Partially hyperbolic random dynamics on Grassmannians

Hermann Schulz-Baldes FAU Erlangen-Nürnberg

joint work with Joris De Moor and Florian Dorsch arXiv preprint arXiv:2206.03444

> Abel Conference, Cergy June 2022

Overview

- 1. Motivation: Transfer matrices of Anderson model
- 2. Toy model
- 3. Heuristics
- 4. Main result for vectors
- 5. Elements of the proof
- 6. Generalization to dynamics on Grassmannians
- 7. Application to Lyapunov exponents

Anderson model on a strip of width L

Random discrete Schrödinger operator on $\mathbb{Z}\times\{1,\dots,L\}$ for $L\in\mathbb{N}$

Hamiltonian $H = \Delta_{\mathbb{Z}} + \Delta_L + \lambda V$ with weak coupling $\lambda > 0$

Discrete Laplacian $\Delta_L = -(S + S^*)$ with $S : \mathbb{C}^L \to \mathbb{C}^L$ cyclic shift

For centered i.i.d. random variables $\omega_{n,j} \in [-1, 1]$

$$V = \sum_{n \in \mathbb{Z}} V_n$$
, $V_n = \sum_{j=1}^{L} \omega_{n,j} |n,j\rangle\langle n,j|$

Study $H\psi = E\psi$ for $E \in \mathbb{R}$ via random transfer matrices:

$$\mathcal{T}_n^{\mathcal{E}} = \begin{pmatrix} E - (\Delta_L + \lambda V_n) & -\mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & -\lambda V_n \\ 0 & \mathbf{1} \end{pmatrix} \begin{pmatrix} E - \Delta_L & -\mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}$$

Abel, Lacroix, Spies (1990): Anderson loc. (with Margulis, Goldsheid)

Perturbation theory for Lyapunov exponents (2004 with Römer)

Perturbation theory for Lyapunov exponents

Set $2\cos(k_I) = E - 2\cos(\frac{2\pi I}{L})$ for I = 1, ..., L, then for p = 1, ..., L:

$$\gamma_p = \frac{\lambda^2}{4L} \left(\frac{1}{L_e} \sum_{I \text{ elliptic}} \frac{1}{|\sin(k_I)|} \right)^2 \left(L - p + \frac{1}{2} \right) + \mathcal{O}_L(\lambda^3)$$

Problem: bad control on separation of elliptic/hyperbolic channels

From Anderson to toy model

Rewrite:

$$\mathcal{T}_n^E = \exp\left[\lambda \begin{pmatrix} 0 & -V_n \\ 0 & 0 \end{pmatrix}\right] \begin{pmatrix} E - \Delta_L & -\mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix} \in \mathbb{R}^{2L \times 2L} \text{ symplectic}$$

Fourier transform $\mathcal{F}: \mathbb{C}^L \to \mathbb{C}^L$ extended to $\mathcal{F} = \mathcal{F} \oplus \mathcal{F}$ gives:

$$\mathcal{F} \mathcal{T}_n^E \mathcal{F}^* = e^{\lambda \mathcal{P}_n} \mathcal{R}$$

with block-diag. \mathcal{R} with 2 \times 2 blocks (elliptic/hyperbolic open/closed):

$$\mathcal{P}_n = \begin{pmatrix} 0 & -\mathcal{F}V_n\mathcal{F}^* \\ 0 & 0 \end{pmatrix} , \qquad \mathcal{R} = \begin{pmatrix} E - \mathcal{F}\Delta_L\mathcal{F}^* & -\mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix}$$

Simplifications:

suppress: symplectic structure, energy dependence E and $Ker(\mathcal{P}_n)$ choose: $\mathcal{R} > 0$ diagonal (phases absorbed)

Simplified toy model

$$\mathcal{T}_n = e^{\lambda \mathcal{P}_n} \mathcal{R} \in Gl(L, \mathbb{C})$$

with diagonal partially hyperbolic

$$\mathcal{R} = diag(\kappa_L, \dots, \kappa_1)$$
 $\kappa_1 \geqslant \dots \geqslant \kappa_L > 0$

and i.i.d. matrices P_n with further Hypothesis 1-5 (later)

Example: $\mathcal{R} = \mathcal{F}(\Delta_L + s)\mathcal{F}^* > 0$ for some $s \in (2, \infty)$ so that

$$\mathcal{R} \ = \ s\,\mathbf{1} \ - \ 2\,\mathrm{diag}\big(1,\cos(\tfrac{2\pi}{L}),\cos(\tfrac{2\pi}{L}),\cos(\tfrac{2\pi2}{L}),\ldots,\cos(\tfrac{\pi(L-1)}{L})\big)$$

and

$$\mathcal{P}_n = \mathcal{F}\left(\sum_{j=1}^{L} \omega_{n,j} |j\rangle\langle j|\right) \mathcal{F}^* \in \mathbb{C}^{L\times L}$$

random Toeplitz matrix. This will satisfy Hypothesis 1-5!

Markov process on unit vectors (random dynamics)

Using group action \circ of $\mathrm{Gl}(L,\mathbb{C})$ on $\mathbb{S}^{L-1}_{\mathbb{C}}=\left\{v\in\mathbb{C}^L:\|v\|=1\right\}$

$$\mathcal{T} \circ \mathbf{v} = \frac{\mathcal{T} \mathbf{v}}{\|\mathcal{T} \mathbf{v}\|}$$

one gets Markov chain on compact state space $\mathbb{S}^{L-1}_{\mathbb{C}}$

$$V_n = \mathcal{T}_n \circ V_{n-1} = (e^{\lambda \mathcal{P}_n} \mathcal{R}) \circ V_{n-1} = e^{\lambda \mathcal{P}_n} \circ (\mathcal{R} \circ V_{n-1})$$

Furstenberg measure

Suppose strong irreducibility and contractibility

Then \exists unique invariant measure μ_{λ} on $\mathbb{S}^{\mathsf{L}-1}_{\mathbb{C}}$

$$\mathbb{E} \int \mu_{\lambda}(\textit{d}\textit{v}) \, f(\mathcal{T} \circ \textit{v}) \; = \; \int \mu_{\lambda}(\textit{d}\textit{v}) \, f(\textit{v}) \qquad , \qquad f \in \textit{\textbf{C}}(\mathbb{S}_{\mathbb{C}}^{\mathsf{L}-1})$$

Under suitable coupling assumptions: $\operatorname{supp}(\mu_{\lambda}) = \mathbb{S}^{\mathsf{L}-1}_{\mathbb{C}}$

Aim: More information on μ_{λ} for λ small

Unperturbed deterministic dynamics for $\lambda = 0$

Assume $\mathcal{R} = \operatorname{diag}(\kappa_L, \dots, \kappa_1)$ with strict inequalities $\kappa_1 > \kappa_2 > \dots > \kappa_L$

$$\mathcal{R}^{N} \circ v_{0} \stackrel{N \to \infty}{\longrightarrow} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \text{ for a.e. } v_{0}, \quad \text{but: } \mathcal{R}^{N} \circ \begin{pmatrix} v_{0}^{(1)} \\ \vdots \\ v_{0}^{(J-1)} \\ v_{0}^{(J)} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \stackrel{N \to \infty}{\longrightarrow} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

stable fixed point:
$$\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \qquad \text{unstable fixed points: } \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}$$

Random perturbation: escape from unstable fixed points

but for $\lambda\geqslant 1-\frac{\kappa_{l+1}^2}{\kappa_l^2}$ possibly arrive at all unstable fixed points

Towards a quantitative description

Local hyperbolicity of $\mathcal{R} = diag(\kappa_L, \dots, \kappa_1)$ measured by relative gaps

$$\eta(\mathsf{I},\mathsf{J}) = 1 - \frac{\kappa_\mathsf{J}^2}{\kappa_\mathsf{I}^2} \in [0,1] \quad , \quad \mathsf{I} \leqslant \mathsf{J}$$

For $L_a, L_b, L_c \in \mathbb{N}$ with $L_a + L_b + L_c = L$, subdivide

$$v = \begin{pmatrix} a(v) \\ b(v) \\ c(v) \end{pmatrix} \in \mathbb{S}^{L-1}_{\mathbb{C}}$$

in which a(v), b(v) and c(v) are of lengths L_a , L_b and L_c such that

Hypothesis 1: Macroscopic relative gap for ${\cal R}$

 ${m \eta}=\eta(\mathsf{L}_{m c},\mathsf{L}_{m b}+\mathsf{L}_{m c})$ satisfies ${m \eta}>0$

Aim: quantitative bound on ||a(v)|| for $\lambda \gg ||a(v)||$ for $\lambda \gg ||a(v)||$

Hypothesis

Perturbation $e^{\lambda P} = \mathbf{1} + \lambda P + \mathcal{O}(\lambda^2)$ leaves unstable fixed points

Hypothesis 2: Coupling assumption on ${\mathcal P}$

Random matrices \mathcal{P} centered and $||P|| \leqslant 1$ for $P \in \text{supp}(\mathcal{P})$

$$\beta \ = \ \inf \left\{ \mathbb{E} \, \| \boldsymbol{c}(\mathcal{P}\boldsymbol{v}) \|^2 : \quad \boldsymbol{v} \in \mathbb{S}_{\mathbb{C}}^{L-1} \,, \quad \boldsymbol{c}(\boldsymbol{v}) = 0 \right\}$$

satisfies $\beta > 0$

Hypothesis 3: Small coupling constant

 $\lambda \leqslant C\beta^{\frac{8}{3}}\eta^{-\frac{1}{3}}$ for some constant C

Hypothesis 4: Dominated microscopic gaps (λ intermediate)

$$\forall \ I \in \{L_c, \dots, L_b + L_c\}: \quad \eta(I, I+1) < 2^4 \lambda$$

Main result on dynamics of vectors

Dynamics restricted to equator a(v) = 0, up to errors (rare excursions)

Theorem

Under Hypotheses 1-4, all $v_0 \in \mathbb{S}^{L-1}_{\mathbb{C}}$ and $n \geqslant T_0 = C\beta^{-1}\lambda^{-2}$ obey

$$\mathbb{E} \|a(v_n)\|^2 \leqslant 10 \eta^{-1} \lambda^2$$

In terms of Furstenberg measure

$$\int \mu_{\lambda}(d\mathbf{v}) \|\mathbf{a}(\mathbf{v})\|^{2} \leqslant 10 \, \boldsymbol{\eta}^{-1} \, \lambda^{2}$$

Allows to deduce bound on largest Lyapunov exponent (later)

Scaling of upper bound optimal, also equilibration time T_0 optimal

Flexibility of choice of L_a , L_b , L_c (this has influence on η)

Result applies directly to toy model with random Toeplitz matrices

Generalization to bound on dynamics on Grassmannian later

Very rough idea of proof

Basic hyperbolicity estimates on action \mathcal{R}_{\circ} :

$$\|a(\mathcal{R} \circ v)\|^2 \le \|a(v)\|^2 \left[1 - \eta \|c(v)\|^2\right]$$

 $\|c(\mathcal{R} \circ v)\|^2 \ge \|c(v)\|^2 \left[1 + \eta \|a(v)\|^2\right]$

Here splitting $b(v) = (b_{\uparrow}(v), b_{\downarrow}(v))$ and setting $u(v) = (a(v), b_{\uparrow}(v))$,

$$\|a(\mathcal{R} \circ v)\|^2 \leqslant \|a(v)\|^2 \left[1 - \frac{\eta}{2} (1 - \|u(v)\|^2)\right]$$

As P centered

$$\mathbb{E} \| a \left(e^{\lambda P} \mathcal{R} \circ v \right) \|^{2} \leq \mathbb{E} \| a(v) \|^{2} \left[1 - \frac{\eta}{2} (1 - \| u(v) \|^{2}) \right] + C\lambda^{2}$$

$$\leq \mathbb{E} \| a(v) \|^{2} \left[1 - \frac{\eta}{2} (1 - \delta) \right] + C\lambda^{2} + \mathbb{P} \left(\| u(v) \|^{2} > \delta \right)$$

for some δ < 1. Iteration possible provided

$$\mathbb{P}\Big(\|u(v))\|^2 > \delta\Big) \leqslant C \lambda^2$$

For bound on $\mathbb{P}(\|u(v))\|^2 > \delta)$, split $b_{\downarrow}(v)$ in M parts with gaps $\geqslant 2^4 \lambda$

Moving up requires passage by each b_m (mountain ridge) This M-dimensional ridge has a length $M=\mathcal{O}(\lambda^{-1})$ (by Hypothesis 4) Move from b_m to b_{m+1} needs 2^4 \mathcal{P} -kicks upwards (large deviations)

In compact phase space $\mathbb{S}^{L-1}_{\mathbb{C}}$, large regions have strong hyperbolicity Between unstable fixed points, λ dominates local hyperbolicity, but it's a long way (high dimension!)

At same time, there is diffusion into c-part by Hypothesis 2

Dynamics on Grassmanian

Grassmanian manifold of q-dimensional subspaces with $q \leq L_c$

$$\mathbb{G}_{L,q} \ = \ \left\{ \textit{\textbf{Q}} \in \mathbb{C}^{L \times L} : \quad \textit{\textbf{Q}} = \textit{\textbf{Q}}^2 = \textit{\textbf{Q}}^* \,, \quad \text{Tr}(\textit{\textbf{Q}}) = q \right\}$$

 $\textbf{Action} \cdot : GL(L,\mathbb{C}) \times \mathbb{G}_{L,q} \to \mathbb{G}_{L,q}$ defined by:

$$\mathcal{T} \cdot Q = \mathcal{T}Q\mathcal{T}^* (\mathcal{T}Q\mathcal{T}^*)^{-2} \mathcal{T}Q\mathcal{T}^*$$

This is a group action:

$$\forall \ \mathcal{T}_1, \mathcal{T}_2 \in GL(L, \mathbb{C}), \quad \textit{Q} \in \mathbb{G}_{L,q}: \quad \ \mathcal{T}_2 \cdot (\mathcal{T}_1 \cdot \textit{Q}) \ = \ (\mathcal{T}_2 \mathcal{T}_1) \cdot \textit{Q}$$

Random dynamical system on $\mathbb{G}_{\mathsf{L},\mathsf{q}}$

$$Q_n = \mathcal{T}_n \cdot Q_{n-1} = (e^{\lambda \mathcal{P}_n} \mathcal{R}) \cdot Q_{n-1}$$
, $Q_0 \in \mathbb{G}_{L,q}$

Remark: Decomposable vector dynamics in $\Lambda^q \mathbb{C}^L$ yields $\mathcal{O}(\eta^{-1}q^2\lambda^2)$

Quantity of interest and modified Hypothesis 2

For same splitting $L = L_a + L_b + L_c$ set

$$\hat{P}_a \ = \ \text{diag}(\mathbf{1}_{L_a}, 0, 0) \ , \quad \hat{P}_b \ = \ \text{diag}(0, \mathbf{1}_{L_b}, 0) \ , \quad \hat{P}_c \ = \ \text{diag}(0, 0, \mathbf{1}_{L_c})$$

Then introduce $d: \mathbb{G}_{L,q} \longrightarrow [0,q]$ by

$$d(Q) = \text{Tr}(\hat{P}_a Q \hat{P}_a)$$

Hilbert-Schmidt weight of Q in a-part. **Not** a metric!

For q = 1 and $Q = vv^*$, as above $d(Q) = ||a(v)||^2$

Modified Hypothesis 2: Coupling assumption on ${\mathcal P}$

Random matrices \mathcal{P} centered and $||P|| \leq 1$ for $P \in \text{supp}(\mathcal{P})$

$$\beta_{\mathsf{q}} \ = \ \inf \left\{ \mathbb{E} \, \| \boldsymbol{c}(\boldsymbol{W} \mathcal{P} \boldsymbol{v}) \|^2 : \quad \boldsymbol{v} \in \mathbb{S}_{\mathbb{C}}^{\mathsf{L}-1} \,, \quad \boldsymbol{c}(\boldsymbol{v}) = 0 \,, \quad \boldsymbol{W} \in \mathbb{G}_{\mathsf{L},\mathsf{L}-\mathsf{q}+1} \right\}$$

satisfies $\beta_{q} > 0$

Main result on Grassmanian

Fact: $q \mapsto \beta_q$ is nonincreasing

Example: For random Toeplitz model, $\beta_q > 0$ for all $q \leq L_c$

Hypothesis 3 and 4 unchanged (small $\lambda \gg \eta(I,I+1)$ microgaps)

Hypothesis 5: Condition on the dimension q

 $q \leq \min\{L_c, C\lambda^{-\frac{1}{5}}\}$ for some constant C

Theorem

Under Hypotheses 1-5, all $Q_0 \in \mathbb{G}_{L,q}$ and $n \geqslant T_0 = C\beta^{-1}q^2\lambda^{-2}$ obey

$$\mathbb{E}\,\mathsf{d}(Q_n) \,\leqslant\, 10\,\boldsymbol{\eta}^{-1}\mathsf{q}\,\lambda^2$$

Again implies bound on Furstenberg measure

Scaling of bound optimal, but equilibration time by factor \mathbf{q}^2 too large

Reason: iterative proof over dimension w from 1 to q

Two splittings: first in dimension w = 1, ..., q, then same as q = 1

Add iteratively $v \in \mathbb{S}^{L-1}_{\mathbb{C}}$ to $W \in \mathbb{G}_{L,w}$ with $Wv = \mathbf{0}$:

$$\mathcal{T} \cdot (W + vv^*) = \mathcal{T} \cdot W + \left[((\mathcal{T} \cdot W)^{\perp} \mathcal{T}) \circ v \right] \left[((\mathcal{T} \cdot W)^{\perp} \mathcal{T}) \circ v \right]^*$$

Application to Lyapunov exponents

$$\begin{split} \gamma_1, \dots, \gamma_L \geqslant 0 \text{ associated to } (\mathcal{T}_n)_{n \in \mathbb{N}} \text{ for } q \in \{1, \dots, L\} \\ \sum_{w=1}^q \gamma_w &= \lim_{N \to \infty} \frac{1}{N} \operatorname{\mathbb{E}} \log \left\| \Lambda^q (\mathcal{T}_N \cdots \mathcal{T}_1) \right\|_{\Lambda^q \mathbb{C}^L} \\ &= \frac{1}{2} \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \operatorname{\mathbb{E}} \log \det \left(\Phi_n^* \mathcal{T}_{n+1}^* \mathcal{T}_{n+1} \Phi_n \right) \end{split}$$

where $Q_n = \Phi_n \Phi_n^*$ expressed in terms of a normalized q-frame

$$(\Phi_n)^*\Phi_n = \mathbf{1}_q \quad , \quad \Phi_n \in \mathbb{C}^{\mathsf{L},\mathsf{q}}$$

Set of q-frames forms a U(q)-cover of $\mathbb{G}_{L,q}$

Lemma

For
$$Q = \Phi \Phi^* \in \mathbb{G}_{L,q}$$
 and centered \mathcal{P} with $\|\mathcal{P}\| \leqslant 1$:

$$\begin{split} \mathbb{E} \log \, \det \left(\Phi^* (\textbf{\textit{e}}^{\lambda \mathcal{P}} \mathcal{R})^* \textbf{\textit{e}}^{\lambda \mathcal{P}} \mathcal{R} \Phi \right) \; \geqslant \; 2 \, \mathsf{q} \, \log (\kappa_{\mathsf{L}_b + \mathsf{L}_c}) \\ &- 2 \, \mathbb{E} \, \mathsf{d}(\textbf{\textit{Q}}) \, \log \frac{\kappa_{\mathsf{L}_b + \mathsf{L}_c}}{\kappa_{\mathsf{L}}} - 3 \, \mathsf{q} \, \lambda^2 \end{split}$$

Theorem

Under Hypotheses 1-5,

$$\frac{1}{\mathsf{q}} \, \sum_{\mathsf{w}=1}^{\mathsf{q}} \, \gamma_{\mathsf{w}} \, \geqslant \, \log(\kappa_{\mathsf{L}_b+\mathsf{L}_c}) - \left[\tfrac{3}{2} + 10 \, \pmb{\eta}^{-1} \, \log \tfrac{\kappa_{\mathsf{L}_b+\mathsf{L}_c}}{\kappa_{\mathsf{L}}} \right] \lambda^2$$

As
$$(\mathcal{T}\cdot Q)^\perp=(\mathcal{T}^{-1})^*\cdot Q^\perp$$
, Lyapunov of $(\mathcal{T}^{-1})^*$ are $\gamma_w'=-\gamma_{L-w+1}$

Corollary

If Hypotheses 1-5 hold for \mathbb{R}^{-1} and distribution of \mathbb{P}^* ,

$$\frac{1}{\mathsf{q}} \sum_{\mathsf{w} = \mathsf{L} - \mathsf{q} + 1}^{\mathsf{L}} \gamma_{\mathsf{w}} \leq \log(\kappa_{\mathsf{L}_b}) - \left[\frac{3}{2} + 10 \, \boldsymbol{\eta}^{-1} \, \log \frac{\kappa_1}{\kappa_{\mathsf{L}_c}} \right] \lambda^2$$

Conclusion

- Random dynamics on $\mathbb{G}_{L,q}$, induced by $\mathcal{T}_n = e^{\lambda \mathcal{P}_n} \mathcal{R}$
- ullet ${\cal R}$ has local hyperbolicity dominated by λ
- Coupling assumptions on \mathcal{P}_n
- Result: upper bound on expectation to be in upper a-part

$$\mathbb{E} d(Q) = \mathbb{E} \operatorname{Tr}(\hat{P}_{a}Q\hat{P}_{a}) = \mathcal{O}(\eta^{-1}q\lambda^{2})$$

or in terms fo Furstenberg measure

$$\int \mu_{\lambda}(dQ) \ d(Q) = \mathcal{O}(\eta^{-1} q \lambda^{2})$$

- Control of the perturbation: Ladder construction
- Application: Bounds on Lyapunov exponents

?