π

2
,

where one has θEσ (0) = 0 due to uEσ (0) = (1, 0)ᵀ. Now it follows from the oscillation theorem that∣∣∣∣ 1πθEσ (N)− tr
[
χ(−∞,E]

(
Λ1

2NHσΛ1
2N

)]∣∣∣∣ ≤ 1

2
,

where Λ1
2N is the projection onto `2([0, 2N) ∩ Z) (see [64], Section 3.2), which, in turn, implies

1

2N
tr
[
χ(0,E]

(
Λ1

2NHσΛ1
2N

)]
=

1

2πN

[
θEσ (N)− θ0

σ(N)
]

+O(N−1) , (71)

where we assumed E > 0 without loss of generality. The left side of (71) would converge to

N (E)−N (0) (72)

as N → ∞ with probability 1 if Hσ were replaced by the associated ergodic operator Ĥσ̂

(see Section 2.1). In fact, Fatou’s lemma (see [14], Chapter 2.8) implies that this limit is not
affected if the averages are taken for all N before. An upper bound on (72) is then obtained
as an upper bound for the limit of the average of the analogue of the right side of (71) with
adapted modified Prüfer variables (see [29] for details). For sake of simplicity, we refrain from
embarking on this modification here and rather focus on an upper bound for the limit superior
of the average of the right side of (71) itself, since this is enough to explain the core of the proof.

First, we write the two-step transfer matrices as perturbations of hyperbolic matrices, viz.,

TEσ (n) = −
[
1 + E

(
0 −1

tσ(2n)−2 0

)
+O(E2)

] (
κσ(n) 0

0 κσ(n)−1

)
, κσ(n) =

tσ(2n)

tσ(2n− 1)
,

(73)

where both the perturbation (first factor) and the hyperbolic matrix (second factor) are ran-
dom. This is not entirely consistent with the notion of hyperbolic matrix as introduced in
Remark 21, since the diagonal entries of the second factor (73) are random and not necessarily
non-decreasing. Now since T0

σ(n) ? uσ(0) = uσ(0), one has θ0
σ(n) = 0 for all n ∈ N. Therefore,

lim sup
N→∞

1

2πN
E θEσ (N) (74)

is the quantity we aim at an upper bound for. Note that an increase of the Prüfer variable by 2π
corresponds to a counterclockwise rotation of the dynamics (70) on S1. Thus we aim at con-
trolling the average number of counterclockwise rotations per time step.
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Now the random number κσ(n) is typically smaller than 1 (see Hypothesis 7) and therefore
the bottom right entry of the hyperbolic matrix in (73) is typically the dominant one. Roughly
speaking, its action presses a vector in S1 typically to the lower entry. More precisely, (0, 1)ᵀ

is an attractive fixed point and (1, 0)ᵀ is a repulsive one. Moreover, the first order term of the
perturbation generates a rotation, which is counterclockwise due to E > 0. For small E � 1, the
contribution of this rotation is only dominant close to the two fixed points, where the hyperbolic
part is almost ineffective. In the bulk, however, the hyperbolic action dominates and produces
a random drift away from (1, 0)ᵀ and towards (0, 1)ᵀ. Henceforth, we view the dynamics on the
projective space RP1, on which a counterclockwise rotation corresponds to an increase of the
Prüfer variable by π (see Figure 5).

R (0, 1)ᵀ

R (1, 0)ᵀ

Figure 5: A counterclockwise rotation (green arrow) on the projective space (black circle) starts
and ends by passing through R (1, 0)ᵀ (red arrow). The random drift (blue arrows) is counter-
clockwise on the left side (clockwise on the right side), where it is beneficial to (counterproductive
for) such a rotation. Close to the fixed points (black bars), the drift is almost ineffective. The
perturbation (orange arrows) dominates there and causes a small counterclockwise rotation.32

Whereas a motion against the random drift produced by the hyperbolic action is possible, al-
beit unlikely, the counterclockwise motion close to the fixed points R (1, 0)ᵀ and R (0, 1)ᵀ caused
by the locally dominating perturbation is certain. Thus there are neighborhoods of the fixed
points that can only be passed in the counterclockwise direction, i.e., they are semipermeable.
In particular, these neighborhoods avoid full clockwise rotations. Now the random drift on
the left side of the circle (in Figure 5) benefits the counterclockwise rotation. In contrast, the
random drift on the right side counteracts the counterclockwise rotation. Hence the latter is
more profitable when it is used to control the number of counterclockwise rotations.

It is therefore reasonable to collapse the bulk of the left side and the two semipermeable
neighborhoods of the fixed points to a single semipermeable barrier. By doing so, one indeed

32Figure 5 corresponds to the left image of Figure 1 in [29].



4 THE JOURNEY FROM THE 1ST TO THE 2ND TO THE 3RD PAPER 41

obtains the renewal process of the type depicted in Figure 3. Since parts of the original route
need not be covered any more, a rotation is speeded up in this renewal process. Thus the order
in the bound is correct but the clockwise random drift, which is the main hurdle, is kept.

This explains the connection to the system discussed in Section 4.2. Having got up to
this point already, it is not a big deal to sketch the rest of the proof. Now in the simplified
model (Figure 3), the completion of a counterclockwise rotation is a renewal. Therefore the
average number of counterclockwise rotations equates to the renewal function (see Section 2.5).
According to Theorem 4, the asymptotic average number of renewals per time step then equals
to the inverse of the expected time for one renewal. In conclusion, the inverse of the expected
time for one rotation in the simplified model is an upper bound for (74). Finally, an adequate
lower bound on the expected time for one rotation is achieved by a large deviation estimate.

A detailed proof of the more general version of Theorem 8, namely for the case of arbitrary
random polymer models, further results and further discussion are contained in the publica-
tion [29]. The notation in [29] is slightly different.

4.4 From Extended States to Delocalization33

So far, we discussed how the transfer matrices T Eω (n) can be used to produce formal solutions
of the Schrödinger equation HL,N,ωψ = Eψ (see Section 3.2) and why small associated Lya-
punov exponents indicate ”almost extended states” (see Section 3.3). We also explained how
an upper bound for the average of the lower Lyapunov exponents can be obtained by analyzing
an associated random dynamical system (see Section 3.4). In this section, we suggest how the
above may be used to actually obtain a lower bound for the time-averaged q-th moment of the
position operator Mq(T,R) of a state initially localized at the origin and evolved with states of
all energies (see Definition 1). Such a lower bound was proven for the random polymer model
by Jitomirskaya et al under certain assumptions (see [64]). Their proof relies on the identity

∫ ∞
0

dt e−2 t
T

∣∣∣〈δm,·∣∣∣ exp[−itHω] δn,·

〉∣∣∣2 =
1

2π

∫ ∞
−∞

dE

∣∣∣∣〈δm,·∣∣∣ (Hω − E −
ı

T

)−1

δn,·

〉∣∣∣∣2 (75)

for all T > 0 and n,m ∈ Zd (see [22], Section 1), which we also use in the following.

As hinted at in Section 3.2, we plan to exploit the longitudinal spreading of wave packets

33The idea described in this section is due to the author’s supervisor and was mentioned in [28] already.
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within a cube for the purpose of a lower bound for Mq(T,R). For this, we start with the estimate

Mq(T,R)

= E

∫ ∞
0

dt

T
e−2 t

T

∑
j∈Zd

|j|q
∣∣∣〈δj,·∣∣∣ exp[−itHω] δ0,·

〉∣∣∣2
≥ E

∫ ∞
0

dt

T
e−2 t

T

N∑
n=−N

∑
k∈Zd−1

nq
∣∣∣〈δ(n,k),·

∣∣∣ exp[−itHω] δ(0,0),·

〉∣∣∣2
= (2N + 1)1−d

∑
x∈Zd−1

|x|1≤N

E

∫ ∞
0

dt

T
e−2 t

T

N∑
n=−N

∑
k∈Zd−1

nq
∣∣∣〈δ(n,k+x),·

∣∣∣ exp[−itHω] δ(0,x),·

〉∣∣∣2

≥ (2N + 1)1−d
∑

x∈Zd−1

|x|1≤N

E

∫ ∞
0

dt

T
e−2 t

T

N∑
n=−N

∑
k∈Zd−1

|k|1≤N

nq
∣∣∣〈δ(n,k),·

∣∣∣ exp[−itHω] δ(0,x),·

〉∣∣∣2

=
(2N + 1)1−d

2π T

∑
x∈Zd−1

|x|1≤N

E

∫ ∞
−∞

dE
N∑

n=−N

∑
k∈Zd−1

|k|1≤N

nq
∣∣∣∣〈δ(n,k),·

∣∣∣ (Hω − E −
ı

T

)−1

δ(0,x),·

〉∣∣∣∣2

=
(2N + 1)1−d

2π T

∑
x∈Zd−1

|x|1≤N

E

∫ ∞
−∞

dE
N∑

n=−N

∑
k∈Zd−1

|k|1≤N

nq
∣∣∣∣〈δ(n,k),·

∣∣∣ΛΛΛd
N

(
Hω − E −

ı

T

)−1

ΛΛΛd
N δ(0,x),·

〉∣∣∣∣2 ,
(76)

where the ergodicity of Hω (see Remark 3) and (75) were used in the third and fifth step,
respectively. Here, (ΛΛΛd

Nψ)(n) = χ[−N,N ]d(n)ψ(n) is the projection onto `2([−N,N ]d ∩ Zd).
One is now tempted to naively replace Hω by the Hamiltonian HL,N,ω defined by (41).

However, Hω and HL,N,ω act on different Hilbert spaces and not even the left and the right side of

ΛΛΛd
N (Hω − z)−1 ΛΛΛd

N 6=
(
ΛΛΛd
N Hω ΛΛΛd

N − z
)−1

, where z = E + ı T−1 , (77)

are equal. But whatever the difference in (77) is in detail, the bound (76) suggests the study of

1

L

L∑
x=1

E

∫ ∞
−∞

dE
N∑

n=−N

L∑
k=1

nq
∣∣〈Φn,k

∣∣ (HL,N,ω − z)−1 Φ0,x

〉∣∣2 , (78)

where Φn,k ∈ `2({−N, . . . , N},CL) is such that Φn,k(m) = δn,mek, where ek is the k-th canonical
unit vector in CL. Now (78) can be rewritten34 in terms of the Green matrices

Gzω(n) =
((

(HL,N,ω − z)−1 Φ0,1

)
(n), . . . ,

(
(HL,N,ω − z)−1 Φ0,L

)
(n)
)

34Such a rewriting was performed in Section 6 of [64] for the case L = 1 and N =∞.
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(see [87]) as the left side of

1

L
E

∫ ∞
−∞

dE
N∑

n=−N

nq tr [Gzω(n)∗Gzω(n)]

≥ 1

2

1

L
E

∫ ∞
−∞

dE
N−1∑

n=−N+1
n 6=0

nq tr

[(
Gzω(n+ sgn(n))

Gzω(n)

)∗(
Gzω(n+ sgn(n))

Gzω(n)

)]
.

(79)

Now inserting ψ = (HL,N,ω − z)−1Φ0,l into (41) for l = 1, . . . , L yields

Φ0,l(n) = −
∑
±

(
(HL,N,ω − z)−1Φ0,l

)
(n± 1) + [∆L + λVω(n)− z1L]

(
(HL,N,ω − z)−1Φ0,l

)
(n) .

Since Φ0,l(n) = δ0,n el, this implies that all n ∈ {−N + 1, . . . , N − 1} \ {0} satisfy(
Gzω(n+ 1)
Gzω(n)

)
= T zω (n)

(
Gzω(n)

Gzω(n− 1)

)
and

(
Gzω(n− 1)
Gzω(n)

)
= T zω (n)

(
Gzω(n)

Gzω(n+ 1)

)
, (80)

i.e., the sequence of Green matrices can be expanded using the transfer matrices as well as the
formal solutions of the Schrödinger equation. Now due to (80), the right side of (79) equals

1

2

1

L
E

∫ ∞
−∞

dE
N−1∑
n=1

nq tr

[(
Gzω(1)
Gzω(0)

)∗
T zω (1)∗ . . . T zω (n)∗T zω (n) . . . T zω (1)

(
Gzω(1)
Gzω(0)

)

+

(
Gzω(−1)
Gzω(0)

)∗
T zω (−1)∗ . . . T zω (−n)∗T zω (−n) . . . T zω (−1)

(
Gzω(−1)
Gzω(0)

)]
.

(81)

We refrain from giving any further details here, since they are not relevant for the sequel in this
thesis. However, the key message, which already (81) hints at to some extent, is that the quantity
Mq(T,R) is indeed linked to the random dynamics (47) induced by the (transformed) transfer
matrices discussed in Section 3.4 but only almost. In contrast to (47), the transfer matrices
have to be considered at energies z which have a non-zero imaginary part T−1. Nevertheless,
we are interested in Mq(T,R) in the range of large times T � 1 so that it seems to be sufficient
to deal with small imaginary parts of the energy z. In this regime, the transfer matrices are
only ”approximately symplectic” and, in particular, the structure of the symplectic channels
discussed in Section 2.3.6 is only approximately present there.

Now to understand how a small imaginary part of z affects the growth of the Green matrices
Gzω(n) expanded by the transfer matrices T zω (n), it is natural to analyze the Lyapunov exponents
associated to {T zω (n)}n∈N in a perturbative manner. The case L = 1 is discussed in Section 4.5.

4.5 The Two Parameter Perturbation of 2× 2 Transfer Matrices

If L = 1, the transfer matrices T zω (n) are 2× 2 random matrices. For z = E + ı T−1, one has

T zω (n) =

(
λVω(n)− E + ıδ −1

1 0

)
= S(−E) exp

[
− (λVω(n) + ı δ)

(
0 0
1 0

)]
, (82)
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where δ = −T−1 and S(−E) is the 2 × 2 symplectic matrix given by (33). The cases of
hyperbolic, parabolic and elliptic S(−E) were discussed in Section 2.3.6. In the elliptic case,
where |E| < 2, the eigenvalues of S(−E) lie on the complex unit circle and one has

M(−E)−1T zω (n)M(E) =

(
cos(k) − sin(k)
sin(k) cos(k)

)
exp

[
− ı δ + λVω(n)

sin(k)

(
0 0
1 0

)]
(83)

for some M(−E) ∈ SP(2,R), where k = arccos(−E/2) (cf. Lemma 7 and see Section 9 of [86]
for the case δ = 0). We are now interested in the perturbative regime of a small parameter δ
and, of course, a small coupling constant λ.

In 2004, Schrader et al [86] conducted a perturbative analysis of the upper Lyapunov expo-
nent γ1 = γ1(λ) associated to the sequence(

cos(ηω(n)) sin(ηω(n))
− sin(ηω(n)) cos(ηω(n))

)
exp

[
λ P̂ω(n) + λ2 P̂ ′ω(n) +O(λ3)

]
, (84)

where ηω(n) are i.i.d. real-valued random variables and P̂ω(n) and P̂ ′ω(n) are i.i.d. random
matrices with values in the Lie algebra sp(2,R) of SP(2,R). This generalizes (83) at δ = 0, where

ηω(n) = −k , P̂ω(n) = −Vω(n)

sin(k)

(
0 0
1 0

)
, P̂ ′ω(n) = 0 . (85)

Schrader et al proved under certain assumptions that γ1(λ) obeys the asymptotic approximation

γ1(λ) = D λ2 +O(λ3) , (86)

where D is a non-negative constant defined in Section 4.6 below (see [86], Theorem 1).

In 2009, Barthel [12] studied a generalization of (84) that also covers cases such as (83), namely(
cos(ηω(n)) sin(ηω(n))
− sin(ηω(n)) cos(ηω(n))

)
exp

[
λ P̂ω(n) + λ2 P̂ ′ω(n) + ı δ Q̂ω(n) +O(λ3, λ δ, δ2)

]
, (87)

where also the Q̂ω(n) are i.i.d. random matrices with values in sp(2,R). In case of (83), one has

Q̂ω(n) = − 1

sin(k)

(
0 0
1 0

)
. (88)

Barthel proved under certain assumptions that γ1 = γ1(λ, δ) obeys the asymptotic approximation

γ1(λ, δ) = D λ2 +O(λ3, δ) (89)

(see [12], Proposition 5.1), which then generalizes the result (86) of Schrader et al to non-zero δ.

The author and his supervisor, in turn, generalized the result of Barthel by proving

γ1(λ, δ) = C δ +D λ2 +O(λ3, λ δ, δ2) , (90)

where C is a non-negative constant defined in Section 4.6 below (see [30], Theorem 4).

This is one of the results of their third paper [30], which is summarized in the next Section 4.6.
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4.6 Random Möbius Dynamics on the Unit Disc and Perturbation
Theory for Lyapunov Exponents

As well as Barthel [12], the author and his supervisor worked with the representation that is
obtained by diagonalizing the unperturbed matrix in (87) by means of the Cayley transform
(see Remark 19). In this representation, the matrices (87) are of the form

Tω(n) =

(
eıηω(n)) 0

0 e−ıηω(n))

)
exp

[
λPω(n) + λ2 P ′ω(n) + ı δ Qω(n) +O(λ3, λ δ, δ2)

]
, (91)

where Pω(n) = C P̂ω(n)C−1 and P ′ω(n) = C P̂ ′ω(n)C−1 and Qω(n) = C Q̂ω(n)C−1.

Here, we assume E e2ıηω(1) 6= 1 6= E e4ıηω(1) and suppose that the error term O(λ3, λ δ, δ2) is
bounded in norm by C(λ3 +λ δ+ δ2) for a uniform constant C <∞. Moreover, we assume that
the Pω(n) and P ′ω(n) and Qω(n) are compactly supported and that their values lie in the Lie
algebra of SU(1, 1), which is given by

su(1, 1) =
{
P ∈ C2×2 : P ∗G+GP = 0 , tr(P ) = 0

}
, G =

(
1
−1

)
(see e.g. [95], Section A.10). A further key assumption is that the values of the random matrices
Tω(n) lie in the semigroup of sub-Lorentzian matrices SU≤(1, 1) so that the unit disc D is left
invariant under the Möbius transformation Tω(n) ♦ (see Section 2.4). Therefore the orbit of the
random Möbius dynamics (39) lies in D whenever z(0) does. Moreover, we suppose that Tω(1)
fulfils Hypotheses 5 and 6. Since SU≤(1, 1) ⊂ SL(2,C), Proposition 9 then implies the existence
of a unique (Tω(1) ♦)-invariant Furstenberg measure µ = µλ,δ. The support of µλ,δ is then clearly
contained in the closure D of the unit disc.

If the random matrices Tω(n) stem from the transfer matrices in the one-dimensional An-
derson model with compactly supported potentials Vω(n) and complex energy z = E − ıδ (see
Section 4.5), where E ∈ (−2, 2) \ {0} and δ ≥ 0, all these assumptions are satisfied by ηω(n),
Pω(n), P ′ω(n) and Qω(n), which are given by (85) and (88) — up to conjugation by C (see [30]).

We now introduce the constants C and D mentioned in Section 4.5 by

C = − ı
2

E tr [GPω(1)] and D =
1

2
E
(
|βω(1)|2

)
+ <e

E(βω(1)) E
(
e2ıηω(1) βω(1)

)
1− E (e2ıηω(1))

 ,

where βω(n) =
(

0
1

)ᵀ
Pω(n)

(
1
0

)
. These are non-negative (see [30], Remark 7 & [86], Proposition 1).

While the result (90) on the upper Lyapunov exponent γ1(λ, δ) was stated in Section 4.5
already, we have not sketched yet how it was obtained. In fact, to reduce the proof to the
essential, one has to approximate the radial distribution of the Furstenberg measure µλ,δ on the
unit disc for small λ and δ. For this, the relative size of λ2 and δ turns out to be crucial. If
both C and D are positive, it is convenient to measure this relative size in terms of the quantity

α = 2
C
D

δ

λ2
,
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which allows to formulate the main result.

Theorem 9. The radial distribution of µλ,δ is approximated in a weak sense by the radial density

%α(s) =
α

(1− s)2
exp

[
− α s

1− s

]
(92)

if C > 0 and D > 0, namely more precisely, all h ∈ C2([0, 1]) satisfy∫
D

dµλ,δ(x) h(|x|2) =

∫ 1

0

ds %α(s)h(s) + O(λ, λ−1δ) (93)

(see [30], Theorem 1).

0 0.5 1
0.0

0.5

1.0

1.5

Figure 6: Approximate radial density %α (blue) given by (92) and numerical histogram obtained
after 2 · 107 iterations (yellow)35. The numerics were done with the transfer matrices (83)
conjugated by C, where the real part of the energy is given by E = −2 cos(2) and the random
potentials Vω(n) are distributed uniformly on [−1, 1]. Therefore one has C = [2 sin(2)]−1 and
D = [24 sin(2)2]−1. The chosen parameters are λ = 0.05 and δ = 1.1 · 10−4.

Remark 25. The approximation (93) is only profitable for small λ and δ for which δ = o(λ).

Remark 26. Inserting a smooth approximation h of χ[0,s] into (93) yields formally

µλ,δ
(
{x ∈ D : |x|2 ≤ s}

)
≈ 1− exp

[
−α s
1− s

]
. (94)

This is, however, up to an uncontrolled error term depending on h. Further, (94) implies formally

µλ,δ −→ δ1 as α −→ 0 and µλ,δ −→ δ0 as α −→∞ , (95)

35The figure was created by the author, who advanced a Mathematica script of his supervisor for that purpose.
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again up to uncontrolled errors (see [30], Remark 2). The following two precise results (see [30],
Theorem 1) are more modest but still describe the (approximate) phenomenon indicated by (95):

C > 0 =⇒
∫
D

dµλ,δ(x) |x|2 = O(λ, δ, λ2 δ−1) (96)

and

D > 0 =⇒
∫
D

dµλ,δ(x) |x|2 = 1 + O(λ
1
2 , δ

1
2λ−1) . (97)

On the one hand, (96) states that the mass of µλ,δ is mainly concentrated in the center of the

disc if λ = o(δ
1
2 ). On the other hand, (97) states that the mass of µλ,δ is mainly concentrated

close to the edge of the disc if δ = o(λ2). The two cases are illustrated by numerics in Figure 7.

-0.5 0.5

-0.5

0.5

-0.5 0.5

-0.5

0.5

Figure 7: Plots of the orbit {zω(n)}Nn=1 of the random Möbius dynamics (39) on the unit disc
with z(0) = 1 induced by the same random matrices as in Figure 6, but with λ = 10−4 and
δ = 1.1 · 10−3 on the left and λ = 0.1 and δ = 9 · 10−6 on the right36. The number of iterations
is N = 5 · 103 on the left and N = 5 · 104 on the right. The bulk of the spiral is merely due to
the thermalization and does not occur if z(0) = 0.

The proofs of Theorem 9 and the asymptotic approximation (90) of the upper Lyapunov
exponent as well as further results and further discussion on the random Möbius dynamics
generated by the random matrices (91) are contained in the preprint [30]. The notation in [30]
is slightly different.

36The plots were created by the author, who advanced a Mathematica script of his supervisor for that purpose.
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5 Publications

In this section, we list the three publications [31, 29, 30] on which this thesis is based and furnish
each of the publications with a brief statement on the authors’ contributions. More detailed
statements on the authors’ contributions were submitted separately. Within these statements,
the labels of equations and sections refer to the labels in the respective works and not to the
ones in this thesis.

5.1 Random Perturbations of Hyperbolic Dynamics

Reference [31]:

F. Dorsch and H. Schulz-Baldes. Random perturbations of hyperbolic dynamics. Electronic
Journal of Probability 24, no. 89, 1-23 (2019).

Digital Object Identifier (DOI): 10.1214/19-EJP340

Authors’ Contributions to Reference [31]:

Prof. Dr. Hermann Schulz-Baldes (HSB) came up with the idea of investigating a toy model in
the real projective space. The concrete set-up originated in discussions with Florian Dorsch (FD)
and was modified during the review process. HSB and FD worked in close collaboration and had
many discussions with Prof. Dr. Andreas Knauf, who gave helpful and constructive comments.
Section 1 was mainly written by HSB. Sections 2 and 3 were mainly written and elaborated by
FD under the supervision of HSB.

5.2 Pseudo-Gaps for Random Hopping Models

Reference [29]:

F. Dorsch and H. Schulz-Baldes. Pseudo-gaps for random hopping models. Journal of Physics A:
Mathematical and Theoretical 53, 185201 (2020).

Digital Object Identifier (DOI): 10.1088/1751-8121/ab5e8c

Authors’ Contributions to Reference [29]:

Prof. Dr. Hermann Schulz-Baldes (HSB) reported his scientific exchange with Prof. Dr. Günter
Stolz (GS) on the random dimer hopping model to Florian Dorsch (FD). As a result, HSB and
FD began to do research on a certain question GS had posed to HSB. In the course of this, HSB
and FD actually discovered the phenomenon of pseudo-gaps occuring in the model under certain
assumptions, on which they then wrote this article. HSB and FD worked in close collaboration.
Sections 1, 2 and 3 were mainly written by HSB, while Section 4 was mainly written by FD.



5 PUBLICATIONS 49

5.3 Random Möbius Dynamics on the Unit Disc and Perturbation
Theory for Lyapunov Exponents

Reference [30]:

F. Dorsch and H. Schulz-Baldes, Random Möbius dynamics on the unit disc and perturbation
theory for Lyapunov exponents, arXiv:2008.02174v2 (2021).

To appear in Discrete and Continuous Dynamical Systems, Series B.

Digital Object Identifier (DOI): 10.3934/dcdsb.2021076

Authors’ Contributions to Reference [30]:

Prior to the collaboration with Florian Dorsch (FD), Prof. Dr. Hermann Schulz-Baldes (HSB)
had written a draft with the purpose to analyze the asymptotic approximation of the upper
Lyapunov exponent for the special cases ε = o(δ

1
2 ) and δ = o(ε2), respectively. The sketched

proof therein had contained a flaw. FD came up with the idea of applying the oscillatory phase
argument to the second order to fix the flaw and proved formula (17). Based on Appendix B
of [83], HSB explained the method to derive the approximate radial density to FD, who then
elaborated the details of this derivation. HSB mainly wrote Section 1, in which the numerics
were done by FD. Sections 2, 3 and 4 were mainly written by FD. The beginning of Section 5
(pages 28 & 29) was mainly written by HSB and the rest of Section 5 was mainly written by FD.
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Annales Henri Poincaré 8, 1595-1621 (2007).

[84] C. Sadel and B. Virag. A Central Limit Theorem for Products of Random Matrices and
GOE Statistics for the Anderson Model on Long Boxes. Communications in Mathematical
Physics 343, 881-919 (2016).

[85] J. Schenker. Eigenvector localization for random band matrices with power law band width.
Communications in Mathematical Physics 290, 1065-1097 (2009).

[86] R. Schrader, H. Schulz-Baldes and A. Sedrakyan. Perturbative test of single parameter
scaling for 1D random media. Annales Henri Poincaré 5, 1159-1180 (2004).
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