Hyperbolic Conservation Laws

Emil Wiedemann
Ulm University, Winter 2020/2021

Preface

These lecture notes are based on graduate-level courses I gave at Bonn in summer term 2016, and in Ulm in winter 2020/21. I have based most of these notes on Evans' books [1,2]. Students taking this course should have some acquaintance with functional analysis, but are not required to have taken a first course on partial differential equations. The course is intended for 14 weeks at 180 minutes per week, at a relatively slow pace. In any case, the second iteration in 2020/21 took place remotely, essentially as a reading class, due to the COVID-19 crisis, so that lecture times were largely fictitious.

Hyperbolic conservation laws form an important class that is often neglected in courses on partial differential equations (PDEs). A focus on elliptic and parabolic equations, however, often misleads students to think that PDEs always behave nicely and regularly, with classically established wellposedness theories. In the hyperbolic case, however, things are different: The ongoing lack of an existence and uniqueness theory for hyperbolic systems constitutes, as Peter Lax once said, a 'scientific scandal'. The lack of regularity, already exhibited in the scalar situation, is not just a shortcoming of current analysis, but is inherent in the models and physically visible, e.g., in the form of shock waves.

Conservation laws naturally appear in numerous fields of application, such as fluid dynamics, mathematical biology, collective behaviour, or traffic flow. This course, however, focuses on problems of mathematical analysis in terms of existence and uniqueness of entropy solutions, and an analysis of the Riemann problem. While the theory of scalar conservation laws can be considered reasonably complete, the corresponding problems for systems are wide open and constitute the subject of very active current research. This course can thus be the starting point for a Master's thesis.

I am deeply grateful to Raphael Wagner, who not only composed an exquisite set of example sheets, but also offered to typeset my (often sketchy and illegible) handwritten notes.

Contents

Preface 2
Chapter 1. Introduction 4
Chapter 2. Scalar Conservation Laws 6
2.1. The Method of Characteristics 6
2.2. Weak Solutions 10
2.3. Entropy Solutions 16
2.4. Compensated Compactness 26
Chapter 3. Hyperbolic Systems of Conservation Laws 37
3.1. Basics 37
3.2. Riemann's Problem 41
3.3. Riemann Invariants ($\mathrm{m}=2$) 52
3.4. More on entropy conditions 57
3.5. Compensated Compactness for Systems of Two Equations 64
3.6. Weak-strong uniqueness 69
Bibliography 74

CHAPTER 1

Introduction

A conservation law is a first-order PDE of the form

$$
\begin{equation*}
\partial_{t} u(x, t)+\operatorname{div} F(u(x, t))=0 \tag{1.1}
\end{equation*}
$$

Here,

- the unknown is $u: \mathbb{R}^{n} \times(0, \infty) \rightarrow \mathbb{R}^{m}$,
- $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m \times n}$ is the given flux function,
- div is the divergence operator in x, i.e.

$$
[\operatorname{div} F(u(x, t))]_{i}:=\sum_{j=1}^{n} \partial_{x_{j}}[F(u(x, t))]_{i j}
$$

If $m>1$, we say that (1.1) is a system of conservation laws.
If $m=1$, then (1.1) is a scalar conservation law.
Hyperbolicity: An assumption on F only relevant for systems, to be discussed later.

Motivation:

Recall the Gau β divergence theorem:
Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be C^{1} (continuously differentiable) and $\Omega \subset \mathbb{R}^{n}$ a bounded domain with smooth boundary $\partial \Omega$ and outer unit normal ν, then

$$
\int_{\partial \Omega} \Phi(x) \cdot \nu(x) d S(x)=\int_{\Omega} \operatorname{div} \Phi(x) d x
$$

where $d S$ means integration with respect to the surface measure on $\partial \Omega$ and $d x$ indicates integration with respect to the n-dimensional Lebesgue measure.
Suppose now $u: \mathbb{R}^{n} \times(0, \infty) \rightarrow \mathbb{R}$ is the density of some quantity and $\Omega \subset \mathbb{R}^{n}$ a smooth and bounded domain. A conservation law then states that the rate of change of $\int_{\Omega} u(x, t) d x$ with time equals the flux across the boundary $-\int_{\partial \Omega} F(u(x, t)) \cdot \nu(x) d S(x)$:

$$
\frac{d}{d t} \int_{\Omega} u(x, t) d x=-\int_{\partial \Omega} F(u(x, t)) \cdot \nu(x) d S(x)=-\int_{\Omega} \operatorname{div} F(u(x, t)) d x
$$

As this is true for every domain Ω, we obtain

$$
u(x, t)+\operatorname{div} F(u(x, t))=0
$$

i.e. (1.1) (for $m=1$).

EXAMPLE 1.1. i) Burgers' equation ($\mathrm{m}=\mathrm{n}=1$)

$$
\partial_{t} u+\partial_{x}\left(\frac{u^{2}}{2}\right)=0
$$

ii) Consider the wave equation

$$
\partial_{t t} w-\partial_{x x} w=0 .
$$

Write $u_{1}=\partial_{x} w, u_{2}=\partial_{t} w$, then we have

$$
\partial_{t} u_{1}-\partial_{x} u_{2}=0 \text { and } \partial_{t} u_{2}-\partial_{x} u_{1}=0
$$

or, writing $u=\left(u_{1}, u_{2}\right)$,

$$
\partial_{t} u+\partial_{x} F(u)=0 \text { with } F(u)=-\left(u_{2}, u_{1}\right) .
$$

iii) Similarly, for the nonlinear wave equation

$$
\partial_{t t} w-\left(p\left(\partial_{x} w\right)\right)_{x}=0(p: \mathbb{R} \rightarrow \mathbb{R} \text { given }),
$$

we have the "p-system"

$$
\partial_{t} u+\partial_{x} F(u)=0 \text { with } F\left(u_{1}, u_{2}\right)=\left(-u_{2},-p\left(u_{1}\right)\right) .
$$

iv) The isentropic Euler equations of gas dynamics are

$$
\begin{aligned}
\partial_{t} \rho+\operatorname{div}(\rho v) & =0 \text { (conservation of mass) } \\
\partial_{t}(\rho v)+\operatorname{div}(\rho v \otimes v)+\nabla p(\rho) & =0 \text { (conservation of momentum) }
\end{aligned}
$$

where $\rho \geq 0$ is the density, $v: \mathbb{R}^{n} \times(0, \infty) \rightarrow \mathbb{R}^{n}$ the velocity, p a given pressure function (e.g. $p(\rho)=\rho^{\gamma}, \gamma>1$) and $v \otimes v \in \mathbb{R}^{n \times n}$ with $(v \otimes v)_{i j}=v_{i} v_{j}$.
As long as $\rho>0$, we can write

$$
\begin{equation*}
u=\left(\rho, \rho v_{1}, \ldots, \rho v_{n}\right) \text { and } \partial_{t} u+\operatorname{div} F(u)=0, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{cases}F_{1 j}\left(u_{1}, \ldots, u_{n+1}\right)=u_{j+1} & : j=1, \ldots, n \\ F_{i j}\left(u_{1}, \ldots, u_{n+1}\right)=\frac{u_{i+1} u_{j+1}}{u_{1}}+p\left(u_{1}\right) \delta_{i j} & : i>1, j=1, \ldots, n .\end{cases}
$$

The vacuum state $(\rho=0)$ causes trouble.

Rough plan of the lecture:

- Scalar conservation laws:

Characteristics, shocks, weak solutions and non-uniqueness, entropy conditions, uniqueness (Kružkov), existence via compensated compactness, Riemann problem

- Systems:

Weak solutions, entropy, Riemann problem, existence of systems of two equations via compensated compactness, weak-strong uniqueness

Literature:

- Evans [1]: Partial Differential Equations - Chapters 3.4 and II
- Evans [2]: Weak Convergence Methods for Nonlinear Partial Differential Equations - Chapter 5

Exam: Oral exam at the end of the semester.

CHAPTER 2

Scalar Conservation Laws

2.1. The Method of Characteristics

2.1.1. Characteristic ODEs for general first order PDEs.

Let $\Omega \subset \mathbb{R}^{n}$ be a smooth domain and

$$
\Phi: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R},(x, z, p) \mapsto \Phi(x, z, p)
$$

be smooth. Consider the PDE

$$
\begin{equation*}
\Phi(x, u(x), D u(x))=0 \text { on } \Omega \tag{2.1}
\end{equation*}
$$

for the unknown $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Idea: Reduce (2.1) to a system of ODEs! To this end, let $x(s)$ be a curve in $\Omega(s \in \mathbb{R})$. If u is a (smooth) solution of (2.1), set

$$
\begin{aligned}
& z(s)=u(x(s)) \text { and } \\
& p(s)=D u(x(s))=\left(\partial_{x_{1}} u(x(s)), \ldots, \partial_{x_{n}} u(x(s))\right) .
\end{aligned}
$$

Differentiate this with respect to s :

$$
\dot{p}_{i}(s)=\sum_{j=1}^{n} \partial_{x_{j}} \partial_{x_{i}} u(x(s)) \dot{x}_{j}(s) .
$$

On the other hand, differentiate 2.1 with respect to x_{i} :

$$
\partial_{x_{i}} \Phi(x, u, D u)+\partial_{z} \Phi(x, u, D u) \partial_{x_{i}} u+\sum_{j=1}^{n} \partial_{p_{j}} \Phi(x, u, D u) \partial_{x_{i}} \partial_{x_{j}} u=0
$$

Therefore, if

$$
\dot{x}_{j}(s)=\partial_{p_{j}} \Phi(x(s), z(s), p(s))=\partial_{p_{j}} \Phi(x(s), u(x(s)), D u(x(s)))
$$

then

$$
\dot{p}_{i}(s)=-\partial_{x_{i}} \Phi(x(s), z(s), p(s))-\partial_{z} \Phi(x(s), z(s), p(s)) p_{i}(s)
$$

Also differentiate $z(s)=u(x(s))$:

$$
\begin{equation*}
\dot{z}(s)=\sum_{j=1}^{n} \partial_{x_{j}} u(x(s)) \dot{x}_{j}(s)=\sum_{j=1}^{n} p_{j}(s) \partial_{p_{j}} \Phi(x(s), z(s), p(s)) \tag{2.2}
\end{equation*}
$$

Hence we derived the characteristic ODEs
i) $\dot{x}(s)=D_{p} \Phi(x(s), z(s), p(s))$
ii) $\dot{z}(s)=D_{p} \Phi(x(s), z(s), p(s)) \cdot p(s)$
iii) $\dot{p}(s)=-D_{x} \Phi(x(s), z(s), p(s))-D_{z} \Phi(x(s), z(s), p(s)) p(s)$.

We have shown:

THEOREM 2.1. If u is a smooth solution of (2.1) and $x(s)$ solves i) with $z(s)=u(x(s)), p(s)=D_{u}(x(s))$, then z and p solve ii] and (iii), respectively.

A solution of is is called a characteristic curve for the PDE (2.1).
Hence the strategy to solve (2.1) is:

- Solve the system of ODEs ii) - iiii) under appropriate initial data ($\mathrm{s}=0$) related to a boundary condition $u=g$ on $\partial \Omega$ for (2.1);
- This gives values of u along each characteristic curve via iii)
- Hope that the characteristic curves cover all of Ω and are disjoint.

Picture for $\Omega=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{n}>0\right\}$:

Figure 1. Characteristic curves
We will soon see that characteristics may intersect or not fill entire domains.

2.1.2. Application to scalar conservation laws.

Consider a scalar conservation law

$$
\partial_{t} u+\operatorname{div} F(u)=0\left(u: \mathbb{R}^{n} \times(0, \infty) \rightarrow \mathbb{R}, F: \mathbb{R} \rightarrow \mathbb{R}^{n}\right)
$$

If u is a smooth solution, this is equivalent to

$$
\begin{equation*}
\partial_{t} u+F^{\prime}(u) \cdot D_{x} u=0 \text { or } \Phi\left(y, u(y), D_{y} u(y)\right)=0 \tag{2.3}
\end{equation*}
$$

where $y=(x, t), D_{y} u=\left(D_{x} u, \partial_{t} u\right)$ and

$$
\Phi(y, z, q)=q_{n+1}+F^{\prime}(z) \cdot \underbrace{\left(q_{1}, \ldots, q_{n}\right)}_{=: p}
$$

Our domain is $\Omega=\mathbb{R}^{n} \times(0, \infty) \subset \mathbb{R}^{n+1}$. Note now that

$$
\begin{aligned}
D_{y} \Phi & =0 \\
D_{z} \Phi & =F^{\prime \prime}(z) \cdot p \\
D_{q} \Phi & =\left(F^{\prime}(z), 1\right)
\end{aligned}
$$

Let $z(s)=u(y(s)), q(s)=D_{y} u(y(s))$. Hence i) becomes

$$
\left\{\begin{array}{l}
\dot{y}_{i}(s)=F_{i}^{\prime}(z(s)): i=1, \ldots, n \tag{2.4}\\
\dot{y}_{n+1}(s)=1
\end{array}\right.
$$

and iii) is

$$
\dot{z}(s)=F^{\prime}(z(s)) \cdot p(s)+q_{n+1}(s)=0
$$

by virtue of the PDE (2.3). Do not need liii)! Let us impose in addition to (2.3) the initial condition

$$
u(x, 0)=g(x),
$$

and choose $y(0)=\left(x_{0}, 0\right) \in \partial \Omega$. Then first $\dot{y}_{n+1}(s)=1$ and $y_{n+1}(0)=$ 0 implies $y_{n+1}(s)=s$. Also, $\dot{z}(s)=0$ together with $z(0)=u(y(0))=$ $u\left(x_{0}, 0\right)=g\left(x_{0}\right)$ yields $z(s)=g\left(x_{0}\right)$ for all $s \geq 0$, so that (2.4) gives

$$
\dot{y}_{i}(s)=F_{i}^{\prime}\left(g\left(x_{0}\right)\right)
$$

and so

$$
y_{i}(s)=F_{i}^{\prime}\left(g\left(x_{0}\right)\right) s+\left(x_{0}\right)_{i}(i=1, \ldots, n)
$$

We have proved
Theorem 2.2. Suppose u is a smooth solution of

$$
\begin{aligned}
\partial_{t} u+\operatorname{div} F(u) & =0 \text { on } \mathbb{R}^{n} \times(0, \infty), \\
u(\cdot, 0) & =g .
\end{aligned}
$$

Then u is constant along the characteristics, which are given by $s \mapsto\left(F^{\prime}\left(g\left(x_{0}\right)\right) s+\right.$ $\left.x_{0}, s\right)$.

Figure 2. Linear characteristic curves

2.1.3. Formation of Shocks.

Consider the Burgers' equation

$$
\begin{equation*}
\partial_{t} u+\partial_{x}\left(\frac{u^{2}}{2}\right)=0 \text { on } \mathbb{R} \times(0, \infty) \tag{2.5}
\end{equation*}
$$

with smooth initial data $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
g(x)= \begin{cases}1 & : x \leq 0 \\ 0 & : x \geq 1 \\ \text { decreasing } & : 0<x<1\end{cases}
$$

By Theorem 2.2, the characteristic curves are given by

$$
s \mapsto\left(F^{\prime}\left(g\left(x_{0}\right)\right) s+x_{0}, s\right)=\left(g\left(x_{0}\right) s+x_{0}, s\right)
$$

Figure 3. Crossing of characteristics

If u is a smooth solution, it is constant along the characteristics, so at the crossing point $u=0$ and $u=1 \rightarrow$ contradiction! This shows:
There is smooth initial data such that (2.5) does not have a global-in-time smooth solution!
The crossing of characteristics and breakdown of a smooth solution is called a shock formation.

2.1.4. Rarefaction Waves.

Consider now (2.5) with (discontinuous) data

$$
g(x)= \begin{cases}0 & : x \leq 0 \tag{2.6}\\ 1 & : x>0\end{cases}
$$

The notion of characteristic curves still makes sense and the solution is constant along

$$
s \mapsto\left(g\left(x_{0}\right) s+x_{0}, s\right) .
$$

Figure 4. Non-determined area by characteristics

So the method of characterstics does not fully determine the solution.

2.2. Weak Solutions

Recall the shock example from 2.1.3. It seems that the solution becomes discontinuous after shock formation and "jumps" from 1 to 0 . But then the PDE does not make sense anymore.

2.2.1. Definition of Weak Solution.

Consider a scalar conservation law in one dimension

$$
\begin{aligned}
\partial_{t} u+\partial_{x} F(u) & =0 \text { in } \mathbb{R} \times(0, \infty) \\
\left.u\right|_{t=0} & =g
\end{aligned}
$$

Assume for the moment that u is a smooth solution. Let $\varphi \in C_{c}^{\infty}(\mathbb{R} \times[0, \infty))$ (smooth with compact support), then multiply the PDE by φ and integrate in space and time:

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{t} u \varphi d x d t+\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{x} F(u) \varphi d x d t=0
$$

Integrate by parts:

$$
-\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{t} \varphi u d x d t-\int_{-\infty}^{\infty} \underbrace{u(x, 0)}_{=g(x)} \varphi(x, 0) d x-\int_{0}^{\infty} \int_{-\infty}^{\infty} F(u) \partial_{x} \varphi d x d t=0
$$

But this makes sense even if only $u, F(u) \in L_{\text {loc }}^{1}(\mathbb{R} \times[0, \infty))$ and $g \in L_{\text {loc }}^{1}(\mathbb{R})$! (Recall $f \in L_{l o c}^{1}(\Omega)$ if f is measurable and $\int_{K}|f|<\infty$ for every compact $K \subset \Omega$). Usually one is only interested in bounded solutions, hence we define:

Definition 2.3. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $g \in L^{\infty}(\mathbb{R})$. A function $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is a weak solution (or distributional solution, integral solution) of $\partial_{t} u+\partial_{x} F(u)=0$ with initial datum g if

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{t} \varphi u d x d t+\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{x} \varphi F(u) d x d t+\int_{-\infty}^{\infty} \varphi(x, 0) g(x) d x=0
$$

for all $\varphi \in C_{c}^{\infty}(\mathbb{R} \times[0, \infty))$.
Without reference to an initial condition, u is simply called a weak solution if

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{t} \varphi u d x d t+\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{x} \varphi F(u) d x d t=0
$$

for all $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty))$.
(Notice carefully the difference between $C_{c}^{\infty}(\mathbb{R} \times[0, \infty))$ and $C_{c}^{\infty}(\mathbb{R} \times$ $(0, \infty)$): Functions from the latter space need to vanish at $t=0$, while functions from the former don't.)

The following proposition is rather technical, but will be used several times in the sequel. We first need to introduce the space $C_{w}\left([0, \infty) ; L^{\infty}(\mathbb{R})\right)$: This is the space of functions $u:[0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}$ such that $u(\cdot, t) \in L^{\infty}(\mathbb{R})$ for every $t \geq 0$, and such that the map $[0, \infty) \rightarrow \mathbb{R}$,

$$
t \mapsto \int_{\mathbb{R}} u(x, t) \psi(x) d x
$$

is continuous for every $\psi \in L^{1}(\mathbb{R})$. In this case one says that u is weakly continuous into L^{∞}.

Proposition 2.4. Let $u \in C_{w}\left([0, \infty) ; L^{\infty}(\mathbb{R})\right)$ be a weak solution of $\partial_{t} u+$ $\partial_{x} F(u)=0$. Let $g \in L^{\infty}(\mathbb{R})$. Then $u(\cdot, 0)=g$ if and only if u is a weak solution with initial datum g in the sense of Definition 2.3

Proof. Suppose u is a weak solution such that $u \in C_{w}\left([0, \infty) ; L^{\infty}(\mathbb{R})\right)$ and $u(\cdot, 0)=g$. Let $\varphi \in C_{c}^{\infty}(\mathbb{R} \times[0, \infty))$ (i.e. $\varphi(t=0)$ is not necessarily zero!). Let further $\chi_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}$ be a 'cut-off' function, i.e.,

$$
\chi(t)= \begin{cases}0 & : 0 \leq t \leq \frac{1}{2} \\ 1 & : t \geq 1\end{cases}
$$

which is smooth and increasing in $\left(\frac{1}{2}, 1\right)$, and set $\chi_{\varepsilon}(t)=\chi\left(\frac{t}{\varepsilon}\right)$. Note $\left|\chi_{\varepsilon}^{\prime}\right| \leq$ $\frac{C}{\varepsilon}$. Then $\chi(t) \varphi(x, t) \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty))$ and hence, as u is a weak solution,

$$
\int_{0}^{\infty} \int_{\mathbb{R}} \partial_{t}\left(\chi_{\varepsilon} \varphi\right) u+\partial_{x}\left(\chi_{\varepsilon} \varphi\right) u d x d t=0
$$

Observe that

$$
\lim _{\varepsilon \searrow 0} \iint \chi_{\varepsilon}(t) \partial_{x} \varphi u d x d t=\iint \partial_{x} \varphi u d x d t
$$

by the dominated convergence theorem, as $\chi_{\varepsilon} \rightarrow 1$ a.e. and $\left|\partial_{x} \varphi u\right| \in L^{1}(\mathbb{R} \times$ $[0, \infty)$) is a dominating function.

On the other hand,

$$
\begin{aligned}
\iint \partial_{t}\left(\chi_{\varepsilon} \varphi\right) u d x d t & =\iint \chi_{\varepsilon} \partial_{t} \varphi u d x d t+\iint \chi_{\varepsilon}^{\prime}(t) \varphi u d x d t \\
& =\iint \chi_{\varepsilon} \partial_{t} \varphi u d x d t+\int_{0}^{\infty} \chi_{\varepsilon}^{\prime}(t)\left(\int_{\mathbb{R}} \varphi u d x\right) d t
\end{aligned}
$$

The first integral approaches $\iint \partial_{t} \varphi u d x d t$ as $(\varepsilon \rightarrow 0)$ by dominated convergence. For the second integral, note that

$$
t \mapsto \int_{\mathbb{R}} \varphi(x, t) u(x, t) d x
$$

is continuous on $[0, \infty)$ because $u \in C_{w}\left([0, \infty) ; L^{\infty}(\mathbb{R})\right)$ (exercise). In particular, since $u(\cdot, 0)=g$,

$$
\lim _{t \searrow 0} \int \varphi u d x=\int \varphi(0) g d x
$$

But then, as $\chi_{\varepsilon}^{\prime}$ is a nonnegative function of unit integral supported on $(0, \varepsilon)$,

$$
\lim _{\varepsilon \searrow 0} \int \chi_{\varepsilon}^{\prime}(t)\left(\int_{\mathbb{R}} \varphi u d x\right) d t=\int_{\mathbb{R}} \varphi(0) g(x) d x
$$

Putting everything together, we obtain for $(\varepsilon \searrow 0)$

$$
\iint \partial_{t} \varphi u+\partial_{x} \varphi u d x d t+\int \varphi(x, 0) g(x) d x=0
$$

hence u takes the initial datum in the sense of Definition 2.3 ,
Conversely, suppose u is a weak solution with initial data g in the sense of Definition 2.3. Then the same arguments as above yield, since

$$
\lim _{t \searrow 0} \int \varphi u d x=\int \varphi(0) u(x, 0) d x
$$

the equality

$$
\iint \partial_{t} \varphi u+\partial_{x} \varphi u d x d t+\int \varphi(x, 0) u(x, 0) d x=0
$$

but by assumption also

$$
\iint \partial_{t} \varphi u+\partial_{x} \varphi u d x d t+\int \varphi(x, 0) g(x) d x=0
$$

Since this is true for all ϕ, we obtain $u(\cdot, 0)=g$ as desired.
EXAMPLE 2.5. Consider Burgers' equation with datum

$$
g(x)= \begin{cases}1 & : x \leq 0 \\ 0 & : x>0\end{cases}
$$

We claim that

$$
u(x, t)= \begin{cases}1 & : x \leq \frac{t}{2} \\ 0 & : x>\frac{t}{2}\end{cases}
$$

is a weak solution.
Proof: Let $\varphi \in C_{c}^{\infty}(\mathbb{R} \times[0, \infty))$. Write

$$
\Omega_{1}=\left\{(x, t): x<\frac{t}{2}\right\}, \Omega_{2}=\left\{(x, t): x>\frac{t}{2}\right\} .
$$

Then

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{t} \varphi u+\partial_{x} \varphi \frac{u^{2}}{2} d x d t \\
= & \iint_{\Omega_{1}} \partial_{t} \varphi+\partial_{x} \varphi \frac{1}{2} d x d t+\iint_{\Omega_{2}}\left(\partial_{t} \varphi+\partial_{x} \varphi\right) 0 d x d t \\
= & \int_{\partial \Omega_{1}} \varphi \nu_{t} d S(x, t)+\int_{\partial \Omega_{1}} \frac{1}{2} \varphi \nu_{x} d S(x, t) \\
= & -\int_{\{x<0, t=0\}}^{\infty} \varphi d S(x, t)+\int_{\left\{x=\frac{t}{2}\right\}} \varphi \nu_{t} d S(x, t)+\int_{\left\{x=\frac{t}{2}\right\}} \frac{1}{2} \varphi \nu_{x} d S(x, t) \\
= & -\int_{-\infty}^{\infty} \varphi(x, 0) g(x) d x+0,
\end{aligned}
$$

since $\nu_{t}=-\frac{1}{2} \nu_{x}$ on $\left\{x=\frac{t}{2}\right\}$.

2.2.2. Rankine-Hugoniot condition.

Let us generalize the previous example.
Suppose $u: \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ is a weak solution of $\partial_{t} u+\partial_{x} F(u)=0$, $\Omega \subset \mathbb{R} \times(0, \infty)$ a bounded domain with smooth boundary and γ a smooth curve that splits Ω in two subdomains Ω_{l} and Ω_{r}. Suppose u is smooth on Ω_{l} and Ω_{r}, but possibly discontinuous along γ. Let ν be the unit normal in direction of Ω_{r}, and

$$
u_{l}(x, t):=\lim _{(y, s) \rightarrow(x, t),(y, s) \in \Omega_{l}} u(y, s)
$$

and similarly

$$
u_{r}(x, t):=\lim _{(y, s) \rightarrow(x, t),(y, s) \in \Omega_{r}} u(y, s)
$$

Figure 5
for $(x, t) \in \gamma$. Let $\varphi_{l} \in C_{c}^{\infty}\left(\Omega_{l}\right)$, then using Definition 2.3,

$$
\begin{aligned}
& \iint_{\Omega_{l}} \partial_{t} \varphi_{l} u(y, s) d x d t+\iint_{\Omega_{l}} \partial_{x} \varphi_{l} F(u(x, t)) d x d t=0 \\
& \Leftrightarrow-\iint_{\Omega_{l}} \varphi_{l}\left(\partial_{t} u+\partial_{x} F(u)\right) d x d t=0 .
\end{aligned}
$$

Since this holds for every such φ_{l}, we have

$$
\partial_{t} u+\partial_{x} F(u)=0 \text { in } \Omega_{l}
$$

and analogously

$$
\partial_{t} u+\partial_{x} F(u)=0 \text { in } \Omega_{r} .
$$

Now let $\varphi \in C_{c}^{\infty}(\Omega)$. Since u is a weak solution,

$$
\begin{aligned}
0 & =\iint_{\Omega} \partial_{t} \varphi u+\partial_{x} \varphi F(u) d x d t \\
& =\iint_{\Omega_{l}} \partial_{t} \varphi u+\partial_{x} \varphi F(u) d x d t+\iint_{\Omega_{r}} \partial_{t} \varphi u+\partial_{x} \varphi F(u) d x d t .
\end{aligned}
$$

But

$$
\begin{aligned}
& \iint_{\Omega_{l}} \partial_{t} \varphi u+\partial_{x} \varphi F(u) d x d t \\
= & -\iint_{\Omega_{l}} \varphi\left(\partial_{t} u+\partial_{x} F(u)\right) d x d t+\int_{\gamma} \varphi\left(u_{l} \nu_{t}+F\left(u_{l}\right) \nu_{x}\right) d S \\
= & \int_{\gamma} \varphi\left(u_{l} \nu_{t}+F\left(u_{l}\right) \nu_{x}\right) d S
\end{aligned}
$$

and likewise

$$
\iint_{\Omega_{r}}\left(\partial_{t} \varphi u+\partial_{x} F(u)\right) d x d t=-\int_{\gamma} \varphi\left(u_{r} \nu_{t}+F\left(u_{r}\right) \nu_{x}\right) d S
$$

hence

$$
\int_{\gamma} \varphi\left(u_{l}-u_{r}\right) \nu_{t}+\varphi\left(F\left(u_{l}\right)-F\left(u_{r}\right)\right) \nu_{x} d S=0
$$

As φ was arbitrary, we obtain

$$
\left(u_{l}-u_{r}\right) \nu_{t}+\left(F\left(u_{l}\right)-F\left(u_{r}\right)\right) \nu_{x}=0
$$

along γ. Suppose now γ is parametrized as

$$
\gamma=\{(x, t): x=s(t)\}
$$

then

$$
\nu=\left(\nu_{x}, \nu_{t}\right)=\frac{(1,-\dot{s})}{\sqrt{1+\dot{s}^{2}}}
$$

so we get

$$
\begin{equation*}
F\left(u_{l}\right)-F\left(u_{r}\right)=\dot{s}\left(u_{l}-u_{r}\right)=\sigma\left(u_{l}-u_{r}\right) \quad(\sigma:=\dot{s}) \tag{2.7}
\end{equation*}
$$

Equation (2.7) is called the Rankine-Hugoniot (jump) condition.
We have thus shown that any weak solution of the type considered satisfies the Rankine-Hugoniot condition. The converse follows by reading the proof 'in reverse direction'. Therefore:

THEOREM 2.6. If u is a smooth solution of $\partial_{t} u+\partial_{x} F(u)=0$ on Ω_{l} and Ω_{r} but possibly discontinuous along γ, then it is a weak solution on Ω if and only if

$$
F\left(u_{l}\right)-F\left(u_{r}\right)=\dot{s}\left(u_{l}-u_{r}\right) \text { along } \gamma
$$

where $\gamma=\{(x, t): x=s(t)\}$.
REMARK 2.7. Our choice of parametrization excludes curves with tangents parallel to the x-axis (Exercise).

EXAMPLE 2.8. Recall our solution to Burgers' equation:

$$
\begin{aligned}
& \partial_{t} u+\partial_{x}\left(\frac{u^{2}}{2}\right)=0: \\
& u(x, t)= \begin{cases}1 & : x<\frac{t}{2} \\
0 & : x>\frac{t}{2}\end{cases}
\end{aligned}
$$

So $\dot{s}(t) \equiv \frac{1}{2}$. We have $F\left(u_{l}\right)-F\left(u_{r}\right)=\frac{1}{2}$ and $\dot{s}\left(u_{l}-u_{r}\right)=\frac{1}{2}$. So the Rankine-Hugoniot condition is indeed satisfied.

Corollary 2.9. (of Theorem 2.6) If u is smooth on Ω_{p} and Ω_{r} and solves $\partial_{t} u+\partial_{x} F(u)=0$ on Ω_{p} and Ω_{r}, and if u is continuous along γ, then u is a weak solution on Ω.

EXAMPLE 2.10. Consider Burgers' equation with initial data

$$
g(x)= \begin{cases}0 & : x<0 \\ 1 & : x>0\end{cases}
$$

FIgURE 6. Non-determined area by characteristics

By the method of characteristics, if u is a solution, then $u=0$ for $x<0$ and $u=1$ for $x>t$. What happens in between? Set

$$
u_{1}(x, t)= \begin{cases}0 & : x<\frac{t}{2} \\ 1 & : x>\frac{t}{2}\end{cases}
$$

Rankine-Hugoniot: $F\left(u_{l}\right)-F\left(u_{r}\right)=-\frac{1}{2}, \dot{s}\left(u_{l}-u_{r}\right)=-\frac{1}{2}$.
Hence u_{1} is a weak solution, and it is easily seen that it is in $C_{w}\left([0, \infty) ; L^{\infty}(\mathbb{R})\right)$, so that indeed it is a weak solution of the initial value problem by Proposition 2.4. But consider also

$$
u_{2}(x, t)= \begin{cases}1 & : x>t \\ \frac{x}{t} & : 0<x<t \\ 0 & : x<0\end{cases}
$$

Note:

- u_{2} is continuous in $\mathbb{R} \times(0, \infty)$;
- $u \equiv 0$ and $u \equiv 1$ are solutions on Ω_{1}, and Ω_{3}, respectively;
- $u(x, t)=\frac{x}{t}$ is a solution on Ω_{2}, since $\partial_{t} u+\partial_{x} \frac{u^{2}}{2}=-\frac{x}{t^{2}}+\frac{x}{t^{2}}=0$.

Hence by Corollary 2.9, u_{2} is also a weak solution of Burgers' equation with the same initial data (again cf. Proposition 2.4)! (u_{2} is called a rarefaction wave.)
Disturbing discovery: Weak solutions are not necessarily unique! (given the same initial data).

Figure 7. Alternative solution

2.3. Entropy Solutions

2.3.1. Definitions. Suppose u is a smooth solution of

$$
\partial_{t} u+\partial_{x} F(u)=0
$$

and let $\eta: \mathbb{R} \rightarrow \mathbb{R}$ be convex and smooth. Multiply the PDE by $\eta^{\prime}(u)$:

$$
\eta^{\prime}(u) \partial_{t} u+F^{\prime}(u) \eta^{\prime}(u) \partial_{x} u=0
$$

Suppose $q: \mathbb{R} \rightarrow \mathbb{R}$ is such that $q^{\prime}(z)=F^{\prime}(z) \eta^{\prime}(z)$ for all $z \in \mathbb{R}$. Then we get

$$
0=\eta^{\prime}(u) \partial_{t} u+q^{\prime}(u) \partial_{x} u=\partial_{t} \eta(u)+\partial_{x} q(u)
$$

Definition 2.11. Two functions $\eta, q: \mathbb{R} \rightarrow \mathbb{R}$ are called an entropy/entropyflux pair for $\partial_{t} u+\partial_{x} F(u)=0$ if

- η is convex
- $q^{\prime}(z)=F^{\prime}(z) \eta^{\prime}(z)$ for all $z \in \mathbb{R}$.

In the scalar case, every smooth and convex function η is an entropy, because we can simply set

$$
q(z):=\int_{0}^{z} F^{\prime}(s) \eta^{\prime}(s) d s
$$

We have seen: For smooth solutions $\partial_{t} \eta(u)+\partial_{x} q(u)=0$ ("conservation of entropy"). What about discontinuous solutions?

EXAMPLE 2.12. Consider $\partial_{t} u+\partial_{x}\left(\frac{u^{2}}{2}\right)=0, u(x, 0)=g(x)= \begin{cases}1 & : x<0 \\ 0 & : x>0 .\end{cases}$ We have seen that $u(x, t)= \begin{cases}1 & : x<\frac{t}{2} \\ 0 & : x>\frac{t}{2}\end{cases}$ is a weak solution. Set $\eta(z)=\frac{z^{2}}{2}$ and $q(z)=\int_{0}^{z} F^{\prime}(s) \eta^{\prime}(s) d s=\int_{0}^{z} s^{2} d s=$ $\frac{z^{3}}{3}$.
Is it true that $\partial_{t} \eta(u)+\partial_{x} q(u)=0$?
Problem: $u \notin C^{1}$ so we have to understand $\partial_{t} \eta(u)+\partial_{x} q(u)$ in a weak (distributional) sense.

DEFINITION 2.13. We say $\partial_{t} \eta(u)+\partial_{x} q^{\prime}(u) \geq(\leq) 0$ in the sense of distributions if

$$
\int_{0}^{\infty} \int_{\mathbb{R}} \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \leq(\geq) 0
$$

for all $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \varphi \geq 0$.
So now let $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty))$ with $\varphi \geq 0$ and $\varphi>0$ on a subset of $\left\{x=\frac{t}{2}\right\}$ of positive measure. Then,

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbb{R}} \partial_{t} \varphi \frac{u^{2}}{2}+\partial_{x} \varphi \frac{u^{3}}{3} d x d t & =\iint_{\left\{x<\frac{t}{2}\right\}} \frac{1}{2} \partial_{t} \varphi+\frac{1}{3} \partial_{x} \varphi d x d t \\
& =\iint_{\left\{x=\frac{t}{2}\right\}} \frac{1}{2} \varphi \nu_{t}+\frac{1}{3} \varphi \nu_{x} d S \\
& =\iint_{\left\{x=\frac{t}{2}\right\}}-\frac{1}{4} \varphi \nu_{x}+\frac{1}{3} \varphi \nu_{x} d S \\
& =\iint_{\left\{x=\frac{t}{2}\right\}} \frac{1}{12} \nu_{x} \varphi d S \\
& >0
\end{aligned}
$$

hence $\partial_{t} \eta(u)+\partial_{x} q(u)<0$ ("entropy dissipation along the shock").
EXAMPLE 2.14. Recall the weak solution

$$
u(x, t)= \begin{cases}0 & : x<\frac{t}{2} \\ 1 & : x>\frac{t}{2}\end{cases}
$$

for Burgers' equation with $g(x)=\left\{\begin{array}{ll}0 & : x<0 \\ 1 & : x>0\end{array}\right.$ A computation similar to the previous example gives

$$
\partial_{t} \frac{u^{2}}{2}+\partial_{x} \frac{u^{3}}{3}>0 \text { (weakly). }
$$

This phenomen can be described as 'entropy production along the shock'. But we also had the rarefaction wave solution

$$
u(x, t)= \begin{cases}0 & : x<0 \\ \frac{x}{t} & : 0<x<t \\ 1 & : x>t\end{cases}
$$

Since it is continuous and piecewise smooth, we have

$$
\partial_{t} \eta(u)+\partial_{x} q(u)=0 \text { (exercise) }
$$

Sometimes the mathematical entropy is minus the physical entropy. The 2nd law of thermodynamics hence motivates:

Definition 2.15. Let $g \in L^{\infty}(\mathbb{R})$. A function $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an entropy solution of

$$
\begin{aligned}
\partial_{t} u+\partial_{x} F(u) & =0 \\
u(x, 0) & =g(x)
\end{aligned}
$$

if

$$
u-g \in C\left([0, \infty) ; L^{1}(\mathbb{R})\right), u(\cdot, t) \rightarrow g \text { in } L^{1}
$$

and

$$
\int_{0}^{\infty} \int_{\mathbb{R}} \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \geq 0
$$

for all entropy / entropy-flux pairs η, q and all $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \varphi \geq 0$.
Here, for reasons that will become apparent in the proof of the next theorem, we require $u-g$ to be in the function space $C\left([0, \infty) ; L^{1}(\mathbb{R})\right)$, which is defined as the space of functions $v: \mathbb{R} \times[0, \infty)$ such that $v(\cdot, t) \in L^{1}(\mathbb{R})$ for every $t \geq 0$, and such that

$$
\lim _{s \rightarrow t} \int_{\mathbb{R}}|v(\cdot, t)-v(\cdot, s)| d x=0
$$

for all $t \geq 0$. In other words, the map $t \mapsto v(\cdot, t)$ is continuous from $[0, \infty)$ to $L^{1}(\mathbb{R})$ is continuous.

Remark 2.16. Every entropy solution is a weak solution: Set $\eta=i d$ and $q=F$. Since $u \in L^{\infty}(\mathbb{R} \times[0, \infty)), g \in L^{\infty}(\mathbb{R})$, and $u-g \in C\left([0, \infty) ; L^{1}(\mathbb{R})\right)$ imply $u \in C_{w}\left([0, \infty) ; L^{\infty}\right)$ (exercise), by Proposition 2.4 every entropy solution is even a weak solution with initial data g in the sense of Definition 2.3.

But not every weak solution is an entropy solution (cf. Example 2.14 with the 'non-physical shock').

2.3.2. Uniqueness of entropy solutions.

Theorem 2.17. (Kružkov 1970 [4])
There exists at most one entropy solution of

$$
\begin{aligned}
\partial_{t} u+\partial_{x} F(u) & =0\left(F \in C^{1}\right) \\
u(x, 0) & =g(x)\left(g \in L^{\infty}\right) .
\end{aligned}
$$

Some preliminaries before we start the proof:
Dominated Convergence Theorem: Let $\Omega \subset \mathbb{R}^{n}$ be a domain. If $f_{n} \rightarrow f$ pointwise a.e. on Ω and if there exists $h \in L^{1}(\Omega)$ such that $\left|f_{n}(x)\right| \leq h(x)$ for every $n \in \mathbb{N}$ and almost every $x \in \Omega$, then $f \in L^{1}(\Omega)$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n}(x) d x=\int_{\Omega} f(x) d x \tag{2.8}
\end{equation*}
$$

Proposition 2.18. If $f \in L^{1}\left(\mathbb{R}^{n}\right)$ then

$$
\lim _{y \rightarrow 0} f(x-y)=f(x) \text { in } L_{l o c}^{1},
$$

i.e.

$$
\begin{equation*}
\lim _{y \rightarrow 0} \int_{K}|f(x)-f(x-y)| d x=0 \tag{2.9}
\end{equation*}
$$

for every compact subset $K \subset \mathbb{R}^{n}$.
Proof. Exercise.
Mollification: Let $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} \eta d x=1, \eta \geq 0$. Then η is called a standard mollifier. Set $\eta_{\varepsilon}(x):=\frac{1}{\varepsilon^{n}} \eta\left(\frac{x}{\varepsilon}\right)$. We have:

Proposition 2.19. Let $f \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ (i.e. $f \in L^{1}(K)$ for every compact subset $K \subset \mathbb{R}^{n}$) be continuous at $x_{0} \in \mathbb{R}^{n}$. Then

$$
\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{n}} f\left(x+x_{0}\right) \eta_{\varepsilon}(x) d x=f\left(x_{0}\right)
$$

Proof. Let $\kappa>0$ and choose $\varepsilon>0$ so small that $\left|f\left(x+x_{0}\right)-f\left(x_{0}\right)\right|<\kappa$ on $\operatorname{supp} \eta_{\varepsilon}$. Then

$$
\int_{\mathbb{R}^{n}}\left|f\left(x+x_{0}\right)-f\left(x_{0}\right)\right| \eta_{\varepsilon}(x) d x \leq \kappa \int_{\mathbb{R}^{n}} \eta_{\varepsilon}(x) d x=\kappa
$$

and the claim follows.
Proof. (Kružkov's theorem)
Step 1: Consider the entropies given by $\eta_{k}(z)=\beta_{k}(z-\alpha)$, where

- $\alpha \in \mathbb{R}$ is fixed
- $\beta_{k}: \mathbb{R} \rightarrow \mathbb{R}$ is smooth and convex and

$$
\begin{aligned}
& \beta_{k}(z) \rightarrow|z| \text { uniformly } \\
& \beta_{k}^{\prime}(z) \rightarrow \operatorname{sgn}(z) \text { a.e. } \\
& \left|\beta_{k}^{\prime}\right| \text { uniformly bounded. }
\end{aligned}
$$

Figure 8

The entropy flux function is then given by

$$
q_{k}(z)=\int_{\alpha}^{z} \beta_{k}^{\prime}(\zeta-\alpha) F^{\prime}(\zeta) d \zeta
$$

For fixed $z \in \mathbb{R}$, we have

$$
q_{k}(z) \rightarrow \operatorname{sgn}(z-\alpha)(F(z)-F(\alpha))(k \rightarrow \infty)
$$

Indeed this follows from dominated convergence, since

$$
\beta_{k}^{\prime}(\zeta-\alpha) \rightarrow \operatorname{sgn}(z-\alpha) \text { a.e. } \zeta \in(\alpha, z)
$$

and

$$
\left|\beta_{k}^{\prime}(\zeta-\alpha) F^{\prime}(\zeta)\right| \leq C\left|F^{\prime}(\zeta)\right| \in L^{1}(\alpha, z)
$$

Therefore

$$
\begin{aligned}
\lim _{k \rightarrow \infty} q_{k}(z) & =\lim _{k \rightarrow \infty} \int_{\alpha}^{z} \beta_{k}^{\prime}(\zeta-\alpha) F^{\prime}(\zeta) d \zeta \\
& =\int_{\alpha}^{z} \underbrace{\operatorname{sgn}(\zeta-\alpha)}_{\operatorname{sgn}(z-\alpha)} F^{\prime}(\zeta) d \zeta \\
& =\operatorname{sgn}(z-\alpha)(F(z)-F(\alpha)) .
\end{aligned}
$$

Let $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \varphi \geq 0$. If u is an entropy solution, then for every k,

$$
\iint \eta_{k}(u) \partial_{t} \varphi+q_{k}(u) \partial_{x} \varphi d x d t \geq 0
$$

Since $\eta_{k}(u) \rightarrow|\eta-\alpha|$ uniformly,

$$
\iint \partial_{t} \varphi \eta_{k}(u) d x d t \rightarrow \iint \partial_{t} \varphi|u-\alpha| d x d t .
$$

On the other hand,

$$
q_{k}(u) \rightarrow \operatorname{sgn}(u-\alpha)(F(u)-F(\alpha))
$$

for almost every x, t and

$$
\left|q_{k}(u(x, t))\right| \leq C \int_{\alpha}^{u(x, t)}\left|F^{\prime}(\zeta)\right| d \zeta \in L^{\infty}(\mathbb{R} \times(0, \infty))
$$

as $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$, hence by dominated convergence (take $C \int_{\alpha}^{\|u\|_{L^{\infty}}}\left|F^{\prime}(\zeta)\right| d \zeta\left|\partial_{x} \varphi\right|$ as a dominating function)

$$
\begin{equation*}
\iint q_{k}(u) \partial_{x} \varphi d x d t \rightarrow \iint \operatorname{sgn}(u-\alpha)(F(u)-F(\alpha)) \partial_{x} \varphi d x d t . \tag{2.10}
\end{equation*}
$$

This shows

$$
\begin{equation*}
\int_{0}^{\infty} \int_{\mathbb{R}}|u-\alpha| \partial_{t} \varphi+\operatorname{sgn}(u-\alpha)(F(u)-F(\alpha)) \partial_{x} \varphi d x d t \geq 0 \tag{2.11}
\end{equation*}
$$

for all $\alpha \in \mathbb{R}, \varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \varphi \geq 0$.
Step 2: Suppose \tilde{u} is another entropy solution. As above,

$$
\int_{0}^{\infty} \int_{\mathbb{R}}|\tilde{u}-\tilde{\alpha}| \partial_{t} \tilde{\varphi}+\operatorname{sgn}(\tilde{u}-\tilde{\alpha})(F(\tilde{u})-F(\tilde{\alpha})) \partial_{y} \tilde{\varphi} d y d s \geq 0
$$

for all $\tilde{\alpha} \in \mathbb{R}, \tilde{\varphi} \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \tilde{\varphi} \geq 0$.
Let now $\psi \in C_{c}^{\infty}(\underbrace{\mathbb{R}}_{x} \times \underbrace{\mathbb{R}}_{y} \times \underbrace{(0, \infty)}_{t} \times \underbrace{(0, \infty)}_{s}), \psi \geq 0$. Fix $(y, s) \in \mathbb{R} \times$ $(0, \infty)$ and set in 2.11) $\alpha=\tilde{u}(y, s), \varphi(x, t)=\psi(x, y, t, s)$. Integrate this in y, s to get

$$
\begin{aligned}
& \iiint \iint^{|u(x, t)-\tilde{u}(y, s)| \partial_{t} \psi+\operatorname{sgn}(u(x, t)-\tilde{u}(y, s))} \\
& \quad(F(u(x, t))-F(\tilde{u}(y, s))) \partial_{x} \psi d x d y d s d t \geq 0 .
\end{aligned}
$$

Similarly, for fixed $(x, t) \in \mathbb{R} \times(0, \infty)$, setting in (2.3.2) $\tilde{\alpha}=u(x, t)$ and $\varphi(y, s)=\psi(x, y, t, s)$ yields

$$
\begin{array}{r}
\iiint \iint|u(x, t)-\tilde{u}(y, s)| \partial_{s} \psi+\operatorname{sgn}(\tilde{u}(y, s)-u(x, t)) \\
\quad(F(\tilde{u}(y, s))-F(u(x, t))) \partial_{y} \psi d x d y d s d t \geq 0 .
\end{array}
$$

Add the last two inequalities:

$$
\begin{aligned}
& \quad \iiint \int_{(2.12)}|u(x, t)-\tilde{u}(y, s)|\left(\partial_{t} \psi+\partial_{s} \psi\right) \\
& \quad+\operatorname{sgn}(u(x, t)-\tilde{u}(y, s))(F(u(x, t))-F(\tilde{u}(y, s)))\left(\partial_{x} \psi+\partial_{y} \psi\right) \geq 0
\end{aligned}
$$

Step 3: Choose ψ wisely. Let η be a standard mollifier on $\mathbb{R}\left(\eta \in C_{c}^{\infty}(\mathbb{R}), \eta \geq\right.$ $0, \int \eta=1$) and set

$$
\begin{equation*}
\eta_{\varepsilon}(x):=\frac{1}{\varepsilon} \eta\left(\frac{x}{\varepsilon}\right) . \tag{2.13}
\end{equation*}
$$

Set $\psi(x, y, t, s)=\eta_{\varepsilon}\left(\frac{x-y}{2}\right) \eta_{\varepsilon}\left(\frac{t-s}{2}\right) \gamma\left(\frac{x+y}{2}, \frac{t+s}{2}\right)$ for $\mathrm{a} \gamma \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \gamma \geq$ 0 . Plug this into (2.12):

$$
\begin{aligned}
& \iiint \int \\
& \quad\left[|u(x, t)-\tilde{u}(y, s)| \partial_{t} \gamma\left(\frac{x+y}{2}, \frac{t+s}{2}\right)\right. \\
& \quad+\operatorname{sgn}(u(x, t)-\tilde{u}(y, s))\left(F(u(x, t))-F(\tilde{u}(y, s)) \partial_{x} \gamma\left(\frac{x+y}{2}, \frac{t+s}{2}\right)\right]
\end{aligned}
$$

$$
\begin{equation*}
\eta_{\varepsilon}\left(\frac{x+y}{2}\right) \eta_{\varepsilon}\left(\frac{t-s}{2}\right) d x d y d t d s \geq 0 \tag{2.14}
\end{equation*}
$$

Change of variables:

$$
\begin{equation*}
\bar{x}=\frac{x+y}{2}, \bar{t}=\frac{t+s}{2}, \bar{y}=\frac{x-y}{2}, \bar{s}=\frac{t-s}{2} . \tag{2.15}
\end{equation*}
$$

Write (2.14) as

$$
\begin{equation*}
\iint h(\bar{y}, \bar{s}) \eta_{\varepsilon}(\bar{y}) \eta_{\varepsilon}(\bar{s}) d \bar{y} d \bar{s} \geq 0 \tag{2.16}
\end{equation*}
$$

where

$$
\begin{aligned}
h(\bar{y}, \bar{s})=\iint & |u(\bar{x}+\bar{y}, \bar{t}+\bar{s})-\tilde{u}(\bar{x}-\bar{y}, \bar{t}-\bar{s})| \partial_{t} \gamma(\bar{x}, \bar{t}) \\
& +\operatorname{sgn}(u(\bar{x}+\bar{y} ; \bar{t}+\bar{s})-\tilde{u}(\bar{x}-\bar{y}, \bar{t}-\bar{s})) \\
& \cdot(F(u(\bar{x}+\bar{y}, \bar{t}+\bar{s}))-F(\tilde{u}(\bar{x}-\bar{y}, \bar{t}-\bar{s}))) \partial_{x} \gamma(\bar{x}, \bar{t}) d x d t .
\end{aligned}
$$

Next, by Proposition 2.18 ,

$$
u(\bar{x}+\bar{y}, \bar{t}+\bar{s}) \rightarrow u(\bar{x}, \bar{t})
$$

in $L_{l o c}^{1}(\mathbb{R} \times(0, \infty))$ as $\bar{y}, \bar{s} \rightarrow 0$ and

$$
\tilde{u}(\bar{x}-\bar{y}, \bar{t}-\bar{s}) \rightarrow \tilde{u}(\bar{x}, \bar{t}) ;
$$

therefore this also holds for a Lipschitz function of $u(\bar{x}+\bar{y}, \bar{t}+\bar{s})$ and $\tilde{u}(\bar{x}-$ $\bar{y}, \bar{t}-\bar{s}):$

Indeed, if $|\Phi(u, \tilde{u})-\Phi(v, \tilde{v})| \leq L(|u-v|+|\tilde{u}-\tilde{v}|)$ and $u_{n} \rightarrow u_{0}, \tilde{u_{n}} \rightarrow \tilde{u}_{0}$ in $L_{l o c}^{1}$, then

$$
\int_{K}\left|\Phi\left(u_{n}, \tilde{u}_{n}\right)-\Phi\left(u_{0}, \tilde{u}_{0}\right)\right| d x d t \leq L \int_{K}\left|u_{n}-u_{0}\right|+\left|\tilde{u}_{n}-\tilde{u}_{0}\right| d x d t \rightarrow 0 .
$$

Pick $\Phi(u, \tilde{u})=|u-\tilde{u}|$ to get

$$
|u(\bar{x}+\bar{y}, \bar{t}+\bar{s})-\tilde{u}(\bar{x}-\bar{y}, \bar{t}-\bar{s})| \rightarrow|u(\bar{x}, \bar{t})-\tilde{u}(\bar{x}, \bar{t})|
$$

in $L_{l o c}^{1}$ as $\bar{y}, \bar{s} \rightarrow 0$ and set $\Phi(u, v)=\operatorname{sgn}(u-v)(F(u)-F(v))$ to show

$$
\operatorname{sgn}(u(\bar{x}+\bar{y}, \bar{t}+\bar{s})-\tilde{u}(\bar{x}-\bar{y}, \bar{t}-\bar{s}))(F(u(\bar{x}+\bar{y}, \bar{t}+\bar{s})-F(\tilde{u}(\bar{x}-\bar{y}, \bar{t}-\bar{s})))
$$

$$
\rightarrow \operatorname{sgn}(u(\bar{x}, \bar{t})-\tilde{u}(\bar{x}, \bar{t}))(F(u(\bar{x}, \bar{t})-F(\tilde{u}(\bar{x}, \bar{t})))
$$

in $L_{l o c}^{1}$ as $\bar{y}, \bar{s} \rightarrow 0$. This shows

$$
\begin{aligned}
\lim _{\bar{y}, \bar{s} \rightarrow 0} h(\bar{y}, \bar{s})=\iint & |u(\bar{x}, \bar{t})-\tilde{u}(\bar{x}, \bar{t})| \partial_{t} \gamma \\
& +\operatorname{sgn}(u(\bar{x}, \bar{t})-\tilde{u}(\bar{x}, \bar{t}))(F(u(\bar{x}, \bar{t}))-F(\tilde{u}(\bar{x}, \bar{t}))) \partial_{x} \gamma d \bar{x} d \bar{t}
\end{aligned}
$$

and in particular h is continuous at (0,0). Hence (2.16) and Proposition 2.19 give (write now $x=\bar{x}, t=\bar{t}$)

$$
\begin{align*}
& \iint \underbrace{|u(x, t)-\tilde{u}(x, t)|}_{=: a(x, t)} \partial_{t} \gamma \tag{2.17}\\
& \quad+\underbrace{\operatorname{sgn}(u(x, t)-\tilde{u}(x, t))(F(u(x, t))-F(\tilde{u}(x, t)))}_{=: b(x, t)} \partial_{x} \gamma d x d t \geq 0 .
\end{align*}
$$

Step 4: Make again suitable choice of $\gamma(x, t):$ Let $0<t_{1}<t_{2}, r>0$, and

$$
\gamma(x, t)=A(x) B(t),
$$

where

- $A \in C_{c}^{\infty}(\mathbb{R}, \mathbb{R})$,
- $A(x)= \begin{cases}1 & :|x| \leq r \\ 0 & :|x| \geq r+1\end{cases}$
- $\left|A^{\prime}(x)\right| \leq 2$

Figure 9

- $B \in C^{\infty}(\mathbb{R}, \mathbb{R})$
- $B(t)= \begin{cases}0 & : 0 \leq t \leq t_{1} \text { or } t \geq t_{2}+\delta\left(\delta<t_{2}-t_{1}\right) \\ 1 & : t_{1}+\delta \leq t \leq t_{2}\end{cases}$
- $B(t)$ monotone on $\left(t_{1}, t_{1}+\delta\right)$ and $\left(t_{2}, t_{2}+\delta\right)$.

Figure 10

Then (2.17) becomes

$$
\begin{aligned}
\int_{t_{1}}^{t_{1}+\delta} \int a(x, t) A(x) B^{\prime}(t) d x d t+\int_{t_{2}}^{t_{2}+\delta} a(x, t) A(x) B^{\prime}(t) d d x d t \\
\geq-\int_{t_{1}}^{t_{2}+\delta} \int_{\{r \leq|x| \leq r+1\}} b(x, t) A^{\prime}(x) B(t) d x d t
\end{aligned}
$$

As $(r \rightarrow \infty)$, the integral on the right hand side tends to 0 : Indeed, since F is smooth (and in particular Lipschitz), we have

$$
\begin{aligned}
\sup _{t \in\left(t_{1}, t_{2}+\delta\right)} \int|b(x, t)| d x & \left.\leq \sup _{t} \int \mid F(u(x, t))-F(\tilde{u}(x, t))\right) \mid d x \\
& \leq L \sup _{t} \int|u(x, t)-g(x)-(\tilde{u}(x, t)-g(x))| d x \\
& \leq L\left(\|u-g\|_{C_{t} L_{x}^{1}}+\|\tilde{u}-g\|_{C_{t} L_{x}^{1}}\right) \\
& <\infty
\end{aligned}
$$

It follows

$$
\int_{r \leq|x| \leq r+1} b(x, t) A^{\prime}(x) B(t) d x \rightarrow 0(r \rightarrow \infty)
$$

for every t and

$$
\left|\int_{r \leq|x| \leq r+1} b(x, t) A^{\prime}(x) B(t) d x\right|
$$

is bounded uniformly in t so that the time integral approaches 0 by the dominated convergence theorem.
Similarly, $(r \rightarrow \infty)$ on the left hand side yields

$$
\int_{t_{1}}^{t_{1}+\delta} \int a(x, t) B^{\prime}(t) d x d t+\int_{t_{2}}^{t_{2}+\delta} \int a(x, t) B^{\prime}(t) d x d t \geq 0
$$

Now observe that $B^{\prime}(t)$ is a standard mollification kernel on $\left(t_{1}, t_{1}+\delta\right)$ and likewise a negative standard mollification kernel on ($t_{2}, t_{2}+\delta$), so that by Proposition 2.18, as ($\delta \rightarrow 0$)

$$
\begin{aligned}
& \int_{t_{1}}^{t_{1}+\delta} \int a(x, t) B^{\prime}(t) d x d t+\int_{t_{2}}^{t_{2}+\delta} \int a(x, t) B^{\prime}(t) d x d t \\
\rightarrow & \int a\left(x, t_{1}\right) d x-\int a\left(x, t_{2}\right) d x \geq 0
\end{aligned}
$$

hence we have shown the L^{1} contraction property

$$
\int\left|u\left(x, t_{2}\right)-\tilde{u}\left(x, t_{2}\right)\right| d x \leq \int\left|u\left(x, t_{1}\right)-\tilde{u}\left(x, t_{1}\right)\right| d x
$$

for $0<t_{1} \leq t_{2}$. Finally, if $u(\cdot, t) \rightarrow g, \tilde{u}(\cdot, t) \rightarrow g$ in L^{1} as ($t \searrow 0$), then it follows that

$$
\int|u(x, t)-\tilde{u}(x, t)| d x=0
$$

for all $t>0$, hence $u=\tilde{u}$ a.e.

2.3.3. Riemann's Problem.

Proposition 2.20. Suppose that γ is a smooth curve splitting $\mathbb{R} \times(0, \infty)$ in two domains Ω_{1}, Ω_{2} and $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is a smooth solution of

$$
\partial_{t} u+\partial_{x} F(u)=0 \text { on } \Omega_{1} \text { and } \Omega_{2}
$$

respectively. If $u \in C(\mathbb{R} \times(0, \infty))$, and if

$$
u-g \in C\left([0, \infty) ; L^{1}(\mathbb{R})\right)
$$

for some $g \in L^{\infty}(\mathbb{R})$, then u is an entropy solution of

$$
\partial_{t} u+\partial_{x} F(u)=0, u(x, 0)=g(x) .
$$

Proof. Let η, q be an entropy / entropy-flux pair and let $\varphi \in C_{c}^{\infty}(\mathbb{R} \times$ $(0, \infty)), \varphi \geq 0$. Then

$$
\begin{aligned}
& \int_{\mathbb{R} \times(0, \infty)} \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \\
= & \int_{\Omega_{1}} \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t+\int_{\Omega_{2}} \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \\
= & -\int_{\Omega_{1}} \varphi \underbrace{\left(\partial_{t} \eta(u)+\partial_{x} q(u)\right)}_{=0} d x d t-\int_{\Omega_{2}} \varphi \underbrace{\left(\partial_{t} \eta(u)+\partial_{x} q(u)\right)}_{=0} d x d t \\
& +\int_{\partial \Omega_{1}} \varphi \eta\left(u_{1}\right) \nu_{t}+\varphi q\left(u_{1}\right) \nu_{x} d S-\int_{\partial \Omega_{2}} \varphi \eta\left(u_{2}\right) \nu_{t}+\varphi q\left(u_{2}\right) \nu_{x} d S \\
= & 0,
\end{aligned}
$$

since $u_{1}=u_{2}$ on γ by continuity (recall $u_{1}(x, t)=\lim _{y, s \in \Omega_{1},(y, s) \rightarrow(x, t)}$ and similar for u_{2}). Note that on Ω_{1} and Ω_{2},

$$
\partial_{t} \eta(u)+\partial_{x} q(u)=0
$$

since u is a smooth solution (cf. the computation in subsection 2.3.1).

Consider

$$
\begin{aligned}
\partial_{t} u+\partial_{x} F(u) & =0 \\
u(x, 0) & =g(x)
\end{aligned}
$$

with special initial data

$$
g(x)= \begin{cases}u_{1} & : x<0 \\ u_{2} & : x>0\end{cases}
$$

This is called Riemann's problem.
THEOREM 2.21. Let F be smooth and strictly convex. The unique (entropy) solution of Riemann's problem is given by
a) $u(x, t)= \begin{cases}u_{1} & : \frac{x}{t}<\sigma \\ u_{2} & : \frac{x}{t}>\sigma\end{cases}$
if $u_{1}>u_{2}$, where $\sigma:=\frac{F\left(u_{1}\right)-F\left(u_{2}\right)}{u_{1}-u_{2}}$.
b) $u(x, t)= \begin{cases}u_{1} & : \frac{x}{t}<F^{\prime}\left(u_{1}\right) \\ G\left(\frac{x}{t}\right) & : F^{\prime}\left(u_{1}\right)<\frac{x}{t}<F^{\prime}\left(u_{2}\right) \text { where } G=\left(F^{\prime}\right)^{-1} \text { (well-defined } \\ u_{2} & : \frac{x}{t}>F^{\prime}\left(u_{2}\right),\end{cases}$ by convexity of F !).

Proof. a) Let η, q be an entropy / entropy-flux pair and $\varphi \in C_{c}^{\infty}(\mathbb{R} \times$ $(0, \infty)), \varphi \geq 0$. Then,

$$
\begin{aligned}
& \iint_{\mathbb{R} \times(0, \infty)} \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \\
= & \iint_{\left\{\frac{x}{t}<\sigma\right\}} \partial_{t} \varphi \eta\left(u_{1}\right)+\partial_{x} \varphi q\left(u_{1}\right) d x d t+\iint_{\left\{\frac{x}{t}>\sigma\right\}} \partial_{t} \varphi \eta\left(u_{2}\right)+\partial_{x} \varphi q\left(u_{2}\right) d x d t \\
= & -\iint_{\left\{\frac{x}{t}<\sigma\right\}} \varphi \underbrace{\left(\partial_{t} \eta\left(u_{1}\right)+\partial_{x} q\left(u_{1}\right)\right)}_{=0} d x d t-\iint_{\left\{\frac{x}{t}>\sigma\right\}} \varphi \underbrace{\left(\partial_{t} \eta\left(u_{2}\right)+\partial_{x} q\left(u_{2}\right)\right)}_{=0} d x d t \\
& +\int_{\left\{\frac{x}{t}=\sigma\right\}} \eta\left(u_{1}\right) \varphi \nu_{t}+q\left(u_{1}\right) \varphi \nu_{x}-\eta\left(u_{2}\right) \varphi \nu_{t}-q\left(u_{2}\right) \varphi \nu_{x} d S \\
= & C \int_{\left\{\frac{x}{t}=\sigma\right\}} \nu_{x} \varphi\left[-\sigma\left(\eta\left(u_{1}\right)-\eta\left(u_{2}\right)\right)+q\left(u_{1}\right)-q\left(u_{2}\right)\right] d S .
\end{aligned}
$$

Since $\nu_{x} \varphi \geq 0$, it suffices to show (assume $\sigma>0$)

$$
\begin{aligned}
& -\sigma\left(\eta\left(u_{1}\right)-\eta\left(u_{2}\right)\right)+\left(q\left(u_{1}\right)-q\left(u_{2}\right)\right) \geq 0 \text { if } u_{1}>u_{2} \\
\Leftrightarrow & \left(F\left(u_{1}\right)-F\left(u_{2}\right)\right)\left(\eta\left(u_{1}\right)-\eta\left(u_{2}\right)\right) \leq\left(q\left(u_{1}\right)-q\left(u_{2}\right)\right)\left(u_{1}-u_{2}\right) \\
\Leftrightarrow & \int_{u_{2}}^{u_{1}} F^{\prime}(z) d z \int_{u_{2}}^{u_{1}} \eta^{\prime}(z) d z \leq \int_{u_{2}}^{u_{1}} q^{\prime}(z) d z\left(u_{1}-u_{2}\right) \\
\Leftrightarrow & \int_{u_{2}}^{u_{1}} F^{\prime}(z) d z \int_{u_{2}}^{u_{1}} \eta^{\prime}(z) d z \leq\left(u_{1}-u_{2}\right) \int_{u_{2}}^{u_{1}} F^{\prime}(z) \eta^{\prime}(z) d z
\end{aligned}
$$

and this is true (exercise). The case $\sigma<0$ is similar. Note also that $u-g \in$ $C\left([0, \infty) ; L^{1}(\mathbb{R})\right)$, as can be seen by direct computation.
b) We use Proposition 2.20: Clearly $u-g \in C_{t} L_{x}^{1}$, and u is continuous on $\mathbb{R} \times(0, \infty)$. Hence u is the entropy solution if it is a solution on $\left\{F^{\prime}\left(u_{1}\right) \leq\right.$ $\left.\frac{x}{t} \leq F^{\prime}\left(u_{2}\right)\right\}$. Check this: Recall $G=\left(F^{\prime}\right)^{-1}$.

$$
\begin{aligned}
\partial_{t} G\left(\frac{x}{t}\right)+\partial_{x} F\left(G\left(\frac{x}{t}\right)\right) & =G^{\prime}\left(\frac{x}{t}\right)\left(-\frac{x}{t^{2}}\right)+F^{\prime}\left(G\left(\frac{x}{t}\right)\right) G^{\prime}\left(\frac{x}{t}\right) \frac{1}{t} \\
& =G^{\prime}\left(\frac{x}{t}\right)\left[-\frac{x}{t^{2}}+\frac{x}{t} \frac{1}{t}\right] \\
& =0 .
\end{aligned}
$$

2.4. Compensated Compactness

2.4.1. Viscosity Approximation. Let again F be smooth and $g \in L^{\infty}(\mathbb{R})$. Goal: Show existence of an entropy solution of

$$
\begin{aligned}
\partial_{t} u+\partial_{x} F(u) & =0 \text { on } \mathbb{R} \times(0, \infty) \\
u(x, 0) & =g(x) .
\end{aligned}
$$

Idea: Approximation by a better equation! Consider for $\varepsilon>0$ the parabolic PDE

$$
\begin{align*}
\partial_{t} u_{\varepsilon}+\partial_{x} F\left(u_{\varepsilon}\right) & =\varepsilon \partial_{x x} u_{\varepsilon} \tag{2.18}\\
u_{\varepsilon}(x, 0) & =g(x),
\end{align*}
$$

for which existence of smooth solutions can be shown more easily (cf. heat equation ...) Let us assume for the moment that u_{ε} is smooth,

$$
\sup _{\varepsilon>0}\left\|u_{\varepsilon}\right\|_{L^{\infty}(\mathbb{R} \times(0, \infty))}<\infty \text { and } u_{\varepsilon}-g \rightarrow u-g \text { in } C_{t} L_{x}^{1}
$$

for some $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ (this is in practice very difficult to show). We claim that then u is the entropy solution. To see this, let η, q be an entropy/entropy-flux pair. Multiply (2.18) by $\eta^{\prime}\left(u_{\varepsilon}\right)$ to obtain

$$
\begin{aligned}
0 & =\eta^{\prime}\left(u_{\varepsilon}\right) \partial_{t} u_{\varepsilon}+\eta^{\prime}\left(u_{\varepsilon}\right) F^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon}-\varepsilon \partial_{x x} u_{\varepsilon} \eta^{\prime}\left(u_{\varepsilon}\right) \\
& =\partial_{t} \eta\left(u_{\varepsilon}\right)+\partial_{x} q\left(u_{\varepsilon}\right)-\varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)+\varepsilon \underbrace{\eta^{\prime \prime}\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right)^{2}}_{\geq 0(\eta \text { convex })}
\end{aligned}
$$

so that $\partial_{t} \eta\left(u_{\varepsilon}\right)+\partial_{x} q\left(u_{\varepsilon}\right) \leq \varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)$. Let now $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \varphi \geq 0$. Then

$$
\iint \varphi \partial_{t} \eta\left(u_{\varepsilon}\right)+\varphi \partial_{x} q\left(u_{\varepsilon}\right) d x d t \leq \varepsilon \iint \partial_{x x} \eta\left(u_{\varepsilon}\right) \varphi d x d t
$$

so

$$
\iint \partial_{t} \varphi \eta\left(u_{\varepsilon}\right)+\partial_{x} \varphi q\left(u_{\varepsilon}\right) d x d t \geq-\varepsilon \iint \partial_{x x} \varphi \eta\left(u_{\varepsilon}\right) d x d t .
$$

Since, on the support of $\varphi, u_{\varepsilon} \rightarrow u$ in $C_{t} L_{x}^{1}$, we conclude

$$
\iint \partial_{t} \varphi \eta\left(u_{\varepsilon}\right)+\partial_{x} \varphi q\left(u_{\varepsilon}\right) d x d t \rightarrow \iint \partial_{t} \varphi \eta(u)+\partial_{x} \varphi \eta(u) d x d t
$$

and

$$
\left|\varepsilon \iint \partial_{x x} \varphi \eta\left(u_{\varepsilon}\right) d x d t\right| \leq \varepsilon \sup _{|z| \leq\left\|u_{\varepsilon}\right\|_{L}}|\eta(z)| \int\left|\partial_{x x} \varphi\right| d x \rightarrow 0
$$

hence

$$
\iint \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \geq 0
$$

so u is the entropy solution. This gives another motivation for our definition of entropy solution.
Problem: "Strong" convergence like $u_{\varepsilon} \rightarrow u$ in $C_{t} L_{x}^{1}$ is very hard to prove! If we only have an L^{∞}-bound $\left\|u_{\varepsilon}\right\|_{L^{\infty}} \leq C$, the best we can hope for is weak convergence.
2.4.2. Weak convergence. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and X^{\prime} its dual space, i.e. the space of bounded linear functionals on X. For $x^{\prime} \in$ X^{\prime}, write $\left\langle x, x^{\prime}\right\rangle$ instead of $x^{\prime}(x)$. The dual space is itself a normed (even Banach!) space with norm given by

$$
\left\|x^{\prime}\right\|_{X^{\prime}}:=\sup \left\{\left|\left\langle x, x^{\prime}\right\rangle\right|:\|x\|_{X} \leq 1\right\} .
$$

Definition 2.22. a) We say $x_{n} \rightharpoonup x$ weakly in X if

$$
\lim _{n \rightarrow \infty}\left\langle x_{n}, x^{\prime}\right\rangle=\left\langle x, x^{\prime}\right\rangle
$$

for all $x^{\prime} \in X^{\prime}$.
b) We say $x_{n}^{\prime} \stackrel{*}{\rightharpoonup} x^{\prime}$ weakly-* in X^{\prime} if

$$
\lim _{n \rightarrow \infty}\left\langle x, x_{n}^{\prime}\right\rangle=\left\langle x, x^{\prime}\right\rangle
$$

for every $x \in X$.
Weakly convergent sequences are always bounded.
Theorem 2.23. (Banach-Alaoglu) Let X be a separable normed space and $\left(x_{n}^{\prime}\right) \subset X^{\prime}$ a bounded sequence, i.e.

$$
\sup _{n \in \mathbb{N}} \sup _{x \in X,\|x\|_{X} \leq 1}\left|\left\langle x, x_{n}^{\prime}\right\rangle\right|<\infty,
$$

then there is a subsequence $\left(x_{n_{k}}^{\prime}\right)_{k \in \mathbb{N}}$ that converges weakly-*.
EXAMPLE 2.24. - Let $1<p<\infty$, then $L^{p}(\Omega)$ is a separable normed space with norm

$$
\begin{equation*}
\|f\|_{L^{p}(\Omega)}=\left(\int_{\Omega}|f(x)|^{p} d x\right)^{\frac{1}{p}}, \tag{2.19}
\end{equation*}
$$

and its dual is $L^{q}(\Omega)$ for $\frac{1}{p}+\frac{1}{q}=1$. The duality pairing is

$$
\langle f, g\rangle=\int_{\Omega} f(x) g(x) d x
$$

Hence $f_{n} \rightharpoonup f$ weakly means

$$
\int f_{n} g d x \rightarrow \int f g d x
$$

for all $g \in L^{q}(\Omega)$. On the other hand, $\left(L^{q}(\Omega)\right)^{\prime}=L^{p}(\Omega)$ so $\left(L^{p}(\Omega)\right)^{\prime \prime}=$ $L^{p}(\Omega)$ (we say $L^{p}(\Omega)$ is reflexive) and hence the weak and the weak-* topology on $L^{p}(\Omega)$ are the same.

- $L^{1}(\Omega)$ is also a separable normed space and its dual is $L^{\infty}(\Omega)$, but $L^{1}(\Omega)$ is not reflexive because $\left(L^{\infty}(\Omega)\right)^{\prime} \supsetneq L^{1}(\Omega)$. In $L^{\infty}(\Omega)$ one mostly uses the weak-* topology: $f_{n} \xrightarrow{*} f$ in $L^{\infty}(\Omega)$ if

$$
\int f_{n} g d x \rightarrow \int f g d x
$$

for all $g \in L^{1}(\Omega)$.

- Let $\Omega \subset \mathbb{R}^{d}$ be a domain and $C_{0}(\Omega)$ the space of continuous functions $\Omega \rightarrow \mathbb{R}$ vanishing at the boundary. Then the dual of $C_{0}(\Omega)$ can be identified, by the Riesz-Markov representation theorem, with the space of finite signed measures, i.e., the set of $\mu=\mu^{+}-\mu^{-}$ where μ^{+}and μ^{-}are finite measures supported on two disjoint measurable sets Ω^{+}and Ω^{-}, respectively. The dual pairing is given by

$$
\langle f, \mu\rangle=\int_{\Omega} f d \mu:=\int_{\Omega^{+}} f d \mu^{+}-\int_{\Omega^{-}} f d \mu^{-}
$$

- The difference between weak and strong convergence is most apparent in the presence of oscillations: Set $\Omega=(0,1), f_{n}(x)=$ $\sin (n x)$. It is easy to see

$$
f_{n} \stackrel{*}{\rightharpoonup} 0
$$

(i.e. for all $g \in L^{1}(0,1): \int g(x) \sin (n x) d x \rightarrow 0$, "Riemann-LebesgueLemma"), but f_{n} does not converge strongly in $L^{\infty}(0,1)$ (i.e. uniformly).

Weak convergence and nonlinearities

Recall we want to pass to the limit in the equation

$$
\partial_{t} u_{\varepsilon}+\partial_{x} F\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} u_{\varepsilon}
$$

and we know $u_{\varepsilon} \stackrel{*}{\rightharpoonup}$ in L^{∞}. In order to pass to the limit, we need $F\left(u_{\varepsilon}\right) \stackrel{*}{\rightharpoonup}$ $F(u)$. But this is not true!
Example: $f_{n}(x)=\sin (n x)$ on $(0,1)$ and $f_{n} \stackrel{*}{\rightharpoonup} 0$, but $f_{n}^{2}=\sin ^{2}(n x) \xrightarrow{*} \frac{1}{2} \neq$ 0^{2}.
So weak convergence does not commute with nonlinear functions:

$$
F\left(\mathrm{w}^{*}-\lim u_{\varepsilon}\right) \neq \mathrm{w}^{*}-\lim F\left(u_{\varepsilon}\right)!
$$

Our goal is to exclude such oscillatory effects.
Proposition 2.25. Let X be a normed space and X^{\prime} its dual, and let either $x_{n} \rightarrow x$ strongly in X and $x_{n}^{\prime} \rightharpoonup x^{\prime}$ weakly in X^{\prime}, or $x_{n} \rightharpoonup x$ weakly in X and $x_{n}^{\prime} \rightarrow x^{\prime}$ strongly in X^{\prime}. Then,

$$
\left\langle x_{n}, x_{n}^{\prime}\right\rangle \rightarrow\left\langle x, x^{\prime}\right\rangle
$$

The proof is left as an exercise.
2.4.3. Sobolev Spaces. Let $\Omega \subset \mathbb{R}^{n}$ be a domain. A function $u \in$ $L_{l o c}^{1}(\Omega)$ is weakly differentiable if there exists $v \in L_{l o c}^{1}(\Omega)$ such that

$$
\int_{\Omega} u D \varphi d x=-\int_{\Omega} \varphi v d x
$$

for all $\varphi \in C_{c}^{\infty}(\Omega)$, and we write $v=D u$.
If $k \in \mathbb{N}$ and $1 \leq p \leq \infty$, then
$W^{k, p}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R}: \partial_{\alpha} u \in L^{p}(\Omega)\right.$ for all multiindices α with $\left.|\alpha| \leq k\right\}$.
Similarly for $W_{l o c}^{k, p}(\Omega)$. The norm is given by

$$
\|u\|_{W^{k, p}(\Omega)}=\sum_{|\alpha| \leq k}\left\|\partial_{\alpha}\right\|_{L^{p}} .
$$

The space $W_{0}^{1, p}(\Omega)$ is the closure of $C_{c}^{\infty}(\Omega)$ under the $W^{1, p}$-norm.
The space $W^{-1, p}(\Omega)$ is the dual of $W_{0}^{1, p^{\prime}}(\Omega)\left(1<p<\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, so the norm is

$$
\|f\|_{W^{-1, p}(\Omega)}=\sup _{\|u\|_{W_{0}^{1, p^{\prime}}(\Omega)} \leq 1}\left|\int_{\Omega} f u d x .\right|
$$

Note $W_{l o c}^{-1, q} \subset W_{l o c}^{-2, r}$ whenever $q \geq r$.
Rellich Compactness Theorem: If Ω is bounded and smooth then

- $W^{1, p}(\Omega) \Subset L^{q}(\Omega)$ for $1 \leq q<p *$, where $p *=\frac{n p}{n-p}$.
- $W^{1, p}(\Omega) \Subset C(\bar{\Omega})$ if $p>n$.

Here: $X \Subset Y$ means compact embedding, i.e. if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded in X then there exists a subsequence $\left(x_{n_{k}}\right)$ s.t. $x_{n_{k}} \rightarrow x$ in Y (" $\left(x_{n}\right)$ is precompact in $Y^{\prime \prime}$).

THEOREM 2.26. Let $\Omega \subset \mathbb{R}^{n}$ be bounded and smooth and $\left(\mu_{n}\right)$ be bounded in $\mathcal{M}(\Omega)$. Then $\left(\mu_{n}\right)$ is precompact in $W^{-1, q}(\Omega)$ for each $1 \leq q<\frac{n}{n-1}$.

Proof. By Banach-Alaoglu there is a subsequence (still called $\left(\mu_{n}\right)$) such that $\mu_{n} \stackrel{*}{\sim} \mu$ in $\mathcal{M}(\Omega)$. Consider $W_{0}^{1, q^{\prime}}(\Omega)$ with $\frac{1}{q}+\frac{1}{q^{\prime}}=1$. Since $1 \leq q<\frac{n}{n-1}, q^{\prime}>n$, so that

$$
W_{0}^{1, q^{\prime}}(\Omega) \Subset C_{0}(\bar{\Omega}) .
$$

In particular $B:=\left\{\varphi \in W_{0}^{1, q^{\prime}}(\Omega):\|\varphi\|_{W_{0}^{1, q^{\prime}}} \leq 1\right\}$ is compact in $C_{0}(\bar{\Omega})$ hence for every $\delta>0$ there are finitely many functions $\left\{\varphi_{i}\right\}_{i=1, \ldots, N_{\delta}} \subset C_{0}(\bar{\Omega})$ such that

$$
\min _{1 \leq i \leq N_{\delta}}\left\|\varphi-\varphi_{i}\right\|_{\infty}<\delta
$$

for all $\varphi \in B$. Therefore for $\varphi \in B$,

$$
\begin{aligned}
\left|\int_{\Omega} \varphi d \mu_{n}-\int_{\Omega} \varphi d \mu\right| & \leq \int_{\Omega}\left|\varphi-\varphi_{i}\right| d \mu_{n}+\left|\int_{\Omega} \varphi_{i} d \mu_{n}-\int_{\Omega} \varphi_{i} d \mu\right|+\int_{\Omega}\left|\varphi_{i}-\varphi\right| d \mu \\
& \leq 2 \delta \sup _{n}\left|\mu_{n}\right|(\Omega)+\left|\int_{\Omega} \varphi_{i} d \mu_{n}-\int_{\Omega} \varphi d \mu\right|
\end{aligned}
$$

for some $1 \leq i \leq N_{\delta}$. Let now $\varepsilon>0$ and choose $\delta>0$ such that

$$
2 \delta \sup _{n}\left|\mu_{n}\right|(\Omega)<\frac{\varepsilon}{2} .
$$

Since $\mu_{n} \stackrel{*}{\rightharpoonup} \mu$, for every $1 \leq i \leq N_{\delta}$ there exists N_{i} such that

$$
\left|\int_{\Omega} \varphi_{i} d \mu_{n}-\int_{\Omega} \varphi d \mu\right|<\frac{\varepsilon}{2}
$$

for all $n \geq N_{i}$. Therefore, if $n>\max _{1 \leq i \leq N_{\delta}} N_{i}$,

$$
\left|\int_{\Omega} \varphi d \mu_{n}-\int_{\Omega} \varphi d \mu\right|<\varepsilon
$$

for all $\varphi \in B$ hence $\mu_{n} \rightarrow \mu$ in $W^{-1, q}(\Omega)$.
Theorem 2.27. Let $1<p<\infty, \Omega$ bounded smooth domain, and $f \in$ $W^{k, p}(\Omega)$ for some $k \geq-1$ (in particular $f \in W^{-1, p}(\Omega)$ is allowed!). Then there exists a unique solution in the sense of distributions of

$$
\begin{equation*}
-\Delta u=f, u \in W^{k+2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) \tag{2.20}
\end{equation*}
$$

Moreover, $\left(f_{n}\right)$ is precompact in $W^{k, p}(\Omega)$ if and only if $\left(u_{n}\right)$ is precompact in $W^{k+2, p}(\Omega)$.

Proof. 'Standard' elliptic theory (see e.g. [3] [Thm. 9.15])
Lemma 2.28. (Interpolation of L^{p}-spaces)
Let $\Omega \subset \mathbb{R}^{n}$ be measurable and let $1 \leq p \leq q<\infty$. For $\theta \in[0,1]$ set $\frac{1}{r}=\frac{1-\theta}{p}+$ $\frac{\theta}{q}$ (note such r are from $[p, q]$). Then if $f \in L^{p}(\Omega) \cap L^{q}(\Omega)$, then $f \in L^{r}(\Omega)$ and

$$
\|f\|_{L^{r}} \leq\|f\|_{L^{p}}^{1-\theta}\|f\|_{L^{q}}^{\theta} .
$$

Proof.

$$
\begin{aligned}
\|f\|_{L^{r}}^{r} & =\int|f|^{(1-\theta) r}|f|^{\theta r} \\
& \leq\left\||f|^{(1-\theta) r}\right\|_{L^{\frac{p}{1-\theta) r}}}\left\|\left.f\right|^{\theta r}\right\|_{L^{\frac{q}{\theta r}}} \\
& =\|f\|_{L^{p}}^{(1-\theta) r}\|f\|_{L^{q}} .
\end{aligned}
$$

Corollary 2.29. Let $\Omega \subset \mathbb{R}^{n}$ be a domain. Suppose $\left(u_{n}\right)_{n \in \mathbb{N}}$ is precompact in $L^{p}(\Omega)$ and bounded in $L^{q}(\Omega)$ for $1 \leq p<q<\infty$. Then $\left(u_{n}\right)_{n \in \mathbb{N}}$ is precompact in $L^{r}(\Omega)$ for any $p \leq r<q$.

Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ converge to u in $L^{p}(\Omega)$ and let $\theta \in(0,1)$ be such that $\frac{1}{r}=\frac{1-\theta}{p}+\frac{\theta}{q}$. Then by Lemma 2.28 ,

$$
\left\|u_{n_{k}}-u\right\|_{L^{r}} \leq \underbrace{\left\|u_{n_{k}}-u\right\|_{L^{p}}^{1-\theta}}_{\rightarrow 0} \underbrace{\left\|u_{n_{k}}-u\right\|_{L^{q}}^{\theta}}_{\text {bdd. }} \rightarrow 0 .
$$

Corollary 2.30. Let $\Omega \subset \mathbb{R}^{n}$ bounded and smooth. Suppose $\left(f_{n}\right)_{n \in \mathbb{N}}$ is bounded in $W^{-1, p}(\Omega)$ for a $p>2$. Let $f_{n}=g_{n}+h_{n}$, where

- g_{n} is precompact in $W^{-1,2}(\Omega)$
- h_{n} is bounded in $\mathcal{M}(\Omega)$.

Then $\left(f_{n}\right)$ is precompact in $W^{-1,2}(\Omega)$.

Proof. By Theorem 2.27, there exists a unique $v_{n} \in W_{0}^{1,2}(\Omega)$ such that

$$
-\Delta v_{n}=g_{n}
$$

Moreover, by Theorem 2.26 there is a unique $w_{n} \in W_{0}^{1, q}(\Omega)$ for any $1 \leq q<$ $\frac{n}{n-1}$ such that

$$
-\Delta w_{n}=h_{n}
$$

and

- $\left(v_{n}\right)$ is precompact in $W_{0}^{1,2}(\Omega)$,
- $\left(w_{n}\right)$ is precompact in $W_{0}^{1, q}(\Omega)$.

Set $u_{n}:=v_{n}+w_{n}$, then (since $q \leq 2$) $\left(u_{n}\right)$ is precompact in $W_{0}^{1, q}(\Omega)$, and u_{n} is the unique solution in $W_{0}^{1, q}(\Omega)$ of

$$
-\Delta u_{n}=g_{n}+h_{n}=f_{n}
$$

By Theorem 2.27 and the assumption on $\left(f_{n}\right)$, the sequence $\left(u_{n}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$. It follows from Corollary 2.29 that $\left(u_{n}\right)$ is precompact in $W_{0}^{1,2}(\Omega)$ and hence $\left(f_{n}\right)_{n \in \mathbb{N}}$ is precompact in $W^{-1,2}(\Omega)$.
2.4.4. Div-Curl-Lemma. Given a vector field $v=\left(v_{1}, \ldots, v_{d}\right) \in L^{2}\left(\Omega ; \mathbb{R}^{d}\right)$ ($\Omega \subset \mathbb{R}^{d}$ bounded smooth domain), then $\operatorname{div} v \in W^{-1,2}(\Omega)$ is defined by duality as

$$
\langle\varphi, \operatorname{div} v\rangle=-\int \nabla \varphi \cdot v d x
$$

for $\varphi \in W_{0}^{1,2}(\Omega)$. Also we define $(\operatorname{curl} v)_{i j}=\partial_{j} v_{i}-\partial_{i} v_{j}$ in the sense of distributions, i.e.

$$
\langle\varphi, \operatorname{curl} v\rangle_{i j}=\int \partial_{i} \varphi v_{j}-\partial_{j} \varphi v_{i} d x
$$

for $\varphi \in W_{0}^{1,2}(\Omega)$.
The Laplacian of v is interpreted row-wise, i.e.

$$
\Delta v=\left(\Delta v_{1}, \ldots, \Delta v_{d}\right)
$$

LEMMA 2.31. (Div-Curl-Lemma - Murat 1978 [5])
Let Ω bounded and smooth and let $\left(v_{n}\right)_{n \in \mathbb{N}},\left(w_{n}\right)_{n \in \mathbb{N}}$ be two bounded sequences in $L^{2}\left(\Omega ; \mathbb{R}^{d}\right)$ such that
i) $\left(\operatorname{div} v_{n}\right)$ is precompact in $W^{-1,2}(\Omega)$
ii) $\left(\operatorname{curl} w_{n}\right)$ is precompact in $W^{-1,2}(\Omega)$.

If $v_{n} \rightharpoonup v$ and $w_{n} \rightharpoonup w$ weakly in L^{2}, then $v_{n} \cdot w_{n} \rightharpoonup v \cdot w$ weakly in L^{1}.
Proof. Consider $u_{n} \in W_{0}^{1,2}(\Omega) \cap W^{2,2}(\Omega)$ solving

$$
-\Delta u_{n}=w_{n} \text { in } \Omega
$$

As w_{n} is bounded in L^{2}, u_{n} is bounded in $W^{2,2}(\Omega)$. Set $z_{n}=-\operatorname{div} u_{n}, y_{n}=$ $w_{n}-D z_{n}$. Then

- z_{n} is bounded in $W^{1,2}$ and
- $y_{n}^{i}=w_{n}^{i}-\partial_{i} z_{n}$

$$
\begin{aligned}
& =-\Delta u_{n}^{i}+\sum_{j} \partial_{i} \partial_{j} u_{n}^{j} \\
& =\sum_{j} \partial_{j}\left(\partial_{i} u_{n}^{j}-\partial_{j} u_{n}^{i}\right) \\
& =-\left(\operatorname{div} \operatorname{curl} u_{n}\right)_{i}
\end{aligned}
$$

But by ii) ($\operatorname{curl} u_{n}$) is precompact in $W_{l o c}^{1,2}$, hence $\left(y_{n}\right)$ is precompact in $L_{l o c}^{2}$ (Exercise). Hence, after passing to subsequences if necessary,

- $z_{n} \rightharpoonup z$ in $W^{1,2}(\Omega)$
- $y_{n} \rightarrow y$ in $L_{l o c}^{2}(\Omega)$, and $z=-\operatorname{div} u, y=w-D z$, where $u \in$ $W_{0}^{1,2} \cap W^{2,2}$ solves $-\Delta u=w$.
Next let $\varphi \in C_{c}^{\infty}(\Omega)$, then

$$
\int v_{n} \cdot w_{n} \varphi d x=\int v_{n}\left(y_{n}+D z_{n}\right) \varphi d x
$$

As $v_{n} \rightharpoonup v$ weakly in L^{2} (up to a subsequence) and $y_{n} \varphi \rightarrow y \varphi$ strongly in L^{2}, by Proposition 2.25

$$
\int v_{n} \cdot y_{n} \varphi d x \rightarrow \int v \cdot y \varphi d x
$$

Moreover,

$$
\begin{aligned}
& \int v_{n} \cdot D z_{k} \varphi d x \\
= & -\int \underbrace{\operatorname{div} v_{n}}_{\text {strongly in } W^{-1,2}} \underbrace{z_{n}}_{\text {weakly in } W^{1,2}} \varphi d x-\int \underbrace{v_{n}}_{\text {weakly in } L^{2}} \cdot D \varphi \underbrace{z_{n}}_{\text {strongly in } L^{2}} \text { (Rellich) } \\
\rightarrow & -\int \operatorname{div} v z \varphi d x-\int v \cdot D \varphi z d x \\
= & \int v \cdot D z \varphi d x
\end{aligned}
$$

hence

$$
\int v_{n} \cdot w_{n} \varphi d x \rightarrow \int v(y+D z) d x=\int v \cdot w \varphi d x
$$

Extension to $\varphi \in L^{\infty}$ follows by approximation, considering that $\left(v_{n} \cdot w_{n}\right)$ is bounded in L^{∞}.
2.4.5. Young measures. Weak convergence $u_{n} \rightharpoonup u$ does not go well with nonlinearities. Take a different viewpoint: Identify $u_{n}(x)$ with $x \mapsto$ $\delta_{u_{n}(x)}$, so $\delta_{u_{n}(x)}$ is a probability measure parametrized by the domain. Hope that

$$
\delta_{u_{n}(x)} \rightharpoonup \delta_{u(x)}
$$

in some sense.
THEOREM 2.32. (Fundamental Theorem of Young measures) Let $\Omega \subset \mathbb{R}^{n}$ be a domain and $u_{n} \in L^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$ be bounded. Then there exists
a subsequence $\left(u_{n_{k}}\right)_{k \in \mathbb{N}}$ and, for a.e. $x \in \Omega$, a probability measure ν_{x}, such that

$$
F\left(u_{n_{k}}\right) \stackrel{*}{*} \int_{\mathbb{R}^{m}} F(z) d \nu_{x}(z)=:\left\langle F, \nu_{x}\right\rangle
$$

in $L^{\infty}(\Omega)$ for every $F \in C\left(\mathbb{R}^{m}\right)$. The family $\left(\nu_{x}\right)_{x \in \Omega}$ is the Young measure generated by $\left(u_{n_{k}}\right)$.

To prove this, we need
Lemma 2.33. (Disintegration)
Let μ be a finite nonnegative Radon measure on $\mathbb{R}^{n \times m}$. Let $\sigma=\pi_{\mathbb{R}^{n}}(\mu)$ be the projection of μ into \mathbb{R}^{n}, i.e.

$$
\sigma(E)=\mu\left(E \times \mathbb{R}^{m}\right)
$$

for $E \subset \mathbb{R}^{n}$ Borel measurable. Then for σ-a.e. $x \in \mathbb{R}^{n}$ there is a probability measure ν_{x} on \mathbb{R}^{m} such that

$$
\begin{equation*}
x \mapsto \int_{\mathbb{R}^{m}} f(x, z) d \nu_{x}(z) \tag{2.21}
\end{equation*}
$$

is σ-measurable and

$$
\int_{\mathbb{R}^{m \times n}} f(x, y) d \mu(x, y)=\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{m}} f(x, z) d \nu_{x}(z)\right) d \sigma(x)
$$

for every bounded continuous function f.
Proof. (of Theorem 2.32)
First assume Ω is bounded. Define for each $n \in \mathbb{N}$ a measure by

$$
\mu_{n}(E)=\int_{\Omega} \mathbb{1}_{E}\left(x, u_{n}(x)\right) d x
$$

for any $E \subset \Omega \times \mathbb{R}^{m}$ Borel measurable. Then $\sup _{n} \mu_{n}\left(\Omega \times \mathbb{R}^{m}\right)=\mathcal{L}^{n}(\Omega)<\infty$, so by Banach-Alaoglu there is a subsequence $\left(\mu_{n_{k}}\right)$ such that $\mu_{n_{k}} \stackrel{*}{\rightharpoonup} \mu \geq 0$. Let σ be the projection of μ onto Ω, i.e. $\sigma(E)=\mu\left(E \times \mathbb{R}^{m}\right)$. Then, on the one hand, if $V \subset \Omega$ is open,

$$
\sigma(V)=\mu\left(V \times \mathbb{R}^{m}\right) \leq \underset{k}{\liminf } \mu_{n_{k}}\left(V \times \mathbb{R}^{m}\right)=\mathcal{L}^{n}(V)
$$

by lower semicontinuity under weak convergence, so that $\sigma \leq\left.\mathcal{L}^{n}\right|_{\Omega}$.
On the other hand, let $K \subset \Omega$ be compact. Since ($u_{n_{k}}$) is bounded in L^{∞}, there exists $R>0$ (specifically $\left.R>\sup _{k}\left\|u_{n_{k}}\right\|_{L^{\infty}}\right)$ such that $\operatorname{supp} \mu, \operatorname{supp} \mu_{n_{k}} \subset$ $\Omega \times B(0, R)$. Hence

$$
\begin{aligned}
\sigma(K) & =\mu\left(K \times \mathbb{R}^{m}\right)=\mu(K \times \overline{B(0, R)}) \\
& \geq \underset{k}{\limsup } \mu_{n_{k}}(K \times \overline{B(0, R)})=\mathcal{L}^{n}(K)
\end{aligned}
$$

hence $\sigma \geq\left.\mathcal{L}^{n}\right|_{\Omega}$ so in total we have shown $\sigma=\left.\mathcal{L}^{n}\right|_{\Omega}$.
Next, by Lemma 2.33, for a.e. $x \in \Omega$ there is a probability measure ν_{x} such that

$$
\int_{\mathbb{R}^{n \times m}} f(x, z) d \mu(x, z)=\int_{\Omega}\left(\int_{\mathbb{R}^{m}} f(x, z) d \nu_{x}(z)\right) d x
$$

for f bounded and continuous. Let $f(x, z)=\varphi(x) F(z)\left(\varphi \in C_{c}(\Omega), F \in\right.$ $C_{c}\left(\mathbb{R}^{m}\right)$). Hence

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{\Omega} \varphi(x) F\left(u_{n_{k}}(x)\right) d x & =\lim _{k \rightarrow \infty} \int_{\mathbb{R}^{n \times m}} f(x, z) d \mu_{n_{k}}(x, z) \\
& =\int_{\mathbb{R}^{n \times m}} f(x, z) d \mu(x, z) \\
& =\int_{\Omega} \varphi(x)\left(\int_{\mathbb{R}^{m}} F(z) d \nu_{x}(z)\right) d x
\end{aligned}
$$

But by approximation this is also true for $\varphi \in L^{1}(\Omega)$ so

$$
F\left(u_{n_{k}}\right) \stackrel{*}{\rightharpoonup} \int_{\mathbb{R}^{n}} F(z) d \nu_{x}(z)
$$

in L^{∞} for $F \in C_{c}\left(\mathbb{R}^{m}\right)$. Finally, as $\left(u_{n_{k}}\right)$ are bounded in $L^{\infty}, F \in C\left(\mathbb{R}^{m}\right)$ can be altered to have compact support so the convergence is even true for $F \in C\left(\mathbb{R}^{m}\right)$.
Now let Ω be a general domain (not necessarily bounded) and exhaust it by bounded domains Ω_{j}, so that

$$
\Omega_{j} \subset \Omega_{j+1} \text { and } \bigcup_{j \in \mathbb{N}} \Omega_{j}=\Omega
$$

For each $j \in \mathbb{N}$, let ν_{x}^{j} be the Young measure generated by a subsequence $\left(u_{n_{k, j}}\right)_{k \in \mathbb{N}}$. We assume $\left(n_{k, j}\right)_{k \in \mathbb{N}} \supset\left(n_{k, j+1}\right)_{k \in \mathbb{N}}$ for all $j \in \mathbb{N}$. Then clearly $\nu_{x}^{j}=\nu_{x}^{j+1}$ for a.e. every $x \in \Omega_{j}$ (test weak-* convergence with $\varphi \in C_{c}\left(\Omega_{j}\right)$). Hence for $x \in \Omega_{j}$ we define $\nu_{x}=\nu_{x}^{j}$ and $\left\{\nu_{x}\right\}_{x \in \Omega}$ is generated by the diagonal sequence $\left(u_{n_{k, k}}\right)_{k \in \mathbb{N}}$: Indeed for $\varphi \in C_{c}(\Omega)$ and $F \in C\left(\mathbb{R}^{m}\right)$ there exists $j \in \mathbb{N}$ such that

$$
\operatorname{supp} \varphi \in \Omega_{j}
$$

Since $\left(u_{n_{k, k}}\right)_{k \geq j}$ is a subsequence of $\left(u_{n_{k, j}}\right)_{k \in \mathbb{N}}$ by our construction, we obtain

$$
\begin{aligned}
\int_{\Omega} \varphi(x) F\left(u_{n_{k, k}}(x)\right) d x & =\int_{\Omega_{j}} \varphi(x) F\left(u_{n_{k, k}}(x)\right) d x \\
& \rightarrow \int_{\Omega_{j}} \varphi(x) \int_{\mathbb{R}^{m}} F(z) d \nu_{x}^{j}(z) d x \\
& =\int_{\Omega} \varphi(x) \int_{\mathbb{R}^{m}} F(z) d \nu_{x}(z) d x
\end{aligned}
$$

The statement for $\varphi \in L^{1}(\Omega)$ follows by approximation.
2.4.6. Application to Scalar Conservation Laws. So consider $\partial_{t} u_{\varepsilon}+$ $\partial_{x} F\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} u_{\varepsilon}$ and assume $\left\|u_{\varepsilon}\right\|_{L^{\infty}(\mathbb{R} \times(0, \infty))}$ is bounded in $\varepsilon>0$ and u_{ε} is smooth. From the L^{∞} bound we get (up to a subsequence)

$$
u_{\varepsilon} \stackrel{*}{\rightharpoonup} u
$$

in $L^{\infty}(\mathbb{R} \times(0, \infty))$.
THEOREM 2.34. Let F be strictly convex. Then u is an entropy solution of $\partial_{t} u+\partial_{x} F(u)=0$.

REMARK 2.35. Ignore initial data.
Proof. Up to a subsequence, $\left(u_{\varepsilon}\right)_{\varepsilon>0}$ generates a Young measure $\left(\nu_{x, t}\right)$ by Theorem 2.32, so that

$$
u(x, t)=\int_{\mathbb{R}} z d \nu_{x, t}(z)
$$

for a.e. x, t and

$$
\begin{equation*}
F\left(u_{\varepsilon}\right) \stackrel{*}{\rightharpoonup} \int_{\mathbb{R}} F(z) d \nu_{x, t}(z)=:\left\langle F, \nu_{x, t}\right\rangle \tag{2.22}
\end{equation*}
$$

in L^{∞}. Let now η, q be an entropy / entropy-flux pair. Then

$$
\eta\left(u_{\varepsilon}\right) \stackrel{*}{\rightharpoonup}\left\langle\eta, \nu_{x, t}\right\rangle=\int \eta(z) d \nu_{x, t}(z)
$$

and

$$
q\left(u_{\varepsilon}\right) \stackrel{*}{\rightharpoonup}\left\langle q, \nu_{x, t}\right\rangle
$$

in L^{∞}. As u_{ε} are smooth, we can multiply the parabolic PDE by $\eta^{\prime}\left(u_{\varepsilon}\right)$ to obtain, as before,

$$
\partial_{t} \eta\left(u_{\varepsilon}\right)+\partial_{x} q\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)-\varepsilon \eta^{\prime \prime}\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right)^{2}
$$

We want to apply the div-curl-lemma to

$$
v_{\varepsilon}=\left(F\left(u_{\varepsilon}\right), u_{\varepsilon}\right), w_{\varepsilon}=\left(\eta\left(u_{\varepsilon}\right),-q\left(u_{\varepsilon}\right)\right)
$$

Note that div and curl are taken in the variables (x, t) ! Hence

$$
\operatorname{div}_{x, t} v_{\varepsilon}=\partial_{t} u_{\varepsilon}+\partial_{x} F\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} u_{\varepsilon}
$$

and

$$
\operatorname{curl}_{x, t} w_{\varepsilon}=\partial_{t} \eta\left(u_{\varepsilon}\right)+\partial_{x} q\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)-\varepsilon \eta^{\prime \prime}\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right)^{2}
$$

and we need to show that both are precompact in $W_{l o c}^{-1,2}(\mathbb{R} \times(0, \infty))$. For this, multiply the parabolic PDE with u_{ε} and integrate in x :

$$
\begin{aligned}
0 & =\int \partial_{t} u_{\varepsilon} u_{\varepsilon} d x+\int u_{\varepsilon} \partial_{x} F\left(u_{\varepsilon}\right) d x-\varepsilon \int u_{\varepsilon} \partial_{x x} u_{\varepsilon} d x \\
& =\frac{1}{2} \frac{d}{d t} \int u_{\varepsilon}^{2} d x+\varepsilon \int\left(\partial_{x} u_{\varepsilon}\right)^{2} d x
\end{aligned}
$$

Note $\int u_{\varepsilon} \partial_{x} F\left(u_{\varepsilon}\right) d x=0$ since $u_{\varepsilon} \partial_{x} F\left(u_{\varepsilon}\right)=\partial_{x} Q\left(u_{\varepsilon}\right)$, where Q is the entropy flux corresponding to $H(z)=\frac{z^{2}}{2}$.
Integration in the time thus yields

$$
\frac{1}{2} \int_{\mathbb{R}} u_{\varepsilon}^{2} d x+\varepsilon \int_{0}^{t} \int_{\mathbb{R}}\left(\partial_{x} u_{\varepsilon}\right)^{2} d x d s=\frac{1}{2} \int_{\mathbb{R}} u_{0}^{2} d x \text { (indep. of } \varepsilon \text {). }
$$

This means $\sqrt{\varepsilon} \partial_{x} u_{\varepsilon} \in L^{2}(\mathbb{R} \times(0, \infty))$ is bounded and so $\sqrt{\varepsilon} \partial_{x x} u_{\varepsilon}$ is bounded in $W^{-1,2}(\mathbb{R} \times(0, \infty))$ and hence $\varepsilon \partial_{x x} u_{\varepsilon} \rightarrow 0$ in $W^{-1,2}(\mathbb{R} \times(0, \infty))$. Next consider $\varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)-\varepsilon \eta^{\prime \prime}\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right)^{2}$. We have that $\sqrt{\varepsilon} \partial_{x} u_{\varepsilon}$ is bounded in $L^{2}(\mathbb{R} \times(0, \infty))$ hence so is $\sqrt{\varepsilon} \eta^{\prime}\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon}=\sqrt{\varepsilon} \partial_{x} \eta\left(u_{\varepsilon}\right)$. Therefore $\varepsilon \partial_{x} \eta\left(u_{\varepsilon}\right)$ is precompact in L^{2} so $\varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)$ is precompact in $W^{-1,2}$. Also, $\varepsilon\left(\partial_{x} u_{\varepsilon}\right)^{2}$ is in $L^{1}(\mathbb{R} \times(0, \infty))$ so $\varepsilon \eta^{\prime \prime}\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right)^{2}$ is bounded in $\mathcal{M}(\mathbb{R} \times(0, \infty))$.

Moreover, $\partial_{t} \eta\left(u_{\varepsilon}\right)+\partial_{x} q\left(u_{\varepsilon}\right)$ is bounded in $W^{-1, \infty}$ and so Corollary 2.30 applies and yields

$$
\varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)-\varepsilon \eta^{\prime \prime}\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right)^{2}
$$

is precompact in $W_{l o c}^{-1,2}(\mathbb{R} \times(0, \infty))$. Therefore

$$
F\left(u_{\varepsilon}\right) \eta\left(u_{\varepsilon}\right)-u_{\varepsilon} q\left(u_{\varepsilon}\right) \rightharpoonup\langle F, \nu\rangle\langle\eta, \nu\rangle-u\langle q, \nu\rangle .
$$

On the other hand,

$$
F\left(u_{\varepsilon}\right) \eta\left(u_{\varepsilon}\right)-u_{\varepsilon} q\left(u_{\varepsilon}\right) \stackrel{*}{\rightharpoonup} \int F(z) \eta(z)-z q(z) d \nu(z)
$$

hence

$$
\int F(z) \eta(z)-z q(z) d \nu(z)=\langle F, \nu\rangle\langle\eta, \nu\rangle-u\langle q, \nu\rangle
$$

for a.e. x, t or equivalently

$$
\int(F(z)-\langle F, \nu\rangle) \eta(z)+(u-z) q(z) d \nu(z)=0
$$

a.e. Now set (cf. Kruzkhov!) $\eta(z)=|z-u(x, t)|$. Note as long as we keep x, t fixed this is a valid choice of entropy! Correspondingly, we obtain

$$
q(z)=\operatorname{sgn}(z-u(x, t))(F(z)-F(u(x, t))) .
$$

Using this entropy / entropy-flux pair, we get

$$
\begin{aligned}
& \int(F(z)-\langle F, \nu\rangle)|u-z|-|u-z|(F(z)-F(u)) d \nu=0 \\
\Leftrightarrow & (F(u)-\langle F, \nu\rangle) \int|z-u(x, t)| d \nu_{x, t}=0 .
\end{aligned}
$$

Hence for a.e. $x, t, F(u)=\langle F, \nu\rangle$ or $\nu_{x, t}=\delta_{u(x, t)}$. But since F is strictly convex, $F(u)=\langle F, \nu\rangle$ is equivalent to $\nu_{x, t}=\delta_{u(x, t)}$ (by Jensen's inequality) hence $\langle\eta, \nu\rangle=\eta(u)$ and $q\left(u_{\varepsilon}\right) \rightharpoonup q(u)$ and from

$$
\partial_{t} \eta\left(u_{\varepsilon}\right)+\partial_{x} q\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)-\varepsilon \eta^{\prime \prime}\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right)^{2}
$$

we have for any $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \varphi \geq 0$:

$$
\begin{aligned}
\iint \varphi\left(\partial_{t} \eta\left(u_{\varepsilon}\right)+\partial_{x} q\left(u_{\varepsilon}\right)\right) d x d t & =-\int \partial_{t} \varphi \eta\left(u_{\varepsilon}\right)+\partial_{x} \varphi q\left(u_{\varepsilon}\right) d x d t \\
& \rightarrow-\int \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t, \\
\varepsilon \int \varphi \partial_{x x} \eta\left(u_{\varepsilon}\right) d x d t= & -\varepsilon \underbrace{\int \partial_{x x} \varphi \eta\left(u_{\varepsilon}\right) d x d t}_{\rightarrow \int \partial_{x x} \varphi \eta(u)<\infty} \rightarrow 0
\end{aligned}
$$

and $\varepsilon \eta^{\prime \prime}\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right)^{2} \geq 0$ hence

$$
\int \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \geq 0
$$

and u is an entropy solution.

CHAPTER 3

Hyperbolic Systems of Conservation Laws

Consider systems in one space dimension:

$$
\partial_{t} u+\partial_{x} F(u)=0 \text { in } \mathbb{R} \times(0, \infty)
$$

where

$$
u: \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}^{m} \text { and } F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}
$$

3.1. Basics

3.1.1. Rankine-Hugoniot condition. We say $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is a weak solution with initial datum $g \in L^{\infty}(\mathbb{R})$ if for all $\varphi \in C_{c}^{\infty}(\mathbb{R} \times$ $[0, \infty) ; \mathbb{R}^{m}$),

$$
\int_{0}^{\infty} \int_{\mathbb{R}} \partial_{t} \varphi \cdot u+\partial_{x} \varphi \cdot F(u) d x d t+\int_{\mathbb{R}} \varphi(x, 0) \cdot g(x) d x=0
$$

Without reference to an initial condition, u is simply called a weak solution if

$$
\int_{0}^{\infty} \int_{\mathbb{R}} \partial_{t} \varphi \cdot u+\partial_{x} \varphi \cdot F(u) d x d t=0
$$

for all $\varphi \in C_{c}^{\infty}\left(\mathbb{R} \times(0, \infty) ; \mathbb{R}^{m}\right)$.
Let u be a weak solution on $\Omega \subset \mathbb{R} \times(0, \infty)$ (i.e. we test only with $\varphi \in$ $\left.C_{c}^{\infty}(\Omega)\right)$ which is smooth on either side of a smooth curve:

Figure 1

Let $\varphi \in C_{c}^{\infty}\left(\Omega_{1} ; \mathbb{R}^{m}\right)$, then

$$
0=\iint_{\Omega_{1}} \partial_{t} \varphi \cdot u+\partial_{x} \varphi \cdot F(u) d t d t=-\iint_{\Omega_{1}} \varphi \cdot\left(\partial_{t} u+\partial_{x} F(u)\right) d x d t
$$

so that $\partial_{t} u+\partial_{x} F(u)=0$ on Ω_{1} and similarly on Ω_{2}. Now let $\varphi \in C_{c}^{\infty}\left(\Omega ; \mathbb{R}^{m}\right)$. Then

$$
\begin{aligned}
0= & \int_{0}^{\infty} \int_{\Omega} \partial_{t} \varphi \cdot u+\partial_{x} \varphi \cdot F(u) d x d t \\
= & \iint_{\Omega_{1}} \partial_{t} \varphi \cdot u+\partial_{x} \varphi \cdot F(u) d x d t+\iint_{\Omega_{2}} \partial_{t} \varphi \cdot u+\partial_{x} \varphi \cdot F(u) d x d t \\
= & -\iint_{\Omega_{1}} \underbrace{\left(\partial_{t} u+\partial_{x} F(u)\right)}_{=0} \cdot \varphi d x d t-\iint_{\Omega_{2}} \underbrace{\left(\partial_{t} u+\partial_{x} F(u)\right)}_{=0} \cdot \varphi d x d t \\
& +\int_{\gamma}\left(\varphi \cdot u_{1}\right) \nu_{t}+\left(F\left(u_{1}\right) \cdot \varphi\right) \nu_{x} d S \\
& -\int_{\gamma}\left(\varphi \cdot u_{2}\right) \nu_{t}+\left(F\left(u_{2}\right) \cdot \varphi\right) \nu_{x} d S
\end{aligned}
$$

hence we obtain

$$
\left(F\left(u_{1}\right)-F\left(u_{2}\right)\right) \nu_{x}+\left(u_{1}-u_{2}\right) \nu_{t}=0
$$

along γ.
Suppose $\gamma=\{(x, t): x=s(t)\}$, then for all $t, \nu=\left(\nu_{x}, \nu_{t}\right)=(1,-\dot{s})$ and we obtain the Rankine-Hugoniot condition

$$
F\left(u_{1}\right)-F\left(u_{2}\right)=\dot{s}(t)\left(u_{1}-u_{2}\right) \text { along } \gamma
$$

3.1.2. Hyperbolicity. For motivation, consider particular smooth solutions of the conservation law:
Travelling waves: They have the form

$$
u(x, t)=v(x-\sigma t) \text { (cf. shocks!) }
$$

where $v: \mathbb{R} \rightarrow \mathbb{R}^{m}$ is the profile and σ is the speed. Plugging this into $\partial_{t} u+D F(u) \partial_{x} u=0$, we find

$$
0=-\sigma v^{\prime}(x-\sigma t)+D F(v(x-\sigma t)) v^{\prime}(x-\sigma t)
$$

i.e. σ is an eigenvalue of $D F(v)$ with eigenvector v^{\prime}. Hence if we want to find m linearly independent travelling waves, we need to assume

Definition 3.1. If for every $z \in \mathbb{R}^{m}$ the eigenvalues of $D F(z) \in \mathbb{R}^{m \times m}$ are real and distinct, then the system of conservation laws is called strictly hyperbolic.

We will now always assume strict hyperbolicity. For $z \in \mathbb{R}^{m}$, write

$$
\lambda_{1}(z)<\lambda_{2}(z)<\ldots<\lambda_{m}(z)
$$

for the eigenvalues of $D F(z)$ and $r_{k}(z) \in \mathbb{R}^{m}$ the corresponding eigenvector $(k=1, \ldots, m)$, so that

$$
D F(z) r_{k}(z)=\lambda_{k}(z) r_{k}(z) .
$$

for each $z,\left\{r_{k}(z)\right\}_{k=1, \ldots, m}$ form a basis of \mathbb{R}^{m}. Next, since $D F(z)$ and $D F(z)^{t}$ have the same spectrum, there exists a basis $\left\{l_{k}(z)\right\}_{k=1, \ldots, m}$ of eigenvectors of $D F(z)^{t}$:

$$
D F(z)^{t} l_{k}(z)=\lambda_{k}(z) l_{k}(z)
$$

for $k=1, \ldots, m$. This is sometimes written as

$$
l_{k}(z) D F(z)=\lambda_{k}(z) l_{k}(z),
$$

so that $l_{k}(z)$ are called the left (row-)eigenvectors of $D F(z)$ and $r_{k}(z)$ are the right eigenvectors. Note that

$$
\begin{aligned}
\lambda_{k}(z)\left(l_{l}(z) r_{k}(z)\right) & =l_{l}(z)\left(D F(z) r_{k}(z)\right) \\
& =\left(l_{l}(z) D F(z)\right) r_{k}(z) \\
& =\lambda_{l}(z)\left(l_{l}(z) r_{k}(z)\right),
\end{aligned}
$$

hence if $l \neq k$ (and therefore $\left.\lambda_{k}(z) \neq \lambda_{l}(z)\right)$ it follows that $l_{l}(z) \perp r_{k}(z)$.
Theorem 3.2. (Smooth dependence of $\lambda_{k}, r_{k}, l_{k}$ on z)
Assume F is smooth and strictly hyperbolic. Then
i) λ_{k} depend smoothly on z for $k=1, \ldots, m$.
ii) r_{k} and l_{k} can be chosen smooth in z and such that $\left|r_{k}(z)\right|=\left|l_{k}(z)\right|=1$ for all z, k.
Proof. Fix $k \in\{1, \ldots, m\}$ and $z_{0} \in \mathbb{R}^{m}$. Then

$$
\lambda_{1}\left(z_{0}\right)<\ldots<\lambda_{m}\left(z_{0}\right)
$$

and $r_{k}\left(z_{0}\right)$ can be chosen such that

$$
\begin{aligned}
D F\left(z_{0}\right) r_{k}\left(z_{0}\right) & =\lambda_{k}\left(z_{0}\right) r_{k}\left(z_{0}\right), \\
\left|r_{k}\left(z_{0}\right)\right| & =1 .
\end{aligned}
$$

Without loss of generality assume

$$
r_{k}\left(z_{0}\right)=e_{m}=(0, \ldots, 0,1) .
$$

We want to use the Implicit Function Theorem for $\Phi: \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m+1}$,

$$
\Phi(r, \lambda, z)=\left(D F(z) r-\lambda r,|r|^{2}-1\right) .
$$

Note that $\Phi\left(r_{k}\left(z_{0}\right), \lambda_{k}\left(z_{0}\right), z_{0}\right)=0$. Hence if we can show that

$$
\left.\operatorname{det} \frac{\partial \Phi(r, \lambda, z)}{\partial(r, \lambda)}\right|_{\left(r_{k}\left(z_{0}\right), \lambda_{k}\left(z_{0}\right), z_{0}\right)} \neq 0
$$

then the desired result follows in a neighbourhood of z_{0}. Note

$$
\frac{\partial \Phi(r, \lambda, z)}{\partial(r, \lambda)}=\left(\begin{array}{cc}
D F(z)-\lambda I_{m} & -r \\
2 r & 0
\end{array}\right)
$$

hence (recall $r_{k}\left(z_{0}\right)=e_{m}$)

$$
\left.\frac{\partial \Phi(r, \lambda, z)}{\partial(r, \lambda)}\right|_{\left(r_{k}\left(z_{0}\right), \lambda_{k}\left(z_{0}\right), z_{0}\right)}=\left(\begin{array}{cccc}
\\
& & & \\
0 \\
D F\left(z_{0}\right)-\lambda_{k}\left(z_{0}\right) I_{m} & 0 \\
& & & \\
0 & \ldots & 2 & \\
0
\end{array}\right) .
$$

We define

$$
B_{\varepsilon}:=\operatorname{det}\left[D F\left(z_{0}\right)-\left(\lambda_{k}\left(z_{0}\right)+\varepsilon\right) I\right] .
$$

As $r_{k}\left(z_{0}\right)=e_{m}$, we have

$$
B_{\varepsilon} e_{m}=-\varepsilon e_{m}
$$

Therefore

$$
\left(\begin{array}{cccc}
& & & 0 \\
& B_{\varepsilon} & & 0 \\
& & & \vdots \\
0 & \ldots & 2 & 0
\end{array}\right) \underbrace{\left(\begin{array}{llll}
& & & 0 \\
& I_{m} & & 0 \\
& & & \vdots \\
0 & \ldots & 0 & 1
\end{array}\right)}_{\operatorname{det}=1}=\left(\begin{array}{ccc}
& & \\
& B_{\varepsilon} & \\
& & \\
\\
0 & \ldots & 2
\end{array}\right) 2(-\varepsilon)^{-1})
$$

hence

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cccc}
& & & 0 \\
& B_{\varepsilon} & & 0 \\
& & & \vdots \\
0 & \ldots & 2 & 0
\end{array}\right) & =2(-\varepsilon)^{-1} \operatorname{det} B_{\varepsilon} \\
& =2(-\varepsilon)^{-1}\left[\Pi_{j \neq k}\left(\lambda_{j}\left(z_{0}\right)-\left(\lambda_{k}\left(z_{0}\right)+\varepsilon\right)\right)\right](-\varepsilon) \\
& =2 \Pi_{j \neq k}\left(\lambda_{j}\left(z_{0}\right)-\lambda_{k}\left(z_{0}\right)-\varepsilon\right)
\end{aligned}
$$

But the LHS converges (as $\varepsilon \rightarrow 0$) to

$$
\operatorname{det}\left(\begin{array}{cccc}
& & & 0 \\
& & & 0 \\
& & & \\
& & & \\
0 & \ldots & 2 & \\
& & & \\
& & \\
& \\
& \\
0
\end{array}\right)
$$

and the RHS converges to

$$
2 \Pi_{j \neq k}\left(\lambda_{j}\left(z_{0}\right)-\lambda_{k}\left(z_{0}\right)\right) \neq 0 \text { (hyperbolicity!). }
$$

This shows the assertion in a neighbourhood of $z_{0} \in \mathbb{R}^{m}$. Finally, let

$$
R=\sup \left\{r>0: \lambda_{k}(z), r_{k}(z) \text { are well-defined and smooth on } B\left(z_{0}, r\right)\right\} .
$$

If $R=\infty$ we are done. If $R<\infty$, cover $\partial B\left(z_{0}, R\right)$ with finitely many open balls, to which λ_{k}, r_{k} can be smoothly extended by the same arguments as above (choose centres z_{1}, z_{2}, \ldots).

This contradicts the choice of R. The left eigenvectors l_{k} can be treated similarly.

EXAMPLE 3.3. i) Recall the "p-system" (nonlinear wave equation)

$$
\partial_{t} u+\partial_{x} F(u)=0
$$

where $F\left(u_{1}, u_{2}\right)=\left(-u_{2},-p\left(u_{1}\right)\right)$. Hence

$$
D f\left(u_{1}, u_{2}\right)=\left(\begin{array}{cc}
0 & -1 \\
-p^{\prime}\left(u_{1}\right) & 0
\end{array}\right)
$$

Figure 2

The eigenvalues are the solutions of

$$
\operatorname{det}\left(\begin{array}{cc}
\lambda & 1 \\
p^{\prime}\left(u_{1}\right) & \lambda
\end{array}\right)=0 \Leftrightarrow \lambda= \pm \sqrt{p^{\prime}\left(u_{1}\right)}
$$

Hence the $p-$ system is strictly hyperbolic iff $p^{\prime}>0$.
ii) Recall the barotropic Euler equations (here in one space dimension):

$$
\begin{aligned}
\partial_{t} m+\partial_{x}\left(\frac{m^{2}}{\rho}+p(\rho)\right) & =0 \\
\partial_{t} \rho+\partial_{x} m & =0
\end{aligned}
$$

Hence $F(m, \rho)=\left(\frac{m^{2}}{\rho}+p(\rho), m\right)$ and

$$
D F(m, \rho)=\left(\begin{array}{cc}
2 \frac{m}{\rho} & -\frac{m^{2}}{\rho^{2}}+p^{\prime}(\rho) \\
1 & 0
\end{array}\right)
$$

We obtain the eigenvalues:

$$
\begin{aligned}
\left(2 \frac{m}{\rho}-\lambda\right)(-\lambda)+\frac{m^{2}}{\rho^{2}}-p^{\prime}(\rho) & =0 \\
\Leftrightarrow \lambda^{2}-2 \frac{m}{\rho} \lambda+\frac{m^{2}}{\rho^{2}}-p^{\prime}(\rho) & =0
\end{aligned}
$$

This has two distinct real solutions iff

$$
4 \frac{m^{2}}{\rho^{2}}-4 \frac{m^{2}}{\rho^{2}}+p^{\prime}(\rho)=p^{\prime}(\rho)>0
$$

hence we require $\rho>0, p^{\prime}(\rho)>0$.

3.2. Riemann's Problem

Consider a system of conservation laws with initial data

$$
g(x)= \begin{cases}u_{l} & : x<0 \\ u_{r} & : x>0\end{cases}
$$

for vectors $u_{l}, u_{r} \in \mathbb{R}^{m}$.
3.2.1. Simple waves. A simple wave solution is a solution of the form $u(x, t)=v(w(x, t))$ where $v: \mathbb{R} \rightarrow \mathbb{R}^{m}$ and $w: \mathbb{R} \times(0, \infty) \rightarrow \mathbb{R}$ (for $w(x, t)=x-\sigma t$ we get the travelling waves). Plug this into the conservation law to get

$$
v^{\prime}(w(x, t)) \partial_{t} w+D F(v(w(x, t))) v^{\prime}(w(x, t)) \partial_{x} w=0
$$

If $v^{\prime}(s)=r_{k}(v(s))$ then this becomes

$$
v^{\prime}(w(x, t)) \partial_{t} w+\lambda_{k}(v(w(x, t))) v^{\prime}(w(x, t)) \partial_{x} w=0
$$

so that v, w will solve the system if

$$
\begin{aligned}
\partial_{t} w+\lambda_{k}(v(w(x, t))) \partial_{x} w & =0 \\
v^{\prime}(s) & =r_{k}(v(s)) .
\end{aligned}
$$

Hence the strategy: First solve the $\operatorname{ODE} v^{\prime}(s)=r_{k}(v(s))$ and then solve the scalar conservation law

$$
\partial_{t} w+\lambda_{k}(v(w(x, t))) \partial_{x} w=0
$$

In this case, the solution $u(x, t)=v(w(x, t))$ is called a k-simple wave. Let's turn to the ODE first.

DEFINITION 3.4. Let $z_{0} \in \mathbb{R}^{m}$. Denote by $R_{k}\left(z_{0}\right)$ the path of the solution of

$$
v^{\prime}(s)=r_{k}(v(s))
$$

which passes through z_{0}, i.e.

$$
R_{k}\left(z_{0}\right)=\left\{v(s): s \in \mathbb{R}, v^{\prime}(s)=r_{k}(v(s)), v(0)=z_{0}\right\}
$$

Then $R_{k}\left(z_{0}\right)$ is called the k-th rarefaction curve through z_{0}.

Figure 3. k-th rarefaction curve
Next consider the scalar law $\partial_{t} w+\lambda_{k}(v(w)) \partial_{x} w$. This takes the form $\partial_{t} w+\partial_{x} F_{k}(w)=0$ upon setting

$$
F_{k}(s)=\int_{0}^{s} \lambda_{k}(v(t)) d t
$$

In order to solve the scalar Riemann problem, we need F_{k} to be strictly convex (or concave), see Theorem 2.34. Check the 2nd derivative:

$$
\begin{aligned}
& F_{k}^{\prime}(s)=\lambda_{k}(v(s)) \\
& F_{k}^{\prime \prime}(s)=D \lambda_{k}(v(s)) \cdot v^{\prime}(s)=D \lambda_{k}(v(s)) \cdot r_{k}(v(s))
\end{aligned}
$$

hence F_{k} is

- strictly convex if $\forall z \in \mathbb{R}^{m}: D \lambda_{k}(z) \cdot r_{k}(z)>0$,
- strictly concave if $\forall z \in \mathbb{R}^{m}: D \lambda_{k}(z) \cdot r_{k}(z)<0$ and affine if $D \lambda_{k}(z) \cdot r_{k}(z)=0$ for all $z \in \mathbb{R}^{m}$.

DEfinition 3.5. The pair $\left(\lambda_{k}(z), r_{k}(z)\right)$ is genuinely nonlinear if for all $z \in \mathbb{R}^{m}$

$$
\left.D \lambda_{k}(z) \cdot r_{k}(z) \neq 0 \text { (it follows } D \lambda_{k} \cdot r_{k}>(<) 0\right)
$$

It is linearly degenerate if for all $z \in \mathbb{R}^{m}$

$$
D \lambda_{k}(z) \cdot r_{k}(z)=0
$$

If $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear, we write

$$
\begin{aligned}
& R_{k}^{+}\left(z_{0}\right)=\left\{z \in R_{k}\left(z_{0}\right): \lambda_{k}(z)>\lambda_{k}\left(z_{0}\right)\right\} \\
& R_{k}^{-}\left(z_{0}\right)=\left\{z \in R_{k}\left(z_{0}\right): \lambda_{k}(z)<\lambda_{k}\left(z_{0}\right)\right\}
\end{aligned}
$$

so that

$$
R_{k}\left(z_{0}\right)=R_{k}^{+}\left(z_{0}\right) \dot{\cup}\left\{z_{0}\right\} \dot{\cup} R_{k}^{-}\left(z_{0}\right)
$$

Figure 4

3.2.2. Rarefaction Waves.

THEOREM 3.6. Suppose for some $k \in\{1, \ldots, m\}$ the pair $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear and $u_{r} \in R_{k}^{+}\left(u_{l}\right)$.
Then there is a k-simple wave which is a weak solution of the Riemann problem.

Proof. Let v be the solution of

$$
v^{\prime}(s)=r_{k}(v(s)), v(0)=u_{l} \in \mathbb{R}^{m}
$$

By assumption $u_{r} \in R_{k}^{+}\left(u_{l}\right)$ there exists $w_{r} \in \mathbb{R}$ (wlog: $w_{r}>0$) such that $v\left(w_{r}\right)=u_{r}$.
Next, consider the scalar Riemann problem

$$
\begin{aligned}
& \partial_{t} w+\partial_{x} F_{k}(w)=0 \\
& w(x, 0)=g(x)= \begin{cases}0 & : x<0 \\
w_{r} & : x>0\end{cases}
\end{aligned}
$$

By genuine nonlinearity, F_{k} is strictly convex because $\lambda_{k}\left(u_{r}\right)>\lambda_{k}\left(u_{l}\right)$, so that the solution is given by (Theorem 2.34)

$$
w(x, t)= \begin{cases}0 & : \frac{x}{t}<F_{k}^{\prime}(0) \\ G_{k}\left(\frac{x}{t}\right) & : F_{k}^{\prime}(0)<\frac{x}{t}<F_{k}^{\prime}\left(w_{r}\right) \\ w_{r} & : \frac{x}{t}>F_{k}^{\prime}\left(w_{r}\right)\end{cases}
$$

where $G_{k}=\left(F_{k}^{\prime}\right)^{-1}$. Hence

$$
u(x, t)=v(w(x, t))
$$

is a weak solution of the systems. The case $w_{r}<0$ is similar.

Figure 5

REMARK 3.7. This is also an entropy solution, as it is continuous (cf. Proposition 2.20).
3.2.3. Shock waves. Recall the Rankine-Hugoniot condition

$$
F\left(u_{1}\right)-F\left(u_{2}\right)=\dot{s}\left(u_{1}-u_{2}\right)
$$

i.e. in particular $F\left(u_{1}\right)-F\left(u_{2}\right)$ has to be parallel to $u_{1}-u_{2}$ if u_{1}, u_{2} are the two values on either side of a shock.

DEFINITION 3.8. Fix $z_{0} \in \mathbb{R}^{m}$, then the shock set is defined as $S\left(z_{0}\right)=\left\{z \in \mathbb{R}^{m}: F(z)-F\left(z_{0}\right)=\sigma\left(z-z_{0}\right)\right.$ for some scalar $\left.\sigma=\sigma\left(z, z_{0}\right)\right\}$.

THEOREM 3.9. (Structure of the shock set)
Fix $z_{0} \in \mathbb{R}^{m}$. There is a neighbourhood of z_{0} such that $S\left(z_{0}\right)=\bigcup_{k=1}^{m} S_{k}\left(z_{0}\right)$ for smooth curves $S_{k}\left(z_{0}\right)$ with the following properties:
i) $S_{k}\left(z_{0}\right)$ passes through z_{0} with tangent $r_{k}\left(z_{0}\right)$,
ii) $\lim _{z \rightarrow z_{0}, z \in S_{k}\left(z_{0}\right)} \sigma\left(z, z_{0}\right)=\lambda_{k}\left(z_{0}\right)$
iii) $\sigma\left(z, z_{0}\right)=\frac{\lambda_{k}(z)+\lambda_{k}\left(z_{0}\right)}{2}+\mathcal{O}\left(\left|z-z_{0}\right|^{2}\right)$ as $\left(z \rightarrow z_{0}\right)$ with $z \in S_{k}\left(z_{0}\right)$.

FIGURE 6. contact between $R_{k}\left(z_{0}\right)$ and $S_{k}\left(z_{0}\right)$

Proof. Set $B(z):=\int_{0}^{1} D F\left(z_{0}+t\left(z-z_{0}\right)\right) d t$, so that $B(z)\left(z-z_{0}\right)=$ $F(z)-F\left(z_{0}\right)$. We have $z \in S\left(z_{0}\right)$ if and only if

$$
\left(B(z)-\sigma I_{m}\right)\left(z-z_{0}\right)=0
$$

for some scalar $\sigma\left(z, z_{0}\right)$.
Since $B\left(z_{0}\right)=D F\left(z_{0}\right)$, the characteristic polynomial

$$
\lambda \mapsto \operatorname{det}\left(\lambda I_{m}-B\left(z_{0}\right)\right)
$$

has m distinct real solutions (hyperbolicity) and so the same is true for

$$
\lambda \mapsto \operatorname{det}\left(\lambda I_{m}-B(z)\right)
$$

for z in some neighbourhood of z_{0}. Moreover, in this neighbourhood there exist smooth functions $\hat{\lambda}_{1}(z)<\ldots<\hat{\lambda}_{m}(z)$ and unit vectors $\hat{r}_{k}(z), \hat{l}_{k}(z)$ $(k=1, \ldots, m)$ such that

$$
\begin{aligned}
& B(z) \hat{r}_{k}(z)=\hat{\lambda}_{k}(z) \hat{r}_{k}(z) \\
& \hat{l}_{k}(z) B(z)=\hat{\lambda}_{k}(z) \hat{l}_{k}(z)
\end{aligned}
$$

and $\hat{\lambda}_{k}\left(z_{0}\right)=\lambda_{k}\left(z_{0}\right), \hat{r}_{k}\left(z_{0}\right)=r_{k}\left(z_{0}\right), \hat{\lambda}_{k}\left(z_{0}\right)=\lambda_{k}\left(z_{0}\right)$. Also $\left\{\hat{r}_{k}(z)\right\}_{k=1, \ldots, m}$ and $\left\{\hat{l}_{k}(z)\right\}_{k=1, \ldots, m}$ are bases of \mathbb{R}^{m} with

$$
\hat{l}_{l}(z) \cdot \hat{r}_{k}(z)=0
$$

whenever $k \neq l$. Indeed all this follows from Theorem 3.2, where the gradient property of $D F$ was never used.
Recall $z \in S\left(z_{0}\right)$ if and only if

$$
\left(B(z)-\sigma I_{m}\right)\left(z-z_{0}\right)=0
$$

for some σ. This will be true if $\sigma=\hat{\lambda}_{k}(z)$ for some $k \in\{1, \ldots, m\}$ and if $z-z_{0}$ is parallel to $\hat{r}_{k}(z)$, which is equivalent by orthogonality to

$$
\hat{l}_{l}(z) \cdot\left(z-z_{0}\right)=0
$$

for all $l \neq k$. We want to use the Implicit Function Theorem to find a curve $\varphi_{k}(t)$ such that $\varphi_{k}(0)=z_{0}$ and

$$
\hat{l}_{l}\left(\varphi_{k}(t)\right) \cdot\left(\varphi_{k}(t)-z_{0}\right)=0
$$

for all t in a neighbourhood of 0 .
Set $\Phi_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m-1}$,
$\Phi_{k}(z)=\left(\hat{l}_{1}(z) \cdot\left(z-z_{0}\right), \ldots, \hat{l}_{k-1}(z) \cdot\left(z-z_{0}\right), \hat{l}_{k+1}(z) \cdot\left(z-z_{0}\right), \ldots, \hat{l}_{m}(z) \cdot\left(z-z_{0}\right)\right)$.
Clearly $\Phi_{k}\left(z_{0}\right)=0$ and

$$
D \Phi_{k}\left(z_{0}\right)=\left(\begin{array}{c}
\hat{l}_{1}\left(z_{0}\right) \\
\vdots \\
\hat{l}_{k-1}\left(z_{0}\right) \\
\hat{l}_{k+1}\left(z_{0}\right) \\
\vdots \\
\hat{l}_{m}\left(z_{0}\right)
\end{array}\right) \in \mathbb{R}^{(m-1) \times m}
$$

By hyperbolicity, $D \Phi_{k}\left(z_{0}\right)$ has maximal rank, so that by the Implicit Function Theorem there exists indeed a smooth curve $\varphi_{k}: \mathbb{R} \rightarrow \mathbb{R}^{m}$ such that $\varphi_{k}(0)=$
z_{0} and $\Phi_{k}\left(\varphi_{k}(t)\right)=0$ for all t near 0 . The path of φ_{k} is then defined to be $S_{k}\left(z_{0}\right)$.
Next, without loss of generality, we may assume $\left|\dot{\varphi}_{k}\right|=1$. By construction we have

$$
\left(\varphi_{k}(t)-z_{0}\right) \cdot \hat{l}_{l}=0
$$

for all $l \neq k$, so that

$$
\varphi_{k}(t)=z_{0}+\mu(t) \hat{r}_{k}\left(\varphi_{k}(t)\right)
$$

for smooth μ with $\mu(0)=0$. Differentiate the equality w.r.t. t, we find

$$
\dot{\varphi}_{k}(t)=\dot{\mu}(t) \hat{r}_{k}\left(\varphi_{k}(t)\right)+\mu(t) \frac{d}{d t}\left(\hat{r}_{k} \varphi_{k}(t)\right)
$$

hence

$$
\dot{\varphi}_{k}(0)=\dot{\mu}(0) \hat{r}_{k}\left(z_{0}\right)
$$

and, due to $\left|\dot{\varphi}_{k}\right|=1=\left|\hat{r}_{k}\right|$,

$$
\dot{\varphi}_{k}(0)=\hat{r}_{k}\left(z_{0}\right)
$$

This shows i).
Near $t=0$

$$
F\left(\varphi_{k}(t)\right)-F\left(z_{0}\right)=\sigma\left(\varphi_{k}(t), z_{0}\right)\left(\varphi_{k}(t)-z_{0}\right)
$$

for some smooth $\sigma: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$. Differentiate this with respect to t

$$
D F\left(\varphi_{k}(t)\right) \dot{\varphi}_{k}(t)=\frac{d}{d t} \sigma\left(\varphi_{k}(t), z_{0}\right)\left(\varphi_{k}(t)-z_{0}\right)+\sigma\left(\varphi_{k}(t), z_{0}\right) \dot{\varphi}_{k}(t)
$$

Set $t=0$

$$
D F\left(z_{0}\right) \cdot \underbrace{\dot{\varphi}_{k}(0)}_{=r_{k}\left(z_{0}\right)}=\sigma\left(z_{0}, z_{0}\right) \underbrace{\dot{\varphi}_{k}(0)}_{=r_{k}\left(z_{0}\right)}
$$

whence $\sigma\left(z_{0}, z_{0}\right)=\lambda_{k}\left(z_{0}\right)$, thus proving ii).
For iii), set $\sigma(t):=\sigma\left(\varphi_{k}(t), z_{0}\right), \lambda_{k}(t):=\lambda_{k}\left(\varphi_{k}(t)\right), r_{k}(t):=r_{k}\left(\varphi_{k}(t)\right)$.
Differentiate $F\left(\varphi_{k}(t)\right)-F\left(z_{0}\right)=\sigma(t)\left(\varphi_{k}(t)-z_{0}\right)$ twice:

$$
\begin{aligned}
& \left(D^{2} F\left(\varphi_{k}(t)\right) \dot{\varphi}_{k}(t)\right) \dot{\varphi}_{k}(t)+D F\left(\varphi_{k}(t)\right) \ddot{\varphi}_{k}(t) \\
= & \ddot{\sigma}(t)\left(\varphi_{k}(t)-z_{0}\right)+2 \dot{\sigma}(t) \dot{\varphi}_{k}(t)+\sigma(t) \ddot{\varphi}_{k}(t)
\end{aligned}
$$

and set $t=0$:

$$
\left.D^{2} F\left(z_{0}\right) r_{k}\left(z_{0}\right)\right) r_{k}\left(z_{0}\right)+D F\left(z_{0}\right) \ddot{\varphi}_{k}(0)=2 \dot{\sigma}(0) r_{k}\left(z_{0}\right)+\lambda_{k}\left(z_{0}\right) \ddot{\varphi}_{k}(0)
$$

or

$$
\begin{equation*}
\left(2 \dot{\sigma}(0) I-D^{2} F\left(z_{0}\right) r_{k}\left(z_{0}\right)\right) r_{k}\left(z_{0}\right)=\left(D F\left(z_{0}\right)-\lambda_{k}\left(z_{0}\right) I\right) \ddot{\varphi}_{k}(0) \tag{3.1}
\end{equation*}
$$

Next, set $\psi_{k}(t)$ to be the solution of

$$
\dot{\psi}_{k}(t)=r_{k}\left(\psi_{k}(t)\right), \psi_{k}(0)=z_{0},|\dot{\psi}|=1
$$

(i.e. the unit speed parametrization of $\left.R_{k}\left(z_{0}\right)\right)$. Then $D F\left(\psi_{k}(t)\right) r_{k}(t)=$ $\lambda_{k}(t) r_{k}(t)$. Take the time derivative:

$$
\left(D^{2} F\left(\psi_{k}(t)\right) r_{k}(t)\right) r_{k}(t)+D F\left(\psi_{k}(t)\right) \dot{r}_{k}(t)=\dot{\lambda}_{k}(t) r_{k}(t)+\lambda_{k}(t) \dot{r}_{k}(t)
$$

and set $t=0$:

$$
\left(D^{2} F\left(z_{0}\right) r_{k}\left(z_{0}\right)\right) r_{k}\left(z_{0}\right)+D F\left(z_{0}\right) \dot{r}_{k}(0)=\dot{\lambda}_{k}(0) r_{k}\left(z_{0}\right)+\lambda_{k}\left(z_{0}\right) \dot{r}_{k}(0)
$$

or

$$
\begin{equation*}
\left(D^{2} F\left(z_{0}\right) r_{k}\left(z_{0}\right)-\dot{\lambda}_{k}(0) I\right) r_{k}\left(z_{0}\right)=-\left(D F\left(z_{0}\right)-\lambda_{k}\left(z_{0}\right) I\right) \dot{r}_{k}(0) \tag{3.2}
\end{equation*}
$$

Add (3.1) and (3.2):

$$
\left(2 \dot{\sigma}(0)-\dot{\lambda}_{k}(0)\right) r_{k}\left(z_{0}\right) I=\left(D F\left(z_{0}\right)-\lambda_{k}\left(z_{0}\right) I\right)\left(\ddot{\varphi}_{k}(0)-\dot{r}_{k}(0)\right)
$$

Multiply ("from the left") with $l_{k}\left(z_{0}\right)$:
$l_{k}\left(z_{0}\right) r_{k}\left(z_{0}\right)\left(2 \dot{\sigma}(0)-\dot{\lambda}_{k}(0)\right)=l_{k}\left(z_{0}\right)\left(D F\left(z_{0}\right)-\lambda_{k}\left(z_{0}\right) I\right)\left(\ddot{\varphi}_{k}(0)-\dot{r}_{k}(0)\right)=0$.
But $l_{k}\left(z_{0}\right) \cdot r_{k}\left(z_{0}\right) \neq 0$ since $l_{l}\left(z_{0}\right) \perp r_{k}\left(z_{0}\right)$ for all $l \neq k$ and $\left(l_{k}\right)_{k},\left(r_{k}\right)_{k}$ form a basis of \mathbb{R}^{m}. Therefore

$$
2 \dot{\sigma}(0)-\dot{\lambda}_{k}(0)=0
$$

But by Taylor's Theorem,

$$
\begin{aligned}
2 \sigma(t) & =2 \sigma(0)+2 \dot{\sigma}(0) t+\mathcal{O}\left(t^{2}\right) \\
& =\underbrace{2 \sigma(0)}_{=2 \lambda_{k}\left(z_{0}\right)}+\underbrace{\dot{\lambda}_{k}(0) t}_{=\lambda_{k}(t)-\lambda_{k}(0)+\mathcal{O}\left(t^{2}\right)} \\
& =\lambda_{k}\left(z_{0}\right)+\lambda_{k}(t)+\mathcal{O}\left(t^{2}\right)
\end{aligned}
$$

hence

$$
\sigma(\underbrace{\varphi_{k}(t)}_{z}, z_{0})=\sigma(t)=\frac{1}{2}\left(\lambda_{k}\left(z_{0}\right)+\lambda_{k}\left(\psi_{k}(t)\right)\right)+\mathcal{O}\left(t^{2}\right) .
$$

The result now follows from

$$
\left|\lambda_{k}\left(\psi_{k}(t)\right)-\lambda_{k}\left(\varphi_{k}(t)\right)\right|=\mathcal{O}\left(t^{2}\right)
$$

which also follows from Taylor's theorem as both functions agree up to order one by i).

Figure 7

If $\left(\lambda_{k}, r_{k}\right)$ is linearly degenerate, then $R_{k}\left(z_{0}\right)$ and $S_{k}\left(z_{0}\right)$ actually agree:
THEOREM 3.10. Suppose for some $k \in\{1, \ldots, m\}$ that $\left(\lambda_{k}, r_{k}\right)$ is linearly degenerate, then for all $z_{0} \in \mathbb{R}^{m}$

$$
R_{k}\left(z_{0}\right)=S_{k}\left(z_{0}\right)
$$

and

$$
\sigma\left(z, z_{0}\right)=\lambda_{k}(z)=\lambda_{k}\left(z_{0}\right)
$$

for all $z \in S_{k}\left(z_{0}\right)$.
Proof. Let again v be the solution of

$$
\dot{v}(s)=r_{k}(v(s)), v(0)=z_{0}
$$

then by linear degeneracy $s \mapsto \lambda_{k}\left(v(s)\right.$) is constant ($D \lambda_{k} \cdot r_{k}=0$), so that

$$
\begin{aligned}
F(v(s))-F\left(z_{0}\right) & =\int_{0}^{s} D F(v(t)) \dot{v}(t) d t \\
& =\int_{0}^{s} D F(v(t)) r_{k}(v(t)) d t \\
& =\int_{0}^{s} \lambda_{k}(v(t)) r_{k}(v(t)) d t \\
& =\lambda_{k}\left(z_{0}\right) \int_{0}^{s} \dot{v}(t) d t \\
& =\lambda_{k}\left(z_{0}\right)\left(v(s)-z_{0}\right) .
\end{aligned}
$$

Let's use all this to solve Riemann's Problem. Let $\left(\lambda_{k}, r_{k}\right)$ be linearly degenerate and suppose

$$
u_{r} \in S_{k}\left(u_{l}\right)
$$

Then set

$$
u(x, t)= \begin{cases}u_{l} & : x<\sigma t \\ u_{r} & : x>\sigma t\end{cases}
$$

for $\sigma=\sigma\left(u_{r}, u_{l}\right)=\lambda_{k}\left(u_{l}\right)=\lambda_{k}\left(u_{r}\right)$ (cf. Theorem 3.10).
In light of the Rankine-Hugoniot condition, this is a weak solution.
Interpret this in terms of characteristics: This is a travelling wave solution so, as we saw before, $\partial_{x} u$ is an eigenvector of $D F(u)$, so that

$$
0=\partial_{t} u+D F(u) \partial_{x} u=\partial_{t} u+\lambda_{k}(u) \partial_{x} u=\frac{d}{d t} u(x(t), t)
$$

for

$$
\dot{x}(t)=\lambda_{k}(\underbrace{u(x(t), t)}_{g\left(x_{0}\right)}) .
$$

So the characteristics are given by

$$
x(t)= \begin{cases}x_{0}+\lambda_{k}\left(u_{l}\right) t & : x_{0}<0 \\ x_{0}+\lambda_{k}\left(u_{r}\right) t & : x_{0}>0\end{cases}
$$

but since $\lambda_{k}\left(u_{l}\right)=\lambda_{k}\left(u_{r}\right)=\sigma$, the characteristics are parallel to the discontinuity! cf. in the scalar case the transport equation

Figure 8

$$
\partial_{t} u+\sigma \partial_{x} u=0
$$

Next, assume $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear and

$$
u_{r} \in S_{k}\left(u_{l}\right)
$$

Again,

$$
u(x, t)= \begin{cases}u_{l} & : x<\sigma t \\ u_{r} & : x>\sigma t\end{cases}
$$

is a weak solution by the Rankine-Hugoniot condition if $\sigma=\sigma\left(u_{r}, u_{l}\right)$.
Case 1: $\lambda_{k}\left(u_{r}\right)<\lambda_{k}\left(u_{l}\right)$. If u_{r} is sufficiently close to u_{l}, then by Theorem 3.9 we get

$$
\lambda_{k}\left(u_{r}\right)<\sigma\left(u_{r}, u_{l}\right)<\lambda_{k}\left(u_{l}\right)
$$

Figure 9. Shock formation (cf. Burgers' equation) - entropy solution

Case 2: $\lambda_{k}\left(u_{r}\right)>\lambda_{k}\left(u_{l}\right)$ so by Theorem 3.9 iii)

$$
\lambda_{k}\left(u_{l}\right)<\sigma\left(u_{r}, u_{l}\right)<\lambda_{k}\left(u_{r}\right)
$$

Figure 10. "non-physical shock" (cf. Burgers' equation) not an entropy solution

We haven't yet defined entropy solutions for systems, but for the Riemann problem this definition is reasonable:

Definition 3.11. Assume $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear. We say $\left(u_{l}, u_{r}\right)$ is admissible if

- $u_{r} \in S_{k}\left(u_{l}\right)$ and
- $\lambda_{k}\left(u_{r}\right)<\sigma\left(u_{r}, u_{l}\right)<\lambda_{k}\left(u_{l}\right)$ ("Lax entropy condition").

If (u_{l}, u_{r}) is admissible, then the corresponding solution is called a k-shock wave.

Definition 3.12. Assume $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear. Set

$$
S_{k}^{+}\left(z_{0}\right)=\left\{z \in S_{k}\left(z_{0}\right): \lambda_{k}\left(z_{0}\right)<\sigma\left(z, z_{0}\right)<\lambda_{k}(z)\right\}
$$

and

$$
S_{k}^{-}\left(z_{0}\right)=\left\{z \in S_{k}\left(z_{0}\right): \lambda_{k}(z)<\sigma\left(z, z_{0}\right)<\lambda_{k}\left(z_{0}\right)\right\} .
$$

Note that (since $D \lambda_{k} \cdot r_{k}>(<) 0$) in a neighbourhood of z_{0},

$$
S_{k}\left(z_{0}\right)=S_{k}^{+}\left(z_{0}\right) \cup\left\{z_{0}\right\} \cup S_{k}^{-}\left(z_{0}\right) .
$$

Observe: $\left(u_{l}, u_{r}\right)$ is admissible if and only if $u_{r} \in S_{k}^{-}\left(u_{l}\right)$.

Figure 11

3.2.4. Local solution of Riemann's Problem.

Definition 3.13. i) If $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear, write

$$
T_{k}\left(z_{0}\right):=R_{k}^{+}\left(z_{0}\right) \cup\left\{z_{0}\right\} \cup S_{k}^{-}\left(z_{0}\right)
$$

ii) If $\left(\lambda_{k}, r_{k}\right)$ is linearly degenerate, set

$$
T_{k}\left(z_{0}\right):=R_{k}\left(z_{0}\right)=S_{k}\left(z_{0}\right) .
$$

By Theorem 3.9, $T_{k}\left(z_{0}\right)$ is of regularity C^{1}. So $u_{r} \in T_{k}\left(u_{l}\right)$ means that u_{l} and u_{r} can be joined by

- a k-rarefaction wave,
- a k-shockwave or
- a k-contact discontinuity.

Theorem 3.14. (Local solution of Riemann's Problem)
Assume for each $k \in\{1, \ldots, m\}$ that $\left(\lambda_{k}, r_{k}\right)$ is either genuinely nonlinear or linearly degenerate. Let $u_{l} \in \mathbb{R}^{m}$, then for each u_{r} sufficiently close to u_{l} there is a weak solution of Riemann's problem.

Proof. For each $k \in\{1, \ldots, m\}$ let τ_{k} be a parameter measuring arclength on the curve T_{k} :
If $z, \tilde{z} \in T_{k}\left(z_{0}\right)$ then

$$
\tau_{k}(\tilde{z})-\tau_{k}(z)=\text { distance between } \tilde{z} \text { and } z \text { along } T_{k}\left(z_{0}\right)
$$

Figure 12

Figure 13
τ_{k} should increase in direction of $R_{k}^{+}\left(z_{0}\right)$. Set $u_{l}=z_{0}$. Want to connect u_{l} to u_{r} along curves T_{k}. To this end choose "intermediate states" in the following way:

$$
\begin{aligned}
& z_{1} \in T_{1}\left(z_{0}\right), \tau_{1}\left(z_{1}\right)-\tau_{1}\left(z_{0}\right)=t_{1}, \\
& z_{2} \in T_{2}\left(z_{1}\right), \tau_{2}\left(z_{2}\right)-\tau_{2}\left(z_{1}\right)=t_{2}, \\
& \vdots \\
& z_{m} \in T_{m}\left(z_{m-1}\right), \tau_{m}\left(z_{m}\right)-\tau_{m}\left(z_{m-1}\right)=t_{m} .
\end{aligned}
$$

This is well-defined for sufficiently small $t=\left(t_{1}, \ldots, t_{m}\right)$. Set $z=z_{m}$ and write $\Phi(t)=z$. Since T_{k} are C^{1}, also Φ is C^{1} in a neighbourhood of 0 .
We want to apply the Inverse Function Theorem, hence need to show $D \Phi(0)$ is nonsingular. Note that

$$
\Phi\left(0, \ldots, t_{k}, \ldots, 0\right)-\Phi(0, \ldots, 0)=t_{k} r_{k}\left(z_{0}\right)+\mathcal{O}\left(t_{k}\right) \text { as }\left(t_{k} \rightarrow 0\right)
$$

since $T_{k}\left(z_{0}\right)$ is C^{1}. Hence

$$
\frac{\partial \Phi}{\partial t_{k}}(0)=r_{m}\left(z_{0}\right)
$$

Figure 14
and therefore

$$
D \Phi(0)=\left(r_{1}\left(z_{0}\right)|\ldots| r_{k}\left(z_{0}\right)\right) .
$$

Since $\left\{r_{k}\left(z_{0}\right)\right\}_{k}$ forms a basis, $D \Phi(0)$ is indeed nonsingular, and hence in a neighbourhood of z_{0} there is a unique $t=\left(t_{1}, . ., t_{m}\right)$ s.t. $\Phi(t)=z$.
In particular, if u_{l} and u_{r} are sufficiently close, then there exists a unique t such that $\Phi(t)=u_{r}$.
Recall: if $z_{k} \in R_{k}^{+}\left(z_{k-1}\right)$ then the corresponding rarefaction wave is

$$
\begin{cases}z_{k-1} & : \frac{x}{t}<\lambda_{k}\left(z_{k-1}\right) \\ G_{k}\left(\frac{x}{t}\right) & : \lambda_{k}\left(z_{k-1}\right)<\frac{x}{t}<\lambda_{k}\left(z_{k}\right), G_{k}:=\left(F_{k}^{\prime}\right)^{-1} \\ z_{k} & : \lambda_{k}\left(z_{k}\right)<\frac{x}{t} .\end{cases}
$$

If $z_{k} \in S_{k}^{-}\left(z_{k-1}\right)$ then the shock is

$$
\begin{cases}z_{k-1} & : \frac{x}{t}<\sigma\left(z_{k}, z_{k-1}\right) \\ z_{k} & : \sigma\left(z_{k}, z_{k-1}\right)<\frac{x}{t},\end{cases}
$$

and similarly if $\left(\lambda_{k}, r_{k}\right)$ is linearly degenerate. Note that $\lambda_{1}\left(z_{0}\right)<\lambda_{2}\left(z_{0}\right)<$ $\ldots<\lambda_{m}\left(z_{0}\right)$, and by Theorem 3.9 iii)

$$
\lambda_{k}\left(z_{k}\right)<\sigma\left(z_{k}, z_{k-1}\right)<\lambda_{k}\left(z_{k-1}\right)
$$

whenever $z_{k} \in S_{k}^{-}\left(z_{k-1}\right)$ and therefore the rarefaction, shocks and/or contact discontinuities do not intersect.
A (Lax-)entropy solution is therefore given by "glueing" the various part together.

EXAMPLE 3.15. i) Consider $m=2, z_{1} \in S_{1}^{-}\left(u_{l}\right), u_{r} \in S_{2}^{-}\left(z_{1}\right)$.
ii) Consider $m=2, z_{1} \in R_{1}^{+}\left(u_{l}\right)$, $u_{r} \in S_{2}^{-}\left(z_{1}\right)$

Remark 3.16. The solution of Riemann's problem can be used to prove existence of entropy solutions if $T V(g)$ (total variation of initial data) is small. Idea: Approximate g by piecewise constant data and solve Riemann's problem, then pass to the limit ("front-tracking").

3.3. Riemann Invariants ($\mathrm{m}=2$)

We specialise to a system of two conservation laws, $m=2$.

Figure 15. Example 3.15 i)

Figure 16. Example 3.15 ii)
Definition 3.17. A function $w^{i}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is an i-th Riemann invariant if it is constant along the rarefaction curve $R_{i}\left(z_{0}\right)$ for all $z_{0} \in \mathbb{R}^{2}$.

Idea: Transform variables in phase space:

$$
w(z)=\left(w^{1}\left(z_{1}, z_{2}\right), w^{2}\left(z_{1}, z_{2}\right)\right) .
$$

Theorem 3.18. Suppose $u=\left(u^{1}, u^{2}\right)$ is a smooth solution of

$$
\partial_{t} u+\partial_{x} F(u)=0 .
$$

Set $v(x, t)=w(u(x, t))$. Then

$$
\begin{aligned}
\partial_{t} v^{1}+\lambda_{2}(u) \partial_{x} v^{1} & =0 \\
\partial_{t} v^{2}+\lambda_{1}(u) \partial_{x} v^{2} & =0
\end{aligned}
$$

in $\mathbb{R} \times(0, \infty)$.
Proof. Let $i \neq j, i, j \in\{1,2\}$. Then

$$
\begin{aligned}
\partial_{t} v^{i}+\lambda_{j}(u) \partial_{x} v^{i} & =D w^{i}(u) \cdot \partial_{t} u+\lambda_{j}(u) D w^{i}(u) \cdot \partial_{x}(u) \\
& =D w^{i}(u) \cdot\left(-\partial_{x} F(u)+\lambda_{j}(u) \cdot \partial_{x}(u)\right) \\
& =\underbrace{D w^{i}(u)}_{\| l_{j}(u)} \cdot\left(-D F(u)+\lambda_{j}(u) I\right) \partial_{x} u \\
& =0 .
\end{aligned}
$$

Indeed, w^{i} constant along R_{k} means $D w^{i}(u) \cdot r_{i}(u)=0$, hence $D w^{i}(u) \| l_{j}$.

REMARK 3.19. The assumption $D \lambda_{i}(z) \cdot r_{i}(z) \neq 0$ of genuine nonlinearity can be rephrased in terms of Riemann invariants as (if $D w$ is non-singular)

$$
\frac{\partial \lambda_{i}}{\partial w^{j}} \neq 0(i \neq j)
$$

Indeed: If $\frac{\partial \lambda_{i}}{\partial w^{j}}=0$, then

$$
0=\frac{\partial \lambda_{i}}{\partial w^{j}}=\sum_{k=1}^{2} \frac{\partial \lambda_{i}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w^{j}}
$$

But

$$
\sum_{k=1}^{2} \frac{\partial w^{i}}{\partial z_{k}} \frac{\partial z_{k}}{\partial w^{j}}=\delta_{i j}=0(i \neq j)
$$

it follows that $D \lambda_{i}\left\|D w^{i}\right\| l_{j}$, hence $D \lambda_{i} \cdot r_{i}=0$. Hence we have shown

$$
D \lambda_{i} \cdot r_{i}=0 \text { if and only if } \frac{\partial \lambda_{i}}{\partial w^{j}} \neq 0
$$

EXAMPLE 3.20. (1-D isentropic Euler equations)
Consider

$$
\begin{aligned}
\partial_{t} \rho+\partial_{x}(\rho v) & =0 \\
\partial_{t}(\rho v)+\partial_{x}\left(\rho v^{2}+p(\rho)\right) & =0
\end{aligned}
$$

where $p=p(\rho)$ is smooth and $p^{\prime}(\rho)>0$ (this guarantees strict hyperbolicity).
Set $\left(u_{1}, u_{2}\right)=(\rho, \rho v)$ and recall that we get

$$
\partial_{t} u+\partial_{x} F(u)=0
$$

for $F=\left(F_{1}, F_{2}\right)=\left(z_{2}, \frac{z_{2}^{2}}{z_{1}}+p\left(z_{1}\right)\right)$ whenever $z_{1}>0$. Hence

$$
D F=\left(\begin{array}{cc}
0 & 1 \\
-\left(\frac{z_{2}}{z_{1}}\right)^{2}+p^{\prime}\left(z_{1}\right) & \frac{2 z_{2}}{z_{1}}
\end{array}\right)
$$

We compute the eigenvalues

$$
\lambda_{1}=\frac{z_{2}}{z_{1}}-\sqrt{p^{\prime}\left(z_{1}\right)}, \lambda_{2}=\frac{z_{2}}{z_{1}}+\sqrt{p^{\prime}\left(z_{1}\right)}
$$

Setting $v=\frac{z_{2}}{z_{1}}$ and $\sigma=\sqrt{p^{\prime}\left(z_{1}\right)}$, this becomes

$$
\lambda_{1 / 2}=v \mp \sigma .
$$

Consider the characteristic ODE
i) $\dot{x}_{1}(t)=v\left(x_{1}(t), t\right)+\sigma\left(x_{1}(t), t\right)=\lambda_{2}\left(x_{1}(t), t\right)$
ii) $\dot{x}_{2}(t)=v\left(x_{2}(t), t\right)-\sigma\left(x_{2}(t), t\right)=\lambda_{1}\left(x_{2}(t), t\right)$,
where $\sigma(x, t)=\sqrt{p(\rho(x, t))}, t \geq 0$.
If w^{i} are Riemann invariants then $w^{i}(u)$ is constant along the trajectory of
i) and ii), respectively. Indeed,

$$
\begin{aligned}
& \frac{d}{d t} w^{1}\left(u\left(x_{1}(t), t\right)\right) \\
= & D w^{1}\left(u\left(x_{1}(t), t\right)\right) \cdot\left(\partial_{t} u\left(x_{1}(t), t\right)+\partial_{x} u\left(x_{1}(t), t\right) \dot{x}_{1}(t)\right) \\
= & D w^{1}\left(u\left(x_{1}(t), t\right)\right) \cdot\left(-D F(u) \partial_{x} u+\lambda_{2}(u) \partial_{x} u\right) \\
= & 0
\end{aligned}
$$

as before. Similarly for ii).
Next, write Euler as
iii) $\partial_{t} \rho+\rho \partial_{x} v+\partial_{x} \rho v=0$,
iv) $\partial_{t} \rho v+\rho \partial_{t} v+\partial_{x} \rho v^{2}+2 \rho v \partial_{x} v+\partial_{x} p(\rho)=0$.

Multiplying iii) with $\sigma^{2}=p^{\prime}(\rho)$ gives
v) $\partial_{t} p(\rho)+\sigma^{2} \rho \partial_{x} v+v \partial_{x} p(\rho)=0$.

Multiplying iii) with v and subtracting from iv) yields

$$
\rho \partial_{t} v+\rho v \partial_{x} v+\partial_{x} p(\rho)=0
$$

Multiply this by σ and and add/subtract v):

$$
\begin{aligned}
& \partial_{t} p(\rho)+(v+\sigma) \partial_{x} p(\rho)+\rho \sigma\left(\partial_{t} v+(v+\sigma) \partial_{x} v\right)=0 \\
& \partial_{t} p(\rho)+(v-\sigma) \partial_{x} p(\rho)-\rho \sigma\left(\partial_{t} v+(v-\sigma) \partial_{x} v\right)=0
\end{aligned}
$$

Recalling our ODE, this can be written as

$$
\begin{aligned}
& \frac{d}{d t}(p \circ \rho)\left(x_{1}(t), t\right)+\rho\left(x_{1}(t), t\right) \sigma\left(x_{1}(t), t\right) \frac{d}{d t} v\left(x_{1}(t), t\right)=0 \\
& \frac{d}{d t}(p \circ \rho)\left(x_{2}(t), t\right)-\rho\left(x_{2}(t), t\right) \sigma\left(x_{2}(t), t\right) \frac{d}{d t} v\left(x_{2}(t), t\right)=0
\end{aligned}
$$

Keeping in mind $\frac{d(p \circ \rho)}{d t}=\sigma^{2} \frac{d \rho}{d t}$, we get

$$
\frac{\sigma}{\rho} \frac{d \rho}{d t} \pm \frac{d v}{d t}=0
$$

along the trajectories $\left(x_{i}(t), t\right)$. We have seen that $w^{1}(\rho, v)$ is constant along $\left(x_{1}(t), t\right)$, i.e.

$$
\begin{aligned}
0 & =\frac{d}{d t}\left(w^{1}\left(\rho\left(x_{1}(t), t\right)\right), v\left(x_{1}(t), t\right)\right) \\
& =\frac{d w^{1}}{d \rho} \frac{d}{d t} \rho\left(x_{1}(t), t\right)+\frac{\partial w^{1}}{d v} \frac{d}{d t} v\left(x_{1}(t), t\right)
\end{aligned}
$$

This is the case if

$$
\frac{\partial w^{1}}{\partial \rho}=\frac{\sigma(\rho)}{\rho}, \frac{d w^{1}}{d v}=1
$$

Similarly

$$
\frac{\partial w^{2}}{\partial \rho}=\frac{\sigma(\rho)}{\rho}, \frac{d w^{2}}{\partial v}=-1
$$

Hence the Riemann invariants are

$$
w^{1}=\int_{1}^{\rho} \frac{\sigma(s)}{s} d s+v, w^{2}=\int_{1}^{\rho} \frac{\sigma(s)}{s} d s-v
$$

Theorem 3.21. Consider the IVP

$$
\begin{aligned}
\partial_{t} u+\partial_{x} F(u) & =0 \\
u(x, 0) & =g(x)
\end{aligned}
$$

(two equations) with $g \in C_{c}^{\infty}(\mathbb{R})$. Suppose further

$$
\frac{\partial \lambda_{i}}{\partial w^{j}} \geq c>0
$$

for some constant $c, i, j \in\{1,2\}, i \neq j$ ("strong genuine nonlinearity"). If $\partial_{x} v^{1}$ or $\partial_{x} v^{2}<0$ somewhere on $\mathbb{R} \times\{t=0\}$, then u blows up in finite time (i.e. there is no smooth solution u for all times $t \geq 0$.)

Proof. Suppose u is a smooth solution. Set $a=\partial_{x} v^{1}, b=\partial_{x} v^{2}$, where $v=w(u)$ solves

$$
\begin{align*}
& \partial_{t} v^{1}+\lambda_{2}(u) \partial_{x} v^{1}=0 \\
& \partial_{t} v^{2}+\lambda_{1}(u) \partial_{x} v^{2}=0 \tag{3.3}
\end{align*}
$$

Note: v^{1} is constant along the curve $\left(x_{1}(s), s\right)$, where

$$
\dot{x}_{1}(s)=\lambda_{2}\left(u\left(x_{1}(s), s\right)\right), x_{1}(0)=x_{0}
$$

and v^{2} is constant along the curve $\left(x_{2}(s), s\right)$,

$$
\dot{x}_{2}(s)=\lambda_{1}\left(u\left(x_{2}(s), s\right)\right), x_{2}(0)=x_{0}
$$

Since u is smooth, the characteristics cover \mathbb{R}^{2} and in particular v is bounded. Differentiate (3.3) with respect to x :

$$
\partial_{t} a+\lambda_{2} \partial_{x} a+\frac{\partial \lambda_{2}}{\partial w_{1}} a^{2}+\frac{\partial \lambda_{2}}{\partial w_{2}} a b=0
$$

and write the second equation of (3.3) as

$$
\partial_{t} v^{2}+\lambda_{2} \partial_{x} v^{2}=\left(\lambda_{2}-\lambda_{1}\right) b
$$

Combining these gives

$$
\begin{equation*}
\partial_{t} a+\lambda_{2} \partial_{x} a+\frac{\partial \lambda_{2}}{\partial w_{1}} a^{2}+\left(\frac{1}{\lambda_{2}-\lambda_{1}} \frac{\partial \lambda_{2}}{\partial w_{2}}\left(\partial_{t} v^{2}+\lambda_{2} \partial_{x} v^{2}\right)\right) a=0 \tag{3.4}
\end{equation*}
$$

Next, set

$$
\xi(t)=\exp \left(\int_{0}^{t} \frac{1}{\lambda_{2}-\lambda_{1}} \frac{\partial \lambda_{2}}{\partial w_{2}}\left(\partial_{t} v^{2}+\lambda_{2} \partial_{x} v^{2}\right)\left(x_{1}(s), s\right) d s\right)
$$

Set also

$$
\gamma(\mu)=\int_{0}^{\mu}\left(\frac{1}{\lambda_{2}-\lambda_{1}} \frac{\partial \lambda_{2}}{\partial w_{2}}\right)\left(v_{0}^{1}, v^{2}\right) d v^{2}
$$

where $v_{0}^{1}:=v^{1}\left(x_{0}, 0\right)$. Then,

$$
\begin{aligned}
& \frac{d}{d s} \gamma\left(v^{2}\left(x_{1}(s), s\right)\right) \\
= & \frac{1}{\lambda_{2}-\lambda_{1}} \frac{\partial \lambda_{2}}{\partial w_{2}}\left(v_{0}^{1}, v^{2}\left(x_{1}(s), s\right)\right) \cdot\left(\partial_{t} v^{2}+\lambda_{2} \partial_{x} v^{2}\right) \\
= & \frac{1}{\lambda_{2}-\lambda_{1}} \frac{\partial \lambda_{2}}{\partial w_{2}}\left(v^{1}, v^{2}\right)\left(\partial_{t} v^{2}+\lambda_{2} \partial_{x} v^{2}\right)\left(x_{1}(s), s\right),
\end{aligned}
$$

where we used that v^{1} is constant along $\left(x_{1}(s), s\right)$. Hence

$$
\begin{aligned}
\xi(t) & =\exp \left(\int_{0}^{t} \frac{d}{d s} \gamma\left(v^{2}\left(x_{1}(s), s\right)\right) d s\right) \\
& =\exp \left(\gamma\left(v^{2}\left(x_{1}(t), t\right)\right)-\gamma\left(v^{2}\left(x_{0}, 0\right)\right)\right)
\end{aligned}
$$

Since v^{2} is bounded, it follows

$$
0<m \leq \xi<M<\infty
$$

for all times $t \geq 0$. Next, set $\alpha(t)=a\left(x_{1}(t), t\right)$ and compute

$$
\begin{aligned}
\frac{d}{d t}(\xi \alpha)^{-1} & =-\frac{1}{(\xi \alpha)^{2}} \frac{d}{d t}(\xi \alpha) \\
& =-\frac{1}{(\xi \alpha)^{2}}\left(\xi \alpha \frac{1}{\lambda_{2}-\lambda_{1}} \frac{\partial \lambda_{2}}{\partial w_{2}}\left(\partial_{t} v^{2}+\lambda_{2} v^{2}\right)+\xi\left(\partial_{t} a+\lambda_{2} \partial_{x} a\right)\right) \\
& \underbrace{}_{\text {(3.4)}}=-\frac{1}{\xi \alpha^{2}}\left(-\frac{\partial \lambda_{2}}{\partial w_{1}} \alpha^{2}\right) \\
& =\frac{1}{\xi} \frac{\partial \lambda_{2}}{\partial w_{1}}
\end{aligned}
$$

so that

$$
(\xi \alpha)^{-1}(t)=(\xi \alpha)^{-1}(0)+\int_{0}^{t} \frac{1}{\xi(s)} \frac{\partial \lambda_{2}}{\partial w_{1}}(s) d s
$$

Note $\xi(0)=1$, so

$$
\alpha(t)=\xi^{-1}(t)\left(\alpha(0)^{-1}+\int_{0}^{t} \frac{1}{\xi(s)} \frac{\partial \lambda_{2}}{\partial w_{1}}(s) d s\right)^{-1}
$$

and

$$
\alpha(t)=\alpha(0) \xi^{-1}(t)\left(1+\alpha(0) \int_{0}^{t} \frac{1}{\xi(s)} \frac{\partial \lambda_{2}}{\partial w_{1}}(s) d s\right)^{-1}
$$

Since $\frac{\partial \lambda_{2}}{\partial w_{1}} \geq c>0$ and $\xi \geq m>0$, this is well-defined for all t if $\alpha(0) \geq 0$. But if $\alpha(0)<0$, there exists a finite time T such that

$$
\lim _{t \nearrow T} \alpha(t)=\infty
$$

so that the solution blows up at time T. But $\alpha(0)=\partial_{x} v^{1}\left(x_{0}, 0\right)$ hence $\partial_{x} v^{1}\left(x_{0}, 0\right)<0$ for some x_{0} is sufficient for blow-up. A similar argument works for v^{2}.

3.4. More on entropy conditions

3.4.1. The Lax condition and viscosity. Recall Lax's entropy condition for shock waves:

$$
\lambda_{k}\left(u_{r}\right)<\sigma\left(u_{r}, u_{l}\right)<\lambda_{k}\left(u_{l}\right)
$$

if $\left(\lambda_{k}, r_{k}\right)$ genuinely nonlinear. Find more general conditions.
Recall the viscosity limit: A reasonable solution should arise as the limit $\varepsilon \searrow 0$ of

$$
\begin{equation*}
\partial_{t} u_{\varepsilon}+\partial_{x} F\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} u_{\varepsilon} \tag{3.5}
\end{equation*}
$$

Consider solutions of the special form

$$
u_{\varepsilon}(x, t)=v\left(\frac{x-\sigma t}{\varepsilon}\right) \text { (consistent with scaling!) }
$$

and seek the profile v and speed σ. Insert this into (3.5):

$$
-\sigma v^{\prime}\left(\frac{x-\sigma t}{\varepsilon}\right) \frac{1}{\varepsilon}+D F(v) v^{\prime}\left(\frac{x-\sigma t}{\varepsilon}\right) \frac{1}{\varepsilon}=\frac{1}{\varepsilon} v^{\prime \prime}\left(\frac{x-\sigma t}{\varepsilon}\right)
$$

i.e.

$$
-\sigma v^{\prime}+D F(v) v^{\prime}=v^{\prime \prime}
$$

Suppose $u_{l}, u_{r} \in \mathbb{R}^{m}$ are given and

$$
\lim _{s \rightarrow-\infty} v(s)=u_{l}, \lim _{s \rightarrow \infty} v(s)=u_{r}, \lim _{s \rightarrow \pm \infty} \dot{v}=0
$$

then

$$
\lim _{\varepsilon \searrow 0} u_{\varepsilon}(x, t)= \begin{cases}u_{l} & : x<\sigma t \\ u_{r} & : x>\sigma t\end{cases}
$$

so the viscosity limit is a shock wave connecting u_{l} and u_{r}. Try to solve

$$
-\sigma \dot{v}+D F(v) \dot{v}=\ddot{v}
$$

Integrate to obtain

$$
\dot{v} F(v)-\sigma v+c
$$

$c \in \mathbb{R}^{m}$ constant. Taking the limits $s \rightarrow \pm \infty$ we see

$$
\begin{aligned}
F\left(u_{l}\right)-\sigma u_{l}+c & =0 \\
F\left(u_{r}\right)-\sigma u_{r}+c & =0
\end{aligned}
$$

hence

$$
F\left(u_{l}\right)-F\left(u_{r}\right)=\sigma\left(u_{l}-u_{r}\right) \text { (Rankine-Hugoniot). }
$$

Determining the constant via $s \rightarrow-\infty$, in particular, gives $c=\sigma u_{l}-F\left(u_{l}\right)$, hence our ODE reads

$$
\dot{v}=F(v)-F\left(u_{l}\right)-\sigma\left(v-u_{l}\right)
$$

From Rankine-Hugoniot we see moreover that, for given u_{l}, and u_{r} close by, necessarily $u_{r} \in S_{k}\left(u_{l}\right)$ for some k and $\sigma=\sigma\left(u_{r}, u_{l}\right)$. Even more, we have:

THEOREM 3.22. If there is a travelling wave solution of (3.5) connecting u_{l} to u_{r} sufficiently close, then $u_{r} \in S_{k}^{-}\left(u_{l}\right)$.

Proof. We have already seen $u_{r} \in S_{k}\left(u_{l}\right)$ for some k and $\sigma=\sigma\left(u_{r}, u_{l}\right)$. Set

$$
G(z):=F(z)-F\left(u_{l}\right)-\sigma\left(z-u_{l}\right)
$$

so that our ODE becomes

$$
\dot{v}=G(v)
$$

Moreover, by Rankine-Hugoniot we have

$$
G\left(u_{l}\right)=G\left(u_{r}\right)=0
$$

as well as

$$
D G(z)=D F(z)-\sigma I
$$

and so

$$
D G\left(u_{l}\right)=D F\left(u_{l}\right)-\sigma I
$$

Hence the eigenvalues of $D G\left(u_{l}\right)$ are $\left\{\lambda_{k}\left(u_{l}\right)-\sigma\right\}_{k=1}^{m}$ with left and right eigenvectors $\left\{l_{k}\left(u_{l}\right)\right\},\left\{r_{k}\left(u_{l}\right)\right\}$.
But as $u_{r} \in S_{k}\left(u_{l}\right)$ and $\left|u_{r}-u_{l}\right| \ll 1$, we have by Theorem[3.9iii)

$$
\sigma=\frac{\lambda_{k}\left(u_{r}\right)+\lambda_{k}\left(u_{l}\right)}{2}+\mathcal{O}\left(\left|u_{l}-u_{r}\right|^{2}\right)
$$

and thus

$$
\lambda_{k}\left(u_{l}\right)-\sigma=\frac{\lambda_{k}\left(u_{l}\right)-\lambda_{k}\left(u_{r}\right)}{2}+\mathcal{O}\left(\left|u_{r}-u_{l}\right|^{2}\right) .
$$

We argue that $\lambda_{k}\left(u_{l}\right)-\sigma$ has to be strictly positive. Indeed, u_{l} is an equilibrium point of $\dot{v}=G(v)$, as $G\left(u_{l}\right)=0$. If u_{r} is close to u_{l}. then $u_{r}-u_{l}$ is almost parallel to $r_{k}\left(u_{l}\right)$, since $u_{r} \in S_{k}\left(u_{l}\right)$. But if a trajectory of $\dot{v}=G(v)$ leaves the equilibrium at u_{l} in the direction r_{k}, then by standard ODE theory (linearised stability!) the eigenvalue $\lambda_{k}\left(u_{l}\right)-\sigma$ of $D G\left(u_{l}\right)$ corresponding to $r_{k}\left(u_{l}\right)$ has to be positive.
But if u_{r} is sufficiently close to $u_{l}, \lambda_{k}\left(u_{l}\right)-\sigma>0$ implies $\lambda_{k}\left(u_{l}\right)>\lambda_{k}\left(u_{r}\right)$, hence $u_{r} \in S_{k}^{-}\left(u_{l}\right)$.

REMARK 3.23. i) The converse statement holds (if $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear): If $u_{r} \in S_{k}^{-}\left(u_{l}\right)$ for some k, there exists a travelling wave solution of (3.5).
ii) This justifies Lax's entropy condition: A shock wave arises from a viscosity limit if and only if Lax's entropy condition is satisfied.
3.4.2. Liu's Condition: An Example. If (λ_{k}, r_{k}) is not genuinely nonlinear, then $u_{r} \in S_{k}^{-}\left(u_{l}\right)$ does not make sense.

Definition 3.24. Let $u_{r} \in S_{k}\left(u_{l}\right)$ for some k. Then $\left(u_{r}, u_{l}\right)$ satisfies (Tai-Ping) Liu's entropy condition if

$$
\sigma\left(z, u_{l}\right)>\sigma\left(u_{r}, u_{l}\right)
$$

for each z on the curve $S_{k}\left(u_{l}\right)$ between u_{l} and u_{r}.
Theorem 3.25. If $\left(\lambda_{k}, r_{k}\right)$ is genuinely nonlinear, $u_{r} \in S_{k}^{-}\left(u_{l}\right)$, and u_{r} close to u_{l}, then Liu's entropy condition is equivalent to Lax' entropy condition.

Proof. Liu \Rightarrow Lax: Let $z=u_{l}$, then by Theorem 3.9 ii), $\sigma\left(u_{l}, u_{l}\right)=$ $\lambda_{k}\left(u_{l}\right)$, and by Theorem 3.9 iii), $\sigma\left(u_{l}, u_{r}\right)$ is strictly between $\lambda_{k}\left(u_{l}\right)$ and $\lambda_{k}\left(u_{r}\right)$.
Liu's condition implies $\lambda_{k}\left(u_{l}\right)>\sigma\left(u_{r}, u_{l}\right)$ and it follows

$$
\lambda_{k}\left(u_{l}\right)>\sigma\left(u_{r}, u_{l}\right)>\lambda_{k}\left(u_{r}\right),
$$

i.e. Lax' condition.

Lax \Rightarrow Liu: Let $\lambda_{k}\left(u_{r}\right)<\sigma\left(u_{r}, u_{l}\right)<\lambda_{k}\left(u_{l}\right)$ and $z \in S_{k}^{-}\left(u_{l}\right)$ between u_{r} and u_{l}. Then by genuine nonlinearity and Theorem 3.9 iii)

$$
\sigma\left(z, u_{l}\right)=\frac{\lambda_{k}(z)+\lambda_{k}\left(u_{l}\right)}{2}+\mathcal{O}\left(\left|z-u_{l}\right|^{2}\right)
$$

is strictly decreasing along $S_{k}\left(u_{l}\right)^{-}$, hence

$$
\sigma\left(z, u_{l}\right)>\sigma\left(u_{r}, u_{l}\right),
$$

i.e. Liu's condition.

THEOREM 3.26. (without proof)
If u_{r} is sufficiently close to u_{l}, then there exists a travelling wave solution to (3.5) if and only if the Liu entropy condition is satisfied.

EXAMPLE 3.27. (p-system) Recall

$$
\begin{aligned}
\partial_{t} u_{1}-\partial_{x} u_{2} & =0 \\
\partial_{t} u_{2}-\partial_{x} p\left(u_{1}\right) & =0
\end{aligned}
$$

which is strictly hyperbolic if and only if $p^{\prime}>0$. Two conceivable ways to add viscosity: (3.5) would yield

$$
\begin{aligned}
\partial_{t} u_{1}^{\varepsilon}-\partial_{x} u_{2}^{\varepsilon} & =\varepsilon \partial_{x x} u_{1} \\
\partial_{t} u_{2}^{\varepsilon}-\partial_{x} p\left(u_{1}^{\varepsilon}\right) & =\varepsilon \partial_{x x} u_{2}
\end{aligned}
$$

"artifical viscosity" - no physical meaning. Or

$$
\begin{align*}
\partial_{t} u_{1}^{\varepsilon}-\partial_{x} u_{2}^{\varepsilon} & =0 \\
\partial_{t} u_{2}^{\varepsilon}-\partial_{x} p\left(u_{1}^{\varepsilon}\right) & =\varepsilon \partial_{x x} u_{2} \tag{3.6}
\end{align*}
$$

"physical viscosity". Let's go for (3.6).
Assume $u^{\varepsilon}=v\left(\frac{x-\sigma t}{\varepsilon}\right)$ is a smooth solution with

$$
\lim _{s \rightarrow-\infty} v(s)=u_{l}, \lim _{s \rightarrow \infty} v(s)=u_{r}, \lim _{s \rightarrow \pm \infty} \dot{v}(s)=0 .
$$

From (3.6) we get

$$
\begin{aligned}
-\sigma \dot{v}_{1}-\dot{v}_{2} & =0 \\
-\sigma \dot{v}_{2}-p\left(\dot{v}_{1}\right) & =\ddot{v}_{2}
\end{aligned}
$$

Integrating gives

$$
\begin{align*}
\sigma v_{1}+v_{2} & =\sigma u_{l}^{1}+u_{l}^{2}=\sigma u_{r}^{1}+u_{r}^{2} \text { and } \\
\dot{v}^{2} & =\sigma\left(u_{l}^{2}-v^{2}\right)+p\left(u_{l}^{1}\right)-p\left(v^{1}\right) \tag{3.7}\\
& =\sigma\left(u_{r}^{2}-v^{2}\right)+p\left(u_{r}^{1}\right)-p\left(v^{1}\right) .
\end{align*}
$$

It follows that

$$
\begin{aligned}
\sigma u_{l}^{1}+u_{l}^{2} & =\sigma u_{r}^{1}+u_{r}^{2} \text { and } \\
\sigma u_{l}^{2}+p\left(u_{l}^{1}\right) & =\sigma u_{r}^{2}+p\left(u_{r}^{1}\right) .
\end{aligned}
$$

Solve for σ :

$$
\sigma^{2}\left(u_{r}^{1}-u_{l}^{1}\right)=\sigma\left(u_{l}^{2}-u_{r}^{2}\right)=p\left(u_{r}^{1}\right)-p\left(u_{l}^{1}\right)
$$

hence

$$
\sigma^{2}=\frac{p\left(u_{r}^{1}\right)-p\left(u_{l}^{1}\right)}{u_{r}^{1}-u_{l}^{1}}>0
$$

since $p^{\prime}>0$. Take $\sigma>0$. Then Liu's condition becomes

$$
\frac{p\left(z_{1}\right)-p\left(u_{l}^{1}\right)}{z_{1}-u_{l}^{\prime}}>\frac{p\left(u_{r}^{1}\right)-p\left(u_{l}^{1}\right)}{u_{r}^{\prime}-u_{l}^{\prime}}
$$

for every $z \in S_{k}\left(u_{l}\right)$ between u_{l} and u_{r}.
Consider again (3.7). Eliminate v^{2} :

$$
\dot{v}^{1}=-\frac{\dot{v}_{2}}{\sigma}=\frac{p\left(v^{1}\right)-p\left(u_{l}^{1}\right)}{\sigma}-\underbrace{\left(u_{l}^{2}-v^{2}\right)}_{\sigma\left(v^{1}-u_{l}^{1}\right)}=: g\left(v^{1}\right)
$$

But $g\left(u_{l}^{1}\right)=0$ and also $g\left(u_{r}^{1}\right)=0$ by our formula for σ.
Suppose now $u_{r}^{1}>u_{l}^{1}$.

Figure 17

In order for $\dot{v}=g(v)$ to have a solution connecting u_{l}^{1} and u_{r}^{2}, we need $g\left(z^{1}\right)>0$ for z^{1} between u_{l}^{1} and u_{r}^{2}, i.e.

$$
p\left(z^{1}\right)-p\left(u_{l}^{1}\right)>\sigma^{2}\left(z^{1}-u_{l}^{1}\right)=\frac{p\left(u_{r}^{1}\right)-p\left(u_{l}^{1}\right)}{u_{r}^{1}-u_{l}^{1}}\left(z^{1}-u_{l}^{1}\right)
$$

i.e. Liu's condition.

But note that, for u_{l} and u_{r} sufficiently close, $u_{r} \in S_{k}\left(u_{l}\right)$ implies that

$$
u_{r}^{1}>z^{1}>u_{l}^{1}
$$

for every $z \in S_{k}\left(u_{l}\right)$ between u_{l} and u_{r} (since $r_{k}\left(u_{l}\right)$ is not parallel to $(0,1)$), hence Liu's condition is equivalent to the existence of the travelling wave. If $u_{r}^{1}<u_{l}^{1}$ then a similar argument works (taking $\sigma<0$).

3.4.3. Entropy / Entropy-flux pairs.

DEFINITION 3.28. Two smooth functions $\eta, q: \mathbb{R}^{m} \rightarrow \mathbb{R}$ are called an entropy / entropy-flux pair if η is convex and

$$
D \eta D F=D q
$$

This can be motivated as in the scalar case: If $\partial_{t} u+\partial_{x} F(u)=0$ for smooth u, then multiplication with $D \eta(u)$ gives

$$
\partial_{t} \eta(u)+\underbrace{D \eta(u) D F(u)}_{D q(u)} \partial_{x} u=0
$$

so $\partial_{t} \eta(u)+\partial_{x} q(u)=0$.

DEFINITION 3.29. A function $u \in L^{\infty}(\mathbb{R} \times(0, \infty))$ is an entropy solution of

$$
\partial_{t} u+\partial_{x} F(u)=0
$$

with initial data $g \in L^{\infty}$ if

$$
\partial_{t} \eta(u)+\partial_{x} q(u) \leq 0
$$

in the sense of distributions, i.e.

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t+\int_{-\infty}^{\infty} \varphi(x, 0) g(x) d x \geq 0
$$

for all $\varphi \in C_{c}^{\infty}(\mathbb{R} \times[0, \infty)), \varphi \geq 0$, and all entropy/entropy-flux pairs. Without reference to an initial condition, u is an entropy solution if

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \geq 0
$$

for all $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \varphi \geq 0$, and all entropy/entropy-flux pairs.
THEOREM 3.30. Suppose $\left(u_{\varepsilon}\right)$ is a sequence of smooth solutions of

$$
\partial_{t} u_{\varepsilon}+\partial_{x} F\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} u_{\varepsilon}
$$

bounded in L^{∞}, and such that

$$
u_{\varepsilon} \rightarrow u
$$

pointwise a.e. Then u is an entropy solution of

$$
\partial_{t} u+\partial_{x} F(u)=0
$$

Proof. We have

$$
\begin{aligned}
\partial_{t} \eta\left(u_{\varepsilon}\right)+\partial_{x} q\left(u_{\varepsilon}\right) & =\varepsilon D \eta\left(u_{\varepsilon}\right) \partial_{x x} u_{\varepsilon} \\
& =\varepsilon \partial_{x x} \eta\left(u_{\varepsilon}\right)-\underbrace{\varepsilon\left(D^{2} \eta\left(u_{\varepsilon}\right)\left(\partial_{x} u_{\varepsilon}\right) \partial_{x} u_{\varepsilon}\right)}_{\geq 0}
\end{aligned}
$$

Let now $\varphi \in C_{c}^{\infty}(\mathbb{R} \times(0, \infty)), \varphi \geq 0$. Then
$\iint \partial_{t} \varphi \eta\left(u_{\varepsilon}\right)+\partial_{x} \varphi q\left(u_{\varepsilon}\right) d x d t=-\varepsilon \iint \partial_{x x} \varphi \eta\left(u_{\varepsilon}\right) d x d t+\varepsilon \iint \varphi D^{2} \eta\left(u_{\varepsilon}\right) \partial_{x} u_{\varepsilon} \partial_{x} u_{\varepsilon} d x d t$
But by dominated convergence, since

$$
\varepsilon \partial_{x x} \varphi \eta\left(u_{\varepsilon}\right) \rightarrow 0
$$

a.e. and a dominating function is given by

$$
\|\varphi\|_{C^{2}} \chi_{\operatorname{supp} \varphi} \sup _{x, \varepsilon}\left|\eta\left(u_{\varepsilon}\right)\right|
$$

we conclude

$$
\iint \partial_{t} \varphi \eta(u)+\partial_{x} \varphi q(u) d x d t \geq 0
$$

Corollary 3.31. A solution of the form

$$
u(x, t)= \begin{cases}u_{l} & : x<\sigma t \\ u_{r} & : x>\sigma t\end{cases}
$$

that satisfies Lax's or Liu's entropy condition is also an entropy solution in this sense.

REMARK 3.32. The converse is not true in general: Consider the linearly degenerate "system"

$$
\begin{aligned}
\partial_{t} u_{1}+\partial_{x} u_{1} & =0 \\
\partial_{t} u_{2}+2 \partial_{x} u_{2} & =0
\end{aligned}
$$

and $g(x)=\left(g_{1}(x), g_{2}(x)\right)$ for

$$
g_{1}(x)=0, g_{2}(x)= \begin{cases}u_{l} & : x<0 \\ u_{r} & : x>0\end{cases}
$$

so $\left(0, u_{r}\right) \in S_{2}\left(0, u_{l}\right)$. Then the solution (contact discontinuity) is given by

$$
u_{1}(x, t)=0, u_{2}(x, t)= \begin{cases}0 & : x<2 t \\ u_{r} & : x>2 t\end{cases}
$$

but $\sigma\left(z, u_{l}\right)$ is constant in z, so that Liu's condition is not satisfied. On the other hand it is not difficult to see that $\partial_{t} \eta(u)+\partial_{x} q(u)=0$ for every entropy/entropy-flux pair (exercise).

Warning: Unlike in the scalar case, it may be difficult to find any entropy / entropy-flux pair at all! In particular for the choice $\eta=|\cdot|$ there may not be a corresponding entropy flux (so that the proof of uniqueness and compensated compactness are not transferable to systems).

EXAMPLE 3.33. Consider again the p-system, for which

$$
D F(z)=\left(\begin{array}{cc}
0 & -1 \\
-p^{\prime}\left(z_{1}\right) & 0
\end{array}\right)
$$

We claim that

$$
\eta(z)=\frac{z_{2}^{2}}{2}+\int_{0}^{z_{1}} p(w) d w
$$

is an entropy with corresponding flux

$$
q(z)=-p\left(z_{1}\right) z_{2}
$$

Indeed, η is convex since $p^{\prime}>0$ and

$$
D q(z)=\binom{-p^{\prime}\left(z_{1}\right) z_{2}}{-p\left(z_{1}\right)}
$$

whereas

$$
D \eta(z) D F(z)=\left(p\left(z_{1}\right), z_{2}\right)\left(\begin{array}{cc}
0 & -1 \\
-p^{\prime}\left(z_{1}\right) & 0
\end{array}\right)=\left(-p^{\prime}\left(z_{1}\right) z_{2},-p\left(z_{1}\right)\right)
$$

Example 3.34. For the isentropic Euler equations, an entropy is given by

$$
\eta(\rho, v)=\frac{1}{2} \rho v^{2}+P(\rho),
$$

where

$$
P(\rho)=\rho \int_{1}^{\rho} \frac{\rho(r)}{r^{2}} d r
$$

is the pressure potential. The corresponding flux ist

$$
q(\rho, v)=\left(\frac{1}{2} \rho v^{2}+p(\rho)+P(\rho)\right) v .
$$

Physically, η is interpreted as the energy.
We will use the following entropies for systems of two equations:
Lemma 3.35. (Lax)
Let $m=2$ and $w=\left(w_{1}, w_{2}\right)$ be a Riemann invariant for

$$
\partial_{t} u+\partial_{x} F(u)=0(D w \neq 0) .
$$

There exists, for each $k \in \mathbb{Z}$ with $|k|$ sufficiently large, entropy /entropy-flux pairs $\left(\eta^{k}, q^{k}\right)$ of the asymptotic forms

$$
\begin{aligned}
\eta^{k}(w) & =e^{k w_{1}}\left(A_{0}(w) \pm \frac{1}{k} A_{1}(w)+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right) \\
q^{k}(w) & =e^{k w_{1}}\left(B_{0}(w) \pm \frac{1}{k} B_{1}(w)+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right) .
\end{aligned}
$$

such that $A_{0}>0$ and $A_{0}, A_{1}, B_{0}, B_{1}$ are smooth and independent of k.

3.5. Compensated Compactness for Systems of Two Equations

Consider the system

$$
\partial_{t} u_{\varepsilon}+\partial_{x} F\left(u_{\varepsilon}\right)=\varepsilon \partial_{x x} u_{\varepsilon}
$$

and assume u_{ε} is smooth in $\mathbb{R} \times(0, \infty)$ and satisfies

$$
\sup _{\varepsilon}\left\|u_{\varepsilon}\right\|_{L^{\infty}}<\infty
$$

as well as $\sup _{\varepsilon}\left\|\sqrt{\varepsilon} \partial_{x} u_{\varepsilon}\right\|_{L^{2}}<\infty$ (satisfied e.g. for Euler).
THEOREM 3.36. Under the stated assumptions, and if $\left(\lambda_{1}, r_{1}\right)$ and $\left(\lambda_{2}, r_{2}\right)$ are genuinely nonlinear, there is a subsequence ($u_{\varepsilon_{k}}$) which converges pointwise to an entropy solution

$$
\partial_{t} u+\partial_{x} F(u)=0 .
$$

Proof. By Theorem 2.32, there exists a subsequence $\left(u_{\varepsilon_{k}}\right)$ generating a Young measure ($\nu_{x_{t}}$), i.e.

$$
f\left(u_{\varepsilon_{k}}\right) \stackrel{*}{\rightharpoonup} \int_{\mathbb{R}} f(z) d \nu_{x, t}(z) \text { in } L^{\infty}(\mathbb{R} \times(0, \infty))
$$

for every $f \in C\left(\mathbb{R}^{2}\right)$.
Let $\left(\eta_{1}, q_{1}\right),\left(\eta_{2}, q_{2}\right)$ be two entropy / entropy-flux pairs, and set

$$
\begin{aligned}
v_{k} & :=\left(q_{2}\left(u_{\varepsilon_{k}}\right), \eta_{2}\left(u_{\varepsilon_{k}}\right)\right), \\
w_{k} & :=\left(\eta_{1}\left(u_{\varepsilon_{k}}\right),-q_{1}\left(u_{\varepsilon_{k}}\right)\right) .
\end{aligned}
$$

Setting $f=\eta_{1} q_{2}-\eta_{2} q_{1}$ in Theorem 2.32, we get

$$
v_{k} \cdot w_{k} \stackrel{*}{\rightharpoonup} \int\left(\eta_{1} q_{2}-\eta_{2} q_{1}\right)(z) d \nu_{x, t}(z)=:\left\langle\nu_{x, t}, \eta_{1} q_{2}-\eta_{2} q_{1}\right\rangle .
$$

Next, apply the div-curl-lemma to v_{k}, w_{k}. To this end, note that

$$
\begin{aligned}
\operatorname{div} v_{k} & \left.=\partial_{t} \eta_{2}\left(u_{\varepsilon_{k}}\right)+\partial_{x} q_{2}\left(u_{\varepsilon_{k}}\right)\right) \\
\operatorname{curl} w_{k} & =-\left(\partial_{t} \eta_{1}\left(u_{\varepsilon_{k}}\right)+\partial_{x} q_{1}\left(u_{\varepsilon_{k}}\right)\right) .
\end{aligned}
$$

But multiply $\partial_{t} u_{\varepsilon_{k}}+\partial_{x} F\left(u_{\varepsilon_{k}}\right)=\varepsilon \partial_{x x} u_{\varepsilon_{k}}$ by $D \eta_{1}\left(u_{\varepsilon_{k}}\right)$ to find

$$
\begin{aligned}
\partial_{t} \eta_{1}\left(u_{\varepsilon_{k}}\right)+\partial_{x} q_{1}\left(u_{\varepsilon_{k}}\right) & =D \eta_{1}\left(u_{\varepsilon_{k}}\right) \partial_{x x} u_{\varepsilon_{k}} \\
& =\varepsilon \partial_{x x} \eta_{1}\left(u_{\varepsilon_{k}}\right)-\varepsilon\left(D^{2} \eta_{1}\left(u_{\varepsilon_{k}}\right) \partial_{x} u_{\varepsilon_{k}}\right) \cdot \partial_{x} u_{\varepsilon_{k}} .
\end{aligned}
$$

We need to show that this precompact in $W_{\text {loc }}^{-1,2}$. To this end note that $\varepsilon \eta_{1}^{\prime}\left(u_{\varepsilon_{k}}\right) \partial_{x} u_{\varepsilon_{k}}$ is precompact in L^{2}, because it equals $\sqrt{\varepsilon} \underbrace{\sqrt{\varepsilon} \partial_{x} u_{\varepsilon_{k}}}_{\text {bounded in } L^{2}} \underbrace{\eta_{1}^{\prime}\left(u_{\varepsilon_{k}}\right)}_{\text {bounded in } L^{\infty}}$. Since this quantity equals $\varepsilon D_{x} \eta_{1}^{\prime}\left(u_{\varepsilon_{k}}\right)$, it follows that $\varepsilon \partial_{x x} \eta_{1}\left(u_{\varepsilon_{k}}\right)$ is precompact in $W^{-1,2}(\mathbb{R} \times(0, \infty))$.
Moreover, $\underbrace{\varepsilon\left|\partial_{x} u_{\varepsilon_{k}}\right|^{2}}_{\text {bounded in } L^{1} \text { bounded in } L^{\infty}} \underbrace{\left|D^{2} \eta_{1}\left(u_{\varepsilon_{k}}\right)\right|}$ is bounded in $L^{1}(\mathbb{R} \times(0, \infty))$, hence in $\mathcal{M}(\mathbb{R} \times(0, \infty))$, so Corollary 2.30 applies and gives the derived precompactness in $W_{\text {loc }}^{-1,2}(\mathbb{R} \times(0, \infty))$. We conclude

$$
\begin{aligned}
v_{k} \cdot w_{k} & \stackrel{*}{\sim} \mathrm{w}^{*}-\lim v_{k} \cdot \mathrm{w}^{*}-\lim w_{k} \\
& =\left\langle\nu, \eta_{1}\right\rangle\left\langle\nu, q_{2}\right\rangle-\left\langle\nu, \eta_{2}\right\rangle\left\langle\nu, q_{1}\right\rangle
\end{aligned}
$$

and hence

$$
\left\langle\nu, \eta_{1} q_{2}-\eta_{2} q_{1}\right\rangle=\left\langle\nu, \eta_{1}\right\rangle\left\langle\nu, q_{2}\right\rangle-\left\langle\nu, \eta_{2}\right\rangle\left\langle\nu, q_{1}\right\rangle
$$

almost everywhere. We want to show $\nu_{x, t}$ is a Dirac measure a.e. First, prove the following

Lemma 3.37. If η, q is an entropy/entropy-flux pair, viewed as a function of $w=\left(w_{1}, w_{2}\right)$, then

$$
\frac{\partial q}{\partial w_{1}}=\lambda_{2} \frac{\partial \eta}{\partial w_{1}}, \frac{\partial q}{\partial w_{2}}=\lambda_{1} \frac{\partial \eta}{\partial w_{2}} .
$$

Proof. By definition, $D \eta(z) D F(z)=D q(z)$, i.e.

$$
D F^{t}(z) D \eta(z)=D q(z) .
$$

Consider the diffeomorphism $z=z(w)$, then by the chain rule

$$
D_{w} q(w)=D z(w)^{t} D_{z} q(z)
$$

and similarly

$$
D_{w} \eta(w)=D z(w)^{t} D_{z} \eta(z),
$$

so that

$$
D_{w} q=D z^{t} D_{z} q=D z^{t} D_{z} F^{t} D_{z} \eta=D z^{t} D_{z} F^{t}\left(D z^{t}\right)^{-1} D_{w} \eta .
$$

But $D z(w)=D w(z(w))^{-1}$, hence

$$
D_{w} q(w)=D w^{-t}(z) D_{z} F^{t}(z) D w^{t}(z) D_{w} \eta .
$$

But recall that $D w_{1}| | l_{2}$ and $D w_{2} \| l_{1}$, hence

$$
\begin{aligned}
D w^{-t} D F^{t} D w^{t} & =D w^{-t} D F^{t}(\underbrace{D w_{1}}_{\| l_{2}} \mid \underbrace{D w_{2}}_{\| l_{1}}) \\
& =D w^{-t}\left(\lambda_{2} D w_{1} \mid \lambda_{1} D w_{2}\right) \\
& =D w^{-t} D w^{t}\left(\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{1}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\lambda_{2} & 0 \\
0 & \lambda_{1}
\end{array}\right)
\end{aligned}
$$

and the claim follows.
Continue the proof of Theorem 3.36 ,
Recall

$$
\begin{aligned}
& \eta^{k}(w)=e^{k w_{1}}\left(A_{0}(w) \pm \frac{1}{k} A_{1}(w)+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right), A_{0}>0 \\
& q^{k}(w)=e^{k w_{1}}\left(B_{0}(w) \pm \frac{1}{k} B_{1}(w)+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right)
\end{aligned}
$$

from Lemma 3.35. Insert this into the just derived lemma and match coefficients of k^{1} and k^{0} which yields

$$
\begin{aligned}
\frac{\partial \eta^{k}}{\partial w_{1}} & =k e^{k w_{1}}\left(A_{0}+\frac{1}{k} A_{1}+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right)+e^{k w_{1}}\left(\frac{\partial A_{0}}{\partial w_{1}}+\frac{1}{k} \frac{\partial A_{1}}{\partial w_{1}}+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right) \\
\frac{\partial \eta^{k}}{\partial w_{2}} & =e^{k w_{1}}\left(\frac{\partial A_{0}}{\partial w_{2}}+\frac{1}{k} \frac{\partial A_{1}}{\partial w_{2}}+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right) \\
\frac{\partial q^{k}}{\partial w_{1}} & =k e^{k w_{1}}\left(B_{0}+\frac{1}{k} B_{1}+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right)+e^{k w_{1}}\left(\frac{\partial B_{0}}{\partial w_{1}}+\frac{1}{k} \frac{\partial B_{1}}{\partial w_{1}}+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right) \\
\frac{\partial q^{k}}{\partial w_{2}} & =e^{k w_{1}}\left(\frac{\partial B_{0}}{\partial w_{2}}+\frac{1}{k} \frac{\partial B_{1}}{\partial w_{2}}+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right)
\end{aligned}
$$

hence Lemma 3.37 gives

$$
\begin{aligned}
B_{0} & =\lambda_{2} A_{0} \\
\frac{\partial B_{0}}{\partial w_{2}} & =\lambda_{1} \frac{\partial A_{0}}{\partial w_{2}} \\
B_{1}+\frac{\partial B_{0}}{\partial w_{1}} & =\lambda_{2}\left(A_{1}+\frac{\partial A_{0}}{\partial w_{1}}\right)
\end{aligned}
$$

Hence we have

$$
B_{1}-\lambda_{2} A_{1}=\lambda_{2} \frac{\partial A_{0}}{\partial w_{1}}-\frac{\partial B_{0}}{\partial w_{1}}=\frac{\partial}{\partial w_{1}}\left(\lambda_{2} A_{0}-B_{0}\right)-\frac{\partial \lambda_{2}}{\partial w_{1}} A_{0}=-\frac{\partial \lambda_{2}}{\partial w_{1}} A_{0} .
$$

Next, fix x, t and define $R:=\left\{w \in \mathbb{R}^{2}: w_{i}^{-} \leq w_{i} \leq w_{i}^{+}(i=1,2)\right\}$ as the smallest rectangle in \mathbb{R}^{2} containing $\operatorname{supp} \nu_{x, t}$. We want to show that R is a point.
For contradiction, suppose $w_{1}^{-}<w_{1}^{+}\left(w_{2}^{-}<w_{2}^{+}\right.$is similar). Since $A_{0}>0$, for large $|k|, \eta^{k}=e^{k w_{1}}\left(A_{0}+\mathcal{O}\left(\frac{1}{k}\right)\right)>0$, so that the measure defined by

$$
\mu_{k}(E)=\frac{1}{\left\langle\nu_{x, t}, \eta^{k}\right\rangle} \int_{E} \eta^{k}(w) d \nu_{x, t}(w)
$$

is a probability measure supported in \mathbb{R}. Hence, up to subsequences,

$$
\left(\mu_{k}\right)_{k>0} \stackrel{*}{\rightharpoonup} \mu^{+},\left(\mu_{k}\right)_{k<0} \stackrel{*}{\rightharpoonup} \mu^{-}(|k| \rightarrow \infty)
$$

for probability measures μ^{+}, μ^{-}with support in R.
Claim:

$$
\begin{aligned}
& \operatorname{supp} \mu^{+} \subset R \cap\left\langle w_{1}=w_{1}^{+}\right\rangle \\
& \operatorname{supp} \mu^{-} \subset R \cap\left\langle w_{1}=w_{1}^{-}\right\rangle
\end{aligned}
$$

Proof of the claim: Consider only + . Let $\varphi \in C(R)$ such that $\varphi=0$ near

Figure 18
$\left\langle w=w_{1}^{+}\right\rangle$. Hence, there exists $\delta>0$ such that $\varphi\left(w_{1}, w_{2}\right)=0$ if $w_{1}>w_{1}^{+}-\delta$ and let $R_{\delta}=\left[w_{1}^{-}, w_{1}^{+}-\delta\right] \times\left[w_{2}^{-}, w_{2}^{+}.\right]$. Then

$$
\begin{aligned}
\left|\int_{R} \varphi(w) d \mu^{+}(w)\right| & =\left|\lim _{k \rightarrow \infty} \int \varphi(w) \eta^{k}(w) d \nu_{x, t}(w) \frac{1}{\left\langle\nu_{x, t}, \eta^{k}\right\rangle}\right| \\
& \leq\|\varphi\|_{\infty}\left|\limsup _{k \rightarrow \infty} \frac{\int_{R_{\delta}} \eta^{k}(w) d \nu_{x, t}(w)}{\int_{R} \eta^{k}(w) d \nu_{x, t}(w)}\right| \\
& =\|\varphi\|_{\infty}\left|\limsup _{k \rightarrow \infty} \frac{\int_{R_{\delta}} e^{k w_{1}} A_{0}(w) d \nu_{x, t}(w)}{\int_{R} e^{k w_{1}} A_{0}(w) d \nu_{x, t}(w)}\right| \\
& \leq\|\varphi\|_{\infty} C \limsup _{k \rightarrow \infty} \frac{\int_{R_{\delta}} e^{k w_{1}} d \nu_{x, t}(w)}{\int_{R} e^{k w_{1}} d \nu_{x, t}(w)}\left(0<m<A_{0}<M\right) \\
& \leq\|\varphi\|_{\infty} C \limsup _{k \rightarrow \infty} \frac{e^{k\left(w_{1}^{+}-\delta\right)} \nu_{x, t}\left(R_{\delta}\right)}{e^{k\left(w_{1}^{+}-\delta / 2\right)} \nu_{x, t}\left(R \backslash R_{\delta / 2}\right)} \\
& =0 .
\end{aligned}
$$

This proves the claim. The argument for μ^{-}is similar.
Let us define

$$
\lambda_{2}^{+}=\int_{R \cap\left\{w_{1}=w_{1}^{+}\right\}} \lambda_{2} d \mu^{+}, \lambda_{2}^{-}=\int_{R \cap\left\{w_{1}=w_{1}^{-}\right\}} \lambda_{2} d \mu^{-} .
$$

Let now (η, q) be any entropy/entropy-flux pair and use $\left(\eta_{1}, q_{1}\right)=\left(\eta_{k}, q_{k}\right)$ and $\left(\eta_{2}, q_{2}\right)=(\eta, q)$ above:

$$
\begin{equation*}
\left\langle\nu_{x, t}, \eta_{k} q-\eta q_{k}\right\rangle=\left\langle\nu_{x, t}, \eta_{k}\right\rangle\left\langle\nu_{x, t}, q\right\rangle-\left\langle\nu_{x, t}, \eta\right\rangle\left\langle\nu_{x, t}, q_{k}\right\rangle . \tag{3.8}
\end{equation*}
$$

Recalling the definition of μ_{k}, we obtain

$$
\begin{aligned}
\left\langle\nu_{x, t}, q_{k}\right\rangle \frac{1}{\left\langle\nu_{x, t}, \eta_{k}\right\rangle} & =\frac{1}{\left\langle\nu_{x, t}, \eta_{k}\right\rangle} \int e^{k_{1} w} \lambda_{2} A_{0}(w) d \nu_{x, t}(w)+\mathcal{O}\left(\frac{1}{k}\right) \\
& =\int \lambda_{2}(w) d \mu_{k}+\mathcal{O}\left(\frac{1}{k}\right)
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\left\langle\nu_{x, t}, \eta_{k} q-\eta q_{k}\right\rangle \frac{1}{\left\langle\nu_{x, t}, \eta_{k}\right\rangle} & =\frac{1}{\left\langle\nu_{x, t}, \eta_{k}\right\rangle} \int e^{k w_{1}} A_{0} q-\eta e^{k w_{1}} A_{0} \lambda_{2} d \nu+\mathcal{O}\left(\frac{1}{k}\right) \\
& =\int q-\lambda_{2} \eta d \mu_{k}+\mathcal{O}\left(\frac{1}{k}\right)
\end{aligned}
$$

Hence dividing (3.8) by $\left\langle\nu, \eta_{k}\right\rangle$ and letting $k \rightarrow \pm \infty$ we obtain

$$
\int_{R \cap\left\{w_{1}=w_{1}^{ \pm}\right\}} q-\lambda_{2} \eta d \mu^{ \pm}=\langle\nu, q\rangle-\langle\nu, \eta\rangle \lambda_{2}^{ \pm}
$$

Next, insert $\left(\eta^{k}, q^{k}\right)$ and $\left(\eta^{-k}, q^{-k}\right)$ in (3.8) to get

$$
\left\langle\nu, \eta_{k} q_{-k}-\eta_{-k} q_{k}\right\rangle=\left\langle\nu, \eta_{k}\right\rangle\left\langle\nu, q_{-k}\right\rangle-\left\langle\nu, \eta_{-k}\right\rangle\left\langle\nu, q_{k}\right\rangle
$$

and so

$$
\frac{\left\langle\nu, \eta_{k} q_{-k}-\eta_{-k} q_{k}\right\rangle}{\left\langle\nu, \eta_{k}\right\rangle\left\langle\nu, \eta_{-k}\right\rangle}=\frac{\left\langle\nu, q_{-k}\right\rangle}{\left\langle\nu, \eta_{-k}\right\rangle}-\frac{\left\langle\nu, q_{k}\right\rangle}{\left\langle\nu, \eta_{k}\right\rangle} .
$$

Let $k \rightarrow \pm \infty$: The RHS converges to $\lambda_{2}^{-}-\lambda_{2}^{+}$as above. For the LHS, the numerator is of order $\frac{1}{k}$ (because: $\eta_{k} q_{-k}-\eta_{-k} q_{k} \sim A_{0} B_{0}-A_{0} B_{0}+$ $\left.\frac{1}{k}\left(A_{1} B_{0}-A_{0} B_{1}-A_{0} B_{1}+A_{1} B_{0}\right)+\mathcal{O}\left(\frac{1}{k^{2}}\right)\right)$ whereas the denominator is of order $e^{k\left(w_{1}^{+}-w_{1}^{-}\right)} \rightarrow \infty$. Hence in the limit $|k| \rightarrow \infty$ we get

$$
\lambda_{2}^{-}-\lambda_{2}^{+}=0
$$

By (3.5), this also implies

$$
\begin{equation*}
\int_{R \cap\left\{w_{1}=w_{1}^{+}\right\}} q-\eta \lambda_{2} d \mu^{+}=\int_{R \cap\left\{w_{1}=w_{1}^{-}\right\}} q-\eta \lambda_{2} d \mu^{-} \tag{3.9}
\end{equation*}
$$

for any entropy/entropy-flux pair (η, q). Set

$$
(\eta, q)=\left(\eta_{k}, q_{k}\right)
$$

and expand (3.9) up to order $\frac{1}{k}$:

$$
\begin{aligned}
& e^{k w_{1}^{+}} \int_{R \cap\left\{w_{1}=w_{1}^{+}\right\}} \frac{B_{1}-\lambda_{2} A_{1}}{k}+\mathcal{O}\left(\frac{1}{k^{2}}\right) d \mu^{+} \\
= & e^{k w_{1}^{-}} \int_{R \cap\left\{w_{1}=w_{1}^{-}\right\}} \frac{B_{1}-\lambda_{2} A_{1}}{k}+\mathcal{O}\left(\frac{1}{k^{2}}\right) d \mu^{-} .
\end{aligned}
$$

Since $w_{1}^{+} \neq w_{1}^{-}$, it follows that

$$
\int_{R \cap\left\{w_{1}=w_{1}^{ \pm}\right\}} B_{1}-\lambda_{2} A_{1} d \mu^{ \pm}=0 .
$$

But we recall that we had derived

$$
B_{1}-\lambda_{2} A_{1}=-\frac{\partial \lambda_{2}}{\partial w_{1}} A_{0}
$$

so that

$$
\int_{R \cap\left\{w_{1}=w_{1}^{ \pm}\right\}} \frac{\partial \lambda_{2}}{\partial w_{1}} A_{0} d \mu^{ \pm}=0 .
$$

But $A_{0}>0$ and $\frac{\partial \lambda_{2}}{\partial w_{1}}$ does not change sign by genuine nonlinearity, therefore we get a contradiction to $w_{1}^{+}>w_{1}^{-}$.
A similar argument yields $w_{2}^{+}=w_{2}^{-}$hence the support of $\nu_{x, t}$ is $u(x, t)$ for a.e. x, t, and pointwise convergence to an entropy solution then follows easily.

REMARK 3.38. The following argument justifies the assumption

$$
\varepsilon \int_{0}^{T} \int_{\mathbb{R}}\left|\partial_{x} u\right|^{2} d x d t<\infty
$$

If (η, q) is an entropy / entropy-flux pair, then

$$
\partial_{t} \eta(u)+\partial_{x} q(u)=\varepsilon \partial_{x x} \eta(u)-\varepsilon\left(\partial_{x} u, D^{2} \eta(u) \partial_{x} u\right)
$$

hence integration in x and t gives

$$
\eta(u(T))+\varepsilon \int_{0}^{T} \int_{-\infty}^{\infty}\left(\partial_{x} u, D^{2} \eta(u) \partial_{x} u\right) d x d t \leq \eta(u(0))
$$

(if u is smooth, sufficiently decaying).
Hence if η is strongly convex in the sense that

$$
\left(\xi, D^{2} \eta \xi\right) \geq m|\xi|^{2}
$$

for some $m>0$ and all $\xi \in \mathbb{R}^{2}$ then we obtain a uniform $L_{x, t}^{2}$-bound for $\sqrt{\varepsilon} \partial_{x} u$, as desired.

REMARK 3.39. Different subsequences might converge to different entropy solutions.

3.6. Weak-strong uniqueness

For general systems of conservation laws, there is no known uniqueness result for entropy solutions ("scientific scandal", P. Lax).
The second best type of result is weak-strong uniqueness:
THEOREM 3.40. (C. Dafermos)
Suppose the hyperbolic system of m equations

$$
\partial_{t} u+\partial_{x} F(u)=0
$$

has a strongly convex entropy, $D^{2} \eta \geq c I d_{m}$ for some $c>0$.
Suppose there is a solution $\bar{u} \in C^{1}(\mathbb{R} \times[0, T)) \cap L^{\infty}$ with $\bar{u}(x, 0)=g(x)$. Then every entropy solution u with initial data g coincides with \bar{u}, i.e.

$$
u=\bar{u} \text { on } \mathbb{R} \times[0, T)
$$

Proof. Define the functions

$$
\begin{aligned}
h(x, t) & =\eta(u)-\eta(\bar{u})-D \eta(\bar{u}) \cdot(u-\bar{u}) \text { "relative entropy" } \\
Y(x, t) & =q(u)-q(\bar{u})-D \eta(\bar{u}) \cdot(F(u)-F(\bar{u})) \\
Z(x, t) & =D^{2} \eta(\bar{u})(F(u)-F(\bar{u})-D F(\bar{u}) \cdot(u-\bar{u}))
\end{aligned}
$$

Since $u, \bar{u} \in L^{\infty}$ and η, q, F are smooth, by Taylor's theorem there is a constant $C>0$ such that

$$
\begin{aligned}
& |q(u)-q(\bar{u})-D q(\bar{u}) \cdot(u-\bar{u})| \leq C|u-\bar{u}|^{2}, \\
& |F(u)-F(\bar{u})-D F(\bar{u})(u-\bar{u})| \leq C|u-\bar{u}|^{2} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
&|Y(x, t)| \\
&=|q(u)-q(\bar{u})-D \eta(\bar{u}) \cdot(F(u)-F(\bar{u}))| \\
& \leq \mid q(u)-q(\bar{u})-D q(\bar{u}) \cdot(u-\bar{u}) \\
& \quad+D q(\bar{u}) \cdot(u-\bar{u})-D \eta(\bar{u}) \cdot(F(u)-F(\bar{u})) \mid \\
& \leq C|u-\bar{u}|^{2}+\mid D q(\bar{u})(u-\bar{u})-D \eta(\bar{u})(F(u)-F(\bar{u}) \\
& \quad-D F(\bar{u})(u-\bar{u}))-D \eta(\bar{u}) D F(\bar{u}) \cdot(u-\bar{u}) \mid \\
& \leq C|u-\bar{u}|^{2},
\end{aligned}
$$

where we let the value of the constant C increase from time to time. On the other hand, strong convexity of η implies

$$
\begin{aligned}
|h(x, t)| & =|\eta(u)-\eta(\bar{u})-D \eta(\bar{u}) \cdot(u-\bar{u})| \\
& =\frac{1}{2}\left|\left(D^{2} \eta(\bar{u}) \cdot(u-\bar{u})\right) \cdot(u-\bar{u})\right|+\mathcal{O}\left(|u-\bar{u}|^{3}\right) \text { for }|u-\bar{u}| \text { small } \\
& \geq c|u-\bar{u}|^{2}
\end{aligned}
$$

(for $|u-\bar{u}|$ small this follows from $\mathcal{O}\left(|u-\bar{u}|^{3}\right) \ll|u-\bar{u}|^{2}$, for $|u-\bar{u}|$ large it follows from $u, \bar{u} \in L^{\infty}$ and $u \neq \bar{u}$ implies $h \neq 0$).
It follows that

$$
|Y(x, t)| \leq C|h(x, t)| .
$$

Similarly,

$$
|Z(x, t)| \leq\left|D^{2} \eta(\bar{u})\right||F(u)-F(\bar{u})-D F(\bar{u})(u-\bar{u})| \leq C|u-\bar{u}|^{2}
$$

and therefore

$$
|Z(x, t)| \leq C|h(x, t)| .
$$

Since \bar{u} is a C^{1}-smooth solution, the usual computation gives

$$
\partial_{t} \eta(\bar{u})+\partial_{x} q(\bar{u})=0,
$$

and by assumption

$$
\partial_{t} \eta(u)+\partial_{x} q(u) \leq 0
$$

in the sense of distributions.
So if $\varphi \in C_{c}^{\infty}(\mathbb{R} \times[0, T))$, then

$$
\begin{align*}
& \int_{0}^{T} \int_{\mathbb{R}} \partial_{t} \varphi h+\partial_{x} \varphi Y d x d t \\
= & \iiint_{t} \varphi(\eta(u)-\eta(\bar{u})-D \eta(\bar{u}) \cdot(u-\bar{u})) \tag{3.10}\\
\geq & \iint \partial_{x} \varphi(q(u)-q(\bar{u})-D \eta(\bar{u}) \cdot(F(u)-F(\bar{u}))) d x d t \\
& \partial_{t} \varphi D \eta(\bar{u}) \cdot(u-\bar{u})-\partial_{x} \varphi D \eta(\bar{u}) \cdot(F(u)-F(\bar{u}))
\end{align*}
$$

(boundary terms at $t=0$ cancel since $u(0)=\bar{u}(0)=g$).
Moreover, use $\varphi D \eta(\bar{u}) \in C^{1}$ as a test function for

$$
\begin{aligned}
& \partial_{t} u+\partial_{x} F(u)=0 \\
& \partial_{t} \bar{u}+\partial_{x} F(\bar{u})=0
\end{aligned}
$$

to obtain

$$
\iint \partial_{t}(\varphi D \eta(\bar{u})) \cdot(\bar{u}-u)+\partial_{x}(\varphi D \eta(\bar{u})) \cdot(F(\bar{u})-F(u))=0
$$

Moreover observe that

$$
\begin{aligned}
& \partial_{t}(D \eta(\bar{u})) \cdot(\bar{u}-u)+\partial_{x} D \eta(\bar{u}) \cdot(F(\bar{u})-F(u)) \\
= & D^{2} \eta(\bar{u}) \cdot(\bar{u}-u) \cdot \partial_{t} \bar{u}+D^{2} \eta(\bar{u}) \cdot(F(\bar{u})-F(u)) \cdot \partial_{x} \bar{u} \\
= & -D^{2} \eta(\bar{u}) \cdot \partial_{x} F(\bar{u}) \cdot(\bar{u}-u)+D^{2} \eta(\bar{u}) \cdot(F(\bar{u})-F(u)) \cdot \partial_{x} \bar{u} \\
= & -Z(x, t) \cdot \partial_{x} \bar{u} .
\end{aligned}
$$

Recall (3.10) to conclude

$$
\begin{equation*}
\iint \partial_{t} \varphi h+\partial_{x} \varphi Y d x d t \geq \iint \varphi Z(x, t) \cdot \partial_{x} \bar{u} d x d t \tag{3.11}
\end{equation*}
$$

Next choose a particular test function

$$
\varphi(x, t)=w(t) X(x, t)
$$

where, for some $\tau<T, R>0, \varepsilon$ small,

$$
w(t)= \begin{cases}1 & : 0 \leq t \leq \tau-\varepsilon \\ 0 & : t \geq \tau\end{cases}
$$

and w is linearly decreasing on $[\tau-\varepsilon, \tau]$.

Figure 19

The function X is given by

$$
X(x, t)= \begin{cases}1 & :|x| \leq R+C(\tau-t) \\ 1-\frac{1}{\varepsilon}(|x|-R-C(\tau-t)) & : 0 \leq|x|-(R+C(\tau-t)) \leq \varepsilon \\ 0 & : \text { otherwise }\end{cases}
$$

where C satisfies $|Y| \leq C|h|$.
Observe that

- $0 \leq \varphi \leq 1$
- $\varphi=0$ if $t \geq \tau$ or $|x| \geq \varepsilon+R+C(\tau-t)$
- $\partial_{t} \varphi=-\frac{1}{\varepsilon}$ on $(-R, R) \times(\tau-\varepsilon, \tau)$

Figure 20

- $\left|\partial_{x} \varphi\right| \leq-\frac{1}{\varepsilon} \partial_{t} \varphi$.

Therefore,

$$
\begin{aligned}
& \frac{1}{\varepsilon} \int_{\tau-\varepsilon}^{C} \int_{|x| \leq R+C(\tau-t)} h(x, t) d x d t \\
&=-\int_{\tau-\varepsilon}^{C} \int_{|x| \leq R+C(\tau-t)} \underbrace{\partial_{t} \varphi}_{=-1 / \varepsilon \text { on }(\tau-\varepsilon, \tau)} h+\underbrace{\partial_{x} \varphi}_{=0 \text { on }|x| \leq R+c(\tau-t)} Y d x d t \\
& \leq-\int_{0}^{\tau} \int_{|x| \leq \varepsilon+R+C(\tau-t)} \partial_{t} \varphi h+\partial_{x} \varphi Y d x d t \\
& \leq \sqrt{[3.11]}-\int_{0}^{\tau} \int_{|x| \leq \varepsilon+R+C(\tau-t)} \varphi Z(x, t) \cdot \partial_{x} \bar{u}(x, t) d x d t \\
& \leq \int_{0}^{\varepsilon} \int_{|x| \leq \varepsilon+R+C(\tau-t)}|Z|\left|\partial_{x} \bar{u}\right| d x d t .
\end{aligned}
$$

But since $\partial_{x} \bar{u} \in L^{\infty}$ and $|Z| \leq C^{\prime} h$, we get

$$
\frac{1}{\varepsilon} \int_{\tau-\varepsilon}^{\tau} \int_{|x| \leq R+C(\tau-t)} h(x, t) d x d t \leq C^{\prime} \int_{0}^{\tau} \int_{|x| \leq \varepsilon+R+C(\tau-t)} h(x, t) d x d t,
$$

for every $\tau<T$ and $R>0$. In particular we may replace R by $R+C(s-t)$ to get ($\tau<s<T$)

$$
\frac{1}{\varepsilon} \int_{\tau-\varepsilon}^{\tau} \int_{|x| \leq R+C(s-t)} h(x, t) d x d t \leq C^{\prime} \int_{0}^{\tau} \int_{|x| \leq \varepsilon+R+C(s-t)} h(x, t) d x d t .
$$

By the Lebesgue differentiation Theorem, the limit $\varepsilon \searrow 0$, gives for a.e. $\tau<s$

$$
\underbrace{\int_{|x| \leq R+C(\tau-t)} h(x, \tau) d x}_{=: g(\tau)} \leq C^{\prime} \int_{0}^{t} \underbrace{\int_{|x| \leq R+C(s-t)} h(x, t) d x}_{=g(t)} d t
$$

so that

$$
g(\tau) \leq \int_{0}^{\tau} g(t) d t
$$

a.e. $\tau<T$. It follows from Gronwall's lemma that $g=0$, a.e., hence by $h \geq 0$ and the arbitrary choices of R and $\tau, h \equiv 0$ a.e.
It follows that $u=\bar{u}$ for almost every x, t.

Remark 3.41. i) The theorem (with similar proof) is valid also for $x \in \mathbb{R}^{d}$.
ii) In the absence of smooth solutions, solutions need not be unique:

For isentropic Euler and $m \geq 2$, there exist $\rho_{0}, v_{0} \in L^{\infty}$ such that there are infinitely many entropy solutions with this data (De Lellis - Székelyhidi 2010).

Bibliography

[1] L. C. Evans. Partial Differential Equations (= Graduate Studies in Mathematics 19). American Mathematical Society, Providence, RI, 2nd Ed. 2010.
[2] L. C. Evans. Weak Convergence Methods for Nonlinear Partial Differential Equations CBMS Regional Conference Series in Mathematics 74, American Mathematical Society, Providence, RI, 1990, 1990.
[3] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.
[4] S. N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (123) (1970), 228-255.
[5] F. Murat. Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489-507

