Lecture Notes for Functional Analysis

Emil Wiedemann
Universitat Ulm, WS 2021 /22



Preface

These are lecture notes for a first course in functional analysis, offered for advanced
bachelor’s and master’s students of mathematics at Ulm University in the Winter Term
of 2021/22. Moreover, the first half (Chapters 1 & 2) of these notes cover the newly
established course Functional Analysis for Data Science for first year master’s students in
the Mathematical Data Science Programme. The full course is taught in approximately 32
sessions of 90 minutes each.

Functional analysis is one of the most elegant and beautiful parts of mathematics.
Developed from the early twentieth century by mathematicians such as Banach and his
colleagues from Lwow (such as Steinhaus, Mazur, Ulam and others), the Riesz brothers, and
by mathematical physicists such as von Neumann and Weyl, it has become a fundamental
theory indispensable for anyone who wants to go deeper into any kind of (even remotely)
applied mathematics. Functional analytic notions are crucial in such diverse fields as
partial differential equations, quantum mechanics, stochastic analysis, statistics, numerics,
etc. But parts of functional analysis have also developed into very ‘pure’ directions, such
as the study of operator algebras, giving rise to noncommutative geometry.

So what is functional analysis? A short answer would be: It is the study of infinite-
dimensional vector spaces. One can, at least formally, imagine a vector x = (x1,x2,...)
with infinitely many entries, and a linear transformation encoded by an (oo x co)-matrix
with entries (a;;), where i, j € N; then the i-th component of the transformed vector would
be given by the infinite series

o0
Z QijLj.
7=1

Does this series converge? This depends crucially on the metric structure of the vector
space in question, which leads us from linear algebra to analysis.

The elements of an infinite-dimensional vector space are often functions; for instance,
the set C'(R) of continuous functions R — R forms a real vector space under pointwise
addition and scalar multiplication. Another example would be the Lebesgue space LP(£2),
where 1 < p < oo and €2 is a measure space. By framing such function spaces within
the context of linear algebra, one may thus apply geometric intuitions and concepts, like
orthogonality, angles, projections, etc., to function spaces. Thus, functional analysis can be
said to bring together the three classical branches of mathematics — algebra, geometry, and
analysis. This certainly is one important reason why many mathematicians find functional
analysis so appealing.

This course requires a solid knowledge of linear algebra, analysis, and measure theory,
as should have been acquired in the first two years of an undergraduate mathematics
programme. These notes have been inspired by the book of Werner [5], lecture notes of my
colleagues Anna Dall’Acqua, Markus Kunze, and Rico Zacher, and the bachelor’s thesis
of Michael Stanék on Reproducing Kernel Hilbert Spaces. I would like to thank them for
sharing their materials with me. T also wish to thank Dennis Gallenmiiller for preparing
and teaching the examples classes.
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CHAPTER 1

Normed Spaces and Linear Operators

Throughout the entire course, we will denote by K the field of real (K = R) or complex
(K = C) numbers.

1.1. Definitions and Examples
Recall the notion of a normed space:

DEFINITION 1.1. A K-vector space X together with a map |- | — R is called a normed
space if the following is true:
(1) For all z € X, ||z|| >0, and || =0 only if x = 0;
(2) For all z € X and a €K,

loz|| = |a|=];
(3) For all z,y € X,
lz+yl < =]+ ]yl

The last property is called the triangle inequality (why?). By abuse of notation, we
will frequently denote a normed space by X, suppressing the norm |- |. Of course, in cases
of possible ambiguity, one should explicitly mention the norm.

A sequence (p)ney € X is said to converge to x € X if, for every € > 0, there exists
N € N such that for every n > N, |x, — 2| < e. We use usual notation like lim, o, 2y, = =
or T, — x in this case.

A sequence (x,)neny € X is called Cauchy if, for every € > 0, there exists N € N such
that, for all n,m > N, |z, — x| <e.

You know from analysis that every convergent sequence is Cauchy. Conversely, does
every Cauchy sequence converge? In K or K¢ this is the case, as these spaces are complete.
In Q for instance, there are Cauchy sequences that do not converge (take for instance a
rational approximation of /2). Generally, we define:

DEFINITION 1.2. A normed space X is complete if for every Cauchy sequence (zy,)pen C
X there exists x € X such that x,, > . A complete normed space is called Banach.

More briefly: A normed space is complete if every Cauchy sequence converges.

ExamMPLE 1.3. (1) Of course, K% is Banach.

(2) If © is a measure space, then the spaces LP(£2), 1 < p < oo, are complete, as
you saw in measure theory. Recall that LP() consists of equivalence classes of
measurable functions (2 - R that agree up to a set of measure zero and for which
the norm

1/p
o= ([ 157d2) o), 1l = essupealf(a)l
is finite?.

IRecall that the essential supremum of |f| over € is the infimum of all numbers M € R such that
|f(z)] < M for almost every x € , where the meaning of ‘almost every’ depends on the underlying
measure.
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(3) Let I* be the space of K-valued sequences x = (xy, )nen that are bounded, that is:
[2] oo := SUpP,epy [Tn| < 00. One can check (which you are encouraged to do) that
|- ||oo is @ norm on I*°. We want to show that [*® with this norm is in fact Banach,
i.e., complete.

Indeed, let (zF)*N be a Cauchy sequence in [®°, that is: For every e > 0, there
is K € N such that for all k,{ > K,
sup|zk —zl| <e.
neN
In particular, for each (fixed) n € N, the sequence (z)*N is Cauchy in K. But
since K is complete, we obtain for each n € N a limit x,, that is, limg_, - fo =T,.
We need to show that @ := (2, )pey € [°°, and that z¥ - x in [*.
To show this, let € > 0. By the Cauchy assumption, there exists N € N such
that
suplaf, - ol <
neN 2
it k,l>N.
On the other hand, given n € N, there exists K = K(n) € N such that

oy —al < 5

without loss of generality, we may assume K (n) > N for all n € N.
Therefore, for n € N, we estimate for k > IV:

€

€
|2k — 2] < |2k — 2K 41250 _ g | < 3t5=6

and since N does not depend on n, we even deduce

sup |zt — x| < e (1.1)
neN

for k > N; this implies, first, that

sup |x,| < sup|ac7]:7| +sup |, - acf:[| < H:I:NHOQ +€< 00,
neN neN neN

so that z € [°°; and the convergence z¥ — x in [® then follows precisely from (1.1).

(4) For 1< p < oo, the space of K-valued sequences x = (2, )ney such that

0o 1/p
lzl, = (2 |xn|p) coo
n=1

can be shown to be Banach (see [5, p. 12f.]). This space is called IP.
(5) The real vector space C'([0,1]) of continuous functions [0, 1] — R can be equipped
with several different norms, for example:
| flleo := sup |f ()]
z€[0,1]
or

1
If11 = / 1/ (x)d.

We will show below that C'([0,1]) is Banach with respect to | - |, and it is a
worthwhile exercise to show it is not Banach with respect to |- |1. Hence, the
completeness property depends crucially on the choice of norm.

Let X be a normed space; recall that a subset U c X is called closed in X if the
following holds: If (z,)ney € U is a sequence with lim,yx, = x € X, then x € U. In other
words: U is closed if it contains all its limit points.
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LemMA 1.4. If X is Banach and U c X is a closed subspace, then also U is Banach.

ProOF. It follows from the definition of a normed space that a subspace of a normed
space is again a normed space?. So it suffices to show completeness of U.
Let (2 )neny be Cauchy in U and therefore also in X. As X is complete, there exists a
limit X 3z =limy, 00 Ty, but since U is closed, x € U, so U is complete.
0

A paradigmatic application of this lemma is given as follows: We show that C'([0,1])
is Banach with respect to the supremum norm || - . To this end, we set X := L*°(0,1),
which we have already seen to be Banach. Set U = C([0,1]), then clearly U is a subspace
of X (as linear combinations of continuous functions are still continuous), and U is even
closed in X: Let (f,)nen be a sequence of continuous functions that converges with respect
to | - | to some f e X, that is:

sup |fa(@) - f(2)] >0 asn - co.
z€[0,1]
This means that the convergence is uniform. But uniform limits of continuous functions

are themselves continuous (Analysis I}, so f € U and hence U is closed. By Lemma 1.4, we
conclude that (C([0,1]),] - | ) is Banach, as claimed.

1.2. Separability and the Theorem of Stone-Weierstrafs
1.2.1. Separability.
DEFINITION 1.5. A normed space is separable if it contains a countable dense subset.

Recall that a subset A of a normed space X is called dense if for every € > 0 and every
x € X there exists a € A such that |z - a| < e. For instance, R (with the standard norm
given by the absolute value |-|) is separable, because the countable set Q of rationals is
dense in R.

LeMMA 1.6. Let X be a normed space. The following are equivalent:
(1) X is separable;
(2) There is a countable subset A c X such that X =span A.

Here, span A denotes the linear span of A, and the overline denotes the (topological)

closure with respect to the given norm?.

ProOOF. If X is separable, then it suffices to choose A as a countable dense subset.
Conversely, assume (2) for some set A. Suppose for the moment that K = R. We will
show that the set of linear combinations with rational coefficients

BZZ{Z)\]'.T]'Z TLEN7 )\jE@, l‘jEA}
j=1

is countable and dense. In fact, countability is obvious, as countable unions and Cartesian
products of countable sets are still countable.

As far as the density of B is concerned, we know by assumption that for every x € X
and € > 0, there exists a linear combination }7 y Ajz; with z; € A and A; € R such that

n €
X — Z)\j.%’j < —.
= 2

2To be pedantic, if (X, | -|) is the original normed space and U c X is a subspace, then (U, | -| ) is
also a normed space.

3Please look up these notions from your linear algebra and analysis courses if you feel uncomfortable
with them.
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Now, for every j € N there exists some )\;- € Q such that
€
27+ 5]

Certainly Y74 Njz; € B and

RYRPVIES

EDNCEPOLY
j=1

x - +

>N
i
oA -
j=1

n
T — Z )\;a;j <
j=1
<

€
-+
2
where we used »7%; 2-(G+1) = % in the last step. This proves the density of B in X.

If K=C, then simply replace Aj € Q by Aj € Q +iQ in the definition of B. O

EXAMPLE 1.7. (1) Recall from Example 1.3 the space [P (1 < p < oo) with norm
lz|p = (Z;’Zl \xj]p)l/p. We show separability of [P. To this end, let e; be the
sequence whose j-th element is one and all other elements zero, and set
A:={ej:jeN}

Let x = (75)jeny € P and € > 0. If N € N is sufficiently large, then Y72 v, |77 < €,
and therefore

N oo ) 1/p
v= Y wjes| =| X wjej| = ( > ij\p) <€,
j=1 j=N+1 p \i=N+1
which means that the span of A is dense. Separability of [P now follows from
Lemma 1.6.

(2) Asin Example 1.3, we consider [*, the Banach space of bounded sequences, and
show that it is not separable. For let S c N any subset, and define g € [* by

1 ifjes,
(ws)j:{ /

0 otherwise.

Then, whenever Sy # S2, we will have |zg, — g, |0 = 1. Therefore, if A c [* is
any countable subset, then for any 2 € A, the ball* Bi(z) will contain at most
one rg. :

Hence, there are at most countably many xg for which there exists x € A such
that zg € B 1 (x). However, as there are uncountably many subsets of N, there

are also uncountably many xg, and therefore there exists an xg (in fact infinitely
many) that has distance at least 1/2 from any element of A. We conclude that A
cannot be dense in [*.

(3) One can show that LP spaces behave similarly: On a measure space €2, the space
LP(Q) is separable for 1 < p < oo, and not separable for p = oo.

1.2.2. The Theorem of Stone-Weierstrafi. Having talked about dense subsets of
normed spaces, we will make an excursion into the related field of approzimation theory
for the rest of this section.

Recall® the notion of a compact metric space: A set X together with amap d: XxX - R
is a metric space if

(1) For all z,y € X, d(z,y) >0, and equality holds if and only if z = y;
(2) For all z,y e X, d(z,y) =d(y,x);

4As usual we write B.(z):={ye X : |y—z|<r}.
5The concept of a metric space and of open, closed, and compact sets should be known from Analysis II.
If you do not have this background, let me know so we can do something about it.
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(3) For all z,y,2z€ X, d(x,2) <d(x,y) +d(y, z).
Every normed space is, in particular, a metric space with metric given as d(z,y) := |z -y
In metric spaces one may define balls B,.(z) :={y € X :d(z,y) <r}, and a subset U c X is
called open if for every = € U there exists r > 0 such that B,(z) cU.

A metric space (X,d) is called compact if the following is true: If X = U Uj is a
cover of X by (possibly uncountably many) open sets Uj;, then there exists a finite subcover
X=UN,U

Let (X, d) be a compact metric space. As in the example after Lemma 1.4, we see that
the space C'(X) of continuous functions X — K is Banach when equipped with the norm

given as [ ffeo = supzex |f(2)]-

DEFINITION 1.8. A subspace A ¢ C(X) is called a subalgebra if it is closed under
multiplication, that is: If f,g € A, then fg € A.

For instance, the following spaces are subalgebras of C'([0,1]): the space of polynomial
functions on [0,1]; the space C*([0,1]) of continuously differentiable functions (Leibniz
rule!); the subspace generated by functions of the form exp(ik-) (k € Z), i.e., the trigono-
metric polynomials. On the other hand, for fixed N € N, the space of polynomials of degree
at most N is not a subalgebra, because the product of two polynomials of degree N can
have degree larger than N.

A subalgebra A is said to separate the points of X if, for every pair x,y € X with x # v,
there exists f € A such that f(x) # f(y). For instance, the algebra of polynomial functions
separates the points of [0,1] (simply choose f(z) = x), but the algebra of even functions®

n [-1,1] does not separate points, as two points +z are always assigned the same value.

If A is a subalgebra of C'(X), then we denote by A its closure (with respect to | floo);
that is, A is the set of all uniform limits of sequences in A. It is easy to check that A is a
subalgebra itself.

If K = C, then a subalgebra is stable under conjugation if for every f € A also the
complex conjugate f is in A. For example, the space of trigonometric polynomials is stable
under conjugation, as

exp(i-) = exp(—i-).

LEMMA 1.9. Let X be a compact metric space and A a subalgebra of C(X;R) that
contains the constant function 1. If f,g € A, then also min{f,g} € A, max{f,g} € A, and
|f] € A.

PROOF. Let f,ge A. It is easy to see

win{f,g} =5 (F+g-1f ~gl), max{f.g} =3 (F+g+1f ~gl).

Since A is a vector space, we can immediately deduce from |f|,|g| € A the assertions for
minimum and maximum. Thus it suffices to show |f| € A.

If f is identically zero, then the statement is trivial. So suppose | f|« > 0. It is possible
to construct a family (py)nen of polynomial functions that converge uniformly on [-1,1]
to the absolute value function |-| (exercise). Hence, for € > 0, there is N € N such that

|[t| = pn(2)] < for all te[-1,1].

_c

[ £1leo

For each x € X, the choice t = ”f f(H 2) then yields
€

(@)
H\Ifoo (Ilfoo) Tl

6A function [-1,1] = K is even if f(-z) = f(z) for all z € [-1,1].
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and after multiplication with | f| -

- f(z)
@)= e (142)

As A contains the constant 1, and thus for any f € A it contains p, o f, we find that

AN

€.

| flcorn (W) € A. In any neighbourhood of |f|, therefore, there exists an element of A.

It follows that |f| € A, as claimed.
t

THEOREM 1.10 (Stone-Weierstrah). Let X be a compact metric space and A a subal-
gebra of C(X;K) which
e contains the constant function 1,
o separated the points of X, and
o is stable under conjugation in the case K = C.

Then A is dense in C(X;K), i.e., for every f € C(X,K) und every € >0 there exists a € A
such || f —al e <e.

PRroOOF. The first proof steps deal with the case K =R.
Step 1. Let f e C(X;R). We show: For any y,z € X there is a function h, . € A such
that

hy,z(y) = f(y)v hy,z(z) = f(Z) (1-2)

To this end, we may assume y # z (for y = z simply choose the constant function h, , =
f(y)). By assumption there exists some g € A separating the points y and z, i.e., g(y) #
g(2). Therefore, the following function is well-defined and in A:

f(z) - f(y)
hy o (x) = L s - i
Clearly, this function satisfies (1.2).
Step 2. For y,z € X, set

Uy ={zeX:hy(x)< f(z)+e}, Vy.={xeX:hy. (z)>f(z)-¢},

so that U, . and V), are the preimages, respectively, of the open sets (-o0,e¢) ¢ R and
(—€,00) ¢ R under the continuous function h, . — f. Since preimages of open sets under
continuous functions are again open, we find that U, . and V, . are open subsets of X.
Thanks to (1.2), we also have y e Uy, and z €V, ..

For fixed z € X, therefore, X = Uyex Uy,- is an open cover, and by compactness of X
there is a finite subcover X = UT:O Uy, 2

Now set

h, = min_ hy, ..
7j=1,...m

By Lemma 1.9, h, € A, and for all z € X
ho(z) < f(z) +¢, (1.3)

because there exists some j with x € Uy, ., and by definition h, < hy, ..
Step 3. For z € X we set

V, = m Vijz.
7=1

As a finite intersection of open sets, V, is itself open, and z € V. for all y € X entails
z € V,. Hence X = U,cx V. is an open cover, which by compactness admits a finite
subcover X =Uj_; V3.
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Finally set

h:= max h;,.
:17"-7T

By Lemma 1.9, h € A, und by (1.3) we have h < f + €. Note also that for any x € X there
is an index [ with = € V,;, so that by definition of V, we infer z € V. ., for all j=1,... ,m.
Hence (by definition of V) hy, -, (x) > f(x) — ¢, therefore h, (x) > f(z) - ¢, and thereby
even h(x) > f(z) - e. In summary we have proved

[f=hle <e.

As h e A, there is a € A with |h—af e < €, and thus || f —alle < 2¢. This shows the Theorem
for the real-valued case.

Step 4. We reduce the complex case to the real one. So let now A be a subalgebra of
C(X;C) satisfying the assumptions of the Theorem. Let A’ c A be the set of functions in
A that take only real values. It is a subalgebra of C(X;R), and we have A = A"+ (A" :=
{a+ib:a,be A’'}: Indeed, as A is stable under conjugation, then for every a € A also

a+a a—a

€A, Ja=—
2 24

Ra = € A,
and hence also Ra,Ja € A’. It follows that A ¢ A’ +4iA’, since for a € A we have a =
Ra +iJa € A" +iA’. On the other hand, A > A" +iA’ because of A’ ¢ A and A being a
C-vector space.

A’ contains the constant 1 and separates the points of X: Indeed, if x # y, then by
assumption there exists a € A with a(x) # a(y), and hence Ra(z) # Ra(y) or Ja(x) +
Ja(y). So Ra or Ja is an element of A’ that separates x and y.

According to the already established real-valued version of Stone-Weierstrafs, for every
e>0and feC(X;C) there exist a,be A" such that

€ €
Rf-a|eo <=, [|Tf-b|e <=,
IRf ~alo <5, 137 bl < 5

and it follows that | f — (a+ib)||eo < €. As a+ibe A, the Theorem is proved. O

1.2.3. Some Consequences of Stone-Weierstrafs.
1.2.3.1. Polynomial Approximation. As a first corollary of the Stone-Weierstraf The-
orem, we obtain the classical approximation theorem of Weierstrafl from 1885:

COROLLARY 1.11 (Weierstraf Approximation Theorem). Let [a,b] ¢ R be a compact
interval (a <b) and f:[a,b] > R continuous. Then for any € >0 there exists a polynomial
function” p:[a,b] - R such that

If =pleo = sup |f(z)-p(z)|<e

z€[a,b]

Proor. It suffices to show that the set of real polynomial functions satisfies the condi-
tions of the (real version of the) Stone-Weierstraf Theorem. Since linear combinations and
products of polynomials are again polynomial, and since polynomial functions are contin-
uous, they form a subalgebra of C'([a,b]). This algebra contains constant functions and

separates points (just take p(x) = x as a separating function for any two distinct points of
[a,b]). O

A polynomial function, of course, is a function of the form p(x) = Zflo arz® for coefficients ay, € K.



1.2. SEPARABILITY AND THE THEOREM OF STONE-WEIERSTRASS 11

1.2.3.2. Trigonometric Polynomials. In the theory of Fourier series, to be developed
further in the next chapter, trigonometric polynomials play a crucial role. We prefer here
to work with functions of the form e”**. Often, trigonometric polynomials instead are
written in terms of sine and cosine functions; such a formalism can easily be obtained from
the framework presented here by virtue of the famous formula €™ = cos(z) + isin(z).

DEFINITION 1.12. A trigonometric polynomial function is a function R — C of the form
N .
T Z Ckezkac
k=—N

with coefficients ¢ € C.

Obviously, every trigonometric polynomial function is 27-periodic®. Let us denote by
Cper(R; C) the space of 2m-periodic continuous functions. We want to use the Stone-
Weierstral Theorem to show that every such function can be approximated by trigono-
metric polynomials in a suitable sense. To this end, it is useful to identify a 2m-periodic
function f:R — C with a function f:S! > C, where S' denotes the one-dimensional unit
circle, i.e., the subset {z € C: |z| = 1}; simply set

F(e) = f(=)

(this is well-defined, as = ~ €'* is a bijection between [0,27) and S*).
Consider first the algebra Ag1 of continuous functions S* — C of the form

N
> ezt (1.4)
k=—N

with ¢y € C, k=-N,..., N. It is a subalgebra of C(S*;C).

LEMMA 1.13. The subalgebra Agi is dense in C(S';C) with respect to the supremum
norm, i.e., for every f € C(SY;C) and € > 0 there exists a € Ag1 such that | f — af e <.

PRrOOF. AsS! c Cis closed and bounded, it is compact by the Theorem of Heine-Borel.
Therefore, S* becomes a compact metric space with the metric d(z,y) = |z —y| induced by
C.

Setting co = 1 and all other coefficients zero in (1.4), we see that 1 € Agi. Let z,y € S!
be two distinct points, then they are separated by the identity id : z — 2z, and id € Ag1 (set
c1 = 1 and all other coefficients zero in (1.4)). Finally, Ag is stable under conjugation,
because for every z € S' and k € Z, 2F = 2% (recall etk = ¢7ik7),

Hence all conditions of (the complex version of) the Theorem of Stone-Weierstrafs are

satisfied, and we obtain density of Ag: in C(S!;C). O
Let Cper(R; C) be the algebra of 2m-periodic continuous functions. We obtain

THEOREM 1.14. Trigonometric polynomial functions are dense in Cpe,(R;C) with re-
spect to the supremum norm.

PROOF. Let f € Cper(R;C) and define feC(ShC) by f(e“”) = f(z). Let € >0. By
Lemma 1.13 there exists a function a : S' - C of the form a(z) = Z,ZCV}N 2" such that

If - ale <e.
Thus for every x € [0,27),

|f(x)—a(eim)|=|f(em)—a(eix)|<6. (1.5)
But z—a (e”) = Z]kV:_N cxe™*® is a trigonometric polynomial, and periodicity implies (1.5)

for all z e R. O

8A function f:R - Cis called l-periodic if f(z+1) = f(z) for all z.
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1.2.3.3. Neural Networks. We sketch here the idea of Hornik-Stinchcombe-White [2]
to show that neural networks can approximately represent any continuous function.

A squashing function is a measurable non-decreasing function ¢ : R - R such that
limg,—oo ¢(s) = 0 and limg,e ¢(s) = 1 (it ‘squashes’ R into [0,1]). We consider affine
maps a: R? - R of the form

a(x) =w-x+Db,

where w € R? is interpreted as the vector of network weights, b € R as a bias, and the
argument  as the network input. The set of such affine maps will be denoted A<

Given a measurable function ¢ : R - R and a dimension d € N, we define the set of
single hidden layer feedforward networks as

Zd(¢)={f:Rd—>R: f(x):%ajqﬁ(aj(m)), NEN,ajeR,ajeAd}.
j=1

THEOREM 1.15 (Universal Approximation Theorem, version of [2]). Let ¢ be a squash-

ing function, K c R compact, F : K — R continuous, and € > 0. Then there exists an
f eX4(p) such that

sup|F(z) - f(2)| < e.
ek

SKETCH OF PROOF. Step 1. Let K c R? be compact. We observe that, on K, the set
»%(cos) is a subalgebra of C(K;R) that contains constants and separates points: First, it
is clear that X%(cos) is a vector space of continuous functions. But it is even an algebra,
as can be seen by the trigonometric identity

cos(s)cos(t) = %(cos(s +1) +cos(s—t)).

The constant function 1 is obtained by setting N =1, a3 =1, a; = 0 in the definition of
Y(¢). To see the separation property, let z,y € K with x # y and pick two arbitrary real
numbers «, 3 such that cos(a) # cos(f); then, if a € Al is an affine function such that
a(z) = « and a(y) = B, the function cosoa € £¢(cos) will separate x and y.

Therefore, by Stone-Weierstra, we conclude the density of £¢(cos) in C(K).

Step 2. 1t is easy to check, using the basic properties of sine, that the following defines
a continuous squashing function:

0 s< -3,
cs(s) = %(1 +sin(s)) -5<s<73,
1 5> 3.

Moreover, for given M > 0, it is a little combinatorial exercise to see that there is a function
in ¥!(cs) that agrees with cos on [-M, M].

Step 3. Next we show that for any e > 0, there is a function g € ¥1(¢) such that
|cs(s) —g(s)| <eforall selR.

For this, let N € N be so large that % <5, and M €R so large that

€ €
-M) < — M)y>1-—

G-M)< S o(M) > 1- 5

which is possible since ¢ is a squashing function. For j = 1,...,N -1 we denote by s;

the unique real number such that cs(s) = %, and by sy the unique real number such that

cs(s)=1- ﬁ
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Next, for 7 < s let a, s : R = R denote the unique affine function such that a, () = -M
and a,s(s) = M. One can then check that g € X!(¢) given by

1 N-1
g(s) = N z; (b(asj,sjﬂ (3))
j=

indeed has the property |cs(s) — g(s)| < e for all seR.
Steps 2 and 3 together, thus, imply for each M > 0 and € > 0 the existence of an
h e ¥1(¢) such that

|cos(s) —h(s)|<e

for all se[-M, M].
Step 4. Let F ¢ C(K) and € > 0. By Step 1, there exists a function of the form
Z;V:l ajcos(aj(x)) such that for all z € K,

< % (1.6)

N
F(z) - Zlaj cos(a;(z))

Choose M > 0 so large that a;(K) c [-M,M] for all j =1,...,N. For this M, we have
(cf. end of Step 3) a function h € X1(¢) approximating the cosine, so that for all z € K

N
;@j(COS(aj(ﬁ)) - h(a;j(x)))

< % (1.7)

Since the composition of affine functions is affine, we have that
N
f =Y ashoa; e U(9),
j=1

and (1.6) and (1.7) together yield, for all x € K,
|F(x) - f(@)| <e,

as claimed. ]

1.3. Linear Operators and Dual Spaces

Maps between normed spaces are often called operators. We use the terms map and
operator synonymously. Of special interest to us are linear operators T': X - Y, where X
and Y are normed spaces. This means of course that T'(axq + o) = aTxy + ST xo for all
a,B eK and x1,72 € X. We have used the common notation Tx instead of T'(z).

DEFINITION 1.16. Let X,Y be normed spaces over K.
(1) A linear operator is called bounded if

[T := sup |Tx| < oo.
lzl<1
The thus defined number |T'| is called the operator norm of T. The set of bounded
linear operators X — Y is denoted L(X,Y").
(2) If Y = K, then a linear operator X - Y is called a linear functional. The set of
bounded linear functionals X — K is called the dual space of X and is denoted
X' = L(X,K).

Of course, L(X,Y") is itself a vector space (think it over!) and becomes a normed space
using the operator norm from the above definition. Indeed, if |T'|| = 0 then Tz = 0 for all
x € B1(0), and thus by linearity Tz =0 for all z € X. If a € K, then clearly |aT'|| = |o|| T,
and for T, S e L(X,Y)

|T+S] = sup [(T'+S)x| < sup ([Tz] +]Sz[) < sup |Tz|+ sup |Sz] = [T]+]S],

lzl<1 |zl<1 |zl<1 lzl<1
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so that the axioms of a normed space are all satisfied. In particular, the dual space of a
normed space is itself a normed space.
We can say even more:

PROPOSITION 1.17. If X is a normed space and Y is Banach, then L(X,Y) is Banach.
In particular, the dual space of a normed space is always Banach.

PRrROOF. Let (T}, )nen be Cauchy in L(X,Y), which means that for € > 0 there exists
N €N such that for n,m > N and for all x € B;(0),

|Thx - Tz| < e.

In particular, for every x € X, (T,,2)ney is Cauchy in Y, hence by assumption it converges
in Y to some element that we denote by T'z.

It remains to show that the map T thus defined is linear and bounded, and that T;, > T
in the operator norm. If z1, 29 € X, then

T(x1+mx2) = nhjr; Th(x1 +19) = T}LngoTnxl + nlglolo Thxo =Tz + Txo.

Similarly one sees T'(az) = oTx for « € K and z € X. To see boundedness, note
that a Cauchy sequence in a normed space is bounded (think it over!) and therefore

lim sup,,_, oo | 1| < 0o. Therefore, for all z € B1(0),

|Tz| = | lim T,z| = lim |T,z| <limsup |T5,||z| < limsup [T,
n—oo n—>00 n—oo n—oo

and since this is independent of x, we conclude boundedness. Note we have used the
continuity of the norm, as established on the first exercise sheet.

To see that T,, — T in the operator norm, Let = € B1(0). Choose N (independent of x)
so large that |T, — T5,|| < § for n,m > N (using the Cauchy assumption), and M = M (x)
so large that |Tysx —Tx| < §. Without loss of generality, M > N. Then, for all n > N,

||Tnl’ - Tl’H < ”Tn{L‘ - T]\{l’H + ||T]w:L‘ - T:EH <€,
and as IV was independent of z, we conclude T}, - T in the operator norm. ]

PROPOSITION 1.18. Let T : X - Y be a linear operator between normed spaces X and
Y. Then the following are equivalent:

(1) T is bounded;
(2) T is continuous;
(3) T is continuous at x = 0.

PRrROOF. (1)=(2): Let T be bounded and x,, - z in X, that is, |z, —z| — 0. Therefore
|Txn = Tz < |T|]xn - 2] -0,

so that 7' is continuous.
(2)=(3) is trivial.
(3)=(1): Suppose T were unbounded, so there existed a sequence (x,)ney € X such

that |x,| <1 but |Tz,| >n. Then (%)HEN is a sequence in X converging to zero, but

x 1
()] i
n n
for all n € N, in contradiction to the continuity at zero. ([

EXAMPLE 1.19. (1) Any (m x n)-matrix gives rise to a linear operator K" —
K™ and in this finite-dimensional situation, linear operators are always bounded
(exercise).
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Counsider the Banach space C([0,1];R) with the supremum norm. A linear func-
tional on this space is given by

Tf /01 F(z)da.

It is bounded because |T'f| < || f| o, whence one also sees that |7 < 1. But since
T1=1, it is even true that |T| = 1.

For each x € [0,1], another bounded linear functional is defined by the point
evaluation:

Sz f = f(x).

It also has norm 1.
Now let X = C!([0,1]) the space of continuously differentiable functions and
Y = C([0,1]), both equipped with the supremum norm. Then the differential
operator D: X - Y, Df = f', is linear but unbounded: For instance, the sequence
(sin(n+))neny € X is bounded (as | sin(n-)|| = 1 for every n € N), but the sequence
of derivatives (ncos(n-))ney is unbounded.

However, if we replace on X the supremum norm by the norm

[flcr =1 £ oo + 1 oo,

then it is easy to check that the differential operator is bounded. We learn from
this that the boundedness of a linear operator depends crucially on the choice of
norms.

Let 1 <p<oo. On [P, define the left shift operator L : [P — [P by

L(zy,x9,x3,...) = (x2,x3,...),
and correspondingly the right shift operator R: 1P — [P by
R(xl,xg,xg, .. ) = (O,xl,xg,l‘g, .. )

It is easy to check that L and R are bounded continuous operators of norm 1.
Note however the following phenomenon: LR is the identity on [P, but RL is not.
This is in contrast to the finite-dimensional case, where the existence of a right
inverse implies the existence of a left inverse, which is always equal to the right
inverse.

Let 1 < p < oo and g the dual exponent defined by the property % + % =1. Let Q
be a measure space with a o-finite measure u. Let g € LI(Q;R). On LP(;R), a
linear functional is defined by

7, [ f@gla)du(a).
and by Hélder’s inequality this is well-defined and bounded, as [T, f| < || f| e | 9] La-

This shows that || T,|| < |g[za. In fact, the reverse inequality is also true: Assuming
1 < p < oo and thus also 1 < ¢ < oo for simplicity, we set

f:g( 9] )Z
9 \ gl s

and find that |f|z» = 1 and |T,f| = |g|re, which implies |T,|| > |g[re. In
summary, [Ty = {g]za-
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It turns out? that all linear functionals on LP(2) are of the form T}, for some
g € L9(Q), so that the dual space of LP(Q2) can be identified with L7(£2) under
the isometric isomorphism'® LP(Q)" - LI(Q), Ty = g.

Similarly, one can show that L'(Q)’ is isometrically isomorphic to L*(Q);
however, the dual space of L= () is not isomorphic to L(Q).

Note in particular that for p = 2, also ¢ = 2, hence the dual space of L?(£2) can
be identified with itself. This is a general feature of Hilbert spaces, as we shall
see in the next chapter.

We shall prove that (I')" is (isometrically) isomorphic to I*°. First of all, it is
quite clear that for any y € [*°,

Tyw:= Z;%'yj
J=

defines a bounded linear functional on I' (i.e., an element of (I!)’). Its norm is at
most |y]e, because

> Ty

J=1

Ty = < zf1fyle-

Let € > 0, then there exists n € N such that |y,| > ||y||eo — € (by definition of the
supremum). Choosing z = e, € !, we discover

ITyenl = lynl > 1Y) — €,

and since € was arbitrary, we conclude |Ty| = |y|c. Hence the linear map {*° —
(Y, yw=T, y preserves norms and therefore is bounded and injective. It remains
to prove surjectivity.

To this end, let T € (I')" and set y := Yio1Tejej. Since |Tej| < [T for all
j €N, we have y € [*. Moreover, for any z €' and N €N,

N N N N
z;xjyj = Zl‘jT@j = ZT(.’E]B]') = T(z;:cjej) .
j= ' j=1 j=

Jj=1

On the right hand side, the argument of T converges in ! to z, as N — oo, and as
T is continuous, the right hand side converges to T'z. The left hand side converges
to Z;‘:’l x;1;, and we conclude T' = T}, and hence the map y — T}, is surjective onto

(1), as claimed.

1.4. The Theorem of Hahn-Banach

The Theorem of Hahn-Banach comes in two versions, pertaining to the extension of

linear functionals and the separation of convex sets, respectively. For simplicity, we shall
assume K = R in this entire section. We note however that a suitable formulation of the
Hahn-Banach Theorem still holds in complex vector spaces (in both versions).

But first of all, we need to recall a fundamental result from the foundations of mathe-

matics, Zorn’s Lemma.

9YWe omit the proof, as it requires the Radon-Nikodym Theorem from measure theory, which some of

you might not know. See [5, Satz I1.2.4].

0An isometric isomorphism between two normed spaces X and Y is a bounded linear bijection

t: X - Y that preserves norms, i.e., [c(z)|y = |z|x for all z € X.
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1.4.1. Zorn’s Lemma. Let M be a set and < a partial order, that is, a relation on
M that is reflexive, antisymmetric, and transitive:
(1) Ve e M :z S x,
(2) Ve,ye M:zSyArySx=x=y,
(3) Vo,y,ze M:xSynysz=x5z.
A chain in M is a totally ordered subset of M, that is, a set C' ¢ M such that
Ve,yeC:xSyvyse.
An element x € M is said to be an upper bound for a subset C c M if
VyeC:y Sz
An element m € M is called mazimal if
VeeM:mSx=>m-=x.

THEOREM 1.20 (Zorn’s Lemma). Let S be a partial order on the nonempty set M. If
every chain in M has an upper bound in M, then there exists a mazimal element m e M.

We will not prove Zorn’s Lemma (see for instance [3, Chapter 7| for an accessible
proof), but just remark that it is equivalent to the axiom of choice. If you don’t want to
prove Zorn’s Lemma, therefore, you may just take it as an axiom (and then prove from it
the axiom of choice, if necessary).

1.4.2. Extension of Linear Functionals. If X is a vector space, then we call a
functional p: X — R sublinear if
(1) p(Ax) = Ap(x) for all A >0 and z € X,
(2) p(z+y) <p(x) +p(y) for all z,y € X.
Obviously, every linear function is sublinear. Another example of a sublinear functional
is given by any norm on X. An important class of sublinear functionals is formed by the
Minkowski functionals that we will discuss shortly.
The following lemma is purely algebraic:

LEMMA 1.21. Let X be a (real) vector space and U c X a subspace. Let p: X — R be
sublinear and | : U — X linear such that

l(z)<p(x) VYzel.
Then there exists a linear extension L: X — R (that is, L |y=1) such that
L(z) <p(x) VreX.

PRrROOF. Step 1. We first prove the extension result for the special case that the codi-
mension of U in X is one; that is, there exists zg ¢ U such that X = span{U,z¢}. In this
case, every x € X has a unique representation as x = u + Axg with v € U and A € R.

Then, L is a linear extension of [ from U to X if and only if there exists r € R such
that

L(z) =1l(u) + A\r
for all z € X with the decomposition x = u + Az given above. It remains to choose r € R
in such a way that L <p.

If A =0, then L(z) < p(x) is satisfied by assumption. For A >0, we have L(u + Axg) <
p(u+ Azg) for all we U if and only if

) 1 (2

for all w e U, which in turn is equivalent to

r < nf(p(v+ o) = 1(v))-
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For A <0, an analogous calculation gives the requirement
r 2 sup(l(v) = p(v - x0)).
velU

Therefore, there exists a suitable r if and only if, for all v,w e U,

l(w) = p(w —=z0) <p(v+x0) = I(v). (1.8)
But, by assumption, for v,w € U we have

l(v+w) <p(v+w) <p(v+x0) + plw—z0),

where in the last step we used the triangle inequality for p. This establishes (1.8) and thus
the statement of the Lemma in the case of codimension one.

Step 2. In this step, we apply Zorn’s Lemma to the set M of pairs (V, Ly ) where V o U
is a subspace of X and Ly is a linear map V — R such that Ly ty=10and Ly <p ly.

On this set, we consider the partial ordering defined by

(V17LV1) pS (VQ,LVQ) if and only if V1 c VQ and LV2 rvlz LV1-

M is nonempty because, by assumption, (U,l) € M. Also, if (V;, Lv; )ier is a totally ordered
subset (a chain) in M, then an upper bound is given by
V=V, Ly(z)=Ly,(x) ifxeV
i€l
indeed, since the (V;) are totally ordered, V' thus defined is a subspace of X, and Ly is a
well-defined linear map.

We are therefore in a position to apply Zorn’s Lemma, and obtain a maximal element
(Xo,Lx,) € M. If we can show Xy = X, we are done. But if Xy # X, then there would
exist 9 € X \ Xy, and by Step 1 we could extend Ly, to a linear map Ly, on the space
X1 =span{ Xy, o} in such a way that Lx, <p lx,, in contradiction with the maximality
of (X(), LXO ) ]

THEOREM 1.22 (Hahn-Banach Extension Theorem). Let X be a normed space and
U c X a subspace. For any bounded linear functional u' € U’ there exists a bounded linear
functional ' € X" such that ' } U =’ and ||2'|| = |u'| (where |- | denotes the operator
norm in X' and U’, respectively).

PRrOOF. For given u' € U’, we apply Lemma 1.21 with the sublinear functional p(z) =
|u'|[|z]. Clearly, for v € U we have u'(v) < |u/||v] = p(v) by definition of the operator
norm, so that the Lemma gives us an ' € X’ that extends v’ and has z'(x) < p(z) for
all z € X. Plugging in —z instead of z, we also have —z'(z) < p(z), so that in fact
|z’ (x)] < p(z) = |u'||z| for all x € X, which implies ||«’|| < ||u’||. On the other hand,

[u'l = sup W(v)]= sup |2'(v)[< sup [2(v)]=]2],
vel, |lv|<1 vel, |v|<1 veX,|v|<1
so that |z'| = ||, and the Theorem is proved. O

The Hahn-Banach Theorem has several important consequences, in particular for the
relation between a normed space and its dual. For instance, the following result charac-
terises the norm in nice duality with the definition of the operator norm:

COROLLARY 1.23. Let X be a normed space, then ||| = supjg < [2'(x)| for all z € X.

ProoF. For all 2’ € X' with 2’| < 1, by definition of the operator norm |z'(x)| < |z].
Conversely, For z € X define a linear functional u’ : span{z} - R by Az — A|z|, which
has norm 1, and extend it by Hahn-Banach to a functional 2’ € X’ of norm 1. Then

() =/ (x) = |z|. 0

From this, another consequence is immediate:
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COROLLARY 1.24. Let X be a normed space and x € X. If 2'(x) = 0 for all 2’ € X',
then z = 0.

Setting = = x1 — x2, we see that X' separates the points of X: If x1 # x9, then there
exists 2’ € X' such that z'(x1) # 2'(x2).

1.4.3. Separation of Convex Sets. Before we state the Hahn-Banach Separation
Theorem, let us introduce a specific class of sublinear functionals:

DEFINITION 1.25. Let X be a vector space and A ¢ X a subset. The Minkowski
functional pa : X - R corresponding to A is defined by

pa(x) :inf{)\>0:§€A}.
A is called absorbing if pa(x) < oo for all x € X.

For example, if A = B1(0) with respect to a norm | - ||, then pa = | - ||.
Recall that a subset U of a vector space is called conver if, for all z,y € U and A € [0, 1],
also Az + (1 -y eU.

LEMMA 1.26. Let X be a normed space and U ¢ X a convex subset whose interior'!

contains 0. Then,

(1) pu(x) < %||x|| for all x € X and for any € >0 such that B.(0) c U. In particular,
U is absorbing;

(2) py is sublinear;

(3) If U is open, then U = p;*([0,1)).

PROOF. (1) The estimate follows from the fact that py < py whenever V c U, and
PB.(0)(7) = %H:CH Since 0 is contained in the interior of U, there exists € > 0 such that
B.(0) c U, and then the estimate implies that py is finite, so U is absorbing.

(2) Tt follows immediately from the definition that py(Ax) = Apy(x) for A > 0. For
the triangle inequality, let x,y € X and € > 0. Pick A, > 0 such that § € U, /% e U, and

A<py(x) +eas well as u < py(y) +e. By convexity of U,
A +
Ty A Y _TTY U,

A+puN A+pp AN+p

whence py(z+y) < A+ p < py(x) +pu(y) + 2¢6. Since € was arbitrary, the sublinearity of
py follows.

(3) If py(x) <1, then there exists 0 < A < 1 such that { € U, and as 0 € U, we have by
convexity £ =AY +(1-X)-0eU.

Conversely, if py(z) 2 1, then § ¢ U for all A < 1. But as the complement U of U is
closed, we have that

LT
z=lim = e U°.
A T\

O

We introduce the notation A+ B :={a+b:a€ A,be B} for two subsets A, B of a vector
space X. Now we are ready to prove the Separation Theorem:

THEOREM 1.27 (Hahn-Banach Separation Theorem). Let X be a normed space, Vi, Vo
X disjoint convex subsets, and V| open. Then there exists ' € X' such that

x'(v1) <x'(ve)  for all vy € Vi, vg € V.

HRecall that the interior of a set U is the union of all open subsets of U.
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PrROOF. We may assume Vj and V5 to be nonempty, since otherwise the statement is
trivial (and rather meaningless).

Step 1. In the first step, we show that if V ¢ X is nonempty, convex, and open with
0 ¢V, then there exists 2’ € X' such that z’ }<0.

To this end, let 29 € V, set yg := —xp and U =V —{zp}. U is still open and convex, and
we have 0 € U but yo ¢ U.

By Lemma 1.26, the corresponding Minkowski functional py is sublinear, and py(yo) >
1. Let Y :=span{yo} and define on Y the linear functional

¥ (Ayo) = Apu(yo), AeR.

Then y' < py ly, because for A > 0 equality holds, and for A < 0 we have y'(Ayo) < 0.
Hence, by Lemma 1.21, we obtain a linear extension z’ of ¢’ such that ' < py. In fact, x’
is bounded, because by Lemma 1.26, for any = € X,

|2 (2)| = max{z'(z),-2'(z)} < max{py(x),pv(-1)} < %HxH,

where € > 0 is such that B¢(0) c U (such e exists because 0 € U and U is open).
If z €V, then x = u -y for some uw € U, and so

a'(x) = 2" (u) - 2 (y0) < pu(u) = pu(Yo),
where we used z’ < py and 2'(yo) = v’ (yo) = pu(yo) > 1. But as by Lemma 1.26 py(u) <1,
we get 2'(x) <0, so that ' € X' is as desired.
Step 2. Let now V7, V5 as in the statement of the Theorem. Set V :=V; — V5. Then V
is convex, because if vy, w; € Vi and vy, wg € Vo, then for A € [0,1],

Avp —v2) + (1= A) (w1 —wa) =[Avg + (1= Nwy] = [Avg + (1 = Nwa] € V] - Va.

Moreover, V' = Uyey, (Vi — {v}) is open as a union of open sets. Also, 0 ¢ V' since V; and
V5 are disjoint.

The application of Step 1 now yields a functional x’ € X’ such that z'(v) < 0 for all
v € V', which means that for all v; € V] and vy € Vo we have 0 > 2'(v) —vg) = 2'(v1) — 2’ (v2),
as claimed. g

1.5. Reflexivity and Weak Convergence

1.5.1. Reflexivity. Let X be a normed space, then X", i.e., the dual of the dual
space of X, is called the bidual space of X. Consider the canonical inclusion ¢ : X - X",

o] : X' > K, ([x](z) =2"(2).

This may seem confusing at first glance. The map ¢ sends an element x - X to an element
t[z] € X that is, ¢[x] is a bounded linear map from X’ to K, and it assigns to ' € X’
the value z'(z).
Since 7’ is linear, then so is ¢. For boundedness, observe
[elz]] = sup [[z](z")]= sup |a'(z)]= ][,

l"fl<1 l="]<1
where we used Corollary 1.23 in the last step. Therefore, ¢ is an isometric (and hence
injective) linear map from X into X"

DEFINITION 1.28. A Banach space X is called reflexive if the canonical inclusion ¢ :
X - X" is surjective.

Note that an incomplete normed space can never have this property, because by Propo-
sition 1.17, the bidual space is always complete, and there can be no isometric isomorphism
between an incomplete and a complete normed space.
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EXAMPLE 1.29. (1) K9 is reflexive: It is known from Linear Algebra that every
element z’ € (K%)' has the form x ~ j(z') -z with j(z') ¢ K% and j: X' - K¢
is an isometric isomorphism. Likewise, every element z” € (K%)" takes the form
z' > i(x")-j(x") for some i(2") e K¢, and i : X" - K¢ is an isometric isomorphism.

Let now z”" € X", then for all 2’ € X',
[i(z")](2") = 2'(i(2")) = j(2) -i(a") = 2" (2),
so that ¢[i(2"")] = 2", and thus ¢ is surjective and K? is reflexive.
(2) Let Q be a measure space. For 1 < p < oo, LP(Q) is reflexive: We have seen that
every element of (LP)" can be identified with an element of L7, where ]lg + % =1.
In turn, every element of (L9)" ~ (LP)" can be identified with an element of LP.

Under these identifications (which can be expressed as isometric isomorphisms as
in the previous example), for any f € LP and g € (L?)" ~ L9, we have

(F)9) = 9(f) = /Q Fadi = £(g),

where, by abuse of notation'?, we used f to denote both an element of LP and
the corresponding element of the bidual, and similarly for g.

(3) We saw in Example 1.19(6) that (/') ~ I°°, where an element y € [* can be
identified with the functional x — ¥%2; z;y;. The canonical map It (1) is
therefore given by

[x](y) = y(x) = imjyj-

We show that this map is not surjective. To this end, let ¢ c [*® be the subspace
of convergent sequences. Then lim : ¢ - K, & — lim, 0 =, is a bounded linear
functional on ¢, which by the Theorem of Hahn-Banach can be extended to a
bounded linear operator L € (I*°)’. Suppose this L were in the image of ¢, that is,
there existed an [ € I! such that L(y) = 2521 Ljy; for all y € [°. But then, for each
keN,

I = L(ex) = lim (ex)n =0,

and so L = 0, in contradiction to L being an extension of the limit operator (which
is of course not identically zero). This shows that [! is not reflexive.

(4) Generally, it is known that [P is reflexive for 1 < p < co but not for p=1 or p = oo,
and the same is true for LP(Q).

1.5.2. Weak Convergence.

DEFINITION 1.30. Let X be a normed space. A sequence (x, )neny € X converges weakly
to x € X if
' (zp) > 2'(x) asn - oo
for every x’ € X', In this case, we write x,, = x as n — oo.
The usual notion of convergence (with respect to the norm) is sometimes called strong
convergence in order to distinguish it from weak convergence.

The weak limit, if it exists, is unique, because X' separates the points of X (Corol-
lary 1.24).

12The argument can be made cleaner, but more complicated, by explicitly spelling out the respective
isomorphisms as in the previous example.
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ExaMPLE 1.31. (1) Every (strongly) convergent sequence is weakly convergent
(with the same limit). Indeed, let ,, > z and 2’ € X’. Then,

[ (n) = 2 ()| = |2 (20 = 2)| < 2|20 - 2] = 0.

(2) Let 1 <p < oco. We know that (IP)" ~ 7 where zl)+% = 1. Consider the sequence

(en)nen € IP. Then for each n € N, we have [e, [, = 1. On the other hand, let y €[4
be given. Since y €19 implies lim,_, o ¥, = 0, we have

y(en) =Y yj(en)j = yn — 0,
j=1

so that e, — 0 although the norms of e, do not converge to zero. In fact, (e,)
cannot converge strongly: If it did, then the strong and weak limits would be
the same (i.e., zero), but then also the norms would converge to zero, which they
don’t.

(3) For 1 <p< oo, consider the space LP(0;1) and set u, = sin(n-). Then (u,)nen is a
sequence in LP(0,1). The dual space is (isomorphic to) L4(0,1). Let g € L(0,1),
then by the Riemann-Lebesgue Lemma (which you might or might not know),

1
lim un(2)g(z)dx =0,
n=eeJo

so that u, — 0. However, as is easy to check, |u,|, does not converge to zero, so

that (u,) is not strongly convergent. This example shows that the gap between

weak and strong convergence is often caused by high frequency oscillations.

We have seen in the last two examples that the norm may ‘drop’ after passing to
the weak limit — e.g., |e,|, = 1 but the weak limit is zero (and thus has zero norm, of
course). This means, in particular, that the norm is not continuous with respect to weak
convergence. In general, we have the following result:

PROPOSITION 1.32 (weak lower semicontinuity of the norm). Let X be a normed space
and x, = x. Then,

[z| <liminf |z,
n—>00

ProOOF. The proof is a one-liner, once we recall Corollary 1.23:

Ji = sup a'(x) = sup lim o/ (2,) < sup Hminf ] '] = lim inf |z, .
l=1<1 e [<1 77 Jars1 "o ni—00

O

A main reason why weak convergence is useful is that it restores some of the compact-
ness properties that got lost in infinite dimensions. For instance, (e, )nen has no strongly
convergent subsequence although it is bounded in the norm |- [, in contrast to the finite
dimensional case (Bolzano-Weierstraft). A weak limit, however, does exist.

A prototypical weak compactness result reads as follows:

THEOREM 1.33 (Theorem of Banach-Alaoglu (reflexive case)). Let X be a reflexive
Banach space with separable dual space. Then every bounded'® sequence (%n)nen has a
weakly convergent subsequence.

REMARK 1.34. The assumption of separability can be removed (see [5, Theorem
I11.3.7]): A bounded sequence in a reflexive space always has a weakly convergent sub-
space.

130f course, a sequence (2, )nev in a normed space is called bounded if sup,, o || < co.
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PROOF. As X' is separable, there is a countable dense (in the operator norm) set
(2] )neny © X'. Let (2 )ken be a bounded sequence in X, then for each n € N, the sequence
(2], (k) ) ken 18 bounded in K.

Step 1. By Bolzano-Weierstraf, we find a subsequence (mjl )jen of (xp)reny such that
x'l(x}) converges, as j — oo. From this, we may select a further subsequence (:B?)jEN such
that xé(w?) converges; and since (w?) is a subsequence of (x;), also x’l(:r?) converges.
Continuing in this way, for each n € N we find a subsequence (z})jey of the original
sequence (g )ken such that (27, (2}))jen converges for all m =1,...,n. Upon setting

e
Yj = xja

we find that (y;);ev is a subsequence of (xj)ren such that (z7,(y;)) en is convergent for
every n € N. (The type of argument used so far is known as a diagonal argument and is
quite standard in analysis.)

Step 2. Let now 2’ € X’ be arbitrary and € > 0. Denote M := supgy |zk| < oo. Pick
n € N such that

€
||95' - 95;1” < 1M

which is possible by density of (z/,)neny in X', Let also N € N be so large that
() = 0y ()| < 5
for k,j > N. Then, for such k, j, we have
| (i) = 2 (y)] < |2 (i) = 27, ()| + |2 () = 23 ()] + Lo () = 2 ()]
<Ma’ -+ <.
since ||y | < M for all k € N. Therefore, (2'(y;));en is Cauchy and thus convergent.

Step 3. Finally we identify the weak limit of (y;), for which we will use reflexivity.
Consider the linear functional [ : X’ - K defined as

(@) = Tim 2 (y;).
]—)00
It is bounded, because

1(2")] = lim o (y;)] < Jimn inf g "] < M]2"],
so that [ € X, As X is assumed reflexive, there exists 2 € X such that «(z) =, and thus
z'(z) =1(z") = lim 2'(y;)
j—o0

for all 2" € X', which means that y; — .
O

Note in particular that Theorem 1.33 applies to the spaces LP and [P: A bounded
sequence in LP (or [P) has a weakly convergent subsequence.

We conclude this section by noting the following interesting connection between weak
convergence and convexity. We saw in Example 1.31(2) that the unit vectors e, though all
contained in the closed set {x € X : |z| = 1}, weakly converge to zero, which is no longer in
this closed set. One might say that (strongly) closed sets are in general not weakly closed.
However, a closed set remains weakly closed if it is convex:

THEOREM 1.35. Let X be a normed space and U c X a closed and conver subset.
Suppose (Tn)neny € U converges weakly to . Then x € U.
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PROOF. We prove the statement only for K = R (as we didn’t bother to prove the
complex version of the Hahn-Banach Theorem). Suppose x ¢ U. Since U is closed, its
complement U€ is open, so that there exists an open ball B(z) that is disjoint from U.
By the Hahn-Banach Separation Theorem, therefore, there exists 2’ € X'\ {0} such that
z'(x +y) <a'(u) for all y € B(0) and u e U. As supjy. 7'(y) = €|2’| by definition of the
operator norm, we get

o' (x) +e| 2’| < 2’ (zn)

for all n € N, in contradiction with x'(z) = lim, e 2’ (27). O

1.6. The Fréchet Derivative

We take a very brief excursion into nonlinear functional analysis, i.e., the analysis
of nonlinear operators between two normed spaces. As in finite-dimensional analysis,
the question arises how best to approximate a nonlinear operator by a linear one near a
given point, and the answer is given by a sort of differential. In analogy with the finite-
dimensional case, therefore, we define:

DEFINITION 1.36 (Fréchet derivative). Let X,Y be normed spaces, U ¢ X open, and
f:U - Y a (not necessarily linear) map. Then f is said to be Fréchet differentiable at a
point xg € U if there exists T' € L(X,Y’) such that

lim f(@o +hv) - f(xo) _
h—0 h

T

uniformly in v € B1(0). In this case, we write T' =: D f(xg).
The map f is called Fréchet differentiable on U if it is so at each xg € U. The function
Df:U - L(X,Y) is then called the Fréchet derivative of f.

It may seem confusing that the derivative of a map X — Y at a point xzq is an operator,
i.e., an element of L(X,Y"). Note however that, for a map R™ — R™, the total differential
(or Jacobian, or whatever you like to call it) is as well a linear map R — R™ represented
by an (m x n)-matrix, so Df(x¢) € L(X,Y") does make a lot of sense.

The idea (well-known from Analysis T & IT) that the derivative should be viewed as a
linear approximation is made precise by the following result.

THEOREM 1.37 (Fréchet derivative as a linear approximation). A map f:U - Y is
Fréchet differentiable at xo € U if and only if there exists T € L(X,Y) and r: U -{z¢} - Y
such that

flzo+u) = f(xo) +Tu+r(u)

and™

m T g (1.9)

1 =
lul~0 ful
In this case, T = D f(xg).
PRrROOF. Suppose that f is Fréchet differentiable at z¢. Setting
r(u) = f(xo +u) - f(zo) - D f(zo)u,

we estimate

r(w) (o ul ) = Fo)

Df(x0) (i) -0

Jul

1475 be precise, the limit condition means: For all ¢ > 0 there exists § > 0 such that |uf < § implies
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as |u| - 0. Note we have used the uniform convergence of the difference quotient, as the
direction i can change as |u| = 0.

Conversely, assume (1.9) for some T" and r as required, and let v € B1(0). Then,

f (o + hv) = f(x0) _ f (o +hv) = f(x0) - T (hv) [r(hv)|
b R Al -l o
uniformly in v € B1(0) as h - 0. O

It is easy to see that the Fréchet derivative is linear: If two maps f,g : U — Y are
Fréchet-differentiable, then so is af + B9 («a, 5 € K), and D(af + Bg) = aDf + fDg. In
fact, several familiar properties of derivatives, like the chain rule, a version of the Mean
Value Theorem, or the Implicit Function Theorem, remain valid in the Fréchet sense. But
instead of developing the theory further'®, let us just give give a simple example.

ExAMPLE 1.38. On C([0,1];R) with the supremum norm, define f: X - X by f(z) =
22 (note x is a continuous function and the square is taken pointwise). For any z,v € X,
fz+hv) - f(x)  2hav+h%?
h - h
uniformly, as h - 0, in v € B1(0). It follows that D f(x) = 2z, that is: the Fréchet derivative
Df(xz) e L(X, X) is the multiplication operator with 2z, so that for v e X, D f(z)v = 2xv.

= 220 + hv? - 2zv

5More on the topic can be learned in Prof. Dall’Acqua’s course Nonlinear Functional Analysis next
term.



CHAPTER 2

Hilbert Spaces

Hilbert spaces are a special class of Banach spaces whose norm stems from an inner
product. Such spaces are in certain ways very similar to (finite-dimensional) Euclidean
space and therefore admit geometric intuition. For instance, a Hilbert space is dual to
itself, has an orthonormal basis, allows for orthogonal projections, etc. The notion of
Hilbert space is fundamental to quantum mechanics.

2.1. Definition and Fundamental Properties

DEFINITION 2.1 (inner product space). A K-vector space X is an inner product space
if it is equipped with an inner product X x X — K satisfying the following:
(1) For all z € X: R> (z,z) >0 with equality if and only if x = 0;
(2) For all z,y,z€ X and o, e K:

(az+ By, z) = oz, 2) + B(y, 2);
(3) For all z,y € X: (z,9) = (y,z).

When K = R, then the complex conjugation in the last axiom does nothing, and we
just have (z,y) = (y,x) (which also entails linearity in the second argument). In this case,
the inner product can be characterised as a positive definite symmetric bilinear form, and
an inner product space over R is often called a Fuclidean space.

If K = C, the inner product is not linear in the second argument, but only linear up
to complex conjugation'; in this case, one says that the inner product is a positive definite
conjugate symmetric sesquilinear® form, and an inner product space over C is also called a
unitary space.

Obviously, K? is an inner product space with the usual inner product (z,y) = Z;l:l x;Y;.-

If X is an inner product space, then

-1 X =R, 2] =V (2,2)

is well-defined, because (z,x) > 0 according to (1). We will show shortly that, as the
notation suggests, | - | is a norm on X, but as a preparation, we first prove the Cauchy-
Schwarz inequality?:

PROPOSITION 2.2 (Cauchy-Schwarz inequality). Let X be an inner product space and
x,y € X. Then,

(@, 9l < =]yl
PrOOF. If y =0, then both sides are zero. So let y # 0 and therefore |y > 0. If A e K|

then from sesquilinearity,

0< (z-Ay,z—Ay) = |z + A\|y|* = Mz, y) - Ay, ).

I\ore precisely: (z,ay + 8z) = a(z,y) + B(z, 2).

2from latin “sesqui” one and a half.

3Please make sure to always spell the Schwarz (Hermann Amandus, 1843-1921) from the Cauchy-
Schwarz inequality correctly. In fact, there is another Schwartz (Laurent, 1915-2002) spelt differently. The
latter is known for the theory of distributions and appears, e.g., in Schwartz space.

26
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The choice A = (9‘*”%) yields

Tyl
(=, ) (=, y)I? |(z, )
0 < o]+ ==yl - 25 = e - =
] ll ll
which implies the statement. O
PROPOSITION 2.3. Let X be an inner product space. Then the map | -|| is a norm on

X.
This norm is called the norm #nduced by the inner product.

PROOF. As (z,z) >0, the map | - | is real-valued and non-negative. We have |z| =0
if and only if (x,x) =0, i.e., if and only if z = 0.
For Ae K and z € X,

[Az] = v/ (Az, Az) = VAP (2, 2) = M| 2]

thanks to sesquilinearity.
For z,y € X, finally,

|z +y|* = (z+y, 2 +y) = (z.2) + (2,y) + (y,2) + (4, 9)
= |z + 29%(z, ) + |y[?
<))+ 2|(z, )| + |y[?
<)+ 2]yl + Iy = () + [y 1)?,

where we used the Cauchy-Schwarz inequality. g

DEFINITION 2.4 (Hilbert space). A Hilbert space is an inner product space which is
complete with respect to the norm induced by its inner product.

So every Hilbert space is, in particular, a Banach space.

EXAMPLE 2.5. (1) R? and C? are (respectively real and complex) Hilbert spaces,
as already noted.
(2) If © is a measure space, then it is easy to check that

(f.9) = /Q f(2)g(@)dz (2.1)

defines an inner product on the vector space L2(€2;K), and this inner product
induces the norm of L?. As L? is complete, we conclude that it is a Hilbert space.
(3) Taking Q = N together with the counting measure, then L?(Q2) = (2, so that in
particular [? is Hilbert.
(4) We can as well equip the vector space C([0,1];K) with the same inner prod-
uct (2.1), but this inner product space will not be complete (its completion is
precisely L?(0,1) — think it over!), so it is not Hilbert.

For most of this section, we will not make use of completeness, so that all results except
Corollary 2.12 are true in (possibly incomplete) inner product spaces.

Two vectors x,y € X are orthogonal if (z,y) = 0. In particular, the zero vector is
orthogonal to any vector in X. One occasionally writes « 1 y to express orthogonality. If
U c X is a subspace, then

Ut={zeX:z1u YueU}

is called the orthogonal complement of U in X. The orthogonal complement is always a
closed subspace, even when U itself is not closed (exercise).
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A (not necessarily finite) family (eg)ge; indexed by a set I is called an orthonormal
system in X if

(exe1) = 0 ifk=+lI,
R T )

PROPOSITION 2.6 (Theorem of Pythagoras). Let (ex)rer be an orthonormal system and
I' c I a finite set of indices. Then, any linear combination x = Y oy crer (cx € K) satisfies:

Jz]? = 3 lexl?.
kel’

PrOOF. Orthonormality and sesquilinearity yield

HxHZ = ( Z Cker, Z Cjej) = Z crCj(er,e;) = Z |Ck|2-
kel’ jel’ J,kel’ kel’

If I' c I is a finite set of indices and x € X, then
Ppo = Z (x,ex)eg
kel’
the orthogonal projection of x onto the subspace spanned by (e)ie;r- By Pythagoras,
| Prz|? = Sher (2, ex)|*.
PROPOSITION 2.7 (properties of the projection). Let x € X, I' c I finite, and (cg)kerr C
K. For the orthogonal projection Ppx we have:
(1) P (Sper cker) = Sper Cerk, in particular: P? = Pp;
(2) [Pra| < .

PROOF. (1) From orthonormality,

P]I ( Z ckek) = Z (Z ckek,ej) €j = Z ck(ek,ej)ej = Z CLCf.

kel’ jel' \kel’ kel kel’
(2) It holds that
|z = Pra|® = |z|® - 2%R(z, Pra) + | Ppx|?

= |z|? - 2% (m, Z (x,ek)ek) + || Ppaz|?

kel’

= |z =2 3 (2 ex)l” + | Prez]®
kel’

= |z]* - | Prra|,

where we used Pythagoras in the last step.
O

An orthonormal system (ey)ges is called a Hilbert basis if for every z € X and € > 0
there exists a finite linear combination such that

T — E CLCL

kel’

<e (I'cI finite, ¢ €K).

EXAMPLE 2.8. (1) For the Hilbert space [?, the unit vectors (e,)neny form a
Hilbert basis.
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(2) We want to find a Hilbert basis for L?(0,1). To this end, note first that the
polynomials are dense in C([0,1]) with respect to the supremum norm, and a
fortiori with respect to the L? norm. Moreover, C([0,1]) is dense in L?(0,1),
hence span{z ~ 2" : n e Nu{0}} is dense. However, the monomials z — z" are not
orthonormal. But they can be orthonormalised via the Gram-Schmidt procedure,
which you hopefully know from Linear Algebra (if not, please give me a shout!).

(3) In the next section we shall see a Hilbert basis for L2, (R, C), the space of 27-

per

periodic locally L? functions R — C.

REMARK 2.9. A basis in the sense of Linear Algebra is then called algebraic basis or
Hamel basis in order to distinguish it from a Hilbert basis. If (eg)kex is an algebraic basis,
then for each z € X there is a finite set I’ ¢ I and coefficients (¢ )ger © K such that
T = Y ey Ckek- In contrast, a Hilbert basis generally only allows to approximate, but not

represent exactly, the vector by a finite linear combination.

You proved in the exercises, using Zorn’s Lemma, that every vector space has a basis.
In a similar way one can show that every inner product space has a Hilbert basis. The
decisive advantage of a Hilbert basis over an algebraic one is that, in many cases, a Hilbert
basis can be explicitly constructed, whereas usually (in infinite dimensions) nothing is

known about an algebraic basis save its mere existence.

THEOREM 2.10. Assume X has a countable Hilbert basis (e )kez. Then for every x € X,

%) N
T = Z (z,er)er := lim Z (z,er)ek,
ke—oo N —oo b N
and for x,y € X we have the identity

(2.) ki (@,e1)(ex,y)-

In particular, Parseval’s identity holds:

oo

lel* = 30 Iz er)l.

k=—o00

PROOF. Let € >0. By assumption there exists IV € N and coefficients (c;)i--n,. v c K

such that

€
< —=.

N
T — Z CLEL
k=—N

Denote Py : X - X the orthogonal projection onto the subspace spanned by (e)x=-n,.

then by Proposition 2.7,

€ N N N
- > || Py (x - Z ckek) ‘ = Z (z,ex)ex — Z ekl ,
2 k=N k=N k=-N
hence in total
N N N N
T — 2 (z,er)ex| < ||z - Z crer|l + Z (z,er)ex — Z crer|| < e.
k=—N k=—-N k=—N k=-N

So we have limpy_ oo Pyx =z and limy_. Pvy =y, and also
> (wer)f < )
k=—00

because the sum on the left hand side equals limy_ o | Pyx|?. Therefore,

o0

N
Y (@er)(en,y) = lim > (z,ex)(ex,y) = lim (Pyz, Pyy) = (z,y),
N—>ook:_N N-—oco

k=—o00

N
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where the last equality follows from continuity of the scalar product (think it over). O

Of course we could as well have indexed our Hilbert basis with N instead of Z, but
taking Z as an index set facilitates notation in the next section.

The following Proposition tells us when a Hilbert space actually has a countable?
Hilbert basis:

PROPOSITION 2.11. A Hilbert space H has a countable Hilbert basis if and only if it is
separable.

PrOOF. If H has a countable Hilbert basis (e, )nen, then

N
{Z Qp€n : Oy EQ,NEN}
n=1

is countable and dense in H (if K = C, replace Q by Q +iQ).

Conversely, let (x,)nen be a countable dense subset of H. We may assume the family
(%n)nen to be linearly independent (otherwise check for every n € N whether x,, is a finite
linear combination of the other vectors, and delete it if necessary). Then, the following
recursion (known as Gram-Schmidt orthonormalisation) turns (i, )pen into a Hilbert basis:

X1 . In— Zz;ll(xmek)ek

= — [ =
lodl” " e = S (s en)en]

er: (n>1).

0

Let H; and Hs both be Hilbert. We call a bijective linear operator U : H; — Hs
unitary if it preserves inner products, that is, if (Uz,Uy)p, = (z,y) g, for all z,y € H;.
Unitary operators are of course bounded with operator norm one. If there exists a unitary
operator between two Hilbert spaces H; and Hs, then these spaces are called isometrically
isomorphic (in particular, they are also isometrically isomorphic as normed spaces).

COROLLARY 2.12. Ewery infinite-dimensional separable Hilbert space is isometrically
isomorphic with 12.

PRrROOF. Let H be an infinite-dimensional separable Hilbert space, which has a count-
ably infinite Hilbert basis (e, )neny by Proposition 2.11. Define U : H — 12 by

Uz = ((z,en))nen-
Then indeed U(z) € 12 by Parseval’s identity, and it is an isometry, because for z,y € H,
(USL‘, Uy) = Z ($> ek)(eka y) = (:L', y),
k=1

where we used Theorem 2.10. As an isometry, it is automatically injective. But U is also
surjective: For any & = (2 )ney € 12, we have

T = U(Z xnen).
k=1

Notice that Y72, zne, € H because H is complete and the sequence (Z{f:l xnen)
Cauchy, because, by Pythagoras,

NeN 18

M 2 M , & )
D 2 | I S e S S 8 )
k=N+1 k=N+1 k=N+1
as N — oo, since (z,)ney € I2. O

4Here7 by ‘countable’ we mean ‘finite or countably infinite’.
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2.2. Convergence of Fourier Series

We exemplify the findings of the preceding section as follows. Let Lier(R;(C) be the
space of measurable functions R — C that are 2m-periodic (i.e., f(z+27) = f(z) for almost
every x € R) and such that

2
1£13 = /0 (@) Pde

is finite. This norm is induced by the scalar product

27
(f,9) = ; f(z)g(z)dz. (2.2)
THEOREM 2.13. For k € Z set
1 .
ep i= ——e'*

V2
Then (ex)rez is a Hilbert basis of L2, (R;C).

per

PROOF. Obviously e, € L2, for all k € Z. Using exp(ikz) = exp(—ikz) and the

per
functional equation of exp, we find that

1 2 —— 1 2T " ”
(ex,€1) = —/ e el dy = —/ e e " dx
0 0

2 T

1 2T .
_ _/ Gitk=Dz g
2 0

1 k=1,
s T =0 itk L
Therefore, (e)kez is an orthonormal system.

To see completeness, let € > 0 and f € Cpe,(R; C); by Theorem 1.14 there exists a linear

combination Y& cpe’™ such that

sup <E.

z€[0,27]

N .
f@) = > cpe™
k=N

On the bounded interval [0,27), the supremum norm controls the L? norm, more precisely:

N Bk 2 N P
Hf— > cre® =/ fl@)- > crpe™®| dx
k=—N 2 0 k=—N
N 2
<2m sup |f(z)- 2 cre™®| < 2me?,
z€[0,27] k=—N

and we also know that Cper(R;C) is dense in L2, (R;C) (in the norm | - ||2), so that finite

per
linear combinations of (ey)kez are dense in Lf)e,,(R; C). O

Let f € LZeT(R;(C). We write f(k) for the inner product (f,ex) and call it the k-th
Fourier coefficient of f. Writing it out, we have

1 27

fk) = — z)e Fdy.

Theorem 2.10 then tells us:
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THEOREM 2.14 (L2-Convergence of Fourier Series). Let f € Lzz,e,,(R,(C), then
1

i f(k)e™ (2.3)

2T koo

f

and we have Parseval’s identity:

2 00
| 1@z = 3 1P
0 k=—o00
The series (f(k))rez is called Fourier series of f.
As remarked in Corollary 2.12, the Fourier series thus gives an isometric isomorphism
between Lfm(R;C) and [2.

2.3. Orthogonal Projection and the Theorem of Riesz-Fréchet

Orthogonal projections can be defined not just onto a subspace, but onto any closed
convex (nonempty) set. We will show that such a projection is well-defined, and that it has
geometrically intuitive properties. After that, as a by-product, so to speak, we characterise
the dual space of a Hilbert space. It turns out that every Hilbert space is essentially self-
dual, that is, isometrically (anti-)isomorphic to itself. This statement is known as the
Riesz-Fréchet Theorem.

2.3.1. Orthogonal Projection onto a Closed Convex Subset. We have already
made sense of the orthonormal projection onto a finite-dimensional subspace. However,
the concept extends way beyond such subspaces.

Let H be Hilbert and C ¢ H a nonempty closed convex subset. If x € H, then we call
an element Z € C' a prozimum of z in C if

|-z < |z—c| VeeC.
In other words, the proximum (if it exists) minimises the distance |z —¢| among all c € C.

THEOREM 2.15 (existence and uniqueness of the proximum). Let H be Hilbert and
@+ C c H closed and convex. Then, for every x € H there exists a unique prorimum in C.

PROOF. Let x € H. Then there exists a sequence (2, )ney such that
|2 — 2| > d:=inf{|x-c|:ceC} <o
as n — oo.
We will use the following auxiliary identity: For u,v € H,
Ju+ 0 + u = 0] = 2]u]® + 2]v]?, (2.4)
which is immediate to verify. Apply this with v :=z -z, and v := z,, — x to get

|7 — meQ = 2]z - xn”Q + 2|z - meQ -2z - zp - xm”Q
2

1
= 2Hx—$nH2 + 2H:c—:cmH2 4|z - §(xn - Tm)

<2z —JL'n||2 +2|x —acm||2 — 4>
> 2d%+2d% -4d? =0

as m,n — oo, where we used %(:pn + &) € C by convexity. Therefore, (zy,)nen is Cauchy.
Since H is complete and C' is closed, we infer the existence of a limit & € C'. By continuity
of the norm,

|z -] = lim |z -2, =d,
n—oo

so that T is a proximum.
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It remains to show uniqueness. Suppose T and Z are two proxima. Invoking once
more (2.4) with u=x -2 and v =2 -2,
2
1 1
+ oz -l > d®+ Sz -2,
4 4

1 1 1
B=Zz-z2+>|z-2)%=|z-=(z+2)
2 2 2

whence |Z - | =0 and so T = Z. O

DEFINITION 2.16. Let C' be nonempty, closed and convex. The map P: H — H that
maps x to its proximum in C' is called the orthogonal projection onto C.

Note that P is, in general, not linear.

LeMMA 2.17. Let C be nonempty, convex, and closed. Then T € C' is the prozimum of
x € H in C if and only if

R(x-z,y—-7)<0 VyeCl. (2.5)
PROOF. Suppose Z is the proximum of x in C, and let y € C'. By convexity,
AM+(1-Nz=z2+ANy-z)eC
for all A € [0,1]. Since Z is the proximum, for every A € [0, 1],
o =22 < |2 - (3 + My -2)I?
= o - 2]2 - 22% (2 - 7,y - ) + Ny - 7l%,
whence

R(x -7,y -7) < ~|y-z|?

ro | >

for A e (0,1]. Since this holds for arbitrarily small positive A, (2.5) follows.
Conversely, assume (2.5) and let y € C'. Then,

le—yl? = l(z~2) + (@-9)|* = |z - 2)|* - 2R(z - 2,y ~2) + |y~ 2|* > | - 2,
so that z is indeed the proximum. O

LeMMA 2.18. Let H Hilbert and C c H nonempty, closed and convexr. Then the
orthogonal projection P : H — H s Lipschitz continuous with Lipschitz constant one,
that 1s,

|Pz—Py| <|z-y| Vz,yeH.
PROOF. Let x,y € H. By the previous lemma, we have
R(x - Pr,z-Px)<0, R(y-Py,z-Py)<0 VzeC.
Pick z = Py in the first and z = Pz in the second of these inequalities, we get
R(z - Pz, Py—- Px) <0, -R(y-Py,Py-Px)<0.
Adding both yields
0> NR(z - Pz + Py—y, Py - Px) = |Py - Pz|* + R(z -y, Py - Px),
so that rearranging and the Cauchy-Schwarz inequality result in
[Pz - Pyl < |z - yl| Pz - Pyl.

The following result is about the special case of a closed subspace.

LemMA 2.19. Let H be Hilbert and Hy ¢ H a closed subspace. Then the orthogonal
projection P: H - H onto Hy is a bounded linear operator whose norm, unless Hy = {0},
is one. Also, z = Pz if and only if x — z € Hy.
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ProoF. Let x € H. From Lemma 2.17 we know that the orthogonal projection is
characterised by R(z — Px,y— Px) <0 for all y € Hy. But since Hy is a subspace, y € Hy if
and only if y+ Px € Hy, and the same is true for —y+ Px as well as +iy+ Pz. It follows that
the orthogonal projection is characterised by (z— Px,w) = 0 for all w € Hy, or equivalently,
r—PxeH.

Let a,8 € K and x,y € H. Then, as Hy is a subspace, aPzx + 8Py € Hy, and we have
for each w e Hy:

(ax + By — aPx - BPy,w) = a(x - Px,w) + B(y — Py,w) =0,

whence P(ax + fy) = aPx+ Py, so P is linear. By Lemma 2.18 (setting y = 0), |Pz| <«
for all z € H, so that |P| < 1; but also | P| > 1 because restricted to Hp, P is the identity.
In total we see |P| = 1. O

2.3.2. Characterisation of the Dual of a Hilbert Space.

THEOREM 2.20 (Riesz-Fréchet). Let H be Hilbert and x' € H'. Then there exists exactly
one y € H such that

2 = (). (2.6)

PROOF. As z’islinear and bounded, Hy := ker z’ is a closed subspace of H. If H3 = {0},
then Hy = H: Indeed, If there were x € H \ Hy, then 0 #+ x — Pz and = — Pz € Hy by
Lemma 2.19, contradicting Hy = {0}. So 2’ = 0, and then the choice y = 0 uniquely
satisfies (2.6).

Otherwise, we may choose y; € Hy such that z'(y1) = 1. Then, for any = € H,
x—a'(x)y; € Hp, hence

0= (z-2'(x)y1, ) = (z,51) - 2'(2) |1 ]*.
Thus, y = ”;’# satisfies (2.6).
For uniqueness, Suppose z is another vector fulfilling (2.6). Then,

ly=21*=(y-29) - (y-2z2)=a'(y-2)-2'(y-2) =0,
S0 z =Y. ]

Owing to this theorem, there exists a bijective map T : H - H', y » T[y] € H,
such that (z,y) = T[y](z) for all 2 € H. This map is antilinear, that is, T[ay; + By2] =

aT[y1] + BT [y2]- Tt is norm-preserving, because

ITy]ll = sup [TTy](x)| = sup |(z,y)[ = [y|
ll<1 lzl<1
(simply set x = ﬁ)
Hence, the Riesz-Fréchet Theorem tells us that a real Hilbert space is isometrically
isomorphic to its dual®, and a complex Hilbert space is ‘isometrically anti-isomorphic’ to
its dual.

2.4. The Spectral Theorem for Compact Self-Adjoint Operators

In Linear Algebra you learn that a real symmetric matrix A is diagonalisable, meaning
that there exists an orthogonal matrix O such that OAOQ? is diagonal. Equivalently, there
exists an orthonormal basis of eigenvectors of A. In a Hilbert space H, it turns out that
for compact operators in L(H, H), the situation is very analogous: If the operator is self-
adjoint (which is the analogue of symmetry) and compact, then there exists a Hilbert basis
of eigenvectors of the operator. The assumption of compactness is crucial as it puts us

5In fact we have only seen that T preserves norms, but we have not considered inner products.
However preservation of the latter follows from preservation of norms by the polarisation identity (z,y) =
ilz+yl? - fle -yl
1 1 :
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into a similar situation as in the finite-dimensional case. The theory of diagonalisation, in
a broad sense, is called spectral theory.

For most of this section we will be occupied with a clarification of the notions of self-
adjointness, compact operators, and spectrum. The actual proof of the spectral theorem
will then not be particularly difficult.

2.4.1. The Adjoint Operator.
DEFINITION 2.21 (adjoint). Let H be Hilbert and 7' € L(H,H). Then an operator
T* e L(H,H) is called its adjoint if
(Tz,y) = (x,T"y) Va,yeH.

For instance, if H = R? and an operator is represented by a (d x d)-matrix A, then A’
represents the unique adjoint, because for z,y € R,

d d
Az y=Y Aumyr = Y. Ay, = - Aly.
fele fele

Likewise, the unique adjoint of a complex matrix A € C*? is given as A* := At

THEOREM 2.22 (existence & uniqueness of the adjoint). Let H be Hilbert and T €
L(H,H). Then there ezists exactly one adjoint operator T* € L(H,H) for T, and |T™*| =
171

ProoOF. This is a straightforward consequence of the Riesz-Fréchet Theorem: For y €
H, define the linear functional z ~ (T'z,y), which is bounded by |T||y|. By Riesz-
Fréchet, there exists a unique T*y € H such that (T'z,y) = (z,T"y). It remains to show
that T% : y » T*y is linear and bounded with norm |7T°|.

For linearity, note that for A\, Ao € K and y1,y2 € K,

(2, M T y1 + MaT y2) = Mz, T 1) + Ao (2, T y2)
=M (T2, y1) + Ao (T2, y2) = (Tz, My1 + Aoy),

whence T*(A1y1 + Aa2y2) = AT y1 + AoT o follows by virtue of uniqueness in the Riesz-
Fréchet Theorem.
For boundedness, observe

|7 = sup |Tz| = sup sup [(T,y)|= sup sup |(z,T7y)| = [T"],
EE =<1 )1 =<1 yl<1

where we used the theorems of Hahn-Banach and Riesz-Fréchet to write |z = supj, < [(z,y)|-

DEFINITION 2.23 (self-adjoint operators). An operator T' € L(H,H) is called self-
adjoint if T =T7.

For instance, in R? a matrix is self-adjoint if it is symmetric, and in C4 it is self-adjoint
if it is Hermitian, that is, A* = A.
As another example, the orthogonal projection onto a closed subspace of a Hilbert
space is self-adjoint, as you already saw in the exercises.
PROPOSITION 2.24. Let H be Hilbert and T e L(H,H).
(1) Let K =C. Then T is self-adjoint if and only if (Txz,x) €R for all x € H.
(2) If T is self-adjoint, then | T = supj,j<1 |(T'z, x)|.
PROOF. (1) Let T be self-adjoint. Then, for any = € H,
(Tz,z) = (x,Tx) = (Tx,x),
so (Tz,x) e R.
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Conversely, suppose (Tx,z) € R for all x € H. Let z,y € H and X € C, then
(T(x +Ay), + Ny) = (T, 2) + N(Ta,y) + M(Ty,x) + N*(Ty, y).

By assumption, complex conjugation of this equality only affects the middle terms on the
right hand side, so that

(T(z+M\y),z+ M y) = (T, z) + My, Tx) + Xz, Ty) + (N (Ty,y).
Subtract both equalities to obtain

MTz,y) + M(Ty,z) = Xy, Tz) + Mz, Ty).
Set first A =1 and then A =4 in this equality to obtain

(T%,y) + (Ty,l‘) = (va‘T) + (Q’J7Ty),
—i(Tz,y) +i(Ty,z) =i(y, Tx) —i(x,Ty).

Dividing the second line by ¢ and then adding both equalities, we arrive at (T'y, x) = (y, T'x),
so that T is self-adjoint.
(2) Denote C :=sup,)<1 |(T'z, x)|. Clearly, C < |T||. For z,y € H, we have

(T'(z+y), z+y)=(T(z-y), 2-y) = 2(Tz,y)+2(Ty, ) = 2(Tz,y)+2(T'z,y) = 4R(T'z,y),

where we used the self-adjointness of 7. From the definition of C' and equality (2.4) it
follows that

AR(Ta,y) < C(Jlz+yl* + o - yl*) = 2C (|| + [y]*).

In particular, if |z = |y| = 1, then R(Tx,y) < C. Replacing = by e**z, where s € R is
chosen such that

e (Tz,y) = |(Tz,y)|,

we conclude |(T'z,y)| < C, which proves the statement as [T = sup|,-jyj-1 [(T7,y). O

2.4.2. Compact Operators. The content of this and the next section is not specific
to Hilbert spaces, so we work more generally in normed spaces again.

An operator T': X - Y is called compact if it maps bounded sets to precompact ones,
that is:

DEFINITION 2.25 (compact operators). Let X, Y be normed spaces and T: X - Y a
linear map. It is compact if, for every bounded sequence (2, )nen, the sequence (T2, )nen
has a convergent subsequence.

Compact operators are always bounded: Otherwise, there would be a bounded sequence
(2 )nen such that |Tz,| > n for all n € N, and this cannot have a convergent subsequence
as convergent sequences are bounded.

EXAMPLE 2.26. A bounded operator X — Y whose range has finite dimension is com-
pact, by the Theorem of Bolzano-Weierstrak. Such operators are called finite rank opera-
tors. For instance, orthogonal projections from a Hilbert space onto a finite-dimensional
subspace are finite-rank operators. One can show that limits (in the operator norm) of
sequences of finite rank operators are still compact. The converse question — whether every
compact operator is a limit of finite-rank operators — was open for decades and only solved
in 1972 by Per Enflo (the answer is ‘no’).
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2.4.3. The Spectrum of an Operator. The following concepts (resolvent and spec-
trum) are known from Linear Algebra, at least in the finite-dimensional case. The idea
is that the spectrum of a square matrix A is the set of its eigenvalues, which coincides
with the set of A\ € K for which the matrix® AI — A is singular (i.e., A is a root of the
characteristic polynomial of A). Trivially reformulated, we can also say that the spectrum
is the complement in K of the set of A for which A\l — A is invertible.

Analogously, we define:

DEFINITION 2.27 (resolvent and spectrum). Let X be a normed space and T € L(X, X).
The resolvent set p(T) c K is the set of all A\ € K for which \I — T is bijective and
(M -T) ' e L(X,X). For Ae p(T), we call

R\T):=(\-T)"!

the resolvent of T in A.
The complement o(T) :== K\ p(T) is called the spectrum of T.

One is tempted to identify o(7") with the set of eigenvalues of T', i.e., the set of A € K
such that there exists X 3 x # 0 satisfying Tz = Ax. In finite dimensions, this is certainly
true. However, we have the following counterexample: On [2, consider the right shift
operator R as in Example 1.19:

R(l‘l,l‘g,{l}g, .. ) = (O,IEl,.TQ, . )

Obviously, R is not surjective, hence 0 ¢ p(R) and so 0 € o(R). However, 0 is not an
eigenvalue, as Rx = 0 implies x = 0. The converse is true: Every eigenvalue belongs to the
spectrum. The set of eigenvalues of an operator is called its point spectrum.

The following looks like the summation formula for a geometric series:

LEMMA 2.28 (Neumann Series). Let X be Banach and T ¢ L(X,X) with |T| < 1.
Then, I —T is bijective, (I -T) ™' e L(X,X), and

(I-T) "= i ™.
n=0

PROOF. Since X is complete, then so is L(X,X) by Proposition 1.17. From the
definition of the operator norm, one sees that |PS| < |P]|S| for linear operators P, S €
L(X,X). Therefore, |T"| < |T'|™ for any n € N, and so

(o] o0 1
I < 2, 17" = < 0o,
n;) HZ% 1-|T]

and Y07 T™ is absolutely convergent in L(X, X). But in Banach spaces, absolute conver-
gence implies convergence, hence Y77 T™ =: S € L(X, X), and we have

N
I-T)S=1lm (I-T)S T"= lim (I -TN*1) =T
(I-T)5 = Jim (I=T) ), T" = lim ( )=1,

and similarly S(I - T) = I. Therefore, S = (1-T)7!, as claimed. O

THEOREM 2.29 (compactness of the spectrum). Let X be Banach and T € L(X,X).
Then o(T) c K is compact with |\ < |T| for all A€ o(T).

ProOF. If |\| > |T||, then |A™'T| < 1, and by Lemma 2.28, I — A™'T is invertible with
bounded inverse, and so is A\I =T = A(I = A™'T"). This shows || < || for all A € o(T).

It remains to show that o(7T) is closed, or equivalently, p(T") is open. To this end, let
Mo € p(T) and €:= |[R(Xog, )1 > 0. If A e Bc(\g), then

M-T=XI-T-MN-NI=MI-T)[I-No-N)(NI-T)"].

6Here and in the following, we denote by I the identity matrix, or the identity operator.
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Set R:= (Ao —A)(Aol —=T)"!. The computation shows that A — T will be invertible, with
continuous inverse, if I — R is (as Aol — T is invertible with continuous inverse). But, by
choice of ¢,

IR] < Ao = Al[R(Ao, T) | < €[ R(Ao, T)| = 1,

so the claim that X € p(T") follows from Lemma 2.28. Therefore, the resolvent set is open
and the spectrum is compact. O

LEMMA 2.30 (spectrum of the adjoint). Let H be Hilbert and T € L(H,H). Then,
o(T*) =o(T), where the overline denotes complex conjugation. In particular, the spectrum
of a self-adjoint operator is real.

PROOF. Note first that, for any two operators S,T € L(H,H), (ST)* =T*S*, because
for x,y € H we have (STz,y) = (Tz,S*y) = (z,T*S*y).
Now let A € p(T'). By definition of the resolvent,

I=(\-T)R(\,T)=R\T)\ -T),
and therefore

I=I"=[(AN[-T)R\\,T)]* = R\ T)*(A-T%)
and similarly

I=I"=[R\T)N -T)]* = A-T")R(\,T)".

This shows R(A\,T)* = R(\,T*), so that the resolvent set of T* is the conjugate of the
resolvent set of T'; here one uses that an operator is invertible with bounded inverse if and
only if this is the case for its adjoint (note (S*)~! = (S§71)*). Therefore, the same is true
for the spectrum: o(7%) = o(T). O

2.4.4. The Spectral Theorem.

THEOREM 2.31 (Spectral Theorem for compact self-adjoint operators). Let H be an
infinite-dimensional Hilbert space and T € L(H,H) compact and self-adjoint. Then there
is an orthonormal system (ep)nen and a sequence (Ap)nen of real numbers with |A,| ~ 0
such that, for each r € H,

Tz = Z A, en)en.

n=1

In particular, Te, = Apen for every n € N, so that the A\, are eigenvalues of T.

Represented in the orthonormal system (e, )ney (extended by a Hilbert basis of ker T if
necessary), 7' is thus in a sense an N x N diagonal matrix with diagonal entries A,. This is
analogous to the diagonalisation of a symmetric (or Hermitian) finite-dimensional square
matrix in Linear Algebra.

ProoF. We may assume T # 0, as otherwise the statement is trivial.
Step 1. We show first o(T) c [-|T|, |T|], and |T| or —||T"|| is an eigenvalue of T. The
first assertion follows immediately from Theorem 2.29 and Lemma 2.30.
From Proposition 2.24, we obtain a sequence (&, )neny With |, | < 1 such that [(Txy,, z,)|
IT| =2 A >0 as n — co. We assume lim,,, o (T'zy,x,) > 0 (otherwise set A = =T’ in the
following).
By compactness of T', we may assume (TZy, )ney to be convergent. Next, observe that
limsup || Tz, — Az | < imsup([| Tz, |2+ X2 |20 |2 =22 (T, 2,)) < A2+A2 =207 = 0,

n—oo n—oo
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where we used the self-adjointness of T'. This shows that, as Tz, converges, so does Az,
and (since A # 0) therefore x,. Set x :=limy, oy # 0. As T is continuous,

Az = lim (Azy,) = lim Tz, =Tz,
n—oo n—oo

so that A = |T| is an eigenvalue of T'.

Step 2. By Step 1, Ay = £|T| is an eigenvalue of T. Let e; be a corresponding unit
eigenvector. Set Rp :=span{ej }*, which is a closed subspace of H. Note TRy c Ry, because
if x L ey then

(Tx,e1) = (z,Ter) = A1 (z,e1) = 0.

Also, the restriction 71 =T I'g, is of course still compact and self-adjoint.

We may therefore iterate Step 1 to obtain an orthonormal system (e, )nen of eigenvec-
tors of T' with eigenvalue \,, = £|T,,||, where T, is the restriction of T to span{es,...,e,}*.
Clearly, |A\,| = | T, is non-increasing in n.

Step 8. It remains to show that (ey)nen is a Hilbert basis for the range of T. To this
end, set

H,, :=span{e, : n € N},

which is a closed subspace of H. Write Ry, := HL . Again, TRo, € Roo. Denote Too :=T g,
and P, the orthogonal projection onto Re.

The orthogonal projection of x € H onto He is given by ¥, n(x, e, )en, so that x can
be written as

=Y (,en)en + Pot.
neN
Applying T', therefore, yields,
Tz = Z Az, en)en + Too Poot,
neN
so it suffices to prove Te = 0. By construction, |Tel|| < |75 | = |An| for all n € N. We shall
show |A,| = 0.

Indeed, suppose there were a subsequence (A, )gen converging to o # 0. By compact-
ness of T', Tey, = Ap, €n, would also have a convergent subsequence, and therefore (due to
the assumption A\, — p # 0) also (ep, )ken would have a convergent subsequence, which
is doesn’t (because |ey, — ¢;| = /2 for k #1). This shows |\,| - 0 and thus completes the
proof. O

EXAMPLE 2.32. (1) Let (en)n=1,...,~ be a finite orthonormal system in an infinite-
dimensional Hilbert space H, and denote Hy = span{e, :n=1,..., N}. Then the
orthogonal projection onto Hy is represented as

N
Pz = Z (z,en)en,

n=1
so P has eigenvalues 1 and 0.
(2) This example will be a bit sketchy, but very instructive nevertheless.
Consider functions in L2_.(R;C) with f(0) = \/%fo% f(x)dz = 0. As this
integral condition is inherited by L? limits, such functions form a closed subspace
of L2, (R;C) and thus a Hilbert space H in its own right. Define the antiderivative

per

operator I : H - H by

T 21
If(z) = /0 f(t)dt+% /0 LE(t)dt.

Indeed, (If) = f for almost every z € (0,27), and I does map into H as If is
continuous for f € H (so a fortiori L? in [0,27)), periodic (because If(2n) =
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I1f(0)= % 0277 tf(t)dt)), and f If(x)dx =0, as can be seen by an elementary
integration exercise. Obv1ously, 1 is linear.

We want to show compactness of I. Recall the Arzela-Ascoli Theorem: A
sequence of continuous functions (Fy, )ney : [0,27] = C has a uniformly convergent
subsequence if it is uniformly bounded and is equicontinuous (meaning that for all
€ > 0 there exists 6 > 0 such that for all n € N, |x—y| < § implies |F,,(x) - F,,(y)| < €).

Let (fu)new be bounded in H (hence in L?). Then (If,)ney are bounded
pointwise by

2w 2w T
[0 [0 (VEr - L i

where we used Hoélder’s inequality with p = ¢ = 2. But this is bounded indepen-
dently of n.
For equicontinuity, we find

/ fu(t)dt| < / Fa (Ot <z =3l ful 12,
Yy Yy

again using Holder’s inequality. Since the right hand side becomes arbitrary small
uniformly in n, we infer equicontinuity. The Arzeld-Ascoli Theorem thus gives a
uniformly convergent subsequence of (Ify,),, which a fortiori converges in LZ.
This shows that I : H - H is compact.

Since I is compact, then so is I? (think it over: the composition of compact
operators is again compact). And I? is self-adjoint: If F' = I?f, then F" = f almost
everywhere and F' € H. In fact F is uniquely determined by these properties
(why?). Integration by parts therefore gives, for f, g€ H,

(IQfag) = (Fv (Izg)”) = _(F,7 (129),) + [Fa Ig]gﬂ—
= (F",Ig) - [F'.I’g] " + [P IgT" = (f, ).

(L fn(x) =1 fn(y)| =

where the boundary terms vanished thanks to periodicity. Hence, the Spectral
Theorem gives us an orthonormal system and a family of eigenvalues such that

= Z A f,en)en.
neN

In fact, the Hilbert basis (en)nez. oy for H from Section 2.3 does the job: By
explicit computation of the integrals, it turns out that for e, (z) = ﬁe ,

2
I"e, = ~—56n,
n

SO )\nz—n% for n e Z ~ {0}.
f(n)

The Fourier coefficients of I?f are therefore given as — ~z-- Conversely, if
F ¢ H is twice differentiable, then the second derivative operator is represented
in terms of the Fourier series being multiplied by —n?. One therefore says that

the Fourier transform H — 1?(C) diagonalises differential operators.

2.5. Reproducing Kernel Hilbert Spaces

The theory of Reproducing Kernel Hilbert Spaces has become an important concept in

machine learning, where the ‘kernel trick’ is used for nonlinear classification problems in
Support Vector Machines, for example. We discuss some basic theory and take a glimpse
into applications. For further study of the topic, we refer to [4].
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2.5.1. Basic Concepts and Examples. Let X be a set, then the set KX of maps
X — K forms a vector space under pointwise addition and scalar multiplication.

DEFINITION 2.33 (RKHS). Let X be a set. A subset H c K¥X is called a Reproducing
Kernel Hilbert Space (RKHS) if H is a Hilbert space with some inner product (-,-), and if
for each z € X the evaluation functional

E,:H - K, Ex(f):f(x)
is bounded.

Note that the main condition (boundedness of E,) is not satisfied in quite typical cases.
For instance, L? is not RKHS: L? does not consist of functions, but of equivalence classes
of functions, so that the evaluation map is not even well-defined. We will see examples of
RKHS soon.

Let H be an RKHS. By the Riesz-Fréchet Theorem, for any x € X there exists a unique
k., € H such that

E:r(f) = (fakm) Vf€H~

DEFINITION 2.34 (reproducing kernel). In the situation as described, the reproducing
kernel of H is the function K : X x X — K defined by

K(z,y) = ky(x) = (ky, kz).

EXAMPLE 2.35. e K% viewed as the set of maps {1,2,...,d} - K, is an RKHS,
because in K? in fact every linear functional is bounded. The evaluation functional
E), : K? - K is simply given as Ey(z) =z (k=1,...,d), and the corresponding
representation from Riesz-Fréchet is ki = ey, the k-th standard unit vector. The
reproducing kernel, therefore, is given by
K(k,1) = (e, ex) = -

e Let H be a real Hilbert space and H' its dual, which is isomorphic to H by the
Theorem of Riesz-Fréchet via an isometric isomorphism 7' : H — H'. In particular,
H' is a Hilbert space in its own right, with inner product (2',y’) = (T~12’, T71y/).
We claim that H' c K is RKHS. Let 2 € H, then

E(y) =y (x) = (2, T7"Y) = (Tx,y),

which of course is bounded with norm |z| because |77} = 1. Moreover, k, = Tx
and therefore

K(l‘,y) = (ky’kx) = (Tvax) = (ﬂf7y),

so that the reproducing kernel is simply the inner product in H.
e Let X =(-1,1) c R and define

H:{f:X—»R: Jael?(R) VeeX: f(z)= Zakxk}.
k=0

Estimating by Cauchy-Schwarz and geometric series, we find

E akxk

k=0

So that the series converges absolutely on X and thus H ¢ R¥ is well-defined.

Of course, H is a vector space as [ is. For ease of notation, let us denote f =
Y72 apx® instead of f = Y52, ap(-)*. Define a linear map

¢o:H — l2(R), gb(i akxk) =a
k=0

o o 1/2
1
< S agl|z"| < a2 (Z 3«"%) < llaf2 ; (2.7)
k=0 k=0 V1-22
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and set

(f,9) = (¢(f), 0(9))

for all f,g e H. It is easy to check that this defines an inner product on H. Also,
completeness of H under this inner product follows from completeness of 12, so H
is a Hilbert space.

For the evaluation functional E, (x € X), notice

1 1
V1-22 V1-22

so that for each z € X, F, is bounded (although the bound is not uniform in X).
Thus, H is an RKHS.
Let us compute the reproducing kernel. Let y € X, then ky, = Y72, yFak,

[Ex(H)] = 1f (@) < ale

= |1

because
(i akxk, k:y) = i akyk =FE, (i aka:k) .
k=0 k=0 k=0
Therefore,
K(r.y) = (k) = 3 sty =
k=0 -y

2.5.2. The Moore-Aronszajn Theorem. The reproducing kernel of an RKHS turns
out to be positive semidefinite:

ProprOSITION 2.36. Let H be RKHS and K : X x X - K its reproducing kernel. Then
K is positive semidefinite, i.e., for any finite set {x1,...,xn} ¢ X of pairwise distinct
elements, the matriz K(xp, )k, -1, N 15 positive semidefinite.

ProOF. Let ay,...,ay e Kand x1,...,xny € X, then

N N N 9
>, @K (zg,m1) = ) (Qukay, arkay) = | Y ke, [ 2 0.
k=1 k=1 pes

Obviously, K is also antisymmetric, as K(z,y) = (ky, k) = (kz, ky) = K(y, ).
The converse is of course more interesting:

THEOREM 2.37 (Moore-Aronszajn). Let X be a set and K : X x X — K antisymmetric
and positive semidefinite. Then there exists an RKHS H whose reproducing kernel is K.

PROOF. Define
Ho :=span{K(-,y) :y € X}.

Then, Hy is certainly a vector space contained in K¥X. On Hy, we define the inner product

(i K (- yr), iﬁzK(vzz)) = i iakEK(zlayk)'
=1 i-1 j=1i=1

Is this map even well-defined? After all, there might be several ways to represent the
same element of Hy as a linear combination of maps K (-,y). So assume Y1 apK (-, yx) =
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Z;:l ’YJK(v xj)v then

(Z%K( Yk), ZﬁkK( Zz))=§:1
-y

=1

M3

axBiK (21, yx)

~
Il
—_

viBiK (21, )

IMS

= (i YK 5), iﬁkK(" Zl)) ’
j=1 =1

and similarly one checks the independence of the map of the representation of the second
argument (for this, we would use antisymmetry of K).

Let us check this is really an inner product. Clearly, it is sesquilinear and antisym-
metric, as K is antisymmetric. It is also positive semidefinite, because K is positive
semidefinite.

For positivity, let f € Hy be such that (f, f) =0, and let g € Hy. We first want to show
(f,g9) =0. For X € K, note

0<(f+Ag, f+Ag) = (f, )+ (9, 9) +2R(A(f,9)) = NP (9, 9) +2R(A(f.9))- (2:8)

If (g,9) =0, then (f,g) = 0 follows by choosing A = £(g, f). If, on the other hand, (g, g) # 0,
then set

_(f9)
(9.9)
so that (2.8) becomes (using (g,g) > 0)
A%

eplacin v e\ if necessary, we get £|\||z| > e for all A, which is possible only when
Replacing A by e\ if get £|\ 2
z=0.

But as (f,g) = 0 for all g € Hy, we can take in particular g, := K(-,y) for any y € X,
which gives

0=(f,9y) = f(y) VyelX,

whence f =0. So we have defined an inner product on Hy.

Let now H be the completion of Hy under the given inner product; that is, H is the
space of equivalence classes of Cauchy sequences in Hgy, where two Cauchy sequences in
Hy are considered equivalent if their difference converges to zero’. We equip H with the
inner product

(£.9) = lim (fu. gn),

whenever the equivalence class f contains the Cauchy sequence (fy,)nen € Ho, and similar

for g. It is readily checked that this is indeed a well-defined scalar product (note the limit

exists thanks to completeness of K). One can also identify Hy as a dense subspace of H.
Let ® : H » KX be defined through

O(f)(x) = (f.K(~x)) VaeX.

Clearly, ® is linear. It is injective, because @(f) 0 1mphes (f g) =0 for any g € Hy c H;
but since Hy is dense in H, it follows already that f = 0. Also, if f € Hy c KX, then
®(f)(z) = f(x), so that ® g, is the identity.

Cf. the construction of R as completion of Q.
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This allows us to identify H with the subset H := ®(H) c KX. As an injective linear
image of a Hilbert space, H is itself Hilbert with the inner product

(f.9)m = (27 (f), 2 (9) -
Finally, we show that I is RKHS with reproducing kernel K. Indeed, for the evaluation
functional and f = ®(f) we have

Bo(£)] = 1f (@) = 1@())(@)] = |(f, K (. 2)) g
=S KGa))al <[ lalKCo)a=1flaVE (),

hence E, is bounded with norm at most \/K(x,z). Also, K is the reproducing kernel,
because Ey(f) = (f,kz)m with ky := K(-,x), as is apparent from (2.9), and K(z,y) =
(ky, ky) for x,y e X. O

(2.9)

In fact, given an antisymmetric positive semidefinite map K, the Hilbert space with
reproducing kernel K is uniquely determined. This follows from the following Lemma:

LEMMA 2.38. Let H be an RKHS over X with reproducing kernel K. Set ky := K(-,x)
for each x € X. Then,

Vi=span{k, :zx € X}
15 dense in H.

PrROOF. If f e H and f L k, for all x € X, then f(z) = (f,kz) =0 for all z € X and
therefore f = 0. But a subspace of a Hilbert space whose orthogonal complement is zero
must be dense (see the beginning of the proof of Riesz-Fréchet). O

Therefore, the strategy of proof of the Moore-Aronszajn Theorem was the only possible:
If there is an RKHS whose kernel is K, then it must be the completion of the span of the
functions k,. We summarise:

DEFINITION 2.39. Let X be a set and K : X x X - K antisymmetric and positive

semidefinite. The unique K-RKHS over X whose reproducing kernel is K is denoted

The kernel function K thus contains the entire information about the associated RKHS
H(K). As we shall see for the case of regression, many problems in high- or even infinite-
dimensional Hilbert spaces can be reduced to computations involving only the kernel. This
is the main reason why reproducing kernels play such an important role in data science.

2.5.3. Applications. We use the theory to investigate regression problems as they
occur frequently in statistics and machine learning. It should be said in advance that linear
or affine regression (as you have probably seen in Numerical Linear Algebra) can be easily
solved by classical means of Linear Algebra and does not require the theory of RKHS.
However, RKHS theory allows for vast generalisations to nonlinear classification problems
that can no longer be handled by Linear Algebra alone. Due to time constraints, however,
we have to stick to the simplest available examples.

Prior to the description of the regression problem, let us state an easy observation:

LEMMA 2.40. Let X be a set, K a kernel (i.e., an antisymmetric positive semidefinite
map X x X - K), and for a finite subset {z1,...,z,} of pairwise distinct elements of X
denote A = (K(xk,21))ki=1,..n- If w=(a1,...,a,) € K" has Aw =0, then H(K) > f :=
Z?:l Oéjkixj =0.

ProOF. This is just a one-line calculation:

n n n
1£17 =Y @rau(kay k) = Y. @rauK (zg, 1) = Y. ardy = (Aa, @) = 0.
Pyt ko1 ko1
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O

Let us now consider the following problem: We are given n distinct ‘data points’
{z1,29,... 2} from a set X that are already classified, i.e., they have known values
A, ..., Ap € K. Out of some class of ‘nice’ functions, we wish to find one that predicts
the (unknown) values of all € X in the best possible accordance with the known data;
ideally, we would want f(x;) =\; (j =1,...n) ezactly. However, such a function may not
be available in the given class, so that we contend ourselves with an f that minimises the
quadratic error, given as

QLS = ilum) A

In general, there may be many such minimisers. However, in case the chosen class of
functions is an RKHS, there exists a minimiser that is unique under the additional condition
that its norm be minimal:

THEOREM 2.41 (regression in RKHS). Let H = H(K) be an RKHS over X and

{z1,...,2} ¢ X pairwise distinct. Let moreover v =(A1,...,\,) € K" and
A= (K(zj,2k))jk=1,..n-
Then there ezists a vector w = (aq,...,ay) € K" such that v— Aw € ker(A), and the unique

minimiser of the quadratic error Q[ f] with minimal norm of all functions f € H is given
as

f = Z Oéjk‘mj.
j=1

PrOOF. Let V :=span{ky,,..., ks, } ¢ H and f € H. Denoting by Py the orthogonal
projection onto V', we have that f — Py f L V and in particular

0=(f_Pvakmj):f(xj)—Pvf(mj) Vi=1,...,n,

so that f(x;) = Py(z;) for all j. Let Py f =Y}, agky, and write w = (oq,...,ay), then
it follows for all k=1,...,n that

(Aw) = Y K(xp,zj)e = Y (ke kay) = Py f(a) = f(ay),
j=1 J=1
and therefore Q[f] = X7, |f(xr) — \f? = |Aw - v||%.

From Linear Algebra it is known (and from geometric intuition it should be clear) that
w e C™ is a minimiser of | Aw —v|? if and only if Aw = Pran(ayv- Therefore,

f=2 ajks,
j=1

is indeed a minimiser with the choice of w = (aq,...,a,) as described.

Next, observe that among all minimisers in H of the error @), those with smallest norm
(if any) must be in V, because f € H coincides with Py f on {x1,...,z,} and [Py f| < | f]
if féV.

Finally, suppose f = ¥y ajks; and g = 7 Bjkz; are both minimisers of @, then for
w = (a;) and = (5;) we must have Aw =v = Aw, hence A(w - w) = 0. By Lemma 2.40,
then, f = g. Hence f is the unique minimiser of ) in V', and therefore the unique minimiser
of @) of minimal norm.

0

EXAMPLE 2.42 (linear regression). Let X be a real Hilbert space and H = X' its
dual. Setting the regression problem in this framework amounts to linear regression, as
the space H of admissible functions, by which we wish to approximate the given data,
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consists precisely of the set of (bounded) linear functionals on X. (Think of X = R for
the simplest possible situation.) We have already seen in Example 2.35 that H is RKHS
and K(z,y) = (z,y) for all z,y € H. Using the notation of the preceding theorem, the
minimiser of smallest norm is then given by

f(z) = (w, i Ozjmj) Vo e X,
j=1

where w = (a1,...,ay) is chosen such that Aw = Pnayv and Aj = (x5, 7).

In many situations, linear functions form an arguably too small set of functions. We
show next how to extend linear regression to the slightly larger space of affine functions.
The method uses a feature map that maps the original data space to a higher dimensional
space, where the problem becomes linear again:

EXAMPLE 2.43 (affine regression). Consider the set A? of affine maps R? — R, that is,
A= {fv,c:Rd ->R:  fyelz)=(v,z)+c Vz eRd}.
Define the ‘feature map’ ¢ : RY - R by
(w1, .. ,xq) = (21,...,24,1)
and observe there is a bijection between (R%!)" and A? given by
(R™) 59 gogeA;

indeed, every f, . € A? can be written as g o ¢ with

d
g(x1,. .., g, Tgs1) = Z TjVj + CTae1,
j=1
and clearly g — g o ¢ is injective.
Let again {z1,...,24} be data points with given values v = (A1,...,\y) € R%. We want
to minimise the quadratic error among all functions in A?. To this end, we minimise the
quadratic error for the linear regression problem with data points {¢(z1),...,¢(x4)} and

the same values v by means of Example 2.42. This gives a minimiser of
d 2
2 19(e(z;)) = Al
j=1

among all g € (R*1)’, and hence a minimiser of Z?zl |f(x;) - A\;? in A? by setting f = goo.

Let us discuss this last example a bit further: We characterised the affine maps, which
we were originally interested in, as the set

{go¢:ge(R™)Y,

where ¢ : RY - R was a feature map transforming the problem from R? into the (slightly)
higher-dimensional space R%*!,

It turns out that the composition with ¢ leaves the property of being RKHS untouched;
indeed, let us state without proof the Pullback Theorem:

THEOREM 2.44 (pullback of RKHS). Let X and Y be sets and ¢ : Y - X. If K :
X x X = K is positive semidefinite and antisymmetric, then so is K o ¢ (where we write

(Ko ¢)(z,y) = K(6(x),6(y))), and
H(Ko¢)=H(K)o¢:={fog:feH(K)}.
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Hence the regression problem over H(K o ¢) can be reduced to one in H(K). This
becomes particularly advantageous if the space of interest has a kernel of the form K (z,y) =
(¢(z),6(y)), in which case the problem can be transformed into a linear regression problem
as in Example 2.42.

Let us give another example to conclude this chapter.

EXAMPLE 2.45. Let X = R? and
M = {f ‘RZ>R: flxy,29) = alx% + a9T1Ty + aga:% +bix1 + b + i ay,a0,as,b,ba, ce ]R}
the space of polynomials of order at most 2. Define the map
¢:R* RO, (z1,20) » (22, 2120, 23, 21, 0, 1).
Then, for a polynomial f as in the definition of M, we observe
flxy,22) = alm% + agr1To + aga:% +b1x1 + bazo + C
= (¢(x1,22), (a1, a2,as,b1,b2,¢)),

so that M = {go ¢ : g € (R®)’}, and thus by the Pullback Theorem, M = H(K o ¢),
where K is simply the standard scalar product in R%, and so the kernel of M is given by
K(z,y) = (6(x),6(y))-

Therefore, the solution of the linear regression problem with data points {¢(z1), ..., ¢(xn)}
in RY yields the solution of the nonlinear regression problem for M with data points
{x1,...,2,} in R



CHAPTER 3

The Baire Category Theorem and its Consequences

3.1. The Baire Category Theorem

Let (X,d) be a metric space and M c X. Recall the interior int M c M is defined as
the largest open subset of M, or equivalently, the set of all € M such that there exists
€ >0 with Be(z) c M. Similarly, the closure M is the smallest closed set containing M, or
equivalently, the union of M with the set of its limit points. Of course, these notions are
dependent on the metric d.

DEFINITION 3.1 (nowhere dense sets). A subset M c X is called nowhere dense if
int M = 0.

A nowhere dense set can be considered very ‘small’. In fact, nowhere dense sets are so
small that their countable union can never be the whole space:

THEOREM 3.2 (Baire Category Theorem). Let (X,d) be a nonempty complete metric
space. Then X is not the countable union of nowhere dense sets.

PROOF. Let (X, )ney be a family of nowhere dense sets. We construct sequences
(n)neny € X and (€, )ney € RY such that
e ¢, N 0asn— oo;
e B, (zp)nX, =@ for all neN;
e B, ., (xps1) € Be, (xy,) for all n e N.

Suppose there is such a sequence, then by the last property, if m >n > N, then
Tm € Be,, , (®m-1) C ... C Be, (zp) € Bey (xn), (3.1)

so that d(xn,zm) < ey and so (zp)peny is Cauchy. As X is complete, there is a limit
& = limy, 0 2, and we claim that = ¢ X,, for all n € N. Indeed, similarly as in (3.1) we
have x € B, (x,,) for any n € N, and by the second property it follows = ¢ X,,.

Now for the construction of the sequence. As X is closed and has empty interior, its
complement is dense in X (so in particular nonempty, as X is nonempty) and open; we
may therefore find €; >0 and x; € X such that B;(0) n X; = @.

Suppose x, and €, have already been constructed and satisfy the stated properties.
Again, X,,;1 has open and dense complement, so there exists z,,41 € B, (2,) and €,11 < %en

such that Be, ., (¥n+1) € Be, (2) and Be, (z,) N X, = @, as desired. O

REMARK 3.3. (1) In fact, the proof shows something more: If X is a complete
metric space and (X, )pen is a countable family of nowhere dense sets, then the
complement of U,>; X,, is dense in X. This can be seen from the above proof, as
1 can be chosen from a dense set in X and €; can be chosen arbitrarily small.

(2) An alternative formulation of the Theorem is: If (O, )ney is a countable family of
dense open sets, then N2 O, is nonempty (in fact it is even dense).

(3) Some terminology: If M c X is a countable union of nowhere dense sets, then it is
called meagre (or of first category). Sets that are not meagre are called of second
category. Complements of meagre sets are called comeagre or (in a disturbingly
misleading terminology) residual or, colloquially, fat. In this terminology, the

48
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Baire Category Theorem can be stated as: A nonempty complete metric space is
of second category/not meagre (with respect to itself).

EXAMPLE 3.4 (continuous but nowhere differentiable functions). A direct application of
the Baire Category Theorem is the existence of functions that are continuous but nowhere
differentiable. The first example of such a function was explicitly given by Weierstraf
in 1872 and sparked some controversy among mathematicians. Here, we use the Baire
Theorem to show the existence of such ‘monsters’ in a rather slick topological way.

Consider C([0,1];R) with the supremum norm, as usual. We have seen that this space
is complete. We want to show that the set of functions in this space that are differentiable
at at least one point is meagre. To this end, define for n e N

f(a+h) - (@) Sn}

0<[hl<1/n Al

X, = {f eC([0,1]): 3Fz€e[0,1]

where we can extend f to the left by f(0) and to the right by f(1) to ensure well-
definedness. Clearly, if f ¢ X,, for all n € N, then f is nowhere differentiable, because
its difference quotients are not bounded (let alone convergent) in any neighbourhood of
any point. By the Baire Category Theorem, then, it suffices to show that each X, is
nowhere dense, i.e., int X, = @.

First, we show that X, = X, (that is, X,, is closed). Fix n € N. Let (fx)ren € Xn
converge uniformly to f € C([0,1]), then we need to show f € X,,. Since f € X,,, there
exists x € [0,1] such that

sup | fr(xr +h) = fr(zr)] <n.
0<hl<1/n |h

By Bolzano-Weierstraff, There exists a convergent subsequence (not relabelled), so that
zp > x€[0,1] as k - oo. Let 0 <|h| < 1/n, then

e h) = F@] o et D) = o)l

1] ko0 |1
because fi(xr) — f(x) thanks to uniform convergence (think it over and cook up an
example where this fails for just pointwise convergence). So indeed, f € X,, and X,, is
closed.

It thus remains to show that X, has empty interior, or equivalently, for any f € X,
and € > 0 there exists f € C([0,1]) \ X,, such that |f — f|e < €. By the Weierstraf
Approximation Theorem, there exists a polynomial function p € C([0,1]) such that ||f -
Plloo < 5. In particular, p is differentiable and p" is bounded in [0,1]. Let s. € C([0,1])
be a sawtooth function with |s[e < 5 and |s{| = M almost everywhere, with M yet to be

determined. Then, for z € [0,1], f:=p+ s € Bc(f) satisfies
M) @) s )= ) -p()
0<|hl<1/n |h 0<[hl<1/n |h 0<[hl<1/n Al
>M ~[p'|e >n

provided M is chosen sufficiently large (depending on f but not on x). Note we used the
Mean Value Theorem for the estimate of the difference quotient of p. This shows f ¢ X,.

We conclude that the set of nowhere differentable functions is fat, and in particular
dense, in C'([0,1]) (and, very much in particular, there exists such a function).

3.2. The Uniform Boundedness Principle

3.2.1. The Theorem and Some Corollaries. Recall from your first year how sac-
rilegious it is to confuse the order of existential and universal quantifiers: It is strictly
prohibited to conclude 3z Vy from Vy3dxz. Thus the following theorem is quite surprising.
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THEOREM 3.5 (Banach-Steinhaus/Uniform Boundedness Principle). Let X be Banach
and Y a normed space, and assume (Tj)je; ¢ L(X,Y) is a (possibly uncountable) family
of bounded linear operators such that

sup | Tjz|| < oo Ve X.
jeJ

Then,

sup | Tj|| < oo.
jeJ

PROOF. For n e N, set
Xy, = {z € X :sup |Tjz| < n}.
jedJ
Note X, is closed, because it can be written as
-1
X = (IO ([0,n])
jeJ
and thus as an intersection of closed sets (of course, z ~ [Tz is continuous). By assump-
tion, X = Upeny Xn, s0 by the Baire Category Theorem, there exists N € N such that Xy
has non-empty interior. Let therefore xg € Xy and € > 0 such that Be(zp) ¢ Xn. As Xy is
symmetric in the sense that x € X if and only if —z € Xy, then also Bc(-z¢) ¢ Xy. Even

better, Xy is convex by virtue of the triangle inequality for the norm ||- | in Y: Indeed, if
|Tjz1| < N and |Tjza| < N for all j e J, and if Aj, A2 € [0,1] sum up to 1, then

||)\1Tj.%‘1 + )\QTJ'.%'Q ” < )\1||T:B1H + A9 Hng ” < N.

As a consequence, if |y|| < €, then

1 1
Y= 5(5760 +y) + 5(—960 +y) e Xy,

so that if x € B1(0), then
1 N .
|Ty2] = —|T5(ex)| < — Vield,

whence sup,e s | 75| < & <o, O
The Uniform Boundedness Principle has a number of beautiful corollaries:

COROLLARY 3.6. Let X be a normed space and M c X. Then M is bounded if and
only if for all ' € X', the set o' (M) c K is bounded.

PrOOF. If M is bounded by, say, S > 0, then for all x € M, |2'(x)| < |2|[=] < S||='|,
whence boundedness of z'(M) already follows.

Conversely, assume z/ (M) is bounded for all ' € X’. Consider the canonical embedding
t: X - X". Then, for every 2’ € X',

oo > sup [2'(z)| = sup [t[x](2")],
xeM xeM

and since X’ is Banach, we may apply the Uniform Boundedness Principle to get

o0 > sup [¢[z]] = sup [z].
xeM xeM

0

COROLLARY 3.7 (weakly convergent sequences are bounded). Weakly convergent se-
quences are bounded.

PROOF. Let X be a normed space and (2, )neny € X weakly convergent. Then for any
x’ € X', the convergent sequence (z'(zy,))ney € K is bounded, hence the set {z,, : n € N} is
bounded by virtue of the preceding corollary. O
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COROLLARY 3.8 (dual version of Corollary 3.6). Let X be Banach and M c X'. Then
M is bounded if and only if for all x € X, the set {z'(x): 2" € M} c K is bounded.

Proor. If M is bounded, then the boundesness of {z'(z) : 2’ € M} follows from
|z’ (z)| < |2'||z| and boundedness of M. The converse is the special case Y = K of the
Uniform Boundedness Principle. ]

COROLLARY 3.9 (Pointwise limits of continuous linear operators are continuous (!)).
Let X Banach and Y a normed space. Let (Ty)neny € L(X,Y) converge pointwise to T,
that is, limy, oo Tz =Tx for all x € X. Then T e L(X,Y).

ProOF. The linearity of T is standard, see the proof of Proposition 1.17. So we only
show continuity. As (7,2 )ney is convergent, it is bounded, and so sup,,.y T,z < oo for each
z € X. By the Uniform Boundedness Principle, sup,«y [T | =t M < co. Therefore,

|Tz|| = im |T,z| < M|z| VzrelX.
n—oo
U

3.2.2. An Application to Fourier Series. As an application, we wish to show that
the Fourier series of a periodic continuous function on R does not necessarily converge

pointwise, although, as we have seen, it converges in Lfm(R; ).

Recall from Section 2.2 that a function f e LIQM(R; C) can be written as

1 ik

f=—=2 FB)e™, (32)
2T kez,

where
. 1 2m "
k)= — z)e dx, kel 3.3
f (k) Nor it f(x) (3.3)

Note carefully that the convergence implied in the infinite sum in (3.2) is understood in the
L? sense. While it is well-known that each L2-convergent sequence has a subsequence that
converges almost everywhere!, it makes no sense to ask about everywhere convergence, as
an L? function is only defined up to a nullset. However, if f is additionally assumed to be
continuous (and thus everywhere defined), it is a very reasonable conjecture that its Fourier
series would converge at every x € R. Owing to the Uniform Boundedness Principle, we
can show that this is not the case in general.

As a preparation, let us represent the partial sums of the Fourier series in a useful new
way. Using (3.3), we compute for n € N:

n 2

1 no ) 1 ) ) 1 2 n )
—= > f(k)e* = — fy)e ®dye™ = — [ f(y) 3 My,
2m kzz—:n 2 k=z—n 0 27 Jo k:zz—:n

Observe that for any z € R, we may write (thanks to the summation formula for finite
geometric sums)

n 2n 1(2n+1)z —i(n+1)z i(n+1)z 3 1
ikz _ i(k-n)z _ —inzl_e( ) _ € ( 2) —6( 2) _ sm((n+2)z)
Z € - Z € =€ 1 iz - iz P2 - . (2 )
k=—n k=0 -€ e '2—e'2 Sin (5)

so in total we get

1 no . 27 B
Ekzznf(k)e =/, f(y)Dn(x - y)dy.

1Therefore, a subsequence of the Fourier series of f € Lier will converge almost everywhere to f. In
fact, one does not even need to pass to a subsequence: This is a deep result of Carleson from 1966.
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Here,

Du(2) = isin((n+ %)z)

2 sin(3)

is called the Dirichlet kernel (n € N). Note the Dirichlet kernel is 27-periodic and contin-
uous (even at zero — think it over).

Recall the space Cper(R;C) of 2m-periodic continuous functions, which as usual we
equip with the supremum norm. Setting

lho)= = §° fkye

for the n-th partial sum of the Fourier series (n € N), and choosing x = 0, we can view

sn(+,0) as an element of the dual space C,,, because

2 2
su (0= | [ 7o) Duy)dy| < 11 /0 Du(y)ldy,

where the integral on the right hand side is finite (for each fixed n € N) as D,, € Cpe,. Note
we used Dy, (y) = Dyp(-y) for all y e R.

In fact, the operator norm of s,(f,0) is precisely given by fOQﬂ |Dn(y)|dy, as can be
seen by setting

i
¢ |Dy| + €

and letting € \ 0 (you are encouraged to work out the details yourself).

THEOREM 3.10 (failure of everywhere convergence of the Fourier series). There ezists
a function f € Cper(R; C) whose Fourier series does not converge at x = 0.

PROOF. Suppose the Fourier series of every f € Cpe, converged at x = 0, so in particular
the sequences (s,(f,0))nen would be bounded for all f € Cper. Since Cpe, is Banach, we
can apply the Uniform Boundedness Principle to deduce that

21
sup [sn (- 0) = sup / 1D, (y)ldy < oo.
neN neN JO

We will reach the desired contradiction once we show that the integrals of |D,| go off to
infinity. This is shown by an elementary estimate:

2w 27 1sin ((n 1 27 |gin n+l
27T/O !Dn(y)\dy=/0 in +2)y)‘dyz2/0 sin((n+3)v)l

sin (5) v

2n+1)7 |.: 2n  rkm L
o [y, 3 e,
0 (

€ k=1 (k-1)7 €T

2n 1 km 9 2n1q
>25 — |sin(z)|dz = =1 — - oo
=1 R (1) T ik
as n — oo, where we set I := [ [sin(z)|dz > 0. We used the variable transformation

z=(n+ %)y in passing from the first to the second line, and the m-periodicity of |sin| as
well as the divergence of the harmonic series in the last step. g

REMARK 3.11. The question of convergence of Fourier series has been of great inter-
est in the mathematical area of harmonic analysis (and is well-suited for a bachelor’s or
master’s thesis). The above proof of non-convergence via Uniform Boundedness is very
pretty, but also non-constructive. Du Bois-Reymond gave an explicit construction of such
a function in 1876 (long before the Uniform Boundedness Principle was available), thus
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disproving the everywhere convergence conjecture that had been held by the leading math-
ematicians of the time. The almost everywhere convergence of the Fourier series of an Lfm
function, however, was proved by Carleson in 1966, as mentioned.

One may ask whether additional assumptions on f ensure everywhere convergence.
Indeed, if f is continuously differentiable, then the Fourier series converges everywhere
(see [5, Satz IV.2.9]) and even uniformly.

We know from the Stone-Weierstraf Theorem that every function in Cpe, can be uni-
formly approximated by trigonometric polynomials. Theorem 3.10 shows that the Fourier
series does not give such an approximation. Can we somehow use the Fourier series to
give an explicit sequence of trigonometric polynomials that converges uniformly to f? The
answer is yes: By taking the so-called Cesdro mean of the Fourier series, we obtain a se-
quence of trigonometric polynomials converging uniformly to f. More precisely, if f € Cper
and

N
Z Sn(f7$)7

n=1

1
CN(f7 ‘T) T N
then cn(f,-) converges uniformly to f as N — oo (see |5, IV.2.11]|). The reason is that
¢y can be represented by arithmetic means of the Dirichlet kernels D,, (these arithmetic
means are called Fejér kernels), and the Fejér kernels behave much better than the Dirichlet
kernels, as the former are non-negative and have integral 1 for all n e N.

3.3. The Open Mapping Theorem

DEFINITION 3.12 (open mappings). A map between two metric spaces is called open
if it maps open sets to open sets.

Compare this with the topological definition of continuity: A map between two metric
(or even topological) spaces is continuous if the preimages of open sets are open. Open
maps have this property in the other direction, so to speak. In particular, if an open map
has an inverse, then the inverse will be continuous.

LEMMA 3.13. Let XY be normed spaces and T : X - Y linear. Then the following
are equivalent:
(1) T is open;
(2) For every r >0, the image T(B,(0)) c Y is a neighbourhood® of zero;
(3) T(B1(0)) cY is a neighbourhood of zero.

PrOOF. (1)= (2): By linearity, 7(0) = 0. Since B,(0) is open, then so is T'(B,(0)) as
T is open. Hence T'(B,(0)) is an open neighbourhood of zero.

(2)=(1): Let O c X be open and Tx € T'(O) for some x € O. As O is open, there exists
r > 0 such that B,(z) c O, and then (by linearity) T(B,(z)) = Tz + T(B-(0)) c T(O).
By (2), T'(B,(0)) is a neighbourhood of zero, which means there exists ¢ > 0 such that
B.(0) c T(B,(0)), which implies B(Tz) c T(O). This shows that T(O) is open.

(2)<>(3): This is obvious from the linearity of T'. O

Clearly, any open linear map is surjective, because it maps onto a neighbourhood of
the origin. The converse, however, is anything but obvious. Yet, for maps between Banach
spaces, it is true:

THEOREM 3.14 (Open Mapping Theorem, Banach). Let X,Y be Banach and T €
L(X,Y) surjective. Then T is open.

2Recall: In a metric space, a neighbourhood of z is any set N such that Bc(z) ¢ N for some € > 0.
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PROOF. By the preceding Lemma, it suffices to show that 7'(B;(0)) is a neighbourhood
of zero.

Step 1. First we show there exists ¢y > 0 such that B, (0) c T'(B1(0)). To this end,
note that by assumption of surjectivity,

Y = J T(Bn(0)),
neN

so that the Baire Category Theorem gives us an N € N for which T'(Bx(0)) has nonempty
interior, so there is yp € Y and € > 0 with Bc(yo) c T (Bn(0)).

The proof now proceeds just like the proof of the Uniform Boundedness Principle:
T(Bn(0)) is symmetric (i.e., it contains z if and only if it contains —z) and convex, as
T(Bn(0)) has these properties, which are preserved by the closure. Therefore, if y € B(0),

y= 50+ ) + 5 (=x0+y) e TBN(O)),

which completes the first step of the proof upon choosing € = -

Step 2. We shall improve Step 1 to the effect that B¢, (0) c T'(B;(0)), thereby complet-
ing the proof of the Open Mapping Theorem. So let y € B, (0), then there exists 0 <€ < €
such that even y € Bc(0). Set 7 := “y. Let 0 < a <1 to be chosen later. We recursively
construct a sequence (2, )neny € B1(0) in X such that

n—1 &
Hg_T(Z « mk+1)

k=0

<aey, mneN, (3.4)

in the following way: As y € B, (0), by Step 1, y € T'(B1(0)), so there exists y; = Tx; with
x1 € B1(0) and g —y1]| < cep.

If z1,...,x, have been constructed for some n € N, observe that

g -T(TiZ @ wpen)
an
so by another application of Step 1 we find x,,+1 € B1(0) such that
g-T(Tr5 o aper)
a?’l/
It follows that (3.4) is still satisfied with n replaced by n + 1.

Since Y22, [laF i1 < ﬁ < oo (recall x| < 1), the sum is absolutely convergent and
thus, as X is Banach, also convergent to some Z € X. By (3.4) and continuity of T', we
have y=T.

Finally set x := =, then Tx = y and

€0

€ B€0(O)7

~Trp

< (eg.

€, e & e 1
lz| = =l2] < = 3 o 2] < — <1
€0 €

0 k=0 601—0[

if @ > 0 is chosen sufficiently small. This shows y € T'(B1(0)), and the Theorem is proved.
(|

COROLLARY 3.15. Let X and Y be Banach and T € L(X,Y) bijective, then T™' ¢
L(Y, X).

PROOF. Linearity of 77! is clear. As the images under T of open sets are open, then
the preimages under 77! of open sets are open, so T~ is continuous. ]

COROLLARY 3.16. Let X be a vector space and | - |1,] - |2 : X = R two norms with
respect to both of which X s Banach. If there exists M > 0 such that

|-l < M] -2,

then the two norms are equivalent.
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This means we get the other inequality | - |2 < M'| - |1 “for free’.

PRrROOF. By assumption, the identity map (X, | -||2) = (X,]-[1), 2 = « is bounded.
By Corollary 3.15, then also the inverse map (X, |- |1) = (X,] - |2), z — z, is bounded,
that is, || - |2 < M'|| - |1 for some M’ > 0. O

3.4. The Closed Graph Theorem

Let X and Y be normed spaces and D c X. Recall the graph of amap f: D - Y is
given as

Lp={(z,y) e X xY:zeD,y=f(x)}

In fact, according to the usual set-theoretic definition, a map simply is its graph®. Anyway,
note that if f is linear, then I'f is a subspace of X xY (in particular, D ¢ X must then be
a subspace).

DEFINITION 3.17 (maps with closed graph). Let X and Y be normed spaces, D c¢ X
a subspace and T : D — Y a linear map. We say that T has closed graph if its graph is
closed in X x Y, that is: Whenever (z,)peny ¢ D with (z,,Tz,) - (z,y) € X x Y, then
reD and y=Tx.

In the case that D is a closed subspace, note that having a closed graph is weaker that
being continuous: If 7' is continuous, then x,, — = implies the convergence of (T'zy)nen,
namely to Tx. However, if T only has closed graph, then we need to assume convergence
of (T'zy)pnen in order to conclude that the limit is T'z.

EXAMPLE 3.18. (1) Let X =Y = C([-1,1]) with the supremum norm and D =
C1([-1,1]) c X. Then, the differential operator D — Y, f + f', has closed graph:
For let (fu.)nen be a sequence of C! functions converging uniformly to f and
assume f’ — g uniformly, then it is known from Analysis (see for instance [1, §21,
Satz 5]) that f € C' and g = f’. Hence the differential operator has closed graph
although it is discontinuous, see Example 1.19(3).
(2) Changing the norms in the preceding example, we exhibit an operator whose
graph is not closed: Let X =Y = L?(-1,1), D = C'([-1,1]), and consider again
the differential operator D - Y, f ~ f’. Choosing

o= (22" @ -

and

-1 z<0,
g(x)_{l x>0,

we find that D > f, - f in L? (even uniformly!) and f, — ¢ in L? (but not
uniformly); however, f ¢ D and so the differential operator does not have closed
graph with respect to the chosen spaces.

On the domain D of definition of a linear operator, we may define the graph norm by
|z|r = ||| + |Tx|. It is clear that this is really a norm.

LemMA 3.19. Let X,Y be Banach, D c X a subspace, and assume T : D — Y has
closed graph. Then, D together with the graph norm is Banach, and T is continuous from

(D[ -lr) to Y.

3This is a manifestation of the extensionality principle.
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PROOF. Let (x,)neny € D be Cauchy with respect to the graph norm, so that (xy,)nen
and (T'zy)peny are Cauchy in X and Y, respectively. As X and Y are Banach, we have
Tp > x € X and Tz, > y €Y. But since T is closed, we can deduce x € D and y = T'z,
thereby implying z,, — x in the graph norm. This shows the first assertion.

The second claim is obvious because |Tz|y < |z|x +|Tz|y = |z|r for every z € D. O

With this observation we can generalise the Open Mapping Theorem in the following
way:

THEOREM 3.20 (Surjective operators with closed graph are open). Let X,Y be Banach
and D c X a subspace. If T : D —'Y has closed graph and is surjective, then T is open. In
particular, if in addition T is injective, then the inverse T~':Y — D is continuous.

PRrOOF. By the previous Lemma and the Open Mapping Theorem, T is open as a map
(D,||- |r) = Y, meaning that the image of an open set in X with respect to the graph
norm is open in Y. But any open set with respect norm induced by X is also open with
respect to the graph norm: Indeed, let O c D be open with respect to | - || x, then for any
x € O there is € > 0 such that |z —y|x < € implies y € O. So if || —y|x < |z —y|r <€, then
y € O. Continuity of 77! now follows just as in Corollary 3.15. g

The proof of the main theorem in this section is now easy.

THEOREM 3.21 (Closed Graph Theorem). Let X,Y be Banach and T : X —'Y linear.
If T has closed graph, then T is continuous.

ProOOF. By Lemma 3.19, T is continuous with respect to the graph norm. But by
Corollary 3.16, the graph norm and the norm of X are equivalent. Therefore, T' is even
continuous with respect to the norm of X. O

3.5. Projections in Banach Spaces

In Hilbert spaces, we know how to project (orthogonally) onto nonempty closed and
convex sets, in particular onto closed subspaces. Let’s take a brief look into the situation
for Banach spaces.

DEFINITION 3.22 (projections). If X is a vector space, then any linear map P: X — X
with P? = P is called a (linear) projection.

If X is a vector space and U,V c X, then we say X is the direct sum of U and V and
write X =U®V if X = {u+v:ueU,veV}and UnV = {0}; in this case, the representation
of each vector in X as a sum of vectors in U and V is unique.

PROPOSITION 3.23 (properties of projections). Let X be a normed space and P: X — X
a continuous linear projection. Then,
(1) P=0 or||P|>1.
(2) The kernel and the range of P are closed.
(3) X =kerPo P(X).

PrOOF. (1) This follows immediately from || P| = | P?| < || P|>.
(2) Since ker P = P71({0}) and P is continuous, the kernel is closed as the preimage
of a closed set under a continuous map. Similarly, if I : X — X is the identity, then I — P
is also a continuous linear projection (as (I - P)? = I? - 2P + P2 = I - P), so its kernel is
closed; therefore,
P(X) =ker(I-P)

is also closed.
(3) Clearly, for each x € X, we can write

x=(x-Px)+ Pz,
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where x — Pz € ker P and Px € P(X). Also, suppose = € ker Pn P(X): Then z = Py for
some y € X but also 0 = Pz = P2y = Py = z, so the sum is indeed direct. O

As an example, consider the map P : LP(R) » LP(R) given by Pf = x(o1)f, where
X(0,1) denotes the indicator function of (0,1). As X%O,l) = Xo0,1, this is a projection. It is
linear and bounded, as |Pf|, < | f]p. Its kernel is given by the set of LP functions whose
essential support is disjoint from (0, 1), and its image is the set of functions whose essential
support is contained in [0,1]. Accordingly, we can uniquely write any LP function f as the
sum (1 -X(0,1))f + X(0,1)f

Does every closed subspace of a Banach space admit a continuous projection? The
answer, maybe surprisingly, is no: It can be shown (see |5, Satz IV.6.5]) that the closed
subspace cg c [* of nullsequences does not have a complement, that is, there does not exist
any closed subspace U c [* such that [ = U @ ¢y, which by Proposition 3.23 is a necessary
condition for the existence of a continuous projection.

For finite-dimensional subspaces, however, there is always a continuous projection:

THEOREM 3.24 (projection onto finite-dimensional subspaces). Let X be a normed
space and U c X a finite-dimensional subspace, then there exists a bounded linear projection
P onto U such that |P| <dimU.

PROOF. Let {ui,...,u,} be a so-called Auerbach basis for U, that is, a basis for which
there exists a dual basis {u],...,u;,} of U’ such that |ug|=1and |u,|=1fork=1,...,n,
and ug(uk) = for j,k =1,...,n. The proof of existence of an Auerbach basis for any
finite-dimensional normed space can be found, e.g., in |5, 11.2.6].

By the Hahn-Banach Theorem, for every k =1,...,n, we can extend the bounded linear
functionals u;, from U’ to x) € X' preserving the norms, so that still |z} | = 1. Set

n
Pg = Z x (7)uy,
k=1
then P is the desired projection. (|

As mentioned, we see from Proposition 3.23 that a necessary condition for a closed
subspace U of a Banach space X to have a bounded linear projection is the existence of a
complementary space for U, that is, another closed subspace V c X such that X =Ue® V.
The next theorem states that this is even sufficient:

THEOREM 3.25 (criterion for existence of a continuous linear projection). Let X be
Banach and U c X a closed subspace. Assume there exists another closed subspace V c X
such that X = U@ V*. Then the norm defined as |z||1 := |u| + |v| is equivalent to the norm
of X (where we U and v eV are the unique vectors such that x = u+v), and there exists
a continuwous linear projection onto U.

PROOF. By the triangle inequality, ||z| < |u| + |v| whenever z € X and z = u + v with
weU, veV. An application of Corollary 3.16 will yield equivalence of the norms once we
show that X is also Banach with respect to |- ||1. So let (2 )neny be Cauchy in | - ||; with
corresponding decomposition x, = u, + vy, so that for all € > 0 there is N € N such that for
m,n >N,

€> |2n = zml1 = [un — wml x + |vn — v x,

so that (up)neny and (vy )neny are Cauchy and therefore convergent to w and v, respectively,
since X with its original norm is assumed Banach. But then z, - 2 = v + v in the norm
| -1, so that equivalence of both norms is proved.

4The complementary space will typically not be unique: Consider for instance the span of the unit
vector ey as a closed subset of ]R2, then the spans of e2 and of e; + ez are both complementary to span{e; }.
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As for the existence of a bounded projection, by the equivalence of the two norms we
have the ‘reverse triangle inequality’ ||u| + |v| < M|u + v| for some M >0 and all u € U,
v €V, so that the linear map u+v — u is bounded, and thus this map is in fact the desired
projection. O

Note that in the special case that X is Hilbert, we can always take V' to be the orthogo-
nal complement of U; this gives an alternative proof of the existence of the projection onto
any closed subspace of a Hilbert space. As mentioned, in Banach spaces a complementary
space need not always exist.



CHAPTER 4

Spectral Theory

We have already seen the simplest spectral theorem for compact self-adjoint operators
on Hilbert spaces in Section 2.4. We will now generalise this theory in two directions: to
compact operators on Banach spaces, and to bounded but possibly non-compact operators
on Hilbert spaces.

4.1. The Adjoint Operator

DEFINITION 4.1 (The adjoint in normed spaces). Let X,Y be normed spaces and

T e L(X,Y). The adjoint operator T' € L(Y', X") is defined by
T'y'(z) =y (T).

It is clear that this defines a bounded linear operator Y’ — X' (because |y/(Tx)| <
Iy I T|[]z]). Also, note if X =Y is Hilbert, then this definition is related to our previous
Definition 2.21 thanks to the Riesz-Fréchet Theorem. Indeed, if X =Y = H is Hilbert and
2’ = (-,y) for some y € H, then the adjoint 7" of T € L(H, H) in the sense of Definition 4.1
is represented as

T'z" = (T"y),
where T € L(H, H) is the Hilbert space adjoint as in Definition 2.21.
EXAMPLE 4.2. (1) For 1 < p < oo, consider X =Y = LP(0,1). Given a function
h e L*(0,1), we may define the multiplication operator T: X - Y, f — hf (note
hfeLPif feLP). Let LY be the dual of LP (meaning %+ % =1); then for fe LP
and g € L? we have

1
o(TF) =g (hf) = /0 g(2)h(x) f(x)dz = (gh)(f).

sothat 7":Y" - X' is given by T"g = gh, so T" is itself the multiplication operator
with h.
(2) Let X be a normed space, then we have seen the injection operator ¢: X - X",

t[z](z") = 2’'(x). Then the adjoint " : X" — X' is defined as
L) = 270 ()),
SO L/[x///] _ x/// oL,

THEOREM 4.3. Let X,Y,Z be normed spaces. The map L(X,Y) - L(Y', X"), T T’

is a linear isometry, and for T € L(X,Y) and S € L(Y, Z), we have (ST) =T'S".

PrROOF. Linearity is clear by definition, and we note

|IT| = sup |Tz|= sup |y'(Tz)|= sup [T'y'(2)|=|T"],
Je)<1 Iy <1, |z <1 ly/ <1, |z <1

where we made use of Corollary 1.23.
For the second statement, let x € X and 2’ € Z’, then

(ST) 2/ () =2/ (STx) =82 (Txz) =T'S"2 (z).

59
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As an isometry, T — T is injective. Note it may not be surjective: If, for instance, Y
is not Banach, then L(X,Y) need not be Banach, but L(Y’, X") is Banach in any case
(because X' is).

In the case of Hilbert spaces, T** =T. In general, we have the following:

LEMMA 4.4. Let X,Y be normed spaces and T € L(X,Y), then
T"otx =ty oT,
where 1x : X - X" and vy : Y - Y" denote the canonical injections.

PRrOOF. Note the operators on both sides should map X to Y”. So let z € X and
y' €Y' then

T"(ux[zD) (") = ex[=)(T"Y") = Ty () = y'(Tx) = oy [Tz](y).

THEOREM 4.5 (Schauder). Let X and Y be normed spaces and T € L(X,Y).
(1) If T is compact, then so is T".
(2) If Y is Banach and T' is compact, then so is T

PROOF. (1) Suppose T is compact. Let (y))neny be a bounded sequence in Y. By
compactness of T, the set K := T(B1(0)) c Y is compact. The restrictions y,, |, form a
sequence of continuous functions K — K, uniformly bounded by || 7| sup,,ex |45, |l < oo. The
sequence is also equicontinuous, because for all n € N,

yn (y1) =y (y2)| < sup [ypl lyr — 2]
keN

Invoking now the Theorem of Arzela-Ascoli, we find a uniformly convergent subsequence
(Yn,, 'K )ren. Therefore,
1Ty, = Ty, = sup |y, (T2) = yp (T2)| = |yn, P ~Yn, 1K oo,
:IZGBl 0
where the last expression can be made arbitrarily small choosing k,[ large enough. Hence,
(T"yp, Jken is Cauchy and hence convergent, so indeed 7" is compact.

(2) Assume in addition Y to be Banach, and let 77 be compact. By the first part of the
proof, T"" is then also compact, and so is T" o 1x as the composition of a compact and a
bounded operator. By Lemma 4.4, T" o1x = 1y o T, so the latter is compact. Therefore, if
(zn)nen is a bounded sequence in X, then there is a convergent subsequence (vy (Tzp, ))keN
in Y. In particular, the sequence is Cauchy, and so is the sequence (T'zy, )ren, because
ty is an isometry. Convergence of (T'xy, )gey now follows from the completeness of Y. [

THEOREM 4.6 (A linear operator is invertible iff its adjoint is). Let X,Y be Banach.
Then T € L(X,Y) is bijective if and only if T is, and in this case (T')™t = (T71)'.

PROOF. Let T be bijective, then it is invertible, and its inverse T € L(Y,X) by
virtue of the Open Mapping Theorem (Corollary 3.15). Therefore, (T7!) € L(X',Y") is
well-defined, and for ' € Y and y € Y we have

(T[T 1) =Ty (T™y) =y (TT 'y) =/ (y),
so that (T71)'T" is the identity on Y. Likewise, for ' ¢ X’ and x € X,
T'(T™) 2"} (x) = (T2 (Tx) = 2'(T' Tx) = 2’ (2),
so that T'(T!)" is the identity on X’. It follows that T” is invertible with (T")~* = (T1)".
Conversely, assume 7" is invertible, and denote S := (T")~!. T is injective: Suppose

Tx =0 and let 2’ € X'. As T’ is surjective, there exists 3y’ € Y’ such that 7"y’ = 2/, and
then we have

o'(x) =Ty (x) =4/ (Tx) =0,
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so z = 0 follows from Corollary 1.24.
For surjectivity, we show first that T(X) c Y is closed. So let (T'zy,)neny be a sequence
in T'(X) converging to y € Y. Then the sequence (T'z,,) is Cauchy, and by Corollary 1.23,

[2n = Tm| = sup |2 (zn — 2m)| = sup TSz (2, — xm)

=" [<1 =<1
= ”SI‘I‘p 1S’ (Txp, — Ta)| < |S||Txn - Taml,
x| <1

which shows that (z;,)ney is Cauchy and thus convergent to x € X. But then Tz = y by
continuity of T', and so y € T'(X).

Suppose now T were not surjective, so there existed yo € Y ~ T(X). By the Hahn-
Banach Theorem, taking into account the closedness of T'(X), we can find a functional
y' €Y' such that ¥’ tp(xy= 0 but y'(yo) = 1. Indeed, let w:Y - Y/T(X), y = y+T(X)
be the canonical quotient map. Then w(7Tz) =0 for all z € X and w(yp) # 0. By Hahn-
Banach (applied to the span of w(yp) as a subspace of Y/T'(X)), there exists a functional
le(Y/T(X)) such that [(w(yo)) = 1. The functional y' := [ ow is then as desired. But
then

0=y'(Tz) =T"y'(x)

for every x € X, whence from injectivity of 7" we have y’ = 0, in contradiction with
y'(yo) = 1.
The formula S = (T1)’ follows by the same computation as in the beginning of the
proof.
]

4.2. Basic Concepts of Spectral Theory for Bounded Operators

Recall from Subsection 2.4.3 some basic notions of spectral theory: If X is Banach and
T e L(X,X), then the resolvent set p(7T') is the set of A € K such that A\I — T is invertible
(meanwhile we have learned from the Open Mapping Theorem that then the inverse is
automatically bounded). For A € p(T"), we denoted the resolvent by R(\,T) = (M - T)~L.
The complement o(T') := K~ p(T) was called the spectrum.

We made the observation that not every element of o(7") needs to be an eigenvalue.
We therefore distinguish three parts of the spectrum:

e The point spectrum o,(T) is the set of eigenvalues of T, i.e., the set of A € K such
that AI =T is not injective;

e the continuous spectrum o.(T') is the set of A € K such that A\I - T is injective but
not surjective, and the range of A\I — T is dense in X;

e the residual spectrum o,(T') is the set of A € K such that AI — T is injective but
not surjective, and the range of Al —T is not dense in X.

It is clear from these definitions that K = p(7") U0, (T)Uo.(T) Vo, (T'), that is, each A e K is
an element of exactly one of these four sets. The terminology will make more sense later
on.

PROPOSITION 4.7 (Spectra of an operator and its adjoint are the same). If X is a
Banach space and T € L(X, X), then o(T") = o(T).

ProoOF. By Theorem 4.6, the map Al — T is invertible if and only its adjoint is. But
the adjoint is precisely AI —T”, because for any 2’ € X’ and z € X,

(M -T2 (z) = X2’ (2) - 2" (Tz) = 2" Mz - Tx).
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In the case that X is Hilbert, note carefully that the spectrum of the Hilbert space
adjoint T is the complex conjugate of the spectrum of T (Lemma 2.30). This annoying
discrepancy between the Banach and Hilbert adjoints is due to the fact that the iden-
tification of a Hilbert space with its dual via Riesz-Fréchet is only an anti-isomorphism
(i.e., an isomorphism up to complex conjugation), cf. the discussion after the Riesz-Fréchet
Theorem.

EXAMPLE 4.8. (1) We choose X = C([0,1]) with the usual supremum norm, so

that X is Banach. Set
(Ta)(s) = / 2(1)dt,
0

which defines a continuous linear operator. We wish to show o(7T) = o,-(T") = {0}.
First, observe that for A # 0, the operator A\l — T is invertible: Indeed, let
y € C1([0,1]) for the moment, then Az -T2z = y is equivalent with the initial value
problem
1 1 y(0)

11 ()
i-yo= i w(0)= 52,

which has a unique solution explicitly given by

I 0 1" s 1
a(t) = el (X/o e y(s)ds + @) - ﬁ/o eIy (s)ds + Tu(®),
where we used integration by parts in the last step. In fact, this formula still
yields a solution of Az — Tx = y for general y € C'([0,1]). This solution is unique
because Ax — Tz = 0 is uniquely solved by zero, so if Axy —Tx1 =y = Axo — Txo,
then x1 —x9 = 0. Therefore, AI — T is bijective.

Let us consider the case A =0. If Tx =0 then x =0, so T is injective. On the

other hand, the image T'(X) is not dense in X, because (Tx)(0) =0 for all z € X.
Hence 0 € 0,.(T).
Consider the same operator T, but now on the smaller space X = {x ¢ C([0,1]):
2(0) = 0}, still with the supremum norm. Exactly as in the previous situation,
one shows A € p(T) for X\ # 0, and T is injective. But now T'(X) is dense in X,
because T'(X) is the space of C! functions such that y(0) = %(0) = 0, and it is an
analysis exercise to check that this space is dense in X.

THEOREM 4.9. Let X be Banach and T e L(X, X).

(1)
(2)

The resolvent map p(T) - L(X,X), A » R(\,T) is analytic, that is: It can be
locally expressed as a power series in X\ with coefficients in L(X,X).

When K = C then o(T') # @.

PRrOOF. (1) This follows from the Neumann Series representation (Lemma 2.28):

ROALT) =M =T) " = NoI-T) " [T= (A= NI -T)']"

= 3 (o= N (ol ~T) Y

n=0

for any A\ € p(T') and \ sufficiently close to Ag.
(2) Suppose for a contradiction that o(7T) = @. Then R(A,T) is analytic on all of C.
Let " € L(X, X)’, then by the previous step we can write

V(ROLT)) = 3 (1) (R0, T 1) (A~ M), (41)
n=0

so that A~ I"(R(A,T)) is an analytic function C — C.
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This map is also bounded, because if [A| > 2|T||, then again thanks to the Neumann
Series,

7
“ Izl

V(RO < WAL =T)7 | = |V H—

(without loss of generality, T # 0, because the spectrum of the zero operator is {0}); and
on the compact set By7(0), the map is bounded anyway as it is continuous.

It follows from Liouville’s Theorem (from complex analysis) that A — I'(R(\,T)) is
in fact constant, which implies that all except the zero-th coefficient in (4.1) vanish. In
particular, for the choice Ag = 0 (which is valid as, by assumption, p(7T") = C), we obtain
for n =1 that 0 = I'(R(0,7)%) = I'(T2), and it follows from Corollary 1.24 that 772 = 0,
which is the desired contradiction (as the zero operator is not the inverse of anything). [

From Theorem 2.29 we know that [A| < |T'| for all A € o(T"). In order to improve this
result, we need a technical lemma:

LEMMA 4.10. Let (an)neny € R be a real sequence such that 0 < apym < anapy for
n,meN. Then,

lim a/" = mf allm.

n—>00

PRrROOF. Let € >0 and N € N such that ajl\;N <inf,ey a,ll/n + €. Set
b:=max{ai,...,an},
and note that b depends on €. Let n € N be written as n = kN +r with 1 <r < N. Then,
denoting a := infcy a}/n,

allm = al%(; < (a%a) ™ < (a+ )N = (a+ €)(a+e)MBY™ < a + 2¢

for n sufficiently large, which proves the claim. O

DEFINITION 4.11 (spectral radius). If X is Banach and T € L(X, X), then the spectral
radius of T is defined as

r(T) := inf |T"|Y" = lim |T7|"".
neN n—00

Note that a, = |T"| satisfies the requirement of Lemma 4.10, so that the spectral
radius is well-defined. Since |T™| < |T|", it is clear that always r(7T) < |T|. The following
result is therefore an improvement over the bound from Theorem 2.29, and justifies the
terminology ‘spectral radius’:

THEOREM 4.12 (sharp bound for the spectrum). Let X be Banach and T € L(X, X).
Then, for every X\ € o(T), we have |\ < r(T). Moreover, when K = C, then there exists
Aeoa(T) with [N\ =r(T).

PrOOF. Let |A| > r(T) and consider the series A2 0% (T'/A\)™. This series is absolutely
convergent by the Root Test, because

ANGRACS| T
lim sup ‘(—) = — lim HT"||1/"=M<1
It is readily checked that A™1 02, (T'/A\)™ is the inverse of A\I-T" (cf. the proof of Lemma 2.28),
which means A € p(T'). Therefore, whenever A € o(T'), then |A| < r(T).
For the sharpness assertion, set
ro := max{|A|: A e o(T)},

which is well-defined by compactness of o(7") (Theorem 2.29). We have already seen
ro <7(T). Let pe C with |u| > ro. If we can show |u| > 7(T), then the proof is complete.
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To this end, let I" € L(X, X)’, and consider the the function
fr:CN By (0) > C, A= 1(R(AT)),

which is well-defined by choice of 1y and analytic by Theorem 4.9. As before, if |A| > r(T),
then

fr(\) = il’(T"W‘l-

It is known from complex analysis that this series converges on any open annulus on which
fr is analytic, so in particular it converges at p, which implies

T?’l
lim l’( n+1) =0.
n—->oo IJ/
As I' € L(X,X)" was arbitrary, this means that ( n+1) N converges weakly to zero in
1€
L(X, X), so it is bounded by Corollary 3.7. So there exists M > 0 such that

|71 < MM DI,

which proves |u| > r(T') as desired. O

We saw in the proof of the Spectral Theorem for compact self-adjoint operators on
Hilbert spaces that, in that case, in fact »(T") = ||T'||. In general this is no longer true:
The operator T from Example 4.8 has |T'|| = 1 but o(T") = {0} and therefore, thanks to
Theorem 4.12, (T = 0.

4.3. Spectral Theory for Compact Operators

4.3.1. The Theorem of Riesz-Schauder. Throughout this subsection, let X be
Banach, T' ¢ L(X,X) a compact operator, and S := I — T, where as usual I denotes
the identity operator. For n € Nu {0}, set NNV, := ker S™ ( in particular Ny = {0}) and
R, = S™(X) (in particular Ry = X). Clearly, Noc Nyc Noc...and RyoR1 > Re2....

We shall prove the following properties:

LEMMA 4.13. (1) There ezists a smallest number p e Nu{0} such that Ny = Np,1,
and for this p we have Ny, = N, for all r e N. Also, N, n R, = {0}.
(2) There exists a smallest number ¢ e Nu{0} such that Ry = Rq.1, and for this q we
have Ry.r = Ry for all r e N. Also, Ny + Ry = X.

(3) p=q.

PRrROOF. (1) Note that all N,, are closed as preimages of the closed set {0} under the
continuous map S". If there were no p such that N, = Np,1, then we would have

Nog N1 g N2 G ...

Then, by the Lemma of Riesz (exercise), for every n € N there exists z,, € N,, such that
|zp] =1 and" dist(zp, Nypo1) > 3. If n>m > 1, then

|Txy, — Tam| = |20 — (STp + T — S| >

as S(N,) ¢ Ny_1 and therefore Sz, + x, — Sz, € Ny_1. But this implies that (T2, )nen
cannot have a convergent subsequence, in contradiction with compactness of T

Fix p to be the smallest number with N, = Np,1. Next, let r € N. We need to show
Npir € Np. Let © € Ny, then ST Hx) e Npi1 =Ny so x € Npip_q. Iterate this argument to
get Npyp € Np.

Let # € Ny n Ry, then SPz =0 and there is y € X such that = SPy, so that S*(y) =0
and thus y € Ny, = N,. Hence 0 = SPy = x.

Here, dist(zn, No-1) means inf{|z, —z|: 2 € Nuy1}.
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(2) We argue as in the first step, only we need that all R, are closed. Note that
:(I—TWZI—E:CDpJﬁ“TkZJ—T
k=1

with T compact, as the compact operators form an algebra (in fact even an ideal) in
L(X,X). It will be shown below in Theorem 4.16 that operators of this form always have
closed range, and the proof of this part of Theorem 4.16 will of course be independent of
this Lemma.

Now let us proceed as in the first part: Suppose there did not exist ¢ € Nu {0} such
that Ry = R441, then

Ry2R12R22...,

and again we could choose z,, € R, with |x,| = 1 and dist(z,, Rp+1) > % by the Riesz
Lemma. Then as before, for m >n > 1,

|Txy, — Txm| = |20 — (STp + Ty — S || > 2
because S(R,,) = R,+1 and thus Sz, +x,,—Sx,, € R,11. Again this contradicts compactness
of T.

So let g be the smallest number with R, = R;+1. Let now r € N and = € Ry, then
there is y € X with x = S7"y. As S% € R, = Rg+1, it follows that = € Rgipi1. It now
follows by induction that Ry, = R, for all r e N.

Let x € X, then S%z € R, = Ryq, so there is y € X such that S9z = S?4y. Therefore

xz=(x-S%)+S% e Ny +R,.

(3) Suppose p > ¢, then by (2) R, = R, but there would exist € N, \ N,. By (2) we
can write x = y+2z € Ny+ Ry, and z =x -y € N, + N, = Np,. On the other hand, z € R, = R,,.
By (1), 2 =0, so that x =y € N,, which is a contradiction. Therefore p <gq.

But suppose now p < g. Then by (1) N, = N, but there is € R, \ R;. Again by (2),
we can write z=y+2€ Ny+ Rq,and soy=v-2€ R, + R, = R,. But also y € N, = Np, so
again from (1) we deduce y = 0 and thus x = z € Ry, contradiction.

]

COROLLARY 4.14. There are closed subspaces N and R with the following properties:
(1) dim N < oo;

(2) X=NoR

(3) S(N)CN S(R) c R;

(4) Sty is an isomorphism from R to R.

PROOF. Choose N = Np and R= Rq, where N, and R, are the spaces from Lemma 4.13.
Both spaces are closed, and X = N & R follows from p = ¢ and from Np,n R, = {0} and
X =N, + R, That N is finite-dimensional will follow independently from Theorem 4.16

below.
Note also
S(N) = S(Np) € Np-1 € N = N
and

S(R)=S(R,) = Rys1=R,=R

In particular, S I is surjective from R to R. But it is also injective, because if Sy = 0 for
some ¥ € R, then there is z € X with y = SPx, then SP™'z = 0, thus z € Npi1 = Np, and then
y = SPx =0. By the Open Mapping Theorem, the inverse of S | is continuous, so indeed
we have an isomorphism. O
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Before we go on, let us recall some facts about quotient spaces (see also the corre-
sponding exercise). If X is a normed space and U ¢ X a closed subspace, we can define
an equivalence relation on X by x ~y if x —y € U. The equivalence classes are then, for
x € X, sets of the form

x+U:={zx+u:ueclU}.

The set of such equivalence classes becomes a vector space, denoted X /U, under the linear
structure

(z+0)+(y+U)=(z+y)+U, a(z+U)=azx+U,
which is easily seen to be well-defined. On the quotient space X /U one defines the norm
|z +U| = inf{|z-y|:yeU}.

If X is Banach, then so is X /U (exercise). If Y is another normed space and R: X - Y
is a bounded linear operator, then the induced operator

R:X/kerR— R(X), z+Uw~ Rz
is well-defined and bijective (think it over). It is also continuous, because
| R(x +ker R)| = |Rz| = [R(z - y)| < |Rl|x-y]| VyekerR.

LEMMA 4.15. Let Re L(X,X) such that R(X) is closed, then

ker(R)* = R'(X"),
where Ut :={2' e X' :2'(2) =0 VxeU} for a closed subspace U c X.

PROOF. Let first 2’ € R'(X"), so there is ¢y’ € X’ such that 2’ = R'y’. Let x € ker(R),
then /() = R'y'(z) = y'(Rx) = 0, so 2’ € ker(R)* as claimed.

For the converse inclusion, first observe there exists K > 0 such that for all y € R(X)
there is © € X with Rz = y and ||z < K]|y|; indeed, consider the induced operator
R: X/ker R - R(X) defined by R(x + ker R) := Rx. Then, as mentioned, R is bijective
and continuous from the Banach space X /ker R to the Banach space R(X). By the Open
Mapping Theorem, R™! is continuous, and the existence of K follows from the definition

of the norm in the quotient space.
Let now z’ € ker(R)*. Consider the map

2 R(X)->K, Rxwa2'(z),

which is well-defined because z’ € ker(R)*. We claim that 2’ is continuous. So let K be the
constant from the preceding argument, then for y = Rx € R(X) and |z| < K||y| it holds
that

2"()| = 2" (@)] < 2" =] < 2" Ky,

which shows continuity of 2’. Let now y’ € X’ be a Hahn-Banach extension of 2’ to all of
X. Then 2’ = R'y' because

a'(z) = 2'(Rz) = y'(Rx) = R'y'(2)
for every x € X, and it follows 2’ € R'(X"). O
After all this preparation we can state the following important result:

THEOREM 4.16 (Riesz-Schauder). Let X be Banach, T € L(X, X) a compact operator,
and S=1-T. Then:
(1) ker S is finite-dimensional;
(2) S(X) is closed and the quotient space X |S(X) is finite-dimensional;
(3) dim(X/S(X)) =dim(ker S) = dim(X’/S"(X")) = dim(ker S”).
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PROOF. (1) Let (zp)nen C ker S be a bounded sequence. By compactness, there is a
subsequence (2, )keny such that (Tzy, )ren converges. Since 0 = Szp, = zp, — Ty, , also
(zn, )ken converges to a limit « € ker S, because ker S is closed as the preimage of the closed
set {0} under a continuous map. Thus, every bounded sequence in ker S has a convergent
subsequence, so ker S is finite-dimensional by problem 4 on exercise sheet 6.

(2) To show that S(X) is closed, consider once more the induced operator S : X /ker S —
S(X) defined by S (x+ker S) := Sz. Then, as we know, S is bijective and continuous. If we
can prove that S-1 s also continuous, we have thus established an isomorphism between
X/ker S and S(X), and since the former is complete, then so is the latter, and therefore
S(X) will be closed. Note however that we can not use the Open Mapping Theorem for
continuity of the inverse, because for this we would require S(X) to be complete, which is
precisely what we want to prove.

Suppose now S~1 were not continuous, then there would exist a sequence (x,)pen such
that Sz, - 0 but |z, + ker S| = 1. Wlthout loss of generality we may assume |z,[ < 2
(otherwise replace x,, by x, — y, for suitable y, € ker S). Therefore, there is a subsequence
(zn, )ken such that (Txy, ke is convergent, so also x,, = Sz, +Txy,, converges. Denote
x =limy 00 Tn, . By continuity, Sz = 0, hence |z +ker S|| = 0, although by continuity of the
norm in the quotient space we also have |z +ker S| = 1. This is the desired contradiction,
so we have shown closedness of S(X).

For finite-dimensionality, we first observe that for a closed subspace U c X, we have
the isomorphy (X/U)" ~U*, where U* := {x' € X' : 2'(x) =0 Vax e U}. Indeed, it is easy
to check that an isomorphism between these spaces is given by [ — low for [ € (X/U)’,
where w : X - X/U is the canonical quotient map given by x — x + U. Applying this
observation to U = S(X) and noting S(X)* = ker S’ (exercise sheet 11, problem 4), we
arrive at

(X/S(X)) ~kerS’
and therefore
dim(X/S(X)) = dim(X/S(X))" = dim(ker S") < oo, (4.2)

where we used Step 1 applied to S’ and Schauder’s Theorem, which shows that 7" is
compact; for the first equality we also used that a finite-dimensional space and its dual
have the same dimension.

(3) One can check that, for a closed subspace U ¢ X, we have the isomorphy X'/U* ~ U’
via the isomorphism z’ + U+ — z’ 7. Applying this with U = ker S and taking into
consideration Lemma 4.15, we obtain

dim(X'/S"(X")) = dim(ker S)" = dim(ker S).

Thanks to this and (4.2), it only remains to show dlm(X/S(X)) dim(ker S). We consider
the decomposition X = N & R from Corollary 4.14. Set S:=9 M

First, we show that X/S(X) is isomorphic (as a vector space) to N/S(N), so their
dimensions are equal. To this end, consider the obvious map ® : N/S(N) - X/S(X),
2+ S(N) » 2+ S(X), which is well-defined as S(N) c S(X). Linearity is clear. For
injectivity, let z € N with ®(z + S(N)) = 0, i.e., z € S(X). We need to show 2 € S(N).
Write z = Sy for some y € X, and y = y1+y2 € N+R. Then, Sy = Sy—Sy; = x—Sy1 € N. But
note also Sy € R, so that Sy, = 0. Since S | is an isomorphism and ys € R, this implies
y2 = 0, so that 2 = Sy; € S(N). For surjectivity, let X sz =z, +22 ¢ No R=N & S(R).
Then z + S(X) = 1 + S(X), so that ®(z; + S(N)) =z + S(X).

Secondly, as N is finite-dimensional, it is a well-known result from Linear Algebra that
dim(N/S(N)) = dim(ker S).
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Thirdly, we show ker S = ker S. As S is the restriction of S to N, it suffices to show
that any x € X with Sx = 0 is contained in N. Write such an x as z = Tl + X9 € Neo R,
then Sz = 0 implies Szy = —Sz1. As S leaves the spaces N and R invariant, this implies
Sty =-Sx; € Nn R, hence Sx1 = Sxo = 0. Since S [ is an isomorphism, it follows that
x2 =0, so that x =27 € N, as claimed.

Putting together these three observations, we have

dim(X/S(X)) = dim(N/S(N)) = dim(ker ) = dim(ker S).

0

4.3.2. Consequences of the Riesz-Schauder Theorem. We still assume X to be
Banach and T € L(X, X) a compact operator. Recall from exercise sheet 11, problem 4,
the definition

Vi={zeX: 2'(z)=0 Va'eV}
for a subspace V c X'.
THEOREM 4.17 (Fredholm Alternative). Let 0 # A\ € K. Then, either the homogeneous

equation
A-Tz=0

has the unique solution x =0, in which case also the inhomogeneous equation
A-Tx=y

has a unique solution for all y € X; or there exist n = dim(ker(A —T)) < oo many lin-
early independent solutions of the homogeneous equation, and the same number of linearly
wndependent solutions of the adjoint equation

X' -T'z" =0,
in which case the inhomogeneous equation has a solution if and only if y € ker(A-T"),.

ProOF. Without loss of generality, take A = 1 (because A\ =T = \ (I - %), and % is
compact). If x =0 is the only solution of x = Tz, then by Theorem 4.16

dim(X/(I-T)(X)) =dim(ker(I -T)) =0,

which implies that the range of I — T is all of X. Therefore, x — Tz = y has a solution for
all y € X, and uniqueness of the solution follows from injectivity of I —T.

If, however, I —T is not injective, then by Theorem 4.16, the solution space of the
homogeneous equation (i.e., the kernel of I —T) is finite-dimensional, and the solution
space of the adjoint equation (i.e., the kernel of I —T") has the same dimension. In this
case, x — Tx = y has a solution if and only if y € (I -T)(X) =ker(I —=T"),, where we used
closedness of the range of I — 7' (Theorem 4.16) and problem 4 on exercise sheet 11.

0

Let us present an application of the Fredholm Alternative in the theory of integral
equations. Let k € C([0,1]?) and

7:C([0,1]) - C([0,1]), Tx(s):/oskz(s,t)x(t)dt.

In the exercises you showed that T is compact. Consider the equation Ax — Tz = 0 with
A # 0, which reads as

(s = /O (s, D (t)dt.
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Without loss of generality, set A = 1, because otherwise consider the compact operator %
We show injectivity of I —T: If x =Tx, then

|2 (s)] = [Tx(s)] < /0 [k (s, )|z (D)t < sk oo |2 oo-

Substituting this estimate into itself, so to speak, we obtain

s 52
\90(8)|=\T96(S)|S/0 !k(s’t)ltllk\\oollwlloodtéEllkHinlloo,

and iteration yields
s" [kl %
2(s)] < 2 g,
n!

for all n € N, which converges to zero as n - oco. Hence x = 0 and I — T is injective.
By the Fredholm Alternative, the equation Az — Tz = y has a unique solution for every
y € C([0,1]). In other words, for any continuous function y and A # 0, there is a unique
solution to

Ax(s) =y(s)+ /OS k(s,t)z(t)dt.

Another application of the Riesz-Schauder Theorem is the Spectral Theorem for com-
pact operators:

THEOREM 4.18 (Spectral Theorem for compact operators). Let T € L(X,X) be com-

pact.
(1) If X has infinite dimension, then 0 € o(T).
(2) o(T) is at most countable.
(3) If e o(T) ~ {0}, then X is an eigenvalue with finite-dimensional eigenspace.
(4) o(T) has no accumulation point except possibly 0.

PRrROOF. (1) If 0 € p(T), then T is invertible with continuous inverse, and since the
composition of a compact operator and a continuous operator is again compact (exercise),
we have that I = TT~! is compact. This implies that X is finite-dimensional.

(3) Again, we may set A = 1 without loss of generality. If I — T is injective, then
ker(I - T) = {0}, so by the Riesz-Schauder Theorem, X /(I - T')(X) has dimension zero,
which implies I — T is also surjective. But then 1 € p(T"). Therefore, if 1 € o(T), I - T
is not injective, meaning that 1 is an eigenvalue. Finite-dimensionality of the eigenspace
ker(AI —T') also follows from the Riesz-Schauder Theorem.

(2) and (4) are both implied by the following claim: For any € > 0, the set {A e o(T') :
|\l > €} is finite.

Let us prove this by contradiction. If the claim were not true, then we could find an
€ >0 and a sequence (A, )neny of pairwise distinct eigenvalues of T (here we use (3)) such
that |A,| > €. Denote by x,, # 0 a corresponding eigenvector. Then {x,, : n € N} is linearly
independent; for otherwise there would exist NV € N and a linear combination

N
IN+1 = Z Q5Tj,
j=1
for linearly independent {z1,...,2x}, and therefore
N N
TQZN+1 = Z;OéjT(L'j = Z;aj/\jwj
j= j=

but also
N

TN+ = ANA1TN+1= Y, QGANL1T;.
J=1
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It would then follow from independence of {xi,...,xn} that a;A; = ajAns; for all j =
1,..., N, and since not all «; can be zero, we obtain some j such that A\; = Ay4q, in
contradiction with the assumption that the A's are pairwise distinct. This shows linear
independence of {x, : n € N}.

But now, if E,, :=span{z1,...,x,}, then

F1¢FEyGFE3G....

By the Riesz Lemma, we may find y,, = ¥._; ojx; € By, with [y, | = 1 and dist(yn, Ep-1) > %
for n>2. If n>m > 2, therefore,

ITYn = Tym| = [Ayn = (Tym + Aayn — Tyn) |- (4.3)

Note that Ty, ¢ E,, c E,_1 because y,, is a linear combination of {x1,...,x,,}, which
are eigenvectors of 7. Note further that \,y, - Ty, = 22:1()\” - )\j)a?aﬁj € B,_1, so that
from (4.3) we infer

1 €
1Ty = Tym| > §|)‘n| 2 5’

and thus the desired contradiction with compactness of 7.

4.4. Spectral Theory for Bounded Operators on Hilbert Spaces

We get back to the study of Hilbert spaces. In this entire section, H will denote a
complex Hilbert space.

4.4.1. Continuous Functional Calculus. The Spectral Theorem from Linear Al-
gebra tells us that a complex matrix 7' € C" that is Hermitian (i.e., 7¢ = T) can be

diagonalised, that is, there exists a unitary matrix U € C" (i.e., U* := U - U~1) such that
UTU ' =D,

where D = diag(A1,...,\,) is a diagonal matrix with real entries Aq,..., \,, which are the
eigenvalues of 7. (You might have learned in Linear Algebra that the Spectral Theorem
is true more generally for normal matrices, i.e., those such that T*T = TT*, but then
the eigenvalues might no longer be real. The theory presented here for bounded linear
operators on Hilbert spaces also transfers to normal operators, but we will stick to self-
adjoint operators anyway.)

The Spectral Theorem, as you have seen in Ordinary Differential Equations, gives rise
to the definition of the matrix exponential e’, which can be defined as

el = U ldiag(e,...,eM)U.

Of course there is nothing special here about the exponential function: We could have
defined f(T) for any function defined on the spectrum of T. This procedure of defining a
function of a matrix is known as a functional calculus. Here and in the next section, we
shall develop a functional calculus for bounded self-adjoint operators on a Hilbert space,
and then see what this tells us about the spectrum of such an operator.

In the sequel, let us denote by 1 the constant function £ » 1 and by t the identity
function ¢ — t. As before, for an operator T' € L(H,H), we denote by T* € L(H, H) its
Hilbert space adjoint. The following Proposition has already been known to us in the case
of compact self-adjoint operators, see the proof of Theorem 2.31.

PROPOSITION 4.19 (spectral radius of self-adjoint operators). Let T € L(H, H) be self-
adjoint. Then

(T) = max{|\|: A e o(T)} = |T|.
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PROOF. From Proposition 2.24, noting that 72 is self-adjoint if T is, we have
|72 = sup (z,T%x) = sup (T, Tx) = sup |Tx|?* = |T|*

lz<1 E{S =<1
We infer HTQk | = ||T||21c for all k£ € N and therefore
r(T) = lim [T"]"/" = lim 7% = ).
The equality 7(T") = max{|\| : A e 0(T)} is precisely Theorem 4.12. O

THEOREM 4.20 (Continuous Functional Calculus). Let T € L(H,H) be self-adjoint.
There exists a unique map ®: C(o(T);C) - L(H,H) such that

(1) (1) =1 and ®(t) =T;

(2) ® is a homomorphism of algebras and an involution, that is:
e & s linear,
o O is multiplicative, i.e., ®(fg) = (f) o ®(g),
e O(f) =d(f)* (involution property);

(3) @ is continuous.

PROOF. Let’s prove uniqueness first, as that is very simple. As ® is linear and mul-
tiplicative, the values ®(1) and ®(t), which are prescribed, uniquely determine ® on the
space of polynomial functions. But the space of polynomial functions is dense in C(c(T"))
(by the Stone-Weierstraf Theorem, noting that o(T') is compact), and ® is continuous, so
® is already determined on all of C(o(T)).

Now for existence: Obviously, if f:t+— Y}, atk is polynomial, then ® must return

o(f) = Zn: axT*,
k=0

whereby (1) and (2) are satisfied on polynomial functions (for ®(f) = ®(f)* recall that
o(T) c R as T is self-adjoint). If @, restricted to the polynomials, can be shown to be
continuous, then there exists a continuous extension to all of C(¢(T)). We proceed in
several steps.

Step 1. We claim: If f is a polynomial function on o(7"), then

o(®(f)) ={f(A): Aea(T)}. (4.4)

To prove this, let first X € 0(7"), then we need to show f(A) € o(®(f)). As A is a root of
f = f(N), there exists a polynomial g such that f(¢t) — f(A) = (t—X)g(t) for all ¢t € o(T).
So by definition of ®, we have ®(f) - f(A)I = (T - A\I)P(g).

Now if f(\) € p(®(f)), it would hold that

I=(T-AD®(g)(2(f) - fFND) ™' = (2(f) = FNI) ' @(9)(T - M)

(because all the operators commute with each other) — but this implies A € p(T'), contra-
diction. This proves the inclusion {f(A): Aea(T)} c a(P(f)).

Conversely, let © € o(®(f)) and assume f is not constant (otherwise the claim is clearly
satisfied), so there exists a factorisation

f—p=alt-2)e(t-A)
and therefore
O(f)—pl =a(T - 1)--(T-NTI).

Hence if \; € p(T") for all k= 1,...,n, then also p € p(®(f)), which is not the case, so that
there is some k =1,...,n with A\ € 0(T'). But f(\x) = p, which completes the proof of the
claim.
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Step 2. In this step we show continuity of ® on the space of polynomial functions. We
compute

[@(HI? = e () = 2(f1)]
=sup{|A|: Aea(D(f[))} (4.5)
=sup{|(fF)N)]: A e a(T)} =sup{|f (V)] : A e o(T)}.
Here, in the passage from the first to the second line we used Proposition 4.19; note also
that ®(ff) is self-adjoint (check it yourself). For the passage from the second to the third
line, we used Step 1.

The shows that |®] = | f]e, so indeed ® is continuous with norm 1 on the space of
polynomial functions on (7).

Step 3. As the polynomials are dense in C'(o(T')), we can uniquely extend the contin-
uous linear operator ® to all of C'(o (7)) with the same norm?. It remains to show that
this operator has all the required properties.

In fact, linearity and continuity are clear (see footnote), and ®(1) = I as well as
®(t) = T. Multiplicativity and the involution property follow by a simple approximation
argument; we give it only for the involution property: Let f € C(o(T)) and (fn)nen a
sequence of polynomials that converges uniformly to f. Then,

o(F) = (T ) = @(lim 7,) = lim @(F,)
- lim ()" = (Jim ®(f)) = @(lim ()" = @)

where we used the continuity of f ~ f, of S ~ S*, and the involution property of ®
restricted to polynomials. ([l

Instead of ®(f), we usually write f(7) (just like we write e? for the matrix expo-
nential). Let us collect some properties of the functional calculus. For a linear operator
R:X - X, we write R>0if (x, Rx) >0 for all z € H.

THEOREM 4.21 (properties of the continuous functional calculus). Let T ¢ L(H, H)
self-adjoint and f € C(a(T)).
(L) £ = 1flloos
(2) When f >0, then also f(T) >0;
(3) If Tx = Az, then also f(T)x = f(N)x;
(4) o(f(T)) = f(a(T));
(5) The set {f(T): f e C(o(T))} forms a commutative algebra of operators®. The
operator f(T') is self-adjoint if and only if f is real-valued.

PROOF. (1) was already showed in (4.5) when f is a polynomial; but since polynomials
are dense in C(o(T)) and f — f(T) is continuous, the equality holds for general f €
C(a(T)).

(2) If C(o(T)) > f >0, then there is 0 < g € C(o(T)) with g? = f. But then, for all
rxeH,

(z, f(T)x) = (9(T) x, g(T)x) = (§(T)z,g(T)z) = (¢(T)z,g(T)z) = |g(T)z|* > 0.

(3) If f =t", then clearly Tz = A\x implies f(T)x =T"x = \"x = f(\)x, and by linearity

this remains true for all polynomial functions. The general statement then follows again
from density of polynomials in (7).

Indeed, if f € C(o(T)), pick a sequence of polynomials such that f, — f and define ®(f) :=
limp—eo ®(frn). It is not difficult to show that the limit exists and is independent of the choice of ap-
proximating polynomials, and that ® thus defined is itself linear and continuous.

3This means that the set forms a vector space and additionally is closed under multiplication (here:
composition of operators), which is commutative.
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(4) For the inclusion o(f(T")) c f(o(T)), suppose u ¢ f(o(T)), then we need to show
pe p(f(T)). By choice of y, the function g := (f — )™ € C(o(T)) is well-defined with

g(f-w)=(f-p)g=1

Applying the functional calculus,

g(T)(f(T) = pul) = (f(T) = pul)g(T) = 1,

hence f(T') — pl is invertible and thus p e p(f(7T)) as claimed.
For the converse inclusion, note that o(f(7")) = f(o(T)) when f is a polynomial,
see (4.4). Let p = f(\) for some A\ € o(T), then we need to show u € o(f(T)). For
1

n € N, let g, be a polynomial function such that |f - gnle < . Then, in particular,

[f(N)=gn(N)] < % and also, as the functional calculus is continuous of norm one (see (4.5)),
(T - ga(T)] < L.

Therefore, pul — f(T) is the limit (in the operator norm) of the sequence (g, (A)I —
9n(T)), which consists of non-invertible operators (because 0(g,(T)) = gn(o(T)) as gn
are polynomials). Now the set of non-invertible operators is closed in L(H, H) (think it
over — hint: Neumann Series), so that also uf — f(7') is non-invertible and thus p € o(f(7"))
as claimed.

(5) The property of being an algebra follows immediately from linearity and multiplica-
tivity of the functional calculus. Commutativity is clear for polynomials (because powers
of T commute with each other), and for the general case one proceeds by approximation.

If f is real-valued and polynomial, then clearly f(7') is self-adjoint because T" is. The
non-polynomial case follows again by approximation. On the other hand, if f is not real-
valued, then by (4) o(f(T')) contains a number that is not real; but self-adjoint operators
have real spectrum (Lemma 2.30), so f(7") cannot be self-adjoint. O

Let us describe the link between the continuous functional calculus and the spectrum
in the case of a compact self-adjoint operator T' € L(H, H), for which we already have a
spectral theorem (Theorem 2.31) at our disposal. We saw that we can write

Tz = i Az, en)en (4.6)

n=1

for every x € H, where (e,)ney 18 a certain orthonormal system and A, # 0 a corresponding
eigenvalue. We can extend (e, )neny to an orthonormal basis by adding an orthonormal
basis of ker T', if necessary. Denote P, : z — (x,e,)e,, which is the orthogonal projection
onto the span of e,, and Py the orthogonal projection onto ker T, so that T'= Y>>y A\ Py
(set A\g =0).

For feC(o(T)), then, define

£(T) = iof(xn)Pn.

We claim T~ f(T) = ®(f) is the functional calculus. For this, it suffices to check the
properties of Theorem 4.20, as these uniquely determine ®. First, from (4.6) it is clear
that 1(T) =1 and ¢(T) = T. Secondly, f ~ f(T) is linear, but also multiplicative, as

(£9)(T)x = £(0)g(0) Pz + ilfwgun)(x, en)en

= F(0)Pog(T)a + if(m (), en) en = F(T)g(T)a.
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It is also involutive, because

o0

<?<T>m,y>=(mpox 5 TG en>en,Poy+z<y,ek>ek)

= W(Povaoy) + Z f()‘n)(xa en)(y7en)

= (Poz, f(0) Poy) + Z(w en)f(An) (Y, en) = (2, F(T)y).

n=1

Finally, it is continuous as a map C(o(T)) - L(H, H), because

L) = SO Pl + 32 O el

<1712 ( IPucl? + 53 enw) I el

This shows, for compact operators, the relation between the functional calculus and
spectral theory. As we have seen, given the spectral theorem, we could construct the
functional calculus. But it would also work the other way round: Given f — f(T), we can
reconstruct the projections P, onto the eigenspaces via

Po=fulT), faM)=bny (n21,520) (@)
where we set A\g = 0 and thus define a continuous (!) function f, on the set o(T') = {\, :
neN}u{0}.

For bounded (but not necessarily compact) operators, we do not yet have a spectral
theorem at our disposal, but the functional calculus is available from Theorem 4.20. We
will therefore follow the strategy just outlined to gain insight into the eigenspaces from
the functional calculus. A technical problem is that, for bounded operators, the spectrum
need no longer be discrete?, so the functions as in (4.7) would not be continuous on o(7T').
This means we have to extend our calculus from continuous to measurable functions.

4.4.2. Measurable Functional Calculus. For a compact set K c C, let L*(K)
be the Banach space (!) of bounded measurable functions® M — C, together with the
supremum norm.

LEMMA 4.22. L%(K) is the smallest function space containing C(K) that is closed
under pointwise limits of uniformly bounded functions.

More precisely: Assume C(K) c U c L®(K) has the property that every (fn)neny € U
with sup,ey | fnlleo < 00 and f, = f pointwise satisfies f € U. Then U = L>(K).

PRrROOF. Let V be the intersection over all sets S with the properties described, i.e.,
S 5 C(K) is closed with respect to pointwise limits of uniformly bounded functions (such
sets exists because £*° is one of them). By definition, V > C'(K).

Let us show first that V' is a vector space. So let f e C'(K) and set V= {ge L*(K):
f+geV}. Itis easy tosee Vi 2 C(K) and Vy is closed with respect to pointwise limits
of uniformly bounded functions. This implies Vy 2V, or in other words: If f € C(K) and
geV, then f+geV.

Let now h € V and consider Vj, := {g € L*(K) : h+ g € V}. By the argument we just
put forward, V;, o C(K). Also, V}, is closed with respect to pointwise limits of uniformly
bounded functions. It follows that V c V}, whereby we have showed: If he V and ge V,
then h+geV (as g eV implies g € V).

4This is why the sum in (4.6) will have to be replaced by an integral.
5Note this is not the space L (K), because the latter consists of (equivalence classes of) functions
that are bounded only up to a nullset.
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If « € C and g € V then a similar argument (where one would show that V,, := {g €
L® :ag eV} contains C(K) and is closed with respect to pointwise limits of uniformly
bounded functions) yields ag € V', so we have showed that V is a vector space. Also, V' is
closed with respect to the supremum norm, because if g, - ¢ uniformly and g, € V for all
n € N, then g, are uniformly bounded and pointwise convergent, so g is contained in any
space closed with respect to pointwise limits of uniformly bounded functions, and thus in
V.

Next we show that step functions® are contained in V. Since (as you might remember
from measure theory) step functions are dense in £*° with respect to uniform convergence,
it will then already follow V = L*(K).

In fact, since V' is a vector space, it suffices to show yg € V for any measurable F c K.
We do this by a standard measure theory argument: We show that A:=={EeX:xgeV}is
a Dynkin system containing a n-stable generator of X, where 3 denotes the Borel o-algebra
of K. Then A =% by a well-known theorem in measure theory.

As a n-stable generator of ¥, consider the open sets in K. They are contained in A:
Indeed, when E c K is open, then there exists a sequence (fy,)neny € C(K) with 0< f,, <1
for all n € N and f, - xg pointwise. So xyg € V.

It remains to prove A is Dynkin. There are two defining properties of Dynkin spaces:
First, if £, F € A and F c E, then also F\ F' € A. This is true because xg.r = XE — XF
and V is a vector space. Secondly, if (Ey)neny € A are pairwise disjoint, then F := U,y En
is also in A. This is also true, as xg = limy_ oo Zﬁil XE, €V as V is closed under pointwise
convergence of uniformly bounded functions.

6

O

As a preparation for the construction of the measurable functional calculus, let me
state without proof the Riesz Representation Theorem (not to be confused with the Riesz-
Fréchet Representation Theorem): If K c C is compact and [ € C(K)' is a bounded linear
functional, then there exists a complex-valued measure u : ¥ — C, where ¥ is again the
Borel o-algebra on M, such that

I(f) = /K f()du(z) VfeCI).

Moreover, ||| = |||, where |u|| is the total variation norm of p explained below.

The notion of complex-valued measure requires some explanation, as you probably
have only seen measures with non-negative real values so far. A map ¥ — C is called a
(complex) measure if it is o-additive, that is, if

U ( U En) = > pu(E,) €eC whenever E, € ¥ are pairwise disjoint.
neN

We will not go into the theory of complex measures here, but it can be shown that a
complex measure p can be decomposed as p = g — pigy + (3 — 115 ), where all four measures
are finite measures with values in R{, and then the integral of f ¢ C(K;C) with respect
to w is defined as

[ #@an) = [ 1) - [ fedme)

“if [ s - [ 1ease).

Accordingly, many properties of usual measures transfer to complex measures, like the
Dominated Convergence Theorem.

n=1

6Recall from measure theory that step functions take the form Y.;_; arXxg,, where a; € C and Ej, are
measurable, i.e., they are contained in the Borel o-algebra of K. The function g, is then the indicator
function of E}.
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The vector space (!) of complex measures on K can be equipped with a norm, the total
variation norm, given as

lal? = (g (K) + iy (K))? + (3 (K) + 15 (K))”

One then has the estimate
/Kf(Z)du(Z) Sflloo il ¥ f € L2(K).

THEOREM 4.23 (Measurable Functional Calculus). Let T € L(H,H) be self-adjoint.
There exists a unique map ®: L>(o(T)) - L(H, H) such that
(1) (1) =1 and ®(t) =T;
(2) ® is a homomorphism of algebras and an involution;
(3) ® is continuous.
(4) If fr € LZ(0(T)) for all n € N, sup,ex [ fnlloo < 00 and fr, = f pointwise, then
also (@(fn):c,y) - ((I)(f).fU,y) fOT all T,y € H.

PROOF. Again let us prove uniqueness first. We have seen that (1), (2), and (3)
already determine ® on C'(0(T')). By Lemma 4.22, we can approximate each f € £ as
pointwise limit of uniformly bounded continuous functions (think it over). Property (4)
then determines ®(f) from its values along the approximation sequence.

For existence, let f e L%(o(T")) and z,y € H. Consider [, , : C(c(T)) - C given as

ley(9) = (9(T),y),

which is linear and bounded, because

ey (D] < gD 121 y] = [gleo [ (4.8)
<[]yl

By the Riesz Representation Theorem, there is a complex measure ji, , with |11z,
such that

@¢w=/maaww@>vwcw@»
Consider now the sesquilinear map
@) [ FE (o)
o(T)
which is bounded since
[ 1@y ()
o(T)

Owing to the Lax-Milgram Theorem (exercise sheet 13, problem 4) there is ®(f) ¢ L(H, H)
such that

@umw:/mﬂwwww Va,yeH.

< [ fllooll syl < [l I yl-

Note, by definition, that ® coincides with the continuous functional calculus on C(a(T)),
so that (1) is already clear, and so is (3).

For (4), we use the Dominated Convergence Theorem for the complex measure fiz, to
find

<Mhmw=/mﬁmeM@4/mﬂwww@=@wmm.

It remains to prove (2). We only show multiplicativity, using Lemma 4.22. Note first that
multiplicativity holds on C(o(T)), because there ® is simply the continuous functional
calculus.



4.4. SPECTRAL THEORY FOR BOUNDED OPERATORS ON HILBERT SPACES 7

Fix now g € C(o(T')) and define

U={feL=(a(T)): 2(fg) = 2(f) o ®(9)}.

Then C(o(T)) c U. To invoke Lemma 4.22, let (fn)ney € U be uniformly bounded and
pointwise convergent to f € L>(o(T')). By property (4), we have

(@(fn)(2(9)z),y) ~ (2(f)(2(9)2),y) (4.9)
as n — oo, but also, as f, € U,
(@(f)(2(9)2),y) = (2(fug)z,y) = (2(f9)z,y)- (4.10)

It follows that ®(f) o ®(g) = ®(fg), hence f € U. Lemma 4.22 then yields U = L= (o (T)).
Now let f e L*(o(T)) and set

V={geLZ(0(T)): ®(fg) = (f) o ®(9)}

By the previous argument, V' > C(o(T")), and with the same computations as in (4.9), (4.10)
one finds by Lemma 4.22 that V = £L>(o(T')), whereby ® is multiplicative, as claimed. [

Again we shall write f(7") instead of ®(f). Note that f(7") and ¢g(7") commute, since
f(T)og(T)=(fg)(T)=(gf(T)) =9g(T)of(T). If f is real-valued, then f(T) is self-adjoint
by virtue of the involution property.

COROLLARY 4.24. If f, € L=(c(T)) for all n € N, sup,,oy | faloo < 00 and f,, - f
pointwise, then also f,(T)x — f(T)x for all x € H.

ProoF. By part (4) of Theorem 4.23, under the given assumptions we have weak
convergence of f,(T)x to f(T)x for every x € H. As weak convergence and convergence of
the norms imply strong convergence (why?), it suffices to show || f,(T)x| = | f(T)z|. But
this is true since

| fa(T)a ) = (fu(T), fu(T)2) = (ful T)* fu( D)z, ) = ((fafo) (D), )
> ((FN(D)z,x) = [ £(T)z]?,

where we applied property (4) of Theorem 4.23 to f,, fn. O

4.4.3. Spectral Measures. Within our measurable functional calculus, functions of
the form f = ya € L%(0(T)) with measurable A c o(T) are of particular interest. As
before, we denote by ¥ € P(o(T')) the Borel o-Algebra generated by the (relatively) open
subsets of (7). (Note X can equivalently be characterised as the family of sets of the
form Bno(T), where B is a measurable subset of R.)

LEMMA 4.25. Let A€ X and E4:= xa(T). Then E4 is an orthogonal projection, that
is, E% = Ea and ker(E4) L E4(H).

PROOF. Ej is a projection because E% = xa(T)? = x4(T) = xa(T) = E4. Also, as xa
is real-valued, F4 is self-adjoint, so for x € ker E4 and y € H we have (x, Fay) = (Eax,y) =
0. ]

LEMMA 4.26. Let T € L(H, H) be self-adjoint. Then,
(1) X@(T) =0, Xo(T) (T) =1;
(2) for pairwise disjoint Ay, Aa,...€ ¥ and x € H,
> x4, (T)x = xy= 4, (T)z;
k=1

(3) xa(T)xB(T) = xanB(T) for A,BeX.
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PROOF. (1) The function x4 is nothing but the zero function, so xz(7") is the zero
operator. Likewise, x,(r) is constantly 1 on o(7T'), so x,(1)(T) = 1.

(2) For each N € N, note that XUN 4, = Zszl XA,, as the sets Ay are pairwise disjoint.
Thus, for finite N the assertion follows from linearity of the functional calculus. In the
limit N — oo, we use Corollary 4.24 to conclude.

(3) This follows from xaxB = xanp and multiplicativity of the functional calculus. O

DEFINITION 4.27 (spectral measure). Let ¥ be the Borel o-algebra on R. A map
E:¥Y > L(H,H), A~ Ejy is called spectral measure if each E 4 is an orthogonal projection,
and

(1) E@ :07 E]R:I;
(2) for pairwise disjoint Ay, Ag,...€ X and x € H,

Z Eyx= EUZL AT
k=1
We say that a spectral measure F is compactly supported if there is a compact K c R with

Ex =1

The previous two lemmata tell us that, for a self-adjoint bounded operator T, E4 =
xA(T) defines a spectral measure compactly supported on o(7'). In general, a spectral
measure is really a measure (because it assigns the value zero to the empty set and is
o-additive), only with values in L(H, H). One therefore often talks about operator-valued
measures in this context.

If F is a spectral measure, then F 4 is self-adjoint for all A € ¥, because orthogonal
projections are always self-adjoint. In case a spectral measure arises from the functional
calculus of a bounded self-adjoint operator T', then E4Ep = EFgFE4 = Esnp, because

EaEp =xa(T)xp(T) = (xaxB)(T) = xans(T) = Eanp = EpEa.
One can show that this is true in general for spectral measures:
PROPOSITION 4.28. Let E be a spectral measure. Then for A, B e,
EsEp = EpEs = Eanp.
In particular, the values of a spectral measure always commute with each other.
PROOF. Let us assume for the moment that A and B are disjoint. Then, by additivity,
Es+Ep=Eap=FEi5=(Ea+FEp)?
=Fi+EAFEp+EpEa+ E% =Es+ EAEp + EgE4 + Ep,
whence F4Ep = -FEpFE 4. Using this,
E Ep=FsE% =-EgE Ep=FE3Es = EpEa,

so that EoFEp = +EgFE 4, which is only possible when F4Ep = EpF4=0=FEgz=FEanp.
In the general situation, we can use this to compute

EsEp = (Eanp + EaB)(Eans + Ep.a)
= EiﬁB +EanpEBua+ EaBEAnB + EABEB A = EAnB,
and of course also EgE4 = Enp by interchanging A and B. O
The purpose of a measure’s life is to be integrated against (discuss). This is no different

for spectral measures. Let us outline how one can integrate a function f € £ (K) with
respect to a spectral measure supported on K.
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First of all, if f =Y} ; axxa, is an elementary function (where ay e Cfor k=1,...,n
and (Ag)g=1,..n C X are pairwise disjoint), then of course we set

n
/ f()\)dE)\ = Z akEAk-
K k=1
It is easy to check (just as in measure theory) that the value of the integral does not depend
on the specific way the elementary function is written.
Next, from measure theory it is known that for general f € L%°(K) there exists a
sequence of elementary functions f,, that converge to f uniformly, so we set

/Kf()\)dE)\ ¢=7%i_)r£1°/Kfn()\)dEA.

Again one can show without great difficulties that the limit exists and is independent of
the choice of approximating sequence (fn)nen (see |5, p. 323 f.]). Note however that the
value of the integral is an element of L(H, H), so the limit is taken in the operator norm.

Sometimes we write [ fdE instead of [, f(A)dEx. We condense the discussion into
the following theorem:

THEOREM 4.29 (integration w.r.t. a spectral measure). Let a spectral measure E be
supported on a compact set K c R. There exists a linear and continuous map

LK)~ L), [ [ OB,
K
and | [ fAE| < | fleo. If f is real-valued, then [ fdE is self-adjoint.
PRrOOF. The only thing left to prove is the estimate || [ fdE| < | f]c. (The self-adjoint

property is clear for elementary functions and then follows by approximation in the general
case.) It suffices to prove the estimate for elementary functions, as the general case follows
by approximation. First note that Eqx L Epx if An B = @, because (Fax,Epz) =
(z,EaEpz) = (x,Egz) = 0.

So let f =37, arxa, with measurable and pairwise disjoint Ay ¢ K and x € H, then
we use Pythagoras’ Theorem to compute

s

2

n

2 n
= > lowEazl?® = 3 lawl| Ba,2]®
k=1

n
Z apFax
k=1

k=1
< sup g Y [ Eae]® = [ f1% | 2 Bage|| = [f1% [ Eup, anz]
k=1,....,n k=1 k=1
<IF1% =],
where in the last step we used that Eyp_ 4, is an orthogonal projection, so its norm is
one. a

4.4.4. The Spectral Theorem for Bounded Self-Adjoint Operators.

THEOREM 4.30. Let E be a spectral measure of compact support and T := fR AE).
Then the measurable functional calculus of T is given by

PROOF. Note that T is self-adjoint as the identity function ¢ is real. If f e £L>(o(T)),
then extend f to all of R by zero. Then, the operator

U:L%(o(T)) - L(H,H), Y(f) ::/Rde

is linear and continuous by Theorem 4.29.
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Multiplicativity is true for indicator functions, because F4Ep = Eanp and therefore

/ YAXBdE - / XansdE = Ban = EaBn = ( / XAdE) ( / deE).
R R R R

It then extends to £L%(o(T')) by approximation. Similarly for the involution property: If
f =axa with a € C, then for z,y € H,

(z, f(D)y) = (z.;aBay) = (aBaz,y) = (f(T)z,y),
and the general statement follows by approximation.

Property (4) from Theorem 4.23 is seen as follows: If ¥ is again the Borel o-algebra
on o(T'), then for z,y € H the map p, X - C, A~ (Ez,y) is a complex measure and

(\If(f):L’,y) = /Rfd:ux,y

(prove this for step functions and approximate). So when f,, - f pointwise where (f;,)nen ©
L>(o(T)) is uniformly bounded, then by Dominated Convergence

W(fo)r.y) = /R Fudpiny — /R Fbiay = (U(F)z.y).

which establishes (4).

It remains to prove W(1) = I and W(¢) = T'. Since the extension by zero of 1 to all of R
is Xo(1), then W(1) = fU(T) ldE = E4(ry, so we will prove E,(py = I. From this it will also
follow that E is supported on o(T") and thus W(¢) = [ AddE) = T by definition of 7.

In order to show E,py = I, let (a,b] ¢ R be an interval that contains the (compact!)
support of E, so that E,; = 1. Let pe p(T"). We claim that Ey = 0 for some neighbour-
hood U 5 p. Indeed, since I —T is invertible, an easy argument involving Neumann Series
shows that there exists 6 > 0 such that |S — (ul —T)| < ¢ implies S is invertible with

IS <C= (I -T)7!| +1.

Without loss of generality, set § := Z’_T“ for sufficiently large N € N and assume § < % Let
ay, := a+ko define the corresponding equidistant partition of (a,b], where k =0,..., N, and
consider the elementary function

N
f= Z kX (ag-1,ax]
k=1

which uniformly approximates the identity ¢ on (a,b]. The estimate | [ gdE| < |g]o from
Theorem (4.29) implies

- ] o~

Set By := E(q,_, 4] for k=1,..., N and note f(a b] fdE = fo:l apE as well as Zfil Ep.=1
thanks to o-additivity. Estimate (4.11) thus implies

<t flleo =0 (4.11)

N
(I ~T) = Y (4~ ) By <.

k=1

By choice of 4, the operator Z,i\f:l(u — ay ) E} is invertible, and the norm of its inverse is at
most C. On the other hand, the norm of the inverse is seen to be at least”

sup{|p - ax| ™" : B, # 0},

"Indeed, if E; # 0, pick a unit vector §j € Ex(H) and set y := 5§ then |y| = | — ag|™ and

|n—ag|?
I =N (- ax)Ery| = |5 = 1. Note the interval (a,b] and the fineness § can always be chosen such that
p—arp#0foral k=1,...,N.
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implying that Ej = 0 whenever |u — ai| < % Since § < %, there exists at least one k such
that |u — ag| < %, € (ag-1,ax), and the corresponding Ej, = E(q, , q,] is zero. This shows
(with U = (ax_1,ax)) that there exists a neighbourhood U 5 u such that Ey = 0.

Finally, let K c p(T) be compact. As we just showed, for each p € K, there is a
neighbourhood U, > p such that Fy, = 0. As K is compact, there exist finitely many j;
(j =1,...n) such that K c Uj_, Uy;, and by o-additivity, Ex = 0. For z € H, the finite
measure A — (E4x,x) is non-negative (why?) and therefore inner regular (cf. [5, Satz
[.2.14]), meaning that the measure of any open set is the supremum of the measures of
compact sets contained in the given open set. In particular, we have (Ep(T)x,a:) =0 and
therefore Eq 1y = 1.

O

THEOREM 4.31 (Spectral Theorem). Let T € L(H, H) be self-adjoint. Then there exists
a unique spectral measure E supported on o(T) such that

T:/ AE). (4.12)
o(T)
The map

£(o(T)) > LULH), fr ((T) = [ faE (4.13)
18 precisely the measurable functional calculus of T.

PRrOOF. Let E be the spectral measure associated with 7" through the functional cal-
culus, i.e., B4 = xa(T). Then E is supported on o(7T'), because x,(7y(T) = I. We shall
show (4.12).

To this end, set S := fG(T) AdE)y, then we need to show S =T. For € > 0, let f. =

o1 0kXA, be an elementary function such that |t - fe| < € on o(T), then
IT =S| <\T = fe(D) [ + [fe(T) = fe(S)] + [ £e(S) = S
We treat the three terms individually:
o |T—f(T)| <|t- fe|loo <€, where we used that the functional calculus has norm
one;
o IS = £l = || fyzy A = Fo(N)dEA| < £~ felloo < €, Wwhere we used Theorem 4.30
to find fc(9) = fJ(T) fedE and Theorem 4.29 for the estimate.
o [(T) = [e(S) = Tjor awxa (T) = Xy By = 0.
Together, we have |T — S|| < 2¢, and since € was arbitrary, T' =S, so (4.12) is proved. The
fact that the functional calculus is then given as (4.13) is the content of Theorem 4.30.

Uniqueness then follows by taking f = x4 in (4.13), which determines F 4 uniquely for any
AeX. O

We have thus obtained a one-to-one correspondence between bounded self-adjoint op-
erators and spectral measures of compact support, and we have completely characterised
the functional calculus of bounded self-adjoint operators.

Let us close this course with a few examples.

EXAMPLE 4.32. (1) If T is compact, then we know there exists a countable or-
thonormal system (e, )nen of eigenvectors of T' with corresponding eigenvalues \,,,
and T = Y771 A\, P, where P, denotes the orthogonal projection onto span{e,}.
Hence, the spectral measure of T is given as

E=Y 6P,

n=0
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where J), denotes the (real-valued) Dirac measure centred at A\, and as before
we set A\g = 0 and Py the orthogonal projection onto kerT. In other words, for
A e X, F4 is the orthogonal projection of the subspace spanned by all e, such
that A, € A.

The operator T is then written as

Tz = / MEy\z = Z M Prx = Z Mz en)e, (reH)
R n=1 n=1

in accordance with Theorem 2.31. Also, for a bounded function f defined on
{A\,:neNu{0}} and z € H,

F(T)z = F(0)Poz + imn)(w, en)en.

On H = L?(0,1;C), consider a multiplication operator of the form T : f ~ ¢f,
where ¢ € L*(0,1) is given and real-valued (so that 7" is self-adjoint). Then, for
a measurable set A c R, E4 has the form

Eaf=xp10)]

Let us check that E thus given is really a spectral measure: Clearly E,4 is a
projection, because ngfl(A) = X¢-1(4)- 1t 18 also orthogonal, because the kernel of

E 4 is the set of L? functions essentially supported outside ¢~ *(A), its range is the
set of functions essentially supported in ¢~'(A), and both spaces are obviously
orthogonal.

For A=@, Eaf =xgf=0and Erf = x[0,1]f = f- Also, E is supported on the
compact set {z € R: |z < [¢]oo}-

If (Ap)neny € ¥ are pairwise disjoint, then so are the sets ¢~'(A,,), and there-
fore

XU, 671 (An) = 2X¢*1<An>>
n=

whence follows the o-additivity of E: ¥ — L(H, H).

Finally, we show that indeed T' = [ AdE: For € >0 let U, : [-[¢]co, [¢]] = R
be an elementary function such that [|[t—¥ || o < e. We shall write U, = ¥ axa.,
and we may assume in addition that U)_; A, > ¢([0,1]). Since |t - ¥, | < €, we
know that |, — A| < € whenever \ € A,,.

Observe that then, for any x € [0, 1], there is exactly one n e {1,..., N} such
that ¢(x) € Ay, so that

N
|I;1akX¢>-1(Ak)(x) = o(x)| = lan - ¢(x)| <e. (4.14)

Therefore,

<€, (4.15)

N
/R \Ife(A)dEA—ch - > @nXgi(an — ¢
n=1

N
Z Oén-EAn - ¢“ =
n=1

and it follows that indeed

T-= / AdE).
R

Note carefully that the last norm in (4.15) is the operator norm of the multiplica-
tion operator with the function 27127:1 AnX¢-1(A,) — ¢, which equals the supremum
norm of the function itself (which in turn is less than € by (4.14)).
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(3) Let f e L2,(0,27) and ¢ € L2,(0,27;R) such that ¢(z) = ¢(~z) for all = € R,

per per
then the convolution of these two functions is defined as
2

fro(x):= ; f)é(z —y)dy.

We claim f ¢ is again a periodic L? function®, and for fixed ¢ the linear operator
Tf:=f ¢ is bounded with norm at most 27| ¢|c. Indeed,

) 27 2
I1f * 612 = /
0
2

dx

0

27 27
<[ (/0 If(y)llcb(w—y)ldy) s

2T 2w d
<lol2en? [ [ 1r)P5kds - erlol<) 113

where for the last estimate we used Jensen’s inequality for the convex function
|-|? and the probability measure g—;’.
Moreover, T is self-adjoint, because by Fubini’s Theorem and the property of

¢ of being real-valued and even,

21 27 -
(Tf.g) = /U [ )0t - pal@dyds = (1.T6) ¥1.g ¢ L., (0.20).

2w

f)o(x -y)dy

For neZ, let ey(z) = \/%emx as in Section 2.2. These form an orthonormal basis

of eigenfunctions of T' with eigenvalue v/2wp(n) (recall the definition of Fourier
coefficients in Section 2.2), because

27 1 . 27 1 i -
Te,(z) = ——e"™p(x —vy)d :/ e en(z=y) h(x — y)d
@- [ Z=emata-ni- [ = o - y)dy

271— . A~
“ea@) [ )y = Vari()en o).

We thus have the spectral decomposition
Tf=\2r 3 d()Puf=V2r 3 d(n)f(n)en,

where again P, denotes the orthogonal projection onto span{e,}. The spectral
measure is given as

E-= n;w 3 fmimy P

The situation is therefore similar to the first example — in fact it is not difficult
to show that T is compact.

8In fact, when f € L2, then by Young’s inequality for convolutions, f + ¢ € L? is even true when ¢ is
only in L', and | f * ¢[ 1> < | f] 2] L1
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