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1. Introduction and Overview
The scope of the Białowieża workshops on Geometric Methods in Physics
has been wide throughout the history of this long-running series, including
various different areas of mathematics and physics. In line with this approach,
the present chapter reviews the recently introduced twisted Araki–Woods
algebras [15] and highlights their connections to various topics, including
quantum field theory, operator algebras, free probability, and braided vector
spaces.

Twisted Araki–Woods algebras are a family of von Neumann algebras
naturally represented on certain twisted Fock spaces FT (H) built on the
basis of a Hilbert space H (the single particle space) and a “twist”, namely a
selfadjoint operator T on H⊗H satisfying a subtle positivity condition. The
twisted Araki-Woods algebras LT (H) then depend on two data: The twist T
and a specific real linear subspace H ⊂ H (a standard subspace).

In Section 2, we will review the general formalism of twisted Fock spaces,
due to Bożejko and Speicher [8] and Jørgensen, Schmitt and Werner [27].
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Depending on the field of application, the twist has various different inter-
pretations, for instance a two-particle interaction in QFT, a deformation of
a free group factor in free probability, or the braiding underlying a Nichols
algebra. As an original contribution to these proceedings, and to connect to
the other talks in the Yang-Baxter session of the workshop, we will in partic-
ular explain how set-theoretic solutions to the Yang-Baxter equation fit into
this framework, but also discuss examples from quantum field theory.

The twisted Araki-Woods algebras LT (H) are defined in Section 3,
which also contains a concise introduction to standard subspaces for the
non-expert reader. Depending on the relative position of T and H, we ob-
tain a wide range of von Neumann algebras LT (H). This section reviews our
recent results about cyclic and separating Fock vacuum from [15], deriving
the crossing symmetry from elementary particle physics and the Yang-Baxter
equation from an operator-algebraic framework. We also give an account of
known results on the internal structure of these algebras for special choices
of T and/or H. This review is accompanied by examples from QFT and set-
theoretic solutions to the YBE. In the latter case, we give a new motivation
for considering non-degenerate solutions. In Section 4 we sketch applications
to constructive quantum field theory which depend on families of twisted
Araki-Woods algebras.

2. Twisted Fock spaces in quantum physics and operator
algebras

Fock spaces and second quantization procedures appear in many variants in
physics and mathematics, linking multi-particle quantum systems, quantum
field theory, operator algebras, free probability, and braided vector spaces.
In this section we review some of these connections before giving the general
definition of twisted Fock space that we will use.

In quantum physics, Fock spaces describe a multi-particle system in
terms of a corresponding single-particle quantum system by assigning a multi-
particle Fock Hilbert space F(H) to a single-particle Hilbert space H. Ac-
cording to this idea, F(H) is defined as a direct sum over “n-particle spaces”,
namely certain subspaces of the tensor powers H⊗n, n ∈ N0, where H⊗0 := C.
In order to account for distinguishable or indistinguishable particles with
Bose/Fermi statistics, one considers different kinds of Fock spaces (including
in particular symmetric/antisymmetric/unsymmetrized versions).

What makes Fock spaces mathematically interesting is that in addition
to their Hilbert space structure they also have algebraic structure. For ex-
ample, the unsymmetrized (also called “full” or “Boltzmann”) Fock space
F0(H) =

⊕∞
n=0 H⊗n is the Hilbert space completion of the tensor algebra

of H, which inherits a ∗-structure from the Hilbert space and acts (from the
left) on F0(H) in terms of creation and annihilation operators a∗(ξ), a(ξ),
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ξ ∈ H, defined by

a∗(ξ)ψ1 ⊗ . . .⊗ ψn := ξ ⊗ ψ1 ⊗ . . .⊗ ψn, n ∈ N, ψk ∈ H, (2.1)

and a(ξ) := a∗(ξ)∗. These operators satisfy the Cuntz relations a(ξ)a∗(η) =
〈ξ, η〉·1 and generate a C∗-algebra closely related to the Cuntz algebra OdimH
[19, 25].

In a similar fashion, the Bose/Fermi Fock spaces come automatically
with a representation of the CCR/CAR algebras and their respective C∗-
closures over H [9]. These operators again act by creation/annihilation op-
erators on the Fock space, but satisfy different commutation relations as a
consequence of the symmetry/antisymmetry of the Fock space. Both versions
are subsumed in the q-deformed relations

a(ξ)a∗(η)− q · a∗(η)a(ξ) = 〈ξ, η〉 · 1, (2.2)

which turn into Bosonic/Fermionic relations for q = 1 and q = −1, respec-
tively. Starting from the commutation relations (2.2) for general parameter
−1 ≤ q ≤ 1, it is however less clear whether a Hilbert space representation
exists. A proof of this fact has been given by Bożejko and Speicher [7] using
a q-twisted Fock space. This representation can be interpreted either as a
generalized Brownian motion or as generalized statistics, and already shows
the usefulness of going beyond the usual Bose/Fermi Fock spaces.

The q-deformed relations can be significantly generalized by considering
quadratic exchange relations of the form

aia
∗
j −

∑
k,l

T klij a
∗
l ak = δij1 (2.3)

(often called “Wick algebras” because they allow for a form of normal or-
dering) and asking for which coefficients T klij a Hilbert space representation
exists. The idea is that ak = a(ek) should correspond to annihilation opera-
tors on some Fock space, evaluated on a vector ek from an orthonormal basis
of H, and the sum in (2.3) is initially only defined in case it is finite.

Taking into account that on a Fock space, the Fock vacuum vector
Ω = 1 ⊕ 0 ⊕ 0 ⊕ . . . induces the state ω = 〈Ω, ·Ω〉 on the Wick algebra and
the annihilation operators should map Ω to 0, led Jørgensen, Schmitt and
Werner to study Fock-type GNS representations of Wick algebras and derive
criteria on the coefficients T klij for their positivity [27]. This leads to Fock
spaces in which the n-particle spaces depend on an operator T defining the
coefficients T klij , as will be reviewed below.

Wick relations of a related but different form also appear in the work
of the Zamolodchikov brothers [55] and Fadeev [20] on quantum integrable
systems. Here the physical idea is to consider creation/annihilation type op-
erators Z∗(θ), Z(θ) representing particles on a spatial line with rapidity θ ∈ R
and obeying relations of the form

Z(θ)Z∗(θ′) = S(θ′ − θ) · Z∗(θ′)Z(θ) + δ(θ − θ′) · 1, (2.4)
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where S : R → C is a given function satisfying various properties that ensure
that it can be interpreted as the elastic two-body S-matrix (here for simplicity
taken to be scalar). Such relations are clearly reminiscent of the quadratic
Wick relations (2.3), but have to be understood in terms of distributions.
That is, only some “smeared” form of (2.4), i.e. integrated in θ and θ′ against
test functions, has meaning in terms of actual operators. Due to the factor
S(θ − θ′), this goes beyond the finite sums in (2.3) when S is not constant.
For such scenarios, it is better to define the algebra of interest directly in
a Fock representation, which begs the question of how to define a suitable
Fock space in the first place [29, 35]. Once constructed, such algebras are of
prominent importance in the construction and analysis of integrable quantum
field theories [6, 30,48].

As Nichols algebras, twisted Fock spaces also appear in the context of
braided vector spaces1. Here the starting point is a one-particle space H with
a braiding, that is a bounded operator T : H ⊗ H → H ⊗ H satisfying the
Yang-Baxter equation2

T1T2T1 = T2T1T2. (2.5)
One then considers the quantum symmetrizer, namely the map, n ∈ N,

PT,n :=
∑
π∈Sn

ρT,n(π) ∈ B(H⊗n), (2.6)

where Sn is the symmetric group on n letters with its usual Coxeter genera-
tors τi, and ρT,n(τi1 · · · τil) := Ti1 · · ·Til is well-defined for any reduced word
τi1 · · · τil by Matsumoto’s Theorem [37].

The Nichols algebra [43], a braided Hopf algebra naturally associated
with the braiding T , can explicitly be defined as the quotient vector space3⊕∞

n=0 H⊗n/ kerPT,n, and has various applications in mathematics and physics
(see, for example, [38, 45,53]).

This is essentially the same structure as the twisted Fock spaces intro-
duced below. The focus for us is, however, less on the Hopf algebraic but more
on the functional analytic structure. Remarkably, the Nichols algebra is also
a pre-Hilbert space in a natural way because the quantum symmetrizers PT,n
are positive operators for all n ∈ N in case ‖T‖ ≤ 1, as shown by Bożejko
and Speicher [8].

To set the stage for the following investigations, we now pass to the
precise definitions. Throughout the rest of the article, H will denote a complex
Hilbert space. Since we want to describe a family of Fock spaces over H that
includes all the scenarios mentioned above (and many more), we will need a
form of the quantum symmetrizer that can be defined without requiring the

1Many thanks go to Leandro Vendramin for pointing this out to me.
2We will use the standard tensor notation Tk := 1⊗(k−1) ⊗ T ⊗ 1⊗(n−k−1) ∈ B(H⊗n)

throughout.
3In the purely algebraic context, H can be an arbitrary vector space, and the algebraic
tensor product is used.
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Yang-Baxter equation (2.5). Similar to [8], given an operator T ∈ B(H⊗H)
we define PT,n ∈ B(H⊗n) inductively by
PT,1 = 1, PT,n+1 = (1⊗ PT,n)(1 + T1 + T1T2 + . . .+ T1 · · ·Tn). (2.7)

Note that in case T satisfies the Yang-Baxter equation, PT,n coincides with
the quantum symmetrizer. In that case, we also have the alternative recursion
relation

PT,n+1 = (PT,n ⊗ 1)(1 + Tn + TnTn−1 + . . .+ Tn · · ·T1). (2.8)
In general, however, we have to make a choice and we here choose the “left”
version (2.7).

Definition 2.1. A twist is a selfadjoint operator in B(H⊗H) such that ‖T‖ ≤ 1
and PT,n ≥ 0 for all n ∈ N. A twist is called strict if kerPT,n = {0} for all
n ∈ N.

Given any twist T , we can now introduce the new scalar products
〈 · , · 〉T := 〈 · , PT,n · 〉 on H⊗n/ kerPT,n. This constitutes the definition of
a twisted Fock space:

Definition 2.2. Let H be a Hilbert space and T a twist. The twisted Fock
space is

FT (H) =

∞⊕
n=0

H⊗n/ kerPT,n, (2.9)

where the bar indicates completion w.r.t. the norm induced by the scalar
product 〈 · , · 〉T = 〈 · , PT,n · 〉.

The family of twisted Fock spaces includes all familiar types of Fock
spaces. For example, the zero operator T = 0 is easily seen to be a strict
twist, with F0(H) equal to the full Fock space over H. As another example,
consider T = F : v ⊗ w 7→ w ⊗ v, the tensor flip on H ⊗ H. In this case,
one can check that 1

n!PT,n coincides with the orthogonal projection onto the
symmetric subspace of H⊗n, so that we get an identification with the Bosonic
Fock space over H [15]. Similarly, T = −F corresponds to the Fermi Fock
space, and T = qF to the q-twisted Fock space mentioned before.

In general, it is not straightforward to check whether a given operator T
is a twist. However, some sufficient conditions are known, which we now
summarize. Parts a) and b) are due to Jørgensen, Schmitt and Werner [27],
and part c) is due to Bożejko and Speicher [8].

Theorem 2.3. Let T = T ∗ ∈ B(H⊗H).
a) If ‖T‖ ≤ 1

2 , then T is a strict twist.
b) If T ≥ 0, then T is a strict twist.
c) If ‖T‖ ≤ 1 and T satisfies the Yang-Baxter equation, i.e.

T1T2T1 = T2T1T2, (2.10)

then T is a twist. In case ‖T‖ < 1, this twist is strict.
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Many examples of twists are discussed in [15, 16, 26]. We restrict our-
selves here to present two families of examples of braided twists, i.e. twists
satisfying the assumptions of Theorem 2.3 c). The first class of examples con-
nects to the other talks in the Yang-Baxter session of the workshop, and the
second class is connected to applications in QFT.
Example 2.4. (Set-theoretic solutions to the YBE) A set-theoretic solution of
the YBE consists of a setX and a map r : X2 → X2 such that r1r2r1 = r2r1r2
as maps X3 → X3 in standard leg notation4. Often set-theoretic solutions
are written as

r(x, y) = (λx(y), ρy(x)), x, y ∈ X, (2.11)
with maps λx, ρy : X → X. The Yang-Baxter equation can be rewritten as
a set of three equations for λ and ρ by straightforward computation, but we
will not need these here. For simplicity, we will restrict to finite sets |X| <∞,
but many parts of the subsequent analysis easily generalize to infinite sets.

Any set-theoretic solution can be linearized, i.e. we may consider the
vector space H = spanX and the unique linear operator T : H⊗H → H⊗H
given by

T (x⊗ y) = (λx(y)⊗ ρy(x)), x, y ∈ X. (2.12)
By definition, T satisfies the linear YBE (2.5). This observation by Drinfeld
[17] originally motivated the study of set-theoretic solutions to the YBE,
which is now a research field in its own right (see, for example, [11]).

To make connection to our Hilbert space setting, we equip H = spanX
with the scalar product that turns X into an orthonormal basis of H, turn-
ing H into a Hilbert space and T into a bounded operator on H ⊗H. This
operator is a candidate for a twist operator according to Theorem 2.3 c).
However, for T to be a twist it also needs to be selfadjoint and of norm
‖T‖ ≤ 1. Both these properties are not automatically satisfied.
Lemma 2.5. Let (X, r) be a set-theoretic solution of the YBE, and (H, T )
its linearization. Then T is selfadjoint if and only if T is involutive, i.e.
T = T−1. In this case, ‖T‖ = 1. Such a twist is strict if and only if r = idX2 .
Proof. If T = T ∗ is selfadjoint, we have by definition of T and H for any
x, y, x′, y′ ∈ X

δ(x′,y′),r(x,y) = 〈x′ ⊗ y′, T (x⊗ y)〉 = 〈T (x′ ⊗ y′), x⊗ y〉 = δr(x′,y′),(x,y).

This immediately implies r−1({(x, y)}) = {r(x, y)} for any (x, y) ∈ X2, so
r is bijective with r−1 = r. Hence also the linearization T is invertible and
involutive.

If, on the other hand, T = T−1 is involutive, it maps the orthonormal
basis {x ⊗ y : x, y ∈ X} onto itself. Hence T is unitary, and in view of
T = T−1 = T ∗ also selfadjoint. Clearly unitary solutions have norm ‖T‖ = 1.

A unitary involutive solution T of the YBE generates a unitary represen-
tation ρT,n of the symmetric group Sn on H⊗n by sending the transposition

4That is, r1(x, y, z) = (r(x, y), z) and r2(x, y, z) = (x, r(y, z)).
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τi ∈ Sn to Ti ∈ B(H⊗n). This implies that up to a factor n!, the quantum
symmetrizer (2.6) coincides with the orthogonal projection onto the subspace
of H⊗n consisting of all vectors invariant under this representation. Hence T
being strict, namely kerPT,n = {0}, is equivalent to PT,n = n!, which in turn
is equivalent to T = 1, i.e. r = idX2 . □

Involutive solutions to the set-theoretic YBE are a subject of current
research in the set-theoretic setting [14,18,21,46]. Up to a natural equivalence
given by the S∞-representations they generate, they have been classified in
[33].
Example 2.6. (Solutions to the YBE with spectral parameter [15]) The sec-
ond class of examples arises from the Yang-Baxter equation with spectral
parameter, as they appear in integrable quantum field theories [1]. We con-
sider a finite-dimensional complex Hilbert space V and the one-particle space
H := L2(R → V, dθ) ∼= L2(R, dθ) ⊗ V . Given any measurable function
S : R → B(V ⊗ V ) bounded by ‖S‖∞ ≤ 1 that satisfies the YBE with
spectral parameter, namely

S(θ)1S(θ + θ′)2S(θ
′)1 = S(θ′)2S(θ + θ′)1S(θ)2, θ, θ′ ∈ R,

and S(θ)∗ = S(−θ), we consider
TS : H⊗H → H⊗H, (TSψ)(θ1, θ2) := S(θ2 − θ1)ψ(θ2, θ1). (2.13)

Thanks to the properties of S, this is a selfadjoint operator of norm ‖T‖ =
‖S‖∞ ≤ 1 satisfying the YBE on H⊗3, i.e. a twist.

In the context of QFT, S models a relativistic elastic two-particle in-
teraction, and the Yang-Baxter equation is a consistency condition to allow
for a consistent factorization of a three-particle scattering process into three
two-particle processes. For concrete examples, see [1]. □

On any twisted Fock space FT (H), we have a natural unital ∗-algebra
of creation/annihilation type operators. Denoting the quotient map H⊗n →
H⊗n/ kerPT,n by [·], we set

a⋆L,T (ξ)[Ψn] := [ξ ⊗Ψn], ξ ∈ H, Ψn ∈ H⊗n, (2.14)
and extend to a densely defined operator in FT (H) by linearity. Here “L”
reminds us that we are working with the “left” version of the PT,n. The
star ⋆ will always be used to indicate adjoints w.r.t. the T -dependent scalar
product of FT (H), and we write aL,T (ξ) := a⋆L,T (ξ)

⋆ as usual.
As we shall see below, various properties of the operators a#L,T (ξ) and

certain von Neumann algebras generated by them differ sharply depending on
whether we have ‖T‖ = 1 or ‖T‖ < 1. A first indication of these two regimes is
that in the braided case, T is strict for ‖T‖ < 1 (Theorem 2.3 c)). In general,
a useful intuition to have is that in the extreme case T = 0, we are presented
with an “extremely noncommutative” free algebra (tensor algebra). The case
‖T‖ = 1, on the other hand, includes in particular T = F (the tensor flip).
This yields the CCR algebra and corresponding local quantum field theories,
which are intuitively speaking “much more commutative”.
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On a technical level, an important difference is that a#L,T (ξ) is bounded
for ‖T‖ < 1 [8], but unbounded for ‖T‖ = 1 (unless T = −F , where the CAR
relations imply boundedness).

3. Localized von Neumann algebras and standard subspaces
Given any twist T , the twisted Fock space FT (H) construction provides us
with the unital ∗-algebra generated by a#L,T (ξ), ξ ∈ H and the Fock vacuum
vector Ω ∈ FT (H). In the following we want to use these operators to generate
certain von Neumann algebras, generically denoted A ⊂ B(FT (H)) for the
time being, such that Ω is cyclic (meaning that AΩ ⊂ FT (H) is dense) and
separating (meaning that A 3 A 7→ AΩ ∈ FT (H) is injective).

A pair (A,Ω) consisting of a von Neumann algebra with cyclic separat-
ing vector is the starting point of Tomita-Takesaki modular theory [51] and
also of central importance in algebraic quantum field theory, where these
properties are consequences of the basic principles of Einstein locality and
positivity of the energy [23].

As aL,T (ξ)Ω = 0, the Fock vacuum Ω does not separate any algebra
containing aL,T (ξ), ξ 6= 0. We therefore consider the Segal type field operator

ϕL,T (ξ) := a⋆L,T (ξ) + aL,T (ξ), ξ ∈ H. (3.1)
This operator is selfadjoint and bounded for ‖T‖ < 1 and essentially selfad-
joint on the subspace of finite particle vectors for ‖T‖ = 1.

The von Neumann algebras that we want to study are of the form
LT (H) := {ϕL,T (h) : h ∈ H}′′. (3.2)

Since ξ 7→ ϕL,T (ξ) is real linear because a⋆L,T (ξ) depends linearly, but aL,T (ξ)
depends antilinearly on ξ, the set H ⊂ H can be taken to be a real linear
subspace. In view of aL,T (h) = 1

2 (ϕL,T (h) + iϕL,T (ih)), we have (at least) to
choose H in such a way that H∩iH = {0}, otherwise Ω will not be separating
for LT (H). On the other hand, LT (H)Ω contains all the one-particle vectors
h1 + ih2, with h1, h2 ∈ H, so that we are led to require that H + iH ⊂ H is
dense to ensure cyclicity. We will therefore consider standard subspaces.

Definition 3.1. A standard subspace is a closed real linear subspace H ⊂ H
such that H + iH is dense in H and H ∩ iH = {0}.

Given a twist T ∈ B(H ⊗ H) and a standard subspace H ⊂ H, the
associated twisted Araki-Woods algebra is the von Neumann algebra defined
in (3.2).

3.1. Standard subspaces
Simple examples of standard subspaces are Rn as a real subspace of Cn, or
the real-valued functions in L2(Rn → R) as a real subspace of L2(R → C).
Slightly more generally, one may consider an orthonormal basis (en)n∈N of
a Hilbert space H and define H as the closure of the real linear span of
this orthonormal basis, which clearly is a standard subspace. Such standard
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subspaces are called maximally abelian in the literature [36]. We mention as
an aside that for twist T = 0 and a maximally abelian standard subspace
H, the twisted Araki-Woods algebra L0(H) is isomorphic to the group von
Neumann algebra of the free group on dimH generators [52]. This explains
the relevance of the algebras LT (H) as deformations of free group factors in
free probability [24,47].

Maximally abelian standard subspaces are however very special exam-
ples. To understand the general structure of standard subspaces, we consider
the Tomita operator SH of H ⊂ H, that is the map

SH : H + iH → H, h1 + ih2 7→ h1 − ih2.

This is a closed antilinear involution, and its polar decomposition SH =

JH∆
1/2
H consists of an antiunitary involution JH (modular conjugation) and

a strictly positive typically unbounded operator ∆1/2
H > 0 (modular operator)

satisfying the modular condition

JH∆
1/2
H JH = ∆

−1/2
H . (3.3)

Any pair JH ,∆1/2
H of operators satisfying these conditions defines a unique

standard subspace H = ker(JH∆
1/2
H − 1). The aforementioned maximally

abelian standard subspaces are characterized by ∆
1/2
H = 1 [36].

Standard subspaces come in pairs: With a standard subspace H, also
its symplectic complement H ′ := {ψ ∈ H : Im〈ψ, h〉 = 0 ∀h ∈ H} is a
standard subspace, and H ′′ = H. A basic fact about standard subspaces is
a variant of Tomita’s Theorem, expressing that the modular unitaries act as
automorphisms of H, and JH exchanges H and H ′:

∆it
HH = H, t ∈ R, JHH = H ′. (3.4)

Given a von Neumann algebra M on some Hilbert space H with a
vector Ω, the set H := {AΩ : A = A∗ ∈ M}− is a standard subspace if and
only if Ω is cyclic and separating for M. Thus standard subspaces appear
very naturally in the context of von Neumann algebras, and the symplectic
complement H ′ of a standard subspace plays the role of the commutant M′

of a von Neumann algebra M.
In quantum field theory, standard subspaces can be used to encode

localization regions. We restrict ourselves to an example from Minkowski
space.

Example 3.2 (QFT examples of standard subspaces). Consider the test func-
tion space C∞

c (Rd) on d-dimensional Minkowski space, d ≥ 1+1, and O ⊂ Rd
a localization region (a set with interior points such that its causal comple-
ment O′ also has interior points).

Fixing a mass parameter m > 0, we consider the Hilbert space H =
L2(Rd−1, (‖p‖2+m2)−1/2dp) carrying the usual spin zero mass m irreducible
positive energy representation of the Poincaré group. We then use the map

C∞
c (Rd) 3 f 7−→ f+ ∈ H, f+(p) := f̃(

√
‖p‖2 +m2, p)
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associating test functions with single particle states (or solutions to the Klein-
Gordon equation), and

H(O) := {f+ : supp f ⊂ O}− ⊂ H. (3.5)

Then H(O) is a standard subspace. This is a consequence of the Reeh-
Schlieder property of the vacuum [44] and can be proven as a special case of
a one-particle version of the Reeh-Schlieder Theorem [49].

The physical interpretation is that elements of H(O) are localized in
the spacetime region O in the sense of being excitations of the vacuum by
observables localized in O. From this point of view, standard subspaces can
be seen as an abstract notion of localization region.

In most cases, an explicit description of the modular data JH(O),∆H(O)

of H(O) is not known. The most prominent case in which these operators
are known and act geometrically [12] is the case where the region O is the
Rindler wedge

O =W = {x = (x0, x1, . . . , xd−1) : x1 > |x0|},

or a Poincaré transform thereof.
In this case the modular unitaries ∆it

H(W ) act as Lorentz boosts in the
x1-direction (Bisognano-Wichmann Theorem [4, 5]). For recent generaliza-
tions of Bisognano-Wichmann results to representations of Lie groups on
homogeneous spaces, see [40,41].

For later reference, we mention that in the case of dimension d = 2, the
wedge standard subspace can be reformulated as follows. Changing variables
from p to p = sinh θ, one finds that in the Hilbert space H = L2(R, dθ), the
operators

(∆itψ)(θ) = ψ(θ − 2πt), (JHψ)(θ) = ψ(θ)

define a standard subspace H. Concretely, H is given by those L2-functions h
that have an analytic continuation to functions in the Hardy space H2(Sπ)
on the strip Sπ = {θ ∈ C : 0 < Imθ < π} and satisfy the symmetry condition
h(θ + iπ) = h(θ), θ ∈ R [32].

3.2. Crossing Symmetry and Yang-Baxter Equation
Fixing a standard subspace H ⊂ H and a compatible twist T , we now review
known results about the twisted Araki-Woods algebra LT (H) in an abstract
setting. We begin with the question when the Fock vacuum Ω is cyclic and
separating as a basic prerequisite for both, modular theory and applications
in QFT.

To this end, we call the pair (H,T ) compatible if

[T,∆it
H ⊗∆it

H ] = 0, t ∈ R. (3.6)

Under this basic symmetry requirement, it turns out that Ω is separating
for LT (H) (it is always cyclic) if and only if two conditions are satisfied: The
Yang-Baxter equation and a crossing symmetry condition, defined as follows.
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Definition 3.3. [15] (crossing symmetry)
Let H ⊂ H be a standard subspace. A bounded operator T ∈ B(H ⊗H) is
called crossing-symmetric w.r.t. H if for all ψ1, . . . , ψ4 ∈ H, the function

Tψ2,ψ1

ψ3,ψ4
(t) := 〈ψ2 ⊗ ψ1, (∆

it
H ⊗ 1)T (1⊗∆−it

H )(ψ3 ⊗ ψ4)〉 (3.7)

has a continuous and bounded extension to the strip R + i[0, 12 ] which is
analytic in R+ i(0, 12 ), and satisfies the boundary condition, t ∈ R,

Tψ2,ψ1

ψ3,ψ4
(t+ i

2 ) = 〈ψ1 ⊗ JHψ4, (1⊗∆it
H)T (∆−it

H ⊗ 1)(JHψ2 ⊗ ψ3)〉. (3.8)

It is straightforward to check that multiples of the flip, i.e. T = qF ,
−1 ≤ q ≤ 1, satisfy crossing symmetry (the functions Tψ2,ψ1

ψ3,ψ4
are constant in

this case), the multiples of the identity, i.e. T = q1, violate crossing symmetry.
In general, crossing symmetry is subtle condition which asks that a) the
analytic continuation mentioned above exists, b) the boundary values at R+ i

2
are given by a bounded operator (not just a quadratic form), and c) the
symmetry condition (3.8) holds.

Crossing symmetry is an abstraction of the crossing symmetry of scat-
tering of elementary particles (relating the scattering of particles and an-
tiparticles), and reminiscent of the KMS condition in the description given
above. This is an indication that it is related to separating properties, and
indeed the following theorem holds:

Theorem 3.4. [15] Let H ⊂ H be a standard subspace and T a compatible
twist. Then Ω is cyclic and separating for LT (H) if and only if T is crossing
symmetric w.r.t. H and satisfies the Yang-Baxter Equation.

Whereas usually the Yang-Baxter equation and crossing symmetry are
assumed for building certain models, this theorem derives both these struc-
tures from a general operator-algebraic framework. It might also explain why
out of the very many existing twists (see Theorem 2.3), the braided twists
have received most attention.

Once the conditions in Theorem 3.4 are satisfied, Ω is cyclic and sep-
arating for LT (H) and hence {AΩ : A = A∗ ∈ LT (H)}− is a standard
subspace in FT (H), defining modular data JT,H , ∆T,H . These are related to
JH ,∆H by

JT,Hψ1 ⊗ . . .⊗ ψn = JHψn ⊗ . . .⊗ JHψ1, (3.9)
∆it
T,Hψ1 ⊗ . . .⊗ ψn = ∆it

Hψ1 ⊗ . . .⊗∆it
Hψn, (3.10)

for ψi ∈ H, n ∈ N. We refer to [15] for details.
The modular conjugation JT,H also allows us to determine the commu-

tant LT (H)′ of LT (H). It is given by a “right” version of the “left” von Neu-
mann algebra LT (H ′): Recall that in the initial construction of the twisted
Fock space, we had a choice between a left and right version (2.8) for the def-
inition of the kernels PT,n. In case T satisfies the YBE, both versions agree.
In that case, FT (H) also carries creation/annihilation type operators that
act from the right instead of the left. We are therefore in a position to also
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consider the corresponding right versions RT (H) of LT (H). The modular
conjugation then implements a duality between these two, namely

LT (H)′ = JT,HLT (H)JT,H = RT (H
′). (3.11)

Again, we refer to [15] for a more detailed discussion and proofs.
We now revisit Example 2.4 and Example 2.6 in connection with crossing

symmetry.

Example 3.5. (Crossing-symmetric set-theoretic solutions of the YBE)
This example is a continuation of Example 2.4 about set-theoretic solutions to
the YBE. In that example, we considered set theoretic solutions r : X2 → X2

without any additional requirements, but found that for them to linearize to
twists, r has to be bijective and indeed involutive.

Set-theoretic solutions are often studied under the additional assump-
tion that they are non-degenerate, namely that the left and right projections
λx, ρx of r (cf. 2.11) are bijections of X for any x. While this assumption
is not satisfied in general (a trivial counterexample is r = idX2), it does al-
low to use powerful tools from group theory and algebra (braces) when it is
available [14,22,46].

Note that to the linearization (H, T ) of a set-theoretic solution (X, r), we
may naturally associate a standard subspace. Namely, we pick an involutive
bijection j : X → X. Then the antilinear extension of j is an antiunitary
operator JH on H, and setting ∆H := 1 we obtain a (maximally abelian)
standard subspace H = ker(1 − JH) with modular data JH and ∆H = 1,
which is trivially compatible with T .

Proposition 3.6. Let (X, r) be a set-theoretic solution to the YBE such that
its linearization (H, T ) is crossing symmetric w.r.t. a standard subspace H
of the form described above. Then r is non-degenerate and

ρx = jλ−1
x j, x ∈ X. (3.12)

Proof. Let x1, . . . , x4 ∈ X. By crossing symmetry, the constant function
f(t) := 〈x2 ⊗ x1, (∆

it
H ⊗ 1)T (1⊗∆−it

H )(x3 ⊗ x4)〉
= δx2,λx3

(x4)δx1,ρx4
(x3)

must analytically continue to
f(t+ i

2 ) := 〈x1 ⊗ JHx4, (1⊗∆it
H)T (∆−it

H ⊗ 1)(JHx2 ⊗ x3)〉
= δx1,λj(x2)(x3)δj(x4),ρx3

(j(x2)),

i.e. we obtain the condition δx2,λx3
(x4)δx1,ρx4

(x3) = δx1,λj(x2)(x3)δj(x4),ρx3
(j(x2)).

Setting x1 := ρx4
(x3) and x2 := λx3

(x4) yields idX = ρxjλxj, and
setting x1 := λj(x2)(x3) and x4 := jρx3

(j(x2)) yields idX = λxjρxj for all
x ∈ X. These equations clearly imply that both λx and ρx are bijections
satisfying ρx = jλ−1

x j. In particular, r is non-degenerate. □

This observation can be seen as another motivation or derivation of
non-degeneracy from crossing symmetry.
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Examples of crossing-symmetric set-theoretic solutions as in this propo-
sition are permutation solutions, namely maps r(x, y) = (π(y), π−1(x)), with
π : X → X a bijection commuting with j.

Example 3.7. (Crossing-symmetric solutions of the YBE with spectral pa-
rameter [15])
We now revisit Example 2.6, which was built on the vector-valued L2-space
H = L2(R → V ) = L2(R, dθ)⊗V , with V a finite-dimensional Hilbert space.
We describe a standard subspace of tensor product form H = H0 ⊗L, where
H0 ⊂ L2(R, dθ) and L ⊂ V are both standard subspaces.

For H0, we take the standard subspace described in (3.6), and for L,
we take a maximally abelian standard subspace, as in the previous example.
Concretely, this amounts to the modular data

(∆it
Hψ)(θ) = ψ(θ − 2πt), (JHψ)(θ) = JLψ(θ), (3.13)

where JL is an antiunitary involution on V . The underlying standard sub-
space consists of all elements h of the vector-valued Hardy space H2(Sπ)⊗V
satisfying h(θ + iπ) = JLh(θ).

The twists TS (2.13) considered in Example 2.6 are then automatically
compatible with H because the function S only depends on differences of the
variables θ1, θ2. Crossing symmetry is satisfied when S : R → B(V ⊗ V ) has
a holomorphic and bounded extension to the strip Sπ, with the boundary
values satisfying

〈v2 ⊗ v1, S(t+ iπ) v3 ⊗ v4〉 = 〈v1 ⊗ jv4, S(−t) jv2 ⊗ v3〉, t ∈ R,

for all v1, . . . , v4 ∈ V .
In this setting, our abstract crossing symmetry coincides with the cross-

ing symmetry from scattering theory, and specifically with crossing symmetry
in integrable quantum field theories. Various examples of functions S satis-
fying crossing and the Yang-Baxter equation with spectral parameter are
known, although a complete classification has not been reached yet.

In the case of scalar particles, given by V = C, the Yang-Baxter equation
becomes trivial. If one then also asks TS to be unitary, the possible functions
S are exactly the inner functions on the strip 0 < Imθ < π that satisfy the
two symmetry conditions S(−θ) = S(θ) = S(θ + iπ), θ ∈ R [30].

For some specific examples for dimV > 1, see [1, 2].

3.3. The internal structure of twisted Araki-Woods algebras
While the results in the previous section clarified under which conditions on
(T,H), the Fock vacuum is cyclic and separating for the twisted Araki-Woods
algebra LT (H), they do not address the internal structure of these algebras.

The case of the twist T = qF , with −1 < q < 1, has been considered in
most detail in the literature. Note that this twist is automatically compatible
with any standard subspace, and the Yang-Baxter equation and crossing
symmetry are satisfied.

In that case, the structure of LT (H) is well understood:
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Theorem 3.8. [28] Let −1 < q < 1 and let H ⊂ H be an arbitrary standard
subspace with dimH ≥ 2. Then LqF (H) is a non-injective factor of type

III1 if G = R×
∗

IIλ if G = λZ, 0 < λ < 1,

II1 if G = {1}
,

where G ⊂ R×
∗ is the closed subgroup generated by the spectrum of ∆H . If

dimH <∞, then these factors are solid and full.

This recent theorem of Kumar, Skalski and Wasilewski settled in par-
ticular the long-standing question of factoriality of LqF (H) for all q and all
H. It builds on important previous work by many authors, including in par-
ticular Miyagawa and Speicher [39] and Nelson [42]. We refer to [28] for a
detailed description and references regarding the history of the factoriality
problem of the q-twisted Araki-Woods factors.

Even more recently, [54] has generalized these methods to more general
twists, namely arbitrary compatible braided crossing-symmetric twists on
finite dimensional spaces:

Theorem 3.9. [54] Let H ⊂ H be a finite-dimensional standard subspace.
a) Let T be a compatible braided crossing-symmetric twist with ‖T‖ < 1.

Then LT (H) is a factor. The type of this factor is determined by the
closed subgroup G ⊂ R×

∗ generated by the spectrum of ∆H exactly as
in Thm. 3.8.

b) There exists a constant qH > 0 such that for any compatible braided
crossing symmetric twist with ‖T‖ < qH , the twisted Araki-Woods alge-
bra LT (H) is isomorphic to the free Araki-Woods algebra L0(H).

Furthermore, Yang shows that LT (H) is non-injective under a spectral
density condition on ∆H (this result does not require dimH <∞).

It must be noted that the above results do not hold for ‖T‖ = 1. For
example, for T = F we have the center LF (H) ∩ LF (H)′ = LF (H ∩ H ′),
which is typically non trivial [34].

4. Inclusions of twisted Araki-Woods algebras and applications
in constructive QFT

In this section we sketch how twisted Araki-Woods algebras appear in the con-
struction of integrable quantum field theories on two-dimensional Minkowski
spacetime R2. We will have to confine ourselves to the main ideas, and refer
to the review [31] for more details.

Out of the various axiomatizations of QFT, the operator-algebraic ap-
proach [3, 10, 23] is most useful here. In this setting, one models a quantum
field theory on R2 by a net of local von Neumann algebras O 7→ A(O) on
a vacuum Hilbert space V, that is a collection of von Neumann algebras
A(O) ⊂ B(V) indexed by (a suitable subset of) all open sets O ⊂ Rd.
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The minimal physical requirements are that V carries a unitary positive
energy representation U of the Poincaré P (d) group and an invariant vector
Ω ∈ V (the vacuum vector), such that the following properties hold:

a) (Isotony): O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2),
b) (Locality): A(O1) and A(O2) commute elementwise if O1 lies spacelike

to O2,
c) (Covariance): U(g)A(O)U(g)−1 = A(gO) for every g ∈ P (g),
d) (Reeh-Schlieder property): The vacuum vector Ω is cyclic for every O

with interior points. It is then separating for all O such that the causal
complement O′ has interior points.

The task of constructive algebraic QFT is then to describe explicit ex-
amples of such data based on physical input. In the case at hand, the aim
is to construct a quantum field theory with a presribed elastic two-particle
S-matrix.

Such an S-matrix amounts exactly to twists of the form discussed in
Examples 2.6 and 3.7: The physical meaning of the variable θ is the rapidity
of a massive particle, and the fact that S only depends on differences re-
flects Lorentz symmetry. Our abstract crossing symmetry captures precisely
the crossing symmetry of scattering theory in this case, and the modular
conjugation JL of the internal space L models charge conjugation.

As explained in Example 3.2, the unitaries acting by translations in the
rapidity form the modular group of a standard subspace that models localiza-
tion in the Rindler wedge W ⊂ R2. We may therefore begin by defining the
observable algebras of our QFT by setting AS(W ) := LTS

(H(W )), where TS
is the twist based on the two-particle S-matrix S, and H(W ) the standard
subspace given by the wedge W .

It then turns out one can easily define the observable algebras for all
Poincaré transformed wedges ΛW + x by covariance: For translates of W ,
one gets left twisted Araki-Woods algebras LTS

(H(W + x)), and for the
opposite wedges −W + x, one arrives at right twisted Araki-Woods algebras
RTS

(H(−W + x)). The observable algebras for bounded regions, such as
intersections of two opposite wedges, are then formed by intersecting left
and right Araki-Woods algebras, namely the relative commutants AS(W ∩
(−W + x)) of the inclusions LTS

(H(W + x)) ⊂ LTS
(H(W )), x ∈ W . This

construction is perfectly covariant and local, but it is difficult to explicitly
exhibit elements of AS(W ∩ (−W + x)).

Depending on the details of S, it has been shown that the local observ-
able algebra AS(W ∩ (−W + x)) contains non-trivial operators (functions of
the quantum fields defining the model), see [31] for an overview of results.
Once this existence of local observables is settled, one can also prove that
the constructed QFT is indeed integrable in the sense that no particle pro-
duction processed occur in scattering, the n-particle S-matrix factorizes into
two-particle collisions, and the two-particle S-matrix is given by S. Hence
this construction solves the inverse scattering problem for S.
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From the abstract point of view taken for most of this review, what
is currently missing is a general understanding for which twists T and for
which inclusions K ⊂ H of standard subspaces the inclusion of von Neumann
algebras LT (K) ⊂ LT (H) has a large relative commutant, for instance in the
sense that the Fock vacuum is cyclic for it. The analysis of these inclusions
is therefore a subject of ongoing research.
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