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Preface

These are lecture notes for a �rst course in functional analysis, o�ered for advanced
bachelor's and master's students of mathematics at Ulm University in the Winter Term
of 2021/22. Moreover, the �rst half (Chapters 1 & 2) of these notes cover the newly
established course Functional Analysis for Data Science for �rst year master's students in
the Mathematical Data Science Programme. The full course is taught in approximately 32
sessions of 90 minutes each.

Functional analysis is one of the most elegant and beautiful parts of mathematics.
Developed from the early twentieth century by mathematicians such as Banach and his
colleagues from Lwów (such as Steinhaus, Mazur, Ulam and others), the Riesz brothers, and
by mathematical physicists such as von Neumann and Weyl, it has become a fundamental
theory indispensable for anyone who wants to go deeper into any kind of (even remotely)
applied mathematics. Functional analytic notions are crucial in such diverse �elds as
partial di�erential equations, quantum mechanics, stochastic analysis, statistics, numerics,
etc. But parts of functional analysis have also developed into very `pure' directions, such
as the study of operator algebras, giving rise to noncommutative geometry.

So what is functional analysis? A short answer would be: It is the study of in�nite-
dimensional vector spaces. One can, at least formally, imagine a vector x = (x1, x2, . . .)
with in�nitely many entries, and a linear transformation encoded by an (∞ ×∞)-matrix
with entries (aij), where i, j ∈ N; then the i-th component of the transformed vector would
be given by the in�nite series

∞
∑
j=1

aijxj .

Does this series converge? This depends crucially on the metric structure of the vector
space in question, which leads us from linear algebra to analysis.

The elements of an in�nite-dimensional vector space are often functions; for instance,
the set C(R) of continuous functions R → R forms a real vector space under pointwise
addition and scalar multiplication. Another example would be the Lebesgue space Lp(Ω),
where 1 ≤ p ≤ ∞ and Ω is a measure space. By framing such function spaces within
the context of linear algebra, one may thus apply geometric intuitions and concepts, like
orthogonality, angles, projections, etc., to function spaces. Thus, functional analysis can be
said to bring together the three classical branches of mathematics � algebra, geometry, and
analysis. This certainly is one important reason why many mathematicians �nd functional
analysis so appealing.

This course requires a solid knowledge of linear algebra, analysis, and measure theory,
as should have been acquired in the �rst two years of an undergraduate mathematics
programme. These notes have been inspired by the book of Werner [5], lecture notes of my
colleagues Anna Dall'Acqua, Markus Kunze, and Rico Zacher, and the bachelor's thesis
of Michael Stan¥k on Reproducing Kernel Hilbert Spaces. I would like to thank them for
sharing their materials with me. I also wish to thank Dennis Gallenmüller for preparing
and teaching the examples classes.
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CHAPTER 1

Normed Spaces and Linear Operators

Throughout the entire course, we will denote by K the �eld of real (K = R) or complex
(K = C) numbers.

1.1. De�nitions and Examples

Recall the notion of a normed space:

Definition 1.1. A K-vector space X together with a map ∥ ⋅ ∥ → R is called a normed
space if the following is true:

(1) For all x ∈X, ∥x∥ ≥ 0, and ∥x∥ = 0 only if x = 0;
(2) For all x ∈X and α ∈ K,

∥αx∥ = ∣α∣∥x∥;
(3) For all x, y ∈X,

∥x + y∥ ≤ ∥x∥ + ∥y∥.

The last property is called the triangle inequality (why?). By abuse of notation, we
will frequently denote a normed space by X, suppressing the norm ∥ ⋅ ∥. Of course, in cases
of possible ambiguity, one should explicitly mention the norm.

A sequence (xn)n∈N ⊂ X is said to converge to x ∈ X if, for every ε > 0, there exists
N ∈ N such that for every n ≥ N , ∥xn − x∥ < ε. We use usual notation like limn→∞ xn = x
or xn → x in this case.

A sequence (xn)n∈N ⊂ X is called Cauchy if, for every ε > 0, there exists N ∈ N such
that, for all n,m ≥ N , ∥xn − xm∥ < ε.

You know from analysis that every convergent sequence is Cauchy. Conversely, does
every Cauchy sequence converge? In K or Kd this is the case, as these spaces are complete.
In Q for instance, there are Cauchy sequences that do not converge (take for instance a

rational approximation of
√

2). Generally, we de�ne:

Definition 1.2. A normed space X is complete if for every Cauchy sequence (xn)n∈N ⊂
X there exists x ∈X such that xn → x. A complete normed space is called Banach.

More brie�y: A normed space is complete if every Cauchy sequence converges.

Example 1.3. (1) Of course, Kd is Banach.
(2) If Ω is a measure space, then the spaces Lp(Ω), 1 ≤ p ≤ ∞, are complete, as

you saw in measure theory. Recall that Lp(Ω) consists of equivalence classes of
measurable functions Ω→ R that agree up to a set of measure zero and for which
the norm

∥f∥p ∶= (
ˆ

Ω
∣f ∣pdx)

1/p
(p < ∞), ∥f∥∞ ∶= esssupx∈Ω ∣f(x)∣.

is �nite1.

1Recall that the essential supremum of ∣f ∣ over Ω is the in�mum of all numbers M ∈ R such that
∣f(x)∣ ≤ M for almost every x ∈ Ω, where the meaning of `almost every' depends on the underlying
measure.
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1.1. DEFINITIONS AND EXAMPLES 5

(3) Let l∞ be the space of K-valued sequences x = (xn)n∈N that are bounded, that is:
∥x∥∞ ∶= supn∈N ∣xn∣ < ∞. One can check (which you are encouraged to do) that
∥ ⋅∥∞ is a norm on l∞. We want to show that l∞ with this norm is in fact Banach,
i.e., complete.

Indeed, let (xk)k∈N be a Cauchy sequence in l∞, that is: For every ε > 0, there
is K ∈ N such that for all k, l ≥K,

sup
n∈N

∣xkn − xln∣ < ε.

In particular, for each (�xed) n ∈ N, the sequence (xkn)k∈N is Cauchy in K. But
since K is complete, we obtain for each n ∈ N a limit xn, that is, limk→∞ x

k
n = xn.

We need to show that x ∶= (xn)n∈N ∈ l∞, and that xk → x in l∞.
To show this, let ε > 0. By the Cauchy assumption, there exists N ∈ N such

that

sup
n∈N

∣xkn − xln∣ <
ε

2

if k, l ≥ N .
On the other hand, given n ∈ N, there exists K =K(n) ∈ N such that

∣xKn − xn∣ <
ε

2
;

without loss of generality, we may assume K(n) ≥ N for all n ∈ N.
Therefore, for n ∈ N, we estimate for k ≥ N :

∣xkn − xn∣ ≤ ∣xkn − xK(n)
n ∣ + ∣xK(n)

n − xn∣ <
ε

2
+ ε

2
= ε,

and since N does not depend on n, we even deduce

sup
n∈N

∣xkn − xn∣ < ε (1.1)

for k ≥ N ; this implies, �rst, that

sup
n∈N

∣xn∣ ≤ sup
n∈N

∣xNn ∣ + sup
n∈N

∣xn − xNn ∣ < ∥xN∥∞ + ε < ∞,

so that x ∈ l∞; and the convergence xk → x in l∞ then follows precisely from (1.1).
(4) For 1 ≤ p < ∞, the space of K-valued sequences x = (xn)n∈N such that

∥x∥p ∶= (
∞
∑
n=1

∣xn∣p)
1/p

< ∞

can be shown to be Banach (see [5, p. 12f.]). This space is called lp.
(5) The real vector space C([0,1]) of continuous functions [0,1] → R can be equipped

with several di�erent norms, for example:

∥f∥∞ ∶= sup
x∈[0,1]

∣f(x)∣

or

∥f∥1 ∶=
ˆ 1

0
∣f(x)∣dx.

We will show below that C([0,1]) is Banach with respect to ∥ ⋅ ∥∞, and it is a
worthwhile exercise to show it is not Banach with respect to ∥ ⋅ ∥1. Hence, the
completeness property depends crucially on the choice of norm.

Let X be a normed space; recall that a subset U ⊂ X is called closed in X if the
following holds: If (xn)n∈N ⊂ U is a sequence with limn∈N xn = x ∈ X, then x ∈ U . In other
words: U is closed if it contains all its limit points.



6 1. NORMED SPACES AND LINEAR OPERATORS

Lemma 1.4. If X is Banach and U ⊂X is a closed subspace, then also U is Banach.

Proof. It follows from the de�nition of a normed space that a subspace of a normed
space is again a normed space2. So it su�ces to show completeness of U .

Let (xn)n∈N be Cauchy in U and therefore also in X. As X is complete, there exists a
limit X ∋ x = limn→∞ xn, but since U is closed, x ∈ U , so U is complete.

�

A paradigmatic application of this lemma is given as follows: We show that C([0,1])
is Banach with respect to the supremum norm ∥ ⋅ ∥∞. To this end, we set X ∶= L∞(0,1),
which we have already seen to be Banach. Set U = C([0,1]), then clearly U is a subspace
of X (as linear combinations of continuous functions are still continuous), and U is even
closed in X: Let (fn)n∈N be a sequence of continuous functions that converges with respect
to ∥ ⋅ ∥∞ to some f ∈X, that is:

sup
x∈[0,1]

∣fn(x) − f(x)∣ → 0 as n→∞.

This means that the convergence is uniform. But uniform limits of continuous functions
are themselves continuous (Analysis I), so f ∈ U and hence U is closed. By Lemma 1.4, we
conclude that (C([0,1]), ∥ ⋅ ∥∞) is Banach, as claimed.

1.2. Separability and the Theorem of Stone-Weierstraÿ

1.2.1. Separability.

Definition 1.5. A normed space is separable if it contains a countable dense subset.

Recall that a subset A of a normed space X is called dense if for every ε > 0 and every
x ∈ X there exists a ∈ A such that ∥x − a∥ < ε. For instance, R (with the standard norm
given by the absolute value ∣ ⋅ ∣) is separable, because the countable set Q of rationals is
dense in R.

Lemma 1.6. Let X be a normed space. The following are equivalent:

(1) X is separable;

(2) There is a countable subset A ⊂X such that X = spanA.

Here, spanA denotes the linear span of A, and the overline denotes the (topological)
closure with respect to the given norm3.

Proof. If X is separable, then it su�ces to choose A as a countable dense subset.
Conversely, assume (2) for some set A. Suppose for the moment that K = R. We will

show that the set of linear combinations with rational coe�cients

B ∶= {
n

∑
j=1

λjxj ∶ n ∈ N, λj ∈ Q, xj ∈ A}

is countable and dense. In fact, countability is obvious, as countable unions and Cartesian
products of countable sets are still countable.

As far as the density of B is concerned, we know by assumption that for every x ∈ X
and ε > 0, there exists a linear combination ∑nj=1 λjxj with xj ∈ A and λj ∈ R such that

XXXXXXXXXXX
x −

n

∑
j=1

λjxj

XXXXXXXXXXX
< ε

2
.

2To be pedantic, if (X, ∥ ⋅ ∥) is the original normed space and U ⊂X is a subspace, then (U, ∥ ⋅ ∥ ↾U) is
also a normed space.

3Please look up these notions from your linear algebra and analysis courses if you feel uncomfortable
with them.



1.2. SEPARABILITY AND THE THEOREM OF STONE-WEIERSTRASS 7

Now, for every j ∈ N there exists some λ′j ∈ Q such that

∣λj − λ′j ∣ <
ε

2j+1∥xj∥
.

Certainly ∑nj=1 λ
′
jxj ∈ B and

XXXXXXXXXXX
x −

n

∑
j=1

λ′jxj

XXXXXXXXXXX
≤
XXXXXXXXXXX
x −

n

∑
j=1

λjxj

XXXXXXXXXXX
+
XXXXXXXXXXX
x −

n

∑
j=1

(λj − λ′j)xj
XXXXXXXXXXX

< ε
2
+

n

∑
j=1

∣λj − λ′j ∣∥xj∥ < ε,

where we used ∑∞
j=1 2−(j+1) = 1

2 in the last step. This proves the density of B in X.
If K = C, then simply replace λj ∈ Q by λj ∈ Q + iQ in the de�nition of B. �

Example 1.7. (1) Recall from Example 1.3 the space lp (1 ≤ p < ∞) with norm

∥x∥p = (∑∞
j=1 ∣xj ∣p)

1/p
. We show separability of lp. To this end, let ej be the

sequence whose j-th element is one and all other elements zero, and set

A ∶= {ej ∶ j ∈ N}.
Let x = (xj)j∈N ∈ lp and ε > 0. If N ∈ N is su�ciently large, then ∑∞

j=N+1 ∣xj ∣p < εp,
and therefore

XXXXXXXXXXX
x −

N

∑
j=1

xjej

XXXXXXXXXXXp
=
XXXXXXXXXXX

∞
∑

j=N+1

xjej

XXXXXXXXXXXp
=
⎛
⎝

∞
∑

j=N+1

∣xj ∣p
⎞
⎠

1/p

< ε,

which means that the span of A is dense. Separability of lp now follows from
Lemma 1.6.

(2) As in Example 1.3, we consider l∞, the Banach space of bounded sequences, and
show that it is not separable. For let S ⊂ N any subset, and de�ne xS ∈ l∞ by

(xS)j =
⎧⎪⎪⎨⎪⎪⎩

1 if j ∈ S,
0 otherwise.

Then, whenever S1 ≠ S2, we will have ∥xS1 − xS2∥∞ = 1. Therefore, if A ⊂ l∞ is
any countable subset, then for any x ∈ A, the ball4 B 1

2
(x) will contain at most

one xS .
Hence, there are at most countably many xS for which there exists x ∈ A such

that xS ∈ B 1
2
(x). However, as there are uncountably many subsets of N, there

are also uncountably many xS , and therefore there exists an xS (in fact in�nitely
many) that has distance at least 1/2 from any element of A. We conclude that A
cannot be dense in l∞.

(3) One can show that Lp spaces behave similarly: On a measure space Ω, the space
Lp(Ω) is separable for 1 ≤ p < ∞, and not separable for p = ∞.

1.2.2. The Theorem of Stone-Weierstraÿ. Having talked about dense subsets of
normed spaces, we will make an excursion into the related �eld of approximation theory
for the rest of this section.

Recall5 the notion of a compact metric space: A setX together with a map d ∶X×X → R
is a metric space if

(1) For all x, y ∈X, d(x, y) ≥ 0, and equality holds if and only if x = y;
(2) For all x, y ∈X, d(x, y) = d(y, x);

4As usual we write Br(x) ∶= {y ∈X ∶ ∥y − x∥ < r}.
5The concept of a metric space and of open, closed, and compact sets should be known from Analysis II.

If you do not have this background, let me know so we can do something about it.
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(3) For all x, y, z ∈X, d(x, z) ≤ d(x, y) + d(y, z).
Every normed space is, in particular, a metric space with metric given as d(x, y) ∶= ∥x−y∥.
In metric spaces one may de�ne balls Br(x) ∶= {y ∈X ∶ d(x, y) < r}, and a subset U ⊂X is
called open if for every x ∈ U there exists r > 0 such that Br(x) ⊂ U .

A metric space (X,d) is called compact if the following is true: If X = ⋃j∈I Uj is a
cover of X by (possibly uncountably many) open sets Uj , then there exists a �nite subcover

X = ⋃Nn=1Ujn .
Let (X,d) be a compact metric space. As in the example after Lemma 1.4, we see that

the space C(X) of continuous functions X → K is Banach when equipped with the norm
given as ∥f∥∞ = supx∈X ∣f(x)∣.

Definition 1.8. A subspace A ⊂ C(X) is called a subalgebra if it is closed under
multiplication, that is: If f, g ∈ A, then fg ∈ A.

For instance, the following spaces are subalgebras of C([0,1]): the space of polynomial
functions on [0,1]; the space C1([0,1]) of continuously di�erentiable functions (Leibniz
rule!); the subspace generated by functions of the form exp(ik⋅) (k ∈ Z), i.e., the trigono-
metric polynomials. On the other hand, for �xed N ∈ N, the space of polynomials of degree
at most N is not a subalgebra, because the product of two polynomials of degree N can
have degree larger than N .

A subalgebra A is said to separate the points of X if, for every pair x, y ∈X with x ≠ y,
there exists f ∈ A such that f(x) ≠ f(y). For instance, the algebra of polynomial functions
separates the points of [0,1] (simply choose f(x) = x), but the algebra of even functions6

on [−1,1] does not separate points, as two points ±x are always assigned the same value.
If A is a subalgebra of C(X), then we denote by A its closure (with respect to ∥ ⋅ ∥∞);

that is, A is the set of all uniform limits of sequences in A. It is easy to check that A is a
subalgebra itself.

If K = C, then a subalgebra is stable under conjugation if for every f ∈ A also the
complex conjugate f̄ is in A. For example, the space of trigonometric polynomials is stable
under conjugation, as

exp(i⋅) = exp(−i⋅).

Lemma 1.9. Let X be a compact metric space and A a subalgebra of C(X;R) that
contains the constant function 1. If f, g ∈ A, then also min{f, g} ∈ Ā, max{f, g} ∈ Ā, and
∣f ∣ ∈ Ā.

Proof. Let f, g ∈ A. It is easy to see

min{f, g} = 1

2
(f + g − ∣f − g∣) , max{f, g} = 1

2
(f + g + ∣f − g∣) .

Since A is a vector space, we can immediately deduce from ∣f ∣, ∣g∣ ∈ Ā the assertions for
minimum and maximum. Thus it su�ces to show ∣f ∣ ∈ Ā.

If f is identically zero, then the statement is trivial. So suppose ∥f∥∞ > 0. It is possible
to construct a family (pn)n∈N of polynomial functions that converge uniformly on [−1,1]
to the absolute value function ∣ ⋅ ∣ (exercise). Hence, for ε > 0, there is N ∈ N such that

∣∣t∣ − pN(t)∣ < ε

∥f∥∞
for all t ∈ [−1,1].

For each x ∈X, the choice t = f(x)
∥f∥∞ then yields

∣∣ f(x)
∥f∥∞

∣ − pN ( f(x)
∥f∥∞

)∣ < ε

∥f∥∞

6A function [−1,1] → K is even if f(−x) = f(x) for all x ∈ [−1,1].
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and after multiplication with ∥f∥∞:

∣∣f(x)∣ − ∥f∥∞pN ( f(x)
∥f∥∞

)∣ < ε.

As A contains the constant 1, and thus for any f ∈ A it contains pn ○ f , we �nd that

∥f∥∞pN ( f
∥f∥∞ ) ∈ A. In any neighbourhood of ∣f ∣, therefore, there exists an element of A.

It follows that ∣f ∣ ∈ A, as claimed.
�

Theorem 1.10 (Stone-Weierstraÿ). Let X be a compact metric space and A a subal-
gebra of C(X;K) which

● contains the constant function 1,
● separated the points of X, and
● is stable under conjugation in the case K = C.

Then A is dense in C(X;K), i.e., for every f ∈ C(X,K) und every ε > 0 there exists a ∈ A
such ∥f − a∥∞ < ε.

Proof. The �rst proof steps deal with the case K = R.
Step 1. Let f ∈ C(X;R). We show: For any y, z ∈ X there is a function hy,z ∈ A such

that

hy,z(y) = f(y), hy,z(z) = f(z). (1.2)

To this end, we may assume y ≠ z (for y = z simply choose the constant function hy,z =
f(y)). By assumption there exists some g ∈ A separating the points y and z, i.e., g(y) ≠
g(z). Therefore, the following function is well-de�ned and in A:

hy,z(x) = f(y) +
f(z) − f(y)
g(z) − g(y)

(g(x) − g(y)).

Clearly, this function satis�es (1.2).
Step 2. For y, z ∈X, set

Uy,z ∶= {x ∈X ∶ hy,z(x) < f(x) + ε}, Vy,z ∶= {x ∈X ∶ hy,z(x) > f(x) − ε},

so that Uy,z and Vy,z are the preimages, respectively, of the open sets (−∞, ε) ⊂ R and
(−ε,∞) ⊂ R under the continuous function hy,z − f . Since preimages of open sets under
continuous functions are again open, we �nd that Uy,z and Vy,z are open subsets of X.
Thanks to (1.2), we also have y ∈ Uy,z and z ∈ Vy,z.

For �xed z ∈ X, therefore, X = ⋃y∈X Uy,z is an open cover, and by compactness of X
there is a �nite subcover X = ⋃mj=0Uyj ,z.

Now set

hz ∶= min
j=1,...,m

hyj ,z.

By Lemma 1.9, hz ∈ A, and for all x ∈X

hz(x) < f(x) + ε, (1.3)

because there exists some j with x ∈ Uyj ,z, and by de�nition hz ≤ hyj ,z.
Step 3. For z ∈X we set

Vz ∶=
m

⋂
j=1

Vyj ,z.

As a �nite intersection of open sets, Vz is itself open, and z ∈ Vy,z for all y ∈ X entails
z ∈ Vz. Hence X = ⋃z∈X Vz is an open cover, which by compactness admits a �nite
subcover X = ⋃rl=1 Vzl .
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Finally set

h ∶= max
l=1,...,r

hzl .

By Lemma 1.9, h ∈ A, und by (1.3) we have h < f + ε. Note also that for any x ∈ X there
is an index l with x ∈ Vzl , so that by de�nition of Vzl we infer x ∈ Vyj ,zl for all j = 1, . . . ,m.
Hence (by de�nition of Vy,z) hyj ,zl(x) > f(x) − ε, therefore hzl(x) > f(x) − ε, and thereby
even h(x) > f(x) − ε. In summary we have proved

∥f − h∥∞ < ε.

As h ∈ A, there is a ∈ A with ∥h−a∥∞ < ε, and thus ∥f −a∥∞ < 2ε. This shows the Theorem
for the real-valued case.

Step 4. We reduce the complex case to the real one. So let now A be a subalgebra of
C(X;C) satisfying the assumptions of the Theorem. Let A′ ⊂ A be the set of functions in
A that take only real values. It is a subalgebra of C(X;R), and we have A = A′ + iA′ ∶=
{a + ib ∶ a, b ∈ A′}: Indeed, as A is stable under conjugation, then for every a ∈ A also

Ra = a + ā
2

∈ A, Ia = a − ā
2i

∈ A,

and hence also Ra,Ia ∈ A′. It follows that A ⊂ A′ + iA′, since for a ∈ A we have a =
Ra + iIa ∈ A′ + iA′. On the other hand, A ⊃ A′ + iA′ because of A′ ⊂ A and A being a
C-vector space.

A′ contains the constant 1 and separates the points of X: Indeed, if x ≠ y, then by
assumption there exists a ∈ A with a(x) ≠ a(y), and hence Ra(x) ≠ Ra(y) or Ia(x) ≠
Ia(y). So Ra or Ia is an element of A′ that separates x and y.

According to the already established real-valued version of Stone-Weierstraÿ, for every
ε > 0 and f ∈ C(X;C) there exist a, b ∈ A′ such that

∥Rf − a∥∞ < ε
2
, ∥If − b∥∞ < ε

2
,

and it follows that ∥f − (a + ib)∥∞ < ε. As a + ib ∈ A, the Theorem is proved. �

1.2.3. Some Consequences of Stone-Weierstraÿ.

1.2.3.1. Polynomial Approximation. As a �rst corollary of the Stone-Weierstraÿ The-
orem, we obtain the classical approximation theorem of Weierstraÿ from 1885:

Corollary 1.11 (Weierstraÿ Approximation Theorem). Let [a, b] ⊂ R be a compact
interval (a < b) and f ∶ [a, b] → R continuous. Then for any ε > 0 there exists a polynomial
function7 p ∶ [a, b] → R such that

∥f − p∥∞ = sup
x∈[a,b]

∣f(x) − p(x)∣ < ε.

Proof. It su�ces to show that the set of real polynomial functions satis�es the condi-
tions of the (real version of the) Stone-Weierstraÿ Theorem. Since linear combinations and
products of polynomials are again polynomial, and since polynomial functions are contin-
uous, they form a subalgebra of C([a, b]). This algebra contains constant functions and
separates points (just take p(x) = x as a separating function for any two distinct points of
[a, b]). �

7A polynomial function, of course, is a function of the form p(x) = ∑Nk=0 akxk for coe�cients ak ∈ K.
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1.2.3.2. Trigonometric Polynomials. In the theory of Fourier series, to be developed
further in the next chapter, trigonometric polynomials play a crucial role. We prefer here
to work with functions of the form eikx. Often, trigonometric polynomials instead are
written in terms of sine and cosine functions; such a formalism can easily be obtained from
the framework presented here by virtue of the famous formula eix = cos(x) + i sin(x).

Definition 1.12. A trigonometric polynomial function is a function R→ C of the form

x↦
N

∑
k=−N

cke
ikx

with coe�cients ck ∈ C.

Obviously, every trigonometric polynomial function is 2π-periodic8. Let us denote by
Cper(R;C) the space of 2π-periodic continuous functions. We want to use the Stone-
Weierstraÿ Theorem to show that every such function can be approximated by trigono-
metric polynomials in a suitable sense. To this end, it is useful to identify a 2π-periodic
function f ∶ R → C with a function f̃ ∶ S1 → C, where S1 denotes the one-dimensional unit
circle, i.e., the subset {z ∈ C ∶ ∣z∣ = 1}; simply set

f̃ (eix) = f(x)

(this is well-de�ned, as x↦ eix is a bijection between [0,2π) and S1).
Consider �rst the algebra AS1 of continuous functions S1 → C of the form

N

∑
k=−N

ckz
k (1.4)

with ck ∈ C, k = −N, . . . ,N . It is a subalgebra of C(S1;C).

Lemma 1.13. The subalgebra AS1 is dense in C(S1;C) with respect to the supremum
norm, i.e., for every f ∈ C(S1;C) and ε > 0 there exists a ∈ AS1 such that ∥f − a∥∞ < ε.

Proof. As S1 ⊂ C is closed and bounded, it is compact by the Theorem of Heine-Borel.
Therefore, S1 becomes a compact metric space with the metric d(x, y) = ∣x− y∣ induced by
C.

Setting c0 = 1 and all other coe�cients zero in (1.4), we see that 1 ∈ AS1 . Let x, y ∈ S1

be two distinct points, then they are separated by the identity id ∶ z ↦ z, and id ∈ AS1 (set
c1 = 1 and all other coe�cients zero in (1.4)). Finally, AS1 is stable under conjugation,

because for every z ∈ S1 and k ∈ Z, zk = z−k (recall eikx = e−ikx).
Hence all conditions of (the complex version of) the Theorem of Stone-Weierstraÿ are

satis�ed, and we obtain density of AS1 in C(S1;C). �

Let Cper(R;C) be the algebra of 2π-periodic continuous functions. We obtain

Theorem 1.14. Trigonometric polynomial functions are dense in Cper(R;C) with re-
spect to the supremum norm.

Proof. Let f ∈ Cper(R;C) and de�ne f̃ ∈ C(S1;C) by f̃ (eix) = f(x). Let ε > 0. By

Lemma 1.13 there exists a function a ∶ S1 → C of the form a(z) = ∑Nk=−N ckzk such that

∥f̃ − a∥∞ < ε.
Thus for every x ∈ [0,2π),

∣f(x) − a (eix) ∣ = ∣f̃ (eix) − a (eix) ∣ < ε. (1.5)

But x↦ a (eix) = ∑Nk=−N ckeikx is a trigonometric polynomial, and periodicity implies (1.5)
for all x ∈ R. �

8A function f ∶ R→ C is called l-periodic if f(x + l) = f(x) for all x.
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1.2.3.3. Neural Networks. We sketch here the idea of Hornik-Stinchcombe-White [2]
to show that neural networks can approximately represent any continuous function.

A squashing function is a measurable non-decreasing function φ ∶ R → R such that
lims→−∞ φ(s) = 0 and lims→∞ φ(s) = 1 (it `squashes' R into [0,1]). We consider a�ne
maps a ∶ Rd → R of the form

a(x) = w ⋅ x + b,

where w ∈ Rd is interpreted as the vector of network weights, b ∈ R as a bias, and the
argument x as the network input. The set of such a�ne maps will be denoted Ad.

Given a measurable function φ ∶ R → R and a dimension d ∈ N, we de�ne the set of
single hidden layer feedforward networks as

Σd(φ) =
⎧⎪⎪⎨⎪⎪⎩
f ∶ Rd → R ∶ f(x) =

N

∑
j=1

αjφ(aj(x)), N ∈ N, αj ∈ R, aj ∈ Ad
⎫⎪⎪⎬⎪⎪⎭
.

Theorem 1.15 (Universal Approximation Theorem, version of [2]). Let φ be a squash-
ing function, K ⊂ Rd compact, F ∶ K → R continuous, and ε > 0. Then there exists an
f ∈ Σd(φ) such that

sup
x∈K

∣F (x) − f(x)∣ < ε.

Sketch of proof. Step 1. Let K ⊂ Rd be compact. We observe that, on K, the set
Σd(cos) is a subalgebra of C(K;R) that contains constants and separates points: First, it
is clear that Σd(cos) is a vector space of continuous functions. But it is even an algebra,
as can be seen by the trigonometric identity

cos(s) cos(t) = 1

2
(cos(s + t) + cos(s − t)).

The constant function 1 is obtained by setting N = 1, α1 = 1, a1 = 0 in the de�nition of
Σ(φ). To see the separation property, let x, y ∈ K with x ≠ y and pick two arbitrary real
numbers α,β such that cos(α) ≠ cos(β); then, if a ∈ A1 is an a�ne function such that
a(x) = α and a(y) = β, the function cos ○a ∈ Σd(cos) will separate x and y.

Therefore, by Stone-Weierstraÿ, we conclude the density of Σd(cos) in C(K).
Step 2. It is easy to check, using the basic properties of sine, that the following de�nes

a continuous squashing function:

cs(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 s < −π2 ,
1
2(1 + sin(s)) −π2 ≤ s ≤ π

2 ,

1 s > π
2 .

Moreover, for givenM > 0, it is a little combinatorial exercise to see that there is a function
in Σ1(cs) that agrees with cos on [−M,M].

Step 3. Next we show that for any ε > 0, there is a function g ∈ Σ1(φ) such that
∣ cs(s) − g(s)∣ < ε for all s ∈ R.

For this, let N ∈ N be so large that 1
N < ε

2 , and M ∈ R so large that

φ(−M) < ε

2N
, φ(M) > 1 − ε

2N
,

which is possible since φ is a squashing function. For j = 1, . . . ,N − 1 we denote by sj
the unique real number such that cs(s) = j

N , and by sN the unique real number such that

cs(s) = 1 − 1
2N .
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Next, for r < s let ar,s ∶ R→ R denote the unique a�ne function such that ar,s(r) = −M
and ar,s(s) =M . One can then check that g ∈ Σ1(φ) given by

g(s) = 1

N

N−1

∑
j=1

φ(asj ,sj+1(s))

indeed has the property ∣ cs(s) − g(s)∣ < ε for all s ∈ R.
Steps 2 and 3 together, thus, imply for each M > 0 and ε > 0 the existence of an

h ∈ Σ1(φ) such that

∣ cos(s) − h(s)∣ < ε
for all s ∈ [−M,M].

Step 4. Let F ∈ C(K) and ε > 0. By Step 1, there exists a function of the form

∑Nj=1 αj cos(aj(x)) such that for all x ∈K,

RRRRRRRRRRR
F (x) −

N

∑
j=1

αj cos(aj(x))
RRRRRRRRRRR
< ε

2
. (1.6)

Choose M > 0 so large that aj(K) ⊂ [−M,M] for all j = 1, . . . ,N . For this M , we have
(cf. end of Step 3) a function h ∈ Σ1(φ) approximating the cosine, so that for all x ∈K

RRRRRRRRRRR

N

∑
j=1

αj(cos(aj(x)) − h(aj(x)))
RRRRRRRRRRR
< ε

2
. (1.7)

Since the composition of a�ne functions is a�ne, we have that

f ∶=
N

∑
j=1

αjh ○ aj ∈ Σd(φ),

and (1.6) and (1.7) together yield, for all x ∈K,

∣F (x) − f(x)∣ < ε,
as claimed. �

1.3. Linear Operators and Dual Spaces

Maps between normed spaces are often called operators. We use the terms map and
operator synonymously. Of special interest to us are linear operators T ∶X → Y , where X
and Y are normed spaces. This means of course that T (αx1 + βx2) = αTx1 + βTx2 for all
α,β ∈ K and x1, x2 ∈X. We have used the common notation Tx instead of T (x).

Definition 1.16. Let X,Y be normed spaces over K.
(1) A linear operator is called bounded if

∥T ∥ ∶= sup
∥x∥≤1

∥Tx∥ < ∞.

The thus de�ned number ∥T ∥ is called the operator norm of T . The set of bounded
linear operators X → Y is denoted L(X,Y ).

(2) If Y = K, then a linear operator X → Y is called a linear functional. The set of
bounded linear functionals X → K is called the dual space of X and is denoted
X ′ = L(X,K).

Of course, L(X,Y ) is itself a vector space (think it over!) and becomes a normed space
using the operator norm from the above de�nition. Indeed, if ∥T ∥ = 0 then Tx = 0 for all

x ∈ B1(0), and thus by linearity Tx = 0 for all x ∈X. If α ∈ K, then clearly ∥αT ∥ = ∣α∣∥T ∥,
and for T,S ∈ L(X,Y )

∥T +S∥ = sup
∥x∥≤1

∥(T +S)x∥ ≤ sup
∥x∥≤1

(∥Tx∥+∥Sx∥) ≤ sup
∥x∥≤1

∥Tx∥+ sup
∥x∥≤1

∥Sx∥ = ∥T ∥+∥S∥,
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so that the axioms of a normed space are all satis�ed. In particular, the dual space of a
normed space is itself a normed space.

We can say even more:

Proposition 1.17. If X is a normed space and Y is Banach, then L(X,Y ) is Banach.
In particular, the dual space of a normed space is always Banach.

Proof. Let (Tn)n∈N be Cauchy in L(X,Y ), which means that for ε > 0 there exists

N ∈ N such that for n,m ≥ N and for all x ∈ B1(0),

∥Tnx − Tmx∥ < ε.

In particular, for every x ∈X, (Tnx)n∈N is Cauchy in Y , hence by assumption it converges
in Y to some element that we denote by Tx.

It remains to show that the map T thus de�ned is linear and bounded, and that Tn → T
in the operator norm. If x1, x2 ∈X, then

T (x1 + x2) = lim
n→∞

Tn(x1 + x2) = lim
n→∞

Tnx1 + lim
n→∞

Tnx2 = Tx1 + Tx2.

Similarly one sees T (αx) = αTx for α ∈ K and x ∈ X. To see boundedness, note
that a Cauchy sequence in a normed space is bounded (think it over!) and therefore

lim supn→∞ ∥Tn∥ < ∞. Therefore, for all x ∈ B1(0),

∥Tx∥ = ∥ lim
n→∞

Tnx∥ = lim
n→∞

∥Tnx∥ ≤ lim sup
n→∞

∥Tn∥∥x∥ ≤ lim sup
n→∞

∥Tn∥,

and since this is independent of x, we conclude boundedness. Note we have used the
continuity of the norm, as established on the �rst exercise sheet.

To see that Tn → T in the operator norm, Let x ∈ B1(0). Choose N (independent of x)
so large that ∥Tn − Tm∥ < ε

2 for n,m ≥ N (using the Cauchy assumption), and M =M(x)
so large that ∥TMx − Tx∥ < ε

2 . Without loss of generality, M ≥ N . Then, for all n ≥ N ,

∥Tnx − Tx∥ ≤ ∥Tnx − TMx∥ + ∥TMx − Tx∥ < ε,

and as N was independent of x, we conclude Tn → T in the operator norm. �

Proposition 1.18. Let T ∶X → Y be a linear operator between normed spaces X and
Y . Then the following are equivalent:

(1) T is bounded;
(2) T is continuous;
(3) T is continuous at x = 0.

Proof. (1)⇒(2): Let T be bounded and xn → x in X, that is, ∥xn−x∥ → 0. Therefore

∥Txn − Tx∥ ≤ ∥T ∥∥xn − x∥ → 0,

so that T is continuous.
(2)⇒(3) is trivial.
(3)⇒(1): Suppose T were unbounded, so there existed a sequence (xn)n∈N ⊂ X such

that ∥xn∥ ≤ 1 but ∥Txn∥ > n. Then (xn
n
)
n∈N is a sequence in X converging to zero, but

∥T (xn
n

)∥ = 1

n
∥Txn∥ > 1

for all n ∈ N, in contradiction to the continuity at zero. �

Example 1.19. (1) Any (m × n)-matrix gives rise to a linear operator Kn →
Km, and in this �nite-dimensional situation, linear operators are always bounded
(exercise).
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(2) Consider the Banach space C([0,1];R) with the supremum norm. A linear func-
tional on this space is given by

Tf ∶=
ˆ 1

0
f(x)dx.

It is bounded because ∣Tf ∣ ≤ ∥f∥∞, whence one also sees that ∥T ∥ ≤ 1. But since
T1 = 1, it is even true that ∥T ∥ = 1.

For each x ∈ [0,1], another bounded linear functional is de�ned by the point
evaluation:

Sxf ∶= f(x).

It also has norm 1.
(3) Now let X = C1([0,1]) the space of continuously di�erentiable functions and

Y = C([0,1]), both equipped with the supremum norm. Then the di�erential
operator D ∶X → Y , Df = f ′, is linear but unbounded: For instance, the sequence
(sin(n⋅))n∈N ⊂X is bounded (as ∥ sin(n⋅)∥∞ = 1 for every n ∈ N), but the sequence
of derivatives (n cos(n⋅))n∈N is unbounded.

However, if we replace on X the supremum norm by the norm

∥f∥C1 ∶= ∥f∥∞ + ∥f ′∥∞,

then it is easy to check that the di�erential operator is bounded. We learn from
this that the boundedness of a linear operator depends crucially on the choice of
norms.

(4) Let 1 ≤ p ≤ ∞. On lp, de�ne the left shift operator L ∶ lp → lp by

L(x1, x2, x3, . . .) = (x2, x3, . . .),

and correspondingly the right shift operator R ∶ lp → lp by

R(x1, x2, x3, . . .) = (0, x1, x2, x3, . . .).

It is easy to check that L and R are bounded continuous operators of norm 1.
Note however the following phenomenon: LR is the identity on lp, but RL is not.
This is in contrast to the �nite-dimensional case, where the existence of a right
inverse implies the existence of a left inverse, which is always equal to the right
inverse.

(5) Let 1 < p < ∞ and q the dual exponent de�ned by the property 1
p +

1
q = 1. Let Ω

be a measure space with a σ-�nite measure µ. Let g ∈ Lq(Ω;R). On Lp(Ω;R), a
linear functional is de�ned by

Tgf ∶=
ˆ

Ω
f(x)g(x)dµ(x),

and by Hölder's inequality this is well-de�ned and bounded, as ∣Tgf ∣ ≤ ∥f∥Lp∥g∥Lq .
This shows that ∥Tg∥ ≤ ∥g∥Lq . In fact, the reverse inequality is also true: Assuming
1 < p < ∞ and thus also 1 < q < ∞ for simplicity, we set

f = g

∣g∣
( ∣g∣
∥g∥Lq

)
q
p

and �nd that ∥f∥Lp = 1 and ∥Tgf∥ = ∥g∥Lq , which implies ∥Tg∥ ≥ ∥g∥Lq . In
summary, ∥Tg∥ = ∥g∥Lq .
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It turns out9 that all linear functionals on Lp(Ω) are of the form Tg for some
g ∈ Lq(Ω), so that the dual space of Lp(Ω) can be identi�ed with Lq(Ω) under
the isometric isomorphism10 Lp(Ω)′ → Lq(Ω), Tg ↦ g.

Similarly, one can show that L1(Ω)′ is isometrically isomorphic to L∞(Ω);
however, the dual space of L∞(Ω) is not isomorphic to L1(Ω).

Note in particular that for p = 2, also q = 2, hence the dual space of L2(Ω) can
be identi�ed with itself. This is a general feature of Hilbert spaces, as we shall
see in the next chapter.

(6) We shall prove that (l1)′ is (isometrically) isomorphic to l∞. First of all, it is
quite clear that for any y ∈ l∞,

Tyx ∶=
∞
∑
j=1

xjyj

de�nes a bounded linear functional on l1 (i.e., an element of (l1)′). Its norm is at
most ∥y∥∞, because

∣Tyx∣ =
RRRRRRRRRRR

∞
∑
j=1

xjyj

RRRRRRRRRRR
≤ ∥x∥1∥y∥∞.

Let ε > 0, then there exists n ∈ N such that ∣yn∣ > ∥y∥∞ − ε (by de�nition of the
supremum). Choosing x = en ∈ l1, we discover

∣Tyen∣ = ∣yn∣ > ∥y∥∞ − ε,

and since ε was arbitrary, we conclude ∥Ty∥ = ∥y∥∞. Hence the linear map l∞ →
(l1)′, y ↦ Ty preserves norms and therefore is bounded and injective. It remains
to prove surjectivity.

To this end, let T ∈ (l1)′ and set y ∶= ∑∞
j=1 Tejej . Since ∣Tej ∣ ≤ ∥T ∥ for all

j ∈ N, we have y ∈ l∞. Moreover, for any x ∈ l1 and N ∈ N,

N

∑
j=1

xjyj =
N

∑
j=1

xjTej =
N

∑
j=1

T (xjej) = T
⎛
⎝

N

∑
j=1

xjej
⎞
⎠
.

On the right hand side, the argument of T converges in l1 to x, as N →∞, and as
T is continuous, the right hand side converges to Tx. The left hand side converges
to ∑∞

j=1 xjyj , and we conclude T = Ty and hence the map y ↦ Ty is surjective onto

(l1)′, as claimed.

1.4. The Theorem of Hahn-Banach

The Theorem of Hahn-Banach comes in two versions, pertaining to the extension of
linear functionals and the separation of convex sets, respectively. For simplicity, we shall
assume K = R in this entire section. We note however that a suitable formulation of the
Hahn-Banach Theorem still holds in complex vector spaces (in both versions).

But �rst of all, we need to recall a fundamental result from the foundations of mathe-
matics, Zorn's Lemma.

9We omit the proof, as it requires the Radon-Nikodým Theorem from measure theory, which some of
you might not know. See [5, Satz II.2.4].

10An isometric isomorphism between two normed spaces X and Y is a bounded linear bijection
ι ∶X → Y that preserves norms, i.e., ∥ι(x)∥Y = ∥x∥X for all x ∈X.
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1.4.1. Zorn's Lemma. Let M be a set and ≲ a partial order, that is, a relation on
M that is re�exive, antisymmetric, and transitive:

(1) ∀x ∈M ∶ x ≲ x,
(2) ∀x, y ∈M ∶ x ≲ y ∧ y ≲ x⇒ x = y,
(3) ∀x, y, z ∈M ∶ x ≲ y ∧ y ≲ z ⇒ x ≲ z.

A chain in M is a totally ordered subset of M , that is, a set C ⊂M such that

∀x, y ∈ C ∶ x ≲ y ∨ y ≲ x.
An element x ∈M is said to be an upper bound for a subset C ⊂M if

∀y ∈ C ∶ y ≲ x.
An element m ∈M is called maximal if

∀x ∈M ∶m ≲ x⇒m = x.

Theorem 1.20 (Zorn's Lemma). Let ≲ be a partial order on the nonempty set M . If
every chain in M has an upper bound in M , then there exists a maximal element m ∈M .

We will not prove Zorn's Lemma (see for instance [3, Chapter 7] for an accessible
proof), but just remark that it is equivalent to the axiom of choice. If you don't want to
prove Zorn's Lemma, therefore, you may just take it as an axiom (and then prove from it
the axiom of choice, if necessary).

1.4.2. Extension of Linear Functionals. If X is a vector space, then we call a
functional p ∶X → R sublinear if

(1) p(λx) = λp(x) for all λ ≥ 0 and x ∈X,
(2) p(x + y) ≤ p(x) + p(y) for all x, y ∈X.

Obviously, every linear function is sublinear. Another example of a sublinear functional
is given by any norm on X. An important class of sublinear functionals is formed by the
Minkowski functionals that we will discuss shortly.

The following lemma is purely algebraic:

Lemma 1.21. Let X be a (real) vector space and U ⊂ X a subspace. Let p ∶ X → R be
sublinear and l ∶ U →X linear such that

l(x) ≤ p(x) ∀x ∈ U.
Then there exists a linear extension L ∶X → R (that is, L ↾U= l) such that

L(x) ≤ p(x) ∀x ∈X.

Proof. Step 1. We �rst prove the extension result for the special case that the codi-
mension of U in X is one; that is, there exists x0 ∉ U such that X = span{U,x0}. In this
case, every x ∈X has a unique representation as x = u + λx0 with u ∈ U and λ ∈ R.

Then, L is a linear extension of l from U to X if and only if there exists r ∈ R such
that

L(x) = l(u) + λr
for all x ∈ X with the decomposition x = u + λx0 given above. It remains to choose r ∈ R
in such a way that L ≤ p.

If λ = 0, then L(x) ≤ p(x) is satis�ed by assumption. For λ > 0, we have L(u + λx0) ≤
p(u + λx0) for all u ∈ U if and only if

r ≤ p(u
λ
+ x0) − l (

u

λ
)

for all u ∈ U , which in turn is equivalent to

r ≤ inf
v∈U

(p(v + x0) − l(v)).
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For λ < 0, an analogous calculation gives the requirement

r ≥ sup
v∈U

(l(v) − p(v − x0)).

Therefore, there exists a suitable r if and only if, for all v,w ∈ U ,
l(w) − p(w − x0) ≤ p(v + x0) − l(v). (1.8)

But, by assumption, for v,w ∈ U we have

l(v +w) ≤ p(v +w) ≤ p(v + x0) + p(w − x0),
where in the last step we used the triangle inequality for p. This establishes (1.8) and thus
the statement of the Lemma in the case of codimension one.

Step 2. In this step, we apply Zorn's Lemma to the setM of pairs (V,LV ) where V ⊃ U
is a subspace of X and LV is a linear map V → R such that LV ↾U= l and LV ≤ p ↾V .

On this set, we consider the partial ordering de�ned by

(V1, LV1) ≲ (V2, LV2) if and only if V1 ⊂ V2 and LV2 ↾V1= LV1 .
M is nonempty because, by assumption, (U, l) ∈M . Also, if (Vi, LVi)i∈I is a totally ordered
subset (a chain) in M , then an upper bound is given by

V = ⋃
i∈I
Vi, LV (x) = LVi(x) if x ∈ Vi;

indeed, since the (Vi) are totally ordered, V thus de�ned is a subspace of X, and LV is a
well-de�ned linear map.

We are therefore in a position to apply Zorn's Lemma, and obtain a maximal element
(X0, LX0) ∈ M . If we can show X0 = X, we are done. But if X0 ≠ X, then there would
exist x0 ∈ X ∖X0, and by Step 1 we could extend LX0 to a linear map LX1 on the space
X1 = span{X0, x0} in such a way that LX1 ≤ p ↾X1 , in contradiction with the maximality
of (X0, LX0). �

Theorem 1.22 (Hahn-Banach Extension Theorem). Let X be a normed space and
U ⊂ X a subspace. For any bounded linear functional u′ ∈ U ′ there exists a bounded linear
functional x′ ∈ X ′ such that x′ ↾ U = u′ and ∥x′∥ = ∥u′∥ (where ∥ ⋅ ∥ denotes the operator
norm in X ′ and U ′, respectively).

Proof. For given u′ ∈ U ′, we apply Lemma 1.21 with the sublinear functional p(x) =
∥u′∥∥x∥. Clearly, for v ∈ U we have u′(v) ≤ ∥u′∥∥v∥ = p(v) by de�nition of the operator
norm, so that the Lemma gives us an x′ ∈ X ′ that extends u′ and has x′(x) ≤ p(x) for
all x ∈ X. Plugging in −x instead of x, we also have −x′(x) ≤ p(x), so that in fact
∣x′(x)∣ ≤ p(x) = ∥u′∥∥x∥ for all x ∈X, which implies ∥x′∥ ≤ ∥u′∥. On the other hand,

∥u′∥ = sup
v∈U,∥v∥≤1

∣u′(v)∣ = sup
v∈U,∥v∥≤1

∣x′(v)∣ ≤ sup
v∈X,∥v∥≤1

∣x′(v)∣ = ∥x′∥,

so that ∥x′∥ = ∥u′∥, and the Theorem is proved. �

The Hahn-Banach Theorem has several important consequences, in particular for the
relation between a normed space and its dual. For instance, the following result charac-
terises the norm in nice duality with the de�nition of the operator norm:

Corollary 1.23. Let X be a normed space, then ∥x∥ = sup∥x′∥≤1 ∣x′(x)∣ for all x ∈X.

Proof. For all x′ ∈X ′ with ∥x′∥ ≤ 1, by de�nition of the operator norm ∣x′(x)∣ ≤ ∥x∥.
Conversely, For x ∈ X de�ne a linear functional u′ ∶ span{x} → R by λx ↦ λ∥x∥, which
has norm 1, and extend it by Hahn-Banach to a functional x′ ∈ X ′ of norm 1. Then
x′(x) = u′(x) = ∥x∥. �

From this, another consequence is immediate:
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Corollary 1.24. Let X be a normed space and x ∈ X. If x′(x) = 0 for all x′ ∈ X ′,
then x = 0.

Setting x = x1 − x2, we see that X ′ separates the points of X: If x1 ≠ x2, then there
exists x′ ∈X ′ such that x′(x1) ≠ x′(x2).

1.4.3. Separation of Convex Sets. Before we state the Hahn-Banach Separation
Theorem, let us introduce a speci�c class of sublinear functionals:

Definition 1.25. Let X be a vector space and A ⊂ X a subset. The Minkowski
functional pA ∶X → R corresponding to A is de�ned by

pA(x) = inf {λ > 0 ∶ x
λ
∈ A} .

A is called absorbing if pA(x) < ∞ for all x ∈X.

For example, if A = B1(0) with respect to a norm ∥ ⋅ ∥, then pA = ∥ ⋅ ∥.
Recall that a subset U of a vector space is called convex if, for all x, y ∈ U and λ ∈ [0,1],

also λx + (1 − λ)y ∈ U .

Lemma 1.26. Let X be a normed space and U ⊂ X a convex subset whose interior11

contains 0. Then,

(1) pU(x) ≤ 1
ε ∥x∥ for all x ∈ X and for any ε > 0 such that Bε(0) ⊂ U . In particular,

U is absorbing;
(2) pU is sublinear;
(3) If U is open, then U = p−1

u ([0,1)).

Proof. (1) The estimate follows from the fact that pU ≤ pV whenever V ⊂ U , and
pBε(0)(x) = 1

ε ∥x∥. Since 0 is contained in the interior of U , there exists ε > 0 such that
Bε(0) ⊂ U , and then the estimate implies that pU is �nite, so U is absorbing.

(2) It follows immediately from the de�nition that pU(λx) = λpU(x) for λ ≥ 0. For
the triangle inequality, let x, y ∈ X and ε > 0. Pick λ,µ > 0 such that x

λ ∈ U , y
µ ∈ U , and

λ ≤ pU(x) + ε as well as µ ≤ pU(y) + ε. By convexity of U ,

λ

λ + µ
x

λ
+ µ

λ + µ
y

µ
= x + y
λ + µ

∈ U,

whence pU(x + y) ≤ λ + µ ≤ pU(x) + pU(y) + 2ε. Since ε was arbitrary, the sublinearity of
pU follows.

(3) If pU(x) < 1, then there exists 0 < λ < 1 such that x
λ ∈ U , and as 0 ∈ U , we have by

convexity x = λxλ + (1 − λ) ⋅ 0 ∈ U .
Conversely, if pU(x) ≥ 1, then x

λ ∉ U for all λ < 1. But as the complement U c of U is
closed, we have that

x = lim
λ↗1

x

λ
∈ U c.

�

We introduce the notation A±B ∶= {a±b ∶ a ∈ A, b ∈ B} for two subsets A,B of a vector
space X. Now we are ready to prove the Separation Theorem:

Theorem 1.27 (Hahn-Banach Separation Theorem). Let X be a normed space, V1, V2 ⊂
X disjoint convex subsets, and V1 open. Then there exists x′ ∈X ′ such that

x′(v1) < x′(v2) for all v1 ∈ V1, v2 ∈ V2.

11Recall that the interior of a set U is the union of all open subsets of U .
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Proof. We may assume V1 and V2 to be nonempty, since otherwise the statement is
trivial (and rather meaningless).

Step 1. In the �rst step, we show that if V ⊂ X is nonempty, convex, and open with
0 ∉ V , then there exists x′ ∈X ′ such that x′ ↾V < 0.

To this end, let x0 ∈ V , set y0 ∶= −x0 and U = V −{x0}. U is still open and convex, and
we have 0 ∈ U but y0 ∉ U .

By Lemma 1.26, the corresponding Minkowski functional pU is sublinear, and pU(y0) ≥
1. Let Y ∶= span{y0} and de�ne on Y the linear functional

y′(λy0) ∶= λpU(y0), λ ∈ R.

Then y′ ≤ pU ↾Y , because for λ ≥ 0 equality holds, and for λ < 0 we have y′(λy0) ≤ 0.
Hence, by Lemma 1.21, we obtain a linear extension x′ of y′ such that x′ ≤ pU . In fact, x′

is bounded, because by Lemma 1.26, for any x ∈X,

∣x′(x)∣ = max{x′(x),−x′(x)} ≤ max{pU(x), pU(−x)} ≤
1

ε
∥x∥,

where ε > 0 is such that Bε(0) ⊂ U (such ε exists because 0 ∈ U and U is open).
If x ∈ V , then x = u − y0 for some u ∈ U , and so

x′(x) = x′(u) − x′(y0) ≤ pU(u) − pU(y0),

where we used x′ ≤ pU and x′(y0) = u′(y0) = pU(y0) ≥ 1. But as by Lemma 1.26 pU(u) < 1,
we get x′(x) < 0, so that x′ ∈X ′ is as desired.

Step 2. Let now V1, V2 as in the statement of the Theorem. Set V ∶= V1 − V2. Then V
is convex, because if v1,w1 ∈ V1 and v2,w2 ∈ V2, then for λ ∈ [0,1],

λ(v1 − v2) + (1 − λ)(w1 −w2) = [λv1 + (1 − λ)w1] − [λv2 + (1 − λ)w2] ∈ V1 − V2.

Moreover, V = ⋃v∈V2(V1 − {v}) is open as a union of open sets. Also, 0 ∉ V since V1 and
V2 are disjoint.

The application of Step 1 now yields a functional x′ ∈ X ′ such that x′(v) < 0 for all
v ∈ V , which means that for all v1 ∈ V1 and v2 ∈ V2 we have 0 > x′(v1−v2) = x′(v1)−x′(v2),
as claimed. �

1.5. Re�exivity and Weak Convergence

1.5.1. Re�exivity. Let X be a normed space, then X ′′, i.e., the dual of the dual
space of X, is called the bidual space of X. Consider the canonical inclusion ι ∶X →X ′′,

ι[x] ∶X ′ → K, ι[x](x′) = x′(x).

This may seem confusing at �rst glance. The map ι sends an element x→X to an element
ι[x] ∈ X ′′, that is, ι[x] is a bounded linear map from X ′ to K, and it assigns to x′ ∈ X ′

the value x′(x).
Since x′ is linear, then so is ι. For boundedness, observe

∥ι[x]∥ = sup
∥x′∥≤1

∣ι[x](x′)∣ = sup
∥x′∥≤1

∣x′(x)∣ = ∥x∥,

where we used Corollary 1.23 in the last step. Therefore, ι is an isometric (and hence
injective) linear map from X into X ′′.

Definition 1.28. A Banach space X is called re�exive if the canonical inclusion ι ∶
X →X ′′ is surjective.

Note that an incomplete normed space can never have this property, because by Propo-
sition 1.17, the bidual space is always complete, and there can be no isometric isomorphism
between an incomplete and a complete normed space.
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Example 1.29. (1) Kd is re�exive: It is known from Linear Algebra that every
element x′ ∈ (Kd)′ has the form x ↦ j(x′) ⋅ x with j(x′) ∈ Kd, and j ∶ X ′ → Kd

is an isometric isomorphism. Likewise, every element x′′ ∈ (Kd)′′ takes the form
x′ ↦ i(x′′)⋅j(x′) for some i(x′′) ∈ Kd, and i ∶X ′′ → Kd is an isometric isomorphism.

Let now x′′ ∈X ′′, then for all x′ ∈X ′,

ι[i(x′′)](x′) = x′(i(x′′)) = j(x′) ⋅ i(x′′) = x′′(x′),

so that ι[i(x′′)] = x′′, and thus ι is surjective and Kd is re�exive.
(2) Let Ω be a measure space. For 1 < p < ∞, Lp(Ω) is re�exive: We have seen that

every element of (Lp)′ can be identi�ed with an element of Lq, where 1
p +

1
q = 1.

In turn, every element of (Lq)′ ≃ (Lp)′′ can be identi�ed with an element of Lp.
Under these identi�cations (which can be expressed as isometric isomorphisms as
in the previous example), for any f ∈ Lp and g ∈ (Lp)′ ≃ Lq, we have

ι[f](g) = g(f) =
ˆ

Ω
fgdµ = f(g),

where, by abuse of notation12, we used f to denote both an element of Lp and
the corresponding element of the bidual, and similarly for g.

(3) We saw in Example 1.19(6) that (l1)′ ≃ l∞, where an element y ∈ l∞ can be
identi�ed with the functional x ↦ ∑∞

j=1 xjyj . The canonical map l1 → (l∞)′ is
therefore given by

ι[x](y) = y(x) =
∞
∑
j=1

xjyj .

We show that this map is not surjective. To this end, let c ⊂ l∞ be the subspace
of convergent sequences. Then lim ∶ c → K, x ↦ limn→∞ xn is a bounded linear
functional on c, which by the Theorem of Hahn-Banach can be extended to a
bounded linear operator L ∈ (l∞)′. Suppose this L were in the image of ι, that is,
there existed an l ∈ l1 such that L(y) = ∑∞

j=1 ljyj for all y ∈ l∞. But then, for each
k ∈ N,

lk = L(ek) = lim
n→∞

(ek)n = 0,

and so L = 0, in contradiction to L being an extension of the limit operator (which
is of course not identically zero). This shows that l1 is not re�exive.

(4) Generally, it is known that lp is re�exive for 1 < p < ∞ but not for p = 1 or p = ∞,
and the same is true for Lp(Ω).

1.5.2. Weak Convergence.

Definition 1.30. Let X be a normed space. A sequence (xn)n∈N ⊂X converges weakly
to x ∈X if

x′(xn) → x′(x) as n→∞

for every x′ ∈X ′. In this case, we write xn ⇀ x as n→∞.

The usual notion of convergence (with respect to the norm) is sometimes called strong
convergence in order to distinguish it from weak convergence.

The weak limit, if it exists, is unique, because X ′ separates the points of X (Corol-
lary 1.24).

12The argument can be made cleaner, but more complicated, by explicitly spelling out the respective
isomorphisms as in the previous example.
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Example 1.31. (1) Every (strongly) convergent sequence is weakly convergent
(with the same limit). Indeed, let xn → x and x′ ∈X ′. Then,

∣x′(xn) − x′(x)∣ = ∣x′(xn − x)∣ ≤ ∥x′∥∥xn − x∥ → 0.

(2) Let 1 < p < ∞. We know that (lp)′ ≃ lq where 1
p +

1
q = 1. Consider the sequence

(en)n∈N ⊂ lp. Then for each n ∈ N, we have ∥en∥p = 1. On the other hand, let y ∈ lq
be given. Since y ∈ lq implies limn→∞ yn = 0, we have

y(en) =
∞
∑
j=1

yj(en)j = yn → 0,

so that en ⇀ 0 although the norms of en do not converge to zero. In fact, (en)
cannot converge strongly: If it did, then the strong and weak limits would be
the same (i.e., zero), but then also the norms would converge to zero, which they
don't.

(3) For 1 ≤ p < ∞, consider the space Lp(0; 1) and set un = sin(n⋅). Then (un)n∈N is a
sequence in Lp(0,1). The dual space is (isomorphic to) Lq(0,1). Let g ∈ Lq(0,1),
then by the Riemann-Lebesgue Lemma (which you might or might not know),

lim
n→∞

ˆ 1

0
un(x)g(x)dx = 0,

so that un ⇀ 0. However, as is easy to check, ∥un∥p does not converge to zero, so
that (un) is not strongly convergent. This example shows that the gap between
weak and strong convergence is often caused by high frequency oscillations.

We have seen in the last two examples that the norm may `drop' after passing to
the weak limit � e.g., ∥en∥p = 1 but the weak limit is zero (and thus has zero norm, of
course). This means, in particular, that the norm is not continuous with respect to weak
convergence. In general, we have the following result:

Proposition 1.32 (weak lower semicontinuity of the norm). Let X be a normed space
and xn ⇀ x. Then,

∥x∥ ≤ lim inf
n→∞

∥xn∥.

Proof. The proof is a one-liner, once we recall Corollary 1.23:

∥x∥ = sup
∥x′∥≤1

x′(x) = sup
∥x′∥≤1

lim
n→∞

x′(xn) ≤ sup
∥x′∥≤1

lim inf
n→∞

∥xn∥∥x′∥ = lim inf
n→∞

∥xn∥.

�

A main reason why weak convergence is useful is that it restores some of the compact-
ness properties that got lost in in�nite dimensions. For instance, (en)n∈N has no strongly
convergent subsequence although it is bounded in the norm ∥ ⋅ ∥p, in contrast to the �nite
dimensional case (Bolzano-Weierstraÿ). A weak limit, however, does exist.

A prototypical weak compactness result reads as follows:

Theorem 1.33 (Theorem of Banach-Alaoglu (re�exive case)). Let X be a re�exive
Banach space with separable dual space. Then every bounded13 sequence (xn)n∈N has a
weakly convergent subsequence.

Remark 1.34. The assumption of separability can be removed (see [5, Theorem
III.3.7]): A bounded sequence in a re�exive space always has a weakly convergent sub-
space.

13Of course, a sequence (xn)n∈N in a normed space is called bounded if supn∈N ∥xn∥ < ∞.
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Proof. As X ′ is separable, there is a countable dense (in the operator norm) set
(x′n)n∈N ⊂X ′. Let (xk)k∈N be a bounded sequence in X, then for each n ∈ N, the sequence
(x′n(xk))k∈N is bounded in K.

Step 1. By Bolzano-Weierstraÿ, we �nd a subsequence (x1
j)j∈N of (xk)k∈N such that

x′1(x1
j) converges, as j →∞. From this, we may select a further subsequence (x2

j)j∈N such

that x′2(x2
j) converges; and since (x2

j) is a subsequence of (x1
j), also x′1(x2

j) converges.

Continuing in this way, for each n ∈ N we �nd a subsequence (xnj )j∈N of the original

sequence (xk)k∈N such that (x′m(xnj ))j∈N converges for all m = 1, . . . , n. Upon setting

yj ∶= xjj ,

we �nd that (yj)j∈N is a subsequence of (xk)k∈N such that (x′n(yj))j∈N is convergent for
every n ∈ N. (The type of argument used so far is known as a diagonal argument and is
quite standard in analysis.)

Step 2. Let now x′ ∈ X ′ be arbitrary and ε > 0. Denote M ∶= supk∈N ∥xk∥ < ∞. Pick
n ∈ N such that

∥x′ − x′n∥ <
ε

4M
,

which is possible by density of (x′n)n∈N in X ′. Let also N ∈ N be so large that

∣x′n(yk) − x′n(yj)∣ <
ε

2

for k, j ≥ N . Then, for such k, j, we have

∣x′(yk) − x′(yj)∣ ≤ ∣x′(yk) − x′n(yk)∣ + ∣x′n(yk) − x′n(yj)∣ + ∣x′n(yj) − x′(yj)∣

<M∥x′ − x′n∥ +
ε

2
< ε,

since ∥yk∥ ≤M for all k ∈ N. Therefore, (x′(yj))j∈N is Cauchy and thus convergent.
Step 3. Finally we identify the weak limit of (yj), for which we will use re�exivity.

Consider the linear functional l ∶X ′ → K de�ned as

l(x′) ∶= lim
j→∞

x′(yj).

It is bounded, because

∣l(x′)∣ = lim
j→∞

∣x′(yj)∣ ≤ lim inf
j→∞

∥yj∥∥x′∥ ≤M∥x′∥,

so that l ∈X ′′. As X is assumed re�exive, there exists x ∈X such that ι(x) = l, and thus

x′(x) = l(x′) = lim
j→∞

x′(yj)

for all x′ ∈X ′, which means that yj ⇀ x.
�

Note in particular that Theorem 1.33 applies to the spaces Lp and lp: A bounded
sequence in Lp (or lp) has a weakly convergent subsequence.

We conclude this section by noting the following interesting connection between weak
convergence and convexity. We saw in Example 1.31(2) that the unit vectors en, though all
contained in the closed set {x ∈X ∶ ∥x∥ = 1}, weakly converge to zero, which is no longer in
this closed set. One might say that (strongly) closed sets are in general not weakly closed.
However, a closed set remains weakly closed if it is convex:

Theorem 1.35. Let X be a normed space and U ⊂ X a closed and convex subset.
Suppose (xn)n∈N ⊂ U converges weakly to x. Then x ∈ U .
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Proof. We prove the statement only for K = R (as we didn't bother to prove the
complex version of the Hahn-Banach Theorem). Suppose x ∉ U . Since U is closed, its
complement U c is open, so that there exists an open ball Bε(x) that is disjoint from U .
By the Hahn-Banach Separation Theorem, therefore, there exists x′ ∈ X ′ ∖ {0} such that
x′(x + y) < x′(u) for all y ∈ Bε(0) and u ∈ U . As sup∥y∥≤ε x

′(y) = ε∥x′∥ by de�nition of the
operator norm, we get

x′(x) + ε∥x′∥ ≤ x′(xn)
for all n ∈ N, in contradiction with x′(x) = limn→∞ x′(xn). �

1.6. The Fréchet Derivative

We take a very brief excursion into nonlinear functional analysis, i.e., the analysis
of nonlinear operators between two normed spaces. As in �nite-dimensional analysis,
the question arises how best to approximate a nonlinear operator by a linear one near a
given point, and the answer is given by a sort of di�erential. In analogy with the �nite-
dimensional case, therefore, we de�ne:

Definition 1.36 (Fréchet derivative). Let X,Y be normed spaces, U ⊂ X open, and
f ∶ U → Y a (not necessarily linear) map. Then f is said to be Fréchet di�erentiable at a
point x0 ∈ U if there exists T ∈ L(X,Y ) such that

lim
h→0

f(x0 + hv) − f(x0)
h

= Tv

uniformly in v ∈ B1(0). In this case, we write T =∶Df(x0).
The map f is called Fréchet di�erentiable on U if it is so at each x0 ∈ U . The function

Df ∶ U → L(X,Y ) is then called the Fréchet derivative of f .

It may seem confusing that the derivative of a map X → Y at a point x0 is an operator,
i.e., an element of L(X,Y ). Note however that, for a map Rn → Rm, the total di�erential
(or Jacobian, or whatever you like to call it) is as well a linear map Rn → Rm represented
by an (m × n)-matrix, so Df(x0) ∈ L(X,Y ) does make a lot of sense.

The idea (well-known from Analysis I & II) that the derivative should be viewed as a
linear approximation is made precise by the following result.

Theorem 1.37 (Fréchet derivative as a linear approximation). A map f ∶ U → Y is
Fréchet di�erentiable at x0 ∈ U if and only if there exists T ∈ L(X,Y ) and r ∶ U −{x0} → Y
such that

f(x0 + u) = f(x0) + Tu + r(u)
and14

lim
∥u∥→0

r(u)
∥u∥

= 0. (1.9)

In this case, T =Df(x0).

Proof. Suppose that f is Fréchet di�erentiable at x0. Setting

r(u) ∶= f(x0 + u) − f(x0) −Df(x0)u,
we estimate

r(u)
∥u∥

=
f (x0 + ∥u∥ u

∥u∥) − f(x0)
∥u∥

−Df(x0)(
u

∥u∥
) → 0

14To be precise, the limit condition means: For all ε > 0 there exists δ > 0 such that ∥u∥ < δ implies
r(u)

∥u∥
< ε.
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as ∥u∥ → 0. Note we have used the uniform convergence of the di�erence quotient, as the
direction u

∥u∥ can change as ∥u∥ → 0.

Conversely, assume (1.9) for some T and r as required, and let v ∈ B1(0). Then,

∥f(x0 + hv) − f(x0)
h

− Tv∥ = ∥v∥ ∥f(x0 + hv) − f(x0) − T (hv)
h∥v∥

∥ = ∥v∥∥r(hv)∥
∥hv∥

→ 0

uniformly in v ∈ B1(0) as h→ 0. �

It is easy to see that the Fréchet derivative is linear: If two maps f, g ∶ U → Y are
Fréchet-di�erentiable, then so is αf + βg (α,β ∈ K), and D(αf + βg) = αDf + βDg. In
fact, several familiar properties of derivatives, like the chain rule, a version of the Mean
Value Theorem, or the Implicit Function Theorem, remain valid in the Fréchet sense. But
instead of developing the theory further15, let us just give give a simple example.

Example 1.38. On C([0,1];R) with the supremum norm, de�ne f ∶X →X by f(x) =
x2 (note x is a continuous function and the square is taken pointwise). For any x, v ∈X,

f(x + hv) − f(x)
h

= 2hxv + h2v2

h
= 2xv + hv2 → 2xv

uniformly, as h→ 0, in v ∈ B1(0). It follows thatDf(x) = 2x, that is: the Fréchet derivative
Df(x) ∈ L(X,X) is the multiplication operator with 2x, so that for v ∈X, Df(x)v = 2xv.

15More on the topic can be learned in Prof. Dall'Acqua's course Nonlinear Functional Analysis next
term.



CHAPTER 2

Hilbert Spaces

Hilbert spaces are a special class of Banach spaces whose norm stems from an inner
product. Such spaces are in certain ways very similar to (�nite-dimensional) Euclidean
space and therefore admit geometric intuition. For instance, a Hilbert space is dual to
itself, has an orthonormal basis, allows for orthogonal projections, etc. The notion of
Hilbert space is fundamental to quantum mechanics.

2.1. De�nition and Fundamental Properties

Definition 2.1 (inner product space). A K-vector space X is an inner product space
if it is equipped with an inner product X ×X → K satisfying the following:

(1) For all x ∈X: R ∋ (x,x) ≥ 0 with equality if and only if x = 0;
(2) For all x, y, z ∈X and α,β ∈ K:

(αx + βy, z) = α(x, z) + β(y, z);

(3) For all x, y ∈X: (x, y) = (y, x).

When K = R, then the complex conjugation in the last axiom does nothing, and we
just have (x, y) = (y, x) (which also entails linearity in the second argument). In this case,
the inner product can be characterised as a positive de�nite symmetric bilinear form, and
an inner product space over R is often called a Euclidean space.

If K = C, the inner product is not linear in the second argument, but only linear up
to complex conjugation1; in this case, one says that the inner product is a positive de�nite
conjugate symmetric sesquilinear2 form, and an inner product space over C is also called a
unitary space.

Obviously, Kd is an inner product space with the usual inner product (x, y) = ∑dj=1 xjyj .
If X is an inner product space, then

∥ ⋅ ∥ ∶X → R, ∥x∥ ∶=
√

(x,x)
is well-de�ned, because (x,x) ≥ 0 according to (1). We will show shortly that, as the
notation suggests, ∥ ⋅ ∥ is a norm on X, but as a preparation, we �rst prove the Cauchy-
Schwarz inequality3:

Proposition 2.2 (Cauchy-Schwarz inequality). Let X be an inner product space and
x, y ∈X. Then,

∣(x, y)∣ ≤ ∥x∥∥y∥.

Proof. If y = 0, then both sides are zero. So let y ≠ 0 and therefore ∥y∥ > 0. If λ ∈ K,
then from sesquilinearity,

0 ≤ (x − λy, x − λy) = ∥x∥2 + λλ̄∥y∥2 − λ̄(x, y) − λ(y, x).

1More precisely: (x,αy + βz) = ᾱ(x, y) + β̄(x, z).
2from latin �sesqui�: one and a half.
3Please make sure to always spell the Schwarz (Hermann Amandus, 1843-1921) from the Cauchy-

Schwarz inequality correctly. In fact, there is another Schwartz (Laurent, 1915-2002) spelt di�erently. The
latter is known for the theory of distributions and appears, e.g., in Schwartz space.

26
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The choice λ = (x,y)
∥y∥2 yields

0 ≤ ∥x∥2 + ∣(x, y)∣2

∥y∥4
∥y∥2 − 2

∣(x, y)∣2

∥y∥2
= ∥x∥2 − ∣(x, y)∣2

∥y∥2
,

which implies the statement. �

Proposition 2.3. Let X be an inner product space. Then the map ∥ ⋅ ∥ is a norm on
X.

This norm is called the norm induced by the inner product.

Proof. As (x,x) ≥ 0, the map ∥ ⋅ ∥ is real-valued and non-negative. We have ∥x∥ = 0
if and only if (x,x) = 0, i.e., if and only if x = 0.

For λ ∈ K and x ∈X,

∥λx∥ =
√

(λx,λx) =
√

∣λ∣2(x,x) = ∣λ∣∥x∥

thanks to sesquilinearity.
For x, y ∈X, �nally,

∥x + y∥2 = (x + y, x + y) = (x,x) + (x, y) + (y, x) + (y, y)
= ∥x∥2 + 2R(x, y) + ∥y∥2

≤ ∥x∥2 + 2∣(x, y)∣ + ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥ + ∥y∥2 = (∥x∥ + ∥y∥)2,

where we used the Cauchy-Schwarz inequality. �

Definition 2.4 (Hilbert space). A Hilbert space is an inner product space which is
complete with respect to the norm induced by its inner product.

So every Hilbert space is, in particular, a Banach space.

Example 2.5. (1) Rd and Cd are (respectively real and complex) Hilbert spaces,
as already noted.

(2) If Ω is a measure space, then it is easy to check that

(f, g) ∶=
ˆ

Ω
f(x)g(x)dx (2.1)

de�nes an inner product on the vector space L2(Ω;K), and this inner product
induces the norm of L2. As L2 is complete, we conclude that it is a Hilbert space.

(3) Taking Ω = N together with the counting measure, then L2(Ω) = l2, so that in
particular l2 is Hilbert.

(4) We can as well equip the vector space C([0,1];K) with the same inner prod-
uct (2.1), but this inner product space will not be complete (its completion is
precisely L2(0,1) � think it over!), so it is not Hilbert.

For most of this section, we will not make use of completeness, so that all results except
Corollary 2.12 are true in (possibly incomplete) inner product spaces.

Two vectors x, y ∈ X are orthogonal if (x, y) = 0. In particular, the zero vector is
orthogonal to any vector in X. One occasionally writes x ⊥ y to express orthogonality. If
U ⊂X is a subspace, then

U⊥ ∶= {x ∈X ∶ x ⊥ u ∀u ∈ U}

is called the orthogonal complement of U in X. The orthogonal complement is always a
closed subspace, even when U itself is not closed (exercise).
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A (not necessarily �nite) family (ek)k∈I indexed by a set I is called an orthonormal
system in X if

(ek, el) =
⎧⎪⎪⎨⎪⎪⎩

0 if k ≠ l,
1 if k = l.

Proposition 2.6 (Theorem of Pythagoras). Let (ek)k∈I be an orthonormal system and
I ′ ⊂ I a �nite set of indices. Then, any linear combination x = ∑k∈I′ ckek (ck ∈ K) satis�es:

∥x∥2 = ∑
k∈I′

∣ck∣2.

Proof. Orthonormality and sesquilinearity yield

∥x∥2 =
⎛
⎝∑k∈I′

ckek,∑
j∈I′

cjej
⎞
⎠
= ∑
j,k∈I′

ck c̄j(ek, ej) = ∑
k∈I′

∣ck∣2.

�

If I ′ ⊂ I is a �nite set of indices and x ∈X, then

PI′v ∶= ∑
k∈I′

(x, ek)ek

the orthogonal projection of x onto the subspace spanned by (ek)k∈I′ . By Pythagoras,
∥PI′x∥2 = ∑k∈I′ ∣(x, ek)∣2.

Proposition 2.7 (properties of the projection). Let x ∈X, I ′ ⊂ I �nite, and (ck)k∈I′ ⊂
K. For the orthogonal projection PI′x we have:

(1) PI′ (∑k∈I′ ckek) = ∑k∈I′ ckek, in particular: P 2
I′ = PI′ ;

(2) ∥PI′x∥ ≤ ∥x∥.

Proof. (1) From orthonormality,

PI′ (∑
k∈I′

ckek) = ∑
j∈I′

(∑
k∈I′

ckek, ej) ej = ∑
j,k∈I′

ck(ek, ej)ej = ∑
k∈I′

ckek.

(2) It holds that

∥x − PI′x∥2 = ∥x∥2 − 2R(x,PI′x) + ∥PI′x∥2

= ∥x∥2 − 2R(x,∑
k∈I′

(x, ek)ek) + ∥PI′x∥2

= ∥x∥2 − 2 ∑
k∈I′

∣(x, ek)∣2 + ∥PI′x∥2

= ∥x∥2 − ∥PI′x∥2,

where we used Pythagoras in the last step.
�

An orthonormal system (ek)k∈I is called a Hilbert basis if for every x ∈ X and ε > 0
there exists a �nite linear combination such that

∥x − ∑
k∈I′

ckek∥ < ε (I ′ ⊂ I �nite, ck ∈ K).

Example 2.8. (1) For the Hilbert space l2, the unit vectors (en)n∈N form a
Hilbert basis.
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(2) We want to �nd a Hilbert basis for L2(0,1). To this end, note �rst that the
polynomials are dense in C([0,1]) with respect to the supremum norm, and a
fortiori with respect to the L2 norm. Moreover, C([0,1]) is dense in L2(0,1),
hence span{x↦ xn ∶ n ∈ N∪{0}} is dense. However, the monomials x↦ xn are not
orthonormal. But they can be orthonormalised via the Gram-Schmidt procedure,
which you hopefully know from Linear Algebra (if not, please give me a shout!).

(3) In the next section we shall see a Hilbert basis for L2
per(R,C), the space of 2π-

periodic locally L2 functions R→ C.

Remark 2.9. A basis in the sense of Linear Algebra is then called algebraic basis or
Hamel basis in order to distinguish it from a Hilbert basis. If (ek)k∈K is an algebraic basis,
then for each x ∈ X there is a �nite set I ′ ⊂ I and coe�cients (ck)k∈I′ ⊂ K such that
x = ∑k∈I′ ckek. In contrast, a Hilbert basis generally only allows to approximate, but not
represent exactly, the vector x by a �nite linear combination.

You proved in the exercises, using Zorn's Lemma, that every vector space has a basis.
In a similar way one can show that every inner product space has a Hilbert basis. The
decisive advantage of a Hilbert basis over an algebraic one is that, in many cases, a Hilbert
basis can be explicitly constructed, whereas usually (in in�nite dimensions) nothing is
known about an algebraic basis save its mere existence.

Theorem 2.10. Assume X has a countable Hilbert basis (ek)k∈Z. Then for every x ∈X,

x =
∞
∑
k=−∞

(x, ek)ek ∶= lim
N→∞

N

∑
k=−N

(x, ek)ek,

and for x, y ∈X we have the identity

(x, y) =
∞
∑
k=−∞

(x, ek)(ek, y).

In particular, Parseval's identity holds:

∥x∥2 =
∞
∑
k=−∞

∣(x, ek)∣2.

Proof. Let ε > 0. By assumption there exists N ∈ N and coe�cients (ck)k=−N,...,N ⊂ K
such that

∥x −
N

∑
k=−N

ckek∥ <
ε

2
.

Denote PN ∶X →X the orthogonal projection onto the subspace spanned by (ek)k=−N,...,N ,
then by Proposition 2.7,

ε

2
> ∥PN (x −

N

∑
k=−N

ckek)∥ = ∥
N

∑
k=−N

(x, ek)ek −
N

∑
k=−N

ckek∥ ,

hence in total

∥x −
N

∑
k=−N

(x, ek)ek∥ ≤ ∥x −
N

∑
k=−N

ckek∥ + ∥
N

∑
k=−N

(x, ek)ek −
N

∑
k=−N

ckek∥ < ε.

So we have limN→∞ PNx = x and limN→∞ PNy = y, and also
∞
∑
k=−∞

∣(x, ek)∣2 ≤ ∥x∥2

because the sum on the left hand side equals limN→∞ ∥PNx∥2. Therefore,

∞
∑
k=−∞

(x, ek)(ek, y) = lim
N→∞

N

∑
k=−N

(x, ek)(ek, y) = lim
N→∞

(PNx,PNy) = (x, y),
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where the last equality follows from continuity of the scalar product (think it over). �

Of course we could as well have indexed our Hilbert basis with N instead of Z, but
taking Z as an index set facilitates notation in the next section.

The following Proposition tells us when a Hilbert space actually has a countable4

Hilbert basis:

Proposition 2.11. A Hilbert space H has a countable Hilbert basis if and only if it is
separable.

Proof. If H has a countable Hilbert basis (en)n∈N, then

{
N

∑
n=1

αnen ∶ αn ∈ Q,N ∈ N}

is countable and dense in H (if K = C, replace Q by Q + iQ).
Conversely, let (xn)n∈N be a countable dense subset of H. We may assume the family

(xn)n∈N to be linearly independent (otherwise check for every n ∈ N whether xn is a �nite
linear combination of the other vectors, and delete it if necessary). Then, the following
recursion (known as Gram-Schmidt orthonormalisation) turns (xn)n∈N into a Hilbert basis:

e1 ∶=
x1

∥x1∥
, en ∶=

xn −∑n−1
k=1(xn, ek)ek

∥xn −∑n−1
k=1(xn, ek)ek∥

(n > 1).

�

Let H1 and H2 both be Hilbert. We call a bijective linear operator U ∶ H1 → H2

unitary if it preserves inner products, that is, if (Ux,Uy)H2 = (x, y)H1 for all x, y ∈ H1.
Unitary operators are of course bounded with operator norm one. If there exists a unitary
operator between two Hilbert spaces H1 and H2, then these spaces are called isometrically
isomorphic (in particular, they are also isometrically isomorphic as normed spaces).

Corollary 2.12. Every in�nite-dimensional separable Hilbert space is isometrically
isomorphic with l2.

Proof. Let H be an in�nite-dimensional separable Hilbert space, which has a count-
ably in�nite Hilbert basis (en)n∈N by Proposition 2.11. De�ne U ∶H → l2 by

Ux = ((x, en))n∈N.

Then indeed U(x) ∈ l2 by Parseval's identity, and it is an isometry, because for x, y ∈H,

(Ux,Uy) =
∞
∑
k=1

(x, ek)(ek, y) = (x, y),

where we used Theorem 2.10. As an isometry, it is automatically injective. But U is also
surjective: For any x = (xn)n∈N ∈ l2, we have

x = U (
∞
∑
k=1

xnen) .

Notice that ∑∞
k=1 xnen ∈ H because H is complete and the sequence (∑Nk=1 xnen)N∈N is

Cauchy, because, by Pythagoras,

∥
M

∑
k=N+1

xnen∥
2

=
M

∑
k=N+1

∣xn∣2 ≤
∞
∑

k=N+1

∣xn∣2 → 0

as N →∞, since (xn)n∈N ∈ l2. �

4Here, by `countable' we mean `�nite or countably in�nite'.
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2.2. Convergence of Fourier Series

We exemplify the �ndings of the preceding section as follows. Let L2
per(R;C) be the

space of measurable functions R→ C that are 2π-periodic (i.e., f(x+2π) = f(x) for almost
every x ∈ R) and such that

∥f∥2
2 ∶=
ˆ 2π

0
∣f(x)∣2dx

is �nite. This norm is induced by the scalar product

(f, g) ∶=
ˆ 2π

0
f(x)g(x)dx. (2.2)

Theorem 2.13. For k ∈ Z set

ek ∶=
1√
2π
eik⋅.

Then (ek)k∈Z is a Hilbert basis of L2
per(R;C).

Proof. Obviously ek ∈ L2
per for all k ∈ Z. Using exp(ikx) = exp(−ikx) and the

functional equation of exp, we �nd that

(ek, el) =
1

2π

ˆ 2π

0
eikxeilxdx = 1

2π

ˆ 2π

0
eikxe−ilxdx

= 1

2π

ˆ 2π

0
ei(k−l)xdx

=
⎧⎪⎪⎨⎪⎪⎩

1 if k = l,
1

2πi(k−l)e
i(k−l)x∣2π0 = 0 if k ≠ l.

Therefore, (ek)k∈Z is an orthonormal system.
To see completeness, let ε > 0 and f ∈ Cper(R;C); by Theorem 1.14 there exists a linear

combination ∑Nk=−N ckeikx such that

sup
x∈[0,2π]

∣f(x) −
N

∑
k=−N

cke
ikx∣ < ε.

On the bounded interval [0,2π), the supremum norm controls the L2 norm, more precisely:

∥f −
N

∑
k=−N

cke
ik⋅∥

2

2

=
ˆ 2π

0
∣f(x) −

N

∑
k=−N

cke
ikx∣

2

dx

≤ 2π sup
x∈[0,2π]

∣f(x) −
N

∑
k=−N

cke
ikx∣

2

< 2πε2,

and we also know that Cper(R;C) is dense in L2
per(R;C) (in the norm ∥ ⋅ ∥2), so that �nite

linear combinations of (ek)k∈Z are dense in L2
per(R;C). �

Let f ∈ L2
per(R;C). We write f̂(k) for the inner product (f, ek) and call it the k-th

Fourier coe�cient of f . Writing it out, we have

f̂(k) = 1√
2π

ˆ 2π

0
f(x)e−ikxdx.

Theorem 2.10 then tells us:
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Theorem 2.14 (L2-Convergence of Fourier Series). Let f ∈ L2
per(R,C), then

f = 1√
2π

∞
∑
k=−∞

f̂(k)eik⋅, (2.3)

and we have Parseval's identity:ˆ 2π

0
∣f(x)∣2dx =

∞
∑
k=−∞

∣f̂(k)∣2.

The series (f̂(k))k∈Z is called Fourier series of f .
As remarked in Corollary 2.12, the Fourier series thus gives an isometric isomorphism

between L2
per(R;C) and l2.

2.3. Orthogonal Projection and the Theorem of Riesz-Fréchet

Orthogonal projections can be de�ned not just onto a subspace, but onto any closed
convex (nonempty) set. We will show that such a projection is well-de�ned, and that it has
geometrically intuitive properties. After that, as a by-product, so to speak, we characterise
the dual space of a Hilbert space. It turns out that every Hilbert space is essentially self-
dual, that is, isometrically (anti-)isomorphic to itself. This statement is known as the
Riesz-Fréchet Theorem.

2.3.1. Orthogonal Projection onto a Closed Convex Subset. We have already
made sense of the orthonormal projection onto a �nite-dimensional subspace. However,
the concept extends way beyond such subspaces.

Let H be Hilbert and C ⊂ H a nonempty closed convex subset. If x ∈ H, then we call
an element x̄ ∈ C a proximum of x in C if

∥x − x̄∥ ≤ ∥x − c∥ ∀c ∈ C.
In other words, the proximum (if it exists) minimises the distance ∥x− c∥ among all c ∈ C.

Theorem 2.15 (existence and uniqueness of the proximum). Let H be Hilbert and
∅ ≠ C ⊂H closed and convex. Then, for every x ∈H there exists a unique proximum in C.

Proof. Let x ∈H. Then there exists a sequence (xn)n∈N such that

∥x − xn∥ → d ∶= inf{∥x − c∥ ∶ c ∈ C} < ∞
as n→∞.

We will use the following auxiliary identity: For u, v ∈H,

∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2, (2.4)

which is immediate to verify. Apply this with u ∶= x − xn and v ∶= xm − x to get

∥xn − xm∥2 = 2∥x − xn∥2 + 2∥x − xm∥2 − ∥2x − xn − xm∥2

= 2∥x − xn∥2 + 2∥x − xm∥2 − 4∥x − 1

2
(xn − xm)∥

2

≤ 2∥x − xn∥2 + 2∥x − xm∥2 − 4d2

→ 2d2 + 2d2 − 4d2 = 0

as m,n → ∞, where we used 1
2(xn + xm) ∈ C by convexity. Therefore, (xn)n∈N is Cauchy.

Since H is complete and C is closed, we infer the existence of a limit x̄ ∈ C. By continuity
of the norm,

∥x − x̄∥ = lim
n→∞

∥x − xn∥ = d,

so that x̄ is a proximum.
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It remains to show uniqueness. Suppose x̄ and x̂ are two proxima. Invoking once
more (2.4) with u = x − x̄ and v = x − x̂,

d2 = 1

2
∥x − x̄∥2 + 1

2
∥x − x̂∥2 = ∥x − 1

2
(x̄ + x̂)∥

2

+ 1

4
∥x̄ − x̂∥2 ≥ d2 + 1

4
∥x̄ − x̂∥2,

whence ∥x̄ − x̂∥ = 0 and so x̄ = x̂. �

Definition 2.16. Let C be nonempty, closed and convex. The map P ∶ H → H that
maps x to its proximum in C is called the orthogonal projection onto C.

Note that P is, in general, not linear.

Lemma 2.17. Let C be nonempty, convex, and closed. Then x̄ ∈ C is the proximum of
x ∈H in C if and only if

R(x − x̄, y − x̄) ≤ 0 ∀y ∈ C. (2.5)

Proof. Suppose x̄ is the proximum of x in C, and let y ∈ C. By convexity,

λy + (1 − λ)x̄ = x̄ + λ(y − x̄) ∈ C
for all λ ∈ [0,1]. Since x̄ is the proximum, for every λ ∈ [0,1],

∥x − x̄∥2 ≤ ∥x − (x̄ + λ(y − x̄)))∥2

= ∥x − x̄∥2 − 2λR(x − x̄, y − x̄) + λ2∥y − x̄∥2,

whence

R(x − x̄, y − x̄) ≤ λ
2
∥y − x̄∥2

for λ ∈ (0,1]. Since this holds for arbitrarily small positive λ, (2.5) follows.
Conversely, assume (2.5) and let y ∈ C. Then,

∥x − y∥2 = ∥(x − x̄) + (x̄ − y)∥2 = ∥x − x̄∥2 − 2R(x − x̄, y − x̄) + ∥y − x̄∥2 ≥ ∥x − x̄∥2,

so that x̄ is indeed the proximum. �

Lemma 2.18. Let H Hilbert and C ⊂ H nonempty, closed and convex. Then the
orthogonal projection P ∶ H → H is Lipschitz continuous with Lipschitz constant one,
that is,

∥Px − Py∥ ≤ ∥x − y∥ ∀x, y ∈H.

Proof. Let x, y ∈H. By the previous lemma, we have

R(x − Px, z − Px) ≤ 0, R(y − Py, z − Py) ≤ 0 ∀z ∈ C.
Pick z = Py in the �rst and z = Px in the second of these inequalities, we get

R(x − Px,Py − Px) ≤ 0, −R(y − Py,Py − Px) ≤ 0.

Adding both yields

0 ≥R(x − Px + Py − y,Py − Px) = ∥Py − Px∥2 +R(x − y,Py − Px),
so that rearranging and the Cauchy-Schwarz inequality result in

∥Px − Py∥2 ≤ ∥x − y∥∥Px − Py∥.
�

The following result is about the special case of a closed subspace.

Lemma 2.19. Let H be Hilbert and H0 ⊂ H a closed subspace. Then the orthogonal
projection P ∶ H → H onto H0 is a bounded linear operator whose norm, unless H0 = {0},
is one. Also, z = Px if and only if x − z ∈H⊥0 .
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Proof. Let x ∈ H. From Lemma 2.17 we know that the orthogonal projection is
characterised by R(x−Px, y −Px) ≤ 0 for all y ∈H0. But since H0 is a subspace, y ∈H0 if
and only if y+Px ∈H0, and the same is true for −y+Px as well as ±iy+Px. It follows that
the orthogonal projection is characterised by (x−Px,w) = 0 for all w ∈H0, or equivalently,
x − Px ∈H⊥0 .

Let α,β ∈ K and x, y ∈ H. Then, as H0 is a subspace, αPx + βPy ∈ H0, and we have
for each w ∈H0:

(αx + βy − αPx − βPy,w) = α(x − Px,w) + β(y − Py,w) = 0,

whence P (αx+βy) = αPx+βPy, so P is linear. By Lemma 2.18 (setting y = 0), ∥Px∥ ≤ x
for all x ∈H, so that ∥P ∥ ≤ 1; but also ∥P ∥ ≥ 1 because restricted to H0, P is the identity.
In total we see ∥P ∥ = 1. �

2.3.2. Characterisation of the Dual of a Hilbert Space.

Theorem 2.20 (Riesz-Fréchet). Let H be Hilbert and x′ ∈H ′. Then there exists exactly
one y ∈H such that

x′ = (⋅, y). (2.6)

Proof. As x′ is linear and bounded, H0 ∶= kerx′ is a closed subspace ofH. IfH⊥0 = {0},
then H0 = H: Indeed, If there were x ∈ H ∖ H0, then 0 ≠ x − Px and x − Px ∈ H⊥0 by
Lemma 2.19, contradicting H⊥0 = {0}. So x′ = 0, and then the choice y = 0 uniquely
satis�es (2.6).

Otherwise, we may choose y1 ∈ H⊥0 such that x′(y1) = 1. Then, for any x ∈ H,
x − x′(x)y1 ∈H0, hence

0 = (x − x′(x)y1, y1) = (x, y1) − x′(x)∥y1∥2.

Thus, y ∶= y1
∥y1∥2 satis�es (2.6).

For uniqueness, Suppose z is another vector ful�lling (2.6). Then,

∥y − z∥2 = (y − z, y) − (y − z, z) = x′(y − z) − x′(y − z) = 0,

so z = y. �

Owing to this theorem, there exists a bijective map T ∶ H → H ′, y ↦ T [y] ∈ H ′,
such that (x, y) = T [y](x) for all x ∈ H. This map is antilinear, that is, T [αy1 + βy2] =
ᾱT [y1] + β̄T [y2]. It is norm-preserving, because

∥T [y]∥ = sup
∥x∥≤1

∣T [y](x)∣ = sup
∥x∥≤1

∣(x, y)∣ = ∥y∥

(simply set x = y
∥y∥).

Hence, the Riesz-Fréchet Theorem tells us that a real Hilbert space is isometrically
isomorphic to its dual5, and a complex Hilbert space is `isometrically anti-isomorphic' to
its dual.

2.4. The Spectral Theorem for Compact Self-Adjoint Operators

In Linear Algebra you learn that a real symmetric matrix A is diagonalisable, meaning
that there exists an orthogonal matrix O such that OAOt is diagonal. Equivalently, there
exists an orthonormal basis of eigenvectors of A. In a Hilbert space H, it turns out that
for compact operators in L(H,H), the situation is very analogous: If the operator is self-
adjoint (which is the analogue of symmetry) and compact, then there exists a Hilbert basis
of eigenvectors of the operator. The assumption of compactness is crucial as it puts us

5In fact we have only seen that T preserves norms, but we have not considered inner products.
However preservation of the latter follows from preservation of norms by the polarisation identity (x, y) =
1
4
∥x + y∥2 − 1

4
∥x − y∥2.
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into a similar situation as in the �nite-dimensional case. The theory of diagonalisation, in
a broad sense, is called spectral theory.

For most of this section we will be occupied with a clari�cation of the notions of self-
adjointness, compact operators, and spectrum. The actual proof of the spectral theorem
will then not be particularly di�cult.

2.4.1. The Adjoint Operator.

Definition 2.21 (adjoint). Let H be Hilbert and T ∈ L(H,H). Then an operator
T ∗ ∈ L(H,H) is called its adjoint if

(Tx, y) = (x,T ∗y) ∀x, y ∈H.

For instance, if H = Rd and an operator is represented by a (d × d)-matrix A, then At

represents the unique adjoint, because for x, y ∈ Rd,

Ax ⋅ y =
d

∑
k,l=

Aklxlyk =
d

∑
k,l=

Atlkxlyk = x ⋅A
ty.

Likewise, the unique adjoint of a complex matrix A ∈ Cd×d is given as A∗ ∶= At.

Theorem 2.22 (existence & uniqueness of the adjoint). Let H be Hilbert and T ∈
L(H,H). Then there exists exactly one adjoint operator T ∗ ∈ L(H,H) for T , and ∥T ∗∥ =
∥T ∥.

Proof. This is a straightforward consequence of the Riesz-Fréchet Theorem: For y ∈
H, de�ne the linear functional x ↦ (Tx, y), which is bounded by ∥T ∥∥y∥. By Riesz-
Fréchet, there exists a unique T ∗y ∈ H such that (Tx, y) = (x,T ∗y). It remains to show
that T ∗ ∶ y ↦ T ∗y is linear and bounded with norm ∥T ∥.

For linearity, note that for λ1, λ2 ∈ K and y1, y2 ∈ K,
(x,λ1T

∗y1 + λ2T
∗y2) = λ1(x,T ∗y1) + λ2(x,T ∗y2)

= λ1(Tx, y1) + λ2(Tx, y2) = (Tx,λ1y1 + λ2y2),
whence T ∗(λ1y1 + λ2y2) = λT ∗y1 + λ2T

∗y2 follows by virtue of uniqueness in the Riesz-
Fréchet Theorem.

For boundedness, observe

∥T ∥ = sup
∥x∥≤1

∥Tx∥ = sup
∥x∥≤1

sup
∥y∥≤1

∣(Tx, y)∣ = sup
∥x∥≤1

sup
∥y∥≤1

∣(x,T ∗y)∣ = ∥T ∗∥,

where we used the theorems of Hahn-Banach and Riesz-Fréchet to write ∥x∥ = sup∥y∥≤1 ∣(x, y)∣.
�

Definition 2.23 (self-adjoint operators). An operator T ∈ L(H,H) is called self-
adjoint if T = T ∗.

For instance, in Rd a matrix is self-adjoint if it is symmetric, and in Cd it is self-adjoint
if it is Hermitian, that is, At = A.

As another example, the orthogonal projection onto a closed subspace of a Hilbert
space is self-adjoint, as you already saw in the exercises.

Proposition 2.24. Let H be Hilbert and T ∈ L(H,H).
(1) Let K = C. Then T is self-adjoint if and only if (Tx,x) ∈ R for all x ∈H.
(2) If T is self-adjoint, then ∥T ∥ = sup∥x∥≤1 ∣(Tx,x)∣.

Proof. (1) Let T be self-adjoint. Then, for any x ∈H,

(Tx,x) = (x,Tx) = (Tx,x),
so (Tx,x) ∈ R.
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Conversely, suppose (Tx,x) ∈ R for all x ∈H. Let x, y ∈H and λ ∈ C, then

(T (x + λy), x + λy) = (Tx,x) + λ(Tx, y) + λ(Ty, x) + ∣λ∣2(Ty, y).

By assumption, complex conjugation of this equality only a�ects the middle terms on the
right hand side, so that

(T (x + λy), x + λy) = (Tx,x) + λ(y, Tx) + λ(x,Ty) + ∣λ∣2(Ty, y).

Subtract both equalities to obtain

λ(Tx, y) + λ(Ty, x) = λ(y, Tx) + λ(x,Ty).

Set �rst λ = 1 and then λ = i in this equality to obtain

(Tx, y) + (Ty, x) = (y, Tx) + (x,Ty),
−i(Tx, y) + i(Ty, x) = i(y, Tx) − i(x,Ty).

Dividing the second line by i and then adding both equalities, we arrive at (Ty, x) = (y, Tx),
so that T is self-adjoint.

(2) Denote C ∶= sup∥x∥≤1 ∣(Tx,x)∣. Clearly, C ≤ ∥T ∥. For x, y ∈H, we have

(T (x+y), x+y)−(T (x−y), x−y) = 2(Tx, y)+2(Ty, x) = 2(Tx, y)+2(Tx, y) = 4R(Tx, y),

where we used the self-adjointness of T . From the de�nition of C and equality (2.4) it
follows that

4R(Tx, y) ≤ C(∥x + y∥2 + ∥x − y∥2) = 2C(∥x∥2 + ∥y∥2).

In particular, if ∥x∥ = ∥y∥ = 1, then R(Tx, y) ≤ C. Replacing x by eisx, where s ∈ R is
chosen such that

eis(Tx, y) = ∣(Tx, y)∣,

we conclude ∣(Tx, y)∣ ≤ C, which proves the statement as ∥T ∥ = sup∥x∥=∥y∥=1 ∣(Tx, y)∣. �

2.4.2. Compact Operators. The content of this and the next section is not speci�c
to Hilbert spaces, so we work more generally in normed spaces again.

An operator T ∶X → Y is called compact if it maps bounded sets to precompact ones,
that is:

Definition 2.25 (compact operators). Let X,Y be normed spaces and T ∶ X → Y a
linear map. It is compact if, for every bounded sequence (xn)n∈N, the sequence (Txn)n∈N
has a convergent subsequence.

Compact operators are always bounded: Otherwise, there would be a bounded sequence
(xn)n∈N such that ∥Txn∥ ≥ n for all n ∈ N, and this cannot have a convergent subsequence
as convergent sequences are bounded.

Example 2.26. A bounded operator X → Y whose range has �nite dimension is com-
pact, by the Theorem of Bolzano-Weierstraÿ. Such operators are called �nite rank opera-
tors. For instance, orthogonal projections from a Hilbert space onto a �nite-dimensional
subspace are �nite-rank operators. One can show that limits (in the operator norm) of
sequences of �nite rank operators are still compact. The converse question � whether every
compact operator is a limit of �nite-rank operators � was open for decades and only solved
in 1972 by Per En�o (the answer is `no').
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2.4.3. The Spectrum of an Operator. The following concepts (resolvent and spec-
trum) are known from Linear Algebra, at least in the �nite-dimensional case. The idea
is that the spectrum of a square matrix A is the set of its eigenvalues, which coincides
with the set of λ ∈ K for which the matrix6 λI − A is singular (i.e., λ is a root of the
characteristic polynomial of A). Trivially reformulated, we can also say that the spectrum
is the complement in K of the set of λ for which λI −A is invertible.

Analogously, we de�ne:

Definition 2.27 (resolvent and spectrum). LetX be a normed space and T ∈ L(X,X).
The resolvent set ρ(T ) ⊂ K is the set of all λ ∈ K for which λI − T is bijective and
(λI − T )−1 ∈ L(X,X). For λ ∈ ρ(T ), we call

R(λ,T ) ∶= (λI − T )−1

the resolvent of T in λ.
The complement σ(T ) ∶= K ∖ ρ(T ) is called the spectrum of T .

One is tempted to identify σ(T ) with the set of eigenvalues of T , i.e., the set of λ ∈ K
such that there exists X ∋ x ≠ 0 satisfying Tx = λx. In �nite dimensions, this is certainly
true. However, we have the following counterexample: On l2, consider the right shift
operator R as in Example 1.19:

R(x1, x2, x3, . . .) = (0, x1, x2, . . .).
Obviously, R is not surjective, hence 0 ∉ ρ(R) and so 0 ∈ σ(R). However, 0 is not an
eigenvalue, as Rx = 0 implies x = 0. The converse is true: Every eigenvalue belongs to the
spectrum. The set of eigenvalues of an operator is called its point spectrum.

The following looks like the summation formula for a geometric series:

Lemma 2.28 (Neumann Series). Let X be Banach and T ∈ L(X,X) with ∥T ∥ < 1.
Then, I − T is bijective, (I − T )−1 ∈ L(X,X), and

(I − T )−1 =
∞
∑
n=0

Tn.

Proof. Since X is complete, then so is L(X,X) by Proposition 1.17. From the
de�nition of the operator norm, one sees that ∥PS∥ ≤ ∥P ∥∥S∥ for linear operators P,S ∈
L(X,X). Therefore, ∥Tn∥ ≤ ∥T ∥n for any n ∈ N, and so

∞
∑
n=0

∥Tn∥ ≤
∞
∑
n=0

∥T ∥n = 1

1 − ∥T ∥
< ∞,

and ∑∞
n=0 T

n is absolutely convergent in L(X,X). But in Banach spaces, absolute conver-
gence implies convergence, hence ∑∞

n=0 T
n =∶ S ∈ L(X,X), and we have

(I − T )S = lim
N→∞

(I − T )
N

∑
n=0

Tn = lim
N→∞

(I − TN+1) = I,

and similarly S(I − T ) = I. Therefore, S = (1 − T )−1, as claimed. �

Theorem 2.29 (compactness of the spectrum). Let X be Banach and T ∈ L(X,X).
Then σ(T ) ⊂ K is compact with ∣λ∣ ≤ ∥T ∥ for all λ ∈ σ(T ).

Proof. If ∣λ∣ > ∥T ∥, then ∥λ−1T ∥ < 1, and by Lemma 2.28, I − λ−1T is invertible with
bounded inverse, and so is λI − T = λ(I − λ−1T ). This shows ∣λ∣ ≤ ∥T ∥ for all λ ∈ σ(T ).

It remains to show that σ(T ) is closed, or equivalently, ρ(T ) is open. To this end, let
λ0 ∈ ρ(T ) and ε ∶= ∥R(λ0, T )∥−1 > 0. If λ ∈ Bε(λ0), then

λI − T = λ0I − T − (λ0 − λ)I = (λ0I − T ) [I − (λ0 − λ)(λ0I − T )−1] .

6Here and in the following, we denote by I the identity matrix, or the identity operator.
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Set R ∶= (λ0 − λ)(λ0I − T )−1. The computation shows that λI − T will be invertible, with
continuous inverse, if I −R is (as λ0I − T is invertible with continuous inverse). But, by
choice of ε,

∥R∥ ≤ ∣λ0 − λ∣∥R(λ0, T )∥ < ε∥R(λ0, T )∥ = 1,

so the claim that λ ∈ ρ(T ) follows from Lemma 2.28. Therefore, the resolvent set is open
and the spectrum is compact. �

Lemma 2.30 (spectrum of the adjoint). Let H be Hilbert and T ∈ L(H,H). Then,

σ(T ∗) = σ(T ), where the overline denotes complex conjugation. In particular, the spectrum
of a self-adjoint operator is real.

Proof. Note �rst that, for any two operators S,T ∈ L(H,H), (ST )∗ = T ∗S∗, because
for x, y ∈H we have (STx, y) = (Tx,S∗y) = (x,T ∗S∗y).

Now let λ ∈ ρ(T ). By de�nition of the resolvent,

I = (λI − T )R(λ,T ) = R(λ,T )(λI − T ),

and therefore

I = I∗ = [(λI − T )R(λ,T )]∗ = R(λ,T )∗(λ − T ∗)

and similarly

I = I∗ = [R(λ,T )(λI − T )]∗ = (λ − T ∗)R(λ,T )∗.

This shows R(λ,T )∗ = R(λ,T ∗), so that the resolvent set of T ∗ is the conjugate of the
resolvent set of T ; here one uses that an operator is invertible with bounded inverse if and
only if this is the case for its adjoint (note (S∗)−1 = (S−1)∗). Therefore, the same is true

for the spectrum: σ(T ∗) = σ(T ). �

2.4.4. The Spectral Theorem.

Theorem 2.31 (Spectral Theorem for compact self-adjoint operators). Let H be an
in�nite-dimensional Hilbert space and T ∈ L(H,H) compact and self-adjoint. Then there
is an orthonormal system (en)n∈N and a sequence (λn)n∈N of real numbers with ∣λn∣ ↘ 0
such that, for each x ∈H,

Tx =
∞
∑
n=1

λn(x, en)en.

In particular, Ten = λnen for every n ∈ N, so that the λn are eigenvalues of T .

Represented in the orthonormal system (en)n∈N (extended by a Hilbert basis of kerT if
necessary), T is thus in a sense an N×N diagonal matrix with diagonal entries λn. This is
analogous to the diagonalisation of a symmetric (or Hermitian) �nite-dimensional square
matrix in Linear Algebra.

Proof. We may assume T ≠ 0, as otherwise the statement is trivial.
Step 1. We show �rst σ(T ) ⊂ [−∥T ∥, ∥T ∥], and ∥T ∥ or −∥T ∥ is an eigenvalue of T . The

�rst assertion follows immediately from Theorem 2.29 and Lemma 2.30.
From Proposition 2.24, we obtain a sequence (xn)n∈N with ∥xn∥ ≤ 1 such that ∣(Txn, xn)∣ →

∥T ∥ =∶ λ > 0 as n → ∞. We assume limn→∞(Txn, xn) > 0 (otherwise set λ = −∥T ∥ in the
following).

By compactness of T , we may assume (Txn)n∈N to be convergent. Next, observe that

lim sup
n→∞

∥Txn−λxn∥2 ≤ lim sup
n→∞

(∥Txn∥2+λ2∥xn∥2−2λ(Txn, xn)) ≤ λ2+λ2−2λ2 = 0,
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where we used the self-adjointness of T . This shows that, as Txn converges, so does λxn
and (since λ ≠ 0) therefore xn. Set x ∶= limn→∞ xn ≠ 0. As T is continuous,

λx = lim
n→∞

(λxn) = lim
n→∞

Txn = Tx,

so that λ = ∥T ∥ is an eigenvalue of T .
Step 2. By Step 1, λ1 = ±∥T ∥ is an eigenvalue of T . Let e1 be a corresponding unit

eigenvector. Set R1 ∶= span{e1}⊥, which is a closed subspace of H. Note TR1 ⊂ R1, because
if x ⊥ e1 then

(Tx, e1) = (x,Te1) = λ1(x, e1) = 0.

Also, the restriction T1 = T ↾R1 is of course still compact and self-adjoint.
We may therefore iterate Step 1 to obtain an orthonormal system (en)n∈N of eigenvec-

tors of T with eigenvalue λn = ±∥Tn∥, where Tn is the restriction of T to span{e1, . . . , en}⊥.
Clearly, ∣λn∣ = ∥Tn∥ is non-increasing in n.

Step 3. It remains to show that (en)n∈N is a Hilbert basis for the range of T . To this
end, set

H∞ ∶= span{en ∶ n ∈ N},
which is a closed subspace ofH. Write R∞ ∶=H⊥∞. Again, TR∞ ⊂ R∞. Denote T∞ ∶= T ↾R∞
and P∞ the orthogonal projection onto R∞.

The orthogonal projection of x ∈ H onto H∞ is given by ∑n∈N(x, en)en, so that x can
be written as

x = ∑
n∈N

(x, en)en + P∞x.

Applying T , therefore, yields,

Tx = ∑
n∈N

λn(x, en)en + T∞P∞x,

so it su�ces to prove T∞ = 0. By construction, ∥T∞∥ ≤ ∥Tn∥ = ∣λn∣ for all n ∈ N. We shall
show ∣λn∣ → 0.

Indeed, suppose there were a subsequence (λnk)k∈N converging to µ ≠ 0. By compact-
ness of T , Tenk = λnkenk would also have a convergent subsequence, and therefore (due to
the assumption λnk → µ ≠ 0) also (enk)k∈N would have a convergent subsequence, which

is doesn't (because ∥ek − el∥ =
√

2 for k ≠ l). This shows ∣λn∣ → 0 and thus completes the
proof. �

Example 2.32. (1) Let (en)n=1,...,N be a �nite orthonormal system in an in�nite-
dimensional Hilbert space H, and denote H0 = span{en ∶ n = 1, . . . ,N}. Then the
orthogonal projection onto H0 is represented as

Px =
N

∑
n=1

(x, en)en,

so P has eigenvalues 1 and 0.
(2) This example will be a bit sketchy, but very instructive nevertheless.

Consider functions in L2
per(R;C) with f̂(0) = 1√

2π

´ 2π
0 f(x)dx = 0. As this

integral condition is inherited by L2 limits, such functions form a closed subspace
of L2

per(R;C) and thus a Hilbert spaceH in its own right. De�ne the antiderivative
operator I ∶H →H by

If(x) =
ˆ x

0
f(t)dt + 1

2π

ˆ 2π

0
tf(t)dt.

Indeed, (If)′ = f for almost every x ∈ (0,2π), and I does map into H as If is
continuous for f ∈ H (so a fortiori L2 in [0,2π)), periodic (because If(2π) =
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If(0) = 1
2π

´ 2π
0 tf(t)dt)), and

´ 2π
0 If(x)dx = 0, as can be seen by an elementary

integration exercise. Obviously, I is linear.
We want to show compactness of I. Recall the Arzelà-Ascoli Theorem: A

sequence of continuous functions (Fn)n∈N ∶ [0,2π] → C has a uniformly convergent
subsequence if it is uniformly bounded and is equicontinuous (meaning that for all
ε > 0 there exists δ > 0 such that for all n ∈ N, ∣x−y∣ < δ implies ∣Fn(x)−Fn(y)∣ < ε).

Let (fn)n∈N be bounded in H (hence in L2). Then (Ifn)n∈N are bounded
pointwise by
ˆ 2π

0
∣fn(t)∣dt +

1

2π

ˆ 2π

0
t∣fn(t)∣dt ≤ (

√
2π +

√
2π√
3

)∥fn∥L2 ,

where we used Hölder's inequality with p = q = 2. But this is bounded indepen-
dently of n.

For equicontinuity, we �nd

∣Ifn(x) − Ifn(y)∣ = ∣
ˆ x

y
fn(t)dt∣ ≤

ˆ x

y
∣fn(t)∣dt ≤

√
∣x − y∣∥fn∥L2 ,

again using Hölder's inequality. Since the right hand side becomes arbitrary small
uniformly in n, we infer equicontinuity. The Arzelà-Ascoli Theorem thus gives a
uniformly convergent subsequence of (Ifn)n, which a fortiori converges in L2.
This shows that I ∶H →H is compact.

Since I is compact, then so is I2 (think it over: the composition of compact
operators is again compact). And I2 is self-adjoint: If F = I2f , then F ′′ = f almost
everywhere and F ∈ H. In fact F is uniquely determined by these properties
(why?). Integration by parts therefore gives, for f, g ∈H,

(I2f, g) = (F, (I2g)′′) = −(F ′, (I2g)′) + [F, Ig]2π
0

= (F ′′, I2g) − [F ′, I2g]2π

0
+ [F, Ig]2π

0 = (f, I2g),

where the boundary terms vanished thanks to periodicity. Hence, the Spectral
Theorem gives us an orthonormal system and a family of eigenvalues such that

I2f = ∑
n∈N

λn(f, en)en.

In fact, the Hilbert basis (en)n∈Z∖{0} for H from Section 2.3 does the job: By

explicit computation of the integrals, it turns out that for en(x) = 1√
2π
einx,

I2en = −
1

n2
en,

so λn = − 1
n2 for n ∈ Z ∖ {0}.

The Fourier coe�cients of I2f are therefore given as − f̂(n)
n2 . Conversely, if

F ∈ H is twice di�erentiable, then the second derivative operator is represented
in terms of the Fourier series being multiplied by −n2. One therefore says that
the Fourier transform H → l2(C) diagonalises di�erential operators.

2.5. Reproducing Kernel Hilbert Spaces

The theory of Reproducing Kernel Hilbert Spaces has become an important concept in
machine learning, where the `kernel trick' is used for nonlinear classi�cation problems in
Support Vector Machines, for example. We discuss some basic theory and take a glimpse
into applications. For further study of the topic, we refer to [4].
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2.5.1. Basic Concepts and Examples. Let X be a set, then the set KX of maps
X → K forms a vector space under pointwise addition and scalar multiplication.

Definition 2.33 (RKHS). Let X be a set. A subset H ⊂ KX is called a Reproducing
Kernel Hilbert Space (RKHS) if H is a Hilbert space with some inner product (⋅, ⋅), and if
for each x ∈X the evaluation functional

Ex ∶H → K, Ex(f) = f(x)
is bounded.

Note that the main condition (boundedness of Ex) is not satis�ed in quite typical cases.
For instance, L2 is not RKHS: L2 does not consist of functions, but of equivalence classes
of functions, so that the evaluation map is not even well-de�ned. We will see examples of
RKHS soon.

Let H be an RKHS. By the Riesz-Fréchet Theorem, for any x ∈X there exists a unique
kx ∈H such that

Ex(f) = (f, kx) ∀f ∈H.

Definition 2.34 (reproducing kernel). In the situation as described, the reproducing
kernel of H is the function K ∶X ×X → K de�ned by

K(x, y) = ky(x) = (ky, kx).

Example 2.35. ● Kd, viewed as the set of maps {1,2, . . . , d} → K, is an RKHS,
because inKd in fact every linear functional is bounded. The evaluation functional
Ek ∶ Kd → K is simply given as Ek(x) = xk (k = 1, . . . , d), and the corresponding
representation from Riesz-Fréchet is kk = ek, the k-th standard unit vector. The
reproducing kernel, therefore, is given by

K(k, l) = (el, ek) = δlk.
● Let H be a real Hilbert space and H ′ its dual, which is isomorphic to H by the
Theorem of Riesz-Fréchet via an isometric isomorphism T ∶H →H ′. In particular,
H ′ is a Hilbert space in its own right, with inner product (x′, y′) = (T−1x′, T −1y′).
We claim that H ′ ⊂ KH is RKHS. Let x ∈H, then

Ex(y′) = y′(x) = (x,T −1y′) = (Tx, y′),
which of course is bounded with norm ∥x∥ because ∥T−1∥ = 1. Moreover, kx = Tx
and therefore

K(x, y) = (ky, kx) = (Ty,Tx) = (x, y),
so that the reproducing kernel is simply the inner product in H.

● Let X = (−1,1) ⊂ R and de�ne

H = {f ∶X → R ∶ ∃a ∈ l2(R) ∀x ∈X ∶ f(x) =
∞
∑
k=0

akx
k} .

Estimating by Cauchy-Schwarz and geometric series, we �nd

∣
∞
∑
k=0

akx
k∣ ≤

∞
∑
k=0

∣ak∣∣xk∣ ≤ ∥a∥l2 (
∞
∑
k=0

x2k)
1/2

≤ ∥a∥l2
1√

1 − x2
, (2.7)

So that the series converges absolutely on X and thus H ⊂ RX is well-de�ned.
Of course, H is a vector space as l2 is. For ease of notation, let us denote f =
∑∞
k=0 akx

k instead of f = ∑∞
k=0 ak(⋅)k. De�ne a linear map

φ ∶H → l2(R), φ(
∞
∑
k=0

akx
k) = a
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and set

(f, g) ∶= (φ(f), φ(g))

for all f, g ∈H. It is easy to check that this de�nes an inner product on H. Also,
completeness of H under this inner product follows from completeness of l2, so H
is a Hilbert space.

For the evaluation functional Ex (x ∈X), notice

∣Ex(f)∣ = ∣f(x)∣ ≤ ∥a∥l2
1√

1 − x2
= ∥f∥ 1√

1 − x2
,

so that for each x ∈X, Ex is bounded (although the bound is not uniform in X).
Thus, H is an RKHS.

Let us compute the reproducing kernel. Let y ∈ X, then ky = ∑∞
k=0 y

kxk,
because

(
∞
∑
k=0

akx
k, ky) =

∞
∑
k=0

aky
k = Ey (

∞
∑
k=0

akx
k) .

Therefore,

K(x, y) = (kx, ky) =
∞
∑
k=0

xkyk = 1

1 − xy
.

2.5.2. The Moore-Aronszajn Theorem. The reproducing kernel of an RKHS turns
out to be positive semide�nite:

Proposition 2.36. Let H be RKHS and K ∶X ×X → K its reproducing kernel. Then
K is positive semide�nite, i.e., for any �nite set {x1, . . . , xN} ⊂ X of pairwise distinct
elements, the matrix K(xk, xl)k,l=1,...,N is positive semide�nite.

Proof. Let α1, . . . , aN ∈ K and x1, . . . , xN ∈X, then

N

∑
k,l=1

αlαkK(xk, xl) =
N

∑
k,l=1

(αlkxl , αkkxk) = ∥
N

∑
k=1

αkkxk∥
2 ≥ 0.

�

Obviously, K is also antisymmetric, as K(x, y) = (ky, kx) = (kx, ky) =K(y, x).
The converse is of course more interesting:

Theorem 2.37 (Moore-Aronszajn). Let X be a set and K ∶X ×X → K antisymmetric
and positive semide�nite. Then there exists an RKHS H whose reproducing kernel is K.

Proof. De�ne

H0 ∶= span{K(⋅, y) ∶ y ∈X}.

Then, H0 is certainly a vector space contained in KX . On H0, we de�ne the inner product

(
n

∑
k=1

αkK(⋅, yk),
m

∑
l=1

βlK(⋅, zl)) ∶=
n

∑
k=1

m

∑
l=1

αkβlK(zl, yk).

Is this map even well-de�ned? After all, there might be several ways to represent the
same element of H0 as a linear combination of maps K(⋅, y). So assume ∑nk=1 αkK(⋅, yk) =
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∑rj=1 γjK(⋅, xj), then

(
n

∑
k=1

αkK(⋅, yk),
m

∑
l=1

βkK(⋅, zl)) =
n

∑
k=1

m

∑
l=1

αkβlK(zl, yk)

=
r

∑
j=1

m

∑
l=1

γjβlK(zl, xj)

=
⎛
⎝

r

∑
j=1

γjK(⋅, xj),
m

∑
l=1

βkK(⋅, zl)
⎞
⎠
,

and similarly one checks the independence of the map of the representation of the second
argument (for this, we would use antisymmetry of K).

Let us check this is really an inner product. Clearly, it is sesquilinear and antisym-
metric, as K is antisymmetric. It is also positive semide�nite, because K is positive
semide�nite.

For positivity, let f ∈H0 be such that (f, f) = 0, and let g ∈H0. We �rst want to show
(f, g) = 0. For λ ∈ K, note

0 ≤ (f+λg, f+λg) = (f, f)+∣λ∣2(g, g)+2R(λ(f, g)) = ∣λ∣2(g, g)+2R(λ(f, g)). (2.8)

If (g, g) = 0, then (f, g) = 0 follows by choosing λ = ±(g, f). If, on the other hand, (g, g) ≠ 0,
then set

z ∶= (f, g)
(g, g)

,

so that (2.8) becomes (using (g, g) > 0)

R(λz) ≥ −∣λ∣2

2
∀λ ∈ K.

Replacing λ by eisλ if necessary, we get ±∣λ∣∣z∣ ≥ − ∣λ∣2
2 for all λ, which is possible only when

z = 0.
But as (f, g) = 0 for all g ∈ H0, we can take in particular gy ∶= K(⋅, y) for any y ∈ X,

which gives

0 = (f, gy) = f(y) ∀y ∈X,

whence f = 0. So we have de�ned an inner product on H0.
Let now Ĥ be the completion of H0 under the given inner product; that is, Ĥ is the

space of equivalence classes of Cauchy sequences in H0, where two Cauchy sequences in
H0 are considered equivalent if their di�erence converges to zero7. We equip Ĥ with the
inner product

(f̂ , ĝ) ∶= lim
n→∞

(fn, gn),

whenever the equivalence class f̂ contains the Cauchy sequence (fn)n∈N ⊂ H0, and similar
for ĝ. It is readily checked that this is indeed a well-de�ned scalar product (note the limit

exists thanks to completeness of K). One can also identify H0 as a dense subspace of Ĥ.

Let Φ ∶ Ĥ → KX be de�ned through

Φ(f̂)(x) ∶= (f̂ ,K(⋅, x)) ∀x ∈X.

Clearly, Φ is linear. It is injective, because Φ(f̂) = 0 implies (f̂ , g) = 0 for any g ∈ H0 ⊂ Ĥ;

but since H0 is dense in Ĥ, it follows already that f̂ = 0. Also, if f̂ ∈ H0 ⊂ KX , then
Φ(f̂)(x) = f̂(x), so that Φ ↾H0 is the identity.

7Cf. the construction of R as completion of Q.
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This allows us to identify Ĥ with the subset H ∶= Φ(Ĥ) ⊂ KX . As an injective linear
image of a Hilbert space, H is itself Hilbert with the inner product

(f, g)H ∶= (Φ−1(f),Φ−1(g))Ĥ .
Finally, we show that H is RKHS with reproducing kernel K. Indeed, for the evaluation
functional and f = Φ(f̂) we have

∣Ex(f)∣ = ∣f(x)∣ = ∣Φ(f̂)(x)∣ = ∣(f̂ ,K(⋅, x))Ĥ ∣

= ∣(f,K(⋅, x))H ∣ ≤ ∥f∥H∥K(⋅, x)∥H = ∥f∥H
√
K(x,x),

(2.9)

hence Ex is bounded with norm at most
√
K(x,x). Also, K is the reproducing kernel,

because Ex(f) = (f, kx)H with kx ∶= K(⋅, x), as is apparent from (2.9), and K(x, y) =
(ky, kx) for x, y ∈X. �

In fact, given an antisymmetric positive semide�nite map K, the Hilbert space with
reproducing kernel K is uniquely determined. This follows from the following Lemma:

Lemma 2.38. Let H be an RKHS over X with reproducing kernel K. Set kx ∶=K(⋅, x)
for each x ∈X. Then,

V ∶= span{kx ∶ x ∈X}
is dense in H.

Proof. If f ∈ H and f ⊥ kx for all x ∈ X, then f(x) = (f, kx) = 0 for all x ∈ X and
therefore f = 0. But a subspace of a Hilbert space whose orthogonal complement is zero
must be dense (see the beginning of the proof of Riesz-Fréchet). �

Therefore, the strategy of proof of the Moore-Aronszajn Theorem was the only possible:
If there is an RKHS whose kernel is K, then it must be the completion of the span of the
functions kx. We summarise:

Definition 2.39. Let X be a set and K ∶ X × X → K antisymmetric and positive
semide�nite. The unique K-RKHS over X whose reproducing kernel is K is denoted
H(K).

The kernel function K thus contains the entire information about the associated RKHS
H(K). As we shall see for the case of regression, many problems in high- or even in�nite-
dimensional Hilbert spaces can be reduced to computations involving only the kernel. This
is the main reason why reproducing kernels play such an important role in data science.

2.5.3. Applications. We use the theory to investigate regression problems as they
occur frequently in statistics and machine learning. It should be said in advance that linear
or a�ne regression (as you have probably seen in Numerical Linear Algebra) can be easily
solved by classical means of Linear Algebra and does not require the theory of RKHS.
However, RKHS theory allows for vast generalisations to nonlinear classi�cation problems
that can no longer be handled by Linear Algebra alone. Due to time constraints, however,
we have to stick to the simplest available examples.

Prior to the description of the regression problem, let us state an easy observation:

Lemma 2.40. Let X be a set, K a kernel (i.e., an antisymmetric positive semide�nite
map X ×X → K), and for a �nite subset {x1, . . . , xn} of pairwise distinct elements of X
denote A ∶= (K(xk, xl))k,l=1,...,n. If w = (α1, . . . , αn) ∈ Kn has Aw = 0, then H(K) ∋ f ∶=
∑nj=1 αjkxj = 0.

Proof. This is just a one-line calculation:

∥f∥2 =
n

∑
k,l=1

αkαl(kxl , kxk) =
n

∑
k,l=1

αkαlK(xk, xl) =
n

∑
k,l=1

αkαlAkl = (Aα,α) = 0.
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�

Let us now consider the following problem: We are given n distinct `data points'
{x1, x2, . . . xn} from a set X that are already classi�ed, i.e., they have known values
λ1, . . . , λn ∈ K. Out of some class of `nice' functions, we wish to �nd one that predicts
the (unknown) values of all x ∈ X in the best possible accordance with the known data;
ideally, we would want f(xj) = λj (j = 1, . . . n) exactly. However, such a function may not
be available in the given class, so that we contend ourselves with an f that minimises the
quadratic error, given as

Q[f] ∶=
n

∑
j=1

∣f(xj) − λj ∣2.

In general, there may be many such minimisers. However, in case the chosen class of
functions is an RKHS, there exists a minimiser that is unique under the additional condition
that its norm be minimal:

Theorem 2.41 (regression in RKHS). Let H = H(K) be an RKHS over X and
{x1, . . . , xn} ⊂X pairwise distinct. Let moreover v = (λ1, . . . , λn) ∈ Kn and

A = (K(xj , xk))j,k=1,...,n.

Then there exists a vector w = (α1, . . . , αn) ∈ Kn such that v−Aw ∈ ker(A), and the unique
minimiser of the quadratic error Q[f] with minimal norm of all functions f ∈ H is given
as

f =
n

∑
j=1

αjkxj .

Proof. Let V ∶= span{kx1 , . . . , kxn} ⊂ H and f ∈ H. Denoting by PV the orthogonal
projection onto V , we have that f − PV f ⊥ V and in particular

0 = (f − PV f, kxj) = f(xj) − PV f(xj) ∀j = 1, . . . , n,

so that f(xj) = PV (xj) for all j. Let PV f = ∑nk=1 αkkxk and write w = (α1, . . . , αn), then
it follows for all k = 1, . . . , n that

(Aw)k =
n

∑
j=1

K(xk, xj)αj =
n

∑
j=1

(αjkxj , kxk) = PV f(xk) = f(xk),

and therefore Q[f] = ∑nk=1 ∣f(xk) − λk∣2 = ∥Aw − v∥2.
From Linear Algebra it is known (and from geometric intuition it should be clear) that

w ∈ Cn is a minimiser of ∥Aw − v∥2 if and only if Aw = Pran(A)v. Therefore,

f =
n

∑
j=1

αjkxj

is indeed a minimiser with the choice of w = (α1, . . . , αn) as described.
Next, observe that among all minimisers in H of the error Q, those with smallest norm

(if any) must be in V , because f ∈H coincides with PV f on {x1, . . . , xn} and ∥PV f∥ < ∥f∥
if f ∉ V .

Finally, suppose f = ∑nj=1 αjkxj and g = ∑nj=1 βjkxj are both minimisers of Q, then for
w = (αj) and w̃ = (βj) we must have Aw = v = Aw̃, hence A(w − w̃) = 0. By Lemma 2.40,
then, f = g. Hence f is the unique minimiser of Q in V , and therefore the unique minimiser
of Q of minimal norm.

�

Example 2.42 (linear regression). Let X be a real Hilbert space and H = X ′ its
dual. Setting the regression problem in this framework amounts to linear regression, as
the space H of admissible functions, by which we wish to approximate the given data,
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consists precisely of the set of (bounded) linear functionals on X. (Think of X = R for
the simplest possible situation.) We have already seen in Example 2.35 that H is RKHS
and K(x, y) = (x, y) for all x, y ∈ H. Using the notation of the preceding theorem, the
minimiser of smallest norm is then given by

f(x) =
⎛
⎝
x,

n

∑
j=1

αjxj
⎞
⎠

∀x ∈X,

where w = (α1, . . . , αn) is chosen such that Aw = Pran(A)v and Ajl = (xj , xl).

In many situations, linear functions form an arguably too small set of functions. We
show next how to extend linear regression to the slightly larger space of a�ne functions.
The method uses a feature map that maps the original data space to a higher dimensional
space, where the problem becomes linear again:

Example 2.43 (a�ne regression). Consider the set Ad of a�ne maps Rd → R, that is,

Ad = {fv,c ∶ Rd → R ∶ fv,c(x) = (v, x) + c ∀x ∈ Rd} .

De�ne the `feature map' φ ∶ Rd → Rd+1 by

φ(x1, . . . , xd) ∶= (x1, . . . , xd,1)

and observe there is a bijection between (Rd+1)′ and Ad given by

(Rd+1)′ ∋ g ↦ g ○ φ ∈ Ad;

indeed, every fv,c ∈ Ad can be written as g ○ φ with

g(x1, . . . , xd, xd+1) =
d

∑
j=1

xjvj + cxd+1,

and clearly g ↦ g ○ φ is injective.
Let again {x1, . . . , xd} be data points with given values v = (λ1, . . . , λd) ∈ Rd. We want

to minimise the quadratic error among all functions in Ad. To this end, we minimise the
quadratic error for the linear regression problem with data points {φ(x1), . . . , φ(xd)} and
the same values v by means of Example 2.42. This gives a minimiser of

d

∑
j=1

∣g(φ(xj)) − λj ∣2

among all g ∈ (Rd+1)′, and hence a minimiser of ∑dj=1 ∣f(xj)−λj ∣2 in Ad by setting f = g○φ.

Let us discuss this last example a bit further: We characterised the a�ne maps, which
we were originally interested in, as the set

{g ○ φ ∶ g ∈ (Rd+1)′},

where φ ∶ Rd → Rd+1 was a feature map transforming the problem from Rd into the (slightly)
higher-dimensional space Rd+1.

It turns out that the composition with φ leaves the property of being RKHS untouched;
indeed, let us state without proof the Pullback Theorem:

Theorem 2.44 (pullback of RKHS). Let X and Y be sets and φ ∶ Y → X. If K ∶
X ×X → K is positive semide�nite and antisymmetric, then so is K ○ φ (where we write
(K ○ φ)(x, y) =K(φ(x), φ(y))), and

H(K ○ φ) =H(K) ○ φ ∶= {f ○ φ ∶ f ∈H(K)}.
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Hence the regression problem over H(K ○ φ) can be reduced to one in H(K). This
becomes particularly advantageous if the space of interest has a kernel of the formK(x, y) =
(φ(x), φ(y)), in which case the problem can be transformed into a linear regression problem
as in Example 2.42.

Let us give another example to conclude this chapter.

Example 2.45. Let X = R2 and

M = {f ∶ R2 → R ∶ f(x1, x2) = a1x
2
1 + a2x1x2 + a3x

2
2 + b1x1 + b2x2 + c ∶ a1, a2, a3, b1, b2, c ∈ R}

the space of polynomials of order at most 2. De�ne the map

φ ∶ R2 → R6, (x1, x2) ↦ (x2
1, x1x2, x

2
2, x1, x2,1).

Then, for a polynomial f as in the de�nition of M , we observe

f(x1, x2) = a1x
2
1 + a2x1x2 + a3x

2
2 + b1x1 + b2x2 + c

= (φ(x1, x2), (a1, a2, a3, b1, b2, c)),

so that M = {g ○ φ ∶ g ∈ (R6)′}, and thus by the Pullback Theorem, M = H(K ○ φ),
where K is simply the standard scalar product in R6, and so the kernel of M is given by
K(x, y) = (φ(x), φ(y)).

Therefore, the solution of the linear regression problem with data points {φ(x1), . . . , φ(xn)}
in R6 yields the solution of the nonlinear regression problem for M with data points
{x1, . . . , xn} in R2.



CHAPTER 3

The Baire Category Theorem and its Consequences

3.1. The Baire Category Theorem

Let (X,d) be a metric space and M ⊂ X. Recall the interior intM ⊂M is de�ned as
the largest open subset of M , or equivalently, the set of all x ∈ M such that there exists
ε > 0 with Bε(x) ⊂M . Similarly, the closure M is the smallest closed set containing M , or
equivalently, the union of M with the set of its limit points. Of course, these notions are
dependent on the metric d.

Definition 3.1 (nowhere dense sets). A subset M ⊂ X is called nowhere dense if
intM = 0.

A nowhere dense set can be considered very `small'. In fact, nowhere dense sets are so
small that their countable union can never be the whole space:

Theorem 3.2 (Baire Category Theorem). Let (X,d) be a nonempty complete metric
space. Then X is not the countable union of nowhere dense sets.

Proof. Let (Xn)n∈N be a family of nowhere dense sets. We construct sequences
(xn)n∈N ⊂X and (εn)n∈N ⊂ R+ such that

● εn ↘ 0 as n→∞;

● Bεn(xn) ∩Xn = ∅ for all n ∈ N;
● Bεn+1(xn+1) ⊂ Bεn(xn) for all n ∈ N.

Suppose there is such a sequence, then by the last property, if m > n ≥ N , then

xm ∈ Bεm−1(xm−1) ⊂ . . . ⊂ Bεn(xn) ⊂ BεN (xn), (3.1)

so that d(xn, xm) < εN and so (xn)n∈N is Cauchy. As X is complete, there is a limit
x = limn→∞ xn, and we claim that x ∉ Xn for all n ∈ N. Indeed, similarly as in (3.1) we

have x ∈ Bεn(xn) for any n ∈ N, and by the second property it follows x ∉Xn.
Now for the construction of the sequence. As X1 is closed and has empty interior, its

complement is dense in X (so in particular nonempty, as X is nonempty) and open; we

may therefore �nd ε1 > 0 and x1 ∈X such that B1(0) ∩X1 = ∅.
Suppose xn and εn have already been constructed and satisfy the stated properties.

Again, Xn+1 has open and dense complement, so there exists xn+1 ∈ Bεn(xn) and εn+1 < 1
2εn

such that Bεn+1(xn+1) ⊂ Bεn(xn) and Bεn(xn) ∩Xn = ∅, as desired. �

Remark 3.3. (1) In fact, the proof shows something more: If X is a complete
metric space and (Xn)n∈N is a countable family of nowhere dense sets, then the
complement of ⋃∞n=1Xn is dense in X. This can be seen from the above proof, as
x1 can be chosen from a dense set in X and ε1 can be chosen arbitrarily small.

(2) An alternative formulation of the Theorem is: If (On)n∈N is a countable family of
dense open sets, then ⋂∞n=1On is nonempty (in fact it is even dense).

(3) Some terminology: IfM ⊂X is a countable union of nowhere dense sets, then it is
called meagre (or of �rst category). Sets that are not meagre are called of second
category. Complements of meagre sets are called comeagre or (in a disturbingly
misleading terminology) residual or, colloquially, fat. In this terminology, the

48
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Baire Category Theorem can be stated as: A nonempty complete metric space is
of second category/not meagre (with respect to itself).

Example 3.4 (continuous but nowhere di�erentiable functions). A direct application of
the Baire Category Theorem is the existence of functions that are continuous but nowhere
di�erentiable. The �rst example of such a function was explicitly given by Weierstraÿ
in 1872 and sparked some controversy among mathematicians. Here, we use the Baire
Theorem to show the existence of such `monsters' in a rather slick topological way.

Consider C([0,1];R) with the supremum norm, as usual. We have seen that this space
is complete. We want to show that the set of functions in this space that are di�erentiable
at at least one point is meagre. To this end, de�ne for n ∈ N

Xn ∶=
⎧⎪⎪⎨⎪⎪⎩
f ∈ C([0,1]) ∶ ∃x ∈ [0,1] sup

0<∣h∣≤1/n

∣f(x + h) − f(x)∣
∣h∣

≤ n
⎫⎪⎪⎬⎪⎪⎭
,

where we can extend f to the left by f(0) and to the right by f(1) to ensure well-
de�nedness. Clearly, if f ∉ Xn for all n ∈ N, then f is nowhere di�erentiable, because
its di�erence quotients are not bounded (let alone convergent) in any neighbourhood of
any point. By the Baire Category Theorem, then, it su�ces to show that each Xn is
nowhere dense, i.e., intXn = ∅.

First, we show that Xn = Xn (that is, Xn is closed). Fix n ∈ N. Let (fk)k∈N ⊂ Xn

converge uniformly to f ∈ C([0,1]), then we need to show f ∈ Xn. Since fk ∈ Xn, there
exists xk ∈ [0,1] such that

sup
0<∣h∣≤1/n

∣fk(xk + h) − fk(xk)∣
∣h∣

≤ n.

By Bolzano-Weierstraÿ, There exists a convergent subsequence (not relabelled), so that
xk → x ∈ [0,1] as k →∞. Let 0 < ∣h∣ ≤ 1/n, then

∣f(x + h) − f(x)∣
∣h∣

= lim
k→∞

∣fk(xk + h) − fk(xk)∣
∣h∣

≤ n,

because fk(xk) → f(x) thanks to uniform convergence (think it over and cook up an
example where this fails for just pointwise convergence). So indeed, f ∈ Xn and Xn is
closed.

It thus remains to show that Xn has empty interior, or equivalently, for any f ∈ Xn

and ε > 0 there exists f̃ ∈ C([0,1]) ∖ Xn such that ∥f − f̃∥∞ < ε. By the Weierstraÿ
Approximation Theorem, there exists a polynomial function p ∈ C([0,1]) such that ∥f −
p∥∞ < ε

2 . In particular, p is di�erentiable and p′ is bounded in [0,1]. Let sε ∈ C([0,1])
be a sawtooth function with ∥sε∥∞ < ε

2 and ∣s′ε∣ =M almost everywhere, with M yet to be

determined. Then, for x ∈ [0,1], f̃ ∶= p + sε ∈ Bε(f) satis�es

sup
0<∣h∣≤1/n

∣f̃(x + h) − f̃(x)∣
∣h∣

≥ sup
0<∣h∣≤1/n

∣sε(x + h) − sε(x)∣
∣h∣

− sup
0<∣h∣≤1/n

∣p(x + h) − p(x)∣
∣h∣

≥M − ∥p′∥∞ > n
provided M is chosen su�ciently large (depending on f but not on x). Note we used the

Mean Value Theorem for the estimate of the di�erence quotient of p. This shows f̃ ∉Xn.
We conclude that the set of nowhere di�erentable functions is fat, and in particular

dense, in C([0,1]) (and, very much in particular, there exists such a function).

3.2. The Uniform Boundedness Principle

3.2.1. The Theorem and Some Corollaries. Recall from your �rst year how sac-
rilegious it is to confuse the order of existential and universal quanti�ers: It is strictly
prohibited to conclude ∃x∀y from ∀y∃x. Thus the following theorem is quite surprising.
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Theorem 3.5 (Banach-Steinhaus/Uniform Boundedness Principle). Let X be Banach
and Y a normed space, and assume (Tj)j∈J ⊂ L(X,Y ) is a (possibly uncountable) family
of bounded linear operators such that

sup
j∈J

∥Tjx∥ < ∞ ∀x ∈X.

Then,

sup
j∈J

∥Tj∥ < ∞.

Proof. For n ∈ N, set
Xn ∶= {x ∈X ∶ sup

j∈J
∥Tjx∥ ≤ n}.

Note Xn is closed, because it can be written as

Xn = ⋂
j∈J

∥Tj(⋅)∥−1([0, n])

and thus as an intersection of closed sets (of course, x↦ ∥Tjx∥ is continuous). By assump-
tion, X = ⋃n∈NXn, so by the Baire Category Theorem, there exists N ∈ N such that XN

has non-empty interior. Let therefore x0 ∈XN and ε > 0 such that Bε(x0) ⊂XN . As XN is
symmetric in the sense that x ∈XN if and only if −x ∈XN , then also Bε(−x0) ⊂XN . Even
better, XN is convex by virtue of the triangle inequality for the norm ∥ ⋅ ∥ in Y : Indeed, if
∥Tjx1∥ ≤ N and ∥Tjx2∥ ≤ N for all j ∈ J , and if λ1, λ2 ∈ [0,1] sum up to 1, then

∥λ1Tjx1 + λ2Tjx2∥ ≤ λ1∥Tx1∥ + λ2∥Tx2∥ ≤ N.
As a consequence, if ∥y∥ < ε, then

y = 1

2
(x0 + y) +

1

2
(−x0 + y) ∈XN ,

so that if x ∈ B1(0), then

∥Tjx∥ =
1

ε
∥Tj(εx)∥ ≤

N

ε
∀j ∈ J,

whence supj∈J ∥Tj∥ ≤ N
ε < ∞. �

The Uniform Boundedness Principle has a number of beautiful corollaries:

Corollary 3.6. Let X be a normed space and M ⊂ X. Then M is bounded if and
only if for all x′ ∈X ′, the set x′(M) ⊂ K is bounded.

Proof. If M is bounded by, say, S > 0, then for all x ∈M , ∣x′(x)∣ ≤ ∥x′∥∥x∥ ≤ S∥x′∥,
whence boundedness of x′(M) already follows.

Conversely, assume x′(M) is bounded for all x′ ∈X ′. Consider the canonical embedding
ι ∶X →X ′′. Then, for every x′ ∈X ′,

∞ > sup
x∈M

∣x′(x)∣ = sup
x∈M

∣ι[x](x′)∣,

and since X ′ is Banach, we may apply the Uniform Boundedness Principle to get

∞ > sup
x∈M

∥ι[x]∥ = sup
x∈M

∥x∥.

�

Corollary 3.7 (weakly convergent sequences are bounded). Weakly convergent se-
quences are bounded.

Proof. Let X be a normed space and (xn)n∈N ⊂ X weakly convergent. Then for any
x′ ∈X ′, the convergent sequence (x′(xn))n∈N ⊂ K is bounded, hence the set {xn ∶ n ∈ N} is
bounded by virtue of the preceding corollary. �
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Corollary 3.8 (dual version of Corollary 3.6). Let X be Banach and M ⊂X ′. Then
M is bounded if and only if for all x ∈X, the set {x′(x) ∶ x′ ∈M} ⊂ K is bounded.

Proof. If M is bounded, then the boundesness of {x′(x) ∶ x′ ∈ M} follows from
∣x′(x)∣ ≤ ∥x′∥∥x∥ and boundedness of M . The converse is the special case Y = K of the
Uniform Boundedness Principle. �

Corollary 3.9 (Pointwise limits of continuous linear operators are continuous (!)).
Let X Banach and Y a normed space. Let (Tn)n∈N ⊂ L(X,Y ) converge pointwise to T ,
that is, limn→∞ Tnx = Tx for all x ∈X. Then T ∈ L(X,Y ).

Proof. The linearity of T is standard, see the proof of Proposition 1.17. So we only
show continuity. As (Tnx)n∈N is convergent, it is bounded, and so supn∈N Tnx < ∞ for each
x ∈X. By the Uniform Boundedness Principle, supn∈N ∥Tn∥ =∶M < ∞. Therefore,

∥Tx∥ = lim
n→∞

∥Tnx∥ ≤M∥x∥ ∀x ∈X.

�

3.2.2. An Application to Fourier Series. As an application, we wish to show that
the Fourier series of a periodic continuous function on R does not necessarily converge
pointwise, although, as we have seen, it converges in L2

per(R;C).
Recall from Section 2.2 that a function f ∈ L2

per(R;C) can be written as

f = 1√
2π
∑
k∈Z

f̂(k)eik⋅, (3.2)

where

f̂(k) = 1√
2π

ˆ 2π

0
f(x)e−ikxdx, k ∈ Z. (3.3)

Note carefully that the convergence implied in the in�nite sum in (3.2) is understood in the
L2 sense. While it is well-known that each L2-convergent sequence has a subsequence that
converges almost everywhere1, it makes no sense to ask about everywhere convergence, as
an L2 function is only de�ned up to a nullset. However, if f is additionally assumed to be
continuous (and thus everywhere de�ned), it is a very reasonable conjecture that its Fourier
series would converge at every x ∈ R. Owing to the Uniform Boundedness Principle, we
can show that this is not the case in general.

As a preparation, let us represent the partial sums of the Fourier series in a useful new
way. Using (3.3), we compute for n ∈ N:

1√
2π

n

∑
k=−n

f̂(k)eikx = 1

2π

n

∑
k=−n

ˆ 2π

0
f(y)e−ikydyeikx = 1

2π

ˆ 2π

0
f(y)

n

∑
k=−n

eik(x−y)dy.

Observe that for any z ∈ R, we may write (thanks to the summation formula for �nite
geometric sums)

n

∑
k=−n

eikz =
2n

∑
k=0

ei(k−n)z = e−inz 1 − ei(2n+1)z

1 − eiz
= e

−i(n+ 1
2
)z − ei(n+

1
2
)z

e−i
z
2 − ei

z
2

=
sin ((n + 1

2)z)
sin ( z

2
)

,

so in total we get

1√
2π

n

∑
k=−n

f̂(k)eikx =
ˆ 2π

0
f(y)Dn(x − y)dy.

1Therefore, a subsequence of the Fourier series of f ∈ L2
per will converge almost everywhere to f . In

fact, one does not even need to pass to a subsequence: This is a deep result of Carleson from 1966.
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Here,

Dn(z) ∶=
1

2π

sin ((n + 1
2)z)

sin ( z
2
)

is called the Dirichlet kernel (n ∈ N). Note the Dirichlet kernel is 2π-periodic and contin-
uous (even at zero � think it over).

Recall the space Cper(R;C) of 2π-periodic continuous functions, which as usual we
equip with the supremum norm. Setting

sn(f, x) ∶=
1√
2π

n

∑
k=−n

f̂(k)eikx

for the n-th partial sum of the Fourier series (n ∈ N), and choosing x = 0, we can view
sn(⋅,0) as an element of the dual space C ′

per, because

∣sn(f,0)∣ = ∣
ˆ 2π

0
f(y)Dn(y)dy∣ ≤ ∥f∥∞

ˆ 2π

0
∣Dn(y)∣dy,

where the integral on the right hand side is �nite (for each �xed n ∈ N) as Dn ∈ Cper. Note
we used Dn(y) =Dn(−y) for all y ∈ R.

In fact, the operator norm of sn(f,0) is precisely given by
´ 2π

0 ∣Dn(y)∣dy, as can be
seen by setting

fε ∶=
Dn

∣Dn∣ + ε
and letting ε↘ 0 (you are encouraged to work out the details yourself).

Theorem 3.10 (failure of everywhere convergence of the Fourier series). There exists
a function f ∈ Cper(R;C) whose Fourier series does not converge at x = 0.

Proof. Suppose the Fourier series of every f ∈ Cper converged at x = 0, so in particular
the sequences (sn(f,0))n∈N would be bounded for all f ∈ Cper. Since Cper is Banach, we
can apply the Uniform Boundedness Principle to deduce that

sup
n∈N

∥sn(⋅,0)∥ = sup
n∈N

ˆ 2π

0
∣Dn(y)∣dy < ∞.

We will reach the desired contradiction once we show that the integrals of ∣Dn∣ go o� to
in�nity. This is shown by an elementary estimate:

2π

ˆ 2π

0
∣Dn(y)∣dy =

ˆ 2π

0

∣sin ((n + 1
2
) y)∣

∣sin (y
2
)∣

dy ≥ 2

ˆ 2π

0

∣sin ((n + 1
2
) y)∣

y
dy

= 2

ˆ (2n+1)π

0

∣sin (x)∣
x

dx ≥ 2
2n

∑
k=1

ˆ kπ

(k−1)π

∣sin (x)∣
x

dx

≥ 2
2n

∑
k=1

1

kπ

ˆ kπ

(k−1)π
∣ sin(x)∣dx = 2

π
I

2n

∑
k=1

1

k
→∞

as n → ∞, where we set I ∶=
´ π

0 ∣ sin(x)∣dx > 0. We used the variable transformation

x = (n + 1
2)y in passing from the �rst to the second line, and the π-periodicity of ∣ sin ∣ as

well as the divergence of the harmonic series in the last step. �

Remark 3.11. The question of convergence of Fourier series has been of great inter-
est in the mathematical area of harmonic analysis (and is well-suited for a bachelor's or
master's thesis). The above proof of non-convergence via Uniform Boundedness is very
pretty, but also non-constructive. Du Bois-Reymond gave an explicit construction of such
a function in 1876 (long before the Uniform Boundedness Principle was available), thus
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disproving the everywhere convergence conjecture that had been held by the leading math-
ematicians of the time. The almost everywhere convergence of the Fourier series of an L2

per

function, however, was proved by Carleson in 1966, as mentioned.
One may ask whether additional assumptions on f ensure everywhere convergence.

Indeed, if f is continuously di�erentiable, then the Fourier series converges everywhere
(see [5, Satz IV.2.9]) and even uniformly.

We know from the Stone-Weierstraÿ Theorem that every function in Cper can be uni-
formly approximated by trigonometric polynomials. Theorem 3.10 shows that the Fourier
series does not give such an approximation. Can we somehow use the Fourier series to
give an explicit sequence of trigonometric polynomials that converges uniformly to f? The
answer is yes: By taking the so-called Cesàro mean of the Fourier series, we obtain a se-
quence of trigonometric polynomials converging uniformly to f . More precisely, if f ∈ Cper
and

cN(f, x) ∶= 1

N

N

∑
n=1

sn(f, x),

then cN(f, ⋅) converges uniformly to f as N → ∞ (see [5, IV.2.11]). The reason is that
cN can be represented by arithmetic means of the Dirichlet kernels Dn (these arithmetic
means are called Fejér kernels), and the Fejér kernels behave much better than the Dirichlet
kernels, as the former are non-negative and have integral 1 for all n ∈ N.

3.3. The Open Mapping Theorem

Definition 3.12 (open mappings). A map between two metric spaces is called open
if it maps open sets to open sets.

Compare this with the topological de�nition of continuity: A map between two metric
(or even topological) spaces is continuous if the preimages of open sets are open. Open
maps have this property in the other direction, so to speak. In particular, if an open map
has an inverse, then the inverse will be continuous.

Lemma 3.13. Let X,Y be normed spaces and T ∶ X → Y linear. Then the following
are equivalent:

(1) T is open;
(2) For every r > 0, the image T (Br(0)) ⊂ Y is a neighbourhood2 of zero;
(3) T (B1(0)) ⊂ Y is a neighbourhood of zero.

Proof. (1)⇒ (2): By linearity, T (0) = 0. Since Br(0) is open, then so is T (Br(0)) as
T is open. Hence T (Br(0)) is an open neighbourhood of zero.

(2)⇒(1): Let O ⊂X be open and Tx ∈ T (O) for some x ∈ O. As O is open, there exists
r > 0 such that Br(x) ⊂ O, and then (by linearity) T (Br(x)) = Tx + T (Br(0)) ⊂ T (O).
By (2), T (Br(0)) is a neighbourhood of zero, which means there exists ε > 0 such that
Bε(0) ⊂ T (Br(0)), which implies Bε(Tx) ⊂ T (O). This shows that T (O) is open.

(2)⇔(3): This is obvious from the linearity of T . �

Clearly, any open linear map is surjective, because it maps onto a neighbourhood of
the origin. The converse, however, is anything but obvious. Yet, for maps between Banach
spaces, it is true:

Theorem 3.14 (Open Mapping Theorem, Banach). Let X,Y be Banach and T ∈
L(X,Y ) surjective. Then T is open.

2Recall: In a metric space, a neighbourhood of x is any set N such that Bε(x) ⊂ N for some ε > 0.
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Proof. By the preceding Lemma, it su�ces to show that T (B1(0)) is a neighbourhood
of zero.

Step 1. First we show there exists ε0 > 0 such that Bε0(0) ⊂ T (B1(0)). To this end,
note that by assumption of surjectivity,

Y = ⋃
n∈N

T (Bn(0)),

so that the Baire Category Theorem gives us an N ∈ N for which T (BN(0)) has nonempty

interior, so there is y0 ∈ Y and ε > 0 with Bε(y0) ⊂ T (BN(0)).
The proof now proceeds just like the proof of the Uniform Boundedness Principle:

T (BN(0)) is symmetric (i.e., it contains z if and only if it contains −z) and convex, as
T (BN(0)) has these properties, which are preserved by the closure. Therefore, if y ∈ Bε(0),

y = 1

2
(x0 + y) +

1

2
(−x0 + y) ∈ T (BN(0)),

which completes the �rst step of the proof upon choosing ε0 ∶= ε
N .

Step 2. We shall improve Step 1 to the e�ect that Bε0(0) ⊂ T (B1(0)), thereby complet-
ing the proof of the Open Mapping Theorem. So let y ∈ Bε0(0), then there exists 0 < ε < ε0
such that even y ∈ Bε(0). Set ȳ ∶= ε0

ε y. Let 0 < α < 1 to be chosen later. We recursively
construct a sequence (xn)n∈N ⊂ B1(0) in X such that

∥ȳ − T (
n−1

∑
k=0

αkxk+1)∥ < αnε0, n ∈ N, (3.4)

in the following way: As ȳ ∈ Bε0(0), by Step 1, ȳ ∈ T (B1(0)), so there exists y1 = Tx1 with
x1 ∈ B1(0) and ∥ȳ − y1∥ < αε0.

If x1, . . . , xn have been constructed for some n ∈ N, observe that
ȳ − T (∑n−1

k=0 α
kxk+1)

αn
∈ Bε0(0),

so by another application of Step 1 we �nd xn+1 ∈ B1(0) such that
XXXXXXXXXXX

ȳ − T (∑n−1
k=0 α

kxk+1)
αn

− Txn+1

XXXXXXXXXXX
< αε0.

It follows that (3.4) is still satis�ed with n replaced by n + 1.
Since ∑∞

k=0 ∥αkxk+1∥ ≤ 1
1−α < ∞ (recall ∥xk∥ < 1), the sum is absolutely convergent and

thus, as X is Banach, also convergent to some x̄ ∈ X. By (3.4) and continuity of T , we
have ȳ = T x̄.

Finally set x ∶= ε
ε0
, then Tx = y and

∥x∥ = ε

ε0
∥x̄∥ ≤ ε

ε0

∞
∑
k=0

∥αkxk+1∥ ≤
ε

ε0

1

1 − α
< 1

if α > 0 is chosen su�ciently small. This shows y ∈ T (B1(0)), and the Theorem is proved.
�

Corollary 3.15. Let X and Y be Banach and T ∈ L(X,Y ) bijective, then T−1 ∈
L(Y,X).

Proof. Linearity of T −1 is clear. As the images under T of open sets are open, then
the preimages under T−1 of open sets are open, so T −1 is continuous. �

Corollary 3.16. Let X be a vector space and ∥ ⋅ ∥1, ∥ ⋅ ∥2 ∶ X → R two norms with
respect to both of which X is Banach. If there exists M > 0 such that

∥ ⋅ ∥1 ≤M∥ ⋅ ∥2,

then the two norms are equivalent.
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This means we get the other inequality ∥ ⋅ ∥2 ≤M ′∥ ⋅ ∥1 `for free'.

Proof. By assumption, the identity map (X, ∥ ⋅ ∥2) → (X, ∥ ⋅ ∥1), x ↦ x is bounded.
By Corollary 3.15, then also the inverse map (X, ∥ ⋅ ∥1) → (X, ∥ ⋅ ∥2), x ↦ x, is bounded,
that is, ∥ ⋅ ∥2 ≤M ′∥ ⋅ ∥1 for some M ′ > 0. �

3.4. The Closed Graph Theorem

Let X and Y be normed spaces and D ⊂ X. Recall the graph of a map f ∶ D → Y is
given as

Γf ∶= {(x, y) ∈X × Y ∶ x ∈D,y = f(x)}.

In fact, according to the usual set-theoretic de�nition, a map simply is its graph3. Anyway,
note that if f is linear, then Γf is a subspace of X ×Y (in particular, D ⊂X must then be
a subspace).

Definition 3.17 (maps with closed graph). Let X and Y be normed spaces, D ⊂ X
a subspace and T ∶ D → Y a linear map. We say that T has closed graph if its graph is
closed in X × Y , that is: Whenever (xn)n∈N ⊂ D with (xn, Txn) → (x, y) ∈ X × Y , then
x ∈D and y = Tx.

In the case that D is a closed subspace, note that having a closed graph is weaker that
being continuous: If T is continuous, then xn → x implies the convergence of (Txn)n∈N,
namely to Tx. However, if T only has closed graph, then we need to assume convergence
of (Txn)n∈N in order to conclude that the limit is Tx.

Example 3.18. (1) Let X = Y = C([−1,1]) with the supremum norm and D =
C1([−1,1]) ⊂X. Then, the di�erential operator D → Y , f ↦ f ′, has closed graph:
For let (fn)n∈N be a sequence of C1 functions converging uniformly to f and
assume f ′ → g uniformly, then it is known from Analysis (see for instance [1, �21,
Satz 5]) that f ∈ C1 and g = f ′. Hence the di�erential operator has closed graph
although it is discontinuous, see Example 1.19(3).

(2) Changing the norms in the preceding example, we exhibit an operator whose
graph is not closed: Let X = Y = L2(−1,1), D = C1([−1,1]), and consider again
the di�erential operator D → Y , f ↦ f ′. Choosing

fn(x) = (x2 + 1

n
)

1/2
, f(x) = ∣x∣

and

g(x) =
⎧⎪⎪⎨⎪⎪⎩

−1 x < 0,

1 x > 0,

we �nd that D ⊃ fn → f in L2 (even uniformly!) and f ′n → g in L2 (but not
uniformly); however, f ∉ D and so the di�erential operator does not have closed
graph with respect to the chosen spaces.

On the domain D of de�nition of a linear operator, we may de�ne the graph norm by
∥x∥Γ ∶= ∥x∥ + ∥Tx∥. It is clear that this is really a norm.

Lemma 3.19. Let X,Y be Banach, D ⊂ X a subspace, and assume T ∶ D → Y has
closed graph. Then, D together with the graph norm is Banach, and T is continuous from
(D, ∥ ⋅ ∥Γ) to Y .

3This is a manifestation of the extensionality principle.
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Proof. Let (xn)n∈N ⊂ D be Cauchy with respect to the graph norm, so that (xn)n∈N
and (Txn)n∈N are Cauchy in X and Y , respectively. As X and Y are Banach, we have
xn → x ∈ X and Txn → y ∈ Y . But since T is closed, we can deduce x ∈ D and y = Tx,
thereby implying xn → x in the graph norm. This shows the �rst assertion.

The second claim is obvious because ∥Tx∥Y ≤ ∥x∥X +∥Tx∥Y = ∥x∥Γ for every x ∈D. �

With this observation we can generalise the Open Mapping Theorem in the following
way:

Theorem 3.20 (Surjective operators with closed graph are open). Let X,Y be Banach
and D ⊂X a subspace. If T ∶D → Y has closed graph and is surjective, then T is open. In
particular, if in addition T is injective, then the inverse T−1 ∶ Y →D is continuous.

Proof. By the previous Lemma and the Open Mapping Theorem, T is open as a map
(D, ∥ ⋅ ∥Γ) → Y , meaning that the image of an open set in X with respect to the graph
norm is open in Y . But any open set with respect norm induced by X is also open with
respect to the graph norm: Indeed, let O ⊂ D be open with respect to ∥ ⋅ ∥X , then for any
x ∈ O there is ε > 0 such that ∥x− y∥X < ε implies y ∈ O. So if ∥x− y∥X ≤ ∥x− y∥Γ < ε, then
y ∈ O. Continuity of T−1 now follows just as in Corollary 3.15. �

The proof of the main theorem in this section is now easy.

Theorem 3.21 (Closed Graph Theorem). Let X,Y be Banach and T ∶ X → Y linear.
If T has closed graph, then T is continuous.

Proof. By Lemma 3.19, T is continuous with respect to the graph norm. But by
Corollary 3.16, the graph norm and the norm of X are equivalent. Therefore, T is even
continuous with respect to the norm of X. �

3.5. Projections in Banach Spaces

In Hilbert spaces, we know how to project (orthogonally) onto nonempty closed and
convex sets, in particular onto closed subspaces. Let's take a brief look into the situation
for Banach spaces.

Definition 3.22 (projections). If X is a vector space, then any linear map P ∶X →X
with P 2 = P is called a (linear) projection.

If X is a vector space and U,V ⊂X, then we say X is the direct sum of U and V and
write X = U⊕V if X = {u+v ∶ u ∈ U, v ∈ V } and U ∩V = {0}; in this case, the representation
of each vector in X as a sum of vectors in U and V is unique.

Proposition 3.23 (properties of projections). Let X be a normed space and P ∶X →X
a continuous linear projection. Then,

(1) P = 0 or ∥P ∥ ≥ 1.
(2) The kernel and the range of P are closed.
(3) X = kerP ⊕ P (X).

Proof. (1) This follows immediately from ∥P ∥ = ∥P 2∥ ≤ ∥P ∥2.
(2) Since kerP = P −1({0}) and P is continuous, the kernel is closed as the preimage

of a closed set under a continuous map. Similarly, if I ∶ X → X is the identity, then I − P
is also a continuous linear projection (as (I − P )2 = I2 − 2P + P 2 = I − P ), so its kernel is
closed; therefore,

P (X) = ker(I − P )
is also closed.

(3) Clearly, for each x ∈X, we can write

x = (x − Px) + Px,



3.5. PROJECTIONS IN BANACH SPACES 57

where x − Px ∈ kerP and Px ∈ P (X). Also, suppose x ∈ kerP ∩ P (X): Then x = Py for
some y ∈X but also 0 = Px = P 2y = Py = x, so the sum is indeed direct. �

As an example, consider the map P ∶ Lp(R) → Lp(R) given by Pf = χ(0,1)f , where

χ(0,1) denotes the indicator function of (0,1). As χ2
(0,1) = χ0,1, this is a projection. It is

linear and bounded, as ∥Pf∥p ≤ ∥f∥p. Its kernel is given by the set of Lp functions whose
essential support is disjoint from (0,1), and its image is the set of functions whose essential
support is contained in [0,1]. Accordingly, we can uniquely write any Lp function f as the
sum (1 − χ(0,1))f + χ(0,1)f .

Does every closed subspace of a Banach space admit a continuous projection? The
answer, maybe surprisingly, is no: It can be shown (see [5, Satz IV.6.5]) that the closed
subspace c0 ⊂ l∞ of nullsequences does not have a complement, that is, there does not exist
any closed subspace U ⊂ l∞ such that l∞ = U ⊕c0, which by Proposition 3.23 is a necessary
condition for the existence of a continuous projection.

For �nite-dimensional subspaces, however, there is always a continuous projection:

Theorem 3.24 (projection onto �nite-dimensional subspaces). Let X be a normed
space and U ⊂X a �nite-dimensional subspace, then there exists a bounded linear projection
P onto U such that ∥P ∥ ≤ dimU .

Proof. Let {u1, . . . , un} be a so-called Auerbach basis for U , that is, a basis for which
there exists a dual basis {u′1, . . . , u′n} of U ′ such that ∥uk∥ = 1 and ∥u′k∥ = 1 for k = 1, . . . , n,
and u′j(uk) = δjk for j, k = 1, . . . , n. The proof of existence of an Auerbach basis for any

�nite-dimensional normed space can be found, e.g., in [5, II.2.6].
By the Hahn-Banach Theorem, for every k = 1, . . . , n, we can extend the bounded linear

functionals u′k from U ′ to x′k ∈X
′ preserving the norms, so that still ∥x′k∥ = 1. Set

Px ∶=
n

∑
k=1

x′k(x)uk,

then P is the desired projection. �

As mentioned, we see from Proposition 3.23 that a necessary condition for a closed
subspace U of a Banach space X to have a bounded linear projection is the existence of a
complementary space for U , that is, another closed subspace V ⊂X such that X = U ⊕ V .
The next theorem states that this is even su�cient:

Theorem 3.25 (criterion for existence of a continuous linear projection). Let X be
Banach and U ⊂ X a closed subspace. Assume there exists another closed subspace V ⊂ X
such that X = U ⊕V 4. Then the norm de�ned as ∥x∥1 ∶= ∥u∥+∥v∥ is equivalent to the norm
of X (where u ∈ U and v ∈ V are the unique vectors such that x = u + v), and there exists
a continuous linear projection onto U .

Proof. By the triangle inequality, ∥x∥ ≤ ∥u∥ + ∥v∥ whenever x ∈X and x = u + v with
u ∈ U , v ∈ V . An application of Corollary 3.16 will yield equivalence of the norms once we
show that X is also Banach with respect to ∥ ⋅ ∥1. So let (xn)n∈N be Cauchy in ∥ ⋅ ∥1 with
corresponding decomposition xn = un + vn, so that for all ε > 0 there is N ∈ N such that for
m,n ≥ N ,

ε > ∥xn − xm∥1 = ∥un − um∥X + ∥vn − vm∥X ,
so that (un)n∈N and (vn)n∈N are Cauchy and therefore convergent to u and v, respectively,
since X with its original norm is assumed Banach. But then xn → x = u + v in the norm
∥ ⋅ ∥1, so that equivalence of both norms is proved.

4The complementary space will typically not be unique: Consider for instance the span of the unit
vector e1 as a closed subset of R2, then the spans of e2 and of e1 +e2 are both complementary to span{e1}.
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As for the existence of a bounded projection, by the equivalence of the two norms we
have the `reverse triangle inequality' ∥u∥ + ∥v∥ ≤ M∥u + v∥ for some M > 0 and all u ∈ U ,
v ∈ V , so that the linear map u+v → u is bounded, and thus this map is in fact the desired
projection. �

Note that in the special case that X is Hilbert, we can always take V to be the orthogo-
nal complement of U ; this gives an alternative proof of the existence of the projection onto
any closed subspace of a Hilbert space. As mentioned, in Banach spaces a complementary
space need not always exist.



CHAPTER 4

Spectral Theory

We have already seen the simplest spectral theorem for compact self-adjoint operators
on Hilbert spaces in Section 2.4. We will now generalise this theory in two directions: to
compact operators on Banach spaces, and to bounded but possibly non-compact operators
on Hilbert spaces.

4.1. The Adjoint Operator

Definition 4.1 (The adjoint in normed spaces). Let X,Y be normed spaces and
T ∈ L(X,Y ). The adjoint operator T ′ ∈ L(Y ′,X ′) is de�ned by

T ′y′(x) = y′(Tx).

It is clear that this de�nes a bounded linear operator Y ′ → X ′ (because ∣y′(Tx)∣ ≤
∥y′∥∥T ∥∥x∥). Also, note if X = Y is Hilbert, then this de�nition is related to our previous
De�nition 2.21 thanks to the Riesz-Fréchet Theorem. Indeed, if X = Y =H is Hilbert and
x′ = (⋅, y) for some y ∈H, then the adjoint T ′ of T ∈ L(H,H) in the sense of De�nition 4.1
is represented as

T ′x′ = (⋅, T ∗y),
where T ∗ ∈ L(H,H) is the Hilbert space adjoint as in De�nition 2.21.

Example 4.2. (1) For 1 ≤ p < ∞, consider X = Y = Lp(0,1). Given a function
h ∈ L∞(0,1), we may de�ne the multiplication operator T ∶X → Y , f ↦ hf (note
hf ∈ Lp if f ∈ Lp). Let Lq be the dual of Lp (meaning 1

p +
1
q = 1); then for f ∈ Lp

and g ∈ Lq we have

g(Tf) = g (hf) =
ˆ 1

0
g(x)h(x)f(x)dx = (gh)(f),

so that T ′ ∶ Y ′ →X ′ is given by T ′g = gh, so T ′ is itself the multiplication operator
with h.

(2) Let X be a normed space, then we have seen the injection operator ι ∶ X → X ′′,
ι[x](x′) = x′(x). Then the adjoint ι′ ∶X ′′′ →X ′ is de�ned as

ι′[x′′′](x) = x′′′(ι(x)),
so ι′[x′′′] = x′′′ ○ ι.

Theorem 4.3. Let X,Y,Z be normed spaces. The map L(X,Y ) → L(Y ′,X ′), T ↦ T ′

is a linear isometry, and for T ∈ L(X,Y ) and S ∈ L(Y,Z), we have (ST )′ = T ′S′.

Proof. Linearity is clear by de�nition, and we note

∥T ∥ = sup
∥x∥≤1

∥Tx∥ = sup
∥y′∥≤1,∥x∥≤1

∣y′(Tx)∣ = sup
∥y′∥≤1,∥x∥≤1

∣T ′y′(x)∣ = ∥T ′∥,

where we made use of Corollary 1.23.
For the second statement, let x ∈X and z′ ∈ Z ′, then

(ST )′z′(x) = z′(STx) = S′z′(Tx) = T ′S′z′(x).
�
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As an isometry, T ↦ T ′ is injective. Note it may not be surjective: If, for instance, Y
is not Banach, then L(X,Y ) need not be Banach, but L(Y ′,X ′) is Banach in any case
(because X ′ is).

In the case of Hilbert spaces, T ∗∗ = T . In general, we have the following:

Lemma 4.4. Let X,Y be normed spaces and T ∈ L(X,Y ), then
T ′′ ○ ιX = ιY ○ T,

where ιX ∶X →X ′′ and ιY ∶ Y → Y ′′ denote the canonical injections.

Proof. Note the operators on both sides should map X to Y ′′. So let x ∈ X and
y′ ∈ Y ′, then

T ′′(ιX[x])(y′) = ιX[x](T ′y′) = T ′y′(x) = y′(Tx) = ιY [Tx](y′).
�

Theorem 4.5 (Schauder). Let X and Y be normed spaces and T ∈ L(X,Y ).
(1) If T is compact, then so is T ′.
(2) If Y is Banach and T ′ is compact, then so is T .

Proof. (1) Suppose T is compact. Let (y′n)n∈N be a bounded sequence in Y ′. By

compactness of T , the set K ∶= T (B1(0)) ⊂ Y is compact. The restrictions y′n ↾K form a
sequence of continuous functions K → K, uniformly bounded by ∥T ∥ supn∈N ∥y′n∥ < ∞. The
sequence is also equicontinuous, because for all n ∈ N,

∣y′n(y1) − y′n(y2)∣ ≤ sup
k∈N

∥y′k∥∥y1 − y2∥.

Invoking now the Theorem of Arzelà-Ascoli, we �nd a uniformly convergent subsequence
(y′nk ↾K)k∈N. Therefore,

∥T ′y′nk − T
′y′nl∥ = sup

x∈B1(0)
∥y′nk(Tx) − y

′
nl
(Tx)∥ = ∥y′nk ↾K −y′nl ↾K ∥∞,

where the last expression can be made arbitrarily small choosing k, l large enough. Hence,
(T ′y′nk)k∈N is Cauchy and hence convergent, so indeed T ′ is compact.

(2) Assume in addition Y to be Banach, and let T ′ be compact. By the �rst part of the
proof, T ′′ is then also compact, and so is T ′′ ○ ιX as the composition of a compact and a
bounded operator. By Lemma 4.4, T ′′ ○ ιX = ιY ○T , so the latter is compact. Therefore, if
(xn)n∈N is a bounded sequence in X, then there is a convergent subsequence (ιY (Txnk))k∈N
in Y ′′. In particular, the sequence is Cauchy, and so is the sequence (Txnk)k∈N, because
ιY is an isometry. Convergence of (Txnk)k∈N now follows from the completeness of Y . �

Theorem 4.6 (A linear operator is invertible i� its adjoint is). Let X,Y be Banach.
Then T ∈ L(X,Y ) is bijective if and only if T ′ is, and in this case (T ′)−1 = (T −1)′.

Proof. Let T be bijective, then it is invertible, and its inverse T−1 ∈ L(Y,X) by
virtue of the Open Mapping Theorem (Corollary 3.15). Therefore, (T−1)′ ∈ L(X ′, Y ′) is
well-de�ned, and for y′ ∈ Y ′ and y ∈ Y we have

(T−1)′[T ′y′](y) = T ′y′(T −1y) = y′(TT−1y) = y′(y),
so that (T−1)′T ′ is the identity on Y ′. Likewise, for x′ ∈X ′ and x ∈X,

T ′[(T−1)′x′](x) = (T−1)′x′(Tx) = x′(T −1Tx) = x′(x),
so that T ′(T−1)′ is the identity on X ′. It follows that T ′ is invertible with (T ′)−1 = (T−1)′.

Conversely, assume T ′ is invertible, and denote S ∶= (T ′)−1. T is injective: Suppose
Tx = 0 and let x′ ∈ X ′. As T ′ is surjective, there exists y′ ∈ Y ′ such that T ′y′ = x′, and
then we have

x′(x) = T ′y′(x) = y′(Tx) = 0,
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so x = 0 follows from Corollary 1.24.
For surjectivity, we show �rst that T (X) ⊂ Y is closed. So let (Txn)n∈N be a sequence

in T (X) converging to y ∈ Y . Then the sequence (Txn) is Cauchy, and by Corollary 1.23,

∥xn − xm∥ = sup
∥x′∥≤1

∣x′(xn − xm)∣ = sup
∥x′∥≤1

∣T ′Sx′(xn − xm)∣

= sup
∥x′∥≤1

∣Sx′(Txn − Txm)∣ ≤ ∥S∥∥Txn − Txm∥,

which shows that (xn)n∈N is Cauchy and thus convergent to x ∈ X. But then Tx = y by
continuity of T , and so y ∈ T (X).

Suppose now T were not surjective, so there existed y0 ∈ Y ∖ T (X). By the Hahn-
Banach Theorem, taking into account the closedness of T (X), we can �nd a functional
y′ ∈ Y ′ such that y′ ↾T (X)= 0 but y′(y0) = 1. Indeed, let ω ∶ Y → Y /T (X), y ↦ y + T (X)
be the canonical quotient map. Then ω(Tx) = 0 for all x ∈ X and ω(y0) ≠ 0. By Hahn-
Banach (applied to the span of ω(y0) as a subspace of Y /T (X)), there exists a functional
l ∈ (Y /T (X))′ such that l(ω(y0)) = 1. The functional y′ ∶= l ○ ω is then as desired. But
then

0 = y′(Tx) = T ′y′(x)

for every x ∈ X, whence from injectivity of T ′ we have y′ = 0, in contradiction with
y′(y0) = 1.

The formula S = (T −1)′ follows by the same computation as in the beginning of the
proof.

�

4.2. Basic Concepts of Spectral Theory for Bounded Operators

Recall from Subsection 2.4.3 some basic notions of spectral theory: If X is Banach and
T ∈ L(X,X), then the resolvent set ρ(T ) is the set of λ ∈ K such that λI − T is invertible
(meanwhile we have learned from the Open Mapping Theorem that then the inverse is
automatically bounded). For λ ∈ ρ(T ), we denoted the resolvent by R(λ,T ) = (λI − T )−1.
The complement σ(T ) ∶= K ∖ ρ(T ) was called the spectrum.

We made the observation that not every element of σ(T ) needs to be an eigenvalue.
We therefore distinguish three parts of the spectrum:

● The point spectrum σp(T ) is the set of eigenvalues of T , i.e., the set of λ ∈ K such
that λI − T is not injective;

● the continuous spectrum σc(T ) is the set of λ ∈ K such that λI −T is injective but
not surjective, and the range of λI − T is dense in X;

● the residual spectrum σr(T ) is the set of λ ∈ K such that λI − T is injective but
not surjective, and the range of λI − T is not dense in X.

It is clear from these de�nitions that K = ρ(T )∪̇σp(T )∪̇σc(T )∪̇σr(T ), that is, each λ ∈ K is
an element of exactly one of these four sets. The terminology will make more sense later
on.

Proposition 4.7 (Spectra of an operator and its adjoint are the same). If X is a
Banach space and T ∈ L(X,X), then σ(T ′) = σ(T ).

Proof. By Theorem 4.6, the map λI − T is invertible if and only its adjoint is. But
the adjoint is precisely λI − T ′, because for any x′ ∈X ′ and x ∈X,

(λI − T ′)x′(x) = λx′(x) − x′(Tx) = x′(λx − Tx).

�
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In the case that X is Hilbert, note carefully that the spectrum of the Hilbert space
adjoint T ∗ is the complex conjugate of the spectrum of T (Lemma 2.30). This annoying
discrepancy between the Banach and Hilbert adjoints is due to the fact that the iden-
ti�cation of a Hilbert space with its dual via Riesz-Fréchet is only an anti-isomorphism
(i.e., an isomorphism up to complex conjugation), cf. the discussion after the Riesz-Fréchet
Theorem.

Example 4.8. (1) We choose X = C([0,1]) with the usual supremum norm, so
that X is Banach. Set

(Tx)(s) ∶=
ˆ s

0
x(t)dt,

which de�nes a continuous linear operator. We wish to show σ(T ) = σr(T ) = {0}.
First, observe that for λ ≠ 0, the operator λI − T is invertible: Indeed, let

y ∈ C1([0,1]) for the moment, then λx−Tx = y is equivalent with the initial value
problem

ẋ − 1

λ
x = 1

λ
ẏ, x(0) = y(0)

λ
,

which has a unique solution explicitly given by

x(t) = et/λ ( 1

λ

ˆ t

0
e−s/λẏ(s)ds + y(0)

λ
) = 1

λ2

ˆ t

0
e(t−s)/λy(s)ds + 1

λ
y(t),

where we used integration by parts in the last step. In fact, this formula still
yields a solution of λx − Tx = y for general y ∈ C([0,1]). This solution is unique
because λx − Tx = 0 is uniquely solved by zero, so if λx1 − Tx1 = y = λx2 − Tx2,
then x1 − x2 = 0. Therefore, λI − T is bijective.

Let us consider the case λ = 0. If Tx = 0 then x = 0, so T is injective. On the
other hand, the image T (X) is not dense in X, because (Tx)(0) = 0 for all x ∈X.
Hence 0 ∈ σr(T ).

(2) Consider the same operator T , but now on the smaller space X = {x ∈ C([0,1]) ∶
x(0) = 0}, still with the supremum norm. Exactly as in the previous situation,
one shows λ ∈ ρ(T ) for λ ≠ 0, and T is injective. But now T (X) is dense in X,
because T (X) is the space of C1 functions such that y(0) = ẏ(0) = 0, and it is an
analysis exercise to check that this space is dense in X.

Theorem 4.9. Let X be Banach and T ∈ L(X,X).
(1) The resolvent map ρ(T ) → L(X,X), λ ↦ R(λ,T ) is analytic, that is: It can be

locally expressed as a power series in λ with coe�cients in L(X,X).
(2) When K = C then σ(T ) ≠ ∅.

Proof. (1) This follows from the Neumann Series representation (Lemma 2.28):

R(λ,T ) = (λI − T )−1 = (λ0I − T )−1 [I − (λ0 − λ)(λ0I − T )−1]−1

=
∞
∑
n=0

(λ0 − λ)n((λ0I − T )−1)n+1

for any λ0 ∈ ρ(T ) and λ su�ciently close to λ0.
(2) Suppose for a contradiction that σ(T ) = ∅. Then R(λ,T ) is analytic on all of C.

Let l′ ∈ L(X,X)′, then by the previous step we can write

l′(R(λ,T )) =
∞
∑
n=0

(−1)nl′(R(λ0, T )n+1)(λ − λ0)n, (4.1)

so that λ↦ l′(R(λ,T )) is an analytic function C→ C.
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This map is also bounded, because if ∣λ∣ > 2∥T ∥, then again thanks to the Neumann
Series,

∣l′(R(λ,T ))∣ ≤ ∥l′∥∥(λI − T )−1∥ = ∥l′∥ 1

λ

∞
∑
n=0

∥T
λ
∥
n

≤ ∥l′∥
∥T ∥

(without loss of generality, T ≠ 0, because the spectrum of the zero operator is {0}); and
on the compact set B2∥T ∥(0), the map is bounded anyway as it is continuous.

It follows from Liouville's Theorem (from complex analysis) that λ ↦ l′(R(λ,T )) is
in fact constant, which implies that all except the zero-th coe�cient in (4.1) vanish. In
particular, for the choice λ0 = 0 (which is valid as, by assumption, ρ(T ) = C), we obtain
for n = 1 that 0 = l′(R(0, T )2) = l′(T −2), and it follows from Corollary 1.24 that T−2 = 0,
which is the desired contradiction (as the zero operator is not the inverse of anything). �

From Theorem 2.29 we know that ∣λ∣ ≤ ∥T ∥ for all λ ∈ σ(T ). In order to improve this
result, we need a technical lemma:

Lemma 4.10. Let (an)n∈N ⊂ R be a real sequence such that 0 ≤ an+m ≤ anam for
n,m ∈ N. Then,

lim
n→∞

a1/n
n = inf

n∈N
a1/n
n .

Proof. Let ε > 0 and N ∈ N such that a
1/N
N < infn∈N a

1/n
n + ε. Set

b ∶= max{a1, . . . , aN},
and note that b depends on ε. Let n ∈ N be written as n = kN + r with 1 ≤ r ≤ N . Then,

denoting a ∶= infn∈N a
1/n
n ,

a1/n
n = a1/n

kN+r ≤ (akNar)1/n ≤ (a + ε)kN/nb1/n = (a + ε)(a + ε)−r/nb1/n ≤ a + 2ε

for n su�ciently large, which proves the claim. �

Definition 4.11 (spectral radius). If X is Banach and T ∈ L(X,X), then the spectral
radius of T is de�ned as

r(T ) ∶= inf
n∈N

∥Tn∥1/n = lim
n→∞

∥Tn∥1/n.

Note that an = ∥Tn∥ satis�es the requirement of Lemma 4.10, so that the spectral
radius is well-de�ned. Since ∥Tn∥ ≤ ∥T ∥n, it is clear that always r(T ) ≤ ∥T ∥. The following
result is therefore an improvement over the bound from Theorem 2.29, and justi�es the
terminology `spectral radius':

Theorem 4.12 (sharp bound for the spectrum). Let X be Banach and T ∈ L(X,X).
Then, for every λ ∈ σ(T ), we have ∣λ∣ ≤ r(T ). Moreover, when K = C, then there exists
λ ∈ σ(T ) with ∣λ∣ = r(T ).

Proof. Let ∣λ∣ > r(T ) and consider the series λ−1∑∞
n=0(T /λ)n. This series is absolutely

convergent by the Root Test, because

lim sup
n→∞

∥(T
λ
)
n

∥
1/n

= 1

∣λ∣
lim
n→∞

∥Tn∥1/n = r(T )
∣λ∣

< 1.

It is readily checked that λ−1∑∞
n=0(T /λ)n is the inverse of λI−T (cf. the proof of Lemma 2.28),

which means λ ∈ ρ(T ). Therefore, whenever λ ∈ σ(T ), then ∣λ∣ ≤ r(T ).
For the sharpness assertion, set

r0 ∶= max{∣λ∣ ∶ λ ∈ σ(T )},
which is well-de�ned by compactness of σ(T ) (Theorem 2.29). We have already seen
r0 ≤ r(T ). Let µ ∈ C with ∣µ∣ > r0. If we can show ∣µ∣ ≥ r(T ), then the proof is complete.
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To this end, let l′ ∈ L(X,X)′, and consider the the function

fl′ ∶ C ∖Br0(0) → C, λ↦ l′(R(λ,T )),
which is well-de�ned by choice of r0 and analytic by Theorem 4.9. As before, if ∣λ∣ > r(T ),
then

fl′(λ) =
∞
∑
n=0

l′(Tn)λ−n−1.

It is known from complex analysis that this series converges on any open annulus on which
fl′ is analytic, so in particular it converges at µ, which implies

lim
n→∞

l′ ( Tn

µn+1
) = 0.

As l′ ∈ L(X,X)′ was arbitrary, this means that ( Tn

µn+1
)
n∈N

converges weakly to zero in

L(X,X), so it is bounded by Corollary 3.7. So there exists M > 0 such that

∥Tn∥1/n ≤M1/n∣µ∣(n+1)/n → ∣µ∣,
which proves ∣µ∣ ≥ r(T ) as desired. �

We saw in the proof of the Spectral Theorem for compact self-adjoint operators on
Hilbert spaces that, in that case, in fact r(T ) = ∥T ∥. In general this is no longer true:
The operator T from Example 4.8 has ∥T ∥ = 1 but σ(T ) = {0} and therefore, thanks to
Theorem 4.12, r(T ) = 0.

4.3. Spectral Theory for Compact Operators

4.3.1. The Theorem of Riesz-Schauder. Throughout this subsection, let X be
Banach, T ∈ L(X,X) a compact operator, and S ∶= I − T , where as usual I denotes
the identity operator. For n ∈ N ∪ {0}, set Nn ∶= kerSn ( in particular N0 = {0}) and
Rn ∶= Sn(X) (in particular R0 =X). Clearly, N0 ⊂ N1 ⊂ N2 ⊂ . . . and R0 ⊃ R1 ⊃ R2 ⊃ . . ..

We shall prove the following properties:

Lemma 4.13. (1) There exists a smallest number p ∈ N∪{0} such that Np = Np+1,
and for this p we have Np+r = Np for all r ∈ N. Also, Np ∩Rp = {0}.

(2) There exists a smallest number q ∈ N∪ {0} such that Rq = Rq+1, and for this q we
have Rq+r = Rq for all r ∈ N. Also, Nq +Rq =X.

(3) p = q.

Proof. (1) Note that all Nn are closed as preimages of the closed set {0} under the
continuous map Sn. If there were no p such that Np = Np+1, then we would have

N0 ⊊ N1 ⊊ N2 ⊊ . . .
Then, by the Lemma of Riesz (exercise), for every n ∈ N there exists xn ∈ Nn such that
∥xn∥ = 1 and1 dist(xn,Nn−1) > 1

2 . If n >m ≥ 1, then

∥Txn − Txm∥ = ∥xn − (Sxn + xm − Sxm)∥ > 1

2

as S(Nn) ⊂ Nn−1 and therefore Sxn + xm − Sxm ∈ Nn−1. But this implies that (Txn)n∈N
cannot have a convergent subsequence, in contradiction with compactness of T .

Fix p to be the smallest number with Np = Np+1. Next, let r ∈ N. We need to show
Np+r ⊂ Np. Let x ∈ Np+r, then Sr−1(x) ∈ Np+1 = Np so x ∈ Np+r−1. Iterate this argument to
get Np+r ⊂ Np.

Let x ∈ Np ∩Rp, then Spx = 0 and there is y ∈X such that x = Spy, so that S2p(y) = 0
and thus y ∈ N2p = Np. Hence 0 = Spy = x.

1Here, dist(xn,Nn−1) means inf{∥xn − x∥ ∶ x ∈ Nn−1}.
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(2) We argue as in the �rst step, only we need that all Rn are closed. Note that

Sn = (I − T )n = I −
n

∑
k=1

(n
k
)(−1)k+1T k = I − T̃

with T̃ compact, as the compact operators form an algebra (in fact even an ideal) in
L(X,X). It will be shown below in Theorem 4.16 that operators of this form always have
closed range, and the proof of this part of Theorem 4.16 will of course be independent of
this Lemma.

Now let us proceed as in the �rst part: Suppose there did not exist q ∈ N ∪ {0} such
that Rq = Rq+1, then

R0 ⊋ R1 ⊋ R2 ⊋ . . . ,
and again we could choose xn ∈ Rn with ∥xn∥ = 1 and dist(xn,Rn+1) > 1

2 by the Riesz
Lemma. Then as before, for m > n ≥ 1,

∥Txn − Txm∥ = ∥xn − (Sxn + xm − Sxm)∥ > 1

2
,

because S(Rn) = Rn+1 and thus Sxn+xm−Sxm ∈ Rn+1. Again this contradicts compactness
of T .

So let q be the smallest number with Rq = Rq+1. Let now r ∈ N and x ∈ Rq+r, then
there is y ∈ X with x = Sq+ry. As Sqy ∈ Rq = Rq+1, it follows that x ∈ Rq+r+1. It now
follows by induction that Rq+r = Rq for all r ∈ N.

Let x ∈X, then Sqx ∈ Rq = R2q, so there is y ∈X such that Sqx = S2qy. Therefore

x = (x − Sqy) + Sqy ∈ Nq +Rq.
(3) Suppose p > q, then by (2) Rp = Rq but there would exist x ∈ Np ∖Nq. By (2) we

can write x = y+z ∈ Nq +Rq, and z = x−y ∈ Np +Nq = Np. On the other hand, z ∈ Rq = Rp.
By (1), z = 0, so that x = y ∈ Nq, which is a contradiction. Therefore p ≤ q.

But suppose now p < q. Then by (1) Np = Nq but there is x ∈ Rp ∖Rq. Again by (2),
we can write x = y + z ∈ Nq +Rq, and so y = x − z ∈ Rp +Rq = Rp. But also y ∈ Nq = Np, so
again from (1) we deduce y = 0 and thus x = z ∈ Rq, contradiction.

�

Corollary 4.14. There are closed subspaces N̂ and R̂ with the following properties:

(1) dim N̂ < ∞;

(2) X = N̂ ⊕ R̂
(3) S(N̂) ⊂ N̂ , S(R̂) ⊂ R̂;
(4) S ↾R̂ is an isomorphism from R̂ to R̂.

Proof. Choose N̂ = Np and R̂ = Rq, whereNp andRq are the spaces from Lemma 4.13.

Both spaces are closed, and X = N̂ ⊕ R̂ follows from p = q and from Np ∩ Rp = {0} and

X = Np +Rp. That N̂ is �nite-dimensional will follow independently from Theorem 4.16
below.

Note also

S(N̂) = S(Np) ⊂ Np−1 ⊂ Np = N̂
and

S(R̂) = S(Rp) = Rp+1 = Rp = R̂.

In particular, S ↾R̂ is surjective from R̂ to R̂. But it is also injective, because if Sy = 0 for

some y ∈ R̂, then there is x ∈X with y = Spx, then Sp+1x = 0, thus x ∈ Np+1 = Np, and then
y = Spx = 0. By the Open Mapping Theorem, the inverse of S ↾R̂ is continuous, so indeed
we have an isomorphism. �
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Before we go on, let us recall some facts about quotient spaces (see also the corre-
sponding exercise). If X is a normed space and U ⊂ X a closed subspace, we can de�ne
an equivalence relation on X by x ∼ y if x − y ∈ U . The equivalence classes are then, for
x ∈X, sets of the form

x +U ∶= {x + u ∶ u ∈ U}.
The set of such equivalence classes becomes a vector space, denoted X/U , under the linear
structure

(x +U) + (y +U) = (x + y) +U, α(x +U) = αx +U,
which is easily seen to be well-de�ned. On the quotient space X/U one de�nes the norm

∥x +U∥ ∶= inf{∥x − y∥ ∶ y ∈ U}.
If X is Banach, then so is X/U (exercise). If Y is another normed space and R ∶ X → Y
is a bounded linear operator, then the induced operator

R̂ ∶X/kerR → R(X), x +U ↦ Rx

is well-de�ned and bijective (think it over). It is also continuous, because

∥R̂(x + kerR)∥ = ∥Rx∥ = ∥R(x − y)∥ ≤ ∥R∥∥x − y∥ ∀y ∈ kerR.

Lemma 4.15. Let R ∈ L(X,X) such that R(X) is closed, then

ker(R)⊥ = R′(X ′),
where U⊥ ∶= {x′ ∈X ′ ∶ x′(x) = 0 ∀x ∈ U} for a closed subspace U ⊂X.

Proof. Let �rst x′ ∈ R′(X ′), so there is y′ ∈ X ′ such that x′ = R′y′. Let x ∈ ker(R),
then x′(x) = R′y′(x) = y′(Rx) = 0, so x′ ∈ ker(R)⊥ as claimed.

For the converse inclusion, �rst observe there exists K > 0 such that for all y ∈ R(X)
there is x ∈ X with Rx = y and ∥x∥ ≤ K∥y∥; indeed, consider the induced operator

R̂ ∶ X/kerR → R(X) de�ned by R̂(x + kerR) ∶= Rx. Then, as mentioned, R̂ is bijective
and continuous from the Banach space X/kerR to the Banach space R(X). By the Open

Mapping Theorem, R̂−1 is continuous, and the existence of K follows from the de�nition
of the norm in the quotient space.

Let now x′ ∈ ker(R)⊥. Consider the map

z′ ∶ R(X) → K, Rx↦ x′(x),
which is well-de�ned because x′ ∈ ker(R)⊥. We claim that z′ is continuous. So let K be the
constant from the preceding argument, then for y = Rx ∈ R(X) and ∥x∥ ≤ K∥y∥ it holds
that

∣z′(y)∣ = ∣x′(x)∣ ≤ ∥x′∥∥x∥ ≤ ∥x′∥K∥y∥,
which shows continuity of z′. Let now y′ ∈ X ′ be a Hahn-Banach extension of z′ to all of
X. Then x′ = R′y′ because

x′(x) = z′(Rx) = y′(Rx) = R′y′(x)
for every x ∈X, and it follows x′ ∈ R′(X ′). �

After all this preparation we can state the following important result:

Theorem 4.16 (Riesz-Schauder). Let X be Banach, T ∈ L(X,X) a compact operator,
and S = I − T . Then:

(1) kerS is �nite-dimensional;
(2) S(X) is closed and the quotient space X/S(X) is �nite-dimensional;
(3) dim(X/S(X)) = dim(kerS) = dim(X ′/S′(X ′)) = dim(kerS′).
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Proof. (1) Let (xn)n∈N ⊂ kerS be a bounded sequence. By compactness, there is a
subsequence (xnk)k∈N such that (Txnk)k∈N converges. Since 0 = Sxnk = xnk − Txnk , also
(xnk)k∈N converges to a limit x ∈ kerS, because kerS is closed as the preimage of the closed
set {0} under a continuous map. Thus, every bounded sequence in kerS has a convergent
subsequence, so kerS is �nite-dimensional by problem 4 on exercise sheet 6.

(2) To show that S(X) is closed, consider once more the induced operator Ŝ ∶X/kerS →
S(X) de�ned by Ŝ(x+kerS) ∶= Sx. Then, as we know, Ŝ is bijective and continuous. If we

can prove that Ŝ−1 is also continuous, we have thus established an isomorphism between
X/kerS and S(X), and since the former is complete, then so is the latter, and therefore
S(X) will be closed. Note however that we can not use the Open Mapping Theorem for
continuity of the inverse, because for this we would require S(X) to be complete, which is
precisely what we want to prove.

Suppose now Ŝ−1 were not continuous, then there would exist a sequence (xn)n∈N such
that Sxn → 0 but ∥xn + kerS∥ = 1. Without loss of generality we may assume ∥xn∥ ≤ 2
(otherwise replace xn by xn − yn for suitable yn ∈ kerS). Therefore, there is a subsequence
(xnk)k∈N such that (Txnk)k∈N is convergent, so also xnk = Sxnk + Txnk converges. Denote
x = limk→∞ xnk . By continuity, Sx = 0, hence ∥x+kerS∥ = 0, although by continuity of the
norm in the quotient space we also have ∥x + kerS∥ = 1. This is the desired contradiction,
so we have shown closedness of S(X).

For �nite-dimensionality, we �rst observe that for a closed subspace U ⊂ X, we have
the isomorphy (X/U)′ ≃ U⊥, where U⊥ ∶= {x′ ∈ X ′ ∶ x′(x) = 0 ∀x ∈ U}. Indeed, it is easy
to check that an isomorphism between these spaces is given by l ↦ l ○ ω for l ∈ (X/U)′,
where ω ∶ X → X/U is the canonical quotient map given by x ↦ x + U . Applying this
observation to U = S(X) and noting S(X)⊥ = kerS′ (exercise sheet 11, problem 4), we
arrive at

(X/S(X))′ ≃ kerS′

and therefore

dim(X/S(X)) = dim(X/S(X))′ = dim(kerS′) < ∞, (4.2)

where we used Step 1 applied to S′ and Schauder's Theorem, which shows that T ′ is
compact; for the �rst equality we also used that a �nite-dimensional space and its dual
have the same dimension.

(3) One can check that, for a closed subspace U ⊂X, we have the isomorphyX ′/U⊥ ≃ U ′

via the isomorphism x′ + U⊥ ↦ x′ ↾U . Applying this with U = kerS and taking into
consideration Lemma 4.15, we obtain

dim(X ′/S′(X ′)) = dim(kerS)′ = dim(kerS).

Thanks to this and (4.2), it only remains to show dim(X/S(X)) = dim(kerS). We consider

the decomposition X = N̂ ⊕ R̂ from Corollary 4.14. Set Ŝ ∶= S ↾N̂ .
First, we show that X/S(X) is isomorphic (as a vector space) to N̂/S(N̂), so their

dimensions are equal. To this end, consider the obvious map Φ ∶ N̂/S(N̂) → X/S(X),
x + Ŝ(N̂) ↦ x + S(X), which is well-de�ned as Ŝ(N̂) ⊂ S(X). Linearity is clear. For

injectivity, let x ∈ N̂ with Φ(x + Ŝ(N̂)) = 0, i.e., x ∈ S(X). We need to show x ∈ Ŝ(N̂).
Write x = Sy for some y ∈X, and y = y1+y2 ∈ N̂+R̂. Then, Sy2 = Sy−Sy1 = x−Sy1 ∈ N̂ . But
note also Sy2 ∈ R̂, so that Sy2 = 0. Since S ↾R̂ is an isomorphism and y2 ∈ R̂, this implies

y2 = 0, so that x = Sy1 ∈ Ŝ(N̂). For surjectivity, let X ∋ x = x1 + x2 ∈ N̂ ⊕ R̂ = N̂ ⊕ S(R̂).
Then x + S(X) = x1 + S(X), so that Φ(x1 + Ŝ(N̂)) = x + S(X).

Secondly, as N̂ is �nite-dimensional, it is a well-known result from Linear Algebra that
dim(N̂/Ŝ(N̂)) = dim(ker Ŝ).



68 4. SPECTRAL THEORY

Thirdly, we show ker Ŝ = kerS. As Ŝ is the restriction of S to N̂ , it su�ces to show
that any x ∈ X with Sx = 0 is contained in N̂ . Write such an x as x = x1 + x2 ∈ N̂ ⊕ R̂,
then Sx = 0 implies Sx2 = −Sx1. As S leaves the spaces N̂ and R̂ invariant, this implies
Sx2 = −Sx1 ∈ N̂ ∩ R̂, hence Sx1 = Sx2 = 0. Since S ↾R̂ is an isomorphism, it follows that

x2 = 0, so that x = x1 ∈ N̂ , as claimed.
Putting together these three observations, we have

dim(X/S(X)) = dim(N̂/S(N̂)) = dim(ker Ŝ) = dim(kerS).

�

4.3.2. Consequences of the Riesz-Schauder Theorem. We still assume X to be
Banach and T ∈ L(X,X) a compact operator. Recall from exercise sheet 11, problem 4,
the de�nition

V⊥ ∶= {x ∈X ∶ x′(x) = 0 ∀x′ ∈ V }

for a subspace V ⊂X ′.

Theorem 4.17 (Fredholm Alternative). Let 0 ≠ λ ∈ K. Then, either the homogeneous
equation

λx − Tx = 0

has the unique solution x = 0, in which case also the inhomogeneous equation

λx − Tx = y

has a unique solution for all y ∈ X; or there exist n = dim(ker(λI − T )) < ∞ many lin-
early independent solutions of the homogeneous equation, and the same number of linearly
independent solutions of the adjoint equation

λx′ − T ′x′ = 0,

in which case the inhomogeneous equation has a solution if and only if y ∈ ker(λ − T ′)⊥.

Proof. Without loss of generality, take λ = 1 (because λI − T = λ (I − T
λ
), and T

λ is
compact). If x = 0 is the only solution of x = Tx, then by Theorem 4.16

dim(X/(I − T )(X)) = dim(ker(I − T )) = 0,

which implies that the range of I − T is all of X. Therefore, x − Tx = y has a solution for
all y ∈X, and uniqueness of the solution follows from injectivity of I − T .

If, however, I − T is not injective, then by Theorem 4.16, the solution space of the
homogeneous equation (i.e., the kernel of I − T ) is �nite-dimensional, and the solution
space of the adjoint equation (i.e., the kernel of I − T ′) has the same dimension. In this
case, x − Tx = y has a solution if and only if y ∈ (I − T )(X) = ker(I − T ′)⊥, where we used
closedness of the range of I − T (Theorem 4.16) and problem 4 on exercise sheet 11.

�

Let us present an application of the Fredholm Alternative in the theory of integral
equations. Let k ∈ C([0,1]2) and

T ∶ C([0,1]) → C([0,1]), Tx(s) =
ˆ s

0
k(s, t)x(t)dt.

In the exercises you showed that T is compact. Consider the equation λx − Tx = 0 with
λ ≠ 0, which reads as

λx(s) =
ˆ s

0
k(s, t)x(t)dt.
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Without loss of generality, set λ = 1, because otherwise consider the compact operator T
λ .

We show injectivity of I − T : If x = Tx, then

∣x(s)∣ = ∣Tx(s)∣ ≤
ˆ s

0
∣k(s, t)∣∣x(t)∣dt ≤ s∥k∥∞∥x∥∞.

Substituting this estimate into itself, so to speak, we obtain

∣x(s)∣ = ∣Tx(s)∣ ≤
ˆ s

0
∣k(s, t)∣t∥k∥∞∥x∥∞dt ≤

s2

2
∥k∥2

∞∥x∥∞,

and iteration yields

∣x(s)∣ ≤ s
n∥k∥n∞
n!

∥x∥∞

for all n ∈ N, which converges to zero as n → ∞. Hence x = 0 and I − T is injective.
By the Fredholm Alternative, the equation λx − Tx = y has a unique solution for every
y ∈ C([0,1]). In other words, for any continuous function y and λ ≠ 0, there is a unique
solution to

λx(s) = y(s) +
ˆ s

0
k(s, t)x(t)dt.

Another application of the Riesz-Schauder Theorem is the Spectral Theorem for com-
pact operators:

Theorem 4.18 (Spectral Theorem for compact operators). Let T ∈ L(X,X) be com-
pact.

(1) If X has in�nite dimension, then 0 ∈ σ(T ).
(2) σ(T ) is at most countable.
(3) If λ ∈ σ(T ) ∖ {0}, then λ is an eigenvalue with �nite-dimensional eigenspace.
(4) σ(T ) has no accumulation point except possibly 0.

Proof. (1) If 0 ∈ ρ(T ), then T is invertible with continuous inverse, and since the
composition of a compact operator and a continuous operator is again compact (exercise),
we have that I = TT−1 is compact. This implies that X is �nite-dimensional.

(3) Again, we may set λ = 1 without loss of generality. If I − T is injective, then
ker(I − T ) = {0}, so by the Riesz-Schauder Theorem, X/(I − T )(X) has dimension zero,
which implies I − T is also surjective. But then 1 ∈ ρ(T ). Therefore, if 1 ∈ σ(T ), I − T
is not injective, meaning that 1 is an eigenvalue. Finite-dimensionality of the eigenspace
ker(λI − T ) also follows from the Riesz-Schauder Theorem.

(2) and (4) are both implied by the following claim: For any ε > 0, the set {λ ∈ σ(T ) ∶
∣λ∣ ≥ ε} is �nite.

Let us prove this by contradiction. If the claim were not true, then we could �nd an
ε > 0 and a sequence (λn)n∈N of pairwise distinct eigenvalues of T (here we use (3)) such
that ∣λn∣ ≥ ε. Denote by xn ≠ 0 a corresponding eigenvector. Then {xn ∶ n ∈ N} is linearly
independent; for otherwise there would exist N ∈ N and a linear combination

xN+1 =
N

∑
j=1

αjxj ,

for linearly independent {x1, . . . , xN}, and therefore

TxN+1 =
N

∑
j=1

αjTxj =
N

∑
j=1

αjλjxj

but also

TxN+1 = λN+1xN+1=
N

∑
j=1

αjλN+1xj .
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It would then follow from independence of {x1, . . . , xN} that αjλj = αjλN+1 for all j =
1, . . . ,N , and since not all αj can be zero, we obtain some j such that λj = λN+1, in
contradiction with the assumption that the λ's are pairwise distinct. This shows linear
independence of {xn ∶ n ∈ N}.

But now, if En ∶= span{x1, . . . , xn}, then

E1 ⊊ E2 ⊊ E3 ⊊ . . . .

By the Riesz Lemma, we may �nd yn = ∑nj=1 α
n
j xj ∈ En with ∥yn∥ = 1 and dist(yn,En−1) > 1

2
for n ≥ 2. If n >m ≥ 2, therefore,

∥Tyn − Tym∥ = ∥λnyn − (Tym + λnyn − Tyn)∥. (4.3)

Note that Tym ⊂ Em ⊂ En−1 because ym is a linear combination of {x1, . . . , xm}, which
are eigenvectors of T . Note further that λnyn − Tyn = ∑nj=1(λn − λj)αnj xj ∈ En−1, so that

from (4.3) we infer

∥Tyn − Tym∥ > 1

2
∣λn∣ ≥

ε

2
,

and thus the desired contradiction with compactness of T .
�

4.4. Spectral Theory for Bounded Operators on Hilbert Spaces

We get back to the study of Hilbert spaces. In this entire section, H will denote a
complex Hilbert space.

4.4.1. Continuous Functional Calculus. The Spectral Theorem from Linear Al-
gebra tells us that a complex matrix T ∈ Cn that is Hermitian (i.e., T t = T ) can be

diagonalised, that is, there exists a unitary matrix U ∈ Cn (i.e., U∗ ∶= U t = U−1) such that

UTU−1 =D,

where D = diag(λ1, . . . , λn) is a diagonal matrix with real entries λ1, . . . , λn, which are the
eigenvalues of T . (You might have learned in Linear Algebra that the Spectral Theorem
is true more generally for normal matrices, i.e., those such that T ∗T = TT ∗, but then
the eigenvalues might no longer be real. The theory presented here for bounded linear
operators on Hilbert spaces also transfers to normal operators, but we will stick to self-
adjoint operators anyway.)

The Spectral Theorem, as you have seen in Ordinary Di�erential Equations, gives rise
to the de�nition of the matrix exponential eT , which can be de�ned as

eT = U−1 diag(eλ1 , . . . , eλn)U.

Of course there is nothing special here about the exponential function: We could have
de�ned f(T ) for any function de�ned on the spectrum of T . This procedure of de�ning a
function of a matrix is known as a functional calculus. Here and in the next section, we
shall develop a functional calculus for bounded self-adjoint operators on a Hilbert space,
and then see what this tells us about the spectrum of such an operator.

In the sequel, let us denote by 1 the constant function t ↦ 1 and by t the identity
function t ↦ t. As before, for an operator T ∈ L(H,H), we denote by T ∗ ∈ L(H,H) its
Hilbert space adjoint. The following Proposition has already been known to us in the case
of compact self-adjoint operators, see the proof of Theorem 2.31.

Proposition 4.19 (spectral radius of self-adjoint operators). Let T ∈ L(H,H) be self-
adjoint. Then

r(T ) = max{∣λ∣ ∶ λ ∈ σ(T )} = ∥T ∥.



4.4. SPECTRAL THEORY FOR BOUNDED OPERATORS ON HILBERT SPACES 71

Proof. From Proposition 2.24, noting that T 2 is self-adjoint if T is, we have

∥T 2∥ = sup
∥x∥≤1

(x,T 2x) = sup
∥x∥≤1

(Tx,Tx) = sup
∥x∥≤1

∥Tx∥2 = ∥T ∥2.

We infer ∥T 2k∥ = ∥T ∥2k for all k ∈ N and therefore

r(T ) = lim
n→∞

∥Tn∥1/n = lim
k→∞

∥T 2k∥2−k = ∥T ∥.

The equality r(T ) = max{∣λ∣ ∶ λ ∈ σ(T )} is precisely Theorem 4.12. �

Theorem 4.20 (Continuous Functional Calculus). Let T ∈ L(H,H) be self-adjoint.
There exists a unique map Φ ∶ C(σ(T );C) → L(H,H) such that

(1) Φ(1) = I and Φ(t) = T ;
(2) Φ is a homomorphism of algebras and an involution, that is:

● Φ is linear,
● Φ is multiplicative, i.e., Φ(fg) = Φ(f) ○Φ(g),
● Φ(f) = Φ(f)∗ (involution property);

(3) Φ is continuous.

Proof. Let's prove uniqueness �rst, as that is very simple. As Φ is linear and mul-
tiplicative, the values Φ(1) and Φ(t), which are prescribed, uniquely determine Φ on the
space of polynomial functions. But the space of polynomial functions is dense in C(σ(T ))
(by the Stone-Weierstraÿ Theorem, noting that σ(T ) is compact), and Φ is continuous, so
Φ is already determined on all of C(σ(T )).

Now for existence: Obviously, if f ∶ t↦ ∑nk=0 akt
k is polynomial, then Φ must return

Φ(f) =
n

∑
k=0

akT
k,

whereby (1) and (2) are satis�ed on polynomial functions (for Φ(f) = Φ(f)∗ recall that
σ(T ) ⊂ R as T is self-adjoint). If Φ, restricted to the polynomials, can be shown to be
continuous, then there exists a continuous extension to all of C(σ(T )). We proceed in
several steps.

Step 1. We claim: If f is a polynomial function on σ(T ), then

σ(Φ(f)) = {f(λ) ∶ λ ∈ σ(T )}. (4.4)

To prove this, let �rst λ ∈ σ(T ), then we need to show f(λ) ∈ σ(Φ(f)). As λ is a root of
f − f(λ), there exists a polynomial g such that f(t) − f(λ) = (t − λ)g(t) for all t ∈ σ(T ).
So by de�nition of Φ, we have Φ(f) − f(λ)I = (T − λI)Φ(g).

Now if f(λ) ∈ ρ(Φ(f)), it would hold that

I = (T − λI)Φ(g)(Φ(f) − f(λ)I)−1 = (Φ(f) − f(λ)I)−1Φ(g)(T − λI)

(because all the operators commute with each other) � but this implies λ ∈ ρ(T ), contra-
diction. This proves the inclusion {f(λ) ∶ λ ∈ σ(T )} ⊂ σ(Φ(f)).

Conversely, let µ ∈ σ(Φ(f)) and assume f is not constant (otherwise the claim is clearly
satis�ed), so there exists a factorisation

f − µ = a(t − λ1)⋯(t − λn)

and therefore

Φ(f) − µI = a(T − λ1I)⋯(T − λnI).

Hence if λk ∈ ρ(T ) for all k = 1, . . . , n, then also µ ∈ ρ(Φ(f)), which is not the case, so that
there is some k = 1, . . . , n with λk ∈ σ(T ). But f(λk) = µ, which completes the proof of the
claim.
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Step 2. In this step we show continuity of Φ on the space of polynomial functions. We
compute

∥Φ(f)∥2 = ∥Φ(f)∗Φ(f)∥ = ∥Φ(ff)∥

= sup{∣λ∣ ∶ λ ∈ σ(Φ(ff))}

= sup{∣(ff)(λ)∣ ∶ λ ∈ σ(T )} = sup{∣f(λ)∣2 ∶ λ ∈ σ(T )}.

(4.5)

Here, in the passage from the �rst to the second line we used Proposition 4.19; note also
that Φ(ff) is self-adjoint (check it yourself). For the passage from the second to the third
line, we used Step 1.

The shows that ∥Φ∥ = ∥f∥∞, so indeed Φ is continuous with norm 1 on the space of
polynomial functions on σ(T ).

Step 3. As the polynomials are dense in C(σ(T )), we can uniquely extend the contin-
uous linear operator Φ to all of C(σ(T )) with the same norm2. It remains to show that
this operator has all the required properties.

In fact, linearity and continuity are clear (see footnote), and Φ(1) = I as well as
Φ(t) = T . Multiplicativity and the involution property follow by a simple approximation
argument; we give it only for the involution property: Let f ∈ C(σ(T )) and (fn)n∈N a
sequence of polynomials that converges uniformly to f . Then,

Φ(f) = Φ( lim
n→∞

fn) = Φ( lim
n→∞

fn) = lim
n→∞

Φ(fn)

= lim
n→∞

Φ(fn)∗ = ( lim
n→∞

Φ(fn))
∗
= Φ( lim

n→∞
(fn))∗ = Φ(f)∗,

where we used the continuity of f ↦ f , of S ↦ S∗, and the involution property of Φ
restricted to polynomials. �

Instead of Φ(f), we usually write f(T ) (just like we write eT for the matrix expo-
nential). Let us collect some properties of the functional calculus. For a linear operator
R ∶X →X, we write R ≥ 0 if (x,Rx) ≥ 0 for all x ∈H.

Theorem 4.21 (properties of the continuous functional calculus). Let T ∈ L(H,H)
self-adjoint and f ∈ C(σ(T )).

(1) ∥f(T )∥ = ∥f∥∞;
(2) When f ≥ 0, then also f(T ) ≥ 0;
(3) If Tx = λx, then also f(T )x = f(λ)x;
(4) σ(f(T )) = f(σ(T ));
(5) The set {f(T ) ∶ f ∈ C(σ(T ))} forms a commutative algebra of operators3. The

operator f(T ) is self-adjoint if and only if f is real-valued.

Proof. (1) was already showed in (4.5) when f is a polynomial; but since polynomials
are dense in C(σ(T )) and f ↦ f(T ) is continuous, the equality holds for general f ∈
C(σ(T )).

(2) If C(σ(T )) ∋ f ≥ 0, then there is 0 ≤ g ∈ C(σ(T )) with g2 = f . But then, for all
x ∈H,

(x, f(T )x) = (g(T )∗x, g(T )x) = (g(T )x, g(T )x) = (g(T )x, g(T )x) = ∥g(T )x∥2 ≥ 0.

(3) If f = tn, then clearly Tx = λx implies f(T )x = Tnx = λnx = f(λ)x, and by linearity
this remains true for all polynomial functions. The general statement then follows again
from density of polynomials in σ(T ).

2Indeed, if f ∈ C(σ(T )), pick a sequence of polynomials such that fn → f and de�ne Φ(f) ∶=
limn→∞ Φ(fn). It is not di�cult to show that the limit exists and is independent of the choice of ap-
proximating polynomials, and that Φ thus de�ned is itself linear and continuous.

3This means that the set forms a vector space and additionally is closed under multiplication (here:
composition of operators), which is commutative.
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(4) For the inclusion σ(f(T )) ⊂ f(σ(T )), suppose µ ∉ f(σ(T )), then we need to show
µ ∈ ρ(f(T )). By choice of µ, the function g ∶= (f − µ)−1 ∈ C(σ(T )) is well-de�ned with

g(f − µ) = (f − µ)g = 1.

Applying the functional calculus,

g(T )(f(T ) − µI) = (f(T ) − µI)g(T ) = I,

hence f(T ) − µI is invertible and thus µ ∈ ρ(f(T )) as claimed.
For the converse inclusion, note that σ(f(T )) = f(σ(T )) when f is a polynomial,

see (4.4). Let µ = f(λ) for some λ ∈ σ(T ), then we need to show µ ∈ σ(f(T )). For
n ∈ N, let gn be a polynomial function such that ∥f − gn∥∞ < 1

n . Then, in particular,

∣f(λ)−gn(λ)∣ < 1
n and also, as the functional calculus is continuous of norm one (see (4.5)),

∥f(T ) − gn(T )∥ < 1
n .

Therefore, µI − f(T ) is the limit (in the operator norm) of the sequence (gn(λ)I −
gn(T )), which consists of non-invertible operators (because σ(gn(T )) = gn(σ(T )) as gn
are polynomials). Now the set of non-invertible operators is closed in L(H,H) (think it
over � hint: Neumann Series), so that also µI−f(T ) is non-invertible and thus µ ∈ σ(f(T ))
as claimed.

(5) The property of being an algebra follows immediately from linearity and multiplica-
tivity of the functional calculus. Commutativity is clear for polynomials (because powers
of T commute with each other), and for the general case one proceeds by approximation.

If f is real-valued and polynomial, then clearly f(T ) is self-adjoint because T is. The
non-polynomial case follows again by approximation. On the other hand, if f is not real-
valued, then by (4) σ(f(T )) contains a number that is not real; but self-adjoint operators
have real spectrum (Lemma 2.30), so f(T ) cannot be self-adjoint. �

Let us describe the link between the continuous functional calculus and the spectrum
in the case of a compact self-adjoint operator T ∈ L(H,H), for which we already have a
spectral theorem (Theorem 2.31) at our disposal. We saw that we can write

Tx =
∞
∑
n=1

λn(x, en)en (4.6)

for every x ∈H, where (en)n∈N is a certain orthonormal system and λn ≠ 0 a corresponding
eigenvalue. We can extend (en)n∈N to an orthonormal basis by adding an orthonormal
basis of kerT , if necessary. Denote Pn ∶ x ↦ (x, en)en, which is the orthogonal projection
onto the span of en, and P0 the orthogonal projection onto kerT , so that T = ∑∞

n=0 λnPn
(set λ0 = 0).

For f ∈ C(σ(T )), then, de�ne

f(T ) =
∞
∑
n=0

f(λn)Pn.

We claim T ↦ f(T ) = Φ(f) is the functional calculus. For this, it su�ces to check the
properties of Theorem 4.20, as these uniquely determine Φ. First, from (4.6) it is clear
that 1(T ) = I and t(T ) = T . Secondly, f ↦ f(T ) is linear, but also multiplicative, as

(fg)(T )x = f(0)g(0)P0x +
∞
∑
n=1

f(λn)g(λn)(x, en)en

= f(0)P0g(T )x +
∞
∑
n=1

f(λn) (g(T )x, en) en = f(T )g(T )x.
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It is also involutive, because

(f(T )x, y) = (f(0)P0x +
∞
∑
n=1

f(λn)(x, en)en, P0y +
∞
∑
k=1

(y, ek)ek)

= f(0)(P0x,P0y) +
∞
∑
n=1

f(λn)(x, en)(y, en)

= (P0x, f(0)P0y) +
∞
∑
n=1

(x, en)f(λn)(y, en) = (x, f(T )y).

Finally, it is continuous as a map C(σ(T )) → L(H,H), because

∥f(T )x∥2 = ∣f(0)∣2∥P0x∥2 +
∞
∑
n=1

∣f(λn)∣2∣(x, en)∣2

≤ ∥f∥2
∞ (∥P0x∥2 +

∞
∑
n=1

∣(x, en)∣2) = ∥f∥2
∞∥x∥2.

This shows, for compact operators, the relation between the functional calculus and
spectral theory. As we have seen, given the spectral theorem, we could construct the
functional calculus. But it would also work the other way round: Given f ↦ f(T ), we can
reconstruct the projections Pn onto the eigenspaces via

Pn = fn(T ), fn(λj) = δnj (n ≥ 1, j ≥ 0) (4.7)

where we set λ0 = 0 and thus de�ne a continuous (!) function fn on the set σ(T ) = {λn ∶
n ∈ N} ∪ {0}.

For bounded (but not necessarily compact) operators, we do not yet have a spectral
theorem at our disposal, but the functional calculus is available from Theorem 4.20. We
will therefore follow the strategy just outlined to gain insight into the eigenspaces from
the functional calculus. A technical problem is that, for bounded operators, the spectrum
need no longer be discrete4, so the functions as in (4.7) would not be continuous on σ(T ).
This means we have to extend our calculus from continuous to measurable functions.

4.4.2. Measurable Functional Calculus. For a compact set K ⊂ C, let L∞(K)
be the Banach space (!) of bounded measurable functions5 M → C, together with the
supremum norm.

Lemma 4.22. L∞(K) is the smallest function space containing C(K) that is closed
under pointwise limits of uniformly bounded functions.

More precisely: Assume C(K) ⊂ U ⊂ L∞(K) has the property that every (fn)n∈N ⊂ U
with supn∈N ∥fn∥∞ < ∞ and fn → f pointwise satis�es f ∈ U . Then U = L∞(K).

Proof. Let V be the intersection over all sets S with the properties described, i.e.,
S ⊃ C(K) is closed with respect to pointwise limits of uniformly bounded functions (such
sets exists because L∞ is one of them). By de�nition, V ⊃ C(K).

Let us show �rst that V is a vector space. So let f ∈ C(K) and set Vf ∶= {g ∈ L∞(K) ∶
f + g ∈ V }. It is easy to see Vf ⊃ C(K) and Vf is closed with respect to pointwise limits
of uniformly bounded functions. This implies Vf ⊃ V , or in other words: If f ∈ C(K) and
g ∈ V , then f + g ∈ V .

Let now h ∈ V and consider Vh ∶= {g ∈ L∞(K) ∶ h + g ∈ V }. By the argument we just
put forward, Vh ⊃ C(K). Also, Vh is closed with respect to pointwise limits of uniformly
bounded functions. It follows that V ⊂ Vh, whereby we have showed: If h ∈ V and g ∈ V ,
then h + g ∈ V (as g ∈ V implies g ∈ Vh).

4This is why the sum in (4.6) will have to be replaced by an integral.
5Note this is not the space L∞(K), because the latter consists of (equivalence classes of) functions

that are bounded only up to a nullset.
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If α ∈ C and g ∈ V then a similar argument (where one would show that Vα ∶= {g ∈
L∞ ∶ αg ∈ V } contains C(K) and is closed with respect to pointwise limits of uniformly
bounded functions) yields αg ∈ V , so we have showed that V is a vector space. Also, V is
closed with respect to the supremum norm, because if gn → g uniformly and gn ∈ V for all
n ∈ N, then gn are uniformly bounded and pointwise convergent, so g is contained in any
space closed with respect to pointwise limits of uniformly bounded functions, and thus in
V .

Next we show that step functions6 are contained in V . Since (as you might remember
from measure theory) step functions are dense in L∞ with respect to uniform convergence,
it will then already follow V = L∞(K).

In fact, since V is a vector space, it su�ces to show χE ∈ V for any measurable E ⊂K.
We do this by a standard measure theory argument: We show that ∆ ∶= {E ∈ Σ ∶ χE ∈ V } is
a Dynkin system containing a ∩-stable generator of Σ, where Σ denotes the Borel σ-algebra
of K. Then ∆ = Σ by a well-known theorem in measure theory.

As a ∩-stable generator of Σ, consider the open sets in K. They are contained in ∆:
Indeed, when E ⊂K is open, then there exists a sequence (fn)n∈N ⊂ C(K) with 0 ≤ fn ≤ 1
for all n ∈ N and fn → χE pointwise. So χE ∈ V .

It remains to prove ∆ is Dynkin. There are two de�ning properties of Dynkin spaces:
First, if E,F ∈ ∆ and F ⊂ E, then also E ∖ F ∈ ∆. This is true because χE∖F = χE − χF
and V is a vector space. Secondly, if (En)n∈N ⊂ ∆ are pairwise disjoint, then E ∶= ⋃n∈NEn
is also in ∆. This is also true, as χE = limN→∞∑Nn=1 χEn ∈ V as V is closed under pointwise
convergence of uniformly bounded functions.

�

As a preparation for the construction of the measurable functional calculus, let me
state without proof the Riesz Representation Theorem (not to be confused with the Riesz-
Fréchet Representation Theorem): If K ⊂ C is compact and l ∈ C(K)′ is a bounded linear
functional, then there exists a complex-valued measure µ ∶ Σ → C, where Σ is again the
Borel σ-algebra on M , such that

l(f) =
ˆ
K
f(z)dµ(z) ∀f ∈ C(K).

Moreover, ∥l∥ = ∥µ∥, where ∥µ∥ is the total variation norm of µ explained below.
The notion of complex-valued measure requires some explanation, as you probably

have only seen measures with non-negative real values so far. A map Σ → C is called a
(complex) measure if it is σ-additive, that is, if

µ(⋃
n∈N

En) =
∞
∑
n=1

µ(En) ∈ C whenever En ∈ Σ are pairwise disjoint.

We will not go into the theory of complex measures here, but it can be shown that a
complex measure µ can be decomposed as µ = µ+R−µ

−
R+i(µ

+
I −µ

−
I), where all four measures

are �nite measures with values in R+
0 , and then the integral of f ∈ C(K;C) with respect

to µ is de�ned asˆ
K
f(z)dµ(z) =

ˆ
K
f(z)dµ+R(z) −

ˆ
K
f(z)dµ−R(z)

+ i(
ˆ
K
f(z)dµ+I(z) −

ˆ
K
f(z)dµ−I(z)) .

Accordingly, many properties of usual measures transfer to complex measures, like the
Dominated Convergence Theorem.

6Recall from measure theory that step functions take the form ∑nk=1 αkχEk , where αk ∈ C and Ek are
measurable, i.e., they are contained in the Borel σ-algebra of K. The function χEk is then the indicator
function of Ek.
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The vector space (!) of complex measures on K can be equipped with a norm, the total
variation norm, given as

∥µ∥2 ∶= (µ+R(K) + µ−R(K))2 + (µ+I(K) + µ−I(K))2
.

One then has the estimate

∣
ˆ
K
f(z)dµ(z)∣ ≤ ∥f∥∞∥µ∥ ∀f ∈ L∞(K).

Theorem 4.23 (Measurable Functional Calculus). Let T ∈ L(H,H) be self-adjoint.
There exists a unique map Φ ∶ L∞(σ(T )) → L(H,H) such that

(1) Φ(1) = I and Φ(t) = T ;
(2) Φ is a homomorphism of algebras and an involution;
(3) Φ is continuous.
(4) If fn ∈ L∞(σ(T )) for all n ∈ N, supn∈N ∥fn∥∞ < ∞ and fn → f pointwise, then

also (Φ(fn)x, y) → (Φ(f)x, y) for all x, y ∈H.

Proof. Again let us prove uniqueness �rst. We have seen that (1), (2), and (3)
already determine Φ on C(σ(T )). By Lemma 4.22, we can approximate each f ∈ L∞ as
pointwise limit of uniformly bounded continuous functions (think it over). Property (4)
then determines Φ(f) from its values along the approximation sequence.

For existence, let f ∈ L∞(σ(T )) and x, y ∈H. Consider lx,y ∶ C(σ(T )) → C given as

lx,y(g) = (g(T )x, y),

which is linear and bounded, because

∣lx,y(g)∣ ≤ ∥g(T )∥∥x∥∥y∥ = ∥g∥∞∥x∥∥y∥. (4.8)

By the Riesz Representation Theorem, there is a complex measure µx,y with ∥µx,y∥ ≤ ∥x∥∥y∥
such that

lx,y(g) =
ˆ
σ(T )

g(z)dµx,y(z) ∀g ∈ C(σ(T )).

Consider now the sesquilinear map

(x, y) ↦
ˆ
σ(T )

f(z)dµx,y(z),

which is bounded since

∣
ˆ
σ(T )

f(z)dµx,y(z)∣ ≤ ∥f∥∞∥µx,y∥ ≤ ∥f∥∞∥x∥∥y∥.

Owing to the Lax-Milgram Theorem (exercise sheet 13, problem 4) there is Φ(f) ∈ L(H,H)
such that

(Φ(f)x, y) =
ˆ
σ(T )

f(z)dµx,y(z) ∀x, y ∈H.

Note, by de�nition, that Φ coincides with the continuous functional calculus on C(σ(T )),
so that (1) is already clear, and so is (3).

For (4), we use the Dominated Convergence Theorem for the complex measure µx,y to
�nd

(Φ(fn)x, y) =
ˆ
σ(T )

fn(z)dµx,y(z) →
ˆ
σ(T )

f(z)dµx,y(z) = (Φ(f)x, y).

It remains to prove (2). We only show multiplicativity, using Lemma 4.22. Note �rst that
multiplicativity holds on C(σ(T )), because there Φ is simply the continuous functional
calculus.
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Fix now g ∈ C(σ(T )) and de�ne

U = {f ∈ L∞(σ(T )) ∶ Φ(fg) = Φ(f) ○Φ(g)}.

Then C(σ(T )) ⊂ U . To invoke Lemma 4.22, let (fn)n∈N ⊂ U be uniformly bounded and
pointwise convergent to f ∈ L∞(σ(T )). By property (4), we have

(Φ(fn)(Φ(g)x), y) → (Φ(f)(Φ(g)x), y) (4.9)

as n→∞, but also, as fn ∈ U ,

(Φ(fn)(Φ(g)x), y) = (Φ(fng)x, y) → (Φ(fg)x, y) . (4.10)

It follows that Φ(f) ○Φ(g) = Φ(fg), hence f ∈ U . Lemma 4.22 then yields U = L∞(σ(T )).
Now let f ∈ L∞(σ(T )) and set

V = {g ∈ L∞(σ(T )) ∶ Φ(fg) = Φ(f) ○Φ(g)}.

By the previous argument, V ⊃ C(σ(T )), and with the same computations as in (4.9), (4.10)
one �nds by Lemma 4.22 that V = L∞(σ(T )), whereby Φ is multiplicative, as claimed. �

Again we shall write f(T ) instead of Φ(f). Note that f(T ) and g(T ) commute, since
f(T )○g(T ) = (fg)(T ) = (gf(T )) = g(T )○f(T ). If f is real-valued, then f(T ) is self-adjoint
by virtue of the involution property.

Corollary 4.24. If fn ∈ L∞(σ(T )) for all n ∈ N, supn∈N ∥fn∥∞ < ∞ and fn → f
pointwise, then also fn(T )x→ f(T )x for all x ∈H.

Proof. By part (4) of Theorem 4.23, under the given assumptions we have weak
convergence of fn(T )x to f(T )x for every x ∈H. As weak convergence and convergence of
the norms imply strong convergence (why?), it su�ces to show ∥fn(T )x∥ → ∥f(T )x∥. But
this is true since

∥fn(T )x∥2 = (fn(T )x, fn(T )x) = (fn(T )∗fn(T )x,x) = ((fnfn)(T )x,x)

→ ((ff)(T )x,x) = ∥f(T )x∥2,

where we applied property (4) of Theorem 4.23 to fnfn. �

4.4.3. Spectral Measures. Within our measurable functional calculus, functions of
the form f = χA ∈ L∞(σ(T )) with measurable A ⊂ σ(T ) are of particular interest. As
before, we denote by Σ ∈ P(σ(T )) the Borel σ-Algebra generated by the (relatively) open
subsets of σ(T ). (Note Σ can equivalently be characterised as the family of sets of the
form B ∩ σ(T ), where B is a measurable subset of R.)

Lemma 4.25. Let A ∈ Σ and EA ∶= χA(T ). Then EA is an orthogonal projection, that
is, E2

A = EA and ker(EA) ⊥ EA(H).

Proof. EA is a projection because E2
A = χA(T )2 = χ2

A(T ) = χA(T ) = EA. Also, as χA
is real-valued, EA is self-adjoint, so for x ∈ kerEA and y ∈H we have (x,EAy) = (EAx, y) =
0. �

Lemma 4.26. Let T ∈ L(H,H) be self-adjoint. Then,

(1) χ∅(T ) = 0, χσ(T )(T ) = I;
(2) for pairwise disjoint A1,A2, . . . ∈ Σ and x ∈H,

∞
∑
k=1

χAk(T )x = χ⋃∞k=1Ak(T )x;

(3) χA(T )χB(T ) = χA∩B(T ) for A,B ∈ Σ.
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Proof. (1) The function χ∅ is nothing but the zero function, so χ∅(T ) is the zero
operator. Likewise, χσ(T ) is constantly 1 on σ(T ), so χσ(T )(T ) = I.

(2) For each N ∈ N, note that χ⋃Nk=1Ak = ∑
N
k=1 χAk , as the sets Ak are pairwise disjoint.

Thus, for �nite N the assertion follows from linearity of the functional calculus. In the
limit N →∞, we use Corollary 4.24 to conclude.

(3) This follows from χAχB = χA∩B and multiplicativity of the functional calculus. �

Definition 4.27 (spectral measure). Let Σ be the Borel σ-algebra on R. A map
E ∶ Σ→ L(H,H), A↦ EA is called spectral measure if each EA is an orthogonal projection,
and

(1) E∅ = 0, ER = I;
(2) for pairwise disjoint A1,A2, . . . ∈ Σ and x ∈H,

∞
∑
k=1

EAkx = E⋃∞k=1Akx.

We say that a spectral measure E is compactly supported if there is a compact K ⊂ R with
EK = I.

The previous two lemmata tell us that, for a self-adjoint bounded operator T , EA =
χA(T ) de�nes a spectral measure compactly supported on σ(T ). In general, a spectral
measure is really a measure (because it assigns the value zero to the empty set and is
σ-additive), only with values in L(H,H). One therefore often talks about operator-valued
measures in this context.

If E is a spectral measure, then EA is self-adjoint for all A ∈ Σ, because orthogonal
projections are always self-adjoint. In case a spectral measure arises from the functional
calculus of a bounded self-adjoint operator T , then EAEB = EBEA = EA∩B, because

EAEB = χA(T )χB(T ) = (χAχB)(T ) = χA∩B(T ) = EA∩B = EBEA.

One can show that this is true in general for spectral measures:

Proposition 4.28. Let E be a spectral measure. Then for A,B ∈ Σ,

EAEB = EBEA = EA∩B.

In particular, the values of a spectral measure always commute with each other.

Proof. Let us assume for the moment that A and B are disjoint. Then, by additivity,

EA +EB = EA∪B = E2
A∪B = (EA +EB)2

= E2
A +EAEB +EBEA +E2

B = EA +EAEB +EBEA +EB,

whence EAEB = −EBEA. Using this,

EAEB = EAE2
B = −EBEAEB = E2

BEA = EBEA,

so that EAEB = ±EBEA, which is only possible when EAEB = EBEA = 0 = E∅ = EA∩B.
In the general situation, we can use this to compute

EAEB = (EA∩B +EA∖B)(EA∩B +EB∖A)
= E2

A∩B +EA∩BEB∖A +EA∖BEA∩B +EA∖BEB∖A = EA∩B,

and of course also EBEA = EA∩B by interchanging A and B. �

The purpose of a measure's life is to be integrated against (discuss). This is no di�erent
for spectral measures. Let us outline how one can integrate a function f ∈ L∞(K) with
respect to a spectral measure supported on K.
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First of all, if f = ∑nk=1 αkχAk is an elementary function (where αk ∈ C for k = 1, . . . , n
and (Ak)k=1,...,n ⊂ Σ are pairwise disjoint), then of course we setˆ

K
f(λ)dEλ ∶=

n

∑
k=1

αkEAk .

It is easy to check (just as in measure theory) that the value of the integral does not depend
on the speci�c way the elementary function is written.

Next, from measure theory it is known that for general f ∈ L∞(K) there exists a
sequence of elementary functions fn that converge to f uniformly, so we setˆ

K
f(λ)dEλ ∶= lim

n→∞

ˆ
K
fn(λ)dEλ.

Again one can show without great di�culties that the limit exists and is independent of
the choice of approximating sequence (fn)n∈N (see [5, p. 323 f.]). Note however that the
value of the integral is an element of L(H,H), so the limit is taken in the operator norm.

Sometimes we write
´
fdE instead of

´
K f(λ)dEλ. We condense the discussion into

the following theorem:

Theorem 4.29 (integration w.r.t. a spectral measure). Let a spectral measure E be
supported on a compact set K ⊂ R. There exists a linear and continuous map

L∞(K) → L(H,H), f ↦
ˆ
K
f(λ)dEλ,

and ∥
´
fdE∥ ≤ ∥f∥∞. If f is real-valued, then

´
fdE is self-adjoint.

Proof. The only thing left to prove is the estimate ∥
´
fdE∥ ≤ ∥f∥∞. (The self-adjoint

property is clear for elementary functions and then follows by approximation in the general
case.) It su�ces to prove the estimate for elementary functions, as the general case follows
by approximation. First note that EAx ⊥ EBx if A ∩ B = ∅, because (EAx,EBx) =
(x,EAEBx) = (x,E∅x) = 0.

So let f = ∑nk=1 αkχAk with measurable and pairwise disjoint Ak ⊂ K and x ∈ H, then
we use Pythagoras' Theorem to compute

∥
ˆ
fdEx∥

2

= ∥
n

∑
k=1

αkEAkx∥
2

=
n

∑
k=1

∥αkEAkx∥
2 =

n

∑
k=1

∣αk∣2∥EAkx∥
2

≤ sup
k=1,...,n

∣αk∣2
n

∑
k=1

∥EAkx∥
2 = ∥f∥2

∞ ∥
n

∑
k=1

EAkx∥
2

= ∥f∥2
∞ ∥E⋃nk=1Akx∥

2

≤ ∥f∥2
∞∥x∥2,

where in the last step we used that E⋃nk=1Ak is an orthogonal projection, so its norm is
one. �

4.4.4. The Spectral Theorem for Bounded Self-Adjoint Operators.

Theorem 4.30. Let E be a spectral measure of compact support and T ∶=
´
R λdEλ.

Then the measurable functional calculus of T is given by

f ↦ f(T ) ∶=
ˆ
σ(T )

fdE.

Proof. Note that T is self-adjoint as the identity function t is real. If f ∈ L∞(σ(T )),
then extend f to all of R by zero. Then, the operator

Ψ ∶ L∞(σ(T )) → L(H,H), Ψ(f) ∶=
ˆ
R
fdE

is linear and continuous by Theorem 4.29.
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Multiplicativity is true for indicator functions, because EAEB = EA∩B and thereforeˆ
R
χAχBdE =

ˆ
R
χA∩BdE = EA∩B = EAEB = (

ˆ
R
χAdE)(

ˆ
R
χBdE) .

It then extends to L∞(σ(T )) by approximation. Similarly for the involution property: If
f = αχA with α ∈ C, then for x, y ∈H,

(x, f(T )y) = (x,αEAy) = (αEAx, y) = (f(T )x, y),
and the general statement follows by approximation.

Property (4) from Theorem 4.23 is seen as follows: If Σ is again the Borel σ-algebra
on σ(T ), then for x, y ∈H the map µx,y ∶ Σ→ C, A↦ (EAx, y) is a complex measure and

(Ψ(f)x, y) =
ˆ
R
fdµx,y

(prove this for step functions and approximate). So when fn → f pointwise where (fn)n∈N ⊂
L∞(σ(T )) is uniformly bounded, then by Dominated Convergence

(Ψ(fn)x, y) =
ˆ
R
fndµx,y →

ˆ
R
fdµx,y = (Ψ(f)x, y),

which establishes (4).
It remains to prove Ψ(1) = I and Ψ(t) = T . Since the extension by zero of 1 to all of R

is χσ(T ), then Ψ(1) =
´
σ(T ) 1dE = Eσ(T ), so we will prove Eσ(T ) = I. From this it will also

follow that E is supported on σ(T ) and thus Ψ(t) =
´
R λdEλ = T by de�nition of T .

In order to show Eσ(T ) = I, let (a, b] ⊂ R be an interval that contains the (compact!)
support of E, so that E(a,b] = I. Let µ ∈ ρ(T ). We claim that EU = 0 for some neighbour-
hood U ∋ µ. Indeed, since µI −T is invertible, an easy argument involving Neumann Series
shows that there exists δ > 0 such that ∥S − (µI − T )∥ ≤ δ implies S is invertible with

∥S−1∥ ≤ C ∶= ∥(µI − T )−1∥ + 1.

Without loss of generality, set δ ∶= b−a
N for su�ciently large N ∈ N and assume δ < 1

C . Let
ak ∶= a+kδ de�ne the corresponding equidistant partition of (a, b], where k = 0, . . . ,N , and
consider the elementary function

f =
N

∑
k=1

akχ(ak−1,ak],

which uniformly approximates the identity t on (a, b]. The estimate ∥
´
gdE∥ ≤ ∥g∥∞ from

Theorem (4.29) implies

∥T −
ˆ
fdE∥ = ∥

ˆ
(a,b]

(λ − f)dEλ∥ ≤ ∥t − f∥∞ = δ. (4.11)

Set Ek ∶= E(ak−1,ak] for k = 1, . . . ,N and note
´
(a,b] fdE = ∑Nk=1 akEk as well as ∑

N
k=1Ek = I

thanks to σ-additivity. Estimate (4.11) thus implies

∥(µI − T ) −
N

∑
k=1

(µ − ak)Ek∥ ≤ δ.

By choice of δ, the operator ∑Nk=1(µ− ak)Ek is invertible, and the norm of its inverse is at
most C. On the other hand, the norm of the inverse is seen to be at least7

sup{∣µ − ak∣−1 ∶ Ek ≠ 0},

7Indeed, if Ek ≠ 0, pick a unit vector ỹ ∈ Ek(H) and set y ∶= µ−ak
∣µ−ak ∣

2 ỹ, then ∥y∥ = ∣µ − ak ∣−1 and

∥∑Nk=1(µ − ak)Eky∥ = ∥ỹ∥ = 1. Note the interval (a, b] and the �neness δ can always be chosen such that
µ − ak ≠ 0 for all k = 1, . . . ,N .
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implying that Ek = 0 whenever ∣µ − ak∣ < 1
C . Since δ <

1
C , there exists at least one k such

that ∣µ − ak∣ < 1
C , µ ∈ (ak−1, ak), and the corresponding Ek = E(ak−1,ak] is zero. This shows

(with U = (ak−1, ak)) that there exists a neighbourhood U ∋ µ such that EU = 0.
Finally, let K ⊂ ρ(T ) be compact. As we just showed, for each µ ∈ K, there is a

neighbourhood Uµ ∋ µ such that EUµ = 0. As K is compact, there exist �nitely many µj
(j = 1, . . . n) such that K ⊂ ⋃nj=1Uµj , and by σ-additivity, EK = 0. For x ∈ H, the �nite

measure A ↦ (EAx,x) is non-negative (why?) and therefore inner regular (cf. [5, Satz
I.2.14]), meaning that the measure of any open set is the supremum of the measures of
compact sets contained in the given open set. In particular, we have (Eρ(T )x,x) = 0 and
therefore Eσ(T ) = I.

�

Theorem 4.31 (Spectral Theorem). Let T ∈ L(H,H) be self-adjoint. Then there exists
a unique spectral measure E supported on σ(T ) such that

T =
ˆ
σ(T )

λdEλ. (4.12)

The map

L∞(σ(T )) → L(H,H), f ↦ f(T ) =
ˆ
fdE (4.13)

is precisely the measurable functional calculus of T .

Proof. Let E be the spectral measure associated with T through the functional cal-
culus, i.e., EA = χA(T ). Then E is supported on σ(T ), because χσ(T )(T ) = I. We shall
show (4.12).

To this end, set S ∶=
´
σ(T ) λdEλ, then we need to show S = T . For ε > 0, let fε =

∑nk=1 αkχAk be an elementary function such that ∥t − fε∥∞ < ε on σ(T ), then

∥T − S∥ ≤ ∥T − fε(T )∥ + ∥fε(T ) − fε(S)∥ + ∥fε(S) − S∥.

We treat the three terms individually:

● ∥T − fε(T )∥ ≤ ∥t − fε∥∞ < ε, where we used that the functional calculus has norm
one;

● ∥S − fε(S)∥ = ∥
´
σ(T )(λ − fε(λ))dEλ∥ ≤ ∥t− fε∥∞ < ε, where we used Theorem 4.30

to �nd fε(S) =
´
σ(T ) fεdE and Theorem 4.29 for the estimate.

● fε(T ) − fε(S) = ∑nk=1 αkχAk(T ) −∑nk=1 αkEAk = 0.

Together, we have ∥T − S∥ < 2ε, and since ε was arbitrary, T = S, so (4.12) is proved. The
fact that the functional calculus is then given as (4.13) is the content of Theorem 4.30.
Uniqueness then follows by taking f = χA in (4.13), which determines EA uniquely for any
A ∈ Σ. �

We have thus obtained a one-to-one correspondence between bounded self-adjoint op-
erators and spectral measures of compact support, and we have completely characterised
the functional calculus of bounded self-adjoint operators.

Let us close this course with a few examples.

Example 4.32. (1) If T is compact, then we know there exists a countable or-
thonormal system (en)n∈N of eigenvectors of T with corresponding eigenvalues λn,
and T = ∑∞

n=1 λnPn, where Pn denotes the orthogonal projection onto span{en}.
Hence, the spectral measure of T is given as

E =
∞
∑
n=0

δλnPn,
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where δλn denotes the (real-valued) Dirac measure centred at λn and as before
we set λ0 = 0 and P0 the orthogonal projection onto kerT . In other words, for
A ∈ Σ, EA is the orthogonal projection of the subspace spanned by all en such
that λn ∈ A.

The operator T is then written as

Tx =
ˆ
R
λdEλx =

∞
∑
n=1

λnPnx =
∞
∑
n=1

λn(x, en)en (x ∈H)

in accordance with Theorem 2.31. Also, for a bounded function f de�ned on
{λn ∶ n ∈ N ∪ {0}} and x ∈H,

f(T )x = f(0)P0x +
∞
∑
n=1

f(λn)(x, en)en.

(2) On H = L2(0,1;C), consider a multiplication operator of the form T ∶ f ↦ φf ,
where φ ∈ L∞(0,1) is given and real-valued (so that T is self-adjoint). Then, for
a measurable set A ⊂ R, EA has the form

EAf = χφ−1(A)f.

Let us check that E thus given is really a spectral measure: Clearly EA is a
projection, because χ2

φ−1(A) = χφ−1(A). It is also orthogonal, because the kernel of

EA is the set of L2 functions essentially supported outside φ−1(A), its range is the
set of functions essentially supported in φ−1(A), and both spaces are obviously
orthogonal.

For A = ∅, EAf = χ∅f = 0 and ERf = χ[0,1]f = f . Also, E is supported on the
compact set {x ∈ R ∶ ∣x∣ ≤ ∥φ∥∞}.

If (An)n∈N ⊂ Σ are pairwise disjoint, then so are the sets φ−1(An), and there-
fore

χ⋃∞n=1 φ−1(An) =
∞
∑
n=1

χφ−1(An),

whence follows the σ-additivity of E ∶ Σ→ L(H,H).
Finally, we show that indeed T =

´
λdE: For ε > 0 let Ψε ∶ [−∥φ∥∞, ∥φ∥∞] → R

be an elementary function such that ∥t−Ψε∥∞ < ε. We shall write Ψε = ∑Nn=1 αnχAn
and we may assume in addition that ⋃Nn=1An ⊃ φ([0,1]). Since ∥t −Ψε∥∞ < ε, we
know that ∣αn − λ∣ < ε whenever λ ∈ An.

Observe that then, for any x ∈ [0,1], there is exactly one n ∈ {1, . . . ,N} such
that φ(x) ∈ An, so that

∣
N

∑
k=1

αkχφ−1(Ak)(x) − φ(x)∣ = ∣αn − φ(x)∣ < ε. (4.14)

Therefore,

∥
ˆ
R

Ψε(λ)dEλ − φ∥ = ∥
N

∑
n=1

αnEAn − φ∥ = ∥
N

∑
n=1

αnχφ−1(An) − φ∥ < ε, (4.15)

and it follows that indeed

T =
ˆ
R
λdEλ.

Note carefully that the last norm in (4.15) is the operator norm of the multiplica-

tion operator with the function ∑Nn=1 αnχφ−1(An) −φ, which equals the supremum
norm of the function itself (which in turn is less than ε by (4.14)).
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(3) Let f ∈ L2
per(0,2π) and φ ∈ L∞per(0,2π;R) such that φ(x) = φ(−x) for all x ∈ R,

then the convolution of these two functions is de�ned as

f ∗ φ(x) ∶=
ˆ 2π

0
f(y)φ(x − y)dy.

We claim f ∗φ is again a periodic L2 function8, and for �xed φ the linear operator
Tf ∶= f ∗ φ is bounded with norm at most 2π∥φ∥∞. Indeed,

∥f ∗ φ∥2
L2 =
ˆ 2π

0
∣
ˆ 2π

0
f(y)φ(x − y)dy∣

2

dx

≤
ˆ 2π

0
(
ˆ 2π

0
∣f(y)∣∣φ(x − y)∣dy)

2

dx

≤ ∥φ∥2
∞(2π)2

ˆ 2π

0

ˆ 2π

0
∣f(y)∣2 dy

2π
dx = (2π∥φ∥∞)2∥f∥2

L2 ,

where for the last estimate we used Jensen's inequality for the convex function
∣ ⋅ ∣2 and the probability measure dx

2π .
Moreover, T is self-adjoint, because by Fubini's Theorem and the property of

φ of being real-valued and even,

(Tf, g) =
ˆ 2π

0

ˆ 2π

0
f(y)φ(x − y)g(x)dydx = (f, Tg) ∀f, g ∈ L2

per(0,2π).

For n ∈ Z, let en(x) = 1√
2π
einx as in Section 2.2. These form an orthonormal basis

of eigenfunctions of T with eigenvalue
√

2πφ̂(n) (recall the de�nition of Fourier
coe�cients in Section 2.2), because

Ten(x) =
ˆ 2π

0

1√
2π
einyφ(x − y)dy =

ˆ 2π

0

1√
2π
einxein(x−y)φ(x − y)dy

= en(x)
ˆ 2π

0
e−inyφ(y)dy =

√
2πφ̂(n)en(x).

We thus have the spectral decomposition

Tf =
√

2π
∞
∑

n=−∞
φ̂(n)Pnf =

√
2π

∞
∑

n=−∞
φ̂(n)f̂(n)en,

where again Pn denotes the orthogonal projection onto span{en}. The spectral
measure is given as

E =
∞
∑

n=−∞
δ√2πφ̂(n)Pn.

The situation is therefore similar to the �rst example � in fact it is not di�cult
to show that T is compact.

8In fact, when f ∈ L2, then by Young's inequality for convolutions, f ∗ φ ∈ L2 is even true when φ is
only in L1, and ∥f ∗ φ∥L2 ≤ ∥f∥L2∥φ∥L1 .
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