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This is the translation of the lecture notes that I had originally written in German
language several years ago. For the translation I used automatic translation by DeepL.
I had a swift review of what the software produced – mainly because the script is typed
in LATEX, and DeepL doesn’t work so well with texts containing LATEX–commands.
Hence, the translation will be rather clumsy. If you find incomprehensible sentences or
strange formulations, you may let me know and I can improve the translation.

Serge Kräutle, April 2022
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In theory, there is no difference between theory and practice.
In practice, there is.

(unknown author)
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1 Introduction: What is a Porous Medium? Ex-

amples, Applications.

A porous medium consists of a solid skeleton (also: solid matrix or soil matrix) and
a pore space. The structure is of a very small scale compared to the total size of the
porous medium. The pores contain one (or several immiscible) fluid(s), and the fluid
may move. By fluid we mean both liquids and gases. The most important example
of a porous medium is soil or rock. The pore space is usually fully or partially filled
with water and/or air. But also e.g. the combinations oil/water (→ oil production)
or also CO2/water (→ storage of CO2 in the soil to reduce the greenhouse effect) are
considered. The pore space should be connected to allow movement of the fluid(s).

Please note: I have prepared a set of slides (which lecture par-
ticipants can find on StudOn) that includes images of various
porous media, and in which various technical applications and
questions are motivated. I have not included this part in the
lecture notes you are reading right now.

Examples

porous medium application

(1) soil/rock/sand, with ground-
water or deep water

(a) contaminated sites (contamination of
soil/aquifers by, among other things, industrial
operations, accidents, waste dumps, etc.).
water from, among other things, industrial opera-
tions, unäll, müll dumps).
(b) Exploitation of oil/gas fields
(c) CO2 storage in the subsurface
(d) nuclear repositories
(e) salinization of agricultural soils/aquifers

(2) (historical) buildings weathering: sulfur in air/rainwater can cause con-
version of stone to gypsum

(3) armored concrete intrusion of water and oxygen causes corrosion of
steel

(4) porous burners (in vehicles?) heat generation by gas (hydrogen) combustion
without open flame

(5) filters, filtering facilities (acti-
vated carbon, flow through sand
fillings)

removal of impurities, by chemical reactions
and/or adsorbtion on pore walls.

(6) agricultural soils investigation of the complicated intertwined pro-
cesses that effect formation, preservation, amend-
mend, deterioration of agricultural soils
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Topics (1) and (6) were/are in the research focus of parts of the chair Angewandte
Mathematik (Modellierung und Numerik) (formerly Angewandte Mathematik 1).

It is a very characteristic property of porous media that different (spatial) scales (=
orders of size) play a role: First of all there is the pore scale or microscale (about
10−4m = 10−1mm or smaller), then there is the scale on which the soil properties1 are
’somewhat constant’, let’s say about 10−2–102m. 2 And then there is the macroscale
(in geo-/hydrology called field scale), which describes the size of the considered area,
and which is 102 − 104m or even more.
Not only the large variation of spatial scales, but also different time scales may play a
role for processes in porous media: Chemical reactions of sustances that are dissolved
in the water and in the same pore may take place on the scale of seconds, but for the
formation/dissolution of minerals or for nuclear storage sites times scales of thousands
of years may be relevant. Processes that live on different space- and timescales may
affect each other. This is a typical difficulty when dealing with porous media. When we
want to apply a numerical scheme to the equations, how can we resolve processes that
act on such different scales? The next chapter may give some ideas: The derivation and
usage of ‘effective’ equations.

2 Modeling of the flow regime

If we wanted to resolve, in the sense of a numerical simulation (FDM,FEM), the pore
scale of a 103×103×101m3 large area Ω ⊂ R3, with a mesh size h=10−5m=10−2mm,
we would have to use 108 · 108 · 106 = 1022 nodes/elements, which is impossible (not
to mention the difficulties of generating a three-dimensional FEM grid usable for nu-
merical purposes in pore space in the first place). Therefore we need a macroscopic
description of the processes, a description by ’effective’ (’averaged’) equations. The
simplest approach is the volumetric averaging. This is the one we will use in the follo-
wing. (Another approach is the so-called homogenization, also called upscaling; this is
mathematically more precise, but makes the assumption that the pore space is periodic,
see Exercise.)
We choose a so-called representative elementary volume (REV), which is a cube or
sphere with diameter significantly larger than the pore scale but smaller than the
correlation scale. We average entities över REVs around each point x:

1By soil properties one can think here of porosity and hydraulic conductivity, see later
2It is possible to grasp this length scale more precisely in the framework of stochastic models of

the soil. The soil property φ at each point x of the domain is then a random variable with some
random distribution, and additionally it is required that the correlation of the random variables φ(x)
and φ(y) is a (generally monotonically decreasing) function of |x−y|, i.e. the farther points are from
each other, the less correlated is the soil property at the points. A parameter that specifies how fast
this correlation function decays is called correlation length. As ’length on which the soil properties are
somewhat constant’ one can use this correlation length
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Porosity ω(x) := Vpor(x)

Vtot
, where Vtot is the total volume of the REV and Vpor(x) is the

volume of the pore space intersected with the REV. Thus, ω∈(0, 1) holds.
Note: In some situations ω can also be a function of x and t, for example, if mineral
dissolution or erosion changes the the pore space, or if biofilms form on the surfaces of
the pores, or if pressure changes so much that it can affect the pore space.
(Volumetric) water content θ(t, x) := VW (t,x)

Vtot
, where VW (t, x) denotes the volume of

water within the REV. Thus, we have VW (t, x)≤Vpor(x), that is, 0≤θ(t, x)≤ ω(x). If
θ(t, x)=ω(x), we call the porous medium at location x at time t saturated, otherwise
unsaturated.

Abbildung 1: Typical behavior of the water content in the uppermost soil layers in
temperate climates, schematic.

There are two ways to define the ‘average’ of the velocity of the fluid phase via the
REV: On the one hand, one can consider the so-called seepage velocity u⃗(t, x⃗); this is
the mean velocity of the water, averaged (only) over the VW (t, x⃗)-volume of the REV.
On the other hand, there is the so-called Darcy velocity3 v⃗(t, x⃗); for this, the velocity
is averaged over the total volume of the REV (i.e. pore space and solid matrix). Hence
it holds true

v⃗ = θ u⃗+ (1−θ) 0⃗ = θ u⃗ .

The seepage velocity is relevant, for instance, if we want to describe the speed at
which the front of a pollution proceeds (at least if we neglect diffusion and if there are
no sorption processes). The Darcy velocity, on the other hand, is needed to describe
the volume flux through a macroscopic surface F (i.e., the volume of water moving
through the surface per unit time): The volume flux is described by the surface integral
(of ’second kind’, i.e., for vector-valued functions) over v⃗ over the face F ; the Darcy
velocity thus represents the volume flux density. If one is looking for the mass flux
or the mass flux density, one must multiply v⃗ by the density ρ, thus consider ρ v⃗ or∫
F
ρ v⃗ · n⃗ do.
3Henry Darcy, 1803-1858, hydraulic engineer, Dijon 1856.
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For any macroscopic volume V ⊆ Ω we assume mass conservation. The change in water
mass in volume V per time should be equal to the net water flux over the boundary of
V per time. Hence,

d

dt

∫
V

ρ θ(t, x⃗) dx⃗
!
= −

∫
∂V

ρ v⃗ · n⃗ do ,

where n⃗ is the outward normal unit vector on ∂V . The reader realizes that on the
right-hand side, the sign is necessary to describe the net mass flux into the volume. On
the right-hand side we use the divergence theorem and on the left-hand side, assuming
a certain smoothness of the integrand, we draw the differentiation into the integral.
We obtain ∫

V

∂

∂t
ρ θ(t, x⃗) dx⃗

!
= −

∫
V

∇ · (ρ v⃗) dx⃗ .

To get rid of the integrals, we assume V to be a sphere around a point x⃗ ∈ Ω with
radius r, we divide the above equation by the volume of the sphere, and then let r go
to zero. In the limit, provided the integrands are sufficiently smooth (e.g., if we take
the integrals to be Riemann integrals, the continuity of the integrands is sufficient for
this purpose), we obtain

∂t(ρ θ) +∇ · (ρ v⃗) = 0 . (2.1)

If we assume that the density of water is constant4 the equation of mass conservation
simplifies to

∂t(θ) +∇ · v⃗ = 0 .

This is one equation for n+1 unknowns v⃗, θ. Hence we need some additional assump-
tions/equations.

2.1 The saturated case

If we assume that a priori it is known that the medium is saturated (or by restricting
our view to those parts of the domain that are saturated), θ = ω holds. And the
porosity ω can usually be assumed to be constant in time. So in this case we get the
equation

∇ · v⃗ = 0 . (2.2)

We now need one more constitutive law. In 1856 Henry Darcy found experimentally
the so-called Darcy-law (Darcy’s law) for saturated porous media

v⃗ = −Ksat∇p

where p is the pressure and Ksat is the hydraulic conductivity.
Is it possible to find other reasons or derivations for Darcy’s law besides experimental
findings?

4The density of water may depend a little on temperature, possible impurities, and, if extreme
pressure occurs, a little on pressure,
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On the microscale (in the pore), the motion of the fluid is described by the Navier-
Stokes equations

ρ ∂tw⃗ + ρ (w⃗ · ∇)w⃗ − η∆w⃗ +∇p = f⃗ ,

∇ · w = 0

(or, since the velocities are small, approximated by the Stokes equation) with zero
boundary conditions at the pore surfaces. η is the dynamic viscosity of the fluid. The
external force (density) f is caused here by the gravitation of the earth, thus by a
potential force, i.e., there is a potential ψ(x1, ..., xn) = −ρ g xn to this force field, i.e.,

f⃗ = ∇ψ = −ρge⃗n, where e⃗n is the n-th standard basis vector and where g = 9.81N/kg
is the acceleration of gravity. By introducing p̂ := p − ψ, we can express the Navier-
Stokes equation as

ρ ∂tw⃗ + ρ (w⃗ · ∇)w⃗ − η∆w⃗ +∇p̂ = 0⃗ ,

∇ · w = 0

where ψ can be called hydrostatic pressure and p̂ hydrodynamic pressure; p = ψ + p̂.
If we now make the extremely simplifying assumption that all pores are similar Rëars
pointing in the same direction with constant radius R > 0, we can solve the Navier-
Stokes equation analytically. Under the above assumption on the pore geometry, one
obtains a parabolic profile, the so-called Poiseuille profile. It is described, if the pores
point in x1-direction and the space dimension is n=3, by

w(r) = −∂x1 p̂

4η
(R2 − r2) , r ∈ [−R,R] .

By integrating över a cross-sectional surface of the pore and using polar coordinates,
calculate the volume flux through the pore:

F = −∂x1 p̂

4η

R∫
0

2π∫
0

r (R2 − r2) dφ dr = −∂x1 p̂

4η
2π

(
1

2
r2R2 − 1

4
r4
)∣∣∣∣R

0

= −πR
4

8η
∂x1 p̂ .

This is the so-called Hagen-Poiseuille law. The flow through a pore of radius R (i.e.
cross-sectional area ∼ R2) thus, for given pressure gradients, increases with the fourth
power of R! By averaging over the cross-sectional area (i.e., by dividing by πR2) we
get the macroscopic seepage velocity

u⃗ = −R
2

8η
(∂x1 p̂, 0, 0)

T

and the Darcy velocity

v⃗ = θ u⃗ = −θ R
2

8η
(∂x1 p̂, 0, 0)

T = −θ R
2

8η

 1 0 0
0 0 0
0 0 0

∇p̂ .
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We can see that the Darcy velocity depends quadratically on the pore radius. Above
all, however, we recognize: The derived relation confirms Darcy’s law

v⃗ = −Ksat∇p̂ , (2.3)

where here

Ksat = θ
R2

8η

 1 0 0
0 0 0
0 0 0

 . (2.4)

This conductivity tensor reflects the extreme anisotropy of the assumed pore geometry;
it is such that the resulting v⃗ – of course – is always oriented in the x1 direction, even if
the pressure gradient has a different direction; only the x1-component of the pressure
gradient acts as the forcing.
If we substitute (2.3) into (2.2), we get the elliptic problem

−∇ · (Ksat∇p̂) = 0 . (2.5)

A real porous medium will be more isotropic than the case calculated out above. In
the case of complete isotropy (i.e., as far as the pore orientation is concerned, there are
no preferential directions at all), instead of (2.4) one would probably rather assume

Ksat = θ
R2

8η

 1 0 0
0 1 0
0 0 1

 . (2.6)

In this case, the elliptic problem (2.5) can also be written with scalar

Ksat = θ
R2

8η
.

For a moderately unisotropic poröus medium, the matrix can be assumed to be fully
filled.
If we express the hydrodynamic pressure p̂ again by the physical pressure, Darcy’s law
(2.3) reads

v⃗ = −Ksat∇(p+ρge⃗3) . (2.7)

To better understand this additional term in the pressure, the following explanation: In
a fully saturated porous medium, a groundwater reservoir resting on an impermeable
rock layer, and on which no forces act except gravity, p increases continuously in down-
ward direction (i.e. in −e⃗3-direction), i.e., there is a pressure gradient. Nevertheless,
the fluid is at rest, i.e. v⃗ = 0⃗. This is only possible by the compensating term ρge⃗3.
The same is true in a swimming pool: although a downward force acts everywhere on
the water, it does not cause the water to move. Only the hydrodynamic part of the
pressure causes motion of the water, but not the hydrostatic part.
Finally let us note that the conductivity tensor can be written as

Ksat =
κsat
η

,
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i.e., as a numerator depending only on the geometry of the pore space and a factor
depending on the fluid, namely the viscosity. The matrix or scalar κsat is called the
permeability of the porous medium.
We will learn about another way to derive Darcy’s law, the asymptotic evolution, in
the tutorials. Different to our approach in this chapter, the concept of asymptotoc
expansion allows for a rather complex pore geometry; however, it assumes that the
pore space is periodic.

2.2 The unsaturated case

This case will be dealt with only very briefly in this lecture.
In the twentieth century (starting in 1908), Darcy’s law, which originally referred to
saturated media, was also applied to unsaturated media:

∂t(ρ θ) +∇ · (ρ v⃗) = 0

v⃗ = −K∇(p+ρgxn)
(2.8)

However, some changes appear in the conductivity tensor. This can be easily understood
if one visualizes:

- In Chapter 2.1 we found out that the mean velocity in large pores is much larger
than in small pores.

- In an unsaturated medium, due to the capillary effect, water is preferentially in
the small pores and air in the large pores.

In a non-saturated medium, the seepage velocity, i.e. the conductivity, will be lower than
in the saturated case, beause there is less volume avaiable for the transport, and because
variability of pore radii in combination with capillary effects hinder movement of the
fluid. It is reasonable to assume that the conductivity is a monotonically increasing
function of the water content, and that in a very dry porous medium the water phase
is no longer connected and thus there is no transport of water at all. Taken together,
one thus models

K = K(θ) = krel(θ)Ksat , with krel(0) = 0 , krel(ω) = 1,

krel : [0, ω] → [0, 1] monotonically increasing. If we put this into our equations (2.8),
we are still not done, because unlike the saturated case, our model still contains the
unknown θ in addition to the unknown p. So we need another constitutive law. For
this purpose, we postulate that the water content can be written as a function of the
pressure: θ = θ(p)
Ẇe obtain the model (ρ=const assumed)

∂t θ(p)−∇ · [K(θ(p))∇(p+ρgxn)] . (2.9)
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This is the so-called Richards equation5. It is nonlinear and of parabolic type. For
the (nonlinear) isotherms p 7→ θ and p 7→ K different approaches are in use, which
we do not discuss here. Note also that often, a priori, it is not clear whether/where
the medium is saturated or unsaturated. So in parts of the computational domain the
parabolic Richards equation holds, in other parts the elliptic equation (cf. chap. 2.1)
holds, and the location of the interface between the two domains is generally unknown
and variable in time. Hence, the situation where saturatedness/unsaturatedness is not
a priori know is a rather demanding mathematical problem!

3 Derivation of the transport reaction equation

We assume in this course that there is one ’dominant’ chemical species in the fluid
phase (water is the dominant species in the water phase), and that all other substances
dissolved in the fluid phase have small concentrations.
The concentration of a chemical species X dissolved in water we denote by c(t, x), it is
≥ 0, and can be measured in mass per water volume VW (t, x), thus has the unit kg/l
or g/l or kg/m3. When modeling chemical reactions, it is useful to measure in moles/l
instead. Strictly speaking, this magnitude is called molality; however, in what follows
I continue to use the term ’concentration’, for g/l as well as for mol/l. Furthermore,
for the number of moles of X per mass of water, there is the term molarity.6

A mole is that amount of a substance consisting of 6.022 · 1023 particles. This number
is also called Avogadro’s constant. It is just chosen so that if a particle of the sub-
stance consists of n nuclear building blocks (protons, neutrons), then one mole of this
substance has the mass n grams.7.
The concentration of a substance with respect to the total volume is θ(t, x)c(t, x).
Now for the mass balance of a substance dissolved in the fluid in a volume Ω′ ⊂ Ω:

d

dt

∫
Ω′

θ(t, ⃗⃗x) c(t, x⃗) dx⃗ = net inflow through edge + sources (chem. react.)

= −
∫
∂Ω′

Q⃗ · n⃗ do⃗+
∫
Ω′

θ(t, x⃗) f(t, x⃗) dx⃗

In the representation of the boundary integral, it was assumed that the mass flux can
be represented by means of a vector field Q⃗, whose normal component Q⃗·n⃗ is important
when the flux across the boundaries is to be calculated.

5Lorenzo Richards, 1931-93, USA, 1931 (note the correct usage of the apostrophe: it is Richards’
equation or the Richards equations, but not Richard’s equation!)

6In addition to these two possibilities, i.e., mass of substance per volume and mole of substance
per volume, one can also specify mass of substance per mass of fluid phase (=mass fraction, mol/mol)
or mole of substance per mole of fluid phase (=mole fraction, mol/l) for measuring concentrations.

7Strictly speaking, this relation is only valid for carbon C12, for other substances there are minimal
deviations due to relativistic mass effects.
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The integrand on the left side has the dimension mass per (total) volume, thus the

left side has the dimension mass per time. It follows that the vector field Q⃗ introduced
above has dimension mass per area×time.8. The quantity Q⃗ of dimension

mass

area× time
=

mass

volume
· length
time

is called flux density of the substance X. It can be seen from the line above that the flux
density is the product of a concentration (mass/volume) and a velocity (distance/time);
we will revisit this fact in a moment.
The reaction density f has the dimension mass per time×(water) volume. We will
examine concrete models for f later. θf describes the reaction density as mass per
time×(total)volume.

Three effects/phenomena contribute to the mass flux Q⃗ in a porous medium: advection,
diffusion, and dispersion:

Q⃗ = Q⃗adv + Q⃗diff + Q⃗disp

1st, advection: The substance X is entrained by the flow field u⃗:

Q⃗adv = θu⃗c = cv⃗ .

Note that the dimension of Q⃗adv fits the dimension required above.
2nd, (molecular) diffusion: The intrinsic thermal motion of the particles (Brownian
motion) provides, macroscopically, a net migration of the particles of the substance X
that are in regions of high concentration to regions of low concentration. It is assumed
that the diffusive flux is a function of the concentration gradient, or more precisely,
that there is a linear relationship between them. This linear relationship is referred to
as Fick’s law of diffusion or Fickian diffusion:

Q⃗diff = −ddiff θ ∇⃗c

The diffusion coefficient ddiff>0 may depend on other parameters, in particular on the
temperature, it is generally a one different for every species. The inclusion of a factor
θ in the above law is plausible, since diffusion only takes place in the pore space, and
θ measures the pore space volume.
Note: Advection and diffusion also take place in ‘free flow’ situations, i.e., in fluids
outside of porous media. Diffusion also occurs when the fluid is at rest (u⃗=0⃗).
3., (Kinematic) Dispersion: This is an effect that occurs only in porous media. Only
in porous media, there are microscopic processes that we have not yet incorporated in
our macroscopic model (with the velocities averaged over REVs) (see Fig. 2):
(a) In the center of the pores, the velocity is larger than at the edge of the pores
– see also our considerations in Chap. 2.1, where we derived a Poiseuille profile

8Note that Q⃗ · n⃗ and Q⃗ have the same dimension – for Q⃗ · n⃗ is simply the component of Q⃗ in the
normal direction – since n⃗ is considered to be dimensionless, which can be motivated by the fact that
n⃗ is declared by dividing a normal field by its norm: length/length
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for homogeneous pores. Thus, depending on whether a particle of the substance
X is in the vicinity of the pore boundaries or not, it advances faster or slower
in the direction of flow than indicated by the advection, leading to an additional
diffusion-like effect, especially in the direction of the flow. (b) Particles which are
very close to each other, and which in a fluid outside a porous medium would move
away from each other only very slowly by diffusion, may occasionally turn into
different pores in a porous medium and, following the course of the pores, move
further away from each other than predicted by molecular diffusion. This effect has a
macroscopic effect like an additional diffusion in directions perpendicular to the low
direction u⃗. (c) There are pores in which particles travel faster (thicker pores allow hig-
her velocities, moreover straight pores) than in others (narrower pores, tortuous pores).

Abbildung 2: Left: profile of the flow within a pore. Right: Main cause of transversal
dispersion.

It is difficult to model and quantify the three effects mentioned above with simple
formulas, since it strongly depends on the geometry of the pores, on the probability
distribution of the pore sizes, etc.9 A widely used model is to model dispersion analo-
gously to molecular diffusion. However, since the effects in the direction of the flow are
different from those perpendicular to the flow direction, it makes sense to use different
dispersion parameters for the flow direction and for directions perpendicular to the
flow, the dispersion parameters βl, βt (l=longitudinal, t=transversal); such a directio-
nal dependence is also called anisotropy. As a rule of thumb, βl≈10βt. In the case that

9Under the idealizing assumption that the pore structure of the medium is periodic, one can
mathematically rigorously derive effective equations that are even more accurate than the so-called
Bear–Scheidegger model we aim at here, using the mathematical concept homogenization / asymptho-
tic expansion..

10



the advection u⃗ goes in x1-direction, a so-called tensorial diffusion would be

Q⃗disp = −|v⃗|Ddisp,0 ∇⃗c, Ddisp,0 = diag(βl, βt, βt) ;

the factor |v⃗| seems plausible, since the magnitute of the above-mentioned phenomena
seems to be proportional to the advection velocity (in particular, the phenomena vanish
for v⃗=0⃗!). To apply this law to the case where u⃗ does not point in x1–direction is easy,
by means of a principal axis transformation: In the general case

Q⃗disp = −|v⃗|Ddisp ∇⃗c, Ddisp = XDdisp,0X
−1,

where X is the orthogonal matrix describing a rotation of the standard basis to the
basis {v⃗, v⃗⊥} (for simplicity, I assume the 2-D case in the following calculation; the
derivation and the result can be transferred to the 3-D case):

X =
1

|v⃗|

(
v1 −v2
v2 v1

)
, X−1 =

1

|v⃗|

(
v1 v2
−v2 v1

)
, Ddisp,0 =

(
βl 0
0 βt

)
.

We subtract from Ddisp,0 the summand βt Id and obtain

Ddisp = βtXX
−1 +

(
v1 −v2
v2 v1

)(
1 0
0 0

)(
v1 v2
−v2 v1

)
= βt Id +

βl − βt
|v⃗|2

(
v21 v1v2
v1v2 v22

)
= βt Id + βl−βt

|v⃗|2 v⃗v⃗T

The matrix Ddisp is called the Bear-Scheidegger tensor, the dispersion model the Bear-
Scheidegger model (Scheidegger’61, Bear’72). In 3-D, we get the same formula.
Hence, in total, we get the flux density

Q⃗ = −
(
θ ddiff Id + βt |v⃗| Id +

βl − βt
|v⃗|

v⃗v⃗T︸ ︷︷ ︸
=:D(v⃗)

)
∇⃗c+ cv⃗.

with the diffusion–dispersion tensor D(v⃗).
We put this into the equation of conservation of mass and apply the Gaussian diver-
gence theorem:

d

dt

∫
Ω′

θ c dx⃗ =

∫
∂Ω′

(D(v⃗)∇⃗c− cv⃗) · n⃗ do⃗+
∫
Ω′

θ f dx⃗

=

∫
Ω′

∇⃗ · (D(v⃗)∇⃗c−cv⃗) dx⃗+
∫
Ω′

θ f dx⃗

Multiplying this equation by 1
|Ω′| and then letting |Ω′| → 0, this yields, if the integrands

have some regularity (e.g. are continuous in x⃗), the PDE of mass conservation for the
species X

∂t(θc)− ∇⃗ · (D(v⃗)∇⃗c−c v⃗) = θf ,

11



the advection–diffusion–dispersion–reaction equation, or equation of reactive transport.
For comparison, the corresponding equation for transport processes outside porous
media (i.e., Ddisp=0, θ=1):

∂tc− ∇⃗ · (ddiff∇⃗c−cv⃗) = f

If ddiff is constant, it is particularly easy to write the equation in non-divergence form:

∂tc− ddiff∆c+ ∇⃗ · (cv⃗) = f

If the flow field is solenoidal (=divergence-free), which is true for incompressible fluids,

∂tc− ddiff∆c+ v⃗ · ∇c = f

follows. For multispecies problems diffusion is species–dependent, but dispersion is not.
Dispersion depends on |v⃗|, diffusion does not. In the soil, v⃗| is usually sufficiently large
such that dispersion is usually (significantly) larger than diffusion.10. As a consequence,
diffusion is often neglected relative to dispersion, and the diffusion–dispersion tensor
is assumed to be species-independent. We will see later what mathematical/numerical
advantages this assumption may have.

4 Chemical reaction rates

4.1 Simple examples

A chemical reaction is described by means of a so-called chemical equation, such as

X1 +X2 −→ X3.

This means that a particle (molecule, ion,...) of substance X1 combines with a particle
of substance X2, resulting in a particle of substance X3. It follows immediately that 1
mole of X1 and 1 mole of X2 react to give one mole X3.
Thus, for the source terms f1, f2, f3 of the three associated concentrations, it follows
that f1 and f2 are negative and f3 is positive; more precisely, that f⃗ has the form

f⃗ =

 f1
f2
f3

 =

 −R−R
+R

 =

 −1−1
+1

R

where R ≥ 0 is a reaction rate yet to be modeled, and – very important – where
concentrations are measured in moles, i.e., in the numb er of particles, (not: grams)
per liter.

10Exceptions could be seepage through rocks or low-permeability media such as clay
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A plausible assumption is that the reaction rate R is proportional to the encounter
probability of the reacting particles, and that this in turn is proportional to the product
of the two concentrations:

R(c⃗) = k c1 c2, k>0

Such a model is quite simple and does not take into account the exact effects of forces
between particles (Van der Waals force,...). Note that our PDEs of reactive transport
are now coupled via the source term, and that this term is nonlinear, so we are dealing
with systems of nonlinear (more precisely: semilinear) partial differential equations.
A generalization to somewhat more complicated chemical reactions can be done as
follows:
Let us consider the reaction

X1 + 2X2 −→ X3 +X4

one particle of X1 combines with two particles of X2, i.e., the source term here must be

f⃗ =


f1
f2
f3
f4

 =


−R
−2R
+R
+R

 =


−1
−2
+1
+1

R.

The coefficients in the chemical equation are called stoichiometric coefficients; they
occur as prefactors in front of the reaction rate, but they are signed depending on
which side of the reaction arrow they are on. The species on the left-hand side of a
reaction equation are called reactants, those on the right-hand side are called products.
As for the modeling of the rate itself, even if more than two particles react with each
other, it is still modeled by the encounter probability of all particles involved, in the
example this would be

R(c⃗) = k c1 c
2
2 .

Hence, the stoichiometric coefficients occur as prefactors and as exponents as well in
the source terms.
It makes sense to validate such rate laws by experiments, but this is an ambitious task,
because experiments are affected by how well and how fast reactants are mixed. Often
the rate coefficient k that is valid for a reaction in the field (in the subsurface) is not
known or only very roughly known. Also note that in the real world, complicated reac-
tions are often composed of several (sometimes very fast) successive partial reactions,
which may lead to rate models different from the one above.

4.2 Some minimum requirements for reaction rates

Let us consider a rather general chemical reaction with I be the number of species:

se1X1 + ...+ seI XI −→ sp1 X1 + ...+ spI XI

13



Let se1, ..., s
e
I , s

p
1, ..., s

p
I ∈R

+
0 (usually: ∈N0). Educts are those Xi for which s

e
i >0 holds,

and products are those Xi for which s
p
i >0. Note that here we allow a species to appear

as both reactant and product (→’catalyst’).
As a minimum requirement for rate functions R : (R+

0 )
I → R we postulate: Let R be

continuous, and let it hold true that

R(c⃗)=0, if ∃ i : sei ̸=0 ∧ ci=0

(i.e., if any of the reactants has concentration=0, the reaction cannot take place), and

R(c⃗)>0, if ∀ i : sei =0 ∨ ci ̸=0

(i.e., if all required reactants have concentration> 0, then the reaction will definitly
take place).
If the support of a vector is denoted by

supp c⃗ := {i∈{1, ..., I} | ci ̸=0} ,
supp s⃗ e := {i∈{1, ..., I} | sei ̸=0}

then the above conditions can be written in short as

R(c⃗)>0 ⇐⇒ supp s⃗ e ⊆ supp c⃗ ,

R(c⃗)=0 otherwise

We have not yet defined the rate function for negative concentrations, which is physical-
ly understandable; however, for mathematical reasons, it may be useful to continue the
rate function for negative concentrations as well, for example by setting R(u) := R(u+)
for u ∈ RI\(R+)I , where u+ := max{u, 0}, where the maximum of a vector is taken com-
ponentwise; such a continuation is continuous, since x 7→ max{x, 0} is continuous).11

4.3 The law of mass action

The law of mass action (LMA) is nothing more than the principle we applied to the
examples in Chap. 4.1:

R(c⃗) = k
I∏

i=1

c
sei
i , k>0,

11Why should we define reaction rates for negative concentrations? Negative concentrations cannot
occur! Well, in the real world, negative concentrations cannot occur. But if we consider a mathematical
model, then it is not obvious that solutions to this model are always nonnegative. Hence, a proof of
nonnegativity of the solution is frequently desired. Before such a proof is completed, i.e., as a precon-
dition to conduct such a proof, the well-definedness of reaction rates also for negative concentrations
is required. Another reason might be the consideration of numerical algorithms to compute a solution
of a reactive transport problem. The equations are nonlinear, and so iterative solution algorithm such
as Newton’s method will be used. What to do if an iterate is negative (even if the solution will be
positive)? We do not want the iteration to crash due to an undefined reaction rate for negative iterates.
See for example [Kr21] where the behavior of algorithms with respect to the occurence of negative
iterates is one of the topics.
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with the source term

f⃗ = (s⃗ p−s⃗ e)R(c⃗).

Now we model a system of J chemical reactions in the same way:
The chemical equations are

se11X1 + ...+ seI1XI −→ sp11X1 + ...+ spI1XI

...
...

...

se1J X1 + ...+ seIJ XI −→ sp1J X1 + ...+ spIJ XI

The stoichiometric coefficients now form matrices Se = (seij), S
p = (spij) ∈ (R+

0 )
I×J .

Note that the convention in this lecture is: Every reaction corresponds to a column,
and every species corresponds to a row in the stoichiometric matrix. Some authors do it
the other way round. The total source term for a muti-species multi-reaction problem
is the sum of the individual source terms of the reactions,

f⃗ =
J∑

j=1

f⃗j =
J∑

j=1

Rj(c⃗) (s⃗
e
j −s⃗

p
j ) = (Sp−Se) R⃗(c⃗)

where s⃗ e
j and s⃗ p

j denote the j-th column of the matrix in question, and R⃗ = (Rj)j=1..J

is the vector of reaction rates. This vector obviously has the components

Rj(c⃗) = kj
I∏

i=1

c
seij
i , kj>0, j = 1, ..., J.

4.4 Reversible systems

Often the assumption is made that all reactions can be bidirectional, can run ’forward’
and ’backward’, i.e., in our set of reactions j = 1, ..., J , all reactions occur in pairs; we
can thus identify a pair of reactions by the chemical equation12

se1j X1 + ...+ seIj XI ←→ sp1j X1 + ...+ spIj XI, j = 1, ...J̃ ,

where j now, to keep consistency with the earlier chapters, runs from 1 to J̃ := J
2
. Such

reactions or systems of reactions are called reversible. If we also summarize the rates
in pairs, we get

Rj(c⃗) = Rf
j (c⃗)−Rb

j(c⃗), j = 1, ..., J̃ ,

12The choice which side is ‘left’ and which is ‘right’, i.e., which direction is ‘forward’ and which is
‘backward’, is arbitrary.
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and the source term

f̃ =
J̃∑

j=1

Rf
j (c⃗) (s⃗

p
j −s⃗ e

j ) +Rb
j(c⃗) (s⃗

e
j −s⃗ b

j )

=
J̃∑

j=1

(Rf
j (c⃗)−Rb

j(c⃗)) (s⃗
p
j −s⃗ e

j ) = (Sp−Se) (R⃗ f (c⃗)−R⃗ b(c⃗))

= S R⃗(c⃗)

where now S :=Sp−Se and R⃗(c⃗) := R⃗ f (c⃗)−R⃗ b(c⃗).

4.5 Further rate laws beyond the LMA

4.5.1 Law of mass action with activity correction

A closer investigation shows that the reaction velocity is not exactly proportional to
the concentration, but to the so-called activity of the species. Hence, the LMA

R(c⃗) = k
I∏

i=1

csii

is corrected to

R(c⃗) = k
I∏

i=1

ai(c⃗)
si ,

where a⃗ = (a1, ..., aI)
T is the vector of the activities of the species X1, ...,XI. Each

activity ai in turn is a function of the vector of concentrations c⃗. This relation between
activity and concentration is often written in the form

ai(c⃗) = γi(c⃗) ci.

Here γi is called the activity coefficient of the species Xi. It is a number that is mostly
close to one, which justifies the ’simplified’ LMA from Chap. 4.3. The smaller the so-
called ionic strength of the solution, the more valid is the assumption from Chap. 4.3
that ai≈ ci (γi≈1); the ionic strength (see below) is the weighted sum of the concen-
trations of charged particles. A widely used activity correction in geosciences is after
Debye and Hückel:

γi = exp

(
− Az2i

√
H

1+riB
√
H

)
,

where zi ∈ Z is the charge number of the particles, H = H(c⃗) = 1
2

∑I
i=1 ciz

2
i is the

ionic strength of the solution, ri is the effective diameter of the particles (see tables,
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in the order of 10−10m), and, at 25 degrees Celsius, A = 0.509 (l/mol)1/2 and B =
0.328 · 1010 (m/mol)1/2. 13 Thus, γi≤1, and γi−→1 for c⃗−→ 0⃗.
If, as in Chap. 4.3, one uses the approximation ai = ci, one speaks of the LMA with
ideal activities.

4.5.2 The Monod model for biological decay

The metabolism of microorganisms leads to the degradation of certain organic substan-
ces, including ’pollutants’, which is why this degradation is of particular interest for the
desired attenuation of contaminated sites. The metabolism of an organism consists of
thousands of chemical reactions that are largely unexplored. However, it turns out that
when these reactions are grouped together, essentially a redox reaction occurs, i.e., an
electron acceptor=oxidant A (such as O2, Fe(III), NO

−
3 (=nitrate), SO2−

4 (=sulfate),.
..) and an electron donor=reducing agent D (e.g. an organic pollutant like the chlori-
nated hydrocarbon chloroperethene=tetrachloroethene C2Cl4) react with each other.
The net reaction is a redox reaction; the reducing agent is oxidized and the oxidizing
agent is reduced. Oxidation (reduction, resp.) means an increase (decrease, resp.) of
the so-called electronegativity, which occurs by dragging electrons from one partner
towards the other. A microbial population X has a role comparable to a catalyst: it
is neither degraded nor built up by the reaction. However, the microbial population
benefits from the reaction in that its reproduction rate depends on it. Let us call the
degradation product P. We may decide whether we introduce an unknown and a diffe-
rential equation for P in the model, depending on whether the substance is classified
as ’harmless’ or if the substance plays a role in further interesting reactions.
The metabolism of a microorganism consists of a bunch of reactions; greatly simplified,
the mechanism can be represented as

sAA+ sB B + X −→ sC P + X

In the Monod model the associated rate is assumed to be of the form

R(cA, cB, cX) = k cX
cA

kA+cA

cD
kD+cD

, with k, kA, kD>0,

has. The source terms of the system of differential equations are

fA = −sAR(cA, cB, cX),
fD = −sD R(cA, cB, cX),
fX = (1− cX

cX,max

)︸ ︷︷ ︸
biomass limitation

R(cA, cB, cX)− kd cX︸ ︷︷ ︸
mortality term

,

fP = +sP R(cA, cB, cX) (if cP is included in the model)

13For the derivation of the Debye–Hückel model the Boltzmann model of thermodynamics (statistical
model describing the probability distribution of the velocities of particles) with electrostatics (Poisson
equation describing electrostatic fields of a point charge), gives B =

√
2e2NA/(ϵkBT ) and A =

e2B/(8πϵkBT ln 10), where kB is Boltzmann’s constant, e is the elementary electric charge, NA is
Avogadro’s constant, ϵ is the dielectric conductivity of the solution, and T is the absolute temperature.
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There are variants of the model. For example, one can omit the mortality term, or
omit the biomass limit (which guarantees cX < cX,max), or one can incorporate other
factors into the rate R, called inhibition factors, of the form kY /(cY+kY ) to model if a
substance Y inhibits the process or harms the microorganism. The substance Y might
be oxygen for microorganisms that prefer an anaerobic way of like.
To motivate Monod’s model: At first, it is plausible that when food is scarce, the
metabolic rate is proportional to food supply, but when there is an oversupply, there
is – quite literally – a saturation effect, which causes terms of the form c/(c+k) to be
plausible.

As for the deeper explanation of the model, this is somewhat controversial (there
is a paper discussing five different theories explaining the behavior). However, the
most widely accepted explanation of the Monod model is the following: The rate of
degradation is essentially determined by the slowest partial reaction, and this is an
enzyme reaction subject to so-called Michaelis-Menten kinetics. An enzyme reaction
according to Michaelis-Menten (1911) has the form

A + E
k1
−→
←−
k2

K
k3−→ E + P.

Where E is the (uncomplexed) enzyme, K is the enzyme complex, A is the reactant, P
is the product. It is assumed that all three reactions proceed according to the law of
mass action:

c′K = k1cAcE − (k2+k3)cK ,

c′E = (k2+k3) cK − k1cAcE,
c′P = k3cK

By addition two equations, it follows that c′K+c′E =0, so cK+cE =const=: cE0. Now,
the assumption of an equilibrium state is made, i.e., let c′K = c′E = c′A=0.14 We obtain

14which is, for k3>0, only possible if the substance A is supplied ‘from outside’ at a rate R0>0; it
is c′A=k2cK−k1cAcE+R0=0
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the equations

k1cAcE = (k2+k3) cK ,

cK + cE = cE0 ,

c′P = k3cK .

Eliminating cE in the first equation using the second equation, we get k1cA(cE0−cK) =
(k2+k3)cK , which is

cK = cE0
cA

cA + k2+k3
k1

.

This leads to
c′P = k3cE0

cA

cA + k2+k3
k1

.

This has the form of a Monod term, with Monod parameter k = (k2+k3)/k1, which
can serve as a motivation for adopting such terms in the Monod model.

5 The batch problem/ODE model

In this chapter we deal with a general mass action system neglecting spatial transport,
i.e. our model is a (nonlinear) ODE system. In the geosciences, a reactive problem in
which transport is neglected and all substances are considered to be in one place is also
called a

¯
tch problem.

This consideration is justified for example if one thinks of spatially homogeneous (i.e.
constant with respect to x) situations. The reason for this simplification is that the
analysis for an ODE system is much simpler (less ’technical’) than for a PDE system,
which we will also examine later in chapter 7. Many of the properties, which one can
show for the ODE system, can be transferred, if one makes the necessary effort, also
to the PDE model.

5.1 Positivity of solutions

Theorem. The solution of the batch problem

c⃗′(t) = S R⃗(c⃗(t))

with positive initial value c⃗(0) > 0⃗ and mass action kinetics (not necessarily reversi-
ble) and stoichiometric coefficients seij, s

p
ij ∈N15 is strictly positive on any interval of

existence of the solution.
Proof. Let [0, T ) be an interval of existence of the solution. Suppose there exists an
i∈ {1, ..., n} and a t1∈ [0, T ) with ci(t)≤ 0. Since the initial value is strictly positive,
the compact set {t∈ [0, t1] | ∃j : cj =0} is nonempty and thus has a smallest element

15This can be weakened to seij , s
p
ij ∈{0} ∪ [1,∞)
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t2, and t2>0. Thus on [0, t2) all ci(t) are strictly positive, and there is an i such that
ci(t2)=0.
The i-th component of our ODE system is

c′i(t) =
J∑

j=1

(spij−seij) Rj(c⃗(t))︸ ︷︷ ︸
≥0

, Rj(c⃗) = kj

J∏
k=1

c
sekj
k .

On [0, t2], Rj(c⃗(t)) is obviously nonnegative. We distinguish the terms by their sign. A
summand can be negative if and only if seij>s

p
ij, that is, if s

e
ij≥1. But then the Rj(c⃗(t))

contains a factor ci(t)
seij with seij≥1. We denote the sum of all terms with positive sign

α0(t)≥ 0 (this term does not contain ci, see exercises, but this is not essential here).
The negative terms, on the other hand, depend on ci in polynomial form. They can
thus be written as

∑m
r=1 αr(t) ci(t)

r, where the αr(t) includes the dependencies on the
cj, j ̸= i, and thus are also ≥0 on [0, t2].

16

On the compact interval [0, t2] the continuous functions α0, αr are bounded, so there

is C>0 with 0≤ ci(t)
C
≤1. Hence, 0≤( ci(t)

C
)r≤ ci(t)

C
∀ r, i, hence ci(t)r≤Cr−1ci(t). We can

thus estimate the powers ci(t)
r by linear terms:

c′i(t) = α0(t)︸ ︷︷ ︸
≥0

−
m∑
r=1

αr(t)︸ ︷︷ ︸
≥0

ci(t)
r ≥ −

m∑
r=1

Cr−1αr(t)︸ ︷︷ ︸
≤C̃

ci(t)

The term
m∑
r=1

Cr−1αr(t) is bounded by a constant C̃ > 0 because of its continuous

dependence on t∈ [0, t2]. Since also ci(t)≥0 on [0, t2], we end up with

c′i(t)

ci(t)
≥ −C̃ ∀t ∈ [0, t2).

Integration yields, because of the monotonicity of the integral,

t∫
0

c′i(t)

ci(t)
dt ≥ −C̃t

for t∈ [0, t2], thus (substitution u := c(t))

ci(t) ≥ ci(0) exp(−C̃t), t ∈ [0, t2).

This is a contradiction to the continuity of ci, since ci(t2)=0. 2

16It is important here that the summation starts at r=1 and not at r=0.
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5.2 Boundedness of solutions, existence of global solutions

In this chapter, two different ways to show boundedness of solutions of the batch
problem with mass action kinetics are given.
Exercise task 1 showed us one way how to prove boundedness of solutions using
invariants together with the nonnegativity from Chap. 5.1.

Theorem. Let the assumptions of the previous theorem hold, and let S⊥∩ (R+)I ̸= ∅.
Then the solution of the batch problem with mass action kinetics (not necessarily
reversible) on any interval of existence [0, T ) is bounded by a constant. The constant
depends on the initial values and the stoichiometry, but is independent of T .
Note that S := image(S) is the column space of the matrix S and S⊥ its orthogonal
complement.

Proof. Let s⃗⊥∈S⊥∩ (R+)I . We form the linear combination

Φ(t) :=
I∑

i=1

s⊥i ci(t).

This Φ is a conserved quantity:

Φ′(t) = ⟨s⊥, c⃗′(t)⟩ = ⟨s⊥, SR⃗(c⃗(t))⟩ = ⟨ST s⊥︸ ︷︷ ︸
=0⃗

, R⃗(c⃗(t))⟩ = 0 ,

because s⊥ ∈ S⊥ = image(S)⊥ = core(ST ). Hence, Φ(t) = Φ(0) = const = ⟨s⊥, c⃗(0)⟩.

Since s⊥i ̸=0, we can solve the equation
I∑

i=1

s⊥i ci(t) = ⟨s⊥, c⃗(0)⟩ to ci(t):

ci(t) =
1

s⊥i

(
⟨s⊥, c⃗(0)⟩ −

∑
j ̸=i

s⊥j cj(t)

)

Since s⊥j ≥0 and ci(j)≥0, we obtain

ci(t) ≤
1

s⊥i
⟨s⊥, c⃗(0)⟩ . 2

Corollary. Under theassumptions of the above theorem, the solution of the batch
problem with mass action kinetics exists on all of [0,∞); i.e., the batch problem has a
global solution.

The reason for this is a theorem found, for example, in the book [Ha64], on ODE
systems with locally Lipschitz-continuous right-hand side:
If there exists a function f : [0,∞) → R such that every local solution of the ODE
system on its interval of existence satisfies the condition |⃗c(t)| ≤ f(t), then the
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solution exists on all of [0,∞). (Background: There is always a ’maximal’ solution,
i.e., a solution which extends ’to the boundary’ of the (possibly unbounded) domain,
e.g. [0,∞)×Rn, on which the right-hand side is locally Lipschitz-continuous. The
assumption that the solution is ‘blocked’ (bounded) by the graph of f(t) ensures that
the maximal solution must go to t=∞).

Physical interpretation. In ’real’ chemical systems each particle (molecule) is
composed of a strictly positive number of atoms. If we set s⊥i as the number of atoms
composing a molecule of Xi (which is obviously a strictly positive number), s⃗⊥ is
orthogonal to each column of the matrix S (this says nothing but that the number of
atoms on the left and on the right-hand side of a chemical equation must be equal:
conservation of the number of atoms). Thus, the vector s⃗⊥ formed in this way satisfies
the condition of the above theorem. So the assumption of the theorem S⊥ ∩ (R+)I ̸= ∅
is quite ‘natural’/realistic.

Other invariants are, e.g., the number of atoms of a certain atomic variety (e.g., the
C-atoms) or the charge number; however, their components are usually only nonnega-
tive instead of strictly positive, i.e., their use and can only show the boundedness of
some of the components of the solution vector.

Note that here we used the particles’ composition of atoms for the first time.

There is another approach to the boundedness of solutions, which is based on so-called
Lyapunov functions, and which does not use the composition of the particles from
atoms. However, the straight-forward application of this method requires reversible
systems; any extension to non-reversible systems is difficult. As a motivation to pursue
this new approach may serve that it
1. will be quite useful also for the PDE model and
2. that it is also applicable to so-called peculiar chemical systems. To see what a
peculiar system is and why it might be considered, let us look at the following
scenarios: 2.a.: In reactions with water (or with substances that are present in
large quantities and whose quantity is hardly affected by reactions) the substan-
ce ’water’ is often eliminated from the system: Instead of the chemical equation
2H+ + OH− ←→ H2O, to which belong the rates Rv(c⃗) = kf c21c2, R

r(c⃗) = kr c3, one
draws the (de facto constant) concentration of water, c3, into the reaction constants
and gets R̃v(c⃗) = kf c21c2, R̃

r(c⃗) = k̃r, which now corresponds to the chemical equation
2H+ + OH− ←→ ’nothing’ in such a chemical equation there is no conservation of
atoms , and there is no s⃗⊥ with positive entries orthogonal to column (1, 1)T of the
associated new stoichiometric matrix.
2.b.: Also inflow and outflow from a chemical reactor can be modelled by mass ac-
tion kinetics for (pseudo-)reactions ’nothing’ −→ Xi and Xi −→ ’nothing’, respectively.

The Lyapunov technique (for ODEs) For an ODE system y⃗′(t) = f⃗(t, y⃗(t)) find a
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functional φ such that

1. d
dt
φ(y⃗(t)) ≤ 0, where t → y⃗(t) is the solution of the ODE (’φ decreases along

solutions’),

2. from the boundedness of t→ φ(y⃗(t)) follows the boundedness of t→ y⃗(t) (hence,
if, for example, an estimate of the form |y⃗| ≤ c1φ(y⃗) + c2 holds for φ).

The reasoning is then as follows:
From 1. it follows that φ(y⃗(t)) ≤ φ(y⃗(0)) = const, then from 2. it follows
|y⃗(t)| ≤ c1φ(y⃗(t))+c2 ≤ c1φ(y⃗(0))+c2. From such a bound then the existence of a
global solution follows.

Remarks.

- Variants/improvements of the precondition 1. are conceivable. Thus, it is also
sufficient to ’control’ a possible growth of φ along solutions, e.g., by weakening
condition 1. to d

dt
φ(y⃗(t)) ≤ g(t) or to d

dt
φ(y⃗(t)) ≤ c φ(y⃗(t)).

- If an ODE system is given without a concrete application background, it is often
very difficult to find a suitable function φ. For application problems it is often
promising to use physical quantities like some energy as φ; for processes including
friction (motion in a gravitational field, motion of a spring oscillator...) perhaps
the sum of kinetic and potential energies.
Mathematically, the calculation

d

dt
φ(y⃗(t)) = ⟨∇φ(y⃗(t)), y⃗′(t)⟩ ODE

= ⟨∇φ(y⃗(t)), f(t, y⃗(t))⟩ ,

shows that the requirement for φ is that ⟨∇φ(y⃗(t)), f(t, y⃗(t))⟩is non-positive or
at least ’not too big’.

In the present case of a reversible reactive problem with mass action kinetics, a suitable
functional is

φ(c⃗) :=
I∑

i=1

(µi−1+ln ci) ci + e1−µi , (R+
0 )

I −→ R,

where the vector µ⃗ is a solution of the linear system of equations

ST µ⃗ = − ln K⃗

and S=Sp−Se, K⃗∈RJ̃
+, kj =

kvj
krj
.

Motivation/physical meaning of φ for chemical reactions: The construction of φ is
inspired by a quantity (a ’potential’) from the thermodynamics of mixtures, the so-
called Gibbs free energy. It can be thought of as a kind of chemical energy; the system
tries to minimize its chemical energy by letting the reactions proceed (→ expectation:
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φ monotonically decreasing along solutions). The additive constant e1−µi merely shifts
the zero level of φ, which leads to having c2=0 in item 2 (one can also work without
an additive constant). Existence of a solution µ⃗ of the above LGS: For this we assume
that the columns of S are linearly independent; it is then rang(S) = rang(S) = J̃ ,

thus the image of S is the entire RJ̃ , i.e., the linear system of equations is solva-
ble for any right-hand side (the solution is in general not unique; one solution is

obviously µ⃗ = −S(STS)−1 ln K⃗; the full set of solutions is kernel(ST )−S(STS)−1 ln K⃗).

Theorem. For the batch problem with reversible mass action kinetics, the solution
on each interval of existence [0, T ) is bounded by a constant (which is independent of T ).

Proof. We compute ∂φ
∂ci

= µi + ln ci, i.e.,

∇φ(c⃗) = µ⃗+ ln c⃗,

where the ln is to be understood component-wise. Since the solution t 7→ c⃗(t) is strictly
positive, we can form φ(c⃗(t)) and even ∇φ(c⃗(t)). (Note: φ is also defined by continuous
continuation on the edge of the positive rectand, but ∇φ is not). We obtain

d

dt
φ(c⃗(t)) = ⟨∇φ(c⃗(t)), c⃗′(t)⟩

= ⟨µ⃗+ ln c⃗(t), SR⃗(c⃗(t))⟩
= ⟨ST (µ⃗+ ln c⃗(t)), R⃗(c⃗(t))⟩
= ⟨− ln K⃗+ST ln c⃗(t), R⃗(c⃗(t))⟩

=
J∑

j=1

[− lnKj+ (ST ln c⃗(t))j]Rj(c⃗(t))

=
J∑

j=1

− ln

=
kvj
kr
j︷︸︸︷

Kj +
I∑

i=1

(spij−seij) ln ci(t)


︸ ︷︷ ︸

(I)

[
kvj

I∏
i=1

ci(t)
seij − krj

I∏
i=1

ci(t)
spij

]
︸ ︷︷ ︸

(II)

where

(II)
>
=
<

0 ⇐⇒ ln kvj +
I∑

i=1

seijci
>
=
<

ln krj +
I∑

i=1

spijci

⇐⇒ (I)
>
=
<

0

Hence, φ ◦ c⃗ monotonically decreasing, and therefore φ(c⃗(t)) ≤ φ(c⃗(0)) =: φ0.
It remains to infer from the boundedness of φ ◦ c⃗ from the boundedness of c⃗. For this
purpose a short analysis of the curve φ:
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We write

φ(c⃗) =
I∑

i=1

φi(ci) mit φi(x) := (µi− 1+lnx)x+ e1−µi .

Obviously, lim
x→0

φi(x) = e1−µi , lim
x→∞

φi(x) =∞. We obtain the only extremal (=minimal)

point by
φ′i(x)=0 ⇔ µi+lnx=0 ⇔ x=e−µi .

Thus, the minimum value of φi is φi(e
−µi) = e−µi(e−1).

Thus φ : (R+
0 )

I → R has a positive lower bound. Furthermore, d
dx
(φi(x)−x) = µi+lnx−

1 = 0 ⇐⇒ x = e1−µi and (φi(x)−x)|x=exp(1−µi) = 0, that is, the graph of φi touches
the identity f(x) = x exactly once (at the point x = e1−µi) and runs above this line
otherwise. Thus

φi(x) ≥ x ∀x ∈ R+
0 .

Together with the non-negativity of φj we obtain

φ(c⃗) ≥
I∑

i=1

ci, in particular φ(c⃗) ≥ ci ∀i=1, ..., I.

2

The stoichiometric space and illustration of the two approaches to the boun-
dedness of solutions.
Integration of the ODE system yields

c⃗(t)−c⃗(0) = S

t∫
0

R⃗(c⃗(τ)) dτ ,

thus the vector c⃗(t)− c⃗(0) always lies in the space image(S)= kernel(ST )⊥. Thus, the
solution cannot leave the affine subspace

c⃗(t) ∈ c⃗(0) + image(S) = c⃗(0) + kernel(ST )⊥ .
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The vector space S :=image(S)=kernel(ST )⊥ is called stoichiometric space. The affine
space x⃗+ S is called the stoichiometric class of the vector x⃗∈RI .

If there is a vector s⊥ ∈ S⊥ with all entries being strictly positive (which, see above, is
the case, e.g., if the problem has an inherent ’conservation of the number of atoms’),
then the intersection of the space x⃗ + S with the positive rectand must be bounded
(see Fig. 3, left). Since the solution must lie in both sets simultaneously, boundedness
of solutions follows provided S⊥∩ (R+)

I ̸= ∅, which geometrically illustrates the first
approach to prove boundedness of solutions.
The second approach (Lyapunov technique) shows that the existence of such a vector
is not necessary for reversible systems: All level lines of φ are bounded because of
φ(x⃗) ≥ |x⃗|1, and since φ(c⃗(t)) can never be larger than φ(c⃗(0)) for monotonicity reasons,
the solution cannot leave the bounded domain (c⃗(0)+S)∩{x⃗ |φ(x⃗)≤φ(c⃗(0))} (see Fig. 3,
right).

Abbildung 3: Left: Stoichiometric class in the case that ∃s⃗⊥ ∈ S⊥ ∩ (R+)
I ̸= ∅ (i.e.,

in the case of an ’conservation of atomic entities’ inherent to the reactive system, for
example). Right: contour lines of φ in the case of ’arbitrary’ orientation of s⃗⊥. In both
cases we get the boundedness of solutions.

5.3 Reaction invariants

For the sake of simplicity we assume in this chapter that the columns of S are linearly
independent; however, this requirement can also be weakened; see remark below.
We decompose each vector c⃗ ∈ RI into a direct sum consisting of its projection PS c⃗
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onto the space S and its projection PS⊥ c⃗ onto the space S⊥:

c⃗ = PS c⃗⊕ PS⊥ c⃗

Since S = image(S) is spanned by the columns of S, one can write PS as the linear
combination of these columns with coefficients ξi; analogously for PS⊥ :

PS c⃗ = Sξ⃗, PS⊥ c⃗ = Uη⃗, ξ⃗∈RJ , η⃗∈RI−J

Where U is a (I−J)×I matrix whose columns form a basis of the I−J-dimensional
space S⊥; thus, in particular, the matrix equations

UTS = 0, STU = 0

hold. Hence, we have the representation

c⃗ = Sξ⃗ + Uη⃗ , ξ⃗∈RJ , η⃗∈RI−J (∗)

A formula for the reversal of this coordinate transformation can be found in two ways.
Either one knows the fact that an orthogonal projection onto a space S=image(S) can
be written as PS c⃗ = S(STS)−1ST c⃗ (note that STS is invertible due to the assumption
that S has maximal column rank). Similarly, PS⊥ c⃗ = U(UTU)−1UT c⃗. It follows

c⃗ = S (STS)−1ST c⃗︸ ︷︷ ︸
=ξ⃗

+U [UTU ]−1UT c⃗︸ ︷︷ ︸
=η⃗

from which

ξ⃗ = (STS)−1ST c⃗ , η⃗ = (UTU)−1UT

’can be read off’. Or, apply ST to equation (*), then exploit STU=0, and then apply

the matrix (STS)−1 to get the formula for ξ⃗; analogously for η⃗.

The ODE system
d

dt
c⃗(t) = SR⃗(c⃗(t))

(not necessarily LMA, not necessarily reversible) can be transformed by multiplicati-
on on the one hand by (STS)−1ST , and on the other hand by [UTU ]−1UT into the
equivalent system

d

dt
[UTU ]−1UT c⃗︸ ︷︷ ︸

=η⃗(t)

= [UTU ]−1 UTS︸︷︷︸
=0

R⃗(c⃗(t))

d

dt
(STS)−1ST c⃗︸ ︷︷ ︸

=ξ⃗(t)

= (STS)−1ST S︸ ︷︷ ︸
=Id

R⃗(c⃗(t)) .
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Using the new variables ξ, η this can be written

d

dt
η⃗(t) = 0⃗

d

dt
ξ⃗(t) = R⃗(c⃗(t)) .

Hence, we have η known:

η⃗(t)=const= η⃗(0)=(UTU)−1UT c⃗(0)=: η⃗0 .

We just have to solve the smaller system consisting only of J (instead of I) ODEs

d
dt
ξ⃗(t) = R⃗(Sξ⃗(t)+Uη⃗0) .

The components ηi are called reaction invariants, the ξi extents of reaction. Geome-
trically, the ξi denote coordinates in the direction of the stoichiometric class, and the
ηi denote coordinates perpendicular to the stoichiometric class. The fact that the
ηi are constant fits to the previously derived fact that the solution never leaves the
stoichiometric class of the initial value.

A note on a relaxation of the assumptions: If the columns of S are linearly dependent,
then introduce a matrix S∗ consisting of a maximal linearly independent subsystem
of columns of S; we have image(S∗)=image(S). Then there is17 a matrix A such that

S = S∗A. The transformation can then be performed on ξ⃗-η⃗-coordinates as well.

A benefit of the ξ⃗-ηη-reformulation of this section is that numerically solving the smal-
ler ’reduced’ problem is faster. This is especially interesting when it comes to (time-
consuming) solution of PDE systems (transferring chap. 5.3 to PDEs: see later).

5.4 Equilibrium reactions

We first consider the ODE problem without specifying initial values. We look for equi-

librium solutions, i.e., solutions with 0⃗
!
= c⃗ ′(t)=SR⃗(c⃗(t)), thus vectors c⃗∈(R+

0 )
I with

SR⃗(c⃗) = 0⃗,

thus R⃗(c⃗)∈kernel(S). We now assume that the columns of S are linearly independent.
Then by multiplication18 with (STS)−1ST the necessary condition

R⃗(c⃗) = 0⃗

17Multiply the equation S = S∗A by ((S∗)TS∗)−1(S∗)T to see that A = ((S∗)TS∗)−1(S∗)TS.
18alternative reasoning: Then R⃗(c⃗)∈kernel(S)= {⃗0}
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can be derived. If we assume in addition that the system is reversible, we obtain

c⃗ is equilibrium solution ⇐⇒ ∀ j=1, ..., j : Rv
j (c⃗) = Rr

j(c⃗) ,

i.e., each individual forward-backward reaction must then be at equilibrium. In the
case of law of the mass action, the equilibrium condition in logarithmic form is

ln k⃗v + (Sv)T ln c⃗ = ln k⃗r + (Sr)T ln c⃗,

which can be written

ln K⃗ + ST ln c⃗ = 0 .

The solution of this eqution is of course usually not unique, since there are J equations
for I unknowns.
However, if we now additionally postulate a concrete initial value c⃗0∈RI

+, this determi-
nes the stoichiometric class in which we are looking for an equilibrium solution, which
corresponds to I−J additional conditions ηi=ηi,0. Although the equilibrium conditions
are nonlinear, under the assumptions made, we can show that now the equilibrium so-
lution in a stoichiometric class (determined by the initial value) exists and is uniquely
determined:

Abbildung 4: For the reversible system X1 ←→ 2X2, i.e., S = (−1, 2)T , and the equi-
librium condition kv1c1 = kr1c

2
2: Location of stoichiometric class(es) (c⃗0+S) ∩ RI

+ and
location of equilibrium points; there is exactly one equilibrium point in each class..

Theorem. For reversible mass action systems where the stoichiometric matrix has
maximum column rank, there exists exactly one equilibrium point in each nonempty
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stoichiometric class (c⃗0+S) ∩ RI
+.

Proof. We first consider the auxiliary problem

”Minimize the functional φ from Sec. 5.2 under the constraint η⃗ = (UTU)−1UT c⃗
!
= η⃗0”

(It is suggests itself to conjecture that this problem is equivalent to our equilibrium
problem). Using the Lagrangian formalism, we obtain the equivalent19 system

∇φ(c⃗) = (UTU)−1UT ]T λ⃗, (UTU)−1UT c⃗ = η⃗0

which is equivalent to

µ+ln c⃗ = U (UTU)−1λ⃗, (UTU)−1UT c⃗ = η⃗0 .

The first of the two equations is equivalently transformed by multiplication, on the one
hand by UT , on the other hand by ST . We obtain the three equations

ST (µ+ln c⃗) = 0︸ ︷︷ ︸
= equilibrium condition

, UT (µ+ln c⃗) = λ⃗ , (UTU)−1UT c⃗ = η⃗0︸ ︷︷ ︸
⇔ c⃗∈c⃗0+S

.

We can drop the second of the three equations since it only defines the (uninteresting)

λ⃗.
We see: The above constrained minimization problem is equivalent to finding equilibri-
um points in the stoichiometric class.
For the constrained minimization problem, in turn, one can show existence and uni-
queness of the solution relatively easily: The ”admissible set” (i.e., the set described
by the constraint) is convex. The objective function φ is strictly convex, because the
Hessian matrix

Hφ(c⃗) = diag(
1

c1
, ...,

1

cI
)

is positive definite. Thus, the constrained minimization problem has at most one solu-
tion. To show the existence of a solution, it is sufficient that there exists a nonempty
compact level set

Ml := {c⃗∈(R+
0 )

I |φ(c⃗)≤ l} .

That this is true follows from the estimate φ(c⃗) ≥ |⃗c| from Sec. 5.2, since this estimate
involves Ml ⊆ Kl(⃗0), thus yielding boundedness, and since c⃗ is continuous on the
nonnegative closed rectand, yielding closedness of Ml. 2

19Generally, the Lagrangian equations are only a necessary criterion for solutions of constrained
optimization problems. But since our minimization problem is convex, every critical point must be a
minimum point.
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6 Feinberg’s network theorie

6.1 Introduction

The main goal of Feinberg’s network theory is to provide statements about existence
and uniqueness of equilibrium states of the batch problem. We have already seen
in Chap. 5.4 that under the assumption of reversibility existence and uniqueness of
an equilibrium state can be shown in any nonempty stoichiometric class. Feinberg
succeeded in weakening the assumptions; an essential role is played by the notion of
weak reversibility. Interestingly, in Feinberg’s network theory, a mathematical graph is
set up for each reactive system, and criteria for existence/uniqueness of equilibrium
states are formulated using graph–theoretic notions.
Let us learn to set up the graph for a reactive system by using an example:
Let us consider the chemical reactions

X1 +X2 ⇄ X3

X3 → X4 +X5

X6 ⇄ X4 +X5

2X2 → X2 +X7

X8 → 2X2

X8 ⇄ X2 +X7 I=8 species

What is on one side of a chemical reaction arrow, we call a complex, e.g., X2+X7. A
complex has no concentration. Complexes are introduced only as a mathematical tool;
they do not correspond to any physical substance.

Representation as a directed graph:

complexes =̂ nodes
reactions =̂ edges

In the example:

X1 +X2 ⇄ X3 → X4 +X5 ⇄ X6

2X2 → X2 +X7

↖ ↙↗
X8

Even if a complex occurs more than once in the reactions, it is represented in the
graph by one node. Here we have n = 7 nodes/complexes and J = 9 edges/reactions
(counting ”⇄” as two edges).

We can take the graph to be a “structure” in RI (I=8):
Nodes/complexes can be taken as elements of (R+

0 )
I ; e.g., X1 +X2 =̂ e⃗1 + e⃗2 =

(1, 1, 0, 0, 0, 0, 0)T , where e⃗1, . . . , e⃗I are the standard basis vectors of RI .
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Thus: node set/complex set C ⊆ (R+
0 )

I

Note: The components of the vector are just the stoichiometric coefficients seij, s
p
ij from

the previous chapters!

On the one hand, the set of edges/reactions can be understood as a relation
R ⊆ C × C on the set C. Besides, the edges/reactions have also an interpreta-
tion as direction vectors=the difference of the endpoints, thus to be taken as
elements of RI : For example, the reaction“2X2 → X2 + X7” corresponds to
e⃗2 + e⃗7 − 2e⃗2 = e⃗7 − e⃗2 = (0,−1, 0, 0, 0, 0, 1, 0)T ∈ RI

Note: The components of the vector are just the stoichiometric coefficients sij=s
p
ij−seij

from the previous chapters. Since each node/complex can act as both reactant and
product, the notation (s⃗i, s⃗j) ∈R for a reaction proceeding from node/complex s⃗i to
node/complex s⃗j makes more sense; the associated rate function is denoted R(s⃗i,s⃗j) or
Rs⃗i→s⃗j .

Our model, which reads

c⃗ ′(t) = (Sp−Se) R⃗(c⃗(t)) =
J∑

j=1

(s⃗ p
j −s⃗ e

j )Rj(c⃗(t))

in our old notation, now reads

c⃗ ′(t) =
∑

(s⃗i,s⃗j)∈R

(s⃗j−s⃗i)Rs⃗i→s⃗j(c⃗(t))

or
=

∑
(s⃗,s⃗ ′)∈R

(s⃗ ′−s⃗)Rs⃗→s⃗ ′(c⃗(t))

in Feinberg’s notation.

Def. (Chemischal Reaction Network, Reactive System) A chemical reaction
network (RNW) is a tripel (MS , C,R), where
MS = {1, 2 . . . , I} , I∈N, is the set of species,
C ⊂ R̄N

+ where |C| =: n∈N is the (finite) set of complexes,
and where R ⊂ C×C, the set of reactions, is a relation on C with the properties
(s⃗, s⃗) /∈ R ∀ s⃗∈C; (generally the relation is not symmetric, i.e., the graph is oriented).
If, forthermore, we have a rate function given for each rate/edge (s⃗, s⃗ ′)∈R, and the rate
functionis continuously differentiable Rs⃗→s⃗ ′ : (R+

0 )
I −→ R+

0 and satisfies the minimum
requirement of Sec. 4.2, R(c⃗) > 0 ⇔ supp s⃗ e ⊆ supp c⃗, Feinberg calls the RNW a
reactive system.

6.2 Weak reversibility, linkage classes, rank, deficiency

The definition of reversibility in Feinberg’s notation reads:
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A RNW is reversible, if and only if

∀s⃗, s⃗ ′∈C : (s⃗, s⃗ ′)∈ R ⇒ (s⃗, s⃗ ′)∈R.

(This corresponds to the symmetry of the relation R.)

Def. (weak reversibility). An RNW is called weakly reversible if for all s⃗, s⃗ ′∈C for
which there is a directed path in the graph from s⃗ to s⃗ ′ there is a directed path from
s⃗ ′ to s⃗:

∀s⃗, s⃗ ′∈C : ( ∃ : m∈N0, s⃗1, ..., s⃗m∈C : (s⃗, s⃗1), (s⃗1, s⃗2), ..., (s⃗m−1, s⃗m), (s⃗m, s⃗
′)∈R

=⇒ ∃ : m′∈N0, s⃗1
′, ..., s⃗ ′m′∈C : (s⃗ ′, s⃗1

′), (s⃗1
′, s⃗2

′), ..., (s⃗′m′−1, s⃗
′
m′), (s⃗′m′ , s⃗)∈R

)
Obviously, weak reversibility follows from reversibility.

Abbildung 5: Network (a) is reversible, network (b) is weakly reversible but not rever-
sible, network (c) is not weakly reversible but connected.

To the directed graph one can obviously make an undirected graph (MS , C, R̃) by
’omitting the arrowheads’, which thus has the same set of nodes and which has the set
of edges

R̃ ⊂ C×C, (s⃗1, s⃗2)∈R̃ :⇐⇒ (s⃗1, s⃗2)∈R ∨ (s⃗2, s⃗1)∈R;

hence, the relation R̃ is symmetric.

Def. (linkage classes). We define another relation, ∼, on C:

s⃗ ∼ s⃗ ′ :⇐⇒ in the undirected graph there is a path20 from s⃗ to s⃗ ′:

⇐⇒ ∃ : m∈N0, s⃗1, ..., s⃗m∈C : (s⃗, s⃗1), (s⃗1, s⃗2), ..., (s⃗m−1, s⃗m), (s⃗m, s⃗
′) ∈ R̃

’∼’ is obviously an equivalence relation. The equivalence classes of C under ’∼’ are
called linkage classes (LCs; German: Zusammenhangskomponenten, ZHKs) of the
RNW. We denote the number of LCs by l.

20By ’path’ we want to understand here and in the following ’path of length ≥ 0’, i.e., each node
shall be related to itself with respect to ’∼’
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Example: The RNW
s1 → s2 ← s3
s4 ⇆ s5

has l=2 LCs.

Def. (Rank). The rank s∈N0 of an RNW is the dimension of the vector space spanned
by the reactions, i.e., the stoichiometric space:

s := dim(span{s⃗−s⃗ ′ | (s⃗, s⃗ ′)∈R}) = dim(range(Sp−Se)) = dim(range(S)) = dim(S)

Since S∈RI×J , we have 0≤s≤ min{I, J}.

Obviously, the rank of an RNW invariant with respect to

- reversal of the direction of an edge (=̂ multiplication of a spanning vector by
(−1)),

- insertion/removal of an edge, as long as this does not change the LCs (=̂ remo-
val/addition of linearly dependent vectors in the spanning set21 of S).

Example. To the RNW

belongs the stoichiometric matrix

S =



−1 1 0 −2 0 0 2
−1 1 0 1 −1 1 0
1 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 1 −1 1 0
0 0 0 0 1 −1 −1


The first two columns are linearly dependent, as are the last four. Three co-
lumns/reactions can be deleted here without changing the LCs/rank of the RNW.
If we delete the second and the last two columns from S, this corresponds to the dele-
ted reactions in the graph shown in the sketch. The remaining four columns/reactions
are linearly independent; thus, it is s=4 here.

21German: Erzeugendensystem
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The rank of an RNW depends on the edges only insofar as they define the LCs; one can
always ’maximally thin’ graphs without changing the rank. In a ’maximally thinned’
graph, in each LC the number of edges is equal to the number of nodes |Ci| minus one.
Thus, an upper bound on the rank is:

s ≤ Number of edges in the maximally thinned graph =
l∑

i=1

(|Ci|−1) = |C|︸︷︷︸
=n

−l ,

hence22

s ≤ n− l.
Def. (deficiency). The number

δ := n− l − s (≥ 0)

is called the deficiency of the RNW.

In the example above: n=6 complexes, l=2 LCs, s=4 ⇒ δ=6−2−4=0

6.3 The Deficiency-Zero Theorem

Der zentrale Satz der Feinberg’schen Netzwerktheorie ist das Deficiency-Zero Theorem:

Theorem (Deficiency-Zero Theorem) For every RNW 23 with deficiency δ=0 the
following holds true:

(a) If the RNW is not weakly reversible, then the system has no positive stationary
solution.

(b) If the RNW is weakly reversible and mass action kinetics is assumed, then in any
stoichiometric class that has a nonempty intersection with RI

+, there exactly one
positive stationary solution, and this is asymptotically stable (’with respect to
the stoichiometric class’24).

Sketch of the proof25 The theorem is about existence/uniqueness of equilibria, more
precisely, about ‘species equilibria’, i.e., vectors c⃗ with

0
!
=
dc⃗

dt
=

∑
(s⃗,s⃗ ′)∈R

(s⃗ ′−s⃗ )Rs⃗→s⃗ ′(c⃗).

22Even without the above argument about thinning the graph should be clear: The space spanned
by vectors connecting |Ci| many points can be at most |Ci| − 1-dimensional.

23not necessarily assuming mass action kinetics, but the ’minimum requirements’ for rates should
be met

24What stability of the stationary solution with respect to the stoichiometric class exactly means is
clarified in an exercisein the tutorials

25More details from the proof: See my lecture notes ’Reaktive Netzwerke’.
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Abbildung 6:

In addition, there is the notion of complex or nodal equilibrium. These are vectors c⃗
for which holds: for each node s⃗∈C, the rates leading toward and away from the node
cancel, hence26.

∀s⃗∈C : rs⃗(c⃗) :=
∑
s⃗′,

(s⃗ ′,s⃗)∈R

Rs⃗ ′→s⃗(c⃗)

︸ ︷︷ ︸
towards node s⃗

−
∑
s⃗′,

(s⃗,s⃗ ′)∈R

Rs⃗→s⃗ ′(c⃗)

︸ ︷︷ ︸
away from s⃗

= 0

Graphically, it is easy to see (and it is easy to show) that since any d
dt
ci(t) can be

written as a linear combination of ’nodal rates’ (see above), that any nodal equilibrium
is a species equilibrium. However, the inversion is generally wrong! For an example
(see Fig. 6): There d

dt
c2 = rs⃗2(c⃗)+2rs⃗4(c⃗) (since X2 occurs in these two complexes), but

rs⃗2(c⃗)+2rs⃗4(c⃗) become zero without rs⃗2(c⃗) and rs⃗4(c⃗) both being zero (complex rates
can be negative).
Feinberg shows, however, that under the assumption δ = 0, the reverse direction
also holds, i.e., when δ = 0, c⃗ is species equilibrium if and only if it is complex
equilibrium. (As a tool to obtain this intermediate assertion, he uses linear algebra;
he constructs a matrix A that depends on a parameter ρ⃗ ∈ RJ such that c⃗ is node
equilibrium if and only if (1, ..., 1)T ∈core(Aρ⃗), and c⃗ is species equilibrium if and only

if (1, ...., 1)T ∈ kernel(SAα⃗), where ρ⃗ := R⃗(c⃗); see lecture script ’Reaktive Netzwerke’
p. 36-38. 27)

26Note that nodes/complexes have no physical concentrations; thus, node rates are purely theoretical
tools, but their consideration is quite obvious due to the mathematical concept of ’graph’: edges are
considered as ’pipelines’, nodes as ’depots’.

27The linear mapping Aρ⃗ : Rn → Rn reads: x⃗ 7−→
∑⃗
s ′,

(s⃗,s⃗ ′)∈R

ρs⃗ ′xs⃗(e⃗s⃗ ′−⃗es⃗), thereby we used component
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After having that equivalence of species equilibrium and complex equilibrium, it is
sufficient to investigate the existence and uniqueness of complex equilibria. The proof
is very elaborate (lecture script ’Reaktive Netzwerke’ p. 38-44); the proof of existence
and uniqueness of this equilibrium for (b) is done in three steps:
(1.) Prove that (not necessarily in every class) in RI

+ there exists a complex equilibri-
um c⃗∗. (This is, after preliminary consideration, also a species equilibrium).
(2.) Prove the equality of the sets {c⃗∈RI

+ | c⃗ is equiibrium} and {c⃗∈RI
+ | ln c⃗−ln c⃗∗∈

S⊥} =: Ec⃗∗

(3.) Prove: Ec⃗∗ ∩ (c⃗0+S) consists of exactly one point.

Remark to point (2.): In the case of ‘strong’ reversibility this set equality is immediately

clear: Let c⃗∗ be an equilibrium point, so ln K⃗+ST ln c⃗∗ = 0⃗. It is then c⃗ an equilibrium
point if and only if ln K⃗+ST ln c⃗ = 0⃗, i.e., if and only if ST (ln c⃗−ln c⃗∗)=0⃗, which can be
written as ln c⃗−ln c⃗∗∈kernel(ST )=S⊥. (In the case of only weak reversibility it must

be argued differently, since such a K⃗ does not exist then.)
Remark to point (3.): The existence and uniqueness of an element of E∗ ∩ (c⃗0+S) is
shown, as already in the case of strong reversibility, with the help of a functional φ by
showing that the element we are looking for is a solution of a minimization problem
for φ under the constraint c⃗∈ c⃗0+S. However, in the absence of a ”K⃗ ” there is also
no ”µ⃗ ”, which in Sec. 5.4 (see also Sec. 5.2) for the definition of φ there; but here one
can take instead the functional φ(c⃗) :=

∑I
i=1(− ln c∗i−1+ln ci) ci. 2

6.4 Other graph-theoretic terms and the Deficiency-One
Theorem

We define a new relation on the directed graph:

s⃗1 ≡ s⃗2 ⇐⇒ There is a directed path from s⃗1 to s⃗2 and one from s⃗2 to s⃗1

Obviously, (1) if s⃗1 ≡ s⃗2, then s⃗1 and s⃗2 are in the same LC.
(2) ’≡’ is an equivalence relation.

The equivalence classes formed with respect to ’≡’ are called strong linkage classes
(strong LCs or SLCs). Because of (1), every LC is the union of one or more whole,
disjoint strong SLCs. An SLC is called terminal if no path leads out of it. In the
example of the sketch with l=2, there are 4 SLCs, of which t=3 are terminal.
One can easily show that a LC always must contain at least one strong terminal LC.

Since every LC can be considered as an independent RNW, each LC Z1, ..., Zl can be
assigned a deficiency δk, k=1, ..., l:

δj := nj − sj − 1

notation: x⃗ = (xs⃗)s⃗∈C , ρ⃗ = (ρs⃗)s⃗∈C
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Abbildung 7: RNW with 2 LCs, 4 strong LCs, from which 3 are terminal.

where nj is the number of nodes of the LC; sj is the dimension of the space spanned
by reactions going from nodes of the LC to nodes of the same LC, and the 1 is just the
number of LCs that make up one LC. Addition yields

l∑
k=j

δj = n−
l∑

j=1

sj − l ≤ n− s− l = δ, as δj ≤ δ∀ j.

Now another important theorem. Contrary to what the name suggests, it does not
deal with networks that have δ=1:

Theorem (Deficiency-One Theorem) (Feinberg, 1987). We consider an RNW with
mass action kinetics and δ ∈ N0 arbitrary. Let C1, ..., Cl be the LCs with deficiencies
δ1, ..., δl∈N0. Let us assume that

(V1) δj≤1 ∀ j=1, ..., l,

(V2)
l∑

j=1

δj=δ,

(V3) every LC contains exactly one strong terminal LC.

Then it holds true:

(a) Each stoichiometric class contains at most one positive equilibrium state.

(b) If the system has a positive equilibrium state (in any stoichiometric class), then
every stoichiometric class c⃗0+S (which has nonempty intersection with RI

+) con-
tains exactly one positive equilibrium state.
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(c) If the RNW is additionally (V3’) weakly reversible, then the system has a positive
equilibrium state, so (b) comes into effect.

Remarks:

- (V3’) is a tightening of the condition (V3), since

(V3’)⇔ weakly reversible ⇔ every LC is equal to a terminal strong LC ⇒ (V3)

- The preconditions of the Deficiency-One Theorem are relaxations of the precon-
dition of the Deficiency-Zero Theorem:

δ=0
=⇒
̸⇐=

(V1) & (V2)

(Indeed Feinberg shows that (V1)–(V3) are sufficient for the equivalence of species
equilibrium and complex equilibrium; the stronger requirement δ = 0 from the
Deficiency-Zerol Theorem is not really required for this).

- The two theorems only say something about existence/uniqueness of strictly po-
sitive equilibrium solutions; beyond this there are considerations by Feinberg also
about the existence of equilibrium solutions which are on the edge of the positive
rectand.

Here one could insert a chapter about equilibrium points at the edge of the positive
rectand.

7 The PDE model

In this chapter, we will apply the ideas from Chap. 5 to the PDE model. We make the
following assumptions throughout the chapter:

- All reactions are according to the law of mass action.

- All reactions are reversible.

- Dispersion-diffusion is species-independent: L = diag(L1, ..., LI) with L1= ...= LI

- Just to simplify the presentation: let the diffusion-dispersion coefficient be scalar
and constant, also let the porosity be constant

- homogeneous Neumann boundary conditions (typical outflow boundary conditi-
on)
(result can be transferred to so-called (inhomogeneous) flow boundary conditions
→ typical inflow boundary condition))
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We start with a proof of the uniqueness of solutions. This is done using energy methods
and Gronwall’s lemma. The existence of solutions is more difficult to show. To prepare
the existence result we first show the non-negativity of solutions. The subsequent proof
of the existence of a (global!) solution of the PDE problem (in a function space still
to be determined) uses a so-called fixed point theorem. The essential condition for the
application of a fixed point theorem is that every potential solution satisfies a so-called
a priori bound. The principle of a priori bounds/fixed point theorems is roughly as
follows: If one can prove that any solution to the PDE (initial boundary value problem)
satisfies a bound that depends only on the data, then the fixed point theorem provides
the existence of a solution.
To prove the existence of an a priori bound, we reuse the Lyapunov functional from
Chap. 5.2.
By ’existence of a global solution’ we mean here that for arbitrary T >0 a solution can
be found on the time interval [0, T ].

As function space, in which we search for solutions, we choose (see [WYW] p. 13) the
’anisotropic’ Hölder space28 C2+α,1+α

2 (QT )
I ,

C2+α,1+α
2 (QT ) := {u∈C2,1(QT ) | sup

(t,x),(s,y)∈QT

|u(t, x)− u(s, y)|
(|t− s|2 + |x− y|)α

2

<∞}, 0 < α < 1.

Here C2,1(QT ) denotes functions differentiable twice with respect to x and once with
respect to t.29 Other spaces with lower regularity are also usable30 (which then also
require weaker assumptions on the data), such as the Sobolev space

W 2,1
p (QT )

I := {u : QT −→ RI | ∥ui∥W 2,1
p (QT )<∞},

∥ui∥W 2,1
p (QT ) :=

[
∥u∥pLp(QT ) + ∥∂tu∥

p
Lp(QT ) +

∑
i

∥∂xi
u∥pLp(QT ) +

∑
i,j

∥∂xi
∂xj

u∥pLp(QT )

] 1
p

QT := (0, T ]× Ω.

where p ≥ n+1 is required for W 2,1
p (QT ) ⊂ W 1

p (QT ) to be compactly embedded

in C(QT ); for domains M in the m-dimensional, the space W 1
p (M) is compactly

embedded in C(M) for p>m (note that QT ⊂ Rn+1, i.e. m = n+ 1).

The choice of space becomes relevant only in Ch. 7.3-7.4; in Ch. 7.1-7.2 it suffices that
’all occurring terms’ exist.

28vgl. [MiSi04]
29Classically, the Hölder space Cm+α(Ω) for m∈N0 and α ∈ [0, 1) is the space Cm+α(Ω) := {u∈

Cm(Ω) | ∥u∥m+α < ∞} with the norm ∥u∥m+α :=
∑

|β|≤m
β∈(N0)n

∥Dβu∥L∞(Ω) + sup
x ̸=y

x,y∈Ω

|u(x)−u(y)|
|x−y|α , Dβ :=

∂β1
x1
...∂βn

xn
, |β| :=

n∑
i=1

βi.

30see [Habil]
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7.1 Uniqueness of solutions

Let us start with the uniqueness of solutions, since this is much easier to show than
the existence. We proceed similar as in the so-called energy method, where the PDE
is ‘tested’ (i.e., multiplied) with the solution itself to get an ’energy estimate’ of
the solution. To show uniqueness, we use the difference of two solutions in the following.

Theorem Let u, v ∈ W 2,1
p (QT )

I , with p>n+1, T >0 be solutions of the PDE system
θ∂tu−d∆u + q · ∇u = SR(u) with θ = const > 0, d = const > 0, q ∈ C0(QT ), the
reactions are according to the law of mass action and reversible. Let an initial value
ut=0 = u0∈L2(Ω) be given and Dirichlet or Neumann boundary values u|[0,T ]×∂Ω=g or
∂u
∂ν

∣∣
[0,T ]×∂Ω=g. Then u=v holds.

Proof. Let w :=u−v. Then w satisfies the PDE

θ∂tw − d∆w + q · ∇w = SR(u)−SR(v), w|t=0 = 0 with hom. b.c.

Test the i-th PDE with wi:

θ

2

d

dt

∫
Ω

|wi|2 dx+d
∫
Ω

|∇wi|2 dx−d
∫
∂Ω

wi
∂wi

∂ν
do

︸ ︷︷ ︸
=0

+

∫
Ω

q·∇wiwi dx =

∫
Ω

[[SR(u)]i−[SR(v)]i]wi dx

We now want to estimate the right-hand side by a constant times the L2 norm of
w squared, where the constant is allowed to depend on u and v. For simplicity, we
perform this, somewhat unmathematically, using an example term; one can see that
this is feasible for LMA rates in general: for the single rate u 7→ ku31u

2
2, as an example,

we expand the term

(ku31u
2
2 − kv31v22)wi = k[(u31u

2
2−u31u2v2) + (u31u2v2−u31v22) + (u31v

2
2−u21v1v22)

+(u21v1v
2
2−u1v21v22) + (u1v

2
1v

2
2−v31v22)]wi (7.1)

= k [u31u2w2 + u31v2w2 + u21v
2
2w1 + u1v1v

2
2w1 + v21v

2
2w1]wi .

For the inserted terms, a vi-power was successively increased by one and the corre-
sponding ui-power was increased by one at the same time. In general, the right-hand
side can thus be written as

∫
Ω

∑I
j=1wiwjfij(t, x) dx, where the fij are composed of the

components of u and v. Since the ui, vj ∈W 2,1
p (QT ) ⊂ C∞(QT ), we can estimate this

using a constant c that depends on the L∞(QT )-norm of the fij (i.e., on the ui, vi):

θ

2

d

dt

∫
Ω

|wi|2 dx+d
∫
Ω

|∇wi|2 dx ≤ ∥q∥L∞(QT )

∫
Ω

n∑
i=1

|∇wi| |wi| dx+c ∥wi∥L2(Ω)∥w∥L2(Ω)I

The ’mixed’ term on the right-hand side is estimated using the inequality ab≤ϵa2+ 1
4ϵ
b2

(which follows directly from (
√
ϵa− 1

2
√
ϵ
b)2≥0):

θ

2

d

dt

∫
Ω

|wi|2 dx+d
∫
Ω

|∇wi|2 dx ≤ ∥q∥L∞(QT ) ϵ

∫
Ω

|∇wi|2 dx+
∥q∥L∞(QT )n

4ϵ

∫
Ω

|wi|2 dx+c ∥wi∥L2(Ω)∥w∥L2(Ω)I
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Summation over i yields

θ

2

d

dt
∥w∥2L2(Ω)I + (d− ϵ ∥q∥L∞(QT )n)

I∑
i=1

∥∇wi∥2L2(Ω)n ≤ c ∥w∥2L2(Ω)I

We now choose ϵ > 0 sufficiently small so that the coefficient of the ’energy term’
is positive (or non-negative) (this technique is called absorption) and with h(t) :=
∥w(t, ·)∥2L2(Ω)n we get the differential inequality

h′(t) ≤ 2c

θ
h(t)

with initial value h(0)=0, since w|t=0=0.
Using the Gronwall lemma31 it follows that

h(t) ≤ 0 ∀ t∈ [0, T ] .

Hence, h(t) ≡ 0, thus w ≡ 0, thus u≡v. 2

7.2 Nonnegativity of solutions

Even though we still don’t know anything about the existence of solutions, we can
show the nonnegativity of (potentially existing) solutions. We again use a form of the
energy method; however, we test the PDE with the negative part of the solution.
We decompose (also vector-valued functions, then component-wise) u = u+ − u− with
u+ := max{0, u}, u− := max{0,−u} = −min{u, 0}; thus, we have u+, u− ≥ 0. Let
Ω−i (t) := {x∈Ω |ui(t, x)<0}. For continuous ui : QT −→ R this is a well-defined open
set. In the following theorem we consider a slightly modified problem with right-hand
side SR(u+) instead of SR(u):

Theorem. Let u∈W 2,1
p (QT )

I be a solution of the PDE problem θ∂tu+ Lu = SR(u+)
with u|t=0≥0 and homogeneous Neumann boundary values, on an interval of existence
[0, T ]. Let q be bounded in L∞. Then u≥0 holds on QT .

Proof. Let u be a solution of the modified problem on an interval of existence [0, T ].
We test the i-th equation of the system with u−i and get

θ

∫
Ω

u−i ∂tui dx− di
∫
Ω

u−i δui dx+

∫
Ω

u−i ∇ui · q dx =
J∑

j=1

(spij−seij) [Rv
j (u

+)−Rr
j(u

+)]u−i

=

∫
Ω

J∑
j=1

=:(I)︷ ︸︸ ︷[
spijR

v
j (u

+)︸ ︷︷ ︸
=spijk

v
j

I∏
k=1

(u+
k )

se
kj

+ seijR
r
j(u

+)︸ ︷︷ ︸
=seijk

r
j

I∏
k=1

(u+
k )

s
p
kj

]
u−i −

J∑
j=1

=:(II)︷ ︸︸ ︷[
seijR

v
j (u

+)︸ ︷︷ ︸
=seijk

v
j

I∏
k=1

(u+
k )

se
kj

+ spijR
r
j(u

+)︸ ︷︷ ︸
=spijk

r
j

I∏
k=1

(u+
k )

s
p
kj

]
u−i dx

31Or, simpler, just use the technique ‘separation of the variables’ to solve this differential inequality.

42



All appearing factors and exponents are nonnegative. In the front term of (II), whenever
the prefactor seij does not vanish, there is a factor (u+i )

seij with nonvanishing exponent
in the product, i.e., because of multiplication by u−i , the product is zero; analogously
for the back term of (II). Thus, it is (II)=0. The term (I), on the other hand, does not
vanish in general; it is in general (I)≥0. On the left-hand side we take advantage of the
fact that u−i =−ui on Ω−i (t) and =0 otherwise, to obtain after multiplication by (−1)

θ

∫
Ω

u−i ∂tu
−
i dx− di

∫
Ω−

i (t)

ui δui dx+

∫
Ω−

i (t)

ui∇ui · q dx = −(I) ≤ 0 .

Now we continue as in the proof of uniqueness in Sec. 7.1 and we get

θ

2

d

dt

∫
Ω

|u−i (t, x)|2 dx ≤ const

∫
Ω

|u−i (t, x)|2 dx .

It follows, together with the nonnegativity of the initial value, i.e.,
∫
Ω
|u−i (0, x)|2 dx=0,

and with Gronwall’s lemma that
∫
Ω
|u−i (t, x)|2 dx≤0, thus u−i ≡0, thus ui≥0. 2

Any solution of the modified problem (with nonnegative initial values) is thus nonne-
gative, and is thus also solution of the original non-modified problem: Lmod ⊆ L. In
Sec. 7.1 we have shown that L contains at most one element. Thus, we only need to
show that Lmod contains at least one element to show Lmod=L and thus the existence
and uniqueness of the solution of the original problem, i.e., in the existence proof we
can focus on the modified problem.
The existence of a solution of the modified problem is shown in Sec. 7.4; Sec. 7.3 is
necessary as preparation.

7.3 A priori estimates

In preparation for the proof of the existence of a solution of the modified problem, we
need a so-called a priori bound. We use the Lyapunov functional from Sec. 5.2 again
here for this purpose. As a first step, we prove:

Lemma. Let φ : (R+
0 )

I −→ R be as in Sec. 5.2. Let g : QT −→ R be defined by
g := φ ◦ u, where u is a solution of the modified problem on an interval of existence
[0, T ]. Then32 holds

θ∂tg + Lg ≤ 0

32For ∇g to be well-defined, one needs the strict positivity of solutions u, whereas in Sec. 7.2 we
have shown only the nonnegativity of solutions. As a way out, one can consider gδ := φ ◦ uδ instead
of g, where uδ(t, x) :=u(t, x)+δ, for δ>0; it is ∇gδ well-defined. The proof of the lemma then shows

that θ∂tgδ+Lgδ ≤ f(δ) holds, where f is a function with f(δ)
(δ→0)−→ 0; this bound is also sufficient for

the following considerations.
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where
Lu := (−diδui + q · ∇ui)i=1,...,I .

Proof.33 With µ from chap. 5.2 and the chain rule we have

∂tg = ((∇φ) ◦ u) · ∂tu = (µ+lnu) · ∂tu

∂xi
g = (µ+lnu) · ∂xi

u =
I∑

k=1

(µk+lnuk) ∂xi
uk

∂2xi
g =

I∑
k=1

1

uk
(∂xi

uk)
2︸ ︷︷ ︸

≥0

+
I∑

k=1

(µk+lnuk) ∂
2
xi
uk ≥ (µ+lnuk) · ∂2xi

u

=⇒ −∆g ≤ −(µ+lnu) ·∆u

Hence,

θ∂tg + Lg ≤ (µ+lnu) · (θ∂tu+Lu)
(PDE)
= (µ+lnu) · SR(u) = ST (µ+lnu) ·R(u)
= (− lnK + ST lnu) ·R(u) ≤ 0

where the nonpositivity follows at the end as in Sec. 7.2. 2

Note that in the proof we used the species independence of the diffusion-dispersion
coefficient.

We now use:

Theorem ((parabolic, weak) Maximum Principle). Suppose a function g ∈
C2(QT ) ∩ C(QT ) satisfies

∂tg −
∑
i,j

aij(t, x)∂xi
∂xj

g +
∑
i

bi(t, x) ∂xi
g ≤ 0

with
∑
i,j

aij(t, x)ξiξj ≥ 0 ∀ ξ (’ellipticity’). Then

max
QT

g = max
∂pQT

g ,

where ∂pQT := QT \QT is the so-called parabolic boundary of QT ; QT = (0, T ]× Ω.
(That is, the maximum of g is assumed for t=0 or for x∈∂Ω.)34
.
Proof: See [Evans], Sec. 7.1.4.

33The proof roughly follows the argument in [MiSi04].
34No regularity is assumed for the coefficients of the PDE. It is essential, however, that g be ’smooth’;

”g∈H2(QT )” would not suffice!
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Application of the maximum principle to g yields, provided we assume ’suitable’
boundary conditions (see below), that g assumes its maximum at t= 0, thus g (and
thus also u!) can be estimated by the initial data u0=u|t=0:

Theorem. Under the conditions of the above lemma, u on QT has a bound that
depends only on the data:

0 ≤ u(t, x) ≤ c ∀ (t, x) ∈ QT

Proof. We form g̃(t, x) := g(t, x)−ϵt/θ. From the above lemma it follows immediately
that θg̃+Lg̃≤−ϵ. Application of the maximum principle to the function g̃ yields that
(a) g̃ takes its maximum at a (t0, x0)∈{0}×Ω or (b) at a (t0, x0)∈(0, T ]×∂Ω. Suppose
the case (b) occurs.
Since ∂g̃

∂ν
= ∂g

∂ν
= (µ+lnu) ∂u

∂ν
and since homogeneous Neumann boundary conditi-

ons were assumed for u, ∂g̃
∂ν

= 0. Since (t0, x0) is supposed to be maximal, it follows
∂g̃
∂t
(t0, x0)= 0 and ∂g̃

∂τ
(t0, x0)= 0 (with τ being an arbitrary tangent direction to ∂Ω in

the point (t0, x0)), and −∆g̃(t, x)≥ 0 in an Ω-neighborhood35 of (t0, x0). So it follows
θg̃+Lg̃ ≥ 0 in a Ω-neighborhood of (t0, x0). Contradiction. Thus, only case (a) can
occur.
Thus, it is max

(t,x)∈QT

g̃(t, x) ≤ max
x∈Ω

g̃(0, x) = max
x∈Ω

g(0, x) = max
x∈Ω

φ(u0(x)). Furthermore,

as stated in Sec. 5.2, u(t, x) ≤ φ(u(t, x)) = g(t, x) ≤ g̃(t, x) + ϵT/θ. It follows the
boundedness of u with the bound being ϵT

θ
+ max

x∈Ω
φ(u0(x)). Since this works for all

ϵ>0, with ϵ→ 0 the ϵ-term can even be dropped. 36 2

Alternative Strategies/Spaces. In weaker spaces,in which the maximum principle
is not applicable, the function37

ψr : W → R+, ψ(u) :=

∫
Ω

φ(u(·, x))r dx, r∈N,

can be considered. One can show that t 7−→ (ψr ◦ u)(t), where u is a solution, is
monotonically decreasing (for inhomogeneous flux boundary conditions: that is has
limited growth). For r ̸=1, the proof is similar to the above lemma, but more tedious,
since additional terms appear with the differentiation (see [Habil]). As a reward for the
effort, one gets a bound for the L∞([0, T ], Lr(Ω))-norm (in particular, therefore, for the
Lr(QT )-norm) of the solution u. Such a bound is much more ’valuable’ than a bound
in L∞([0, T ], L1(Ω)); see use of this bound at the end of the following chapter.

35At the point (t0, x0) itself ∆g is not defined
36In the case where we proceed as in Footnote 32, we take g̃δ(t, x) := gδ(t, x) − ϵt/θ instead of g̃,

and we choose ϵ, δ such that f(δ)<ϵ.
37Also here, if we want to be rigorous, in the definition of ψr, u must be replaced by uδ := u + δ

unless it is a priori clear that u is strictly positive,
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7.4 Existence of global solutions

One way to prove existence of solutions of nonlinear PDEs is to reformulate the PDE
as a fixed point problem in a suitable function space, and then apply a fixed point
theorem which provides the existence of a fixed point and thus a solution of the PDE.
The typical conditions for applying a fixed point theorem are (besides some technical
requirements, if necessary) the compactness of the fixed point operator or its domain
of definiton, and the existence of an a priori bound for fixed points. (For ODEs, the
existence of a global solution followed much more simply from the existence of an
a priori bound by exploiting the existence of ’maximal’ solutions of ODEs. But aalso
for ODEs existence is based on a fixed point principle, such as Banach’s fixed point
theorem.)

A fixed point theorem which has quite few technical requirements and that is suited
for PDE problems is Schaefer’s fixed point theorem ([Schae55], see also [Evans] p. 504):
Theorem (Schaefer’s fixed point theorem). Let X be a real Banach space and
let Z : X −→ X be compact. Furthermore, let the set

M := {x∈X | ∃λ∈ [0, 1] : x=λZ(x)}

be bounded. Then Z has (at least) one fixed point.

Proof: See appendix; the theorem is traced back to Schauder’s fixed point theorem. 2

In the theorem, compactness of mappings is defined as follows.

Def. (compact mapping). A (usually nonlinear) mapping Z : X −→ Y between two
Banach spaces X, Y is called compact if it is continuous and for every bounded set
M⊂X it holds true that the set Z(M) is compact.38

Conversion of the PDE problem into a fixed-point problem. The given PDE
system

∂tu+ Lu = SR(u+)

with initial condition u|t=0=u0≥0 and boundary conditions can be written as a fixed
point problem for the nonlinear(!) mapping

Z : X −→ X, u 7−→ v = Z(u),

where v solution of the (linear!) problem

∂tv + Lv = SR(u+),

38And a set M , subset of a Banach space, is called compact, if every collection of sets whose union
covers M contains a finite subcolllection that already covers M . Only if the Banach space is finite-
dimensional, compactness of a set is equivalent to boundedness and closedness of the set.
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with the corresponding initial and boundary conditions; the solution space X yet to
be chosen. Obviously, an x∈X is a fixed point of Z if and only if u solves the above
PDE problem.
Thus, in order to apply Schaefer’s fixed point theorem, we must (a) find a bound for
the setM and (b) – by choosing a suitable function spaceX – ensure that Z is compact.

Ad (a): Boundedness of M : Let u∈X and v=Z(u) be solutions of the linear PDE
above; let w := λv. Thus, the set M is the set for which u=w. Multiplication of the
linear PDE by λ gives that ∂tw+Lw=λSR(u+); further w|t=0=λu0, and also in the
boundary condition, if it is inhomogeneous, such a factor λ occurs. Thus, the set M is
characterized by

M = {x∈X | ∃λ∈ [0, 1] : ∂tu+Lu = λSR(u+), u|t=0 = λu0, and boundary condition}.

Since λ is to be chosen from a bounded set [0, 1], all estimates from the earlier chapters
(there, λ=1) carry over to the case λ∈ [0, 1]. Hence, due to Sec. 7.3 we know that the
set M is bounded under the assumptions made there.

Ad (b): Compactness of Z : X −→ X: To get well-definedness and compactness of
Z, we use the ’regularizing effect’ of solving a linear parabolic PDE

∂tv + Lv = f .

For example, we can choose the space X := C2+α,1+α
2 (QT ), with 0 < α < 1. Now

let α < β < 1. Let u ∈ X. Trivially, it follows that u ∈ Cβ,β
2 (QT ). It follows that

the capped function u+ ∈ Cβ,β
2 (QT ). Thus all powers and polynomial expressions of

u+, hence also SR(u+)∈Cβ,β
2 (QT ). According to a theorem from the theory of linear

parabolic differential equations, for right-hand side f=SR(u+)∈Cβ,β
2 (QT ) the solution

v ∈C2+β,1+β
2 (QT ) ([WYW] Sec. 8.3.1). This space in turn is compactly embedded in

X. (That Hölder spaces are compactly embedded in each other can be shown using
Arzela-Ascoli’s theorem).
If we take a bounded sequence (un) in X, the above argument shows that the
associated sequence of solutions (vn) has a subsequence convergent in X; Z is therefore
compact.

The well-definiteness and compactness of Z also follows for the choice X := W 2,1
p (QT )

for p > n+1: This space, as already stated at the beginning of Sec. 7, is compactly
embedded in C0(QT ); u∈X⊂C0(QT ) trivially entails f = SR(u+) ∈C0(QT ), hence f ∈
Lp(QT ). By a theorem on linear parabolic differential equations (see [WYW] Sec. 9.2.3
or [Lady68]), then the solution is v∈W 2,1

p (QT )=X. Taking again a bounded sequence
(un) in X, the above argument shows that the associated sequence of solutions (vn)
has a subsequence convergent in X; thus Z is compact.
In this choice of space X, note that the a priori estimate for ψr (see end of Sec. 7.3)
initially yields only an estimate of the solution v in the L∞(0, T ;Lr(QT )), not in the
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norm of X = W 2,1
p (QT ). However, by choosing r=r(p) sufficiently large, it follows from

u ∈ L∞(0, T ;Lr(Qt)) that f = SR(u+) ∈ Lp(QT ), and the theory of linear parabolic
differential equations thus yields that the solution v∈W 2,1

p (QT )=X (see [Habil]).

7.5 Reactive transport with equilibrium reactions, derivation
of a model, the instantaneous limit

We now want to transfer the problem with reactions in equilibrium, which we had
considered in Sec. 5.4 for the batch problem, to the PDE setting. The starting point is
the ’kinetic’ PDE system

∂tu+ Lu = SR(u) (7.2)

for the I concentrations and the assumption that all J reactions are reversible; thus,
Rj(u)=R

v
j (u)−Rr

j(u) holds. Let I < J .

A First Attempt. In the long run, i.e., in the limit t→∞, one can conjecture (and
also show) that a concentration vector u arises in such a way that the forward and
backward rates compensate each other. If the reactions are very fast, one can expect
such a state to set up very quickly. In an idealization (reaction rates extremely fast)
we want to assume that such a state occurs ’instantaneously’ (some authors use the
expression ‘the instantaneous limit’ for this), i.e. that at all times and locations the
equations Rv

j (u)=R
r
j(u), j=1, ..., J , i.e.

R(u)=0 , (7.3)

are satisfied. In the case of the law of mass action and strict positivity of solutions,
this can be expressed as

− lnK + ST lnu = 0 .

We thus have J equations for the I unknowns ui, which certainly does not give a useful
model. How can we get more equations? Naively substituting the equation R(u) = 0
into the PDE system (7.2) would give additional I homogeneous PDEs ∂tui+Lui=0;
however, we would then have a total of I+J equations to satisfy for I unknowns,
which seems questionable. What is the correct model describing equilibrium?

Heuristic derivation of the equilibrium problem. In order to get the ’right’
number of equations for our unknowns, unlike above, we proceed as follows: We first
eliminate the fast reactions from as many of the PDEs as possible, i.e., we concentrate
the rates on as few PDEs as possible. To achieve this, we adopt from Sec. 5.4 the
coordinate transformation u=Sξ+Uη, ξ=(STS)−1STu, η=(UTU)−1UTu. This yields,
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analogously to Sec. 5.4, the system equivalent to the above kinetic PDE system39

∂tη + Lη = 0

∂tξ + Lξ = R(Sξ+Uη).

Note that we have exploited here that the transport operator L and the stoichiometric
matrices commute, which is the case only in the case of species-independent diffusion-
dispersion coefficient.40 The above η-PDEs describe the fact that for kinetic rates the
solution never leaves the stoichiometric class u0+S. These η-PDEs do not contain the
rate coefficients, and also the creation of the η-variables was independent of thee rate
coefficients. Hence, these equations hold for arbitrary rate coefficients, even for very
large rate coefficients, and therefore it is plausible to assume that this should also be
so in the limiting case of ’infinitely fast’ reactions. These are I−J equations. Together
with the J equilibrium conditions (??), this gives I equations for the I unknowns ui:

∂tη + Lη = 0

R(Sξ+Uη) = 0

, ,

or, equivalently,

∂tη + Lη = 0 (7.4)

ST ln(Sξ+Uη)− lnK = 0 , (7.5)

Note that the equations are decoupled, i.e., one can first solve the (scalar!, linear!)
PDEs for the ηi and subsequently, at any point of the computational domain, solve the
nonlinear algebraic equations for the ξi. The numerical computation of a solution is
thus much less time-consuming than that of the nonlinear, fully coupled kinetic PDE
problem – after all, we only have I−J many PDEs instead of I many, and these are linear
instead of nonlinear. And algebraic equations have no couplings among the grid points
in the computational domain; especially on parallel computers algebraic equations can
be solved very efficiently without any communication among the processors.
The existence and uniqueness of a solution can be shown analogously to the ODE case:
The solution to the η-equations exists and is unique, using reasonable assumptions
and initial/boundary conditions41. (linear parabolic theory). Computing a ξ(t, x) can

39This transformation is well-defined only in the case where the columns of S are linearly indepen-
dent; however, in the other case, as mentioned in Sec. 5.4, a modification of the procedure is possible
which allows a matrix A to appear in front of R to handle linear dependencies among the columns of
S

40This assumption is actually needed whenever one wants to form linear combinations of the PDEs
and introduce new variables; indeed, applying matrices to the PDE system is equivalent to forming
linear combinations of the PDEs.

41We only need to set initial and boundary conditions for η. If we have initial/boundary conditions
also for ξ – or in other words, if we have initial/boundary conditions for u – then these should be
consistent with the equilibrium conditions
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be rewritten as a (finite-dimensional!) optimization problem (in RJ , we don’t need
a function space!) at every single point of the domain QT , and taking advantage of
the properties of the objective function φ (including strict convexity), existence and
uniqueness of ξ(t, x) can be shown for every (t, x) ∈ QT . Alternatively, one can also
invoke the theorem on implicit functions, which provides at least the existence of a local
resolution function ξ = ξ(η), since ∂

∂ξ
[ST ln(Sξ+Uη) − lnK] = STdiag(u−11 , ..., u−1I )S,

and this matrix is symmetric positive definite, thus invertible.
To interpret the model: the assumption that all reactions are at local (or: dynamical)
equilibrium does not mean that these reactions cease to take place. It also does not
mean that at any time at any location the forward and backward reaction rates exactly
balance (r is not 0). The equilibrium condition R(u) = 0 describes a manifold on
which the solution must lie, and if, for example, transport processes threaten to cause
the solution to leave this manifold, then instantaneous reactions occur such that the
solution remains on the manifold.
If one would like to calculate not only the concentrations ui, but also the resulting
reaction rates, one can do so by

r = ∂tξ + Lξ (7.6)

a posteriori.
By the way, the transformation u 7→ (η, ξ) can now be unwound for the system (7.4)-
(7.6); we obtain

∂tu+ Lu = Sr

ST lnu− lnK = 0,

In this formulation, the I concentrations ui and the J reaction rates rj are the
unknowns obtained as the solution of a system consisting of I linear PDEs and J
nonlinear algebraic (equilibrium) equations. Thus, this formulation consists of more
equations and unknowns than (7.4)-(7.5).

Generalization: Mixed equilibrium-kinetic problem. One can also consider re-
active systems in which some recations are ’fast’ and others are ’slow’, i.e., one assumes
local equilibrium for only part j=1, ..., Jeq of the reactions, and one continues to des-
cribe the remaining Jkin = J−Jeq reactions j = Jkin + 1, ..., J kinetically. In this case,
one can first describe the initial problem as

∂tu+ Lu = SeqReq(u) + SkinRkin(u)

where we have decomposed S = (Seq|Skin) and RT
kin = (RT

eq|RT
kin). We now want to

throw out only the fast reactions from as many PDEs as possible. To do this, we can
now perform the previously used coordinate transformation but with S replaced by
Seq, i.e. u=Seqξ+Uη, ξ=(ST

eqSeq)
−1ST

eq u, η=(UTU)−1UT u, where now U ∈RI×(I−Jeq)

is a matrix whose columns span S⊥eq; it is now ξ∈RJeq , η∈RI−Jeq . One obtains

∂tη + Lη = (UTU)−1UT SkinRkin(Seqξ+Uη)

∂tξ + Lξ = Req(Seqξ+Uη) + (ST
eqSeq)

−1ST
eq SkinRkin(Seqξ+Uη)
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and after assuming equilibrium, that is, replacing the ξ-PDEs with the equilibrium
conditions,

∂tη + Lη = (UTU)−1UT SkinRkin(Seqξ+Uη)

R(Seqξ+Uη) = 0

req = ∂tξ + Lξ − (ST
eqSeq)

−1ST
eq SkinRkin(Seqξ+Uη)

Initial and boundary conditions are again to be required only for η. In contrast to the
mere equilibrium problem, in the mixed equilibrium-kinetic problem the equations of
the I − Jeq-many η- and the Jeq-many ξ-variables are no longer decoupled. Only the
req-equations are still decoupled and can be dropped or computed a posteriori. Some
techniques for ensuring that at least some of the η-equations are still decoupled even
in the mixed problem can be found in [Kr07], among others. The existence proof given
above for the pure equilibrium problem (i.e., regarding the problem as a constrained
optimization problem) obviously cannot be directly applied to the mixed problem,
since the constraint (=the η-PDEs) are now nonlinear due to the occurrence of Rkin in
general, so the admissible set of the corresponding optimization problem is probably
no longer convex. The above ξ-η-req-problem can be transformed back into an easier
to read form (but numerically more complicated to solve, since now req is no longer
decoupled):

∂tu+ Lu = SGGrGG + SkinRkin(u)
RGG(u) = 0

(7.7)

In this formulation, one has I+Jeq equations and unknowns.

8 Reactions with immobile species (mineral preci-

pitation and dissolution), complementarity pro-

blems

So far we have considered only the reactions of species dissolved in the fluid among
themselves; these processes are not bound to a porous medium, but they can occur in
fluids in general (chemical reactors, combustion of gases,...) In the following we consider
also reactions between mobile (i.e. dissolved in the fluid) and immobile species present
in the soil matrix or adhering to the soil matrix. The mobile species are described by
PDEs, the immobile by ODEs, and all these equations are generally coupled. Reactions
that occur between mobile and immobile species are called heterogeneous.
There are, in principle, two classes of heterogeneous reactions as far as the structure
of the resulting equations is concerned:

- sorption reactions.

- mineral reactions
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8.1 Sorption reactions

A micro-scale model of sorption: The surface of the solid skeleton consists of
one or more minerals (e.g., FeOH). The mineral particles located on the surface of
the soil matrix can react with ions of the fluid (e.g., with H+,Ca2+, SO2−

4 to form
FeOH+

2 ,FeO
−,FeOCa+,FeSO−4 ). The FeOH surface particle is called free sorption site

(=uncomplexed surface site), the reaction product (also immobile) as occupied sorption
site (=complexed surface site). The reactions can often be described (approximately)
by the LMA, both kinetically and in local equilibrium.
A more detailed model: Double Layer Model (see [Be96] Chap. 8)Ȧssumption: The surface can get a
net charge; surface charge density

σ =
Fnw
A

∑
i

zimi [C/m
2],

where F =96.48 Coulomb/mole is Faraday’s constant, nw is the amount of water in kg per volume,
zi ∈ Z is the charge of the sorption sites, mi is the molarity of the sorption sites (in moles per
kg of water) and A is the size of the surface area per volume. Assumption: A layer with ions (e.g.
H+,Ca2+,SO2−

4 ) is formed in the fluid, which compensates this surface charge (→ double layer). The
advective velocity near the edge (Poiseuille flow profile) is very low, i.e., transport in the boundary
layer is completely dominated by diffusion (thermal motion) and electrostatic forces. The description
of these electrostatic forces as well as some approximations lead to the fact that the ’effective’ rate at
which the reaction proceeds (which is determined by the rate at which ions advance to the surface)
can be described by a reaction rate parameter

k = k0 exp
(ΨF
RT

)
,

where T is the temperature in Kelvin, R is the universal gas constant in joules/(Kelvin times mo-
le)=volts times coulombs per Kelvin times mole, and Ψ is the electrostatic potential of the surface.
The argument of the exponential function follows from the relationship between surface charge density
and the potential:

σ =
√
8 · 103RTϵϵ0I sinh

( ΨF

2RT

)
and the above formula which relates the surface charge density to the molarities (i.e., concentra-

tions) zi. Here I is the ionic strength in the fluid and ϵ0=8.85·10−12 and ϵ=78.5 at 25 degrees Celsius.

General (macroscopic) multicomponent model. In a general multicomponent
problem, we have two phenomena that complicate both analysis and numerics:

- both mobile and immobile species.

- both kinetic and equilibrium reactions

A model that includes both of these difficulties has the structure(
∂tc⃗+ Lc⃗ ∂ts⃗

)
= Seq r⃗eq + Skin R⃗kin(c⃗, s⃗)

Req(c⃗, s⃗) = 0

Where c⃗ and s⃗ are the vectors of mobile and immobile species concentrations, respec-
tively, and R⃗ = (R⃗T

eq, R⃗
T
kin)

T is a vector of given rate functions, e.g., according to the
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MWG. If we divide the stoichiometric matrix further according to

S = (Seq|Skin) =
(
Smob

)
=

(
Smob
eq Smob

kin

Simmo
eq Simmo

kin

)
,

so this can also be written as

∂tc⃗+ Lc⃗ = Smob
eq r⃗eq + Smob

kin R⃗kin(c⃗, s⃗)

∂ts⃗ = Simmo
eq r⃗eq + Simmo

kin R⃗kin(c⃗, s⃗)

Req(c⃗, s⃗) = 0.

The equilibrium condition (see Sec. 5.4) in the case of the law of mass action reads

(Smob
GG )T ln c⃗+ (Simmo

GG )T ln s⃗ = ln K⃗ .

Three-species sorption model. Often, instead of the general multi-species model,
a three-species model is used with a sorption reaction:

αC + β S −→←− CS

Where C is a mobile substance (concentration: c), S denotes the free sorption sites
(’concentration’: s̃), and CS denotes the complexed sorption sites (’concentration’: s).
In most cases, β=1. We can decide whether to describe the reaction as kinetic or as a
equilibrium reaction:

Kinetic model: Assuming the LMA, the reaction rate is

R(c, s, s̃) = kv c
α s̃β − kr s ,

and the mass conservation is described by

∂tc+ Lc = −αR(c, s, s̃)
∂ts̃ = −βR(c, s, s̃)
∂ts = R(c, s, s̃)

Simplification can be achieved by making further assumptions, e.g. that s̃ is approxi-
mately constant42 or has little effect on the rate. Then

R(c, s, s̃) ≈ k̃v c
α −kr s = kr

(kv
kr
cα−s

)
=: K (φ(c)−s).

A function φ in this model is called isotherm43; the function φ(c)= kv
kr
cα hei ßt Friendly

isoterms. The isoterm model of sorption (kinetic) is

∂t(c−αs) + Lc = 0
∂ts = K (φ(c)−s)

42This assumption is justified if s<<s+s̃; note also: βs+s̃=const
43although it has nothing to do with temperature
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Equilibrium model: Assuming again that s̃ is approximately constant or that the equi-
librium point hardly depends on s̃, we get from

∂tc+ Lc = −αr
∂ts = r
R(c, s) = 0

that
∂t(c+αs) + Lc = 0
R(c, s) = 0 .

Assuming further that the equation R(c, s)=0 has a resolution function s=ψ(c), the
isoterm model of sorption (at equilibrium) is:

∂t(c+αψ(c)) + Lc = 0.

The function ψ is called equilibrium isoterm. There are different models for ψ. The
equilibrium isoterm fitting the Freundlich kinetic model is obviously ψ(c)=const · cα.

Without the assumption s̃=const one gets, for α=β=1, obviously s̃+s=const=:KS

(which is also graphically quite clear); the equilibrium condition according to the LMA
is s=Keqcs̃. Combination yields s=Keqc(KS−s), which translates to

s = KS
Keq c

1 +Keq c
=: ψ(c) .

Above ψ is called Langmuir isoterm. Allowing general α, we obtain the generalized
Langmuir isoterm

ψ(c) = KS
Keq c

α

1 +Keq cα
.

8.2 Reactions with minerals

In a three-species model, a mineral reaction (”precipitation-dissolution reaction”) con-
sisting of two partial reactions is

αA+ β B −→ C (precipitation (German: Ausfällung)),
αA+ β B←− C (dissolution (German: Auflösung, in Lösung gehen)).

Here C is an immobile component of the soil matrix, and A,B are mobile substances
(i.e., ions). There are also more complicated mineral reactions:∑

i

αi Ai
−→←− C +

∑
i

βi Bi ,

where C is again the mineral and Ai,Bi are mobile species. Of course, there are often
multiple such reactions in a system. However, usually assumed that there is only one
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reaction in every mineral reaction; thus, the block of mineral reactions, when all mobile
species Xi are placed on one side (i.e., allowing signed sij∈R) is∑

i

sij Xi
−→←− Cj , j = ...

which in the stoichiometric matrix makes a block

(
Smin

−Id

)
.

The main feature of reactions involving minerals is that the activity of minerals is assu-
med to be constant (w.l.o.g. =1), i.e., the rate of the dissolution reaction is independent
of the mineral concentration44. The LMA for the three-species model formulated in ac-
tivities

R(c1, c2, c3) = kv a1(c⃗)︸ ︷︷ ︸
≈c1

αa2(c⃗)︸ ︷︷ ︸
≈c2

β − kr a3(c⃗)︸ ︷︷ ︸
≈1

thus becomes
R(c1, c2) = kv c

α
1 c

β
2︸ ︷︷ ︸

=:Rprec(c1,c2)

− kr︸︷︷︸
=:Rdiss

.

The corresponding equilibrium condition is

cα1 c
β
2 =

kr
kv

=: Keq .

The constant Keq is called solubility product (German: Löslichkeitsprodukt) of the mi-
neral C (the term might be familiar from school chemistry lessons). The independence
of the rate from the mineral concentration has a weighty implication: For mineral con-
centration c3 −→ 0, in general the negatively signed source term of the c3 differential
equation does not go to zero, i.e., the source term for c3 can be negative even if c3=0;
the non-negativity of c3 would thus not be assured (see Fig. 8). Thus, the model must be
modified. For c3=0, the condition 0≤Rdiss≤Rprec must hold (instead of: Rprec=Keq).
A possible description is therefore (see publications by Knabner & vanDuijn):

∂tc1 + Lc1 = −α r
∂tc2 + Lc2 = −β r
∂tc3 = r

where r ∈ kvcα1 c
β
2 − krH(c3),

und where H is the set-valued Heaviside-’function’

H(x) =


{1}, x>0
[0, 1], x=0
{0}, x<0 .

44As a justification, it can be argued that the surface size of the mineral is assumed to change little
as the amount of the mineral changes. There are also models in which one tries to model the size of
the mineral surface (as a function of the amount of mineral) as well and have the rate depend on the
surface size
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Abbildung 8: The arrows indicate possible changes of the concentration vector (spatial
transport & other reactions ignored). The bold L-shaped line indicates the steady
states. On the vertical bold line the solution is saturated, on the horizontal the mineral
is completely dissolved.

The solution generally has quite low regularity (see exercise); t 7→ c3(t, x) can be
discontinuous (jump)!45 In the thesis of J. Hoffmann (Univ. Erlangen, 2009) the model

∂tc1 + Lc1 = −α r
∂tc2 + Lc2 = −β r
(c3=0 ∧ ∂tc3−kvcα1 c

β
2 + kr≥ 0) ∨ (c3≥0 ∧ ∂tc3−kvcα1 c

β
2 + kr= 0)

is used and equivalence to the above representation is proven.
A condition of the above form, i.e.,

(fi(x⃗)≥0 ∧ xi=0) ∨ (f(x⃗)=0 ∧ xi≥0)

is called complementarity condition (CC). Such a condition can always be equivalently
rewritten as

fi(x⃗) · xi=0 ∧ fi(x⃗)≥0 ∧ xi≥0.

A problem containing (a) complementarity conditions(s) is called complementarity
problem (CP). A CP is called linear if the fi(s) is/are linear. CPs can be rewritten
into so-called variational inequalities (VI); there is a whole theory on CPs/VIs (see
the book Kinderlehrer, Variational Inequalities) as well as on numerical solution
procedures for these problems. These solution methods were developed in the field

45In Knabner & vanDuijn at jump points the derivative ∂tc3 is understood in the sense of
lim

ϵ→0,ϵ>0
∂tc(t+ϵ).
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of optimization (because optimization problems with inequality constraints can be
written as CPs via their ’KKT’ condition).
Regarding the associated equilibrium problem: There are (see also sketch) two cases
of equilibria:46 1. Rprec=Rdiss (and c3≥0), corresponds to: solution is saturated
2. c3=0 and Rprec≤Rdiss, corresponds to: mineral is totally dissolved

This can be summarized as the CC

(c3=0 ∧ cα1 c
β
2≤Keq) ∨ (c3≥0 ∧ cα1 c

β
2 =Keq)

or equivalently
(Keq−cα1 c

β
2 ) · c3 = 0 ∧ c3≥0 ∧ Keq−cα1 c

β
2≥0 ,

which has to be solved together with the equilibrium conditions

∂tc1 + Lc1 = −α r
∂tc2 + Lc2 = −β r
∂tc3 = r

or, for short,
∂t(c1+αc3) + Lc1 = 0
∂t(c2+βc3) + Lc2 = 0 .

Alternatively, the PDEs can be rewritten with the introduction of a reaction invariant
η :=βc1−αc2 to be

∂tη + Lη = 0
∂t( c1︸︷︷︸

= 1
β
(η+αc2)

+αc3) + L c1︸︷︷︸
= 1

β
(η+αc2)

= 0

which together with the CC represents three equations for the three unknowns η, c2, c3.
The advantage of this last representation is that the equation for η is decoupled. For
the decoupling it is exploited that η was formed as linear combination of only mobile
species.
Numerical Solving. Numerical solving of nonlinear PDEs generally requires a dis-
cretization in space and time and the application of Newton’s method (or a similar
iterative method) for the reduction to linear systems of equations. But how does one
treat complementarity constraints, i.e., inequalities? There are various methods deve-
loped in the field of optimization for solving CPs numerically. A rather simple one is
the following: One chooses a function φ : R2 −→ R with the property

φ(a, b)=0 ⇐⇒ ab=0 ∧ a≥0 ∧ b≥0 .

46You can observe this yourself if you pour salt into a glass of water: If you take little salt (so
little that the product of sodium and chlorine ions is less than the solubility product), then the salt
dissolves completely. Otherwise, only as much dissolves as results from the solubility product (i.e., the
amount of dissolved ions does not increase further if the amount of salt is increased); the solution is
then saturated, and the rest remains undissolved as a solid on the bottom of the glass.
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Examples for functions with this property are φ(a, b)=min{a, b} and φ(a, b)=a+b−√
a2+b2. One can then rewrite the CC (which contains inequalities) equivalently into

an equation(!)
φ(fi(x⃗), xi)=0 ;

note that the inequalities have ’disappeared’. The price to pay for this is: The above
functions φ are not very smooth, they do not fulfill the regularity requirements which
are classically needed for Newton’s method (i.e., function differentiable, derivative Lip-
schitz continuous). However: In the 1990s it turned out that one can extend the theory
of Newton’s method to functions of quite low regularity, to so-called strongly semis-
mooth functions (the definition of this class of functions is quite technical); the Newton
method for such functions is, like the classical Newton method, locally quadratically
convergent; it is called semismooth Newton method. Regarding the implementation of
the semismooth Newton method, it is exactly the same as the classical Newton’s me-
thod, up to the fact that if you need the Jacobian at a point of no differentialbility,
just take the right-hand or the left-hand derivative – as you like.
Other methods for nonlinear CPs include so-called interior point methods and active
set strategies (see books on Numerical Methods for Restricted Optimization Problems).

General multispecies model with mineral reactions.
The scope of the model:

- several minerals / mineral reactions, but all in equilibrium,

- besides further equilibrium reactions (divided into sorption reactions and reacti-
ons within the mobile phase (aqueous reactions)),

- further kinetic reactions (both sorption reactions and reactions within the mobile
phase, but no mineral reactions).

The stochiometric matrix has the block structure:

S =

 S1
mob S1

sorp S1
min S1

kin

0 S2
sorp 0 S2

kin

0 0 −Id 0


The first three columns contain equilibrium reactions, in the fourth column kinetic
reactions. The first row belongs to mobile species, the other two rows to immobile spe-
cies, the first the sorption sites, then the minerals. The vector of (unknown) equilibrium
reation rates is accordingly divided into req = (rTmob, r

T
sorp, r

T
min)

T . The system for the
unknown cmob, csorp, cmin, rmob, rsorp, rmin is (readable from the block structure of S)

∂tcmob + Lcmob = S1
mob rmob + S1

sorp rsorp + S1
min rmin +S1

kinRkin(cmob, csorp)
∂tcsorp = S2

sorp rsorp +S2
kinRkin(cmob, csorp)

∂tcmin = −rmin
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with the equilibrium conditions, which in the case of mass action kinetics (”ST
eq ln c⃗=

ln K⃗”) read

(S1
mob)

T ln cmob − lnKmob = 0 (equil. of the aqueous reactions)
(S1

sorp)
T ln cmob + (S2

sorp)
T ln csorp − lnKsorp = 0 (equil. of sorption reactions)

φ(lnKmin−S1
min ln cmob, cmin) = 0 (equil. of mineral reactions)

where the complementarity function φ is to be applied component-wise.
In the 1980s to the 2010s, many different transformations of this system, or mostly of
models of somewhat smaller scope, have been published. A method to transform this
system into a system of reduced size (decoupling of equations, elimination of req,...),
which can then be solved numerically faster, can be found in [Habil, Kr21], variants of
it in the dissertation of J. Hoffmann, Erlangen, 2009.47

9 Appendix: Fixed-point theorems

In Sec. ?? we needed a fixed point theorem – Schaefer’s fixed point theorem – to show
the existence of a solution for the PDE model. Here in the appendix, in a chain of
(fixed point) theorems, this fixed point theorem is derived. Note that the FP theorems
appearing here always only provide the existence and never the uniqueness of a fixed
point (unlike Banach’s FP theorem).

9.1 Fixed-point theorem in finite dimensions

Theorem (Brouwer)48 Let B be the closed unit sphere in Rn with respect to the
Euclidean norm and let Z : B −→ B in C∞(B). Then Z has (at least) one fixed point,
that is, a x∈B with Z(x)=x.

Remark. In the case n=1 the validity of the statement of the theorem is graphically
obvious (make a sketch of the function, or use the intermediate value theorem on
Z − id). It is an elementary corollary of the intermediate value theorem (Zwischen-
wertsatz). The proof that follows can be given for all n∈N; however, we will restrict
ourselves to the case n=2 in one proof step to make the exposition less technical.

Proof. Suppose there is no fixed point, i.e., x ̸= Z(x) for all x ∈ B. For each x ∈ B
we consider the straight line gx(α) := x+α (x−Z(x))︸ ︷︷ ︸

̸=0

that goes through the points

x, Z(x)∈B. The line gx has exactly two intersections with ∂B (for this, realize that a
tangent orientation of gx is not possible). So there exist two different α1, α2 ∈R with

47For this method there was a prize for special efficiency of the method in connection with the
solution of an international large-scale benchmark problem [CKK10, MoMaS10] for reactive transport.

48see [GilbTrud] p. 236
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1=∥x+α(x−Z(x))∥2. This condition can be written as a quadratic equation with the
solution

α1,2=α1,2(x)=
⟨x, Z(x)−x⟩
∥x−Z(x)∥2

±

√
|⟨x, Z(x)⟩−x|2 + (1−∥x∥2)∥x−Z(x)∥2

∥x−Z(x)∥4
.

One of the solutions is nonnegative, the other nonpositive (is obvious because fpr α=0
we are at point x∈B). Let α1(x) be the nonnegative solution. Let r(x) := gx(α1) ∈ ∂B
be denoted ”the boundary point belonging to x”. The mapping

x 7−→ r(x), B −→ ∂B

is smooth since the discriminant is strictly positive and Z is smooth. Now consider the
mapping

F : [0, 1]×B −→ B, F (t, x) := x+t α1(x)(x−Z(x))︸ ︷︷ ︸
∈B

.

It is F (0, x)=x, so F (0, ·) = id : B → B.
It is F (1, x)=r(x), so F (1, ·) = r : B → ∂B.
We now compute the volume V (t) := Vol(F (t, B)) of the set F (t, B), t∈ [0, 1]:
Let JxF (t, x) be the Jacobian matrix of F formed with respect to the argument x. It
is

V (t) =
∫
B

det JxF (t, x) dx ,

V (0) =
∫
B

det Jx(id) dx =
∫
B

1 dx = Vol(B) ,

V (1) = vol(∂B) = 0 .

In order to obtain a contradiction to these findings, we will prove that d
dt
V (t) ≡ 0:

We start with

d

dt
V (t) =

∫
B

∂

∂t
det

[
∂

∂x1
F (t, x), ...,

∂

∂xn
F (t, x)

]
dx .

To simplify the representation, we assume here n=2; it is
∂
∂t

det
[

∂
∂x1
F (t, x1, x2),

∂
∂x2
F (t, x1, x2)

]
= ∂

∂x1
det
[

∂
∂t
F (t, x1, x2),

∂
∂x2
F (t, x1, x2)

]
−

∂
∂x2

det
[

∂
∂x1
F (t, x1, x2),

∂
∂t
F (t, x1, x2)

]
,

which can be elementarily checked by expansion (=Entwickung) of the determinants.
49 Now ∫

B

∂

∂x1
det

[
∂

∂t
F,

∂

∂x2
F

]
dx =

1∫
−1


x1=+
√

1−x2
2∫

x1=−
√

1−x2
2

∂

∂x1
det

[
∂

∂t
F,

∂

∂x2
F

]
dx1

 dx2

=

1∫
−1

det

[
∂

∂t
F (t, x1, x2),

∂

∂x2
F (t, x1, x2)

]∣∣∣∣x1=+
√

1−x2
2

x1=−
√

1−x2
2

 dx2 .

49A generalization of this equation to n∈N can be found in [GilbTrud], Lemma 10.12, p. 235.
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The two points (x1, x2) occurring in that expression lie on the boundary of B, but
there x= r(x) holds, so α1(x) = 0, so F (·, x) = x for these points x, so ∂

∂t
F (t, x) = 0

for x = (±
√

1− x22, x2). Thus it follows that
∫
B

∂
∂x1

∫ [
∂
∂t
F, ∂

∂x2
F
]
dx=0. Similarly, one

shows that
∫
B

∂
∂x2

det
[

∂
∂x1
F, ∂

∂t
F
]
dx = 0. Thus it follows that d

dt
V (t) ≡ 0, which is a

contradiction to V (1) ̸=V (0). 2

Relaxation of the regularity requirement:

Satz (Brouwer’s fixed point theorem) (actually, P. Bohl, 1904, was the author of
this version)
Let B be as above, let Z : B −→ B be continuous. Then Z has a fixed point.

Proof. Let Z = (Z1, ..., Zn), that is Zi : B −→ [−1, 1]. According to the Weierstraß
approximation theorem there is sequence of polynomials Zk

i : B −→ R with |Zk
i (x)−

Zi(x)| ≤ ϵ∀x ∈B ∀ k ≥K(ϵ).50 Because of the equivalence of norms in Rn, it follows
that ∥Zk(x)−Z(x)∥≤

√
n ϵ. We set Z̃k(x) := (1−

√
n ϵ)Zk(x). Then Z̃k : B −→ Rn is

a C∞-function, and its image is, for ϵ≤ 1√
n
, in B, since

∥Z̃k(x)∥ = (1−
√
n ϵ)︸ ︷︷ ︸

≥0

∥Zk(x)∥ ≤ (1−
√
n ϵ)

(
∥Z(x)∥︸ ︷︷ ︸
≤1

+ ∥Zk(x)−Z(x)∥︸ ︷︷ ︸
≤
√
nϵ

)
≤ (1−

√
n ϵ) (1+

√
n ϵ) = 1−nϵ2 ≤ 1

Hence, the C∞-version of the FP theorem can be applied to Z̃k. Let xk be the resul-
ting fixed point of Z̃k. By the Bolzano–Weierstraß theorem, the sequence (xk) has a
subsequence, denoted again by (xk), which converges to an x ∈ B (since B is closed
and bounded). It follows

∥Z(x)−x∥ ≤ ∥Z(x)−Z(xk)∥︸ ︷︷ ︸
=:(I)

+ ∥Z(xk)−Z̃k(xk)∥︸ ︷︷ ︸
=:(II)

+ ∥Z̃k(xk)−xk∥︸ ︷︷ ︸
=0

+ ∥xk−x∥︸ ︷︷ ︸
→0

Term (I) converges to zero for k → ∞ since Z is continuous and xk → x. Term (II)
converges to zero since Z̃k converges uniformly to Z. It follows Z(x)=x. 2

Theorem (further generalization). Instead of a ball B in the above sentences, one
can take any set B̃ ⊂ Rn which is homeomorphic to B (i.e., there exists a bijective
continuous mapping from B to B̃ whose inverse mapping is also continuous). 51.

50The direct application of the above C∞-version of the FP-theorem to these C∞-functions Zk fails
because in general these polynomials do not map into B.

51In an illustrative and somewhat simplifying diction, this means that one can take closed sets which
have no holes, and whose edges can even have corners/bends with angles strictly between 0 and 2π
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Proof. Let H : B −→ B̃ be a homeomorphism and let Z : B̃ −→ B̃ be continuous.
Then Z̃ := H−1 ◦Z ◦H : B −→ B is continuous, so by the above theorem it has a fixed
point x∈B. It follows that Z ◦H(x)=H(x), i.e., Z has the fixed point H(x)∈B̃. 2

9.2 Fixed point theorems in Banach spaces

It is now our goal to extend the above existence result for fixed points to arbitrary (in
general infinite-dimensional) Banach spaces.

Theorem (Schauder’s fixed point theorem), (Schauder 1930, see [Evans] p. 502).
Let X be a real Banach space. Let K⊂X be compact and convex. Let Z : K −→ K
be continuous. Then Z has a fixed point.

Proof. Let ϵ > 0. The set of all open balls B(x, ϵ), where x ∈ K, trivially forms an
open covering of K. Since K is compact, there must be a finite covering B(xi, ϵ),
i=1, ...,m=m(ϵ) of K:

K ⊆
m⋃
i=1

B(xi, ϵ)

Let Kϵ be defined as the convex hull of the set {x1, ..., xm}:

Kϵ :=

{
x=

m∑
i=1

λixi |λi≥0 ,
m∑
i=1

λi=1

}
We have Kϵ⊆K, since xi∈K and since K is convex.
Kϵ⊂X is homeomorphic52 to a polyhedron (:=intersection of half-spaces) in Rn. Thus,
by the last theorem of Chap. 9.1, every continuous mapping from Kϵ to Kϵ has a fixed
point.
First we define fϵ : K −→ Kϵ by

fϵ(x) :=

m∑
i=1

dist(x,K\B(xi, ϵ))xi

m∑
i=1

dist(x,K\B(xi, ϵ))
∈ Kϵ ∀x∈K .

The mapping is well-defined, since in the denominator for arbitrary x not all summands
can vanish at the same time. The mapping is continuous, since ’dist’ is continuous. It
holds

∥fϵ(x)−x∥ ≤

m∑
i=1

dist(x,K\B(xi, ϵ)) ∥xi−x∥
m∑
i=1

dist(x,K\B(xi, ϵ))
≤ ϵ ;

52If one assumes that the xi are linearly independent in X (which one can do without loss of
generality), then one can take as homeomorphism the mapping H : Rm → X which maps the vector
λ = (λ1, ..., λm) to the associated x (see definition of Kϵ).
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where the last inequality holds because for each x and i either x ∈ B(xi, ϵ), thus
∥xi−x∥≤ϵ, or dist(x,K\B(xi, ϵ))=0.
Now let us define

Zϵ : Kϵ −→ Kϵ, Zϵ(x) := fϵ(

∈K︷ ︸︸ ︷
Z( x︸︷︷︸
∈Kϵ

))︸ ︷︷ ︸
∈Kϵ

.

Being a composition of continuous functions, Zϵ is continuous. According to the above
considerations about Kϵ, Zϵ has a fixed point xϵ ∈ Kϵ ⊆ K. Let (ϵj) be a positive
sequence that converges to zero. Since K is compact, there exists a subsequence, again
denoted by (ϵj), such that (xϵj) is convergent to an x∈K. We show that this x is a
fixed point of Z:

∥x−Z(x)∥ ≤ ∥x−xϵj∥︸ ︷︷ ︸
→0

+ ∥xϵj−Zϵj(xϵj)∥︸ ︷︷ ︸
=0

+

≤ϵj︷ ︸︸ ︷
∥ Zϵj(xϵj)︸ ︷︷ ︸
=fϵj (Z(xϵj ))

−Z(xϵj)∥+ ∥Z(xϵj)−Z(x)∥︸ ︷︷ ︸
→0 since Z continuous

(j→∞)−→ 0

Hence, x=Z(x). 2

Definition (compact mapping). Let X, Y be Banach spaces. A (possibly nonlinear)
mapping Z : X −→ Y is called compact if Z is continuous and for every bounded set
M⊂X it holds that Z(M) is compact.

Theorem. A mapping Z : X −→ Y is compact if and only if every bounded sequence
(xn) in X has a subsequence (xnk

) such that (Z(xnk
)) is convergent in Y . (In short,

under Z bounded sequences become convergent sequences.)

From Schauder’s fixed point theorem one can deduce Schaefer’s fixed point theorem:53

Theorem (Schaefer’s fixed point theorem [Schae55]). Let Z : X −→ X be
compact and the set

M := {x∈X | ∃λ∈ [0, 1] : x=λZ(x)}

be bounded. Then Z has a fixed point.

Motivation/application: Schaefer’s theorem, unlike Schauder’s, does not require
identifying a suitable compact convex set. Instead, the compactness of an operator
has to be shown, which can often be done easily in the context of PDE problems by
recourse to known results about the compact embedding of function spaces into other

53Schaefer’s fixed point theorem can be regarded as a special case of the fixed point theorem of
Leray–Schauder. The latter is considerably better known than the former, although the former is
generally more convenient to use.
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function spaces.

Proof. Let c be a bound of the set M , but not the smallest bound. Set

Z̃ : X −→ X, Z̃(x) :=

{
Z(x), if ∥Z(x)∥ ≤ c
cZ(x)
∥Z(x)∥ , if ∥Z(x)∥ > c

(”truncation of Z”). It follows ∥Z̃(x)∥≤ c ∀x∈X, so in particular

Z̃(B(0, c)) ⊆ B(0, c) and therefore Z̃(Z̃(B(0, c))) ⊆ Z̃(B(0, c)). (∗)

We now consider the restriction of Z̃ to the domain of definition Z̃(B(0, c)): We have,
c.f. (*),

Z̃ : Z̃(B(0, c)) −→ Z̃(B(0, c)) .

Now let K be the closure of the convex hull of Z̃(B(0, c)). Then we have

Z̃(B(0, c)) ⊆ K ⊆ B(0, c),

where the first inclusion is trivial, and the second holds since B(0, c) is already a
convex closed set containing (after (*)) Z̃(B(0, c)), and K is the smallest convex closed
set containing Z̃(B(0, c)). Thus, considering Z̃ restricted to K we get,

Z̃ : K −→ Z̃(K) ⊆ Z̃(B(0, c)) ⊆ K .

Since Z is a compact mapping, Z̃ is also a compact mapping. Furthermore, since

B(0, c) is a bounded set, Z̃(B(0, c)) (by definition of compact mapping) is a compact
set. From this, using the definition of K as a closed convex hull, we can conclude that
K is compact. We can apply Schauder’s fixed point theorem to this Z̃ : K → K,
because K is convex and compact, and Z̃ : K → K is continuous. It follows that there
exists a fixed point x∈K: Z̃(x)=x.

It is now also Z(x)=x. To see this, suppose that this is false. Then by definition of Z̃

it must hold that ∥Z(x)∥>c (for otherwise Z(x)= Z̃(x)=x). So it is x= Z̃(x)= cZ(x)
∥Z(x)∥ .

From this follows on the one hand ∥x∥=c, but on the other hand x=λZ(x) with λ :=
c

∥Z(x)∥ ∈ [0, 1], hence x∈M , so ∥x∥<c by definition of the bound c. Contradiction. 2
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