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Anderson model on a strip of width L

Random discrete Schrédinger operatoron Z x {1,...,L} forLe N
Hamiltonian H = Az + A + AV with weak coupling A > 0
Discrete Laplacian A = —(S + S*) with S : C- — Ct cyclic shift

For centered i.i.d. random variables wy,; € [-1,1]

L
V = 2 Vn s Vn = Ewn,j ‘n7j><n7j‘

neZ j=1

Study Hy = E for E € R via random transfer matrices:

TE _ E—(AL+AVy) 1) (1 AV, [E—-Ap —1
no 1 o/ \o 1 1 0

Abel, Lacroix, Spies (1990): Anderson loc. (with Margulis, Goldsheid)
Perturbation theory for Lyapunov exponents (2004 with Rémer)
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Perturbation theory for Lyapunov exponents
Set 2cos(k)) = E — 2cos(3™) for I = 1,...,L, thenfor p = 1,...,L:

_)\_2 lz;z(L_p_i_l)_’_o()\S)
=l \ L &4 Tsin(k)| 2 L

Problem: bad control on separation of elliptic’hyperbolic channels
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From Anderson to toy model
Rewrite:

- A, -1
TE = exp [)\ (8 3/”)] (E ; L 0) e R?-*2L symplectic

Fourier transform F : Ct — Cl extended to F = F @ F gives:
f'777E f‘* — e)\PnR

with block-diag. R with 2 x 2 blocks (elliptic/hyperbolic open/closed):

_ * _ * _1
b _ [0 FVF  r_ E—FAF
0 0 1 0

Simplifications:
suppress: symplectic structure, energy dependence E and Ker(Py)
choose: R > 0 diagonal (phases absorbed)



Simplified toy model
Tn = e7"R e GI(L,C)
with diagonal partially hyperbolic
R = diag(kL,..., K1) K1=--=2kK >0
and i.i.d. matrices P, with further Hypothesis 1-5 (later)

Example: R = F(A; + s)F* > 0 for some s € (2, o) so that

R = s1— 2diag(1,cos(%),cos(%”),cos(%),...,cos(@))

and .
Po = F( Y wajlil)F* e -t
j=1

random Toeplitz matrix. This will satisfy Hypothesis 1-5 !
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Markov process on unit vectors (random dynamics)
Using group action o of GI(L,C) on St ' = {ve C-: |v| =1}
Tv

| T
one gets Markov chain on compact state space S('g1

Tov =

Vp = TpoVp1 = (eAPnR) oVpy = 1o (RoVh1)

Furstenberg measure

Suppose strong irreducibility and contractibility
Then 3 unique invariant measure s on Sk

E f ia(dv) F(T o v) = j m(d)fv) , fecEk™)

Under suitable coupling assumptions: supp(s,) = St

Aim: More information on p) for A small
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Unperturbed deterministic dynamics for A = 0

Assume R = diag(kL, ..., k1) with strict inequalities k1 > kp > -+ > K
v 0
0 :
: v 0
RNoyy "= | |fora.e. vy, but: RNo ?,(gﬂ Nz
0 0 0
1 ; :
0 0
0 1 0 0
0 1 0
stable fixed point: | : unstable fixed points: | : [, [:|,...,]:
0 o] o :
1 0 0

Random perturbation: escape from unstable fixed points

2
but for A > 1 — '1—*2‘ possibly arrive at all unstable fixed points
|
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Towards a quantitative description

Local hyperbolicity of R = diag(k, ..., 1) measured by relative gaps

K3
For Ls, Lp,Lc e Nwith Lg + Ly + Lo = L, subdivide
a(v)
_ L—1
v = |b(v)| € S¢g
c(v)

in which a(v), b(v) and c¢(v) are of lengths L, L, and L. such that

Hypothesis 1: Macroscopic relative gap for R
n = n(L¢, Lp + L) satisfiesn > 0 J

Aim: quantitative bound on ||a(v)| for A » local relative gaps 7(l, 1 + 1)
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Hypothesis
Perturbation e*” = 1 + AP + O()\?) leaves unstable fixed points

Hypothesis 2: Coupling assumption on P
Random matrices P centered and |P|| < 1 for P € supp(P)

8 = inf{IEHc(Pv)HZ: vesk, c(v)=o}

satisfies 5 > 0

Hypothesis 3: Small coupling constant

A< Cﬁgn‘% for some constant C

Hypothesis 4: Dominated microscopic gaps (A intermediate)

Vlie{le...,Lp+Lc}: n(ll1+1)<2%)
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Main result on dynamics of vectors
Dynamics restricted to equator a(v) = 0, up to errors (rare excursions)

Theorem
Under Hypotheses 1-4, all vo e S= " and n > Ty = C4~'\~2 obey

E |a(va)[® < 1097 A%

In terms of Furstenberg measure
| i@ jaw)i? < 10m71 2

Allows to deduce bound on largest Lyapunov exponent (later)
Scaling of upper bound optimal, also equilibration time Ty optimal
Flexibility of choice of L, Ly, L¢ (this has influence on n)

Result applies directly to toy model with random Toeplitz matrices

Generalization to bound on dynamics on Grassmannian later
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Very rough idea of proof

Basic hyperbolicity estimates on action Ro:
laRov)[2 < Jaw)[?[1 - nle(v)?|
le(Rev) |2 = le()?[1 +nla(v)?|

Here splitting b(v) = (by(v), b, (v)) and setting u(v) = (a(v), by (v)),

la(Rov)|? < Jaw)?[t = 2 (1 = Juw)?)]

As P centered

Ela(e”Rov)[? < ElaW)?[1 = (1 - [uw)P)] + CN°

< E|a(v)|? [1 - gm —5)] + CA% + P(Hu(v))Hz > 5)

for some § < 1. Iteration possible provided

]P’(Hu(v))”z > 5) < CA2
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For bound on P(|u(v))|? > 6), split b (v) in M parts with gaps > 24\

o & e

A

Moving up requires passage by each b, (mountain ridge)
This M-dimensional ridge has a length M = O(A~") (by Hypothesis 4)
Move from by, to by,,1 needs 2* P-kicks upwards (large deviations)
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In compact phase space S(LC“, large regions have strong hyperbolicity

Between unstable fixed points, A dominates local hyperbolicity,
but it's a long way (high dimension!)
At same time, there is diffusion into c-part by Hypothesis 2
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Dynamics on Grassmanian
Grassmanian manifold of g-dimensional subspaces with q < L.
Gg = {QeC™t: @-@?-0", ™Q) -q}
Action - : GL(L,C) x G4 — G 4 defined by:
T-Q = TQT*(TQT*)2TQT*

This is a group action:

VT1,T2€ GL(L,C), QeGLq: T2+ (T1-Q) = (T2T1) - Q
Random dynamical system on G|

Qn=Tn Q1 = (V"R)-Qrnt,  QueGrg

Remark: Decomposable vector dynamics in AdCt yields O(n~1g2\?)
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Quantity of interest and modified Hypothesis 2
For same splitting L = L + Ly + L set

P, = diag(1,,,0,0), P, = diag(0,1,,,0), P, = diag(0,0,1.,)
Then introduce d : G| q — [0, q] by

d(Q) = Tr(P.QP,)

Hilbert-Schmidt weight of Q in a-part. Not a metric!
Forq=1and Q = w*, as above d(Q) = |a(v)|?
Modified Hypothesis 2: Coupling assumption on P
Random matrices P centered and ||P| < 1 for P € supp(P)

ﬂq=inf{EHc(WPv)Hz: veSk, ¢(v) =0, WeGL7L_q+1}

satisfies 3q > 0

v
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Main result on Grassmanian
Fact: q — 34 is nonincreasing

Example: For random Toeplitz model, 3y > O forallq < L.
Hypothesis 3 and 4 unchanged (small A » n(l,1 + 1) microgaps)
Hypothesis 5: Condition on the dimension q

g < min{Lg, C)\‘%} for some constant C

Theorem
Under Hypotheses 1-5, all @y € G q and n > To = C3~'q2A~2 obey

Ed(Q,) < 109 g\

Again implies bound on Furstenberg measure
Scaling of bound optimal, but equilibration time by factor g2 too large

Reason: iterative proof over dimension w from 1 to q
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Two splittings: first in dimensionw = 1,...,q, then same as q = 1

al & al M N
1 \ 4 1 y“”;h; 4
by i

bw y @: Ym

] o
: >

bs i

8? Yo

C C CWJL V4 Z ZmJL
Add iteratively v S<|E_1 to We Gy with Wv = 0:
T-W+w*) = T-W+[(T-W2T)ov][(T-W)rT)ov]
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Application to Lyapunov exponents
Y,...,7L = 0 associated to (7n)nen forqe {1,...,L}

g
o1
W; W = Jim S log [A(Ty - T1)| pac

N—1
- % Jim 5 ZB E log det (57,1 Tn1®n)

where Q, = ¢,9;}, expressed in terms of a normalized g-frame
(®p)* by =14,  dpeChHd

Set of g-frames forms a U(q)-cover of G4

Lemma

For Q = ®¢* € G_ 4 and centered P with [P| < 1:

Elog det (¢*(e”’7z)*e”’7z¢) > 2q log(ki,L,)

—2E d(Q) log 'z —3q \?
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Theorem
Under Hypotheses 1-5,

_C)I—L

q
Z > log(kLy+L,) — [ +1097 " log ”Lz—t“] A2

As (T-Q)t = (T-1)*

Corollary
If Hypotheses 1-5 hold for R~' and distribution of P*,

a Z Tw <

- @Q*, Lyapunov of (T~")* are 4/, =

—YL—w+1

log(rL,) — [g + 10'17_1 log :—:c] 22
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Conclusion
@ Random dynamics on G 4, induced by 7, = e’™"R
@ R has local hyperbolicity dominated by A
@ Coupling assumptions on P,
@ Result: upper bound on expectation to be in upper a-part
Ed(Q) = ETr(P,QP,) = O~ 'q)?)

or in terms fo Furstenberg measure

f i(dQ) d(Q) = O~ 1q)?)

@ Control of the perturbation: Ladder construction

@ Application: Bounds on Lyapunov exponents
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