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A hybrid topic

geometric analysis:
Flow of a surface by its mean curvature

materials science: growth of grains in polycrystals

analysis on metric spaces:
De Giorgi’'s tools for gradient flows

scientific computing: Osher’'s thresholding scheme



Geometric analysis: Mean curvature flow

What is the flow of a surface > by its mean curvature?

Mean curvature H

=sum of principle curvatures h

H = K1 —+ K2 =

Normal velocity V = —H. _
Typically has smoothing effect ... Lo L |

. but singularities occur

“geometric heat flow"” (extrinsic vs. intrinsic, cf. Ricci flow)



Materials science: interfacial energy

Mean curvature H = first variation of surface area —
Flow by mean curvature (MCF) reduces surface area:
4 (surface area of X) = —/Z V2 = —/ZH2

Polycrystals made of single-crystal grains

lattice misorientation
leads to interfacial energy
between grains

Aging of polycrystals via diffusion-less phase transition
reduction of interfacial energy by MCF (Mullins)



Materials science: grain growth

Unctions o 1 of surface tensions
] — angle condition

generic singularity: )
exchange of neighbors, Q?
vanishing of grains :

coarsening of
grain configuration

= grain growth
(Kinderlehrer et. al.)




Analysis on metric spaces: gradient flows

MCF is a gradient flow: V = —H can be interpreted as

4> = —grad|s-(surface area)

] “o Jurfaccarca
Gradient flow
— Steepest descent

INn energy landscape

Geometry of configuration space matters,
“in the large’” described by induced distance

"?rﬂ\/u ra Aim Space
dQ(ZO, >1) ‘E*Zt _degenerates
' (Michor

=inf{jg /= V2dt} 7 K & Mumford '06)



Gradient flows: natural discretization in time

(M, d) metric space, E function on M
(typical elements of M denoted by x)

Natural time discretization with time step size h > O:
X" minimizes %dQ(X,X”_l) + E(x) among all x € M.

= De Giorgi’s
minimizing
movements
scheme

If (M, d) Euclidean then
minimizing movements = implicit Euler for C(fl’g = —grad|x



Passage to limit in minimizing movements scheme

Natural time discretization with time step size h > 0O:
X" minimizes Qith(X,X”_l) + E(x) among all x € M.

= De Giorgi’s
minimizing :
movements m
scheme I":"‘ )'c"f_—'
N
Easy a priori estimate E(x™V) + %hdz(xn,xn_l) < E(xY)
n=1

- T
misses dissipation relation E(x(T))+ [ ¢ (d—X,d—X)dt < E(x(0))
0 ZX\dt’ dt
by a factor 5. Way out:

De Giorgi's “variational interpolation’”, “metric slope’.



De Giorgi’s tools

piecewise constant " “variational” ul
Two L0 g * M
interpolations of x4 /"'
n SR -
{X }nEN P EP : 8 ’t;
F TR b 2 3t
uP((n-1)h + s) minimizes M
1 2 ~1 i
Zd (u7 Xn ) _I_ E(u) i"'f LL(hq){_Krj)
among all u € M
“Metric slope” |0E(x)] + e
d(u,x)—0 X ElﬂErx?M’t"-,x)

maximal local downwards slope X et



De Giorgi’s tools designed to provide a path ...

Obtain

Nh Nh
E(XN)_I_/O Q—}LQd?(Xh(Hh),Xh(t))dt—k/O %\8E(uh(t))|2dt
< E(xY).

Similar to limit;:

T T
E(x(T)) -I-/O %gx(%,%‘)dt-l-/o Sgx(arad B, gradEy, )dt
< EXY),

(formally) equivalent to C@%‘ = —gradE), .
Sandier-Serfaty '04 ... Liero-Mielke-Peletier-Renger '17

. to a (soft) convergence result



T he thresholding scheme

Merriman & Bence & Osher '92:
Computational scheme for flow by mean curvature (MCF)

Here just time discretization; time-step size h; x € {0,1}

_1 convolution __ —1 thresholding P 1
Xn > u' = Gh*xn > Xn .— I(unzj)

G, heat kernel at time h
— @Gaussian of variance h

description of > in terms

of characteristic function x




Easy to immplement

n— 1 convolution n— 1 thresholding n

X ~ unith*X Ay X :[(unz

N
—

_ 1
X" u” {u" =5} X"
Low complexity: Fast Fourier Transform for convolution

Connects to more general level set methods,
efficient thanks to fast marching algorithm (Sethian)



Convergence in the two-phase case

n—1 convolution

X ol ul = Gh " Xn_]_ thresﬂglding Xn = I(’U,n Z
Thresholding satisfies comparison principle:
Xn—l S >~<'n—1 — " S N = Xn S X'n

Evans '93,
Barles & Georgelin '95,
Ishii & Pires & Souganidis '99:

convergence to MCF

in sense of viscosity solution (Evans-Spruck)

N

)

IS)



Straightforward extension to multi-phase version

N phases eg X:{Xz}z_ . N With Zz—1XZ_ 1
Lo ym ,ult '=Gp *x; LIVL , XY :—I(u”>u"‘v’])

Application to grain growth:
eg. Elsey & Esedoglu & Smereka '11 (¢ =3 and N > 100,000)

Long-time existence of multi-phase MCF:
Kim & Tonegawa via Brakke's notion '15,

Strong solutions past singularities for d = 2 (networks):
Mantegazza&Novaga& Tortorelli '04, IlImanen&Neves&Schulze '18,

Weak-strong uniqueness (d=2): Fischer&Hensel& Laux&Simon '20



Two tasks

2)

1) Generalization to (5

surface tensions oy
(Esedoglu & O. '15),
and mobilities (Esedoglu & Salvador '18)

interfacial energy depends
on misorientation of grains

2) (conditional) convergence (Laux & O. '16, '20, '20)

Both based on minimizing movement interpretation
of thresholding (Esedoglu & O. CPAM'15)



2-phase thresholding ...
Thresholding " = I(Gh*xn—l > %) minimizes

=[x Gaox™ ) + [ (1) G

Ve

n—1

distance? of v to y energy of v

among all functions v € [0, 1]. Why? Just linear algebra:

G, Simm 1/ (1—2Gh*Xn 1)_|_\/_/Xn 1Gh*Xn 1

. interpreted as minimizing movements (EO’15)



Link of minimizing movements interpretation ...

Recall : Thresholding x™ minimizes among all v

1 n—1 n—1 1
G [ X" G(o-x )+ / (1-0) v

distance2 of v to y" 1 energy of v
‘ /_&h"/t
1 Wl ] e
ﬁ/(l-x) Gpxx ~ cosurface area of > &
2 = p&“

1 _n—1 _on—1Yy ~ € 2 vmaﬂﬁf ) .
OGO * REVE e T

. to mean curvature flow



Multiphase thresholding as minimizing movement
(EO’15)

3) En(0) = Sij [ %G X
C-converges to cg iz gf\sz-l + (Vx| = [VOG =+ x5)|
= cp X~ area of interface between phase ¢« and phase j

= cg total interfacial energy
b) —En(x —x") =5 ﬁ/(X@' —x3) Gp * (G — x3)
— Zi\/—ﬁﬂG%* (x; — x;)|© is a distance= of x and y’

c) thresholding means that x™ minimizes
2B, X" 1) = —Ep(x — X" 1Y) 4 Ep(x) +const,
which is of form grdistance?(x, x" 1) + energy(x)

Scheme preserves comparison and gradient flow structure



Natural generalization to {o0;;} (EO’15)

a) Enp(x) =% Uij%ﬁfxq; G, * X

[-converges to cg ¥ ; Uij%/|v><i| + Vx| — [V + x5)
= ¢g total interfacial energy (eg Ambrosio&Braides'90)
provided {o;,} satisfies triangle inequality

New element in proof. monotonicity E,2,(x) < Exr(x)

b) —E;(x —x') is a distance? of y and y/

provided {o;;} negative semi-definite on & with 32;6x; = 0.
c) x™ minimizes —E,(x — x™ 1) 4+ E;(x) turns into

n—1 n—1

X v Ul = ngith*Xj v X = I(u?ﬁu? V1)

Get right thresholding scheme by reverse engineering,
retaining the complexity.



Assumptions on surface tensions {o;; = 0j;} ...

bi¢
triangle inequality: oy, 4+ og; > 0yj, j}ﬂl
T%j
negative semi-definite: Z(SXZ' T 5Xj < 0 for Z(SX@' =0
1 1

)

{oij} £°°-embeddable
<—> triangle inequality

{,/73;} £?-embeddable
<—> negative semi-definite j

N < 4=
<= { {o;;} ¢1-embeddable
— easy treatment

. relate to embeddability



Assumptions on {o;;} (triangle inequ. +negative def.) ...

®} Symmetry: A(RiRj_l) c [0, 7]

E R, 0;; = min Z(RR;R;™1)

R € octahedral group
Read-Shockley (dislocations ~ grain boundaries [Lauteri&Luckhaus '16])
A0

0 1= :
o= 7-(1 —log 37) 923 < 04 |
——p
o, "y
. Satisfied for common grain boundary model




Convergence of multi-phase thresholding

Holds for any number of phases N provided
10ij}ij=1,....n Negative definite & strict triangle inequality

State here for N = 2 where FEj(x) = ﬁf[o 1)d(l —x)Gp * X

x? initial dataowith {Er(x°)}n 0 bounded A:ii;'.ﬁi B

- €. fio 1yl VX%l < o0 uEEE=NN
X}, biecewise constant interpolation of {x"}n s

Have 3 conditional convergence results:

.
4
l ar

to BV solution, Brakke solution, De Giorgi-type solution



Robust notions (“BV") for flow past singularities
Let x be the characteristic function of set €2

Robust notion of area of boundary and surface measure
- . 00 d md
/|VX| = sup{/[o,l)dxv §|§ec ([0, 1)4,RY), sup €] < 1}.

x = function of Bounded Variation, {2 = Caccioppoli set

Robust notion of (inner) normal v € L°°(|Vx]):
Vx = v|Vx| (polar factorization of a measure)

Robust notion of normal velocity V € L2(|Vx|dt)
&;f( — V\Vx\ in distributional sense, that is,

/o /EMX CV|Vx|dt = 0 for all ¢ € C((0,1) x [0,1)9)

Robust notion of mean curvature H & L2(|VX|)

HE-Vx = [(V-§—v-DEv)|Vx]|
or all £ € C*°([0,1)%, R




Convergence to BV solution (LO’16 CalcVar)

Theorem 1. Suppose xj, — x in L1((0,1) x [0,1)4) and

/OlEh(Xh(t))dt — Co/ol [1Vxldt.
Then there exists V € L2(|Vy|dt) such that
for all ¢ € C8°((0,1) x [0,1)9)
/01 /&gCX + ¢V |V x|dt = 0 (normal velocity = V)
and for all £ € C°°([0, 1] x [0, 1)¢,R%)
/01 /(V-f—u-D£1/+2VV-£)|Vx|dt = 0 (mean curv. = —2V)

here / = /[0,1)d




A conditional convergence result
Suppose xj, — x in L1((0,1) x [0,1)4) and

1 1
| BrGan(®)dt = eo [ [19xlat.
Then 3V € L2(|Vx|dt) s. t.V ¢ € C§((0,1) x [0,1)%), £ € C°°([0,1] x [0, 1), R%)

/; [ocx + ¢vIvxlat = o

-1 .
/O /(V-S—I/-DSI/—I—QVI/-S)]VX]dtIO

Same assumption and notion of solution as in
Luckhaus & Sturzenhecker '95 on

minimizing movement scheme for MCF introduced by
Almgren & Taylor & Wang '93,

but more robust proof (no minimal surface regularity theory)

Satisfied in mean-convex case:
Laux & De Philippis '20 for ATW, Fuchs & Laux for thresholding



The scheme of Aimgren& Taylor&Wang

Recall general structure of minimizing movements scheme:

X" minimizes  5-d?(x, X" 1) + E(x).

Almgren-Taylor-Wang scheme: 2" minimizes
1 i , n—1
Qh/QAQn—ldISt( , 2" +) 4 surface area of 952.

A minimizing movement scheme “avant la lettre” .
Recall Michor & Mumford '06: canonical d degenerates.

As opposed to thresholding: an academic scheme
(however Chambolle & Novaga '07).

Recall minimizing movements interpr. of thresholding:

Y™ minimizes  —FE,(x — x" 1) 4+ E;(x).



Gradient flow comes with energy (in)equality

H := mean curvature, V = normal velocity

Seek energy inequality /(2V)2|VX| = /HQ\VX\ < —2%/\VX\

Build-in into both notions of solutions of
De Giorgi 5 [H?|Vx|+ 1 [(2V)2|Vx|< — 24 [|Vx

Brakke /(CHQ + v VCH) VY| < —2%/g|vx| for ¢ >0

use De Giorgi’s ideas to establish Brakke’s



Convergence to Brakke-type sol. (LO’20 CalcVvar)

Theorem 2. Suppose xj — x in L1((0,1) x [0,1)4) and

1 1
Jo EnCen(®)dt — co [ [1Vx]dt.
Then there exists H € L?(|Vy|dt) such that
for all £ € C°°((0,1) x [0, 1)4,R%)

/Ol /(V-f—l/-DfV—l/-fH)\Vx\dt — 0 (mean curv. = H)
and for all ¢ € C°°((0,1) x [0,1)%,[0, >))
[ [(=200¢ + CH? + v - VCH)|Vx|dt<0
(2normal velocity = —H)

Contains correct inequality 2%/|VX|§ - /H2|Vx|

“Brakke-type"” because
Brakke's inequality is expressed in BV-framework instead of varifold-framework




Recall: convergence by De Giorgi’s tools

Obtain from variational interpolation and metric slope
Eh(XN)—I—/O QthQ(Xh(t—I—h) Xh(t))dt—l—/ 2|8E(uh(t))|2dt
< Ep(xY).

Similar to characterization of ‘% = —grad}, E by inequality:

EQAT)) + [ 50: (G5 59dt + | Sgx(aradEjy, arad By )d
< E(XY),

which takes the form (after division by cp):

[IVx(@)+ [ [(72+ D2V < [19x°.



Convergence to De Giorgi-type solution (LO’20 Proc.,Laux
& Lelmi '22 Calc. Var.)

Theorem 3. Suppose xj, — x in L1((0,1) x [0,1)4) and
1 1

Jo EnCen(®)dt — co | [1Vx]dt.
Then 3V € L2(|Vx|dt) s. t. ¥V ¢ € CE(0,1) x [0,1)%)

/ /atcx + (V' |V dt = 0 (normal velocity = V)
and 13 H € L2(|Vyldt) s. t. V € € C*((0,1) x [0,1)4, R

/O /(V-f—l/-DfV—l/-fH)\Vx\dt = 0 (mean curv. = H)
with the property that for all T € (0,1)

T

J1Vx(D)+ [ [(72 4+ (H))|Vxldt < [19x0).

B + [ 2oy 50+ [ Son(arad By, grad B )de < BGO)




Lower semi-continuity in metric term,
sketch of proof

T o _
Goal: cof [V2|Vx| <liminfyo 3 Sd20d X )
O<nh<T

— |Imh¢0 \/E/OT/|G% * Xh(t‘|‘h}2—Xh(t)‘2 — /OT/d,LL.

Convergence assumption vyields
“convergence of normals down to scale VA", i. e.

=0 (HVRE) —xp) L — (2- V)

Good time scale 7 := avh with a € (0, ) to be chosen later.
Consider increment dx = x,(t+7) — x,(t) € {—1,0,1};
have  |6x| = ox Gp*xdx + dx(dx — Gp*dx).



Lower semi-continuity in metric term,
sketch of proof

Recall: time scale T := aV/h, increment 6y 1= x,(t + 7) — x5, (t)
splitting  |0x| = dx G x0x 4+ dx(6x — Gp*dx).

Recall consequence of convergence assumption

ﬁ(m(--l-\/ﬁf) - Xh>_|_ — (2 VX)+-

Hence if we further split dx = ox4 — ox— we have
“orthogonality” \/LE/&(JF Gpxox— — O.

Allows to replace dx(dx — Gp*xdx) ~
X+ (OX4 — Gp*dx4) + ox—(0x— — Gp*xdx—)
= 0x4 Gp*(1-6x4) + 6x— Gp*(1-6x-).



Lower semi-continuity in metric term,
sketch of proof

Recall we still need to control
%/ (5X+ Gpx(1-0x4) + 5><—Gh*(1-5><—))
where §x = x,(t + 7) — xp,(t), 7 = aVh.

For any normal vg € S%1 to be chosen later
[ (8x4 Grx(1-6x4) + 0x—Gpx(1-6x-))

= /dx /z-z/o>0 dzGp(2)(|dx 4 (z+2)-dx 4 () |+|0x - (z+2z)-dx—(x)

Discrete mixed derivative in time 7 and space z;
use 2 pointwise estimates (‘“time like”, “space like"):
[0x 4 (z+2)-0x4 ()] + [dx—(z+2)-0x—(z)]

< ‘Xh(t__Ta CU—-Z)—Xh(t, $+Z)| T |Xh(t+7-7 x)_Xh(ta $)|
- |Xh(t__7-a x——Z)-Xh(t—I—T, $)| T |Xh(t7 $+Z)-Xh(ta $)|




sketch of proof, end

Recall we still need to control
Ldw [ dsGu(@) (x4 (e42)-bx4 ()] + 6x—(2+2)-5x— (@)
z-vg>0

Use [0x4(z+2)-0x4(@)| + [6x—(z+2)-6x—(2)]

< (b7, 242)-xp (L, o+2)| + | xp(E+7,2)-xp (L, )| for z-vg > TV
| Ixp(tT1, 2+2)-xp (t+T, )| + | xp(t 2+2)-xp(t, )| for z-vg < TV
with V € (0,00) to be chosen.

Convergence assumption yields |0;x|

< 2)dz 2 2)|2 - 2.
Sopt2[ o Gi(2)dz|ox]+E /O<2VO<WOG1<z>|z Vx|dz

Localize in good point £ on boundary and choose
vo = v(x), Vp:=|V(x)|, divide by a | O.

Recover cOV2 < dlgﬁxl with desired ¢g := /(21)+G1(2)d2: L

s



Summary

geometric analysis:

Flow of a surface by its mean curvature
materials science: growth of grains in polycrystals

analysis on metric spaces:

De Giorgi's tools for gradient flows

scientific computing: Osher’'s thresholding scheme
stable second-order versions (Zaitzeff& Esedoglu& Garikipati)

co-dimension two (Laux&Yip)



