Announcement

Seminar ,Neural Network Approximation“

Course type: Seminar, 2 semester hours per week, 5 ECTS, Summer term 2024
Contact person: PD Dr. Cornelia Schneider schneider@math,fau.de

Content: The last decades observed a tremendous success of artificial neural networks in many
machine learning tasks, including computer vision, speech recognition, natural language proces-
sing, or games solutions to name just a few. Despite their wide use, many of their properties are not
fully understood and many aspects of their great practical performance lack a rigorous explanation.
In this seminar we look at how neural networks operate from the mathematical perspective,
having in mind that the success of the neural networks methods should not be determined by
trial-and-error or luck, but by a clear mathematical analysis. The topics therefore cover a mixture
of good old classical mathematics and modern concepts of deep learning. In particular, we will be
concerned with the approximation and expressive powers of neural networks.
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A neural network is a collection of computing units,
which are connected together, called neurons, each
producing a real-valued outcome, called activation. In-
put neurons get activated from the sensors that percei-
ve the environment, while the other neurons get activa-
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ted from the previous neuron activations. This struc- - ,)‘ 'v"‘vv"‘v
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ves and consequently, to straighten those connections
that lead to success in solving a problem and diminis-
hing those which are leading to failure.

The simplest neural network is called perceptron and
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consists of a single hidden layer having 1 hidden neu- e .
ron with activation function o. For example, if o is the . \ - function.
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Therefore, using several neurons (instead of 1) in a sin- a b

gle hidden layer and choosing the weights and biases
appropriately, the output of a neural network can be a
simple function.

Figure a. The separation of the plane into half-planes. b. The graph of

the activation function for a perceptron with two inputs, xy and x.

The universal approximation theorem states that any conti-
nuous function f : [0,1]™ — [0,1] can be approximated arbitrarily
well by a neural network with at least 1 hidden layer using a fi-
nite number of weights: More precisely, for adequate activation
functions the finite sums of the form
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are dense in C([0,1]™), i.e., given f € C(]0,1]") and ¢ > 0 there is a
sum G(x) of the above form for which

|G(z) — f(z)] < e for all z € [0, 1]".



The topics we cover within this seminar vary from simple to complex and include:

(1) Introduction to neural networks

- First examples

- Activation functions of sigmoid type (e.g. logistic, hyperbolic tangent, arctangent), hockey-
stick type (e.g. ReLU) or bumped type (e.g. Gaussian, double exponential)

Sigmoid Tanh RelLU Leaky RelLU
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- Cost functions (error function, loss function): During the learning process a neural network
has to adjust parameters such that a certain cost function gets minimized.

— Neurons: The simplest building block of a neural network where the computation is done
(e.g. perceptron, sigmoid neuron)

— Architecture of a neural network as well as the backpropagation method used for training
(2) Approximation theorems and their applications to neural networks

— Dini’s Theorem, Arzela-Ascoli’s Theorem, Stone-Weierstrass’ Theorem, Wiener’s Tauberian
Theorems, Contraction Principle

(3) Neural networks as universal approximators

— What kind of functions can be learned by one-hidden layer neural networks?

~ neural network approximation of continuous functions f € C([0,1]"), square integrable
functions f € L*([0,1]"), integrable functions f € L!([0,1]"), or measurable functions f €
M([0,1]™)

(4) Advanced research-related topics (for master students)

- based on the recent papers [3] and [4]

The topic of the seminar can be the starting point for a bachelor or master thesis.

Prior knowledge: 'Mathematics for Data Science I+II’ or the basic 'Analysis’ and 'Linear Algebra’
modules. For the more advanced topics 'Functional Analysis’ might be helpful.

Course achievement/ Academic assessment: Presentation (90min) and handout (approx. 5 pa-

ges)
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