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1 Algebras and modules over algebras

1.1 Algebras

In this subsection, we recall some basic concepts, definitions and constructions and discuss
important examples of algebras. In the following we will always take algebra to mean associative
unital algebra, and all algebra homomorphisms are assumed to be unital as well. For the tensor
product of vector spaces V and W over F, we use the notation V⊗W = V⊗FW .

Definition 1.1.1:

1. An algebra A over a field F is a vector space A over F together with a multiplication
map · : A×A→ A such that (A,+, ·) is a unital ring and a · (λa′) = (λa) ·a′ = λ(a ·a′) for
all a, a′ ∈ A and λ ∈ F. An algebra A is called commutative if a·a′ = a′·a for all a, a′ ∈ A.

2. An algebra homomorphism from an algebra A to an algebra B over F is an F-linear
map φ : A→ B that is also a unital ring homomorphism, i. e. satisfies φ(1A) = 1B and

φ(a+ a′) = φ(a) + φ(a′), φ(λa) = λφ(a), φ(a · a′) = φ(a) · φ(a′) ∀a, a′ ∈ A, λ ∈ F.

As an algebra can be viewed as a unital ring with a compatible vector space structure, the
concepts of a unital subring, of a left right or two-sided ideal and of a quotient by an ideal have
direct analogues for algebras. In particular, a left, right or two-sided ideal in an algebra A is
simply a left, right or two-sided ideal in the ring A. That such an ideal is also a linear subspace
of A follows because λa = (λ1) · a = a · (λ1) ∈ I for all a ∈ I and λ ∈ F. Consequently, the
quotient A/I by a two sided ideal I ⊂ A is not only a ring, but also inherits a vector space
structure and hence the structure of an algebra.

Definition 1.1.2: Let F be a field and A an algebra over F.

1. A subalgebra of A is a subset B ⊂ A that is an algebra with the restriction of the
addition, scalar multiplication and multiplication, i. e. a subset B ⊂ A with 1A ∈ B,
b+ b′ ∈ B, λb ∈ B, and b · b′ ∈ B for all b, b′ ∈ B and and λ ∈ F.

2. The quotient algebra of A by a two-sided ideal I ⊂ A is the quotient vector space A/I
with the multiplication map · : A/I × A/I → A/I, (a+ I, a′ + I) 7→ aa′ + I.

Before proceeding with examples, we give an equivalent definition of an algebra that is formu-
lated purely in terms of vector spaces and linear maps. For this, note that we can view the unit
1 ∈ A as a linear map η : F→ A, λ 7→ λ1. Similarly, we can interpret the multiplication as an
F-linear map m : A⊗A → A instead of a map · : A × A → A that is compatible with scalar
multiplication and satisfies the distributive laws. This follows because the distributive laws and
the compatibility condition on scalar multiplication and algebra multiplication are equivalent
to the statement that the map · is F-bilinear. By the universal property of the tensor product,
it therefore induces a unique linear map m : A⊗A → A with m(a⊗b) = a · b. The remaining
conditions are the associativity of the multiplication map m and the condition that 1 is a unit,
which can be stated as follows.
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Definition 1.1.3:

1. An algebra (A,m, η) over a field F is a vector space A over F together with linear maps
m : A⊗A→ A and η : F→ A, the multiplication and the unit, such that the following
two diagrams commute

A⊗A⊗A
id⊗m

��

m⊗id // A⊗A
m
��

A⊗A m
// A

F⊗A

η⊗id $$

λ⊗a7→λa
∼=

// A A⊗Fa⊗λ 7→λa
∼=

oo

id⊗ηzz
A⊗A.

m

OO

associativity unitality

An algebra A is called commutative if mop := m ◦ τ = m, where τ : A⊗A → A⊗A,
a⊗b 7→ b⊗a is called the flip map.

2. An algebra homomorphism from an F-algebra A to an F-algebra B is a linear map
φ : A→ B such that the following two diagrams commute

A⊗A
φ⊗φ
��

mA // A

φ
��

B⊗B mB

// B

F ηA //

id
��

A

φ
��

F ηB
// B.

Remark 1.1.4:

1. Definition 1.1.3 can be generalised by replacing the field F with a commutative unital ring
R, F-vector spaces by R-modules, tensor products of vector spaces by tensor products of
R-modules and F-linear maps by homomorphisms of R-modules. This leads to the more
general notion of an algebra over a commutative unital ring.

2. Note that the multiplication and unit do not play the same role in Definition 1.1.3. The
multiplication map m for a vector space A is a structure - there may be many associative
multiplication maps, and an algebra is specified by choosing one of them. The existence
of a unit map η that satisfies the conditions in Definition 1.1.3 is a property of the pair
(A,m). As two-sided units in monoids are unique, there there is at most one unit for m.

Example 1.1.5:

1. Every field F is an algebra over itself. If F ⊂ G is a field extension, then G is an algebra
over F.

2. For every field F, the (n × n)-matrices with entries in F form an algebra Mat(n × n,F)
with the matrix addition, scalar multiplication and matrix multiplication. The diagonal
matrices, the upper triangular matrices and the lower triangular matrices form subalge-
bras of Mat(n× n,F).

3. For any F-vector space V , the linear endomorphisms of V form an algebra EndF(V ) with
the pointwise addition and scalar multiplication and composition.

4. For any algebra A, the vector space A with the opposite multiplication mop : A⊗A→ A,
a⊗b 7→ b · a is an algebra. It is called the opposite algebra and denoted Aop.
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5. For two F-algebras A and B, the vector space A⊗B has a canonical algebra structure
with multiplication and unit

mA⊗B : (A⊗B)⊗(A⊗B)→ A⊗B (a⊗b)⊗(a′⊗b′) 7→ (aa′)⊗(bb′)

ηA⊗B : F→ A⊗B, λ 7→ λ(1⊗1).

This algebra is called the tensor product of the algebras A and B and denoted A⊗B.

6. The maps f : N0 → F form an associative algebra over F with

(f + g)(n) = f(n) + g(n) (λf)(n) = λ f(n) (f · g)(n) = Σn
k=0f(n− k)g(k).

This is called the algebra of formal power series with coefficients in F and denoted
F[[x]]. The name is due to the following. If we describe a power series Σn∈N0anx

n by
its coefficient function f : N0 → F, n 7→ an, then the formulas above give the familiar
addition, scalar multiplication and multiplication law for power series

Σn∈N0anx
n + Σn∈N0bnx

n = Σn∈N0(an + bn)xn

λΣn∈N0anx
n = Σn∈N0λanx

n

(Σn∈N0anx
n) · (Σn∈N0bnx

n) = Σn∈N0(Σ
n
k=0an−kbk)x

n.

7. The polynomials with coefficients in F form a subalgebra

F[x] = {f : N0 → F | f(n) = 0 for almost all n ∈ N0} ⊂ F[[x]].

8. For any set M and any F-algebra A, the maps f : M → A form an algebra over F with
the pointwise addition, scalar multiplication and multiplication.

An important example of an algebra that will be used extensively in the following is the tensor
algebra of a vector space V over F. As a vector space, it is the direct sum T (V ) = ⊕∞n=0V

⊗n,
where V ⊗0 := F and V ⊗n := V⊗...⊗V is the n-fold tensor product of V with itself for n ∈ N.
Its algebra structure is given by the concatenation, and the unit is the element 1 = 1F ∈ F.
The symmetric and the exterior algebra of V are two further examples of algebras associated
with a vector space V . They are obtained by taking quotients of T (V ) by two-sided ideals.

Example 1.1.6: Let V be a vector space over F.

1. The tensor algebra of V is the vector space T (V ) = ⊕∞n=0V
⊗n with the multiplication

(v1⊗...⊗vm) · (w1⊗...⊗wn) = v1⊗...⊗vm⊗w1⊗...⊗wn

for all v1, ..., vm, w1, ..., wn ∈ V and n,m ∈ N0, where v1⊗...⊗vn := 1F for n = 0. It is an
algebra over F with unit 1F ∈ V 0. The injective F-linear map ιV : V → T (V ), v 7→ v is
called the inclusion map.

2. If B is a basis of V , then B⊗ = {b1⊗...⊗bn |n ∈ N0, bi ∈ B} is a basis of T (V ).

3. The tensor algebra is N-graded: it is given as the direct sum T (V ) = ⊕∞n=0V
⊗n of the

linear subspaces V ⊗n, and one has V ⊗m · V ⊗n ⊂ V ⊗(n+m) for all m,n ∈ N0.
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4. The tensor algebra has the following universal property:

For every F-linear map φ : V → A into an F-algebra A, there is a unique algebra homo-
morphism φ̃ : T (V )→ A such that the following diagram commutes

V
φ //� _

ιV
��

A

T (V ).
∃!φ̃

<<

5. The symmetric algebra of V is the quotient algebra of T (V )

S(V ) = T (V )/(v⊗w − w⊗v)

by the two-sided ideal (v⊗w−w⊗v) generated by the elements v⊗w−w⊗v for v, w ∈ V .

6. The exterior algebra of V or alternating algebra of V is the quotient algebra of T (V )

ΛV = T (V )/(v⊗v)

by the two-sided ideal (v⊗v) generated by the elements v⊗v for v ∈ V .

Tensor algebras plays a similar role for algebras as free groups for groups and free modules for
modules. In particular, it allows one to describe an algebra in terms of generators and relations.
If A is an algebra over F, then by the universal property of the tensor algebra, the linear map
idA : A → A induces an algebra homomorphism φ : T (A) → A. As its kernel is a two-sided
ideal in T (A), the quotient T (A)/ ker(φ) has a canonical algebra structure, and the algebra
homomorphism φ induces an algebra isomorphism φ′ : T (A)/ ker(φ)

∼−→ A. Hence, one can view
any algebra as a quotient of its tensor algebra.

IfB is a basis ofA, then the setB⊗ from Example 1.1.6 is a basis of T (A), and we can express any
element in T (A) as a linear combination of elements of B⊗, or, equivalently, linear combinations
of products of elements in B, where 1F = V ⊗0 is viewed as the empty product. Hence, we can
characterise A uniquely by specifying a basis of A, specifying a subset U ⊂ ker(φ) that generates
the two-sided ideal ker(φ), and expressing the elements of U as linear combinations of products
of basis elements. This is called a presentation of A.

Definition 1.1.7: Let A be an algebra and φ : T (A) → A the algebra homomorphism with
φ ◦ ιA = idA induced by the universal property of the tensor algebra. A presentation of A
is a pair (B,U) of a basis B ⊂ A and a subset U ⊂ ker(φ) that generates the two-sided ideal
ker(φ) ⊂ T (A). The elements of B are called generators and the elements of U relations.
One often lists the relations u ∈ U as equations u = 0 for u ∈ U .

For simplicity, one usually presents an algebra A with as few generators and relations as possible.
In particular, one requires that the generators are linearly independent and that no proper
subset U ′ ( U generates ker(φ). However, even if these additional conditions are imposed,
an algebra may have many different presentations that are not related in an obvious way. In
general, it is very difficult to decide if two algebras presented in terms of generators and relations
are isomorphic, and there are no algorithms that solve this problem in the general case.
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In some textbooks, presentations of algebras are defined in terms of the free algebra generated
by a set B and relations in this free algebra. This is equivalent to our definition, since the tensor
algebra of a vector space V with basis B is canonically isomorphic to the free algebra generated
by the set B - both are characterised by the same universal property. For a detailed discussion,
see [Ka, Chapter I.2 and Chapter II.5].

Another algebra that will be important in the following is the universal enveloping algebra of
a Lie algebra, which is obtained as a quotient of its tensor algebra. This example is important
because its universal property relates Lie algebra homomorphisms and modules over Lie algebras
to algebra homomorphisms and modules over algebras. It is also the starting point for the
construction of many Hopf algebra structures that arise from Lie algebras.

Definition 1.1.8: Let F be a field.

1. A Lie algebra over F is an F-vector space g together with an antisymmetric F-linear
map [ , ] : g⊗g→ g, x⊗y 7→ [x, y], the Lie bracket, that satisfies the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 ∀x, y, z ∈ g.

2. A Lie algebra homomorphism from (g, [ , ]g) to (h, [ , ]h) is an F-linear map φ : g→ h
with

[ , ]h ◦ (φ⊗φ) = φ ◦ [ , ]g.

Every associative (not necessarily unital) algebra A has a canonical Lie algebra structure with
the commutator [ , ] : A⊗A→ A, a⊗b 7→ [a, b] = a · b− b · a as the Lie bracket, whose Jacobi
identity follows from the associativity of A. If we talk about the Lie algebra structure of an
associative algebra or Lie algebra homomorphisms into an associative algebra A, we assume
that A is equipped with this Lie bracket.

Example 1.1.9: Let g be a Lie algebra.

1. The universal enveloping algebra of g is the quotient algebra U(g) = T (g)/I,
where I = (x⊗y − y⊗x − [x, y]) is the two-sided ideal generated by the elements
x⊗y − y⊗x− [x, y] for x, y ∈ g.

2. If g is finite-dimensional with a basis B = {x1, ..., xn} then the Lie bracket of the basis
elements takes the form [xi, xj] = Σn

k=1f
k

ij xk with coefficients f k
ij ∈ F, the structure

constants of g. In this case U(g) is presented with generators x1, ..., xn and relations
xi⊗xj − xj⊗xi = Σn

k=1f
k

ij xk.

3. The universal enveloping algebra has the following universal property:

The inclusion maps ιg : g → U(g), x 7→ x + I are Lie algebra homomorphisms. For
any Lie algebra homomorphism φ : g → A into an algebra A, there is a unique algebra
homomorphism φ̃ : U(g)→ A such that the following diagram commutes

g
φ //

� _

ιg
��

A

U(g).
∃!φ̃

==
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4. If B = (bi)i∈I is an ordered basis of g, then the Lie bracket of g is given by

[bi, bj] = Σk∈If
k

ij bk

with f k
ij = −f k

ji ∈ F, fkij = 0 for almost all k ∈ I, and the universal enveloping algebra
U(g) is presented with generators bi, i ∈ I, and relations

bi⊗bj − bj⊗bi = [bi, bj] = Σk∈If
k

ij bk.

The set B′ = {ιg(bi1) · · · ιg(bin) |n ∈ N0, i ∈ I, i1 ≤ i2 ≤ ... ≤ in} is a basis of U(g), the
Poincaré-Birkhoff-Witt basis of U(g).

5. The universal enveloping algebra is a filtered algebra:

It is the union U(g) = ∪∞n=0U
n(g) of subspaces Un(g) = ⊕nk=0V

⊗k/I, which satisfy
U0(g) ⊂ U1(g) ⊂ ... and Um(g) · Un(g) ⊂ Un+m(g) for all n,m ∈ N0.

The universal property of the universal enveloping algebra is a direct consequence of the uni-
versal property of the tensor algebra and the fact that for any Lie algebra morphism φ : g→ A,
the induced algebra homomorphism φ′ : T (V ) → A satisfies φ′(x⊗y − y⊗x − [x, y]) = 0 for
all x, y ∈ g. The proof of the Poincaré-Birkhoff-Witt Theorem, which states that the Poincaré-
Birkhoff-Witt basis is a basis of U(g), and the proof that U(g) is filtered are more cumbersome
and proceed by induction. These proofs and more details on universal enveloping algebras can
be found in [Di] and [Se, Chapter II].

Another class of important examples are group algebras. They will become the simplest examples
of Hopf algebras. The group algebra of a group G is simply its group ring R[G], in the case
where the ring R = F is a field. In this case, the group ring becomes an algebra over F with
the pointwise multiplication by F as scalar multiplication.

Example 1.1.10: (The group algebra F[G])
Let G be a group and F a field. The free F-vector space generated by G

〈G〉F = {f : G→ F | f(g) = 0 for almost all g ∈ G}
with the pointwise addition and scalar multiplication and the convolution product:

(f1 + f2)(g) = f1(g) + f2(g) (λf)(g) = λf(g) (f1 · f2)(g) = Σh∈Gf1(gh−1) · f2(h)

is an associative unital F-algebra, called the group group algebra of G and denoted F[G]. The
maps δg : G→ F with δg(g) = 1 and δg(h) = 0 for g 6= h form a basis of F[G].

Remark 1.1.11:

1. In terms of the maps δg : G→ F the multiplication of F[G] takes the form δg · δh = δgh for
all g, h ∈ G. In the following we therefore write g for δg and denote elements of F[G] by
f = Σg∈Gλg g with λg ∈ F for all g ∈ G. The algebra structure of F[G] is then given by

(Σg∈Gλg g) + (Σh∈Gµh h) = Σg∈G(λg + µg) g

λ (Σg∈Gλg g) = Σg∈G(λλg) g

(Σg∈Gλg g) · (Σh∈Gµh h) = Σg∈G (Σh∈Gλgh−1µh) g.

2. A group homomorphism ρ : G→ H induces an algebra homomorphism φρ : F[G]→ F[H],
Σg∈Gλg g 7→ Σg∈Gλg ρ(g), but not every algebra homomorphism φ : F[G] → F[H] arises
from a group homomorphism. Similarly, for every subgroup U ⊂ G, the linear subspace
spanF(U) ∼= F[U ] ⊂ F[G] is a subalgebra, but not all subalgebras of F[G] arise this way.
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1.2 Modules over algebras

In this section, we discuss basic properties and examples of modules over algebras. As an algebra
A over F is a unital ring with a compatible vector space structure over F, a module over an
algebra is simply defined as a module over the underlying ring. In particular, this ensures that
all known constructions for modules over rings such as submodules, quotients, direct sums,
products and tensor products can be carried out for algebras as well. Some basic results and
constructions for modules over rings are summarised in Appendix A.1.

The only difference to modules over general rings is that modules over an algebra A are vector
spaces over F and all module homomorphisms between them are F-linear maps. Hence, we can
also view submodules, quotients, direct sums and tensor products of modules over an algebra A
as submodules, quotients, direct sums and tensor products of vector spaces that carry additional
structure, namely a representation of A.

Definition 1.2.1: Let F be a field, A an algebra over F and G a group.

1. A left module over A or a representation of A is an abelian group (V,+) together
with a map � : A× V → V , (a, v) 7→ a� v that satisfies for all a, b ∈ A, v, v′ ∈ V

a�(v+v′) = a�v+a�v′, (a+b)�v = a�v+b�v, (a·b)�v = a�(b�v), 1�v = v.

2. A homomorphism of representations, an A-linear map or a homomorphism of
A-left modules from (V,�V ) to (W,�W ) is a group homomorphism φ : (V,+)→ (W,+)
with φ(a�V v) = a�W φ(v) for all a ∈ A and v ∈ V .

3. A representation of G over F is an F[G]-left module. A homomorphism of group
representations is a homomorphism of F[G]-left modules.

Note that the left modules over A form a category A-Mod. The objects of A-Mod are left
modules over A, and the morphisms of A-Mod are homomorphisms of A-left modules. In fact,
the category A-Mod has additional structure, namely that of F-linear category.

There are analogous concepts of right modules over A and of (A,A)-bimodules, see Remark
1.1.2 in Appendix A.1. The former are equivalent to left modules over the algebra Aop and the
latter to left modules over the algebra A⊗Aop. In the following we use the term module over A
as a synonym of left module over A.

It important to note that there are several equivalent definitions of algebra and group rep-
resentations in the literature, which are summarised in the following remark and then used
interchangeably, without further comments.

Remark 1.2.2:

1. A representation of a F-algebra A can be defined equivalently as a pair (V, ρ) of an
F-vector space V and an algebra homomorphism ρ : A→ EndF(V ).

This holds because every A-module (V,�) has a canonical F-vector space structure
with the scalar multiplication λv := (λ1) � v, and the map ρ : A → EndF(V ) with
ρ(a)v := a � v is an algebra homomorphism. Conversely, each algebra homomorphism
ρ : A→ EndF(V ) determines an A-left module structure on V given by a� v := ρ(a)v.
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2. A representation of a group G can be defined equivalently as a pair (V, ρ) of a vector
space V and a group homomorphism ρ : G→ AutF(V ).

This follows because a representation of G is equivalent to a pair (V, ρ′) of an F-vector
space V and an algebra homomorphism ρ′ : F[G] → EndF(V ) by 1. As every algebra
homomorphism ρ′ : F[G]→ EndF(V ) induces a group homomorphism ρ : G→ EndF(V ),
g 7→ ρ′(δg) and vice versa, this corresponds to the choice of an F-vector space V and a
group homomorphism ρ : G → EndF(V ). As ρ(g−1) ◦ ρ(g) = ρ(g) ◦ ρ(g)−1 = idV for all
g ∈ G, one has ρ(g) ∈ AutF(V ) for all g ∈ G.

3. Equivalently, we can view a representation of an F-algebra A as a pair (V,�) of an F-
vector space V and an F-linear map � : A⊗V → V such that the following diagrams
commute

A⊗A⊗V
m⊗id

��

id⊗� // A⊗V
�

��
A⊗V

�
// V

V F⊗Vλ⊗v 7→λv
∼=

oo

η⊗idyy
A⊗V.

�

OO

A homomorphism of representations can then be defined as a F-linear map φ : V → W
such that the following diagram commutes

A⊗V �V //

id⊗φ
��

V

φ
��

A⊗W �W //W.

This follows from the F-bilinearity of the map � : A×V → V . By the universal property
of the tensor product, it induces a linear map � : A⊗V → V . The commutativity of the
diagrams is then a direct consequence of the definitions.

Example 1.2.3:

1. Any group G can be represented on any F-vector space V by the trivial representation
ρ : G→ AutF(V ), g 7→ idV .

2. Any F-vector space V carries representations of AutF(V ) and EndF(V ).

3. A representation of the group Z/2Z on an F-vector space V corresponds to the choice of
an involution on V , i. e. an F-linear map I : V → V with I ◦ I = idV . If char(F) 6= 2, this
amounts to a decomposition V = V+ ⊕ V−, where V± = ker(I ∓ idV ).

4. A representations of the group Z on an F-vector space V corresponds to the choice
of an automorphism φ ∈ AutF(V ). This holds because a group homomorphism
ρ : Z → AutF(V ) is determined uniquely by the automorphism ρ(1) = φ, and every
automorphism φ ∈ AutF(V ) determines a representation of Z given by ρ(z) = φz.

5. For any F-vector space V there is a representation of Sn on V ⊗n, which is given by
ρ : Sn → AutF(V ⊗n) with ρ(σ)(v1⊗...⊗vn) = vσ(1)⊗....⊗vσ(n) for all v1, .., vn ∈ V .

6. A representation of the polynomial algebra F[x] on an F-vector space V amounts to the
choice of an endomorphism of V .
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This follows because any algebra homomorphism φ : F[x] → EndF(V ) is determined
uniquely by ρ(x) ∈ EndF(V ) and any element φ ∈ EndF(V ) determines an algebra
homomorphism ρ : F[x]→ EndF(V ), Σn∈N0anx

n 7→ Σn∈N0anφ
n.

7. Let V,W be vector spaces over F. The representations of the tensor algebra T (V ) on W
correspond bijectively to F-linear maps φ : V → EndF(W ).

This follows because the restriction of a representation ρ : T (V ) → EndF(W ) to
ιV (V ) ⊂ T (V ) defines an F-linear map from V to EndF(W ). Conversely, every F-linear
map φ : V → EndF(W ) induces an algebra homomorphism ρ : T (V ) → EndF(W ) with
ρ ◦ ι = φ by the universal property of the tensor algebra.

8. Let g be a Lie algebra and V a vector space over F. Representations of the universal
enveloping algebra U(g) on V correspond bijectively to representations of g on V , i. e. Lie
algebra homomorphisms φ : g→ EndF(V ).

This follows because any algebra homomorphism ρ : U(g)→ EndF(V ) satisfies

[ρ ◦ ιg(x), ρ ◦ ιg(y)] = ρ(ιg(x) · ιg(y)− ιg(y) · ιg(x)) = ρ ◦ ιg([x, y]) ∀x, y ∈ g.

Hence ρ ◦ ιg : g → EndF(V ) is a Lie algebra morphism. Conversely, for any Lie
algebra homomorphism φ : g → EndF(V ) there is a unique algebra homomorphism
ρ : U(g)→ EndF(V ) with ρ ◦ ιg = φ by the universal property of U(g).

9. Any algebra is a left module over itself with the module structure given by left multi-
plication � : A⊗A → A, a⊗b 7→ a · b and a left module over Aop with respect to right
multiplication � : Aop⊗A → A, a⊗b 7→ b · a. Combining the two yields an A⊗Aop-left
module structure on A with � : (A⊗Aop)⊗A→ A, (a⊗b)⊗c 7→ a · c · b.

10. If φ : A → B is an algebra homomorphism, then every B-module V becomes an
A-module with the module structure given by a � v := φ(a) � v for all v ∈ V . This is
called the pullback of the B-module structure on V by φ.

11. In particular, for any subalgebra U ⊂ A, the inclusion map ι : U → A, u 7→ u is an
injective algebra homomorphism and induces a U -left module structure on any A-left
module V . This is called the restriction of the A-module structure to U .

12. If (V,�V ) and (W,�W ) are modules over F-algebras A and B, then

� : (A⊗B)⊗(V⊗W )→ V⊗W, (a⊗b) � (v⊗w) = (a�V v)⊗(b�W w)

defines an A⊗B module structure on V⊗W .

We will now focus on representations of groups or, equivalently, group algebras. In contrast
to representations of algebras, group representations are naturally compatible with the tensor
product of vector spaces. More specifically, if V and W are vector spaces over F that carry
representations of a group G, then their tensor product V⊗W also carries a canonical represen-
tation of G. Moreover, we have a trivial representation of G on F, and for each representation
of G on V , a representation on the dual vector space V ∗ = HomF(V,F). This follows by a direct
computation verifying the conditions in Definition 1.2.1.

Proposition 1.2.4: Let G be a group, F a field and ρV : G→ AutF(V ), ρW : G→ AutF(W )
representations of G on F-vector spaces V , W . Then the following are representations of G:
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• the trivial representation of group ρF : G→ AutF(F), g 7→ idV .

• the tensor product representation: ρV⊗W : G→ AutF(V⊗FW ), g 7→ ρV (g)⊗ρW (g).

• the dual representation: ρV ∗ : G→ AutF(V ∗), g 7→ ρV ∗(g) with ρV ∗(g)α = α ◦ ρ(g−1).

Proposition 1.2.4 defines group representations on multiple tensor products of representation
spaces of a group G, of the underlying field F and of dual vector spaces of representation spaces.
However, when working with tensor product of vector spaces, one is not only interested in
these tensor products themselves but also in certain canonical isomorphisms or homomorphisms
between them. These are

• the associativity isomorphism

aU,V,W : (U⊗V )⊗W ∼−→ U⊗(V⊗W ), (u⊗v)⊗w 7→ u⊗(v⊗w)

• the right and left unit isomorphisms

rV : V⊗F ∼−→ V, v⊗λ 7→ λv lV : F⊗V ∼−→ V, λ⊗v 7→ λv

• the flip isomorphism cU,V : U⊗V ∼−→ V⊗U, u⊗v 7→ v⊗u

• the left and right evaluation maps

evLV : V⊗V ∗ → F, v⊗α 7→ α(v) evRV : V ∗⊗V → F, α⊗v 7→ α(v)

If V is finite-dimensional with an ordered basis B = (b1, ..., bn) and dual basis B∗ = (β1, .., βn),

• the left and right coevaluation maps

coevLV : F→ V ∗⊗V, λ 7→ λΣn
i=1β

i⊗bi coevRV : F→ V⊗V ∗, λ 7→ λΣn
i=1bi⊗βi.

Note that the left and right coevaluation maps do not depend on the choice of the basis of V ,
although a basis and its dual are used in their definition. This follows because any other ordered
basis C = (c1, ..., cn) of V with dual basis C∗ = (γ1, ..., γn) is related to B by an automorphism
φ ∈ AutF(V ) with ci = φ(bi) = Σn

j=1φjibj and βi = φ∗(γi) = Σn
j=1φijγ

j. This implies that the
coevaluation maps for the two bases are equal.

Given these canonical linear maps associated with tensor products of vector spaces, it is natural
to ask if these linear maps become homomorphisms of representations, when the tensor products
are equipped with the tensor product of group representations, the field F with the trivial
representation and dual vector spaces with dual representations. That this is indeed the case
follows by a simple computation verifying the conditions from Definition 1.2.1, 2. and 3., which
is left as an exercise.

Proposition 1.2.5: Let G be a group and F a field. Then:

1. The associativity isomorphism aU,V,W is an isomorphism of representations from
ρ(U⊗V )⊗W to ρU⊗(V⊗W ) for all representations ρU , ρV , ρW of G on U, V,W .

2. The right and left unit isomorphisms rV and lV are isomorphisms of representations
from ρF⊗V and to ρV⊗F to ρV for all representations ρV of G on V
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3. The flip isomorphism cU,V is an isomorphism of representations from ρU⊗V to ρV⊗U
for all representations ρU , ρV of G on U, V .

4. The left and right evaluation maps evLV and evRV are are homomorphisms of
representations from ρV⊗V ∗ and ρV ∗⊗V to ρF for all representations ρV of G on V .

5. If dimF(V ) < ∞, the left and right coevaluation maps coevLV and coevRV are homo-
morphisms of representations from ρF to ρV ∗⊗V and ρV⊗V ∗ for all representations ρV of
G on V .

Clearly, Propositions 1.2.4 and 1.2.5 have no counterparts for representations of algebras. For an
F-algebra A, the map ρF : A→ EndF(F), a 7→ idF is in general not an algebra homomorphism,
since this would imply ρF(µa) = idF = µρ(a) = µidF for all µ ∈ F and a ∈ A. Neither does one
obtain an algebra homomorphism ρF : A → EndF (F ) by setting ρ(a)λ = 0 for all λ ∈ F and
a ∈ A, since this contradicts the condition ρF(1) = idF.

Similarly, if ρV : A→ EndF(V ) and ρW : A→ EndF(W ) are algebra homomorphisms, then the
map ρV⊗W : A→ EndF(V⊗W ), a 7→ ρV (a)⊗ρW (a) is in general not an algebra homomorphism,
since this would imply ρV⊗W (µa) = µρV⊗W (a) = ρV (µa)⊗ρW (µa) = µ2ρV⊗W (a) for all µ ∈ F
and a ∈ A. Finally, it is not possible to define a representation on the dual vector space
V ∗ in analogy to the one for a group since the elements of an algebra do not necessarily have
multiplicative inverses. The linear map ρ′ : A→ EndF(V ∗), ρ′(a)α = α◦ρ(a) is a representation
of Aop, not of A, since ρ′(a · b) = ρ′(b) ◦ ρ′(a) for all a, b ∈ A.

Hence, to obtain counterparts of Propositions 1.2.4 and 1.2.5 for representations of algebras over
F, we need to consider algebras that are equipped with additional structures that define a trivial
representation on the underlying field, representations on tensor product and representations
on dual vector spaces. The requirement that the linear maps from Proposition 1.2.5 are homo-
morphisms of representations then induce compatibility conditions between these structures.
This leads us to the concepts of bialgebras and Hopf algebras.
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2 Bialgebras and Hopf algebras

2.1 Bialgebras

We now investigate which additional structures are required on an algebra A to ensure that its
representations satisfy counterparts of Propositions 1.2.4 and 1.2.5 for group representations.
We start by considering only the trivial representation and representations on tensor products
in Proposition 1.2.4 and the the associativity and the left and right unit isomorphisms in
Proposition 1.2.5.

To obtain a representation of A on F, we require an algebra homomorphism ε : A→ F and set
ρF : A → EndF(F), ρF(a)λ = ε(a)λ for all a ∈ A, λ ∈ F. To obtain representations on tensor
products of representation spaces, we require an algebra homomorphism ∆ : A → A⊗A and
set ρV⊗W = (ρV⊗ρW ) ◦∆ : A→ EndF(V⊗W ).

The requirements that the associativity isomorphism aU,V,W : (U⊗V )⊗W → U⊗(V⊗W ) and
the left and right unit isomorphisms rV : V⊗F → V and lV : F⊗V → V from Proposition
1.2.5 are homomorphisms of representations impose additional conditions on the algebra ho-
momorphisms ε and ∆. If we define representations on tensor products as above, then the
representations of A on U⊗(V⊗W ) and on U⊗(V⊗W ) are given by

ρ(U⊗V )⊗W = ((ρU⊗ρV )⊗ρW ) ◦ (∆⊗idA) ◦∆ ρU⊗(V⊗W ) = ((ρU⊗ρV )⊗ρW ) ◦ (idA⊗∆) ◦∆

Hence the associativity isomorphism is an isomorphism of representations for all ρU , ρV , ρW if

(∆⊗idA) ◦∆ = (idA⊗∆) ◦∆. (1)

Similarly, we find that the representations of A on V⊗F and F⊗V are given by

ρV⊗F = (ρV⊗ρF) ◦∆ ρF⊗V = (ρF⊗ρV ) ◦∆

with ρF as above. The linear maps rV : V⊗F→ V , v⊗λ 7→ λv and lV : F⊗V → V , λ⊗V 7→ λv
are isomorphisms of representations for all representations ρV of A on V if

rV ◦ (ε⊗idA) ◦∆ = lV ◦ (idA⊗ε) ◦∆ = idA. (2)

That conditions (1) and (2) are not only sufficient but necessary follows by considering tensor
products of the representation of A on itself by left multiplication. In this case one has

((ρA⊗ρA) ◦ ρA)(a)1A = (∆⊗id) ◦∆(a) (ρA⊗(ρA⊗ρA))(a)1A = (id⊗∆) ◦∆(a)

(ρA⊗ρF)(a)(1A⊗1F) = (id⊗ε)(a) (ρF⊗ρA)(a)(1F⊗1A) = (ε⊗id)(a)

A vector space A over F together with linear maps ε : A → F and ∆ : A → A⊗A subject
to (1) and (2) is called a coalgebra. If we also require that the linear maps ε : A → F and
∆ : A→ A⊗A are algebra homomorphisms, we obtain the concept of a bialgebra.

Definition 2.1.1:

1. A coalgebra over a field F is a triple (C,∆, ε) of an F-vector space C and linear maps
∆ : C → C⊗C, ε : C → F, the comultiplication and the counit, such that the following
diagrams commute
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C⊗C⊗C C⊗C∆⊗idoo

C⊗C
id⊗∆

OO

C
∆

oo

∆

OO F⊗C C
c 7→1⊗c
∼=
oo

∆
��

c7→c⊗1
∼=
// C⊗F

C⊗C
ε⊗id

dd

id⊗ε

::

coassociativity counitality

A coalgebra (C,∆, ε) is called cocommutative if ∆op := τ ◦ ∆ = ∆, where
τ : C⊗C → C⊗C, c⊗c′ 7→ c′⊗c is called the flip map.

2. A homomorphism of coalgebras or coalgebra map from (C,∆C , εC) to (D,∆D, εD)
is a linear map φ : C → D for which the following diagrams commute

C⊗C
φ⊗φ
��

C
∆Coo

φ
��

D⊗D D
∆D

oo

F
id
��

C
εCoo

φ
��

F DεD
oo

Note that the comultiplication ∆ is a structure on C, whereas the counit is a property. One
can show that for each pair (C,∆) there is at most one linear map ε : C → F that satisfies the
counitality condition (Exercise).

Note also that the commuting diagrams in Definition 2.1.1 are obtained from the corresponding
diagrams for algebras and algebra homomorphisms in Definition 1.1.3 by reversing all arrows
labelled by m or η and labelling them with ∆ and ε instead. In this sense, the concepts of an
algebra and a coalgebra are dual to each other, which motivates the name coalgebra.

Remark 2.1.2: For a coalgebra (C,∆, ε) we use the symbolic notation ∆(c) = Σ(c) c(1)⊗c(2),
where c(1) and c(2) are interpreted as elements of C and Σ(c) as a finite sum over elements of
C⊗C. This notation is called Sweedler notation.

It is symbolic since the properties of the tensor product imply that the elements c(1) and c(2) are
not defined uniquely. However, this ambiguity causes no problems as long as all maps composed
with ∆ are F-linear. The coassociativity of ∆ then implies for all c ∈ C

(∆⊗id) ◦∆(c) = Σ(c)c(1)(1)⊗c(1)(2)⊗c(2) = Σ(c)c(1)⊗c(2)(1)⊗c(2)(2) = (id⊗∆) ◦∆(c).

This allows us to renumber the factors in the tensor product as

Σ(c)c(1)⊗c(2)⊗c(3) = Σ(c)c(1)(1)⊗c(1)(2)⊗c(2) = Σ(c)c(1)⊗c(2)(1)⊗c(2)(2)

and similarly for higher composites of ∆.

Example 2.1.3:

1. For any coalgebra (C,∆, ε), the opposite comultiplication ∆op = τ ◦ ∆ : C → C⊗C
defines another coalgebra structure on C with counit ε. The coalgebra (C,∆op, ε) is called
the opposite coalgebra and denoted Ccop.
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2. For any pair of coalgebras (C,∆C , εC) and (D,∆D, εD) the vector space C⊗D has a
canonical coalgebra structure given by

∆C⊗D = τ23 ◦ (∆C⊗∆D) : C⊗D → (C⊗D)⊗(C⊗D) c⊗d 7→ Σ(c),(d) c(1)⊗d(1)⊗c(2)⊗d(2)

εC⊗D = εC⊗εD : C⊗D → F c⊗d 7→ εC(c)εD(d),

with τ23 : C⊗C⊗D⊗D → C⊗D⊗C⊗D, c⊗c′⊗d⊗d′ 7→ c⊗d⊗c′⊗d′. This coalgebra
structure on C⊗D is called the tensor product of the coalgebras C, D.

3. If (A,m, ·) is a finite-dimensional algebra over F, then the dual vector space A∗ has a
coalgebra structure (A∗,m∗, η∗), where m∗ : A∗ → (A⊗A)∗ = A∗⊗A∗ and η∗ : A∗ → F
are the duals of the multiplication and unit map given by

m∗(α)(a⊗b) = α(ab) η∗(α) = α(1) ∀α ∈ A∗, a, b ∈ A.

If A is infinite-dimensional, then the dual of the multiplication is a linear map
m∗ : A∗ → (A⊗A)∗. However, in this case we can have A∗⊗A∗ ( (A⊗A)∗, and then M∗

does not define a coalgebra structure on A∗. However, we obtain a coalgebra structure
on the finite dual A◦ = {α ∈ A∗ |m∗(α) ∈ A∗⊗A∗} (Exercise).

4. The dual statement of 3. holds also in the infinite-dimensional case. If (C,∆, ε) is a
coalgebra over F, then the (C∗,∆∗|C∗⊗C∗ , ε∗) is an algebra over F.

5. We consider the algebra Mat(n×n,F) with the basis given by the elementary matrices Eij
that have the entry 1 in the ith row and jth column and zero elsewhere. The dual basis
of Mat(n× n,F)∗ is given by the matrix elements Mij : Mat(n× n,F)→ F, M 7→ mij.
The comultiplication and counit of Mat(n× n,F)∗ are given by

∆(Mij) = Σn
k=1Mik⊗Mkj ε(Mij) = δij.

As we can view a coalgebra as the dual of an algebra, we can also introduce subcoalgebras
and left, right and two-sided coideals by dualising the concepts of subalgebras, left, right and
two-sided ideals. In particular, we can take the quotient of a coalgebra by a two-sided coideal
and obtain another coalgebra.

Definition 2.1.4: Let (C,∆, ε) be a coalgebra.

1. A subcoalgebra of C is a linear subspace I ⊂ C with ∆(I) ⊂ I⊗I.

2. A left coideal in C is a linear subspace I ⊂ C with ∆(I) ⊂ C⊗I, a right coideal is a
linear subspace I ⊂ C with ∆(I) ⊂ I⊗C and a coideal is a linear subspace I ⊂ C with
∆(I) ⊂ I⊗C + C⊗I and ε(I) = 0.

Proposition 2.1.5: If C is a coalgebra and I ⊂ C a coideal, then the quotient space C/I
inherits a canonical coalgebra structure with the following universal property:

The canonical surjection π : C → C/I is a coalgebra map. For any coalgebra map φ : C → D
with ker(φ) ⊂ I there is a unique coalgebra map φ̃ : C/I → D with φ̃ ◦ π = φ.
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Proof:
As I ⊂ C is a coideal, the map ∆′ : C/I → C/I⊗C/I, c+ I 7→ (π⊗π)∆(c) is well defined and
satisfies ∆′ ◦ π = (π⊗π) ◦∆. Its coassociativity follows directly from the coassociativity of ∆
and the surjectivity of π

(∆′⊗id) ◦∆′ ◦ π = (∆′⊗id) ◦ (π⊗π) ◦∆ = (π⊗π⊗π) ◦ (∆⊗id) ◦∆

= (π⊗π⊗π) ◦ (id⊗∆) ◦∆ = (id⊗∆′) ◦ (π⊗π) ◦∆ = (id⊗∆′) ◦∆′ ◦ π.

As I is a coideal, we have I ⊂ ker(ε) and obtain a linear map ε′ : C/I → F with ε′ ◦ π = ε. The
counitality of ε′ then follows directly from the counitality of ε and the surjectivity of π

(ε′⊗id) ◦∆′ ◦ π = (ε′⊗id) ◦ (π⊗π) ◦∆ = (id⊗π) ◦ (ε⊗id) ◦∆ = 1F⊗π
(id⊗ε′) ◦∆′ ◦ π = (id⊗ε′) ◦ (π⊗π) ◦∆ = (id⊗π) ◦ (id⊗ε) ◦∆ = 1F⊗π.

2

In a similar manner, we can dualise the concept of a module over an algebra to obtain the notion
of a comodule over a coalgebra. One also can define subcomodules, quotients of comodules by
subcomodules and related structures. All of them are obtained by taking the corresponding
diagrams for modules over algebras and reversing all arrows labelled by m, η and �.

Definition 2.1.6: Let (C,∆, ε) be a coalgebra over F.

1. A left comodule over C is a pair (V, δ) of a vector space V over F and a linear map
δ : V → C⊗V such that the following diagrams commute

C⊗C⊗V C⊗Vid⊗δoo

C⊗V
∆⊗id

OO

V
δoo

δ

OO V

δ
��

v 7→1⊗v
∼=
// F⊗V

C⊗V.
ε⊗id

99

2. A homomorphism of left comodules or an C-colinear map from (V, δV ) to (W, δW )
is an F-linear map φ : V → W for which the following diagram commutes

C⊗V
id⊗φ

��

V
δVoo

φ
��

C⊗W W.
δWoo

Analogously, one defines right comodules over C as left modules over Ccop and (C,C)-
bicomodules as left comodules over C⊗Ccop. One often uses a variant of Sweedler notation
and denotes the map δ : V → V⊗C for a right comodule V by δ(v) = Σ(v)v(0)⊗v(1), where v(0)

is understood as an element of V , v(1) as an element of C and Σ(v) as a finite sum over elements
of C⊗V . By definition of a right comodule, one then has

(δ⊗idC)◦δ(v)=Σ(v)v(0)(0)⊗v(0)(1)⊗v(1) =:Σ(v)v(0)⊗v(1)⊗v(2) :=Σ(v)v(0)⊗v(1)(1)⊗v(1)(2) =(id⊗∆)◦δ(v).

Example 2.1.7:
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1. Every coalgebra (C,∆, ε) is a left comodule over itself with the comultiplication δ = ∆
and a right comodule over itself with the opposite comultiplication δ = ∆op. This gives
C the structure of a (C,C)-bicomodule.

2. If V is a left comodule over a coalgebra (C,∆, ε) with δ : V → C⊗V , v 7→ Σ(v)v(1)⊗v(0),
then it is a right module over (C∗,∆∗, ε∗) with � : V⊗C∗ → V , v⊗α 7→ Σ(v)α(v(1)) v(0).
However, not every right module over (C∗,∆∗, ε∗) arises from a comodule over C, if C is
infinite-dimensional. The modules that arise in this way are called rational modules.

3. If (C,∆, ε) is a coalgebra and I ⊂ C a linear subspace, then the comultiplication of C
induces a left (right) module structure on the quotient C/I if and only if I is a left (right)
coideal in C.

If we require that a coalgebra over F also has an algebra structure and that its comultiplication
and counit are algebra homomorphisms, we obtain the notion of a bialgebra. Note that the
condition that comultiplication and the counit are algebra homomorphisms is equivalent to
imposing that the multiplication and unit are coalgebra homomorphisms. Hence, the coalgebra
structure and the algebra structure enter the definition of a bialgebra on an equal footing.

Definition 2.1.8:

1. A bialgebra over a field F is a pentuple (B,m, η,∆, ε) such that (B,m, η) is an algebra
over F, (B,∆, ε) is a coalgebra over F and ∆ : B → B⊗B and ε : B → F are algebra
homomorphisms.

2. A bialgebra homomorphism from a bialgebra (B,m, η,∆, ε) to a bialgebra
(B′,m′, η′,∆′, ε′) is a linear map φ : B → B′ that is a homomorphism of algebras and a
homomorphism of coalgebras:

m′ ◦ (φ⊗φ) = φ ◦m φ ◦ η = η′ ∆′ ◦ φ = (φ⊗φ) ◦∆ ε′ ◦ φ = ε.

Example 2.1.9:

1. For any bialgebra (B,m, η,∆, ε), reversing the multiplication or the comultiplication
yields another bialgebra structure on B. The three new bialgebras obtained in this way
are given by (B,mop, η,∆, ε), (B,m, η,∆op, ε) and (B,mop, η,∆op, ε) and denoted Bop,
Bcop and Bop,cop, respectively.

2. For any two bialgebras B,C over F, the vector space B⊗C becomes a bialgebra when
equipped with the tensor product algebra and coalgebra structures. This is called the
tensor product bialgebra and denoted B⊗C.

3. For any finite-dimensional bialgebra (B,m, η,∆, ε), the dual vector space has a canonical
bialgebra structure given by (B∗,∆∗, ε∗,m∗, η∗). If B is infinite-dimensional, the finite
dual B◦ = {b ∈ B |m∗(b) ∈ B∗⊗B∗} is a bialgebra with the restriction of the maps
m∗ : B∗ → B∗⊗B∗, η∗ : B∗ → F, ∆∗ : B∗⊗B∗ → B∗ and ε∗ : F→ B∗ (Exercise).
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2.2 Hopf algebras

We will now investigate which additional structure is needed on a bialgebra H to obtain a
representation on the dual vector space V ∗ for every representation ρV : H → EndF(V ) such
that the evaluation maps and for finite-dimensional vector spaces the coevaluation maps from
Proposition 1.2.5 become homomorphisms of representations. For this, we suppose that V is
a finite-dimensional vector space over F with an ordered basis B = (b1, ..., bn) and denote by
B∗ = (β1, ..., βn) the dual basis of V ∗. Then the evaluation and coevaluation maps are given by

evRV : V ∗⊗V → F, α⊗v 7→ α(v) evLV : V⊗V ∗ → F, v⊗α 7→ α(v)

coevLV : F→ V ∗⊗V, λ 7→ λΣn
i=1β

i⊗bi coevRV : F→ V⊗V ∗, λ 7→ λΣn
i=1bi⊗βi.

To obtain a representation of H on V ∗ for each representation ρV : H → EndF(V ) we require
an algebra homomorphism S : H → Hop and set ρV ∗(h)α = α ◦ ρV ◦ S(h) for all h ∈ H and
α ∈ V ∗. By definition of the representations on tensor products and of the right evaluation and
coevaluation we then have for all v ∈ V , α ∈ V ∗ and h ∈ H

(evRV ◦ ρV ∗⊗V (h))(α⊗v) = (evRV ◦ (ρV ∗⊗ρV ) ◦∆(h))(α⊗v) = Σ(h) evRV (ρV ∗(h(1))α⊗ρV (h(2))v)

= Σ(h) evRV (α ◦ ρV (S(h(1)))⊗ρV (h(2))v) = Σ(h) (α ◦ ρV (S(h(1))))(ρV (h(2))v)

= Σ(h) (α ◦ ρV (S(h(1))) ◦ ρV (h(2)))v = Σ(h) (α ◦ ρV (S(h(1)) · h(2)))(v)

(ρV⊗V ∗(h) ◦ coevRV )(λ) = λΣn
i=1(ρV⊗V ∗(h))(bi⊗βi) = λΣn

i=1Σ(h) ρV (h(1))bi⊗ρV ∗(h(2))β
i

= λΣn
i=1Σ(h) ρV (h(1))bi⊗(βi ◦ ρV (S(h(2))) = λΣn

i=1Σ(h) ρV (h(1) · S(h(2)))bi⊗βi,

where we used the identity Σn
i=1φ(bi)⊗βi = Σn

i=1bi⊗φ∗(βi) for φ ∈ EndF(V ) and Sweedler
notation for the comultiplication of H. As we have by definition of the trivial representation

(ρF(h)◦evRV )(α⊗v)=ρF(h)α(v)=ε(h)α(v) (coevRV ◦ρF(h))(λ)=ε(h)coevRV (λ)=λε(h) Σn
i=1bi⊗βi,

we find that the right evaluation and coevaluation are homomorphisms of representations iff

m ◦ (S⊗id)◦∆(h) = Σ(h)S(h(1)) · h(2) = η◦ε(h) = Σ(h)h(1) · S(h(2)) = m ◦ (id⊗S)◦∆(h) (3)

for all h ∈ H. An analogous computation for the left evaluation and coevaluation yields

evLV ◦ ρV⊗V ∗(h)(v⊗α) = α ◦ ρV (Σ(h)S(h(2)) · h(1))(v)

ρV⊗V ∗(h) ◦ coevLV (λ) = λΣn
i=1Σ(h) β

i⊗ρV (S(h(2)) · h(1))bi

and hence the left evaluation and coevaluation are homomorphisms of representations iff

mop◦(S⊗id)◦∆(h)= Σ(h)h(2) · S(h(1)) = η◦ε(h)= Σ(h)S(h(2))h(1) = mop◦(id⊗S)◦∆(h) (4)

for all h ∈ H. We will see in the following that imposing both (3) and (4) is too restrictive since
it eliminates too many examples. Moreover, if V is finite-dimensional we can obtain the left
evaluation and coevaluation for a vector space V from the right evaluation and coevaluation
for V ∗ by composing the latter with the canonical isomorphism can : V

∼−→ V ∗∗, v 7→ fv with
f(α) = α(vf ) for all α ∈ V ∗. Hence, at least in the finite-dimensional case the left and right
(co)evaluations are not independent and for this reason, we consider only the conditions (3)
for the right evaluation. We will also see that these conditions imply that S : H → Hop is
an algebra homomorphism and hence we do not impose this in our definition. This yields the
concept of a Hopf algebra.
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Definition 2.2.1: A bialgebra (H,m, η,∆, ε) is called a Hopf algebra if there is a linear
map S : H → H, called the antipode, with

m ◦ (S⊗id) ◦∆ = m ◦ (id⊗S) ◦∆ = η ◦ ε.

Remark 2.2.2:

1. In Sweedler notation, the axioms for a Hopf algebra read:

Σ(a)a(1)(1)⊗a(1)(2)⊗a(2) = Σ(a)a(1)⊗a(2)(1)⊗a(2)(2) Σ(a)ε(a(1))a(2) = Σ(a)a(1)ε(a(2)) = a

Σ(ab)(ab)(1)⊗(ab)(2) = Σ(a)Σ(b)a(1)b(1)⊗a(2)b(2) ε(ab) = ε(a)ε(b)

Σ(a)S(a(1))a(2) = Σ(a)a(1)S(a(2)) = ε(a) 1 ∀a, b ∈ H.

2. As indicated by the wording of Definition 2.2.1, the existence of the antipode is a property
of a given bialgebra (H,m, η,∆, ε). An antipode either exists or it does not, but we will
prove that there is at most one antipode for a given bialgebra structure on H.

3. Although the antipode replaces the inverse for representations of a finite group, it does
not need to be an involution. In fact, it is not even guaranteed that the antipode of a
Hopf algebra is invertible.

Before considering concrete examples, we give an alternative interpretation to the defining con-
dition on the antipode in Definition 2.2.1. This condition is well-motivated from the representa-
tion theoretical viewpoint since it was obtained from the condition that the right evaluation and
coevaluation maps should be homomorphisms of representations. However, it looks rather odd
from a purely algebraic viewpoint, and it should be possible to gain a conceptual understand-
ing without considering representations. This can be achieved by considering the convolution
product of a bialgebra H, which is defined more generally for a pair (A,C) of an algebra A and
a coalgebra C.

Lemma 2.2.3: Let (A,m, η) be an algebra and (C,∆, ε) a coalgebra over F.

1. The map ∗ : HomF(C,A)⊗HomF(C,A) → HomF(C,A), f⊗g 7→ f ∗ g = m ◦ (f⊗g) ◦ ∆
defines an algebra structure on HomF(C,A) with unit η ◦ ε : C → A.

The vector space HomF(C,A) with this algebra structure is called the convolution
algebra of C and A, and ∗ is called the convolution product on HomF(C,A).

2. f ∈ HomF(C,A) is called convolution invertible if there is a g ∈ HomF(C,A) with
g ∗ f = f ∗ g = η ◦ ε. The convolution inverse of an element f ∈ HomF(C,A) is unique,
and the convolution invertible elements in HomF(C,A) form a group with unit η ◦ ε.

Proof:
That the map ∗ is F-linear follows from the F-linearity of ∆ : C → C⊗C, m : A⊗A → A and
the properties of the tensor product. The associativity of ∗ follows from the associativity of m
and the coassociativity of ∆

(f ∗ g) ∗ h = m ◦ ((f ∗ g)⊗h) ◦∆ = m ◦ (m⊗id) ◦ (f⊗g⊗h) ◦ (∆⊗id) ◦∆

= m ◦ (id⊗m) ◦ (f⊗g⊗h) ◦ (id⊗∆) ◦∆ = m ◦ (f⊗(g ∗ h)) ◦∆ = f ∗ (g ∗ h).
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That η ◦ ε : C → A is a unit for ∗ follows because η is the unit of A and ε the counit of C

(η ◦ ε) ∗ f = m ◦ ((η ◦ ε)⊗f) ◦∆ = m ◦ (id⊗f) ◦ (η⊗id) ◦ (ε⊗id) ◦∆ = m ◦ (1A⊗f) = f

f ∗ (η ◦ ε) = m ◦ (f⊗(η ◦ ε)) ◦∆ = m ◦ (f⊗id) ◦ (id⊗η) ◦ (id⊗ε) ◦∆ = m ◦ (f⊗1A) = f.

This shows that the vector space HomF(C,A) with the convolution product is an associative
algebra over F. The uniqueness of two-sided inverses and the statement that the elements with
a two-sided inverse form a group holds for any monoid and hence for any associative algebra.
2

If (B,m, η,∆, ε) is a bialgebra, we can choose (C,∆, ε) = (B,∆, ε) and (A,m, η) = (B,m, η)
and consider the convolution product on EndF(B). Then it is natural to ask if the element
idB ∈ EndF(B) is convolution invertible. It turns out that this is the case if and only if B is
a Hopf algebra, and in this case, the convolution inverse is the antipode of B. This gives a
more conceptual interpretation to the defining condition on the antipode in Definition 2.2.1.
Moreover, the convolution product allows us to derive the basic properties of the antipode
which are obtained from the following proposition.

Proposition 2.2.4: Let (B,m, η,∆, ε) and (B′,m′, η′,∆′, ε′) bialgebras over F.

1. The identity map idB : B → B is convolution invertible if and only if (B,m, η,∆, ε) is a
Hopf algebra, and in this case the convolution inverse of idB is the antipode S : B → B.

2. If f ∈ HomF(B,B) is a convolution invertible algebra homomorphism, then its convo-
lution inverse f−1 : B → B is an anti-algebra homomorphism: mop◦(f−1⊗f−1) = f−1◦m.

3. If f ∈ HomF(B,B) is a convolution invertible coalgebra homomorphism, then its convolu-
tion inverse f−1 : B → B is an anti-coalgebra homomorphism: ∆◦f−1 = (f−1⊗f−1)◦∆op.

4. If φ : B → B′ is an algebra homomorphism, then Lφ : HomF(B,B) → HomF(B,B′),
f 7→ φ ◦ f is an algebra homomorphism with respect to the convolution products.

5. If ψ : B → B′ is a coalgebra homomorphism, then Rφ : HomF(B′, B′) → HomF(B′, B),
g 7→ g ◦ φ is an algebra homomorphism with respect to the convolution products.

Proof:
By definition, the identity map idB is convolution invertible if and only if there is a linear map
f : B → B with f ∗ idB = m◦ (f⊗idB)◦∆ = η ◦ ε = m◦ (idB⊗f)◦∆ = idB ∗f . This is precisely
the condition on the antipode in a Hopf algebra.

For 2. we note that f−1 ◦ η = m ◦ (f−1 ◦ η⊗f ◦ η) = m ◦ (f−1⊗f) ◦∆ ◦ η = η′ ◦ ε ◦ η = η′ for any
algebra homomorphism f . We then consider the convolution algebra HomF(B⊗B,B), where
B⊗B is equipped with the tensor product coalgebra structure from Example 2.1.3, 2. and show
that both, f−1 ◦mB : B⊗B → B and mop ◦ (f−1⊗f−1) : B⊗B → B are convolution inverses
of m ◦ (f⊗f) = f ◦ m : B⊗B → B. The uniqueness of the convolution inverse then implies
mop ◦ (f−1⊗f−1) = f−1 ◦m, and this shows that f is an anti-algebra homomorphism. To show
that both, f−1 ◦mB and mop ◦ (f−1⊗f−1), are convolution inverses of f ◦m, we compute

(f−1 ◦m) ∗ (f ◦m)(b⊗c) = m ◦ (f−1 ◦m⊗f ◦m) ◦∆B⊗B = m ◦ (f−1⊗f) ◦∆B ◦m
= (f−1 ∗ f) ◦m = η ◦ ε ◦m = η ◦ (ε⊗ε) = η ◦ εB⊗B.

23



To evaluate the other term, we note that in Sweedler notation we have f∗g(b) = Σ(b)f(b(1))g(b(2))
and ∆B⊗B(b⊗c) = Σ(b)(c)b(1)⊗c(1)⊗b(2)⊗c(2). With this, we obtain

(mop ◦ (f−1⊗f−1)) ∗ (f ◦m)(b⊗c)
= Σ(b)(c)(m

op ◦ (f−1⊗f−1))(b(1)⊗c(1)) · (f ◦m)(b(2)⊗c(2)) = Σ(b)(c)f
−1(c(1)) · f−1(b(1))f(b(2)c(2))

= Σ(b)(c)f
−1(c(1)) · f−1(b(1))f(b(2))f(c(2)) = Σ(b)(c)f

−1(c(1)) · (f−1 ∗ f)(b)f(c(2))

= ε(b)Σ(c)f
−1(c(1)) · f(c(2)) = ε(b)(f−1 ∗ f)(c) = ε(b)ε(c)1B = η ◦ εB⊗B(b⊗c)

and a similar computation proves (f ◦m) ∗ (f−1 ◦m) = (f ∗m) ◦ (mop ◦ (f−1 ◦ f−1) = η ◦ εB⊗B.
The proof for 3. is analogous. One considers the convolution algebra HomF(B,B⊗B), where
B⊗B is the tensor product of B with itself from Example 1.1.5, 5. and proves that both ∆◦f−1

and (f−1⊗f−1) ◦∆op are convolution inverses of ∆ ◦ f = (f⊗f) ◦∆ : B → B⊗B (Exercise).

For 4. and 5. we compute for an algebra homomorphism φ : B → B′, a coalgebra homomorphism
ψ : B → B′ and linear maps f, g ∈ HomF(B,B), h, k ∈ HomF(B′, B′)

φ ◦ (f ∗ g) = φ ◦m ◦ (f⊗g) ◦∆ = m′ ◦ (φ⊗φ) ◦ (f⊗g) ◦∆ = (φ ◦ f) ∗′ (φ ◦ g)

(h ∗ k) ◦ ψ = m′ ◦ (h⊗k) ◦∆′ ◦ ψ = m′ ◦ (h⊗k) ◦ (ψ⊗ψ) ◦∆ = (h ◦ ψ) ∗′ (k ◦ ψ).

As for any algebra homomorphism φ : B → B′ one has Lφ(η ◦ ε) = φ ◦ η ◦ ε = η′ ◦ ε and for
any coalgebra homomorphism ψ : B → B′, one has Rψ(η′ ◦ ε′) = η′ ◦ ε′ ◦ ψ = η′ ◦ ε, this shows
that Lφ : HomF(B,B) → HomF(B,B′) and Rφ : HomF(B′, B′) → HomF (B,B′) are algebra
homomorphisms. 2

Proposition 2.2.4 allows us to draw conclusions about the basic properties of an antipode in a
Hopf algebra H. The first is its uniqueness, which follows directly from the uniqueness of the
convolution inverse established in Lemma 2.2.3 and the fact that the antipode is the convolution
inverse of the identity map. Proposition 2.2.4, 2. and 3. imply that the antipode defines an
algebra homomorphism S : H → Hop,cop since the identity map idH : H → H is an algebra and
a coalgebra homomorphism. Finally, Proposition 2.2.4, 4. and 5. show that the antipode of a
Hopf algebra is automatically compatible with bialgebra homomorphisms since any bialgebra
homomorphism φ : H → H ′ induces algebra homomorphisms Lφ : EndF(H) → HomF(H,H ′),
f 7→ φ ◦ f and Rφ : EndF(H ′)→ HomF(H,H ′), g 7→ g ◦ φ by Proposition 2.2.4, 4. and 5. which
map convolution inverses to convolution inverses.

Corollary 2.2.5: (Properties of the antipode)

1. If a bialgebra (B,m, η,∆, ε) is a Hopf algebra, then its antipode S : B → B is unique.

2. The antipode of a Hopf algebra is an anti-algebra and anti-coalgebra homomorphism

mop ◦ (S⊗S) = S ◦m S ◦ η = η ∆ ◦ S = (S⊗S) ◦∆op ε ◦ S = ε.

3. If (B,m, η,∆, ε, S) and (B′,m′, η′,∆′, ε′, S ′) are Hopf algebras, then any homomorphism
of bialgebras φ : B → B′ satisfies S ′ ◦ φ = φ ◦ S.

Proof:
The first two claims are obvious. The last claim follows directly from Proposition 2.2.4, 4. since
for any bialgebra homomorphism φ : B → B′, one has

(φ ◦ S) ∗ φ = Lφ(S ∗ idB) = Lφ(η ◦ ε) = η′ ◦ ε = Lφ(η ◦ ε) = Lφ(idB ∗ S) = φ ∗ (φ ◦ S)

(S ′ ◦ φ) ∗ φ = Rφ(S ′ ∗ idB′) = Rφ(η′ ◦ ε′) = η′ ◦ ε = Rφ(η′ ◦ ε′) = Rφ(idB′ ∗ S ′) = φ ∗ (S ′ ◦ φ).
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This shows that both, S ′ ◦ φ and φ ◦ S are convolution inverses of φ : B → B′ in HomF(B,B′)
and the uniqueness of the convolution inverse then implies S ′ ◦ φ = φ ◦ S. 2

Before considering examples, it remains to clarify the dependence of our definitions on the
choices involved in the process. Our definition of a Hopf algebra took as the defining condition
for the antipode equation (3), which ensured that the right evaluation and coevaluation maps
are homomorphisms of representations. It is natural to ask how the corresponding condition
(4) for the left evaluation and coevaluation is reflected in the properties of the antipode. It
turns out that imposing both conditions is equivalent to the requirement that the antipode is
an involution. More generally, if the antipode is invertible, the antipode satisfies condition (3)
and the inverse of the antipode satisfies condition (4).

Lemma 2.2.6: (Properties of the antipode)
Let (H,m, η,∆, ε, S) be a Hopf algebra.

1. If S is invertible, then mop ◦ (S−1⊗id) ◦∆ = mop ◦ (id⊗S−1) ◦∆ = η ◦ ε.
2. S2 = idH if and only if mop ◦ (S⊗id) ◦∆ = η ◦ ε = mop ◦ (id⊗S) ◦∆.

3. If H is commutative or cocommutative, then S2 = idH .

Proof:
1. If S−1 : H → H is the inverse of the antipode S : H → H, one has

S ◦mop ◦ (S−1⊗id) ◦∆ = m ◦ (S⊗S) ◦ (S−1⊗id) ◦∆ = m ◦ (id⊗S) ◦∆ = η ◦ ε
S ◦mop ◦ (id⊗S−1) ◦∆ = m ◦ (S⊗S) ◦ (id⊗S−1) ◦∆ = m ◦ (S⊗id) ◦∆ = η ◦ ε.

As S ◦ η ◦ ε = η ◦ ε = S−1 ◦ η ◦ ε, applying S−1 to both sides of these equations proves 1.

2. If S2 = idH , then S = S−1 and from 1. one obtains mop◦(S⊗id)◦∆ = η◦ε = mop◦(id⊗S)◦∆.
To prove the other implication, one computes with the convolution product in EndF(H)

S ∗ S2 = m ◦ (S⊗S2) ◦∆ = S ◦mop ◦ (id⊗S) ◦∆ = m ◦ (id⊗S) ◦∆op ◦ S (5)

S2 ∗ S = m ◦ (S2⊗S) ◦∆ = S ◦mop ◦ (S⊗id) ◦∆ = m ◦ (S⊗id) ◦∆op ◦ S.

If mop ◦ (S⊗id) ◦∆ = η ◦ ε = mop ◦ (id⊗S) ◦∆, this implies S ∗ S2 = S2 ∗ S = S ◦ η ◦ ε = η ◦ ε.
This means that S2 and idH are both convolution inverses of S, and from the uniqueness of the
convolution inverse one has S2 = idH . Claim 3. also follows directly from (5) since mop = m or
∆op = ∆ imply S ∗ S2 = S2 ∗ S = idH in (5) and hence S2 = idH . 2

With these results on the properties of the antipode, we can now consider our first examples,
which are rather trivial but structurally important, because they care used in many construc-
tions. More interesting and advanced examples will be considered in the next subsection.

Example 2.2.7:

1. For any Hopf algebra (H,m, η,∆, ε, S), reversing the multiplication and the comul-
tiplication yields another Hopf algebra structure on H, namely the Hopf algebra
Hop,cop = (H,mop, η,∆op, ε, S). If S is invertible, then reversing the multiplication or
the comultiplication and taking the inverse of the antipode yields new Hopf algebra
structures Hop = (H,mop, η,∆, ε, S−1) and Hcop = (H,m, η,∆op, ε, S−1) on H.
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2. For any two Hopf algebras H,K over F, the tensor product bialgebra H⊗K is a Hopf
algebra with antipode S = SH⊗SK . This is called the tensor product Hopf algebra
and denoted H⊗K.

3. For any finite-dimensional Hopf algebra (H,m, η,∆, ε, S), the dual bialgebra
(H∗,∆∗, ε∗,m∗, η∗) is a Hopf algebra with antipode S∗. For any Hopf algebra
(H,m, η,∆, ε, S), the finite dual (H◦,∆∗|H◦⊗H◦ , ε∗,m∗|H◦ , η∗|H◦) from Example 2.1.9, 3. is
a Hopf algebra with antipode S∗|H◦ (Exercise).

Example 2.2.8: Let G be a group and F a field.
The group algebra F[G] is a cocommutative Hopf algebra with the algebra structure from
Example 1.1.10, comultiplication ∆ : F[G]→ F[G]⊗F[G], g 7→ g⊗g, counit ε : F[G]→ F, g 7→ 1
and antipode S : F[G]→ F[G], g 7→ g−1.

Proof:
As the elements of F[G] are finite linear combinations Σg∈G λgg with λg ∈ F, it is sufficient to
verify that the axioms hold for the basis elements. This follows by a direct computation

(∆⊗id) ◦∆(g) = ∆(g)⊗g = g⊗g⊗g = g⊗∆(g) = (id⊗∆) ◦∆(g)

(ε⊗id) ◦∆(g) = ε(g)⊗g = 1⊗g (id⊗ε) ◦∆(g) = g⊗ε(g) = g⊗1

∆(g · h) = (gh)⊗(gh) = (g⊗g) · (h⊗h) = ∆(g) ·∆(h)

ε(g · h) = 1 = 1 · 1 = ε(g) · ε(h)

m ◦ (S⊗id) ◦∆(g) = m(g−1⊗g) = g−1g = 1 = η(ε(g)) = gg−1 = m(g⊗g−1) = m ◦ (id⊗S) ◦∆(g).

2

Example 2.2.9: Let G be a finite group and F a field.
Then the dual vector space F[G]∗ is isomorphic to the vector space FunF(G) of functions f :
G → F with the pointwise addition and scalar multiplication. The functions δg : G → F with
δg(g) = 1 and δg(h) = 0 for g 6= h form a basis of FunF(G). In terms of this basis, the Hopf
algebra structure (FunF(G),∆∗, ε∗,m∗, η∗, S∗) that is dual to (F[G],m, η,∆, ε, S) is given by

∆∗(δg⊗δh) = δg · δh = δg(h) δh ε∗(λ) = λΣg∈Gδg

m∗(δg) = Σh∈Gδh⊗δh−1g η∗(δg) = δg(e) S ′(δg) = S∗(δg) = δg−1

for all g, h ∈ G. This Hopf algebra is commutative, and its algebra structure is given by the
pointwise multiplication of functions f : G→ F.

Proof:
This follows by a direct computation from the definition of the dual Hopf algebra structure.
We have for all g, h, u, v ∈ G

∆∗(δg⊗δh)(u) = (δg⊗δh)(∆(u)) = (δg⊗δh)(u⊗u) = δg(u)δh(u) = δg(h) δh(u)

ε∗(λ)(u) = λε(u) = λ = Σg∈Gλδg(u)

m∗(δg)(u⊗v) = δg(u · v) = Σh∈Gδh(u)δg(hv) = Σh∈Gδh(u)δh−1g(v)

η∗(δg) = δg(e)

S∗(δg)(u) = δg(S(u)) = δg(u
−1) = δg−1(u).

In particular, this implies for all u ∈ G

(f1 · f2)(u) = ∆∗(f1⊗f2)(u) = Σg,h∈Gf1(g)f2(h)∆∗(δg⊗δh)(u) = Σg,h∈Gf1(g)f2(h)δg(u)δh(u)

= f1(u)f2(u). 2
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2.3 Examples

In this section, we consider more interesting and advanced examples of Hopf algebras, which
show that the concept goes far beyond group algebras and other familiar constructions. In
particular, we construct parameter dependent examples that are non-commutative and non-
cocommutative and can be viewed as deformations of other, more basic Hopf algebras with
a simpler structure. We start with two most basic examples, namely the tensor algebra of a
vector space and the universal enveloping algebra of a Lie algebra.

Example 2.3.1: The tensor algebra T (V ) of a vector space V over F is a cocommutative
Hopf algebra over F with the algebra structure from Example 1.1.6 and the comultiplication,
counit and antipode given by

∆(v1⊗ . . .⊗vn) = Σn
p=0Σσ∈Sh(p,n−p)(vσ(1)⊗ . . .⊗vσ(p))⊗(vσ(p+1)⊗ . . .⊗vσ(n))

ε(v1⊗ . . .⊗vn) = 0 S(v1⊗...⊗vn) = (−1)nvn⊗...⊗v1,

where Sh(p, q) is the set of (p, q)-shuffle permutations

σ ∈ Sp+q with σ(1) < σ(2) < ... < σ(p) and σ(p+ 1) < σ(p+ 2) < ... < σ(p+ q),

and we set vσ(1)⊗ . . .⊗vσ(p) = 1 for p = 0 and vσ(p+1)⊗ . . .⊗vσ(n) = 1 for p = n.

Proof:
By the universal property of the tensor algebra, the linear maps

∆′ : V → T (V )⊗T (V ), v 7→ 1⊗v+ v⊗1 ε′ : V → F, v 7→ 0 S : V → T (V )op, v 7→ −v

induce algebra homomorphisms ∆ : T (V ) → T (V )⊗T (V ), ε : T (V ) → F, S : T (V ) → T (V )op

with ∆ ◦ ιV = ∆′, ε ◦ ιV = ε′ and S ◦ ιV = S ′. To show that ∆ and ε are coassociative and
counital and S is an antipode it is sufficient to prove that

(∆⊗id) ◦∆ ◦ ιV = (id⊗∆) ◦∆ ◦ ιV
lT (V ) ◦ (ε⊗id) ◦∆ ◦ ιV = ιV = rT (V ) ◦ (id⊗ε) ◦∆ ◦ ιV
m ◦ (S⊗id) ◦∆ ◦ ιV = η ◦ ε ◦ ιV = m ◦ (id⊗S) ◦∆ ◦ ιV .

The claim then follows from the universal property of the tensor algebra. These identities follow
by a direct computation from the expressions above

(∆⊗id) ◦∆ ◦ ιV (v) = (∆⊗id)(1⊗v + v⊗1) = ∆(1)⊗v + ∆(v)⊗1 = 1⊗1⊗v + 1⊗v⊗1 + v⊗1⊗1

(id⊗∆) ◦∆ ◦ ιV (v) = (id⊗∆)(1⊗v + v⊗1) = 1⊗∆(v) + ∆(1)⊗v = 1⊗1⊗v + 1⊗v⊗1 + v⊗1⊗1

lT (V ) ◦ (ε⊗id) ◦∆ ◦ ιV (v) = lT (V )(ε(v)⊗1 + ε(1)⊗v) = v = ιV (v)

rT (V ) ◦ (id⊗ε) ◦∆ ◦ ιV (v) = rT (V )(1⊗ε(v) + v⊗ε(1)) = v = ιV (v)

m ◦ (S⊗id) ◦∆ ◦ ιV (v) = m(S(1)⊗v + S(v)⊗1) = 1 · v − v · 1 = 0 = η(ε(v)) = η ◦ ε ◦ ιV (v)

m ◦ (id⊗S) ◦∆ ◦ ιV (v) = m(1⊗S(v) + v⊗S(1)) = −1 · v + v · 1 = 0 = η(ε(v)) = η ◦ ε ◦ ιV (v).

This proves that the algebra homomorphisms ∆ and ε are coassociative and counital, that S is
an antipode that and (T (V ),m, η,∆, ε, S) is a Hopf algebra,
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The formulas for the comultiplication, counit and antipode follow by induction over n. If they
hold for all products of vectors in V of length ≤ n, then we have by definition of ∆, ε and S

ε(v1⊗...⊗vn+1) = ε(v1⊗...⊗vn) · ε(vn+1) = 0

S(v1⊗...⊗vn+1) = S(vn+1)⊗S(v1⊗...⊗vn) = (−1)n+1vn+1⊗vn⊗...⊗v1

∆(v1⊗...⊗vn+1) = ∆(v1⊗...⊗vn) ·∆(vn+1)

=
(
Σn
p=0Σσ∈Sh(p,n−p) (vσ(1)⊗...⊗vσ(p))⊗(vσ(p+1)⊗...⊗vσ(n)

)
· (vn+1⊗1 + 1⊗vn+1)

= Σn
p=0Σσ∈Sh(p,n−p) (vσ(1)⊗...⊗vσ(p)⊗vn+1)⊗(vσ(p+1)⊗...⊗vσ(n))

+ Σn
p=0Σσ∈Sh(p,n−p) (vσ(1)⊗...⊗vσ(p))⊗(vσ(p+1)⊗...⊗vσ(n)⊗vn+1)

= Σn+1
p=0Σσ∈Sh(p,n+1−p) (vσ(1)⊗...⊗vσ(p))⊗(vσ(p+1)⊗...⊗vσ(n+1)).

In the last step, we used that from every shuffle permutation σ ∈ Sh(p, n − p), we ob-
tain a shuffle permutation σ′ ∈ Sh(p + 1, n − p) by setting σ′(i) = σ(i) for 1 ≤ i ≤ p,
σ′(p + 1) = n + 1 and σ′(i) = σ(i − 1) for p + 2 ≤ i ≤ n + 1. We also obtain a shuffle
permutation σ′′ ∈ Sh(p, n + 1 − p) by setting σ′′(i) = σ(i) for 1 ≤ i ≤ n, σ′′(n + 1) = n + 1.
Conversely, for every shuffle permutation π ∈ Sh(p, n + 1 − p), one has either π(p) = n + 1
or π(n + 1) = n + 1. In the first case, one has p > 0 and π = σ′ for a shuffle permuta-
tion σ ∈ Sh(p−1, n+1−p) and in the second π = σ′′ for a shuffle permutation σ ∈ Sh(p, n−p). 2

Example 2.3.2: The universal enveloping algebra U(g) of a Lie algebra g is a cocommutative
Hopf algebra with the algebra structure from Example 1.1.9 and the comultiplication, counit
and antipode given by ∆(x) = x⊗1 + 1⊗x, ε(x) = 0 and S(x) = −x for all x ∈ g.

Proof:
The linear maps

∆′ : g→ U(g)⊗U(g), x 7→ x⊗1 + 1⊗x ε′ : g→ F, x 7→ 0 S ′ : g→ U(g)op, x 7→ −x

are Lie algebra homomorphisms, since one has for all x, y ∈ g

[∆′(x),∆′(y)] = ∆′(x) ·∆′(y)−∆′(y) ·∆′(x)

= (x⊗1 + 1⊗x) · (y⊗1 + 1⊗y)− (y⊗1 + 1⊗y) · (x⊗1 + 1⊗x)

= (xy)⊗1 + x⊗y + 1⊗(xy) + y⊗x− ((yx)⊗1 + y⊗x+ x⊗y − 1⊗(yx))

= (xy − yx)⊗1 + 1⊗(xy − yx) = [x, y]⊗1 + 1⊗[x, y] = ∆′([x, y])

[ε′(x), ε′(y)]) = ε′(x)ε′(y)− ε′(y)ε′(x) = 0 = ε′([x, y])

[S ′(x), S ′(y)] = S ′(y)S ′(x)− S ′(x)S ′(y) = y · x− x · y = −[x, y] = S ′([x, y]).

By the universal property of U(g), they induce algebra homomorphisms ∆ : U(g)→ U(g)⊗U(g)
ε : U(g)→ F and S : U(g)→ U(g)op with ∆ ◦ ιg = ∆′, ε ◦ ιg = ε′ and S ◦ ιg = S ′. To prove the
coassociativity and counitality of ∆ and ε and that S is an antipode, it is sufficient to show
that (∆⊗id) ◦ ∆ ◦ ιg = (id⊗∆) ◦ ∆ ◦ ιg, lU(g) ◦ (ε⊗id) ◦ ∆ ◦ ιg = ιg = rU(g) ◦ (id⊗ε) ◦ ∆ ◦ ιg
and m ◦ (S⊗id) ◦ ∆ ◦ ιg = η ◦ ε ◦ ιg = m ◦ (id⊗S) ◦ ∆ ◦ ιg . The claim then follows from the
universal property of U(g). These identities follow by a direct computation that yields the
same formulas as in the proof of Example 2.3.1. That this bialgebra is cocommutative follows
from the fact that ∆ ◦ ιg(x) = 1⊗x + x⊗1 = ∆op ◦ ιg(x) for all x ∈ g. With the universal
property of U(g), this implies ∆ = ∆op : U(g)→ U(g)⊗U(g). 2
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All examples of Hopf algebras treated so far are cocommutative, and hence their (finite) duals
are commutative. To construct more interesting examples that are neither commutative nor co-
commutative, we consider certain polynomials in Z[q], the so-called q-factorials and q-binomials.
Their name is due to the fact that they exhibit relations that resemble the relations between
factorials of natural numbers and binomial coefficients. That the variable in the polynomial
ring Z[q] is called q instead of x has historical reasons and no deeper meaning.

Definition 2.3.3: Let R be an integral domain, Z[q] the ring of polynomials with coefficients
in Z and Z(q) the associated fraction field of rational functions. We define:

• the q-natural (n)q = 1 + q + ...+ qn−1 = qn−1
q−1

for all n ∈ N,

• the q-factorial (0)!q = 1 and (n)!q = (n)q(n− 1)q · · · (1)q = (qn−1)(qn−1−1)···(q−1)
(q−1)n

for n ∈ N,

• the q-binomial or Gauß polynomial

(
n
k

)
q

= (n)!q
(n−k)!q (k)!q

for k, n ∈ N0 with 0 ≤ k ≤ n.

Lemma 2.3.4:

1. For all k, n ∈ N with 0 ≤ k ≤ n, the q-naturals, the q-factorials and the q-binomials are
polynomials in q with integer coefficients.

2. For all k, n ∈ N with 0 ≤ k ≤ n the q-binomials satisfy the identity(
n
k

)
q

=

(
n

n− k

)
q

3. For all k, n ∈ N with 0 ≤ k < n the q-binomials satisfy the q-Pascal identity(
n+ 1
k + 1

)
q

=

(
n
k

)
q

+ qk+1

(
n

k + 1

)
q

=

(
n

k + 1

)
q

+ qn−k
(
n
k

)
q

4. If A is an algebra over Z(q) and x, y ∈ A with xy = q yx one has the q-binomial formula

(x+ y)n =
n∑
k=0

(
n
k

)
q

ykxn−k,

Proof:
That the elements (n)q and (n)!q are polynomials in q follows directly from their definition.
That this also holds for the q-binomials follows by induction from 3. and from the fact that
they are equal to 1 for k = 0 or k = n. The second claim follows directly from the definition of
the q-binomial, and the third follows by a direct computation(
n
k

)
q

+ qk+1

(
n

k + 1

)
q

=
(qn − 1) · · · (qk+1 − 1)

(qn−k − 1) · · · (q − 1)
+ qk+1 (qn − 1) · · · (qk+2 − 1)

(qn−k−1 − 1) · · · (q − 1)

=
(qn − 1) · · · (qk+2 − 1)

(qn−k − 1) · · · (q − 1)
·
(
qk+1 − 1 + qk+1(qn−k − 1)

)
=

(qn+1 − 1) · · · (qk+2 − 1)

(qn−k − 1) · · · (q − 1)
=

(
n+ 1
k + 1

)
q

.

4. To prove the last claim, we use the identity

xyk − qkykx = Σk−1
l=0 q

lyl(xy − qyx)yk−l−1, (6)
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which follows by induction over k and compute with 3. for general x, y ∈ A

(x+ y)n+1 −
n+1∑
k=0

(
n+ 1
k

)
q

ykxn+1−k = (x+ y) ·
n∑
k=0

(
n
k

)
q

ykxn−k −
n+1∑
k=0

(
n+ 1
k

)
q

ykxn+1−k

=
n−1∑
k=0

(
n
k

)
q

yk+1xn−k +
n∑
k=1

(
n
k

)
q

xykxn−k −
n∑
k=1

(
n

k − 1

)
q

ykxn+1−k −
n∑
k=1

(
n
k

)
q

qkykxn+1−k

=
n∑
k=1

(
n
k

)
q

(xykxn−k − qkykxn+1−k) =
n∑
k=1

k−1∑
l=0

(
n
k

)
q

qlyl(xy − qyx)yk−l−1xn−k ∈ (xy − qyx).

If xy = q yx, then the ideal (xy − qyx) is trivial and the claim follows. 2

To evaluate the q-naturals, q-factorials and q-binomials, we recall that for every integral domain
R, we have a unital ring homomorphism Z → R, z 7→ z = z1, which induces a unital ring
homomorphism Z[q] → R[q], Σn∈N0anq

n 7→ Σn∈N0an1 qn. By composing it with the evaluation
homomorphism evr : R[q] → R, Σn∈N0anq

n 7→ Σn∈N0anr
n for r ∈ R, we obtain a unital ring

homomorphism ev′r : Z[q] → R, Σn∈N0anq
n 7→ Σn∈N0an1 rn that allows us to evaluate every

polynomial in Z[q] at r ∈ R.

Definition 2.3.5: The evaluation of the q-naturals, q-binomials and q-factorials in r ∈ R is

(n)′r = ev′r(n)q (n)!′r = ev′r(n)!q

(
n
k

)′
r

= ev′r

(
n
k

)
q

.

Clearly, there are two cases in which the evaluation of q-naturals, q-factorials and q-binomials
is of special interest. The first is r = 1, where we have (n)′1 = n1, and the evaluations of
q-factorials and q-binomials in r = 1 coincide with the usual factorials and binomials in R.
This justifies the names q-naturals, q-binomials and q-factorials. The second is the case, where
r ∈ R is a primitive nth root of unity, i. e. rn = 1 and rk 6= 1 for 1 ≤ k < n. In this case, one
has (n)′r = 0 and (k)′r 6= 0 for all k < n since the roots of the polynomial (m)q are precisely
the non-trivial mth roots of unity. This implies that the evaluations of all q-factorials (m)!q
with m ≥ n vanish, since they contain a factor (n)q. The same holds for the evaluations of all
q-binomials with entries 0 < k < n, since (n)′r = 0 and (k)′r 6= 0 for all k < n implies(

n
k

)′
r

= ev′r
(n)!q

(n− k)!q(k)!q
= ev′r

(n)q · · · (n− k + 1)q
(k)q(k − 1)q · · · (1)q

= 0.

We will now use the q-naturals, q-factorials and q-binomials to construct an example of a
Hopf algebra that is neither commutative nor cocommutative. The natural way to proceed is
to present its algebra structure in terms of generators and relations. Clearly, the minimum
number of linearly independent generators that can give rise to a non-commutative and non-
cocommutative bialgebra is two. The simplest relations that can be imposed on such an algebra
without making it commutative or trivial are quadratic relations in the two generators, i. e. rela-
tions of the form x2−q, y2−q or xy−qyx for some q ∈ F and generators x, y. While the first two
yield a rather trivial algebra structure, the last one is the more promising and indeed gives rise
to an infinite-dimensional non-commutative and non-cocommutative bialgebra. If we impose
additional relations of the form xn = 0 and yn = 1 to make the bialgebra finite-dimensional,
we have to take for q a primitive nth root of unity and obtain Taft’s example.
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Example 2.3.6: (Taft’s example)
Let F be a field, n ∈ N and q ∈ F a primitive nth root of unity. Let A be the algebra over F
with generators x, y and relations

xy − q yx = 0, xn = 0, yn − 1 = 0.

Then A is a Hopf algebra with the comultiplication, counit and antipode given by

∆(x) = 1⊗x+ x⊗y, ∆(y) = y⊗y, ε(x) = 0, ε(y) = 1, S(x) = −xyn−1, S(y) = yn−1.

Proof:
Let V be the free F-vector space generated by B = {x, y}. Then the algebra A is given as
A = T (V )/I, where I = (x · y − q y · x, xn, yn − 1) is the two-sided ideal in T (V ) generated by
the relations and · denotes the multiplication of the tensor algebra T (V ).

The linear maps ∆′ : V → T (V )⊗T (V ) and ε′ : V → F that are determined by their values on
the basis B induce algebra homomorphisms ∆′′ : T (V ) → T (V )⊗T (V ), ε′′ : T (V ) → F with
∆′′ ◦ ιV = ∆′ and ε′′ ◦ ιV = ε′ by the universal property of the tensor algebra. These algebra
homomorphisms satisfy the coassociativity and the counitality condition, since we have

(∆′⊗id) ◦∆′(x) = ∆′(1)⊗x+ ∆′(x)⊗y = 1⊗1⊗x+ 1⊗x⊗y + x⊗y⊗y
(id⊗∆′) ◦∆′(x) = 1⊗∆′(x) + x⊗∆′(y) = 1⊗1⊗x+ 1⊗x⊗y + x⊗y⊗y
(∆′⊗id) ◦∆′(y) = ∆′(y)⊗y = y⊗y⊗y = y⊗∆′(y) = (id⊗∆′) ◦∆′(y)

(ε′⊗id) ◦∆′(x) = ε′(1)⊗x+ ε′(x)⊗y = 1⊗x (id⊗ε′) ◦∆′(x) = 1⊗ε′(x) + x⊗ε′(y) = x⊗1

(ε′⊗id) ◦∆′(y) = ε′(y)⊗y = 1⊗y (id⊗ε′) ◦∆′(y) = y⊗ε′(y) = y⊗1.

This shows that ∆′′ and ε′′ define a bialgebra structure on the tensor algebra T (V ). To show that
this induces a bialgebra structure on A = T (V )/I, it is sufficient to show that I is a coideal in
T (V ), i. e. ∆′′(I) ⊂ T (V )⊗I + I⊗T (V ) and ε′′(I) = 0. Proposition 2.1.5 then implies that this
induces a bialgebra structure on A. As I is the two-sided ideal generated by the relations and
∆′′ and ε′′ are algebra homomorphisms, it is sufficient to show that ∆′′(r) ∈ I⊗T (V )+T (V )⊗I
and ε′′(r) = 0 for each relation r. The latter follows directly from the definition of ε′′

ε′′(xy − qyx) = ε′′(x)ε′′(y)− qε′′(y)ε′′(x) = 0 · 1− q · 1 · 0 = 0

ε′′(yn − 1) = ε′′(y)n − 1 = 1n − 1 = 0 = 0n = ε′′(x)n = ε′′(xn).

For the former, we compute with the multiplication · of the tensor algebra

∆′′(xy − qyx) = ∆′′(x) ·∆′′(y)− q∆′′(y) ·∆′′(x)

= (1⊗x+ x⊗y) · (y⊗y)− q(y⊗y) · (1⊗x+ x⊗y)

= y⊗(xy) + (xy)⊗y2 − q y⊗(yx)− q(yx)⊗y2

= y⊗(xy − q yx) + (xy − qyx)⊗y2 ∈ T (V )⊗I + I⊗T (V ).

∆′′(yn − 1) = ∆′′(y)n − 1⊗1 = (y⊗y)n − (1⊗1) = yn⊗yn − 1⊗1

= yn⊗(yn − 1) + (yn − 1)⊗1 ∈ T (V )⊗I + I⊗T (V ).

To prove this for ∆′′(xn) = (1⊗x+ x⊗y)n, note that the proof of Lemma 2.3.4, 4. implies

(1⊗x+ x⊗y)n −
n∑
k=0

(
n
k

)′
q

(x⊗y)k · (1⊗x)n−k ∈ J
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where the binomial coefficient is evaluated in q ∈ F and J is the two-sided idea generated by
the element (1⊗x) · (x⊗y)− q (x⊗y)(1⊗x) = x⊗(xy)− q x⊗(yx) = x⊗(xy − qyx) ∈ T (V )⊗I.
As T (V )⊗I is a two-sided ideal in T (V )⊗T (V ), we have J ⊂ T (V )⊗I, and as q is a primitive
nth root of unity, the evaluations of the binomial coefficients for 0 < k < n vanish. This yields

∆′′(xn) = (1⊗x+ x⊗y)n = 1⊗xn + xn⊗yn + T (V ).⊗I ∈ T (V )⊗I + I⊗T (V ).

Hence, we have shown that ∆′ and ε′ induce algebra homomorphisms ∆ : A → A⊗A and
ε : A→ F with (π⊗π) ◦∆′ = ∆ ◦ π and ε′ = ε ◦ π, where π : T (V )→ T (V )/I is the canonical
surjection, and that this defines a bialgebra structure on A = T (V )/I.

To show that A is a Hopf algebra, we consider the linear map S ′ : V → T (V )op defined by
its values on the basis. By the universal property of the tensor algebra, it induces an algebra
homomorphism S ′′ : T (V ) → T (V )op with S ′′ ◦ ιV = S ′. By composing S ′′ with the canonical
surjection, we obtain an algebra homomorphism π◦S ′′ : T (V )→ Aop, and we have to show that
π ◦ S ′′(r) = 0 for all relations r of I. With the definition of the antipode and (6), we compute

π ◦ S ′′(xy − q yx) = π(S ′′(y))π(S ′′(x))− q π(S ′′(x))π(S ′′(y)) = −yn−1xyn−1 + q xyn−1 · yn−1

(6)
= −yn−1 xyn−1 + qnyn−1xyn−1 = (qn − 1)yn−1xyn−1 = 0,

π ◦ S ′′(xn) = π(S ′′(x)n) = (−xyn−1)n = (−1)n(xyn−1) · · · (xyn−1) = (−1)nq(n−1)(1+...+n)ynxn = 0,

π ◦ S ′′(yn − 1) = π(S ′′(y)n)− 1 = yn(n−1) − 1 = 1n−1 − 1 = 0,

and this shows that the map π ◦ S ′′ induces an algebra homomorphism S : A→ Aop. Because

m ◦ (S⊗id) ◦∆(x) = m(S(1)⊗x+ S(x)⊗y) = 1 · x− (xyn−1) · y = x(1− yn) = 0 = ε(x),

m ◦ (id⊗S) ◦∆(x) = m(1⊗S(x) + x⊗S(y)) = −1 · (xyn−1) + x · yn−1 = 0 = ε(x),

m ◦ (S⊗id) ◦∆(y) = m(yn−1⊗y) = yn−1 · y = yn = 1 = ε(y)1,

m ◦ (id⊗S) ◦∆(y) = m(y⊗S(y)) = y · yn−1 = yn = 1 = ε(y)1,

it follows from the universal property of the tensor algebra and the quotient algebra that S is
an antipode for A and A is a Hopf algebra. 2

Remark 2.3.7:

1. Taft’s example for q = −1, n = 2 is also known as Sweedler’s example.

2. The elements xiyj ∈ A with 0 ≤ i, j ≤ n − 1 generate the vector space A. This follows
because every mixed monomial in x and y can be transformed into one of them by
applying the relations. However, they are not linearly independent (why?).

3. It follows from the proof of Example 2.3.6 that the algebra with generators x, y and the
relation xy − qyx is also a bialgebra for any q ∈ F, because the ideal I ′ = (xy − qyx) is
a coideal in T (V ). This infinite-dimensional bialgebra is sometimes called the quantum
plane. It is not cocommutative, commutative if and only if q = 1, and the elements xiyj

for i, j ∈ N0 form a basis of this bialgebra. .

4. The antipode in Taft’s example satisfies S2(y) = y and S2(x) = yxy−1. This shows that
S2 and hence S are invertible, but we do not have S2 = id.

Our next example of a non-cocommutative and non-commutative bialgebra and Hopf algebra
are the so-called q-deformed matrix algebras Mq(2,F) and SLq(2,F). They are again presented

32



in terms of generators and relations and their coalgebra structure will be interpreted later as a
generalisation and deformation of the coalgebra Mat(2× 2,F)∗ from Example 2.1.3, 5. We first
describe their bialgebra and Hopf algebra structure and then relate them to Mat(2× 2,F)∗.

Example 2.3.8: Let F be a field and q ∈ F \ {0}.

1. The matrix algebra Mq(2,F) is the algebra over F with generators a, b, c, d and relations

ba = q ab, db = q bd, ca = q ac, dc = q cd, bc = cb, da− ad = (q − q−1) bc. (7)

It has a bialgebra structure with comultiplication and counit given by

∆(a) = a⊗a+ b⊗c, ∆(b) = a⊗b+ b⊗d, ∆(c) = c⊗a+ d⊗c, ∆(d) = c⊗b+ d⊗d
ε(a) = 1 ε(b) = 0 ε(c) = 0 ε(d) = 1. (8)

2. The q-determinant detq = ad− q−1bc is central in Mq(2,F) with

∆(detq) = detq⊗detq ε(detq) = 1.

3. The bialgebra structure of Mq(2,F) induces a Hopf algebra structure on the algebra
SLq(2,F) = Mq(2,F)/(detq − 1) with the antipode given by

S(a) = d, S(b) = −qb, S(c) = −q−1c, S(d) = a.

Proof:
1. The proof is similar to the one of Example 2.3.6. The algebra Mq(2,F) is given as the quotient
Mq(2,F) = T (V )/I, where V is the free vector space with basis {a, b, c, d} and I ⊂ T (V ) the
two-sided ideal generated by the six relations in (7). By the universal property of the tensor
algebra, the maps ∆′ : V → T (V )⊗T (V ) and ε′ : V → F specified by (8) induce algebra
homomorphisms ∆′′ : T (V ) → T (V )⊗T (V ) and ε′′ : T (V ) → F. To show that ∆′′ and ε′′ are
coassociative and counital, it is again sufficient to show that (∆′′⊗id)◦∆′′(x) = (id⊗∆′′)◦∆′′(x)
and lT (V ) ◦ (ε′′⊗id) ◦∆′′(x) = rT (V ) ◦ (id⊗ε′′) ◦∆′′(x) for x ∈ {a, b, c, d}. This follows by a direct
computation from (8), which yields

(∆′′⊗id) ◦∆′′(a) = ∆′′(a)⊗a+ ∆′′(b)⊗c = a⊗a⊗a+ b⊗c⊗a+ a⊗b⊗c+ b⊗d⊗c
(id⊗∆′′) ◦∆′′(a) = a⊗∆′′(a) + b⊗∆′′(c) = a⊗a⊗a+ a⊗b⊗c+ b⊗c⊗a+ b⊗d⊗c
(∆′′⊗id) ◦∆′′(b) = ∆′′(a)⊗b+ ∆′′(b)⊗d = a⊗a⊗b+ b⊗c⊗b+ a⊗b⊗d+ b⊗d⊗d
(id⊗∆′′) ◦∆′′(b) = a⊗∆′′(b) + b⊗∆(d) = a⊗a⊗b+ a⊗b⊗d+ b⊗c⊗b+ b⊗d⊗d
(∆′′⊗id) ◦∆′′(c) = ∆′′(c)⊗a+ ∆′′(d)⊗c = c⊗a⊗a+ d⊗c⊗a+ c⊗b⊗c+ d⊗d⊗c
(id⊗∆′′) ◦∆′′(c) = c⊗∆′′(a) + d⊗∆′′(c) = c⊗a⊗a+ c⊗b⊗c+ d⊗c⊗a+ d⊗d⊗c
(∆′′⊗id) ◦∆′′(d) = ∆′′(c)⊗b+ ∆′′(d)⊗d = c⊗a⊗b+ d⊗c⊗b+ c⊗b⊗d+ d⊗d⊗d
(id⊗∆′′) ◦∆′′(d) = c⊗∆′′(b) + d⊗∆′′(c) = c⊗a⊗b+ c⊗b⊗d+ d⊗c⊗b+ d⊗d⊗d.

To show that this induces a bialgebra structure on Mq(2,F) it is sufficient to prove that I is
a two-sided coideal in T (V ), i. e. that we have ∆′′(r) ∈ I⊗T (V ) + T (V )⊗I and ε′′(r) = 0 for
each relation r. For the latter, note that ε′′(xy) = 0 if x, y ∈ {a, b, c, d} with {x, y} ∩ {b, c} 6= ∅.
This proves that ε′′(r) = 0 for the first five relations. For the last relation, we have

ε′′(da− ad) = ε′′(d)ε′′(a)− ε′′(a)ε′′(d) = 1− 1 = 0 = (q − q−1)ε′′(b)ε′′(c) = (q − q−1)ε′′(bc).
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The identities ∆′′(r) ∈ I⊗T (V ) +T (V )⊗I follow from a direct computation, which we perform
for the first relation, since the other computations are similar

∆′′(ba− qab) = (a⊗b+ b⊗d) · (a⊗a+ b⊗c)− q(a⊗a+ b⊗c) · (a⊗b+ b⊗d)

= a2⊗ba+ ab⊗bc+ ba⊗da+ b2⊗dc− q(a2⊗ab+ ab⊗ad+ ba⊗cb+ b2⊗cd)

= a2⊗(ba−q ab) + b2⊗(dc−q cd) + (ba−q ab)⊗da+ q ab⊗(da−ad+ (q−1− q)bc) + ab⊗(cb−bc).

2. That the element detq is central in Mq(2,F) follows from the relations in Mq(2,F):

a · detq = a · (ad− q−1bc) = a2d− q−1abc = ada+ (q−1 − q)abc− q−1abc

= ada− q abc = ada− bac = ada− q−1bca = (ad− q−1bc)a = detq · a,
b · detq = b · (ad− q−1bc) = bad− q−1b2c = qabd− q−1bcb = (ad− q−1bc)b = detq · b,
c · detq = c · (ad− q−1bc) = cad− q−1cbc = qacd− q−1bc2 = (ad− q−1bc)c = detq · c,
d · detq = d · (ad− q−1bc) = dad− q−1dbc = ad2 + (q − q−1)bcd− q−1dbc

= ad2 + (q − q−1)bcd− bdc = ad2 + (q − q−1 − q)bcd = (ad− q−1bc)d = detq · d.

For the coproduct and the counit of the q-determinant, we compute

ε(detq) = ε(a)ε(d)− q−1ε(b)ε(c) = 1

∆(detq) = ∆(a) ·∆(d)− q−1∆(b)∆(c)

= (a⊗a+ b⊗c) · (c⊗b+ d⊗d)− q−1 (a⊗b+ b⊗d) · (c⊗a+ d⊗c)
= ac⊗ab+ ad⊗ad+ bc⊗cb+ bd⊗cd− q−1(ac⊗ba+ ad⊗bc+ bc⊗da+ bd⊗dc)
= ad⊗(ad− q−1bc) + bc⊗bc− q−1bc⊗da = ad⊗(ad− q−1bc)− q−1bc⊗(ad− q−1bc)

= detq⊗detq.

3. As we have ∆(detq−1) = detq⊗ detq−1⊗1 = detq⊗(detq−1)+(detq−1)⊗1, ε(detq−1) = 0,
the two-sided ideal (detq−1) in Mq(2,F) is a coideal in Mq(2,F). This implies that the quotient
Mq(2,F)/(detq−1) inherits a bialgebra structure from Mq(2,F). To show that this bialgebra is
a Hopf algebra, we compute with the expressions for S in SLq(2,F)

m ◦ (S⊗id) ◦∆(a) = S(a) · a+ S(b) · c = da− qbc = ad− q−1bc = detq = 1 = ε(a)

m ◦ (id⊗S) ◦∆(a) = a · S(a) + b · S(c) = ad− q−1bc = detq = 1 = ε(a)

m ◦ (S⊗id) ◦∆(b) = S(a) · b+ S(b) · d = db− qbd = 0 = ε(b)

m ◦ (id⊗S) ◦∆(b) = a · S(b) + b · S(d) = −qab+ ba = 0 = ε(b)

m ◦ (S⊗id) ◦∆(c) = S(c) · a+ S(d) · c = −q−1ca+ ac = 0 = ε(c)

m ◦ (id⊗S) ◦∆(c) = c · S(a) + d · S(c) = cd− q−1dc = 0 = ε(c)

m ◦ (S⊗id) ◦∆(d) = S(c) · b+ S(d) · d = −q−1cb+ ad = detq = 1 = ε(d)

m ◦ (id⊗S) ◦∆(d) = c · S(b) + d · S(d) = −qcb+ da = ad− q−1bc = detq = 1 = ε(d).

This shows that S is an antipode for the bialgebra SLq(2,F) and SLq(2,F) is a Hopf algebra. 2

To understand the names Mq(2,F) and SLq(2,F) for these algebras, we note that for q = 1 the
relations of the matrix algebra Mq(2,F) in (7) imply that M1(2,F) is a commutative algebra
with four generators and the coalgebra structure given by (8). If we interpret the generators
a, b, c, d as linear maps a, b, c, d ∈ Mat(2× 2,F)∗ given by

a :

(
a′ b′

c′ d′

)
7→ a′, b :

(
a′ b′

c′ d′

)
7→ b′, c :

(
a′ b′

c′ d′

)
7→ c′, d :

(
a′ b′

c′ d′

)
7→ d′
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then M1(2,F) is isomorphic to the algebra of functions f : Mat(2× 2,F)→ F that are polyno-
mials in the entries a′, b′, c′, d′, with the pointwise addition, scalar multiplication and multipli-
cation. Moreover, the coalgebra structure defined by (8) coincides with the one from Example
2.1.3, 5. Hence, we extended the coalgebra structure on Mat(2 × 2,F) to the commutative al-
gebra M1(2,F) and obtained a bialgebra structure on M1(2,F). We can therefore interpret q
as a deformation parameter that changes the algebra structure of the commutative bialgebra
M1(2,F) to a non-commutative one given by (7). This justifies the name Mq(2,F).

Note also that for q = 1, we have det1 = ad − bc and hence can interpret det1 ∈ M1(2,F)
as the determinant det : Mat(2 × 2,F) → F. The algebra SL1(2,F) = M1(2,F)/(det1−1) is
obtained from M1(2,F) by identifying those polynomial functions that agree on the subset
SL(2,F) = {M ∈ Mat(2 × 2,F) | det(M) = 1}. Hence, we can interpret SL1(2,F) as the
bialgebra of functions f : SL(2,F) → F that are polynomials in the matrix entries, with the
pointwise addition, scalar multiplication and multiplication. The antipode of SL1(2,F) is given
by S(a) = d, S(c) = −b, S(b) = −c and S(d) = a, and we can interpret it as a map that sends
the matrix elements of a matrix in SL(2,F) to the matrix elements of the inverse matrix. The
algebra SLq(2,F) for general q can then be viewed a deformation of this algebra, in which the
multiplication becomes non-commutative, and the matrix elements of the inverse matrix are
replaced by their image under the antipode.

Our last important example of a q-deformation are the so-called q-deformed universal enveloping
algebras. The simplest non-trivial one is the q-deformed universal enveloping algebra Uq(sl(2)),
which is related to the Lie algebra sl(2) of traceless (2× 2)-matrices with the Lie bracket given
by the matrix commutator. We first give its bialgebra structure in the simplest presentation and
then discuss its relation to the Lie algebra sl(2) and its universal enveloping algebra U(sl(2)).

Example 2.3.9: Let F be a field and q ∈ F \ {0, 1,−1}.
The q-deformed universal enveloping algebra Uq(sl2) is the algebra over F with generators
E,F,K,K−1 and relations

K±1K∓1 = 1, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
. (9)

A Hopf algebra structure on Uq(sl2) is given by

∆(K±1) = K±1⊗K±1, ∆(E) = 1⊗E + E⊗K, ∆(F ) = F⊗1 +K−1⊗F
ε(K±1) = 1, ε(E) = 0, ε(F ) = 0

S(K±1) = K∓1 S(E) = −EK−1 S(F ) = −KF. (10)

Proof:
The proof of the claims in Example 2.3.9 is analogous to the one for the previous two examples
and is left as an exercise. 2

Remark 2.3.10: One can show that the set B = {EiF jKk | i, j ∈ N0, k ∈ N} is a basis of
Uq(sl2) and that the Hopf algebra SLq(2,F) from Example 2.3.8 is the finite dual of Uq(sl2) and
vice versa. The duality is given by the unique bilinear map 〈 , 〉 : SLq(2)⊗Uq(sl2)→ F with

〈a,K±1〉 = q∓1 〈d,K±1〉 = q±1 〈b, E〉 = 1 〈c, F 〉 = 1

and 〈x, U〉 = 0 for all other combinations of x ∈ {a, b, c, d} and U ∈ {K±1, E, F}. The proofs
of these statements, which are are lengthy and technical, are given in [Ka].
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We will now relate the bialgebra Uq(sl2) to the universal enveloping algebra of the Lie algebra
sl2 of traceless (2 × 2)-matrices. However, the presentation of Uq(sl2) in Example 2.3.9 is not
suitable for this task since it is ill-defined for q = 1. It turns out that this is not a problem with
its Hopf algebra structure but with its presentation in terms of generators and relations. We
show that there is a bialgebra U ′q(sl2) defined for all q ∈ F \ {0} which is isomorphic to Uq(sl2)
for q 6= ±1 and closely related to the universal enveloping algebra U(sl2) for q = 1. The price
one has to pay is a higher number of generators and relations.

Proposition 2.3.11: Let q ∈ F \ {0}.

For q 6= ±1 the algebra Uq(sl2) is isomorphic to the algebra U ′q(sl2) over F with generators
e, f, k, k−1, l and relations

kk−1 = k−1k = 1, kek−1 = q2e, kfk−1 = q−2f, [e, f ] = l,

(q − q−1)l = k − k−1, [l, e] = q(ek + k−1e), [l, f ] = −q−1(fk + k−1f). (11)

For q = 1, the element k is central in U ′q(sl2) with k2 = 1 and U ′1(sl2)/(k − 1) is isomorphic to
U(sl2) as a bialgebra.

Proof:
1. Let V be the free vector space generated by E,F,K±1 and V ′ be the free vector space
generated by e, f, k±1, l. Let I ⊂ T (V ) and I ′ ⊂ T (V ′) be the two-sided ideals generated by
the relations (9) and (11), respectively. To show that Uq(sl2) and U ′q(sl2) are isomorphic, we
consider for q 6= ±1 the linear maps

φ : V → T (V ′) with φ(E) = e, φ(F ) = f, φ(K±1) = k±1

ψ : V ′ → T (V ) with ψ(e) = E, ψ(f) = F, ψ(k±1) = K±1, ψ(l) = [E,F ].

By the universal property of the tensor algebra, there are unique algebra homomorphisms
φ′ : T (V ) → T (V ′) and ψ′ : T (V ′) → T (V ) with φ′ ◦ ιV = φ and ψ′ ◦ ιV ′ = ψ. To prove that
the latter descend to algebra homomorphisms between Uq(sl2) and U ′q(sl2), we have to show
that φ′(r) ∈ I ′ and ψ′(r′) ∈ I for each relation r of Uq(sl2) and r′ of U ′q(sl2). For the first four
relations of Uq(sl2) and the first five relations of U ′q(sl2), this is obvious. For the 5th relation of
Uq(sl2) and the 6th relation of U ′q(sl2), we have

φ′([E,F ]− (q − q−1)−1(K −K−1)) = [e, f ]− (q − q−1)−1(k − k−1) = l − l = 0 mod I ′

ψ′((q − q)−1l − k + k−1) = (q − q−1)[E,F ]−K +K−1 = 0 mod I,

and for the last two relations in I ′, we obtain

ψ′([l, e]− q(ek + k−1e)) = [[E,F ], E]− q(EK +K−1E)

= (q − q−1)−1[K −K−1, E]− q(EK +K−1E) mod I

= (q2 − 1)(q − q−1)−1(EK +K−1E)− q(EK +K−1E) mod I = 0 mod I

ψ′([l, f ] + q−1(fk + k−1f)) = [[E,F ], F ] + q−1(FK +K−1F )

= (q − q−1)−1[K −K−1, F ] + q−1(FK +K−1F ) mod I

= (q−2 − 1)(q − q−1)−1(FK +K−1F ) + q−1(FK +K−1F ) mod I = 0 mod I,

where we use the shorthand notation a = bmod I for a − b ∈ I. This shows that φ′ and ψ′

induce algebra homomorphisms φ : Uq(sl2) → U ′q(sl2) and ψ : U ′q(sl(2)) → Uq(sl2). That the
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latter are isomorphisms follows with the universal properties of the tensor algebra and the
quotient algebra from the identities

ψ ◦ φ(E) = E, ψ ◦ φ(F ) = F, ψ ◦ φ(K±1) = K±1,

φ ◦ ψ(e) = e, φ ◦ ψ(f) = f, φ ◦ ψ(k±1) = k±1, φ ◦ ψ(l) = [e, f ] = l.

In particular, we find that the Hopf algebra structure of U ′q(sl2) is given by

∆(k±1) = k±1⊗k±1, ∆(e) = 1⊗e+ e⊗k, ∆(f) = f⊗1 + k−1⊗f, ∆(l) = l⊗k + k−1⊗l
ε(k±1) = 1, ε(e) = 0, ε(f) = 0, ε(l) = 0,

S(k±1) = k∓1, S(e) = −ek−1, S(f) = −kf, S(l) = −l.

2. The algebra U ′q(sl2) is defined for q = 1. In this case its relations given in (11) reduce to

k2 = 1, [k, e] = 0, [k, f ] = 0, [e, f ] = l, [l, e] = 2ek, [l, f ] = −2fk,

and its Hopf algebra structure is given by ε(k) = 1, ε(e) = ε(f) = ε(l) = 0, and

∆(k) = k⊗k, ∆(e) = 1⊗e+ e⊗k, ∆(f) = f⊗1 + k⊗f, ∆(l) = l⊗k + k⊗l
S(k) = k⊗k, S(e) = −e, S(f) = −f, S(l) = −l.

As k is central in U ′1(sl(2)) with k2 = 1 and ∆(k) = k⊗k, the quotient U ′1(sl(2))/(k−1) inherits
a bialgebra structure from U ′1(sl2). Its algebra structure is given by

[e, f ] = l, [l, e] = 2e, [l, f ] = −2f, (12)

and its Hopf algebra structure by

ε(X) = 0, ∆(X) = X⊗1 + 1⊗X, S(X) = −X ∀X ∈ {e, f, l}. (13)

If we choose as a basis of sl2 = {M ∈ Mat(2× 2,F) | tr(M) = 0} the matrices

l =

(
1 0
0 −1

)
e =

(
0 1
0 0

)
f =

(
0 0
1 0

)
(14)

then the Lie bracket of sl2 is given by (12), and the bialgebra structure of the universal
enveloping algebra U(sl2) from Example 2.3.2 by (12) and (13). This shows that the Hopf
algebras U ′1(sl2)/(k − 1) and U(sl2) are isomorphic. 2

Proposition 2.3.11 motivates the name q-deformed universal enveloping algebra and the notation
Uq(sl2), since it relates Uq(sl2) for q = 1 to the universal enveloping algebra of the Lie algebra sl2
of traceless 2× 2-matrices. Besides q = 1, there are other values of q, for which the q-deformed
universal enveloping algebra Uq(sl2) has a particularly interesting structure, namely the case
where q is a root of unity. In this case, one can take a quotient of Uq(sl2) by a two-sided ideal
to obtain a finite-dimensional Hopf algebra. This finite-dimensional Hopf algebra is often called
the q-deformed universal enveloping algebra Uq(sl2) at a root of unity, but the name
is slightly misleading since it is a quotient of Uq(sl2). The proof of the following proposition is
left as an exercise.
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Proposition 2.3.12: Let F be a field, q ∈ F \ {1,−1} a primitive dth root of unity and
r := d if d is odd and r := d/2 if d is even.

1. The elements K±r, Er, F r are central in Uq(sl2).

2. U r
q (sl2) = Uq(sl2)/(F r, Er, Kr − 1) inherits a Hopf algebra structure from Uq(sl2).

3. U r
q (sl2) is finite-dimensional and spanned by {EiF jKk | i, j, k = 0, 1, ..., r − 1}.

Clearly, the q-deformed universal enveloping algebra Uq(sl2), its counterpart U ′q(sl2) and its
quotient U r

q (sl2) at a root of unity have a complicated mathematical structure, and it is not
obvious at all how to generalise this construction to other Lie algebras in a systematic way.
Nevertheless, they are part of a general construction that is possible for all complex, simple Lie
algebras and can be generalised to affine Kac-Moody algebras. These are the so-called Drinfeld-
Jimbo deformations of of universal enveloping algebras. For complex simple Lie-algebras of type
A,D,E, they take a particularly simple form.

Remark 2.3.13: (Drinfeld-Jimbo deformations)

Let g be a complex, simple Lie algebra and B = {Hi, Ei, Fi | i = 1, ..., r}, the Chevalley basis
of g, in which the Lie bracket takes the form

[Hi, Hj] = 0, [Hi, Ej] = aijEj, [Hi, Fj] = −aijFj, [Ei, Ej] = δijHi,

(adEi
)1−aijEj = 0, (adFi

)1−aijFj = 0,

where adX is the linear map adX : g → g, Y 7→ [X, Y ] and A = (aij) ∈ Mat(r × r,Z) the
Cartan matrix of g.

If g is a complex simple Lie algebra of type A,D or E, its Cartan matrix is positive definite and
symmetric with aii = 2 for i ∈ {1, ..., r} and aij ∈ {0,−1} for i 6= j. In this case, the q-deformed
universal enveloping algebra Uq(g) is has generators {Ki, Ei, Fi | i = 1, ..., r} and relations

K±1
i K±1

i = 1, [Ki, Kj] = 0,

[Ei, Fj] = δij(q − q−1)−1(Ki −K−1
i ) KiEjK

−1
i = qaijEj, KiFjK

−1
i = q−aijFj,

[Ei, Ej] = 0 [Fi, Fj] = 0 if aij = 0,

E2
iEj − (q + q−1)EiEjEi + EjE

2
i = 0 F 2

i Fj − (q + q−1)FiFjFi + FjF
2
i = 0 if aij = −1.

Its Hopf algebra structure is given by

∆(K±1
i ) = K±1

i ⊗K±1
i ∆(Ei) = 1⊗Ei + Ei⊗Ki ∆(Fi) = Fi⊗1 +K−1

i ⊗Fi
ε(K±1

i ) = 1 ε(Ei) = 0 ε(Fi) = 0

S(K±1
i ) = K∓1

i S(Ei) = −EiK−1
i S(Fi) = −KiFi.

There is also a presentation of Uq(g) similar to the one in Proposition 2.3.11 that is well-defined
at q = 1 and relates the Hopf algebra Uq(g) to the universal enveloping algebra U(g). If q is a
root of unity, then there is a finite-dimensional quotient U r

q (g), which inherits a Hopf algebra
structure from Uq(g) and generalises the Hopf algebra U r

q (sl2) from Proposition 2.3.12.

2.4 Grouplike and primitive elements

In this section, we investigate elements of Hopf algebras that behave in a similar way to the
elements g ∈ G in the group algebra F[G] and the elements v ∈ V in the tensor algebra
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T (V ) or the elements x ∈ g in the universal enveloping algebra U(g). Such elements play an
important role in the classification of Hopf algebras, especially in the cocommutative and finite-
dimensional case. Although these classification results are rather involved and cannot be proven
here, the investigation of these elements is helpful to develop an intuition for Hopf algebras.

Definition 2.4.1: Let H be a Hopf algebra.

1. An element g ∈ H \{0} is called grouplike if ∆(g) = g⊗g. The set of grouplike elements
of H is denoted Gr(H).

2. An element h ∈ H is called primitive if ∆(h) = 1⊗h + h⊗1. The set of primitive
elements of H is denoted Pr(H).

Example 2.4.2:

1. The elements g ∈ G are grouplike elements of the group algebra F[G]. The element y in
Taft’s example and the elements K±1 in Uq(sl2) are grouplike.

2. The elements v ∈ V are primitive elements of the tensor algebra T (V ) and the elements
x ∈ g are primitive elements of the universal enveloping algebra U(g).

3. Let H∗ be the (finite) dual of a Hopf algebra H. An element α ∈ H∗ \ {0} is grouplike
if and only if for all h, k ∈ H α(h · k) = ∆(α)(h⊗k) = (α⊗α)(h⊗k) = α(h)α(k). As this
implies α(1) = ε(α) = 1, the grouplike elements of H∗ are the algebra homomorphisms
α : H → F. An algebra homomorphism α : H → F is also called a character of H.
An element β ∈ H∗ is primitive if and only if for all h, k ∈ H it satisfies the condition
β(h · k) = ∆(β)(h⊗k) = (1⊗β + β⊗1)(h⊗k) = ε(h)β(k) + ε(k)β(h).

The reason for the name grouplike element is not only that grouplike elements mimic the
behaviour of elements g ∈ G in the group algebra F[G], but one can show that they form
indeed a group. Similarly, primitive elements of a Hopf algebra could in principle be called Lie
algebra-like since they form a Lie algebra with the commutator. Moreover, one can show that
both, grouplike and primitive elements generate Hopf subalgebras of H.

Proposition 2.4.3: Let H be a Hopf algebra.

1. Every grouplike element g ∈ H satisfies ε(g) = 1 and S(g) = g−1.

2. The set Gr(H) ⊂ H is a group and spanFGr(H) ⊂ H is a Hopf subalgebra.

3. Every primitive element h ∈ H satisfies ε(h) = 0 and S(h) = −h.

4. The set Pr(H) ⊂ H is a Lie subalgebra of the Lie algebra H with the commutator, and
the subalgebra of H generated by Pr(H) is a Hopf subalgebra.

5. If g ∈ H is grouplike and h ∈ H primitive, then ghg−1 is primitive.

Proof:
If g ∈ H is grouplike, then ∆(g) = g⊗g and g 6= 0. The counitality condition implies

1⊗g = (ε⊗id) ◦∆(g) = (ε⊗id)(g⊗g) = ε(g)⊗g = 1⊗ε(g)g.
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As g 6= 0 it follows that ε(g) = 1. Similarly, the condition on the antipode implies

η ◦ ε(g) = 1 = m ◦ (S⊗id) ◦∆(g) = S(g) · g = m ◦ (id⊗S) ◦∆(g) = g · S(g).

This shows that S(g) is an inverse of g. As ∆ is an algebra homomorphism, we have ∆(1) = 1⊗1
and 1 ∈ Gr(H). If g, h ∈ Gr(h), then we have ∆(gh) = ∆(g) · ∆(h) = (g⊗g)(h⊗h) = gh⊗gh
and hence gh ∈ Gr(H). Similarly, ∆(S(g)) = (S⊗S)◦∆op(g) = S(g)⊗S(g). As S(g) = g−1 6= 0,
we have g−1 ∈ Gr(H) for all g ∈ Gr(H). This shows that Gr(H) is a group. By definition of a
grouplike element, one has ∆(g) = g⊗g and hence spanFGr(H) ⊂ H is a Hopf subalgebra.

If h ∈ H is primitive, then the counitality condition implies

1⊗h = (ε⊗id) ◦∆(h) = (ε⊗id) ◦ (1⊗h+ h⊗1) = ε(1)⊗h+ ε(h)⊗1 = 1⊗h+ ε(h)⊗1,

and it follows that ε(h) = 0. Similarly, the antipode condition implies

m ◦ (S⊗id) ◦∆(h) = (m ◦ S)(1⊗h+ h⊗1) = S(1) · h+ S(h) · 1 = h+ S(h) = η ◦ ε(h) = 0

and hence S(h) = −h. It also follows from the linearity of the comultiplication that Pr(H) ⊂ H
is a linear subspace. If h, k ∈ Pr(H), then their commutator [h, k] = h · k − k · h satisfies

∆([h, k]) = [∆(h),∆(k)] = (1⊗h+ h⊗1) · (1⊗k + k⊗1)− (1⊗k + k⊗1) · (1⊗h+ h⊗1)

= 1⊗hk + k⊗h+ h⊗k + hk⊗1− (1⊗kh+ h⊗k + k⊗h+ kh⊗1) = 1⊗[h, k] + [h, k]⊗1.

This shows that [h, k] ∈ Pr(H) and hence Pr(H) ⊂ H is a Lie subalgebra of the Lie algebra H
with the commutator. As ∆(h) = 1⊗h+h⊗1 and S(h) = −h for every primitive element h ∈ H
and the maps ∆ : H → H⊗H and S : H → Hop are algebra homomorphisms, it follows that
the subalgebra of H generated by the primitive elements is a Hopf subalgebra of H. Finally, if
g ∈ H is grouplike and h ∈ H primitive, then

∆(ghg−1) = ∆(g)∆(h)∆(g−1) = (g⊗g)(1⊗h+ h⊗1)(g−1⊗g−1) = 1⊗ghg−1 + ghg−1⊗1

and hence ghg−1 is primitive. 2

Proposition 2.4.3 suggests that every Hopf algebra H contains a Hopf subalgebra K that is a
semidirect product K = F[Gr(H)]nA of the group algebra of Gr(H) and the Hopf subalgebra
A ⊂ H generated by the primitive elements, i. e. K ∼= F[G]⊗A as a vector space with the
multiplication law (a⊗g) · (b⊗h) = a(gbg−1)⊗gh. for all a, b ∈ A and g, h ∈ Gr(H). To show
that this is indeed the case, we need to prove that different grouplike elements of H are linearly
independent, i. e. that spanFGr(H) ∼= F[Gr(H)] and that Gr(H)∩A = {1H}, i. e. that the only
grouplike element in the Hopf subalgebra generated by primitive elements is the unit of H.

Proposition 2.4.4: Let H be a Hopf algebra over F.

1. The set Gr(H) of grouplike elements is linearly independent.

2. If H is generated as an algebra by primitive elements, then Gr(H) = {1}.

Proof:
1. We show by induction over n that Σn

i=1λigi = 0 with λi ∈ F and gi ∈ Gr(H) pairwise distinct
implies λ1 = ... = λn = 0. For n = 1, this follows from the fact that g 6= 0 for all g ∈ Gr(H).
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Suppose the claim holds for all linear combinations with at most n nontrivial coefficients, and
let Σn+1

i=1 λigi = 0 with pairwise distinct gi ∈ Gr(H).

Let ι : H → H∗∗, h 7→ h′ be the canonical injection defined by h′(α) = α(h) for all α ∈ H∗. Then
the elements g′i ∈ H∗∗ are characters of the algebra H∗, i. e. they satisfy g′i(α ·β) = g′i(α) · g′i(β)
for all α, β ∈ H∗ and g′i(1) = 1F. As gn+1 /∈ {g1, ..., gn} there is an element α ∈ H∗ with
g′n+1(α) = α(gn+1) = 1 and g′i(α) = α(gi) 6= 1 for all i ∈ {1, ..., n}. This implies for all β ∈ H∗

0 = Σn+1
i=1 λig

′
i(β)− Σn+1

i=1 λig
′
i(α · β) = Σn+1

i=1 λi(1− g′i(α))g′i(β) = β(Σn
i=1λi(1− α(gi))gi)

and hence Σn
i=1λi(1 − α(gi))gi = 0. With the induction hypothesis and α(gi) 6= 1 one obtains

λ1 = ... = λn = 0, and this implies λn+1 = 0 since gn+1 6= 0.

2. Let H0 = F1H , X ⊂ H a set of primitive generators and Hn the linear subspace of H spanned
by all elements of the form xm1

i1
· · · xmk

ik
with xij ∈ X and m1 + ... + mk ≤ n. Then we have

H = ∪∞n=0Hn, Hn ⊂ Hm for all m ≥ n, and Hn ·Hm ⊂ Hn+m. Moreover, it follows by induction
that for any primitive element h ∈ H, one has

∆(hn) =
n∑
k=0

(
n
k

)
hk⊗hn−k. (15)

This implies

∆(xm1
i1
· · ·xmk

ik
) = ∆(xi1)

m1 · · ·∆(xik)mk =

m1∑
l1=0

· · ·
mk∑
lk=0

(
m1

l1

)
· · ·
(
mk

lk

)
xl1i1 · · ·x

lk
ik
⊗xm1−l1

i1
· · ·xmk−lk

ik

and hence ∆(Hn) ⊂ Σn
k=0Hk⊗Hn−k. If g ∈ H is grouplike with m = min{n ∈ N0 | g ∈ Hn} ≥ 1,

then there is an α ∈ H∗ with α(g) = 1 and α(1H) = {0}, and this implies

1F⊗g = (α⊗id)(g⊗g) = (α⊗id) ◦∆(g) ∈ (α⊗id) (Σm
k=0Hk⊗Hm−k) ⊂ 1F⊗Hm−1

where we used in the last step that α(H0) = α(F1H) = {0}. As g 6= 0, it follows that g ∈ Hm−1,
which contradicts the minimality of m. Hence Gr(H) ⊂ H0, and the only grouplike element in
H0 is 1H . 2

Corollary 2.4.5: Let G be a group and F a field. Then Pr(F[G]) = {0} and Gr(F[G]) = G.

Proof:
If x = Σg∈Gλg g is primitive, then ∆(x) = Σg∈Gλg g⊗g = Σg∈Gλg(1⊗g + g⊗1). As the set
{g⊗h | g, h ∈ G} is a basis of F[G]⊗F[G], this implies λg = 0 for all g ∈ G and x = 0. Clearly,
every element g ∈ G is grouplike. If there was a grouplike element y ∈ F[G] \ G, then the set
G ∪ {y} ) G would be linearly independent by Proposition 2.4.4, a contradiction to the fact
that G ⊂ F[G] is a basis of F[G]. 2

This corollary confirms the expectation that the only grouplike elements in a group algebra
F[G] are the group elements g ∈ G and that the group algebra contains no non-trivial primitive
elements. Similarly, Proposition 2.4.4 implies that the only grouplike element in the tensor
algebra T (V ) and in a universal enveloping algebra U(g) is the unit element, since both Hopf
algebras are generated by primitive elements. In analogy to the statement about the grouplike
elements in a group algebra F[G], one would expect that the primitive elements in a universal
enveloping algebra U(g) are precisely the elements of the Lie algebra g ⊂ U(g). However, the
following proposition shows that this is only true for Lie algebras over fields of characteristic
zero.
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Proposition 2.4.6: Let g be a finite-dimensional Lie algebra over F and U(g) its universal
enveloping algebra.

1. If char(F) = 0 then Pr(U(g)) = g.

2. If char(F) = p then Pr(U(g)) = spanF{xp
l |x ∈ g, l ∈ N0}.

Proof:
Every element x ∈ g ⊂ U(g) is primitive, and hence g ⊂ Pr(U(g)). If B = (x1, ..., xn) is an
ordered basis of g, then the Poincaré-Birkhoff-Witt basis B = {xm1

1 · · · xmn
n |m1, ...,mn ∈ N0}

is a basis of U(g), and hence every element x ∈ U(g) can be expressed as a linear combination

x =
K∑

m1=0

· · ·
K∑

mn=0

λm1...mnx
m1
1 · · ·xmn

n

with λm1...mn ∈ F for some K ∈ N. Equation (15) from the proof of Proposition 2.4.4 implies

∆(x) =
K∑

m1=0

· · ·
K∑

mn=0

m1∑
k1=0

· · ·
mn∑
kn=0

λm1...mn

(
m1

k1

)
· · ·
(
mn

kn

)
xk11 · · ·xknn ⊗x

m1−k1
1 · · ·xmn−kn

n .

As the set {xk11 · · · xknn | k1, ..., kn ∈ {0, ..., K}} is linearly independent by the Poincaré-Birkhoff-
Witt Theorem, this shows that x cannot be primitive, unless it is of the form x = Σn

i=1µix
mi
i

for some µi ∈ F. In this case, one has

∆(x) =
n∑
i=1

mi∑
k=0

µi

(
mi

k

)
xki⊗x

mi−k
i .

If char(F) = 0, all binomial coefficients in this formula are non-zero, and this shows that x
can only be primitive if mi ∈ {0, 1} for all i ∈ {1, ..., n} with µi 6= 0, which implies x ∈ g.
If char(F) = p, then all binomial coefficients for i ∈ {1, ..., n} with µi 6= 0 and k = 1 < mi

must vanish in order for x to be primitive. This is the case is and only if mi = pli for some
li ∈ N and all i ∈ {1, ..., n} with µi 6= 0. Conversely, if mi = pli with li ∈ N0, then all binomial
coefficients for k /∈ {0,mi} vanish, since they are divisible by p, and this shows that x is a
linear combination of elements yp

l
with y ∈ g and l ∈ N0. 2

As the restrictions of the comultiplication of a Hopf algebra H to the Hopf subalgebras
spanFGr(H) and to the Hopf subalgebra generated by the set Pr(H) are cocommutative, one
cannot hope in general that every Hopf algebra can be decomposed into Hopf subalgebras
spanned by grouplike or generated by primitive elements, since this would imply that H is co-
commutative. However, one can show that this is indeed possible for every cocommutative Hopf
algebra over an algebraically closed field of characteristic zero. This is known as the Cartier-
Kostant-Milnor-Moore Theorem. Parts of the proof are given in [Mo, Chapter 5].

Theorem 2.4.7: (Cartier-Kostant-Milnor-Moore Theorem)
If H is a cocommutative Hopf algebra over an algebraically closed field F with char(F) = 0, then
H is isomorphic as an algebra to the semidirect product H ∼= F[G] n U(g), where G = Gr(H)
and g = Pr(H).
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2.5 *Construction of q-deformed universal enveloping algebras

In this section, we show how q-deformed universal enveloping algebras can be constructed in a
systematic way from Lie algebras with additional structure, the so-called Lie bialgebras. This
construction requires formal power series with coefficients in an algebra and tensor products of
formal power series. The idea is then to construct the multiplication and comultiplication of the
q-deformed universal enveloping algebra inductively, order for order, from the corresponding
structures of the Lie bialgebra, which characterise the lowest terms in these formal power series.
We start by introducing the required notions of formal power series and their tensor products.

Let V be a vector space over F. We consider the N0-fold product Πn∈N0V of the vector space
V with itself, i. e. the vector space of sequences with values in V with the pointwise addition
and scalar multiplication. For a sequence with values in V , we write v = Σ∞n=0~nvn instead of
v = (vn)n∈N0 . Then one has Σ∞n=0~nvn = Σ∞n=0~nwn if and only if vn = wn for all n ∈ N0, and
the vector addition and scalar multiplication take the form

(Σ∞n=0~nvn) + (Σ∞n=0~nwn) = Σ∞n=0~n(vn + wn) λ (Σ∞n=0~nvn) = Σ∞n=0~n(λvn).

In analogy to the algebra F[[~]] of formal power series from Example 1.1.5, 6, we can interpret
the product space Πn∈N0V as the vector space of formal power series with coefficients in V .

Definition 2.5.1: Let V be a vector space over F.

1. The vector space of formal power series with values in V is the product vector space
V [[~]] = Πn∈N0V . The injective F-linear maps ιn : V → V [[~]], v 7→ ~nv are called the
canonical inclusions.

2. The linear subspace Vn[[~]] = ιn(V ) = ~nV is called the subspace of order ~n . We
write x = y +O(~n) if x− y ∈ ∪k≥nVk[[~]].

The goal is now to define Hopf algebra structures on vector spaces of formal power series in
analogy to Hopf algebras over a field. As the multiplication and comultiplication of a Hopf
algebra H over F are F-linear maps m : H⊗H → H and ∆ : H → H⊗H, this requires an
appropriate concept of linear maps and of tensor products for vector spaces of formal power
series. This notion of linearity must be stronger than simple F-linearity, because it must take
into account the formal power series structure, i. e. the different powers of ~. Similarly, the
appropriate notion of a tensor product must take into account both, the tensor product of
vector spaces over F and the multiplication of formal power series in F[[~]] and combine them
in a non-trivial and coherent way. The sensible way to proceed is to define a suitable notion of
linearity and bilinearity and then to require that the tensor product is characterised by via a
universal property that generalises the one for the tensor product of vector spaces over F.

Definition 2.5.2: Let U, V,W be vector spaces over F

1. A map φ : V [[~]]→ W [[~]] is called ~-linear, if it is F-linear and satisfies

φ(Σ∞n=0~nvn) = Σ∞n=0~nφ(vn) for all Σ∞n=0~nvn ∈ V [[~]]

2. A map α : U [[~]]× V [[~]]→ W [[~]] is called ~-bilinear if it is F-bilinear and

α (Σ∞n=0~nun,Σ∞n=0~nvn) = Σ∞n=0~n Σn
k=0α(uk, vn−k).

for all u = Σ∞n=0~nun ∈ U [[h]] and v = Σ∞n=0~nvn ∈ V [[~]].
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It follows directly from the definition that ~-linear maps φ : V [[~]]→ W [[~]] are in bijection with
F-linear maps φ′ : V → W [[~]]. More precisely, an F-linear map ψ′ = Σ∞n=0~nψn : V → W [[~]]
corresponds to a family (ψn)n∈N0 of F-linear maps ψn : V → W . The associated ~-linear
map ψ : V [[~]] → W [[~]] is the unique F-linear map with pWn ◦ ψ = ψn ◦ pVn induced by the
universal property of products of vector spaces, where pVn : V [[~]]→ V , Σm∈N0~mvm 7→ vn and
pWn : W [[~]]→ W , Σm∈N0~mwm 7→ wn are the canonical projections.

Similarly, ~-bilinear maps α : U [[~]] × V [[~]] → W [[~]] are in bijection with F-bilinear maps
α′ : U × V → W [[~]], and an F-bilinear map α′ = Σ∞n=0~nαn : U × V → W [[~]] can be viewed
as a family (αn)n∈N0 of F-bilinear maps αn : U × V → W .

By the universal property of the tensor product of vector spaces, F-bilinear maps αn : U×V →
W are in bijection with F-linear maps α̃n : U⊗V → W . By the universal property of products
of vector spaces, every family (αn)n∈N0 of F-bilinear maps αn : U × V → W induces a unique
F-linear map α̃ : (U⊗V )[[~]]→ W [[~]] with pWn ◦ α̃ = α̃n ◦pU⊗Vn . This suggests an interpretation
of the vector space (U⊗V )[[~]] as a tensor product of U [[~]] and V [[~]], whose universal property
relates ~-bilinear maps α : U [[~]]× V [[~]]→ W [[~]] to ~-linear maps α̃ : (U⊗V )[[~]]→ W [[~]].
We have proven the following proposition.

Proposition 2.5.3: Let U, V,W be vector spaces over F. Define the ~-tensor product as
U [[~]]⊗~V [[~]] := (U⊗V )[[~]] and consider the canonical surjection

πU⊗V : U [[~]]× V [[~]]→ (U⊗V )[[~]], (Σ∞n=0~nun,Σ∞n=0~nvn) 7→ Σ∞n=0~n Σn
k=0uk⊗vn−k.

Then the pair (U [[~]]⊗~V [[~]], πU⊗V ) has the following universal property:

The map πU⊗V is ~-bilinear, and for every ~-bilinear map φ : U [[~]]× V [[~]]→ W [[~]] there is
a unique ~-linear map α̃ : U [[~]]⊗~V [[~]]→ W [[~]] with α̃ ◦ πU⊗V = α.

Remark 2.5.4: It follows directly from the definition that the ~-tensor product has proper-
ties analogous to the usual tensor product of vector spaces or, more generally, modules over
commutative rings. In particular, there are canonical ~-linear isomorphisms

• (U [[~]]⊗~ V [[~]])⊗~ W [[~]] ∼= U [[~]]⊗~ (V [[~]]⊗~W [[~]])

• U [[~]]⊗~F[[~]] ∼= U [[~]] ∼= F[[~]]⊗~ U [[~]]

• U [[~]]⊗~(V [[~]]⊕W [[~]]) ∼= U [[~]]⊗~V [[~]]⊕ U [[~]]⊗~W [[~]]

• (U [[~]]⊕ V [[~]])⊗~W [[~]]) ∼= U [[~]]⊗~W [[~]]⊕ V [[~]]⊗~W [[~]]

• U [[~]]⊗~V [[~]] ∼= V [[~]]⊗~U [[~]].

For every pair of ~-linear maps φ : U [[~]] → V [[~]] and ψ : W [[~]] → X[[~]] there is a unique
~-linear map φ⊗ψ : U [[~]]⊗~W [[~]] → V [[~]]⊗~X[[~]] with (φ⊗ψ) ◦ πU⊗V = πV⊗W ◦ (φ × ψ).
This is called the ~-tensor product of the maps φ and ψ.

Remark 2.5.5: For any vector space V over F, the vector space V [[~]] is a module over the
algebra F[[~]] of formal power series from Example 1.1.5, 6. with

� : F[[~]]× V [[~]]→ V [[~]], (Σ∞n=0~nλn) � (Σ∞n=0~nvn) = Σ∞n=0~nΣn
k=0λkvn−k.
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However, the notion of an F[[~]]-linear map, i. e. a module homomorphism with respect to these
module structures, is weaker than the one of an ~-linear map φ : V [[~]]→ W [[~]]. Any ~-linear
map φ : V [[~]] → W [[~]] is F[[~]]-linear, but there are F[[~]]-linear maps from V [[~]] to W [[~]]
that are not ~-linear. Similarly, the tensor product U [[~]]⊗~V [[~]] = (U⊗V )[[~]] does in general
not coincide with the tensor product U [[~]]⊗F[[~]]V [[~]] over the algebra F[[~]] from Proposition
1.1.15.

One can view the ~-tensor product U [[~]]⊗~V [[~]] as the closure of U [[~]]⊗F[[~]]V [[~]] with respect
to a certain topology, the so-called ~-adic topology. However, it is also well-motivated from
a purely algebraic perspective since it is the simplest way of combining the formal power series
structure of U [[~]] and V [[~]] and the tensor product of the vector spaces U and V .

With the tensor product over ~, we can now define algebra, coalgebra, bialgebra and Hopf
algebra structures on the vector spaces V [[~]] in direct analogy with Definition 1.1.3, Definition
2.1.1, Definition 2.1.8 and Definition 2.2.1. The only difference is that F-linear maps are replaced
by ~-linear maps and tensor products over F are replaced by ~-tensor products.

Definition 2.5.6: Let F be a field.

1. An algebra over F[[~]] is a triple of a vector space A[[~]] and ~-linear maps
m : (A⊗A)[[~]] → A[[~]] and η : F[[~]] → A[[~]] that satisfy the associativity and unit
axioms in Definition 1.1.3.

2. A coalgebra over F[[~]] is a triple of a vector space C[[~]] and ~-linear maps
∆ : C[[~]] → (C⊗C)[[~]], ε : C[[~]] → F[[~]] that satisfy the coassociativity and counit
axioms in Definition 2.1.1.

3. A bialgebra over F[[~]] is a pentuple of a vector space B[[~]] and ~-linear maps
m : (B⊗B)[[~]]→ B[[~]], η : F[[~]]→ B[[~]], ∆ : B[[~]]→ (B⊗B)[[~]], ε : B[[~]]→ F[[~]]
that satisfy the conditions in Definition 2.1.8.

4. A bialgebra B[[~]] over F[[~]] is called a Hopf algebra over F[[~]] if there is an ~-linear
map S : B[[~]]→ B[[~] that satisfies the conditions in Definition 2.2.1.

A bialgebra or a Hopf algebra over F[[~]] is sometimes called a topological bialgebra or
topological Hopf algebra.

By the universal properties of tensor products and products of vector spaces, any algebra,
coalgebra, bialgebra or Hopf algebra structure on a vector space V over F induces an algebra,
coalgebra, bialgebra or Hopf algebra structure on V [[~]], but not all algebra, coalgebra, bialgebra
or Hopf algebra structures on V [[~]] arise in this way.

To construct more general Hopf algebra structures over F[[~]] one presents their algebra struc-
tures in terms of generators and relations. As in the case of algebras over F, any algebra over
F[[~]] can be presented in terms of generators and relations, i. e. as a quotient of the ten-
sor algebra T (V [[~]]) ∼= T (V )[[~]] by a two-sided ideal in T (V )[[~]]. The goal is to start with
a finite-dimensional Lie algebra (g, [ , ]g) over F and to construct a Hopf algebra over F[[~]]
that is presented as a quotient of the algebra T (g)[[~]] with elements of an ordered basis of

45



g as generators and with a set R ⊂ T (g)[[~]] of relations. To obtain a bialgebra structure on
T (g)[[~]]/(R), we then have have to find linear maps

∆ = Σ∞n=0~n∆n : g→ T (g)[[~]]⊗T (g)[[~]] ε = Σ∞n=0~nεn : g→ F[[~]]

that are given by families of F-linear maps ∆n : g → T (g)⊗T (g) and εn : g → F and that
satisfy the coassociativity and counitality conditions on each generator. This defines a bialgebra
structure on T (g)[[~]], and if the two-sided ideal (R) ⊂ T (g)[[~]] is a coideal for (T (g)[[~]],∆, ε),
this bialgebra structure induces a bialgebra structure on T (g)[[~]]/(R). The resting bialgebra
is a Hopf algebra if and only if there is an F-linear map S = Σ∞n=0~nSn : g → T (g)[[~]] with
S(r) ∈ (R) for each relation r ∈ R that satisfies the antipode condition on each generator.
Hence, to obtain a Hopf algebra as a quotient of T (g)[[~]], one needs to:

• Specify relations r = Σ∞n=0~nrn ∈ T (g)[[~]] with rn ∈ T (g).

• Specify linear maps ∆ = Σ∞n=0~n∆n : g → T (g)[[~]]⊗T (g)[[~]], ε = Σ∞n=0~nεn : g → F[[~]]
such that ε(r) = 0 and ∆(r) ∈ (R)⊗T (g)[[~]] + T (g)[[~]]⊗(R) for every relation r ∈ R
and the coassociativity and counitality condition are satisfied for each generator.

• Show that there is a linear map S = Σ∞n=0~nSn : g → T (g)[[~]] such that S(r) ∈ (R) for
each relation r and the antipode condition is satisfied on each generator.

If this Hopf algebra is to be interpreted as a deformation of the universal enveloping algebra
U(g) with a deformation parameter ~, then its structures, the relations and the comultiplication,
should take the same form as for U(g) in lowest order in ~. Moreover, one imposes a homogeneity
condition on ∆ that relates the number of generators occurring in ∆n(x) to power of ~. Hence,
we require that the following additional conditions are satisfied:

• ∆0(x) = 1⊗x+ x⊗1 for all x ∈ g,

• there are exactly 1
2

dim g(dim g− 1) relations, which are of the form

rij = xixj − xjxi − [xi, xj]g +O(~) ∈ T (g)[[~]] for 1 ≤ i < j ≤ dim(g),

• ∆n(x) ∈ ⊕n+1
k=0 g

k⊗gn+1−k for all x ∈ g.

The structure that characterises the comultiplication ∆ data in lowest order of ~ is then a linear
map δ : g→ g⊗g defined by

∆(x)−∆op(x) = ~(∆1(x)−∆op
1 (x)) +O(~2) = ~δ(x) +O(~2) ∀x ∈ g,

which relates the linear map ∆1 to its opposite ∆op
1 and describes the deviation of ∆ from the

cocommutative map ∆0 in lowest order in ~.

The idea is to classify and construct deformations of the universal enveloping algebra U(g) by
requirements on δ that arise from the condition that the comultiplication ∆ is a coassociative
algebra homomorphism. In order ~0, these conditions take the form ∆0([x, y]g) = [∆0(x),∆0(y)]
and (∆0⊗id) ◦ ∆0 = (id⊗∆0) ◦ ∆0. These conditions are satisfied because ∆0 coincides with
the comultiplication of U(g). To see that the coassociativity condition is also satisfied in order
~, we express the linear map ∆1 : g → g⊗g in terms of a basis B = {x1, ..., xdim g} if g as
∆1(xl) = Σk

i,j=1C
ij
l xi⊗xj with constants Cij

l ∈ F. As the condition ∆(1) = ∆0(1) = 1⊗1
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implies ∆n(1) = 0 for all n ∈ N, this yields for all l ∈ {1, ..., dim g}

(∆⊗id) ◦∆(xl)− (id⊗∆) ◦∆(xl)

= ~ ((∆1⊗id) ◦∆0(xl) + (∆0⊗id) ◦∆1(xl)− (id⊗∆1) ◦∆0(xl)− (id⊗∆0) ◦∆1(xl)) +O(~2)

= ~Σk
i,j=1C

ij
l (xi⊗xj⊗1− 1⊗xi⊗xj + 1⊗xi⊗xj + xi⊗1⊗xj − xi⊗1⊗xj − xi⊗xj⊗1) +O(~2)

= O(~2).

Hence, the first condition on δ from the coassociativity on ∆ arises in order ~2. To obtain a
condition that involves only δ and not ∆1 or ∆op

1 , we take the sum over the cyclic permutations
of factors in tensor products g⊗g⊗g and combine the coassociativity conditions for ∆ and ∆op.
This yields

0 = Σcyc(∆⊗id) ◦∆− (id⊗∆) ◦∆ + (∆op⊗id) ◦∆op − (id⊗∆op) ◦∆op

= Σcyc(∆⊗id) ◦∆− τ231 ◦ (id⊗∆op) ◦∆op − τ231 ◦ (id⊗∆) ◦∆ + (∆op⊗id) ◦∆op

= Σcyc(∆⊗id) ◦∆− (∆op⊗id) ◦∆− (∆⊗id) ◦∆op + (∆op⊗id) ◦∆op

= Σcyc((∆−∆op)⊗id) ◦ (∆−∆op) = ~2Σcyc(δ⊗id) ◦ δ +O(~3),

where τijk ∈ S3 is the permutation with τijk(i) = 1, τijk(j) = 2 and τijk(k) = 3. This equation
is satisfied in order ~2 if and only if δ satisfies the coJacobi identity Σcyc(δ⊗id)◦ δ(x) = 0 for all
x ∈ g. To determine the conditions on δ that arise from the requirement that ∆ is an algebra
homomorphism, we note that the relations imply x · y − y · x = [x, y]g +O(~2) for all x, y ∈ g.
The condition that ∆ is an algebra homomorphism and the definition of δ then imply

∆([x, y])−∆op([x, y]) = [∆(x),∆(y)]− [∆op(x),∆op(y)]

= ∆(x)∆(y)−∆(y)∆(x)−∆op(x)∆op(y) + ∆op(y)∆op(x)

= [∆(x),∆(y)−∆op(y)]− [∆(y),∆(x)−∆op(x)]

= ~(id⊗adx + adx⊗id)δ(y)− ~(id⊗ady + ady⊗id)δ(x) +O(~2)

= ~δ([x, y]) +O(~2) = ~δ([x, y]g) +O(~2),

where [ , ] stands for the commutator in T (g)[[~]], the expression [ , ]g for the Lie bracket in g
and adx : g → g, y 7→ [x, y]g for the adjoint action of x ∈ g on g. This equation is satisfied in
order ~ if and only if δ satisfies (id⊗adx + adx⊗id)δ(y)− ~(id⊗ady + ady⊗id)δ(x) = δ([x, y]g).
By combining this condition with the coJacobi identity, we obtain the following definition.

Definition 2.5.7: A Lie bialgebra over F is a Lie algebra (g, [ , ]) over F together with an
antisymmetric F-linear map δ : g→ g⊗g, the cocommutator, that satisfies for all x, y ∈ g

1. the co-Jacobi identity: Σcyc(δ⊗id) ◦ δ(x) = 0,
2. the cocycle condition: δ([x, y]) = (adx⊗id + id⊗adx)δ(y)− (ady⊗id + id⊗ady)δ(x),

where adx is the adjoint action adx : g→ g, y 7→ [x, y] for all x ∈ g.

We can view a Lie bialgebra as the infinitesimal concept associated with a bialgebra. The Lie
bracket characterises the multiplication and relates it to the opposite multiplication in lowest
order in ~, and the Jacobi identity is the infinitesimal version of the associativity condition
for the multiplication. The cocommutator characterises the comultiplication and relates it to
the opposite comultiplication in lowest order of ~, and the coJacobi identity is the infinitesimal
version of coassociativity. The cocycle condition is a compatibility condition between Lie bracket
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and cocommutator that can be viewed as the infinitesimal version of the condition that the
comultiplication is an algebra homomorphism. The duality between a bialgebra H and its
(finite) dual H∗ also has an infinitesimal counterpart that associates to each Lie bialgebra
(g, [ , ], δ) a dual Lie bialgebra (g∗, δ∗, [ , ]∗).

Lemma 2.5.8: If (g, [ , ], δ) is a finite-dimensional Lie bialgebra over F, then (g∗, δ∗, [ , ]∗) is
a Lie bialgebra over F. It is called the dual Lie bialgebra of (g, [ , ], δ).

Proof:
As g is finite-dimensional, we have (g⊗g)∗ ∼= g∗⊗g∗. The F-linear map δ∗ : g∗⊗g∗ → g∗ is
antisymmetric, and the coJacobi identity for δ implies that δ∗ satisfies the Jacobi identity

0 = (Σcycδ
∗ ◦ (δ∗⊗id)) (α⊗β⊗γ) = δ∗(δ∗(α⊗β), γ) + δ∗(δ∗(γ⊗α), β) + δ∗(δ∗(β⊗γ), α)

for all α, β, γ ∈ g∗. Hence (g∗, δ∗) is a Lie algebra. The dual of the Lie bracket on g is an
antisymmetric F-linear map [ , ]∗ : g∗ → g∗⊗g∗ that satisfies the coJacobi identity since [ , ]
satisfies the Jacobi identity. Moreover, we have for all x, y, z ∈ g and α, β, γ ∈ g∗

([ , ]∗ ◦ δ∗) (α⊗β)(x⊗y) = ((δ ◦ [ , ])∗(α⊗β)) (x⊗y) = (α⊗β)(δ([x, y]))

= (α⊗β)((adx⊗id + id⊗adx)δ(y)− (ady⊗id + id⊗ady)δ(x))

= ((δ∗(α⊗−)⊗id + id⊗δ∗(α⊗−)) ◦ [ , ]∗(β)− (δ∗(β⊗−)⊗id + id⊗δ∗(β⊗−)) ◦ [ , ]∗(α)) (x⊗y),

where δ∗(α⊗−) : g∗ → g∗, β 7→ δ∗(α⊗β) is the adjoint action of g∗ on itself. This shows that
[ , ]∗ satisfies the cocycle condition. 2

Example 2.5.9:

1. Any finite-dimensional Lie algebra (g, [ , ]) becomes a Lie bialgebra when equipped with
the trivial cocommutator δ ≡ 0. In this case, the dual Lie bialgebra has a trivial Lie
bracket and the cocommutator is given by [ , ]∗.

2. Let B = {E,F,G} the basis of the Lie algebra sl2, in which the Lie bracket is given by

[H,E] = 2E [H,F ] = −2F [E,F ] = H.

Then a Lie bialgebra structure on sl2 is given by

δ(E) = E⊗H −H⊗E δ(F ) = F⊗H −H⊗F δ(H) = 0,

and another Lie bialgebra structure is given by

δ(E) = 0, δ(H) = H⊗E − E⊗H, δ(F ) = F⊗E − E⊗F.

3. If g is a complex simple Lie algebra and B = {Ei, Fi, Hi | i = 1, ..., r} is the Chevalley
basis of g from Remark 2.3.13, then a Lie bialgebra structure on g is given by

δ(Hi) = 0, δ(Ei) = Ei⊗Hi −Hi⊗Ei, δ(Fi) = Fi⊗Hi −Hi⊗Fi.

This is called the standard Lie bialgebra structure on g and coincides with the first
cocommutator for g = sl2.
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The advantage of working with Lie bialgebra structures is that the nonlinear relations and the
nonlinear expressions for the coproduct in a bialgebra are replaced by linear structures from
the context of Lie algebras. In particular, the dependence of the structures on the choice of
generators becomes more transparent, since this corresponds to the choice of a basis of g. It
is also much simpler to classify Lie bialgebra structures. As every Lie bialgebra consists of a
Lie algebra and a dual Lie algebra that satisfy the cocycle condition, the classification of Lie
bialgebras of a given dimension d can be achieved by classifying all d-dimensional Lie algebras
and investigating which pairs of d-dimensional Lie algebras satisfy the cocycle condition.

Due to these simplifications, it is natural to attempt to construct q-deformed universal en-
veloping algebras from Lie bialgebra structures and to require that the latter determine the
q-deformed universal enveloping algebra in lowest order in ~. From a physics viewpoint, this
can be interpreted as a quantisation, which motivates the following definition.

Definition 2.5.10: Let (g, [ , ]g, δ) be a Lie bialgebra over F. A quantisation of g is a Hopf
algebra over F[[~]] that is generated by a basis of g with relations of the form

x · y − y · x = [x, y]g +O(~) ∀x, y ∈ g,

and whose comultiplication satisfies the conditions

∆(x) = 1⊗x+ x⊗1 +O(~) ∆(x)−∆op(x) = ~δ(x) +O(~2) ∀x ∈ g.

It has been shown by Drinfeld that every finite-dimensional Lie bialgebra (g, [ , ], δ) has a quan-
tisation that is unique up to bialgebra isomorphisms. In principle, it is possible to construct the
multiplication relations and the coproduct of this quantisation order for order in ~ by imposing
coassociativity and the condition that ∆ is an algebra homomorphism. As the comultiplication
is given by ∆(x) = Σ∞n=0~n∆n(x) with ∆n(x) ∈ g⊗n for all x ∈ g, one obtains

(∆⊗id) ◦∆ =
∞∑
n=0

~n
n∑
k=0

(∆k⊗id) ◦∆n−k (id⊗∆) ◦∆ =
∞∑
n=0

~n
n∑
k=0

(id⊗∆k) ◦∆n−k

and the coassociativity condition leads to a recursion relation

n∑
k=0

((∆k⊗id) ◦∆n−k − (id⊗∆k) ◦∆n−k)(x) = 0 ∀x ∈ g.

Similarly, as the relations are given by [x, y] = Σ∞n=0~nrn(x⊗y), one obtains for all x, y ∈ g

∆([x, y]) =
∞∑
n=0

~n
n∑
k=0

∆k ◦ rk(x⊗y) [∆(x),∆(y)] = Σ∞n=0~n
n∑
k=0

[∆k(x),∆n−k(y)].

The condition that ∆ is an algebra homomorphism leads to the recursion relations

n∑
k=0

∆k ◦ rn−k(x⊗y)− [∆k(x),∆n−k(y)] = 0 ∀x, y ∈ g

which characterise the relation rn in terms of the coproduct and the relations rk with k < n.

Although it is possible in principle, to construct the quantisation of the Lie bialgebra in this
way, this is too cumbersome and complicated in practice. Instead of determining the coalgebra
structure and the relations order for order in ~, one uses the following shortcuts or rules of
thumb:
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• If δ(x) = 0 for some x ∈ g, one sets ∆(x) = 1⊗x+ x⊗1.

• If δ(x) = 0 and δ(y) = y⊗x− x⊗y for x, y ∈ g then one sets ∆(y) = f1(x)⊗y + y⊗f1(x)
with formal power series fi(x) = Σ∞n=0~nainxn, where ain ∈ F.

• If δ(x) = 0 and [x, y]g = αy for x, y ∈ g and α ∈ F, one sets [x, y] = αy.

Example 2.5.11: We construct a quantisation for the Lie algebra sl2 over F with the standard
Lie bialgebra structure. In this case, there is a basis B = {E,F,H} of g in which the Lie bracket
and the cocommutator are given by

[H,E]sl2 = 2E [H,F ]sl2 = −2F [E,F ]sl2 = H

δ(E) = E⊗H −H⊗E δ(F ) = F⊗H −H⊗F δ(H) = 0.

Step 1:
Due to the form of the cocommutator, it is reasonable to assume that H is primitive and to set

∆(H) = H⊗1 + 1⊗H ∆(E) = E⊗e1(H) + e2(H)⊗E ∆(F ) = F⊗f1(H) + f2(H)⊗F

with formal power series e1, e2, f1, f2 satisfying ei(H) = 1+~H+O(~2), fi(H) = 1+~H+O(~2).

Step 2:
We determine the conditions on ei and fi that arise from the coassociativity condition on ∆.
For this, we compute

(∆⊗id) ◦∆(E) = ∆(E)⊗e1(H)−∆(e2(H))⊗E
= E⊗e1(H)⊗e1(H)− e2(H)⊗E⊗e1(H)−∆(e2(H))⊗E

(id⊗∆) ◦∆(E) = E⊗∆(e1(H))− e2(H)⊗∆(E)

= E⊗∆(e1(H))− e2(H)⊗E⊗e1(H)− e2(H)⊗e2(H)⊗E,

and a similar computation for F shows that the coassociativity of ∆ implies that ei(H) and
fi(H) must be grouplike. As H is primitive, its coproduct is given by

∆(Hn) =
n∑
k=0

(
n
k

)
Hk⊗Hn−k.

It follows that an element X = Σ∞n=0~nanHn with an ∈ F is grouplike if and only if

∆(X) =
∞∑
n=0

~n
n∑
k=0

an

(
n
k

)
Hk⊗Hn−k =

∞∑
n=0

~n
n∑
k=0

akan−kH
k⊗Hn−k = X⊗X,

which is the case if and only if its coefficients satisfy

an

(
n
k

)
= akan−k ∀k, n ∈ N0 ⇔ an =

λn

n!
for some λ ∈ F.

This shows that the only grouplike elements that are homogeneous power series in H are of the
form eα~H with α ∈ F. Hence we set ei(H) = eλi~H , fi(H) = eµi~H with µi, λi ∈ F \ {0} and

∆(E) = E⊗e~λ1H + e~λ2H⊗E ∆(F ) = F⊗e~µ1H + e~µ2H⊗F.
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As H is primitive, the coassociaitvity condition is satisfied for H, and we obtain a coalgebra
structure with the counit given by ε(E) = ε(F ) = ε(H) = 0. The condition ∆op−∆ = ~δ+O(~2)
leads to restrictions on the parameters λi and µi since we have

∆(E)−∆op(E) = E⊗e~λ1H + e~λ2H⊗E − E⊗e~λ2H − e~λ1H⊗E
= ~(λ1 − λ2)E⊗H − ~(λ1 − λ2)H⊗E +O(~2)

= ~δ(E) +O(~2) = ~(E⊗H −H⊗E) +O(~2)

∆(F )−∆op(F ) = F⊗e~µ1H + e~µ2H⊗F − F⊗e~µ2H − e~µ1H⊗F
= ~(µ1 − µ2)F⊗H − ~(µ1 − µ2)H⊗F +O(~2)

= ~δ(F ) +O(~2) = ~(F⊗H −H⊗F ) +O(~2),

which implies λ1 − λ2 = 1 and µ1 − µ2 = 1. By a rescaling E → e−~λ2HE and F → Fe−~µ1H ,
we can then achieve that λ2 = µ1 = 0, λ1 = −µ2 = 1, and the comultiplication takes the form

∆(H) = 1⊗H +H⊗1 ∆(E) = 1⊗E + E⊗e~H ∆(F ) = F⊗1 + e−~H⊗F. (16)

From the formulas above, we find that this comultiplication map is coassociative and counital
in all orders of ~ with counit ε(H) = ε(F ) = ε(E) = 0.

Step 3:
It remains to determine the algebra structure, i. e. the relations, in all orders of ~. These are
obtained by the requirement that ∆ is an algebra homomorphism. A direct computation yields

∆([H,E]) = [∆(H),∆(E)]

= (1⊗H +H⊗1) · (E⊗e~H + 1⊗E)− (E⊗e~H + 1⊗E) · (1⊗H +H⊗1)

= [H,E]⊗e~H + 1⊗[H,E]

∆([H,F ]) = [∆(H),∆(F )]

= (1⊗H +H⊗1) · (F⊗1 + e−~H⊗F )− (F⊗1 + e−~H⊗F ) · (1⊗H +H⊗1)

= [H,F ]⊗1 + e−~H⊗[H,F ]

∆([E,F ]) = [∆(E),∆(F )]

= [E,F ]⊗e~H + e−~H⊗[E,F ] + Ee−~H⊗e~HF − e−~HE⊗Fe~H .

Together with the condition that in lowest order, the commutator must agree with the Lie
bracket, the first two equations suggests to set [H,E] = 2E and [H,F ] = −2F . From the
formulas for ∆(E) and ∆(F ) it is then apparent that the ideal generated by these relations is
a coideal. To evaluate the last expression further, we prove by induction the identity

[Hk, E] =
k∑
s=1

(
k
s

)
2sEHk−s.

If it holds for k, then one obtains for k + 1

[Hk+1, E] = H[Hk, E] + [H,E]Hk = [Hk, E]H + [H, [Hk, E]] + EHk = [Hk, E](H + 2) + EHk

= EHk +
k∑
s=1

(
k
s

)
2sE(2Hk−s +Hk+1−s) = E +

k∑
s=1

((
k

s− 1

)
+

(
k
s

))
2sEHk+1−s

=
k+1∑
s=1

(
k + 1
s

)
2sEHk+1−s
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where we used the addition formula for the binomial coefficients. This implies

[e~H , E] =
∞∑
k=1

~k

k!
[Hk, E] =

∞∑
k=1

k∑
s=1

~k

k!

(
k
s

)
2sEHk−s =

∞∑
k=1

k∑
s=1

~k

s!(k − s)!
2sEHk−s

=
∞∑
l=0

∞∑
s=1

2s~s

s!

~l

l!
EH l = (e2~ − 1)Ee~H .

An analogous computation yields [e~λH , F ] = (e−2~− 1)Fe~H , and these commutation relations
are equivalent to the relations

e±~HE = e±2~Ee±2~H e±~HF = e∓2~Fe±2~H . (17)

Inserting this into the expression for ∆([E,F ]), we obtain

∆([E,F ]) = [E,F ]⊗e~H + e−~H⊗[E,F ].

As we must have [E,F ] = H +O(~) it is reasonable to assume that [E,F ] is of the form

[E,F ] =
∞∑
n=0

an~n−1Hn

with an ∈ F, a1 = 1 and a0 = 0. This yields

∆([E,F ]) =
∞∑
n=0

~n−1

n∑
k=0

ann!

k!(n− k)!
Hk⊗Hn−k

[E,F ]⊗e~H =
∞∑
n=0

~n−1

n∑
k=0

ak
(n− k)!

Hk⊗Hn−k

e−~H⊗[E,F ] =
∞∑
n=0

~n−1

n∑
k=0

(−1)kan−k
k!

Hk⊗Hn−k

∆([E,F ])−[E,F ]⊗e~H−e−~H⊗[E,F ] =
∞∑
n=0

~n−1

n∑
k=0

(
ann!− akk!− (−1)kan−k(n− k)!

(n− k)!k!

)
Hk⊗Hn−k.

The last expression vanishes if and only if the coefficients an satisfy the recursion relation

ann! = akk! + (−1)kan−k(n− k)! ∀n ∈ N0, k ∈ {0, 1, ..., n}.

With the conditions on a0 and a1, this is equivalent to a2n = 0 and a2n+1 = 1/(2n+ 1)! for all
n ∈ N0. Hence, we obtain the multiplication and comultiplication relations

[E,F ] =
e~H − e−~H

~
[H,E] = 2E, [H,F ] = 2F, (18)

∆(H) = 1⊗H +H⊗1, ∆(E) = 1⊗E + E⊗e~H , ∆(F ) = F⊗1 + e−~HF.

A direct computation shows that this defines a Hopf algebra structure with counit and antipode

ε(H) = ε(E) = ε(F ) = 0, S(H) = −H, S(E) = −Ee−~H , S(F ) = −e~HF.

Step 4:
By rescaling E or F with a formal power series in ~, we can achieve that the commutator of E
and F is given by

[E,F ] =
e~H − e−~H

e~ − e−~
,
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while all other relations and the expressions for the comultiplication, the counit and antipode
remain unchanged. If we replace the last two multiplication relations by (17) and the expression
for the coproduct, counit and antipode of H by the expression for the coproduct, counit and
antipode of e±~H , we then obtain the Hopf algebra structure

[E,F ] =
e~H − e−~H

e~ − e−~
e~HEe−~H = e2~E, e~HFe−~ = e−2~HF,

∆(e±~H) = e±~H⊗e±~H , ∆(E) = 1⊗E + E⊗e~H , ∆(F ) = F⊗1 + e−~HF

ε(e±~H) = 1, ε(E) = 0, ε(F ) = 0,

S(e±~H) = e∓~H , S(E) = −Ee−~H , S(F ) = −e~HF.

If we set q = e~ and K±1 = e±~H , this coincides with the Hopf algebra structure from Example
2.3.9. This shows that the Hopf algebra Uq(sl2) can be realised as a Hopf-subalgebra of the Hopf
algebra over F[[~]] with generators E,F,H and with relations and coalgebra structure (18).

Exercise 1: Let F be a field.

(a) Show that a formal power series x = Σ∞n=0~nxn ∈ F[[x]] has a multiplicative inverse in
F[[~]] if and only if x0 6= 0.

(b) Show that the quotient field of the ring F[[~]] can be identified with the set of power series
Σ∞n=k~nxn for k ∈ Z and with the product given by(

∞∑
n=k

~nxn

)
·

(
∞∑
n=l

~nyn

)
=

∞∑
n=k+l

~n
(
n=l∑
j=k

xjyn−j

)
.

Exercise 2: Consider the Lie algebra b+ with basis {x, y} and Lie bracket [x, y] = y.

(a) Construct its q-deformed universal enveloping algebra Uq(b+).
(b) Construct the associated q-deformed universal enveloping algebra U r(b+) at a primitive

rth root of unity q.
(c) Compare the result with Taft’s example.
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3 Modules over Hopf algebras

3.1 (Co)module (co)algebras

In this section we consider (co)module (co)algebras over bialgebras and Hopf algebras and their
(co)invariants. These structures can be viewed as a generalisation of the algebra of functions
on a space with a group action and are motivated among others by their applications in non-
commutative geometry. The basic idea is to describe a space X with an action of a symmetry
group G in terms of the algebra Fun(X,F) of functions f : X → F into a field F with the
pointwise addition, multiplication and scalar multiplication. This algebra of functions includes
coordinate functions on X, but also functions that are invariant under the group action and
describe its orbits.

More precisely, if G is a group, X a set and � : G×X → X a group action of G on X, i. e. a
map that satisfies (gh) � x = g � (h� x) and 1 � x = x for all g, h ∈ G and x ∈ X, then the
orbit of an element x ∈ X is the set G � x = {g � x | g ∈ G}, and the orbit space the set
O = {G� x |x ∈ X} of orbits. The algebra Fun(X,F) becomes a right module over the group
algebra F[G] with the induced right action

� : Fun(X,F)⊗F[G]→ Fun(X,F), f 7→ f � g where (f � g)(x) = f(g � x) ∀x ∈ X.

Functions f̃ : O → F are in bijection with functions f : X → F that are invariant under the
action of G, i. e. satisfy f � g = f for all g ∈ G. Every function f̃ : O → F gives rise to an
invariant function f : X → F defined by f(x) = f̃(G� x) and vice versa

Fun(O,F) ∼= Fun(X,F)G = {f : X → F | f(g � x) = f(x)∀g ∈ G, x ∈ X}.

The set Fun(X,F)G is a subalgebra of Fun(X,F) since it is a linear subspace, the constant
function 1X : X → F, x 7→ 1 is contained in Fun(X,F) and for all f1, f2 ∈ Fun(X,F)G one has
(f1 · f2)(g � x) = f1(g � x) · f2(g � x) = f1(x) · f2(x) = (f1 · f2)(x) for all x ∈ X and hence
f1 ·f2 ∈ Fun(X,F)G. We can view this subalgebra as the algebra of functions on the orbit space.

For instance, if we consider the space X = Rn, the group G = O(n,R) and the group action
� : O(n,R) × Rn → Rn, (M,x) 7→ M · x, then the orbits are the set Sn−1

0 = {0} and spheres
Sn−1
r = {x ∈ Rn |Σn

i=1x
2
i = r2} for r > 0. The invariant functions are functions whose value at a

point x ∈ Rn depends only on the euclidean distance of x to the origin. If we choose X = G for
some group G and the conjugation action � : G×G→ G, (g, h) 7→ ghg−1, then the orbits are
conjugacy classes in G and the invariant functions are class functions, functions f : G → F
with f(ghg−1) = f(h) for all g, h ∈ G.

In non-commutative geometry these structures are generalised by replacing the group G by a
Hopf algebra H and the algebra of functions Fun(X,F) by a (usually non-commutative) algebra
A that is a module over the Hopf algebra H. One also obtains a generalised notion of invariant
elements, and the requirement that these invariant elements form a subalgebra of A leads to a
compatibility condition between the algebra structure and the H-module structure of A. This
is encoded in notion of a module algebra over a Hopf algebra. As both, the Hopf algebra H
and the algebra A can be dualised, one also obtains three dual concepts, namely a module
coalgebra, a comodule algebra and a comodule coalgebra. These concepts can also be defined in
more generality for bialgebras.
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Definition 3.1.1: Let B be a bialgebra over F. A (left) module algebra over B is an
algebra (A,mA, ηA) together with a B-left module structure � : B⊗A → A such that the
following diagrams commute

B⊗A⊗A
∆⊗id⊗id

��

id⊗mA // B⊗A � // A

B⊗B⊗A⊗A
id⊗τ⊗id

// B⊗A⊗B⊗A
�⊗�

// A⊗A

mA

OO B

ε
��

h7→h⊗1
∼=
// B⊗F id⊗ηA // B⊗A

�
zz

F ηA
// A.

(19)

In formulas: for all b ∈ B and a, a′ ∈ A, one has

b� (a · a′) = Σ(b)(b(1) � a) · (b(2) � a′) b� 1A = ε(b) 1A.

A right module algebra over B is a left module algebra over Bop, and a bimodule algebra
over B is a left module algebra over B⊗Bop.

Example 3.1.2:

1. If G is a group and � : G × X → X a group action of G on a set X, then the algebra
of functions Fun(X,F) is a right module algebra over the group algebra F[G] with
� : Fun(X,F)⊗F[G]→ Fun(X,F), f⊗g 7→ f � g with (f � g)(x) = f(g � x).

2. Let B be a bialgebra over F. Every algebra A over F becomes a B-module algebra when
equipped with the trivial B-module structure � : B⊗A→ A, b� a = ε(b) a.

3. If A is a module algebra over a Hopf algebra H with � : H⊗A→ A, then A is a module
algebra over Hop,cop with �′ : H⊗A→ A, h�′ a = S(h) � a.

4. Every Hopf algebra H is a module algebra over itself with the adjoint action

�ad : H⊗H → H, h⊗k 7→ h�ad k with h�ad k = Σ(h) h(1) · k · S(h(2)).

If H = F[G] is a group algebra, this corresponds to the conjugation action of G on itself
g �ad h = ghg−1 for all g, h ∈ G. (Exercise)

5. For every bialgebra (B,m, η,∆, ε), the dual algebra (B∗,∆∗, ε∗) is a module algebra over
B with the right dual action

�∗R : B⊗B∗ → B∗, b⊗α 7→ b�∗R α with b�∗R α = Σ(α)α(2)(b)⊗α(1).

and a module algebra over Bop with the left dual action

�∗L : Bop⊗B∗ → B∗, b⊗α 7→ b�∗L α with b�∗L α = Σ(α)α(1)(b)α(2)

This gives B∗ the structure of a bimodule algebra over B. (Exercise).

6. If G is a group and F[G] its group algebra, then the dual algebra is F[G]∗ = Fun(G,F)
with the pointwise addition, multiplication and scalar multiplication. In this case the right
and left dual action correspond to the group actions

�∗R : F[G]× Fun(G,F)→ Fun(G,F), (g �∗R f)(h) = f(h · g)

�∗L : F[G]op × Fun(G,F)→ Fun(G,F), (g �∗L f)(h) = f(g · h).
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A more interesting example that illustrates the interpretation of comodule algebras as deformed
or quantised algebras of functions is the quantum plane.

Example 3.1.3: Let F be a field and q ∈ F \ {0, 1,−1}. The quantum plane Fq[x, y] over
F is the algebra over F with generators x, y and the relation xy = qyx. The quantum plane is
a module algebra over Uq(sl2) with � : Uq(sl2)⊗Fq[x, y]→ Fq[x, y], U⊗w 7→ U � w given by

E � (ymxn) = q1−n(n)q2y
m+1xn−1 F � (ymxn) = q1−m(m)q2y

m−1xn+1 (20)

K � (ymxn) = qm−nymxn K−1 � (ymxn) = qn−mymxn.

Proof:
Let V be the free vector space with basis E,F,K,K−1. Then (20) defines a linear map
ρ′ : V → EndF(Fq[x, y]), X 7→ ρ′(X) with ρ(X)w = X � w. By the universal property of the
tensor algebra T (V ), this induces an algebra homomorphism ρ : T (V ) → EndF(Fq[x, y]) with
ρ ◦ ιV = ρ′. To obtain an algebra homomorphism ρ : Uq(sl2) → EndF(Fq[x, y]), we need to
show that r ∈ ker(ρ) for all relations r in (9). As the set {ymxn |m,n ∈ N0} is a basis of
Fq[x, y], it is sufficient to show that ρ(r)(ymxn) = 0 for all relations r in (9) and m,n ∈ N0.
This follows by a direct computation from (20) and the relations in (9) and shows that
ρ : T (V ) → EndF(Fq[x, y]) induces an algebra homomorphism ρ : Uq(sl2) → EndF(Fq[x, y]).
Hence, Fq[x, y] is a module over Uq(sl2). To show that Fq[x, y] is a module algebra over Uq(sl2),
we have to show that m ◦ (∆(X) � (ymxn⊗yrxs) = X �m(ymxn⊗yrxs) for all m,n, r, s ∈ N0

and X ∈ {E,F,K±1}. This follows again by a direct but lengthy computation from the relation
xy = qyx and the expressions for the coproduct in (10). 2

The geometrical meaning and the name quantum plane becomes more transparent if one consid-
ers the case q = 1. For this, we consider instead of Uq(sl2) the q-deformed universal enveloping
algebra U ′q(sl2) with generators e, f, l from Example 2.3.11 and set

e� (ymxn) = q1−n(n)q2y
m+1xn−1 f � (ymxn) = q1−m(m)q2y

m−1xn+1 (21)

l � (ymxn) = [e, f ] � (ymxn) = (qn−m(m)q2 − qm−n(n)q2) y
mxn,

For q = 1, we obtain the commutative quantum plane F1[x, y] = F[x, y] with a left module
structure over the universal enveloping algebra U(sl2) given by

e� (ymxn) = nym+1xn−1 f � (ymxn) = mym−1xn+1 l � (ymxn) = (m− n) ymxn. (22)

This can be interpreted as a representation ρ : sl2 → EndFF[x, y] of the Lie algebra sl2 on the
polynomial algebra F[x, y] by formal differential operators

ρ(e) = y
∂

∂x
ρ(f) = x

∂

∂y
ρ(l) = y

∂

∂x

(
x
∂

∂y

)
− x ∂

∂y

(
y
∂

∂x

)
= y

∂

∂y
− x ∂

∂x
.

On the other hand, if we interpret the elements x and y as linear maps x : F2 → F, (x′, y′)→ x′

and y : F2 → F, (x′, y′) 7→ y′, we can consider the representation ρ : sl2 → EndF(F[x, y]) that
is induced by the representation of the Lie algebra slop2 with the opposite commutator in terms
of the matrices e, f, l from (14). As we have

x

((
0 1
0 0

)
·
(
x′

y′

))
= x

(
y′

0

)
= y′ y

((
0 1
0 0

)
·
(
x′

y′

))
= x

(
y′

0

)
= 0

x

((
0 0
1 0

)
·
(
x′

y′

))
= x

(
0
x′

)
= 0 y

((
0 0
1 0

)
·
(
x′

y′

))
= x

(
0
x′

)
= x′

x

((
−1 0
0 1

)
·
(
x′

y′

))
= x

(
−x′
y′

)
= −x′ y

((
−1 0
0 1

)
·
(
x′

y′

))
= y

(
−x′
y′

)
= y′,

56



this representation ρ : sl2 → EndF(F[x, y]) induces the representation in (22). Hence we can view
the Uq(sl2)-module algebra structure on the quantum plane as a deformation or quantisation
of the sl2-module structure on the algebra of polynomial functions on the plane that is induced
by the standard sl2-representation on F2.

By passing from from a finite-dimensional algebra A to the dual coalgebra A∗ or from a finite-
dimensional bialgebra B acting on A to its dual B∗, we obtain concepts analogous to the module
algebra in Definition 3.1.1. They are obtained, respectively, by reversing the arrows labelled by
the multiplication and unit of A in (19) and labelling them with a comultiplication and counit
instead or by reversing the arrows labelled by the comultiplication and counit of B and by the
action � in (19) and labelling them with the multiplication and unit and a coaction δ instead.
This leads to the concepts of a module coalgebra, a comodule algebra and a comodule coalgebra
over a bialgebra.

Definition 3.1.4: Let B be a bialgebra over F.

1. A B-left module coalgebra is a coalgebra (C,∆C , εC) together with a B-left module
structure � : B⊗C → C such that the following two diagrams commute

B⊗C⊗C
∆⊗id⊗id

��

B⊗Cid⊗∆Coo � // C

∆C

��
B⊗B⊗C⊗C

id⊗τ⊗id
// B⊗C⊗B⊗C

�⊗�
// C⊗C

B

ε
��

B⊗Fh⊗λ 7→λh
∼=

oo B⊗Cid⊗εCoo

�
zz

F C.εC
oo

In formulas: for all b ∈ B and c ∈ C, one has

Σ(b�c)(b� c)(1)⊗(b� c)(2) = Σ(b),(c)(b(1) � c(1))⊗(b(2) � c(2)) εC(b� c) = ε(b)εC(c).

2. A B-left comodule algebra is an algebra (A,mA, ηA) together with an B-left comodule
structure δ : A→ B⊗A, a 7→ Σ(a)a(1)⊗a(0) such that the following two diagrams commute

B⊗A⊗A id⊗mA // B⊗A A
δoo

B⊗B⊗A⊗A
m⊗id⊗id

OO

B⊗A⊗B⊗A
id⊗τ⊗id
oo A⊗A

δ⊗δ
oo

mA

OO B
h7→h⊗1

∼=
// B⊗F id⊗ηA // B⊗A

F

η

OO

ηA
// A.

δ

::

In formulas: for all b ∈ B and a, a′ ∈ A, one has

Σ(aa′)(aa
′)(1)⊗(aa′)(0) = Σ(a)(a′)a(1)a

′
(1)⊗a(0)a

′
(0) Σ(1A)1A(1)⊗1A(0) = 1B⊗1A

3. A B-left comodule coalgebra is a coalgebra (C,∆C , εC) with an B-left comodule struc-
ture δ : C → B⊗C, c 7→ Σ(c)c(1)⊗c(0) such that the following two diagrams commute

B⊗C⊗C B⊗Cid⊗∆Coo C
δoo

∆
��

B⊗B⊗C⊗C
m⊗id⊗id

OO

B⊗C⊗B⊗C
id⊗τ⊗id
oo C⊗C

δ⊗δ
oo

B B⊗Fh⊗λ 7→λh
∼=

oo B⊗Cid⊗εCoo

F

η

OO

C.εC
oo

δ

99

In formulas: for all c ∈ C, one has

Σ(c)c(1)⊗c(0)(1)⊗c(0)(2) = Σ(c)c(1)(1)c(2)(1)⊗c(1)(0)⊗c(2)(0) Σ(c)c(1)εC(c(0)) = εC(c)1B.
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A right module coalgebra over B is a left module coalgebra over Bop and a module bi-
coalgebra over B is a left module coalgebra over B⊗Bop. A right comodule (co)algebra
over B is a left comodule (co)algebra over Bcop and a comodule bi(co)algebra over B is a
left comodule (co)algebra over B⊗Bcop.

Remark 3.1.5:

1. If V is a comodule (co)algebra over a bialgebra B with δ : V → B⊗V , then V is a B∗op

module (co)algebra with � : B∗⊗V → V , β�v = (β⊗id)◦δ(v). If B is finite-dimensional,
this defines a bijection between B-comodule (co)algebra and B∗op-module (co)algebra
structures on V .

2. If (A,mA, ηA) is a finite-dimensional module algebra over a finite-dimensional bialgebra
B, then (A∗,m∗A, η

∗
A) is a comodule coalgebra over B∗ and vice versa. (Exercise)

3. In the infinite-dimensional case, the second statement in 1. and statement 2. do not hold.
There are modules over B∗op that do not arise from comodules over B, the dual of an
infinite-dimensional algebra A does not have a canonical coalgebra structure and that in
that case one may have B∗⊗A∗ ( (B⊗A)∗. This is the reason for the introduction of the
dual concepts in Definition 3.1.4.

Example 3.1.6:

1. If G is a finite group acting on a finite set X via � : G×X → X, then:

(a) The algebra Fun(X,F) is a comodule algebra over Fun(G,F) with

δ : Fun(X,F)→ Fun(G,F)⊗Fun(X,F), f 7→ Σg∈Gδg⊗(f � g).

(b) The free vector space 〈X〉F generated by X is a module coalgebra over F[G] with
module structure � : F[G]⊗〈X〉F → 〈X〉F, g⊗x 7→ g � x and coalgebra structure
∆ : 〈X〉F → 〈X〉F⊗〈X〉F, x 7→ x⊗x.

(c) The free vector space 〈X〉F is a comodule coalgebra over Fun(G,F) with comodule
structure δ : 〈X〉F → Fun(G,F)⊗〈X〉F, x 7→ Σg∈G δg⊗g � x and coalgebra structure
∆ : 〈X〉F → 〈X〉F⊗〈X〉F, x 7→ x⊗x.

2. Every bialgebra B is a module coalgebra over itself with the left regular action

�L : B⊗B → B, b� c = b · c,

a module coalgebra over Bop with the right regular action

�R : Bop⊗B → B, c� b = c · b,

and a comodule algebra over itself with its multiplication and comultiplication.

3. A comodule algebra over a group algebra F[G] is the same as a G-graded algebra,
i. e. an algebra A that is given as a direct sum A = ⊕g∈GAg with linear subspaces Ag ⊂ A
such that 1A ∈ Ae and Ag · Ah ⊆ Agh (Exercise).
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Given a module algebra A over a bialgebra B, one can associate to this pair an algebra structure
on the vector space A⊗B, the so-called cross product or smash product. This generalises the con-
struction of a semidirect product of groups and plays an important role in many constructions
with Hopf algebras.

Proposition 3.1.7: Let B be a bialgebra and (A,�) a module algebra over B. Then

(a⊗b) · (a′⊗b′) = Σ(b) a(b(1) � a′)⊗b(2)b
′

defines an algebra structure on A⊗H with unit 1A⊗1H , such that ιA : A → A⊗H, a 7→ a⊗1
and ιH : H → A⊗H, h 7→ 1⊗h are injective algebra homomorphisms. The vector space A⊗H
with these algebra structure is called the smash product or cross product of A and H and
denoted A#H.

Proof:
That ιA and ιH are algebra homomorphisms is obvious. The remaining claims follow by a direct
computation. To check associativity, we compute(
(a⊗h) · (b⊗k)

)
· (c⊗l)

= Σ(h)(a(h(1) � b)⊗h(2)k) · (c⊗l) = Σ(h)(h(2)k)a(h(1) � b)((h(2)k)(1) � c)⊗(h(2)k)(2)l

= Σ(h)(k)a(h(1) � b)((h(2)(1)k(1)) � c)⊗h(2)(2)k(2)l = Σ(h)(k)a(h(1) � b)((h(2)k(1)) � c)⊗h(3)k(2)l

(a⊗h) ·
(
(b⊗k) · (c⊗l)

)
= Σ(k)(a⊗h) · (b(k(1) � c)⊗k(2)l) = Σ(h)(k)a(h(1) � (b(k(1) � c)))⊗h(2)k(2)l

= Σ(h)(k)a(h(1)(1) � b)(h(1)(2) � (k(1) � c))⊗h(2)k(2)l = Σ(h)(k)a(h(1) � b)((h(2)k(1)) � c)⊗h(3)k(2)l,

and to show that 1A⊗1H is a unit, we compute for all a ∈ A and h ∈ H

(a⊗h) · (1A⊗1H) = Σ(h)a(h(1) � 1A)⊗h(2)1H = Σ(h)ε(h(1))a⊗h(2) = a⊗h
(1A⊗1H) · (a⊗h) = Σ(1H)1A(1H(1) � a)⊗1H(2)h = 1Aa⊗1Hh = a⊗h.

2

Example 3.1.8:

1. Let G,H be groups and ρ : G→ Aut(H) a group homomorphism. Then F[H] is a module
algebra over F[G] with � : F[G]⊗F[H] → F[H], g⊗h 7→ ρ(g)h. The associated cross
product H#G is given by the multiplication law

(h⊗g) · (h′⊗g′) = h(ρ(g)h′)⊗gg′

for all g, g′ ∈ G and h, h′ ∈ H. This coincides with the multiplication law of the
semidirect product H oG and hence one has F[H]#F[G] ∼= F[H oG].

2. Let B be a bialgebra over F and consider the dual algebra A = B∗ with the right dual
action �∗R : B⊗B∗ → B∗, b�∗R α = Σ(α)α(2)(b)α(1). Then the multiplication of the cross
product B∗#B is given by

(α⊗b)(α′⊗b′) = Σ(h)(α′)α
′
(2)(b(1)) αα

′
(1)⊗b(2)b

′

This cross product is also called the Heisenberg double of B and denoted H(B).
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3.2 (Co)invariants and (co)integrals

The concepts of (co)module (co)algebras over Hopf algebras from the last subsection allow one
to generalise group actions G on a set X and the associated algebra of functions Fun(X,F)
to Hopf algebra (co)actions on (co)algebras. In this section, we introduce the notions of
(co)invariants for (co)modules over Hopf algebras that allows us to generalise the notion of
a function that is invariant under a group action and the notion of functions on the orbit space.

Invariants can be defined for modules over a bialgebra by linearising the notion of an invariant
for a group representation. If � : G×V → V is a representation of a group G on a vector space
V , then an element v ∈ V is called invariant if the group G acts trivially on v, i. e. g � v = v
for all g ∈ G. When passing from a group G to a Hopf algebra, then the invariance condition
needs to be replaced by an appropriate condition that is linear in H. Given the available
structures, the natural choice is to set h� v = ε(h) v for all h ∈ H and v ∈ V . The dual notion
of a coinvariant for a comodule over B is obtained by requiring that for a finite-dimensional
bialgebra B, coinvariants for a left comodule (V, δ) over B coincide with the invariants of the
associated B∗op-module structure on V that is given by β � v = (β⊗id) ◦ δ(v).

Definition 3.2.1: Let B be a bialgebra over F.

1. Let (M,�) be a module over B. An element m ∈ M is called an invariant of M if
b�m = ε(b)m for all b ∈ B. The submodule of invariants of M is denoted MB.

2. Let (M, δ) be a comodule over H. An element m ∈ M is called a coinvariant of M if
δ(m) = 1B⊗m. The subcomodule of invariants in M is denoted M coB.

Example 3.2.2:

1. Let G be a group acting on a set X by � : G × X → X. Let � : Fun(X,F)⊗F[G] →
Fun(X,F) be the associated right action of G on Fun(X,F) with (f � g)(x) = f(g � x)
for all g ∈ G and x ∈ X. Then this defines a F[G]-module structure on Fun(X,F) with

Fun(X,F)F[G] = {f : X → F | f(g � x) = f(x)∀g ∈ G}.

2. Let H be a Hopf algebra acting on itself via the adjoint action �ad : H⊗H → Hwith
h�ad k = Σ(h) h(1) · k · S(h(2)). Then the submodule of invariants is the centre of H

H�ad = Z(H) = {k ∈ H |h · k = k · h∀h ∈ H}.

This can be seen as follows. If k ∈ Z(H), then h �ad k = Σ(h)h(1) · k · S(h(2)) =
Σ(h)(h(1)S(h(2))) · k = ε(h) k for all h ∈ H. Conversely, if k ∈ H�ad then for all h ∈ H

h · k = (Σ(h)h(1)ε(h(2))) · k = Σ(h)h(1)k(S(h(2)(1))h(2)(2)) = Σ(h)(h(1)(1)kS(h(1)(2)))h(2)

= Σ(h)(h(1) �ad k)h(2) = Σ(h)ε(h(1)) kh(2) = k ·
(
Σ(h)ε(h(1))h(2)

)
= k · h.

In both examples, the module over the Hopf algebra H has the structure of a module algebra,
and the invariants of the module form a subalgebra. This is a general pattern that holds for
any module algebra over a bialgebra and allows us to view the invariants of a module algebra
A over a Hopf algebra H as a generalisation of functions on the orbit space of a group action.
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Proposition 3.2.3: Let B be a bialgebra over F

1. If A is a module algebra over B, then AB ⊂ A is a subalgebra.

2. If A is a comodule algebra over B, then AcoB ⊂ A is a subalgebra.

Proof:
Let A be a module algebra over B. Clearly, the submodule AB ⊂ A is a linear subspace of A.
Moreover, one has 1A ∈ AB since b � 1A = ε(h) 1 for all b ∈ B by definition of the module
algebra, and for all a, a′ ∈ AB and b ∈ B

b� (aa′) = Σ(b)(b(1) � a) · (b(2) � a′) = Σ(b)(ε(b(1))a) · (ε(b(2))a
′) = Σ(b)ε(b(1))ε(h(b)) aa

′

= ε(Σ(b)ε(b(1))b(2)) aa
′ = ε(b) aa′,

where we used the definition of a module algebra and of the invariants, then the linearity of
the multiplication in A and of ε and finally the counitality of ε. This shows that aa′ ∈ AB and
that AB is a subalgebra of A. Similarly, if A is a comodule algebra over H, then AcoB ⊂ A is
a linear subspace and δ(1A) = 1B⊗1A by definition of a comodule algebra. The definition of a
comodule algebra also implies for all a, a′ ∈ AcoB

δ(aa′) = δ(a) · δ(a′) = (1B⊗a) · (1B⊗a′) = 1B⊗aa′,

and hence AcoB ⊂ A is a subalgebra of A. 2

Another nice example of invariants (although not in the context of module algebras) is given
by the following lemma, which shows that module homomorphisms between modules M,N over
a Hopf algebra can also be viewed as the invariants of a certain module, namely the module
HomF(M,N) of linear maps f : M → N with H-module structure induced by the ones of M
and N . In this case, an antipode is necessary to ensure that the pre-and post composition with
the action of H can be combined into a module structure on HomF(M,N).

Lemma 3.2.4: Let H be a Hopf algebra and M,N modules over H. Then

� : H⊗HomF(M,N)→ HomF(M,N), (h� f)(m) = Σ(h) h(1) �N f(S(h(2)) �N m)

is a H-left module structure on HomF(M,N) whose invariants are the module maps f : M → N .

Proof:
With the formula for the module structure we compute (1�f)(m) = 1�N f(S(1)�Mm) = f(m)
for all m ∈M , and for all h, k ∈ H we obtain

(h� (k � f))(m) = Σ(h)h(1) �N ((k � f)(S(h(2)) �m))

= Σ(h)(k)h(1) �N (k(1) �N f)(S(k(2)) �M (S(h(2)) �M m))

= Σ(h)(k)(h(1)k(1)) �N f((S(k(2))S(h(2))) �M m) = Σ(h)(k)(h(1)k(1)) �N f(S(h(2)k(2)) �M m)

= Σ(hk)(hk)(1) �N f(S((hk)(2)) �M m) = ((hk) � f)(m).

This shows that HomF(M,N) is a module over H. For each module homomorphism f : M → N
we have for all m ∈M and h ∈ H

(h� f)(m) = Σ(h)h(1) �N f(S(h(2)) �M m) = Σ(h) (h(1)S(h(2))) �N f(m) = ε(h)f(m)
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and hence f ∈ HomF(M,N)H . Conversely, if f ∈ HomF(M,N)H , then for all m ∈M and h ∈ H

h�N f(m) = Σ(h) ε(h(2))h(1) �N f(m) = Σ(h)h(1) �N f((S(h(2))h(3)) �M m)

= Σ(h)(h(1) � f)(h(2) �M m) = Σ(h)ε(h(1)) f(h(2) �M h) = Σ(h)f((Σ(h)ε(h(1))h(2)) �M m)

= f(h�M m),

and hence f is a module homomorphism from M to N . 2

We now consider the invariants for the left and right regular action of a Hopf algebra H on
itself. These invariants play a special role and are called integrals. The reason for this is that
they are the bialgebra or Hopf algebra counterparts of left or right invariant integrals on a Lie
group. For the same reason, an integral in a bialgebra H that is both left and right invariant is
sometimes called a Haar integral in H. Just as Haar integrals over compact Lie groups can be
used to construct invariant functions on Lie groups, integrals in a bialgebra that satisfy certain
normalisation conditions define projectors on invariant submodules over H.

Definition 3.2.5: Let H be a Hopf algebra over F.

1. A left (right) integral in H is an invariant for the left (right) regular action of H
on itself, i. e. an element ` ∈ H with h · ` = ε(h) ` (with ` · h = ε(h) `) for all h ∈ H.
The linear subspaces of left and right integrals in H are denoted IL(H) and IR(H). If
IL(H) = IR(H), then the Hopf algebra H is called unimodular.

2. A left (right) cointegral for H is an element λ ∈ H∗ with (id⊗λ)(∆(h)) = 1H⊗λ(h)
(with (λ⊗id)(∆(h)) = λ(h)⊗1H) for all h ∈ H. The linear subspaces of left and right
cointegrals for H are denoted CL(H) and CR(H).

3. A left or right integral ` ∈ H is called normalised if ε(`) = 1. A (normalised) element
` ∈ IL(H) ∩ IR(H) is sometimes called a (normalised) Haar integral.

Remark 3.2.6:

1. A right (co)integral for a Hopf algebra H can also be defined as a left (co)integral for
the Hopf algebra Hop,cop and vice versa.

2. If H is finite-dimensional, then a left (right) cointegral for H is the same as a left (right)
integral for the dual Hopf algebra H∗, since one has (id⊗λ)(∆(h)) = 1H⊗λ(h) for all
h ∈ H if and only if (α · λ)(h) = (α⊗λ)(∆(h)) = α(1)⊗λ(h) = ε(α)λ(h) for all h ∈ H
and α ∈ H∗, which is the case if and only if α · λ = ε(α)λ for all α ∈ H∗.

Example 3.2.7:

1. If G is a finite group, then F[G] and Fun(G,F) are unimodular with

IL(F[G]) = IR(F[G]) = spanF {Σg∈G g} CL(F[G]) = CR(F[G]) = spanF {δe} .

The cointegral δe is normalised. The integral Σg∈Gg can be normalised iff char(F) 6 | |G|.

2. The Taft algebra from Example 2.3.6. is not unimodular. One has

IL(H) = spanF{Σn−1
j=0 y

jxn−1} IR(H) = spanF{Σn−1
j=0 q

jyjxn−1}.
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3. The q-deformed universal enveloping algebra Uq(sl2) from Example 2.3.9 has no non-
trivial left or right integrals: IL(Uq(sl2)) = IR(Uq(sl2)) = {0}. The q-deformed universal
enveloping algebra U r

q (sl2) at a root of unity from Proposition 2.3.12 is unimodular with

IL(U r(sl2)) = IR(U r(sl2)) = spanF{Σr−1
j=0K

jEr−1F r−1}

The importance and usefulness of integrals comes from the fact that given a normalised left
or right integral for a Hopf algebra H, we can construct a projector on the invariants of any
left or right module over H. This allows one to determine the invariants of any module over H
explicitly and systematically.

Lemma 3.2.8: Let H be a Hopf algebra and ` ∈ H a normalised left integral. Then for any
H-module (M,�), the linear map P : M →M , m 7→ `�m is a projector on MH .

Proof:
This follows directly from the properties of the normalised left integral ` ∈ H. One has

h� P (m) = h� (`�m) = (h`) �m = (ε(h)`) �m = ε(h) (`�m) = ε(h)P (m)

(P ◦ P )(m) = `� (`�m) = (`2) �m = (ε(`) `) �m = ε(`) `�m = `�m = P (m)

for all m ∈M and h ∈ H, and this shows that P is a projector with im(P ) ⊂MH . Conversely,
if m ∈MH , one has P (m) = `�m = ε(`)m = m and hence m ∈ P (M). 2

Given the usefulness and importance of integrals, we will now determine under which conditions
a Hopf algebra H admits non-trivial or normalised left and right integrals and under which
conditions left and right integrals coincide. The essential concept that allows one to address
this question is the notion of a Hopf module.

We will see in the following that in the finite-dimensional case a Hopf module over H is nothing
but a right module over a cross product H∗op#Hcop, where Hcop acts on H∗op via the right dual
action. However, as we wish to consider infinite-dimensional modules and Hopf algebras as well,
it is advantageous to dualise this notion and to transform the action of H∗op into a coaction
of H, as in Remark 3.1.5. This leads to a formulation that is free of dual Hopf algebras and
hence avoids problems with duals of tensor products and the need to pass to finite duals. As we
wish to use Sweedler notation for comodules (see Definition 2.1.6), which is simpler and more
intuitive for right comodules, it is advantageous to work with right Hopf modules.

Definition 3.2.9: Let H be a Hopf algebra over F.

1. A right Hopf module over H is a vector space V over F with a right H-module structure
and a right H-comodule structure

� : V⊗H → V, h⊗v 7→ v � h δ : V → V⊗H, v 7→ Σ(v)v(0)⊗v(1),

such that δ is a morphism ofH-right modules with respect to theH-right module structure
on V and the right regular action of H on itself:

δ(v � h) = δ(v) � h = Σ(v)(h) (v(0) � h(1))⊗(v(1) · h(2))

A left Hopf module over H is a right Hopf module over Hop,cop.
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2. A homomorphism of right Hopf modules from (V,�V , δV ) to (W,�W , δW ) is a linear
map φ : V → W that is a homomorphism of right H-modules and right H-comodules:

φ(v �V h) = φ(v) �W h (φ⊗idH)(δV (v)) = δW (φ(v)) ∀v ∈ V,w ∈ W.

Remark 3.2.10: Right and left Hopf modules are closely related to modules over cross prod-
ucts. One can show that every right Hopf module M over H is a right module over the cross
product H∗op#Hcop from Proposition 3.1.7 with the multiplication law

(α⊗h) · (β⊗k) = Σ(β)(h)β(2)(h(2)) β(1)α⊗h(1)k. (23)

The H∗op#Hcop right module structure on the right Hopf module M is given by

� : M⊗(H∗op#Hcop)→M, m� (α⊗h) = Σ(m)α(m(1))m(0) � h

If H and M are finite-dimensional, this induces a bijection between H-right Hopf module
structures and H∗op#Hcop-right module structures on M .

Example 3.2.11:

1. Every Hopf algebra H is a right Hopf module over itself with the right regular action
�R : H⊗H → H, k � h = k · h and the comultiplication δ = ∆ : H → H⊗H.

2. For every right module (M,�) over H, the vector space M⊗H is a Hopf module with

� : (M⊗H)⊗H →M⊗H, (m⊗k) � h = Σ(h) (m� h(1))⊗(k · h(2))

δ = (idM⊗∆) : M⊗H → (M⊗H)⊗H, δ(m⊗k) = Σ(k)m⊗k(1)⊗k(2).

3. In particular, for every vector space V over F, the vector space V⊗H is a Hopf module
over H with the trivial Hopf module structure

� = id⊗m : (V⊗H)⊗H → V⊗H, (v⊗k) � h = v⊗kh
δ = (id⊗∆) : V⊗H → (V⊗H)⊗H, δ(v⊗k) = Σ(k)v⊗k(1)⊗k(2).

The distinguishing property of Hopf modules is that they factorise into the submodule of
coinvariants and the underlying Hopf algebra H. Every Hopf module is isomorphic as a Hopf
module to the tensor product of its coinvariants with H. In the finite-dimensional case, this
will allow us later to determine the dimension of the linear subspace of coinvariants from the
dimension of M and the dimension of H.

Theorem 3.2.12: (Fundamental theorem of Hopf modules)
Let H be a Hopf algebra over F and (M,�, δ) a Hopf module over H. Then

φ = � : M coH⊗H →M, m⊗h 7→ m� h

is an isomorphism of Hopf modules if M coH⊗H is equipped with the trivial Hopf module
structure from Example 3.2.11, 3.
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Proof:
1. We denote by � : M⊗H → M the H-right module structure and by δ : M → M⊗H the
H-right comodule structure on M . Then we have in Sweedler notation δ(m) = Σ(m)m(0)⊗m(1)

and the Hopf module conditions on δ read

(δ⊗id) ◦ δ(m) = Σ(m)m(0)⊗m(1)⊗m(2) = (id⊗∆) ◦ δ(m)

δ(m� h) = δ(m) � h = Σ(m)(h)m(0) � h(1)⊗m(1)h(2).

The trivial Hopf module structure on M coH⊗H is given by

(m⊗k) �′ h = m⊗kh δ′(m⊗k) = Σ(k)m⊗k(1)⊗k(2).

2. We show that the map φ : M coH⊗H → M is a homomorphism of Hopf modules. For all
m ∈M coH and h, k ∈ H, we have

φ(m⊗k) � h = (m� k) � h = m� (kh) = φ(m⊗kh) = φ((m⊗k) �′ h)

(δ ◦ φ)(m⊗k) = δ(m� k) = δ(m) � k = (m⊗1) � k = Σ(k)(m� k(1))⊗k(2)

= (φ⊗id)
(
Σ(k)m⊗k(1)⊗k(2)

)
= ((φ⊗id) ◦ δ′)(m⊗k).

3. To show that φ is an isomorphism of Hopf modules, we consider the linear map

ψ : M →M, m 7→ � ◦ (id⊗S) ◦ δ(m) = Σ(m)m(0) � S(m(1))

and prove that ψ is a projector on M coH that is invariant under the action of H on M . We first
show that ψ takes values in M coH and is invariant under the action of H on M . For all m ∈M
and h ∈ H we have

δ(ψ(m)) = δ
(
Σ(m)m(0) � S(m(1))

)
= Σ(m)δ(m(0)) � S(m(1))

= Σ(m)(m(0)⊗m(1)) � S(m(2)) = Σ(m)m(0) � S(m(2))(1)⊗m(1)S(m(2))(2)

= Σ(m)m(0) � S(m(2)(2))⊗m(1)S(m(2)(1)) = Σ(m)m(0) � S(m(3))⊗m(1)S(m(2))

= ε(m(1))Σ(m)m(0) � S(m(2))⊗1 = Σ(m)m(0) � S(m(1))⊗1 = ψ(m)⊗1

ψ(m� h) = � ◦ (id⊗S) ◦ δ(m� h) = � ◦ (id⊗S)(δ(m) � h)

= � ◦ (id⊗S)(Σ(m)(h)m(0) � h(1)⊗m(1)h(2))

= Σ(m)(h) (m(0) � h(1)) � S(m(1)h(2)) = Σ(m)(h)(m(0) � h(1)) � (S(h(2))S(m(1)))

= Σ(m)(h)(m(0) � (h(1)S(h(2)))) � S(m(1))) = ε(h)Σ(m)(m(0) � 1) � S(m(1))

= ε(h)ψ(m).

This shows that ψ(m) ∈ M coH and ψ(m � h) = ε(h)ψ(m) for all m ∈ M and h ∈ H. For all
coinvariants n ∈M coH we then obtain

ψ(n) = � ◦ (id⊗S) ◦ δ(n) = � ◦ (id⊗S)(n⊗1) = n� S(1) = n� 1 = n.

This implies (ψ ◦ ψ)(m) = ψ(m) for all m ∈M and shows that ψ is a projector on M coH .

4. We prove that the linear map

χ = (ψ⊗id)◦δ : M →M coH⊗H, m 7→ Σ(m)ψ(m(0))⊗m(1) = Σ(m)m(0)�S(m(1))⊗m(2)
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is inverse to φ. Using the fact that ψ is a projector on M coH that is invariant under the action
of H on M , we obtain for all m ∈M , n ∈M coH and h ∈ H

φ ◦ χ(m) = φ(Σ(m)m(0) � S(m(1))⊗m(2)) = Σ(m)(m(0) � S(m(1))) �m(2)

= Σ(m)m(0) � (S(m(1))m(2)) = Σ(m)m(0) � (ε(m(1))1) = Σ(m)(ε(m(1))m(0)) � 1 = m

χ ◦ φ(n⊗h) = χ(n� h) = (ψ⊗id)(δ(n� h)) = (ψ⊗id)(δ(n) � h) = (ψ⊗id)((n⊗1) � h)

= Σ(h)ψ(n� h(1))⊗h(2) = Σ(h)ε(h(1))ψ(n)⊗h(2) = ψ(n)⊗(Σ(h)ε(h(1))h(2)) = n⊗h.

This proves that χ = φ−1 and that φ : M coH⊗H →M is an isomorphism of Hopf modules. 2

Corollary 3.2.13: Let H be a finite-dimensional Hopf algebra over F and I ⊂ H a right
(left) ideal and right (left) coideal in H. Then I = H or I = {0}.

Proof:
If I ⊂ H is a right ideal and a right coideal in H, it is a Hopf submodule of the right Hopf module
H from Example 3.2.11, 2. with k�h = k ·h and δ = ∆ : H → H⊗H. The fundamental theorem
of Hopf modules implies I ∼= IcoH⊗H and hence dimF(H) ≥ dimF(I) = dimF(IcoH) · dimFH.
Hence one has dimF(IcoH) = 1 and I = H or dimF(IcoH) = 0 and I = {0}. The claims for left
ideals and coideals follow by replacing H with Hop,cop. 2

We will now apply the fundamental theorem of Hopf modules to determine the dimension of the
linear subspaces of left and right integrals in a finite-dimensional Hopf algebra H. For this we
require a finite-dimensional right Hopf module whose coinvariants are the left or right integrals
of the Hopf algebra H or its dual H∗. As all Hopf algebras involved are finite-dimensional, this is
equivalent to a module over the cross product H∗op#Hcop from Remark 3.2.10 whose invariants
with respect to H∗ are the left or right integrals of H∗. Such a module over H∗op#Hcop is
provided by the following lemma.

Lemma 3.2.14: Let H be a finite-dimensional Hopf algebra. Then H∗ is a right module over
the cross product H∗op#Hcop from Remark 3.2.10 with

� : H∗⊗(H∗op#Hcop)→ H∗, γ � (α⊗h) = Σ(α)(γ)(α(2)γ(2))(S(h))α(1)γ(1).

This defines a Hopf module structure on H∗ with (H∗)coH = IL(H∗).

Proof:
That (H∗,�) is a module over the cross product H∗op#Hcop from Remark 3.2.10 follows by a
direct but lengthy computation. To show that H∗ is a right module over H∗op#H, we compute
for α, β, γ ∈ H∗ and h, k ∈ H

γ � (1H∗⊗1H) = Σ(γ)γ(2)(1H) γ(1) = Σ(γ)ε(γ(2)) γ(1) = γ

(γ � (α⊗h)) � (β⊗k) = Σ(γ)(α) (α(2)γ(2))(S(h)) (α(1)γ(1)) � (β⊗k)

= Σ(α)(β)(γ) (α(2)γ(2))(S(h)) (β(2)(α(1)γ(1))(2))(S(k)) β(1)(α(1)γ(1))(1)

= Σ(α)(β)(γ) (α(3)γ(3))(S(h)) (β(2)α(2)γ(2))(S(k)) β(1)α(1)γ(1)

where we used the definition of � in the 2nd line and to pass from the 2nd to the 3rd line and
then the coassociativity in H∗ and the fact that the comultiplication is an algebra homomor-
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phism to pass to the 4th line. Similarly, we compute

γ � ((α⊗h) · (β⊗k)) = Σ(β)(h) β(2)(h(2)) γ � (β(1)α⊗h(1)k)

= Σ(α)(β)(γ)(h) β(2)(h(2)) (β(1)(2)α(2)γ(2))(S(h(1)k)) β(1)(1)α(1)γ(1)

= Σ(α)(β)(γ)(h) β(3)(h(2)) (β(2)α(2)γ(2))(S(k)S(h(1))) β(1)α(1)γ(1)

= Σ(α)(β)(γ)(h) β(3)(h(2)) (β(2)(1)α(2)(1)γ(2)(1))(S(k))(β(2)(2)α(2)(2)γ(2)(2))S(h(1))) β(1)α(1)γ(1)

= Σ(α)(β)(γ)(h) β(4)(h(2)) (β(2)α(2)γ(2))(S(k))(β(3)α(3)γ(3))S(h(1))) β(1)α(1)γ(1)

= Σ(α)(β)(γ)(h) β(4)(h(2)) (β(2)α(2)γ(2))(S(k))β(3)(S(h(1))(1)) (α(3)γ(3))S(h(1))(2)) β(1)α(1)γ(1)

= Σ(α)(β)(γ)(h) β(4)(h(2)) (β(2)α(2)γ(2))(S(k))β(3)(S(h(1)(2))) (α(3)γ(3))(S(h(1)(1))) β(1)α(1)γ(1)

= Σ(α)(β)(γ)(h) β(3)(S(h(1)(2))h(2)) (β(2)α(2)γ(2))(S(k))(α(3)γ(3))(S(h(1)(1))) β(1)α(1)γ(1)

= Σ(α)(β)(γ)(h) ε(β(3))ε(h(2))(β(2)α(2)γ(2))(S(k))(α(3)γ(3))(S(h(1))) β(1)α(1)γ(1)

= Σ(α)(β)(γ) (β(2)α(2)γ(2))(S(k))(α(3)γ(3))(S(h)) β(1)α(1)γ(1) = γ � ((α⊗h) · (β⊗k)),

where we used the multiplication law (23) of H∗op#Hcop in the 1st line, the definition of �

to pass to the 2nd line, the coassociativity to pass from the 2nd to the 3rd, from the 4th to
the 5th and from the 9th to the 10th line, the fact that S : H → H is an anti-algebra and
anti-coalgebra homomorphism to pass from the 2nd to the 3rd and from the 6th to the 7th
line, the duality between the product in H and the coproduct in H∗ to pass form the 3rd to
the 4th, the 5th to the 6th and from the 7th to the 8th line, the antipode condition in H to
pass from the 8th to the 9th and the counitality conditions in H and H∗ to pass from the 9th
to the 10th line.

As H and H∗ are finite-dimensional, this defines a right H-Hopf module structure on H∗ by
Remark 3.2.10 with (id⊗α) ◦ δ(β) = (β � (α⊗1H))⊗1F and β � h = β � (1H∗⊗h). An element
β ∈ H∗ is a coinvariant for this Hopf module structure if and only if δ(β) = β⊗1H which is
equivalent to (β � (α⊗1H))⊗1F = (id⊗α) ◦ δ(β) = β⊗α(1H) = ε(α)β⊗1F for all α ∈ H∗. As
we have β � (α⊗1H) = αβ, this is equivalent to β ∈ IL(H∗). 2

By combining this Lemma with the fundamental theorem of Hopf modules, we can determine
the dimension of the space of left integrals for H∗ and and H ∼= H∗∗ for any finite-dimensional
Hopf algebra H. As the module structure from Lemma 3.2.14 involves the antipode of H, this
also allows us to draw conclusions about the dimension of the kernel of the antipode and to
conclude that for any finite-dimensional Hopf algebra H the antipode is invertible. Moreover,
we obtain an isomorphism of H-right modules between H and H∗, the so-called Frobenius map.

Theorem 3.2.15: Let H be a finite-dimensional Hopf algebra. Then:

1. dimF IL(H) = dimF IR(H) = 1.

2. The antipode of H is bijective with S±1(IL(H)) = IR(H) and S±1(IR(H)) = IL(H).

3. For any λ ∈ IL(H∗) \ {0}, the Frobenius map

φλ : H → H∗, h 7→ S(h) �∗R λ = Σ(λ)λ(2)(S(h))λ(1)

is an isomorphism of right H-modules with respect to the right regular action of H on
itself and the right action � : H∗⊗H → H∗, α⊗h 7→ S(h) �∗R α.

Proof:
Equip H∗ with the H-Hopf module structure from Lemma 3.2.14. Then (H∗)coH ∼= IL(H∗) and
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(H∗coH)⊗H ∼= H∗ by the fundamental theorem of Hopf modules. As H is finite-dimensional,
this implies dimF(H) · dimF(IL(H∗)) = dimF(H∗) = dimF(H) and hence dimF(IL(H∗)) = 1. By
exchanging H ∼= H∗∗ and H∗, we also obtain dimF(IL(H)) = 1. By the fundamental theorem
of Hopf modules the linear map

� : IL(H∗)⊗H → H∗, λ⊗h 7→ λ� h = S(h) �∗R λ = Σ(λ)λ(2)(S(h))λ(1)

is an isomorphism of Hopf modules. As dimF(IL(H∗)) = 1, this implies that the Frobenius map
φλ is a linear isomorphism for all λ ∈ H∗ \ {0}. Moreover, one has

φλ(k � h) = φλ(kh) = Σ(λ)λ(2)(S(kh))λ(1) = Σ(λ)λ(2)(S(h)S(k))λ(1)

= Σ(λ)λ(2)(S(h))λ(3)(S(k))λ(1) = S(h) �∗R φλ(Σ(λ)λ(2)(S(k))λ(1)) = φλ(k) � h

and hence φλ is an isomorphism of right H-modules. If h ∈ ker(S), then φλ(h) = S(h)�∗R λ = 0
and hence ker(S) ⊂ ker(φλ) = {0}. This shows that the antipode is injective. Because H is
finite-dimensional with dimFH = dimFH

∗, it follows that S is bijective. As S±1 : H → Hop,cop

is an algebra and coalgebra homomorphism, one has for all ` ∈ IL(H), `′ ∈ IR(H) and h ∈ H

S±1(`) · h = S±1(S∓1(h) · `) = ε(S∓1(h))S±1(`) = ε(h)S±1(`) ⇒ S±1(`) ∈ IR(H)

h · S±1(`′) = S±1(`′ · S∓1(h)) = ε(S∓1(h))S±1(`′) = ε(h)S±1(`′) ⇒ S±1(`′) ∈ IL(H).

This shows that S±1(IL(H)) = IR(H) and S±1(IR(H)) = IL(H). 2

Theorem 3.2.15 clarifies the existence and uniqueness of left and right integrals for finite-
dimensional Hopf algebras H. It shows that every finite-dimensional Hopf algebra H has non-
trivial left and right integrals and that the vector spaces of left and right integrals are one-
dimensional. One can show that the finite-dimensionality of H is not only a sufficient but also
a necessary condition for the existence of non-trivial left and right integrals: if a Hopf algebra
H has a left or right integral integral ` 6= 0, then it follows that H is finite-dimensional. We
will not prove this statement here. A proof is given in [R, Prop. 10.2.1].

In particular, Theorem 3.2.15 implies that a finite-dimensional Hopf algebra H is unimodular
if and only if its antipode maps each left or right integral to a scalar multiple of itself. An
alternative criterion for the unimodularity of H is obtained by realising that the linear sub-
space space of left integrals is invariant under right multiplication with H. This implies that
multiplying a left integral ` on the right by an element h ∈ H yields a scalar multiple αh ` of
the left integral `. The linear map that assigns to each element h ∈ H the scalar αh ∈ F has
interesting properties and gives a criterion for the unimodularity of H.

Proposition 3.2.16: Let H be a finite-dimensional Hopf algebra over F. Then:

1. There is a unique element α ∈ H∗ with ` · h = α(h)` for all h ∈ H and ` ∈ IL(H).

2. One has h · `′ = α−1(h) for all h ∈ H and `′ ∈ IR(H).

3. The element α ∈ H∗ is grouplike and is called the modular element of H.

4. The Hopf algebra H is unimodular if and only if α = ε.

Proof:
As dimF IL(H) = 1 by Theorem 3.2.15, we have IL(H) = spanF{`} for all non-trivial left
integrals ` ∈ IL(H) \ {0}. For every non-trivial left integral ` ∈ IL(H) \ {0} and h ∈ H, one
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has `h ∈ IL(H) since k · (` · h) = (k · `) · h = ε(k) ` · h for all k ∈ H. As dimF IL(H) = 1 and the
multiplication is linear, this implies `h = α(h)` for some element α ∈ H∗. We have

α(hk) ` = `hk = (`h)k = (α(h)`)k = α(h) `k = α(h)α(k)` ` = `1H = ` = α(1H) `.

for all h, k ∈ H, and this shows that α : H → F is an algebra homomorphism and hence a
grouplike element of H∗ by Example 2.4.2. If `′ ∈ IL(h) is another left integral, then `′ = µ`
for some µ ∈ F, and we have `′h = µ `h = µα(h) ` = α(h) `′ for all h ∈ H. This shows
that the identity ` · h = α(h) ` holds for all ` ∈ IL(H). As we have IR(H) = S±(IL(H)) and
IL(H) = S±(IR(H)) by Theorem 3.2.15 and S(α) = α◦S = α−1 for any α ∈ Gr(H∗), we obtain

h · `′ = S−1(S(h)) · S−1(S(`)) = S−1(S(`) · S(h)) = α(S(h))S−1(S(`)) = α−1(h) `′

for all right integrals `′ ∈ IR(H). Finally, the Hopf algebra H is unimodular if and only if
IL(H) = IR(H). This is the case if and only if `h = α(h)` = ε(h)` for all h ∈ H and left
integrals ` ∈ IL(H), which is equivalent to α = ε since dimF IL(H) = 1. 2

3.3 Integrals and Frobenius algebras

Theorem 3.2.15 not only allows us to draw conclusions about the left and right integrals of a
finite-dimensional Hopf algebra H and to obtain criteria for its unimodularity but also relates
finite-dimensional Hopf algebras H to another type of algebras, namely Frobenius algebras.
Frobenius algebras play an important role in modern mathematical physics, in particular in
conformal field theories and topological quantum field theories. A Frobenius algebra can be
viewed as an algebra A over F with a non-degenerate bilinear form κ : A×A→ F that satisfies
a compatibility condition with the algebra multiplication. Using tensor products over F, we can
also interpret κ as a linear map κ : A⊗A→ F, and obtain the following definition.

Definition 3.3.1: A Frobenius algebra over F is an algebra A over F together with a linear
map κ : A⊗A→ F, a⊗b 7→ κ(a⊗b), the Frobenius form such that

1. κ((h · k)⊗l) = κ(h⊗(k · l)) for all h, k, l ∈ H.

2. κ is non-degenerate: κ(a⊗b) = 0 for all a ∈ A implies b = 0

Note that the condition on the Frobenius form implies κ(a⊗b) = κ(ab⊗1) = κ(1⊗ab) for all
a, b ∈ A, and hence the Frobenius form κ is determined uniquely by its values on elements 1⊗a
or a⊗1. Hence, every Frobenius form κ : A⊗A → F arises from a linear form λ : A → F with
λ(a) = κ(a⊗1) and κ(a⊗b) = λ(a · b) for all a, b ∈ A. It also follows from the definition that the
change of the Frobenius form under a flip of its arguments is given by an automorphism of A,
the so-called Nakayama automorphism. Symmetric Frobenius algebras are then characterised
by the condition that the Nakayama automorphism is the identity map.

Proposition 3.3.2: Let (A, κ) be a finite-dimensional Frobenius algebra over F. Then there
is a unique linear map ρ : A → A with κ(a⊗b) = κ(ρ(b)⊗a) for all a, b ∈ A. The map ρ is an
algebra automorphism and is called the Nakayama automorphism. The Frobenius algebra
(A, κ) is called symmetric if ρ = idA.
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Proof:
The non-degeneracy of the Frobenius form implies that the linear map

χκ : A→ A∗, a 7→ κa with κa(b) = κ(b⊗a) ∀b ∈ B

is injective. As A is finite-dimensional and dimFA = dimFA
∗ it follows that χκ : A → A∗ is a

linear isomorphism. The bijectivity of χκ then implies that for each element a ∈ A there is a
unique element ρ′(a) ∈ A with χκ(ρ

′(a)) = aκ : A→ F, b 7→ κ(a⊗b). Hence, we obtain a unique
linear map ρ′ : A → A, a 7→ ρ(a) with κ(a⊗b) = κ(b⊗ρ′(a)) for all a, b ∈ A. If b ∈ ker(ρ′)
then κ(a⊗b) = κ(b⊗ρ′(a)) = κ(ρ′(a)⊗ρ′(b)) = 0 for all a ∈ A and the non-degeneracy of
the Frobenius form implies b = 0. This shows that ρ′ is a linear isomorphism. Its inverse
ρ = ρ′−1 : A → A satisfies κ(ρ(b)⊗a) = κ(a⊗ρ′(ρ(b))) = κ(a⊗b) for all a, b ∈ A. With the
condition on the Frobenius form, we then obtain for all a, b, c ∈ A

κ(ρ(1)⊗c) = κ(c⊗1) = κ(1⊗c)
κ(ρ(ab)⊗c) = κ(c⊗ab) = κ(ca⊗b) = κ(ρ(b)⊗ca) = κ(ρ(b)c⊗a) = κ(ρ(a)⊗ρ(b)c) = κ(ρ(a)ρ(b)⊗c).

Due to the non-degeneracy of κ this implies ρ(1) = 1 and ρ(ab) = ρ(a) · ρ(b) for all a, b ∈ A.
This shows that ρ is an algebra automorphism with κ(ρ(b)⊗a) = κ(a⊗b) for all a, b ∈ A. 2

Example 3.3.3:

1. Let A ∈ Mat(n× n,F) a matrix of rank n. Then κ : Mat(n× n,F)⊗Mat(n× n,F)→ F,
κ(M⊗N) = Tr(M · N · A) is a Frobenius form on Mat(n × n,F). The Nakayama
automorphism is given by ρ : Mat(n × n,F) → Mat(n × n,F), N 7→ ANA−1 and the
Frobenius algebra is symmetric if and only if A = λ1n for some λ ∈ F.

2. Let G be a finite group. Then κ : F[G]⊗F[G]→ F, κ(g⊗h) = δe(g ·h) is a Frobenius form
on F[G] and κ′ : Fun(G,F)⊗Fun(G,F) → F, κ′(f⊗h) = Σg∈Gf(g)h(g) is a Frobenius
form on Fun(G,F). Both Frobenius algebras are symmetric.

3. If (A, κ) is a Frobenius algebra and a ∈ A is invertible, then

κa : A⊗A→ F, b⊗c 7→ κ(b⊗ca) κ′a : A⊗A→ F, b⊗c 7→ κ(ab⊗c)

are Frobenius forms on A as well. One says they are obtained by twisting with a.

4. The tensor product A⊗B of two Frobenius algebras (A, κA) and (B, κB) over F has a
natural Frobenius algebra structure with the Frobenius form

κ : (A⊗B)⊗(A⊗B)→ F, (a⊗b)⊗(a′⊗b′) 7→ κA(a⊗a′)κB(b⊗b′).

5. If (A, κ) is a commutative Frobenius algebra, then A is symmetric. However, the previous
examples show that not every symmetric Frobenius algebra is commutative.

We will now show that for every finite-dimensional Hopf algebra H non-trivial left and right
integrals λ ∈ H∗ define Frobenius forms on H. While every element λ ∈ H∗ gives rise to a linear
map κλ : H⊗H → F, h⊗k 7→ λ(h · k) that satisfies the first condition in Definition 3.3.1, the
non-degeneracy condition is more subtle. It is equivalent to the condition that the linear map
ψκ : H → H∗, h 7→ κh with κh(k) = κ(k⊗h) for all k ∈ H from the proof of Proposition 3.3.2 is
a linear isomorphism. From the definition of κ we find that κh = h�∗R λ and by composing φκ
with the antipode of H, we obtain the Frobenius map from Theorem 3.2.15. This shows that
the non-degeneracy condition is satisfied for all non-trivial integrals λ ∈ IL(H∗).
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Theorem 3.3.4: Let H be a finite-dimensional Hopf algebra and 0 6= λ ∈ IL(H∗) a left
integral. Then H is a Frobenius algebra with the linear map

κ : H⊗H → F, κ(h⊗k) = λ(h · k).

Proof:
The linearity of κ follows directly from the linearity of the evaluation and the multiplication,
and the Frobenius condition follows from the associativity of the product in H

κ((h · k)⊗l) = λ((h · k) · l) = λ(h · (k · l)) = κ(h⊗(k · l)) ∀h, k, l ∈ H.

That κ is non-degenerate follows because by Theorem 3.2.15 the antipode S : H → H and the
Frobenius map φλ : H → H∗, h 7→ φλ(h) = Σ(λ)λ(2)(S(h))λ(1) are linear isomorphisms and

κ(h⊗k) = λ(h · k) = Σ(λ)λ(1)(h)λ(2)(k) = φλ(S
−1(k))(h).

Hence κ(h⊗k) = 0 for all h ∈ H implies φλ(S
−1(k)) = 0, and this implies k = 0. 2

It remains to determine the Nakayama automorphism for the Frobenius algebra in Theorem
3.3.4. In particular, this will allow us to derive conditions under which the Frobenius algebra
defined by an integral in a finite-dimensional Hopf algebra is symmetric. This is not only relevant
in the context of Frobenius algebras but will also lead to conclusions about the properties of the
antipode. To determine the Nakayama automorphism, we use the concept of dual bases, which
is useful whenever one considers a finite-dimensional algebra A with a linear map λ : A→ F.

Lemma 3.3.5: Let A be an algebra of dimension n ∈ N, λ ∈ A∗ and r1, ..., rn ∈ A and
l1, ..., ln ∈ A. Then the following two conditions are equivalent

(i) a = Σn
i=1λ(li · a) ri for all a ∈ A.

(ii) a = Σn
i=1λ(a · ri) li for all a ∈ A.

If these conditions are satisfied, then {r1, ..., rn} and {l1, ..., ln} are called dual bases for λ.

Proof:
This follows by a direct computation using matrices. If r1, .., rn and l1, ..., ln satisfy condition
(i), then {r1, ..., rn} is a basis for A, and we have for all j ∈ {1, ..., n}

rj = Σn
i=1λ(li · rj)ri ⇒ λ(li · rj) = δij ∀i, j ∈ {1, ..., n} (24)

lj = Σn
i=1λ(li · lj)ri ⇒ δjk = λ(ljrk) = Σn

i=1λ(li · lj)λ(rirk) ∀j, k ∈ {1, ..., n}.

This implies that the matrix M ∈ Mat(n× n,F) with entries Mij = λ(rj · ri) is invertible, and
its inverse has entries M−1

ij = λ(li · lj). With this result, we obtain (ii):

Σn
i=1λ(a · ri)li

(i)
= Σn

i,j=1λ(lj · a)λ(rj · ri)li
(24)
= Σn

i,j,k=1λ(lj · a)λ(rj · ri)λ(lk · li)rk

= Σn
i,j,k=1λ(lj · a)MijM

−1
ki = Σn

j,k=1λ(lj · a)δjk rk = Σn
j=1λ(lj · a) rj

(i)
= a.

The proof of (ii)⇒(i) is analogous. 2

We now consider a finite-dimensional Hopf algebra H, fix a non-trivial right cointegral λ ∈
CR(H) = IR(H∗) and show that every left integral ` ∈ IL(H) with λ(`) = 1 defines two pairs of
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dual bases for λ. Note that such a left integral ` ∈ IL(H) exists if and only if λ|IL(H) 6= {0} and
that this condition does not depend on the choice of λ, since dimF IR(H∗) = 1. These pairs of
dual bases will allow us to determine the Nakayama automorphism for the associated Frobenius
algebra (H, κ) with κ(h⊗k) = λ(h · k).

Proposition 3.3.6: Let H be a finite-dimensional Hopf algebra, α ∈ Gr(H∗) and a ∈ Gr(H)
the modular elements for H and H∗ from Proposition 3.2.16 and λ ∈ IR(H∗) \ {0}. Then:

1. There is a left integral ` ∈ IL(H) with λ(`) = 1.

2. The element (id⊗S)(∆(`))=Σ(`) `(1)⊗S(`(2)) defines dual bases for λ:

h = Σ(`) λ(h`(1))S(`(2))= Σ(`) λ(S(`(2))h) `(1) ∀h ∈ H. (25)

3. The element (a−1⊗1) · (S−1⊗id) ◦∆(`) = Σ(`) a
−1S−1(`(1))⊗`(2) defines dual bases for λ:

h = Σ(`)λ(h`(2)) a
−1S−1(`(1)) = Σ(`)λ(a−1S−1(`(1))h) `(2) ∀h ∈ H. (26)

4. The Nakayama automorphism for (H, κ) with κ(h⊗k) = λ(h · k) is given by

ρ(h) = Σ(h) α(h(1))S
2(h(2)) = a−1 · (Σ(h) α(h(2))S

−2(h(1))) · a. (27)

Proof:
1. Let λ ∈ IR(H∗)\{0} be a right integral and ` ∈ IL(H)\{0} a left integral. Then by Theorem
3.2.15 the Frobenius map φλ : H → H∗, φλ(h) = Σ(λ)λ(2)(S(h))λ(1) is a linear isomorphism
and one has φλ(S

−1(`)) 6= 0. Hence there is a k ∈ H with

0 6= φλ(S
−1(`))k = Σ(λ)λ(2)(`)λ(1)(k) = λ(k · `) = ε(k)λ(`),

and this implies λ(`) 6= 0. By multiplying ` with an element µ ∈ F \ {0}, we obtain λ(`) = 1.

2. Let now ` ∈ IL(H), λ ∈ IR(H∗) be left and right integrals with λ(`) = 1 and α ∈ Gr(H∗)
the modular element for H from Proposition 3.2.16. Then we obtain for all h ∈ H

Σ(`) h`(1)⊗S(`(2)) = Σ(`) `(1)⊗S(`(2))h (28)

Σ(`) `(1)h⊗S(`(2)) = Σ(`)(h) α(h(1)) `(1)⊗S2(h(2))S(`(2)).

This follows by a direct computation using the fact that ` ∈ IL(H) is a left integral, which
implies ` · h = α(h) ` for all h ∈ H, and the counitality and antipode condition:

Σ(`) h`(1)⊗S(`(2)) = Σ(`)(h)h(1)`(1)⊗S(ε(h(2))`(2)) = Σ(`)(h) h(1)`(1)⊗S(S−1(h(3))h(2)`(2))

= Σ(`)(h) h(1)`(1)⊗S(h(2)`(2))h(3) = Σ(h)(id⊗S)(∆(h(1)`)) · (1⊗h(2))

= Σ(h)ε(h(1))(id⊗S)(∆(`)) · (1⊗h(2)) = (id⊗S)(∆(`)) · (1⊗h) = Σ(`)`(1)⊗S(`(2))h

Σ(`) `(1)h⊗S(`(2)) = Σ(`)(h)`(1)h(1)⊗S(`(2)ε(h(2))) = Σ(`)(h) `(1)h(1)⊗S(`(2)h(2)S(h(3)))

= Σ(`)(h) `(1)h(1)⊗S2(h(3))S(`(2)h(2)) = Σ(h) (1⊗S2(h(2))) · (id⊗S)(∆(`h(1)))

= Σ(h)α(h(1))(1⊗S2(h(2))) · (id⊗S)(∆(`)) = Σ(`)(h)α(h(1))`(1)⊗S2(h(2))S(`(2))

As λ ∈ IR(H∗) is a right integral, we have (λ⊗id)(∆(h)) = Σ(h) λ(h(1))⊗h(2) = λ(h)⊗1 for all
h ∈ H. Combining this with the condition λ(`) = 1 and the first identity in (28) we obtain

Σ(`) λ(h`(1))S(`(2)) = Σ(`) λ(`(1)) (S(`(2))h) = λ(`)S(1) · h = h.
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This proves the first identity in (25). Moreover, if (1⊗S)(∆(`)) = Σ(`) `(1)⊗S(`(2)) = Σn
i=1ri⊗li

with ri, li ∈ H, then {r1, ..., rn} and {l1, ..., ln} are dual bases for λ. The second identity in (25)
then follows from Lemma 3.3.5.

3. In analogy to 2. we derive the formulas

Σ(`) S
−1(`(1))h⊗`(2) = Σ(`) S

−1(`(1))⊗h`(2) (29)

Σ(`) α(h(2))S
−2(h(1))`(1)⊗`(2) = Σ(`)(h) S

−1(`(1))⊗`(2)h,

which follow again by a direct computation from the fact that ` ∈ IL(H):

Σ(`) S
−1(`(1))⊗h`(2) = Σ(`)(h)S

−1(ε(h(1))`(1))⊗h(2)`(2)

= Σ(`)(h)S
−1(S(h(1))h(2)`(1))⊗h(3)`(2) = Σ(`)(h)S

−1(h(2)`(1))h(1)⊗h(3)`(2)

= Σ(h)(S
−1⊗id)(∆(h(2) · `)) · (1⊗h(1)) = Σ(h)ε(h(2))(S

−1⊗id)(∆(`)) · (h(1)⊗1)

= (S−1⊗id)(∆(`)) · (h⊗1) = Σ(`) S
−1(`(1))h⊗`(2)

Σ(`) S
−1(`(1))⊗`(2)h = Σ(`)(h)S

−1(`(1)ε(h(1)))⊗`(2)h(2)

= Σ(`)(h) S
−1(`(1)h(2)S

−1(h(1)))⊗`(2)h(3) = Σ(`)(h) S
−2(h(1))S

−1(`(1)h(2))⊗`(2)h(3)

= Σ(h) (S−2(h(1))⊗1) · (S−1⊗id)(∆(` · h(2)))

= Σ(h) α(h(2)) (S−2(h(1))⊗1) · (S−1⊗id)(∆(`)) = Σ(`)α(h(2))S
−2(h(1))S

−1(`(1))⊗`(2).

Let a ∈ Gr(H) be the modular element for H∗. As λ is a right integral, we have β ·λ = β(a−1)λ
for all β ∈ H∗ by Proposition 3.2.16. This implies β(a−1)λ(h) = (β · λ)(h) = (β⊗λ)(∆(h)) and
(id⊗λ)(h) = Σ(h) h(1)⊗λ(h(2)) = a−1⊗h for all h ∈ H. Multiplying with a then yields

Σ(h) h(1)a⊗λ(h(2)) = (a−1⊗h) · (a⊗1) = 1⊗h.

By combining this formula with the first formula in (29) we obtain for all h ∈ H

Σ(`)λ(h`(2))a
−1S−1(`(1)) = Σ(`)λ(`(2))S

−1(`(1)a)h =
(
Σ(`)λ(`(2))S

−1(`(1)a)
)
· h = λ(`)S−1(1)h = h.

This proves the first identity in (26) and shows that if Σ(`) aS
−1(`(1))⊗`(2) = Σn

i=1li⊗ri, then
{r1, ..., rn} and {l1, ..., ln} are dual bases for λ. The second identity in (26) then follows from
Lemma 3.3.5.

4. To determine the Nakayama automorphism for the Frobenius form κ with κ(h⊗k) = λ(h ·k),
we compute with the formulas from 2. and 3.

λ(k · h)
(25)
= λ

( (
Σ(`) λ(S(`(2))k) `(1)

)
· h
)

= Σ(`) λ(S(`(2))k) λ(`(1)h)
(28)
= Σ(`)(h) α(h(1)) λ(S2(h(2))S(`(2))k) λ(`(1))

(28)
= Σ(`)(h) α(h(1)) λ(S2(h(2))S(`(2)))λ(k`(1))

= λ
( (

Σ(h)α(h(1))S
2(h(2))

)
·
(
Σ(`)λ(k`(1))S(`(2))

) ) (25)
= λ

( (
Σ(h)α(h(1))S

2(h(2))
)
· k
)

λ(k · h)
(26)
= λ

( (
Σ(`)λ(a−1S−1(`(1))k) `(2)

)
· h
)

= Σ(`) λ(a−1S−1(`(1))k) λ(`(2)h)
(29)
= Σ(`)(h) α(h(2)) λ(a−1S−2(h(1))S

−1(`(1))k) λ(`(2))
(29)
= Σ(`)(h)α(h(2)) λ(a−1S−2(h(1))S

−1(`(1))) λ(k`(2))

= λ
(
a−1 ·

(
Σ(h)α(h(2))S

−2(h(1))
)
· a ·

(
Σ(`)λ(k`(2)) a

−1S−1(`(1))
))

(26)
= λ

(
a−1 ·

(
Σ(h)α(h(2))S

−2(h(1))
)
· a · k

)
As the Nakayama automorphism is defined by κ(k⊗h) = λ(k · h) = λ(ρ(h) · k) = κ(ρ(h)⊗k),
this yields formula (27). 2
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By making use of the two pairs of dual bases in Proposition 3.3.6, one can also derive an
explicit formula for the fourth power of the antipode in a finite-dimensional Hopf algebra H.
This formula is known as Radford’s formula and characterises the fourth power of the antipode
in terms of the modular elements of H and H∗. It is obtained directly from the two formulas
for the Nakayama automorphism in Proposition 3.3.6 and the fact that the modular elements
are grouplike.

Theorem 3.3.7: (Radford’s formula)
Let H be a finite-dimensional Hopf algebra over F and a ∈ Gr(H) and α ∈ Gr(H∗) the modular
elements from Proposition 3.2.16. Then for all h ∈ H one has

S4(h) = a−1 · (α�∗R h�∗L α
−1) · a = α�∗R (a−1ha) �∗L α

−1

where α �∗R h = Σ(h) α(h(2))h(1) and h �∗L α
−1 = Σ(h) α

−1(h(1))h(2) denote the left and right
dual action of H∗ on H∗∗ ∼= H.

Proof:
By Proposition 3.3.6 the Nakayama automorphism is given by

ρ(h) = Σ(h) α(h(1))S
2(h(2)) = a−1 · (Σ(h) α(h(2))S

−2(h(1))) · a. (30)

We now consider the element Σ(h) α
−1(h(1))S

2(ρ(h(2))). Inserting the first expression for the
Nakayama automorphism into this formula yields

Σ(h) α
−1(h(1))S

2(ρ(h(2))) = Σ(h) α
−1(h(1))α(h(2)) S

4(h(3)) = Σ(h) (α−1 · α)(h(1)) S
4(h(2))

= Σ(h) ε(h(1))S
4(h(2)) = S4(h)

and inserting the second expression for the Nakayama automorphism, we obtain

Σ(h) α
−1(h(1))S

2(ρ(h(2))) = Σ(h) α
−1(h(1))α(h(3))S

2(a−1 · S−2(h(2)) · a)

= Σ(h) α
−1(h(1))α(h(3)) a

−1 · h(2) · a = a−1 ·
(
Σ(h)α

−1(h(1))α(h(3))h(2)

)
· a

= a−1 · (α�∗R h�∗L α
−1) · a.

This proves the first equation in the theorem. The second follows by a direct computation
from the fact that α±1 ∈ Gr(H∗) are grouplike elements and hence algebra homomorphisms
α : H → F by Example 2.4.2. This yields for all h ∈ H

α�∗R (a−1ha) �∗L α
−1 = Σ(h) α(a−1h(3)a)α−1(a−1h(1)a) a−1h(2)a

= Σ(h) α(a−1)α(h(3))α(a)α−1(a−1)α−1(h(1))α
−1(a) a−1h(2)a

= Σ(h)α(aa−1h(3))α
−1(aa−1h(1)) a

−1h(2)a = Σ(h) α(h(3))α
−1(h(1)) a

−1h(2)a

= a−1(α�∗R h�∗L α
−1)a.

2

An important conclusion that follows from Radford’s formula is that the antipode of every
finite-dimensional Hopf algebra has finite order, i. e. there is an n ∈ N with Sn = idH . This is a
direct consequence of Radford’s formula and the fact that a finite-dimensional Hopf algebra can
only contain finitely many grouplike elements since grouplike elements are linearly independent.
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Corollary 3.3.8: Let H be a finite-dimensional Hopf algebra over F. Then:

1. The order of the antipode is finite.

2. If H is unimodular, then S4(h) = a−1ha where a ∈ Gr(H) is the modular element of H∗

and S4k = idH for some k ∈ N with 1 ≤ k < dimFH.

3. If H and H∗ are unimodular, then S4 = idH .

Proof:
As H and H∗ are finite-dimensional, all grouplike elements g ∈ Gr(H) and β ∈ Gr(H∗) must be
of finite order ≤ dimFH. This follows because the sets of grouplike elements in H and in H∗ are
linearly independent by Proposition 2.4.4 and all powers of grouplike elements are grouplike.
In particular, this holds for the modular elements a ∈ Gr(H) and α ∈ Gr(H∗). If an = 1H and
αm = 1H∗ for some n,m ∈ {1, ..., dimFH}, then by Radford’s formula

S4nm(h) = a−mn · (αnm �∗R h�∗R α
−mn) · amn = h.

If H is unimodular, then its modular element satisfies α = ε by Proposition 3.2.16, and
Radford’s formula reduces to S4(h) = a−1ha. It follows that there is a k ∈ {1, ..., dimFH}
with ak = 1H , and this implies S4k = idH . If n = min{k ∈ N | ak = 1H} = dimFH, then
H = F[Gr(H)] and S2 = idH . This shows that there is a k ∈ {1, ..., dimFH−1} with S4k = idH .
If both, H and H∗ are unimodular, then by Proposition 3.2.16 we have a = 1H , α = 1H∗ and
Radford’s formula reduces to S4(h) = h. 2

3.4 Integrals and semisimplicity

In this section, we will show that for a finite-dimensional Hopf algebra H, the behaviour of the
square S2 of the antipode is related to the question if H is semisimple. This is a surprising
result that is again obtained from the Frobenius algebra structures of a finite-dimensional Hopf
algebras H. We start by recalling the basic results and definitions about semisimplicity. The
concept of semisimplicity is motivated by the wish to decompose every module over an algebra
A as a direct sum of basic building blocks, the so-called simple modules, which are characterised
by the condition that they do not contain any non-trivial submodules.

Definition 3.4.1: Let A be an algebra over F.

1. A module M over A is called simple if M 6= {0} and M has no non-trivial submodules,
i. e. the only submodules of M are M and {0}.

2. A module over A is called semisimple, if it is the direct sum M = ⊕i∈IMi of simple
submodules Mi.

3. The algebra A is called simple or semisimple if it is simple or semisimple as a left
module over itself with the left multiplication.

Note that the trivial module {0} is not simple by definition, but it is semisimple, since it is
given by the direct sum over an empty index set. The following proposition gives an alternative
criterion for the semisimplicity of a module that is very useful in practice.
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Proposition 3.4.2: Let A be an algebra over F and M a module over A. Then the following
are equivalent:

(i) M is semisimple.

(ii) Every submodule U ⊂M is a (not necessarily direct) sum of simple submodules.

(iii) Every submodule U ⊂ M has a complement, i. e. there is a submodule V ⊂ M with
M = U ⊕ V .

Proof:
(i) ⇒ (ii) is obvious.

(ii) ⇒ (iii): Suppose U ⊂ M is a submodule and {Ni}i∈I a maximal set of simple submodules
of M with U ∩Σi∈INi = {0}. We show that M = U ⊕V with V = Σi∈INi. Because M is a sum
of simple submodules, for every element m ∈ M there are simple submodules L1, ..., Lk of M
and elements li ∈ Li with m = l1 + ... + lk. As L1, ..., Lk are simple and (U ⊕ V ) ∩ Li ⊂ Li is
a submodule, we have (U ⊕ V ) ∩ Li = {0} or (U ⊕ V ) ∩ Li = Li. If (U ⊕ V ) ∩ Li = {0}, then
U ∩ Li = {0}, in contradiction to the maximality of {Ni}i∈I . Hence (U ⊕ V ) ∩ Li = Li for all
i ∈ {1, ..., k}. This implies Li ⊂ U ⊕ V for all i ∈ {1, ..., k} and m ∈ U ⊕ V for all m ∈M .

(iii) ⇒ (i): Let {Ui}i∈I be a maximal set of simple submodules Ui ⊂M with Σi∈IUi = ⊕i∈IUi.
Suppose ⊕i∈IUi 6= M . Then by (iii) there is a submodule {0} 6= V with M = ⊕i∈IUi ⊕ V .
If V is simple, we have a contradiction to the maximality of {Ui}i∈I . Otherwise, there is a
maximal submodule1 {0} ( W ( V and by (iii) a submodule X ⊂M with M = W ⊕X. Then
V = W ⊕ (X ∩ V ) with X ∩ V 6= {0}. If X ∩ V is simple, then we have a contradiction to
the maximality of {Ui}i∈I . Otherwise there is a submodule {0} ( Y ( X ∩ V , which implies
W ( W ⊕ Y ( V , which contradicts the maximality of W . It follows that M ⊕i∈I Ui. 2

In particular, Proposition 3.4.2 implies that semisimplicity is a property that is inherited by
submodules and quotients of modules with respect to submodules.

Corollary 3.4.3: Every submodule and every quotient of a semisimple module is semisimple.

Proof:
1. Let U ⊂ M be a submodule and π : M → M/U the canonical surjection. Then for every
submodule N ⊂ M and every submodule {0} ( L ( π(N) the submodule π−1(L) ⊂ M
satisfies {0} ( π−1(L) ( N . If N ⊂ M is simple, this implies π(N) = {0} or π(N) simple.
If M = ⊕i∈INi with simple modules Ni ⊂ M , one obtains M/U = π(M) = ⊕i∈Iπ(Ni) with
π(Ni) = {0} or π(Ni) simple and hence M/U is semisimple. This shows that quotients of
semisimple modules are simple. To show that submodules of semisimple modules are simple,
we note that Proposition 3.4.2 implies that every submodule U ⊂M has a complement V ⊂M
with M = U ⊕ V . Then we have U ∼= M/V and hence U is simple. 2

The fact that every module over an algebra A can be described as a quotient of a free module
over A, that is, as a quotient of a direct sum ⊕i∈IA for some index set I, then allows one to
relate the semisimplicity of A to the semisimplicity of modules over A.

1The existence of this maximal submodule follows with Zorn’s Lemma, in analogy to the proof of the existence
of maximal ideals in a ring R.
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Proposition 3.4.4: Let A be an algebra over F. Then the following are equivalent:

(i) A is semisimple.

(ii) Every module over A is semisimple.

Proof:
(ii) ⇒ (i) is obvious, since (i) is a special case of (ii). Let now A be semisimple and M a
module over A. Then we consider the free A-module 〈M〉A = ⊕m∈MA generated by M and
the module homomorphism φ : 〈M〉A → M defined by φ(m) = m for all m ∈ M . Then 〈M〉A
is semisimple as the direct sum of semisimple A-modules, ker(φ) ⊂ 〈M〉A is a submodule
and M ∼= 〈M〉A/ ker(φ) is semisimple as a quotient of a semisimple module by Corollary 3.4.3. 2

After assembling the basic facts about semisimplicity of algebras, we now focus on Hopf algebras.
While the definition of semisimplicity is the same - a Hopf algebra is called semisimple if it is
semisimple as an algebra - the additional structures of a Hopf algebra allow us to give alternative
characterisations of semisimplicity. They also imply that in many respects semisimple Hopf
algebras behave similarly to group algebras of finite groups. Alternatively, we can view certain
statements about representations of finite groups as a special case of more general statements
about Hopf algebras. The first example is Maschke’s Theorem for Hopf algebras, which relates
the semisimplicity of a finite-dimensional Hopf algebra H to the existence of normalised left
and right integrals. This result that generalises Maschke’s Theorem for finite groups.

Theorem 3.4.5: (Maschke’s Theorem for Hopf algebras)
Let H be a finite-dimensional Hopf algebra over F. The the following are equivalent:

(i) H is semisimple.

(ii) There is a left integral ` ∈ H with ε(`) 6= 0.

(iii) There is a right integral ` ∈ H with ε(`) 6= 0.

Proof:
We prove the claim for left integrals. The claim for right integrals then follows because
S(IL(H)) = IR(H) and ε ◦ S = ε.

(i)⇒ (ii): The linear map ε : H → F is a module homomorphism with respect to the left
regular action of H on itself and the trivial H-module structure on F, since we have ε(h�L k) =
ε(hk) = ε(h)ε(k) = h� ε(k) for all h, k ∈ H. Hence ker(ε) ⊂ H is a submodule, i. e. a left ideal
in H, and by Proposition 3.4.2 there is a left ideal I ⊂ H with H = ker(ε) ⊕ I. As we have
(h− ε(h) 1) · k ∈ ker(ε) and h · i ∈ I for all h, k ∈ H and i ∈ I, we obtain

h · i︸︷︷︸
∈I

= (h− ε(h) 1)i︸ ︷︷ ︸
∈ker(ε)

+ ε(h)i︸︷︷︸
∈I

= ε(h)i︸︷︷︸
∈I

,

and this implies I ⊂ IL(H). As ε(1) = 1 implies dimF(ker(ε)) < dimFH and I ∩ ker(ε) = {0},
we have 1 ≤ dimF I, and there is a left integral ` ∈ I ⊂ IL(H) with ε(`) 6= 0.

(ii) ⇒ (i): Suppose there is an integral ` ∈ IL(H) with ε(`) 6= 0. Then by multiplying with an
element λ ∈ F, one can achieve ε(`) = 1. Let M be a module over H, U ⊂M a submodule and
choose a linear map P : M → U with P |U = idU . If we equip the vector space HomF(M,U)
with the H-module structure from Lemma 3.2.4, then the linear map

π = `� P : M → U, m 7→ (`� P )(m) = Σ` `(1) � P (S(`(2)) �m)
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is an invariant of the module HomF(M,U) by Lemma 3.2.8 and hence a module map by Lemma
3.2.4. It follows that ker(π) ⊂M is a submodule of M . Moreover, one has for all u ∈ U

π(u) = (`� P )(u) = Σ(`) `(1) � P (S(`(2)) � u) = `(1) � (S(`(2)) � u) = ε(`)u = u.

This implies ker(π) ∩ U = {0} and since every element m ∈ M can be written as
m = m− π(m) + π(m) with m− π(m) ∈ ker(π) and π(m) ∈ U it follows that M = U ⊕ ker(π).
Hence, every submodule of M has a complement and H is semisimple. 2

Corollary 3.4.6: (Maschke’s Theorem for finite groups)
Let G be a finite group. Then the group algebra F[G] is semisimple if and only if char(F) 6 | |G|.

Proof:
By Example 3.2.7, we have IL(F[G]) = spanF {Σg∈G g}. As ε (Σg∈G g) = Σg∈G ε(g) = |G|, it
follows that ε(IL(F[G])) 6= {0} if and only if char(F) 6 | |G|, and by Theorem 3.4.5, this is
equivalent to the semisimplicity of F[G]. 2

Corollary 3.4.7: Every finite-dimensional semisimple Hopf algebra is unimodular.

Proof:
As H is finite-dimensional semisimple, there is a left integral ` ∈ IL(H) with ε(`) = 1 by
Theorem 3.4.5. Then the modular element α ∈ Gr(H∗) with ` · h = α(h) ` for all h ∈ H from
Proposition 3.2.16 satisfies

α(h) ` = α(h) ε(`)` = α(h) `2 = (`h)` = `(h`) = ε(h) `2 = ε(h)ε(`) ` = ε(h) `.

As ` 6= 0, this implies α(h) = ε(h) for all h ∈ H and by Proposition 3.2.16 H is unimodular. 2

We will now show that the semisimplicity of a finite-dimensional Hopf algebra H is related
to the square of its antipode. The key result that links these two concepts are the results on
dual bases in Proposition 3.3.6. The fact that every element of H can be expressed in terms
of dual bases for a right integral λ ∈ IR(H∗) allows one to express the traces of a linear maps
φ : H → H in terms of integrals and to relate the existence of normalised left or right integrals
to the square of the antipode of H.

Proposition 3.4.8: Let H be a finite-dimensional Hopf algebra over F, ` ∈ IL(H) a left
integral and λ ∈ IR(H∗) a right integral with λ(`) = 1, as in Proposition 3.3.6. Then:

1. For all linear maps φ : H → H one has Tr(φ) = Σ(`) λ(S(`(2))φ(`(1))),
2. The square of the antipode satisfies Tr(S2) = ε(`)λ(1).

Proof:
We choose an ordered basis (x1, ..., xn) of H and the dual basis (α1, ..., αn) of H∗. Then we
have Tr(φ) = Σn

i=1α
i(φ(xi)) for all φ ∈ EndF(H). As φ(xi) = Σ(`) λ(S(`(2))φ(xi)) `(1) for all

i = 1, ..., n by formula (25) in Proposition 3.3.6, we obtain

Tr(φ) = Σn
i=1 α

i
(
Σ(`) λ(S(`(2))φ(xi)) `(1)

)
= Σn

i=1Σ(`)α
i(`(1)) λ(S(`(2))φ(xi))

= Σ(`) λ
(
S(`(2)) · φ(Σn

i=1α
i(`(1))xi)

)
= Σ(`)λ

(
S(`(2))φ(`(1))

)
Inserting φ = S2 into this equation and using the condition on the antipode yields

Tr(S2) = Σ(`) λ(S(`(2)) · S2(`(1))) = λ
(
Σ(`) S(S(`(1))`(2)) ) = λ(ε(`)S(1)) = ε(`)λ(1). 2
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Corollary 3.4.9: Let H be a finite-dimensional Hopf algebra over F.

1. H and H∗ are semisimple if and only if Tr(S2) 6= 0.

2. If S2 = idH and char(F) 6 | dimFH, then H and H∗ are semisimple.

Proof:
1. By Proposition 3.3.6 there are integrals ` ∈ IL(H) and λ ∈ IR(H∗) with λ(`) = 1, and
by Proposition 3.4.8 we then have Tr(S2) = ε(`)λ(1). Hence, we have Tr(S2) 6= 0 if and only
if ε(`), λ(1) 6= 0. As dimF IL(H) = dimF IR(H∗) = 1, this is equivalent to the existence of
a left integral ` ∈ IL(H) and a right integral λ ∈ IR(H∗) with ε(`) 6= 0 and λ(1) 6= 0. By
Theorem 3.4.5 the first condition is equivalent to the semisimplicity of H and the second to the
semisimplicity of H∗.

2. If S2 = idH , then by Proposition 3.4.8 Tr(S2) = Tr(idH) = dimF(H). If char(F) 6 | dimF(H),
this implies Tr(S2) 6= 0, and with 1. it follows that H and H∗ are semisimple. 2

Corollary 3.4.9 relates the the semisimplicity of a finite-dimensional Hopf algebra H and its
dual to the square of the antipode. In fact, for fields of characteristic zero there is a stronger
result, theorem of Larson and Radford. A proof is given in the original article [LR]

Theorem 3.4.10: (Larson-Radford Theorem)
Let H be a finite-dimensional Hopf algebra over a field F of characteristic zero. Then the
following are equivalent:

(i) H is semisimple.

(ii) H∗ is semisimple.

(iii) S2 = id.

In particular, the theorem by Larson and Radford allows us to derive sufficient conditions under
which the Frobenius algebra from Proposition 3.3.4 is symmetric. By combining Theorem 3.4.10
with formula (27) for the Nakayama automorphism, one finds that the semisimplicity of H is
sufficient in characteristic zero. This implies in particular that the coproduct of an integral in
a finite-dimensional semisimple Hopf algebra is always symmetric.

Corollary 3.4.11: Let H be a finite-dimensional semisimple Hopf algebra over a field F of
characteristic zero. Then:

1. The Frobenius algebra from Proposition 3.3.4 is symmetric.

2. For all integrals ` ∈ IL(H) = IR(H) one has ∆(`) = ∆op(`).

Proof:
1. Let H be a finite-dimensional semisimple Hopf algebra over F. The by Theorem 3.4.10 one
has S2 = idH , the dual H∗ is semisimple as well and H and H∗ are unimodular by Corollary
3.4.7. By Proposition 3.2.16 this implies that the modular element α ∈ Gr(H∗) is given by
α = ε. Formula (27) for the Nakayama automorphism then yields for all h ∈ H

ρ(h) = Σ(h) α(h(1))S
2(h(2)) = Σ(h) ε(h(1))h(2) = h,

and this shows that the Frobenius algebra from Proposition 3.3.4 is symmetric.
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2. Clearly, the identity holds if ` = 0. For every integral ` ∈ IL(H) = IR(H)\{0}, the associated
Frobenius form κ on H∗ is symmetric by 1. This implies for all α, β ∈ H∗

(α⊗β)(∆(`)) = (α · β)(`) = κ(α⊗β) = κ(β⊗α) = (β · α)(`) = (α⊗β)(∆op(`))

and hence ∆(`) = ∆op(`). 2

Example 3.4.12: Let F be a field of characteristic zero.

1. The q-deformed universal enveloping algebra U r
q (sl2) at a primitive nth root of unity from

Proposition 2.3.12 is unimodular, but it is not semisimple. This follows because the square
of its antipode is given by

S2(K) = K, S2(E) = KEK−1 = q2E S2(F ) = −KFK−1 = q−2F

Hence, the antipode of U r
q (sl2) has order 2r > 2 with r = n/2 for n even and r = n for n

odd and U r
q (sl2) cannot be semisimple by Theorem 3.4.10.

2. The Taft algebra From Example 2.3.6 is not semisimple, since one has

S2(x) = S(−xy−1) = −S(xy−1) = −S(y)−1S(x) = −y(−xy−1) = yxy−1 = q−1x 6= x.

3.5 Application: Kitaev models

Kitaev models were first introduced in 2003 by A. Kitaev [Ki] to obtain a realistic model for a
quantum computer that would be protected against errors by topological effects and could in
principle be realised in the framework of solid state physics. While the original model was based
on group algebra C[Z/pZ], it was then generalised to models based on the group algebra C[G]
for a finite group G in [BMD] and to finite-dimensional semisimple Hopf algebras in [BMCA].
These models became very prominent and are a topic of current research in condensed matter
physics. They are also interesting from the mathematical perspective since they are related to
topological quantum field theories and define manifold invariants.

The ingredients of the Kitaev model are

• a finite-dimensional semisimple Hopf algebra H over field F of characteristic zero ,
• an oriented surface Σ, i. e. a connected, compact oriented topological manifold Σ of

dimension two,
• a finite directed graph Γ embedded into Σ such that Σ \ Γ is a disjoint union of discs.

Recall that compact oriented surfaces are classified up to homeomorphisms by their genus,
i. e. the number of handles. The last condition ensures that the graph Γ is sufficiently refined
to resolve the topology of the surface Σ, i. e. that we can realise a set of generators of the
fundamental group π1(Σ) as paths in the embedded graph Γ:
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surface with an admissible graph surface with a graph that is not admissible.

We denote by E and V , respectively, the sets of edges and vertices of Γ and use the same letters
for their cardinalities. We also require the notion of a face. A face in Γ is represented by a closed
path in Γ that starts and ends at a vertex v ∈ V , turns maximally right at each vertex and
traverses each edge at most once in each direction. More precisely, a face of Γ is an equivalence
class of such a path under cyclic permutations, i. e. up to the choice of the starting vertex of
the path. The set of faces of Γ and its cardinality are denoted F .

We assume for simplicity that Γ is a graph without loops, i. e. the starting and target vertex
of each edge are different vertices, and that all paths representing faces traverse each edge of
Γ at most once. By placing a marking at a vertex v ∈ V between two incident edges at v, we
then obtain an ordering of the edges at v by counting them counterclockwise from the marking.
Similarly, if we place a marking at one of the vertices in a face, we obtain an ordering of the
edges in the face by counting them counterclockwise from the marking. A vertex together with
a marking is called a marked vertex and a face with a marking a marked face. In the
following, we assume that the markings are chosen in such a way that each face and each vertex
carries exactly one marking, as in Figure 1. This defines a partition of the set V ×F into pairs
(v, f) that share a marking. Such a pair is called a site.

With these preliminary definitions, we can now introduce the Kitaev model associated with
the triple (Σ,Γ, H) of an oriented surface Σ, a marked directed graph Γ embedded into Σ that
satisfies the conditions above and a finite-dimensional semisimple Hopf algebra H over field
F with char(F) = 0. Throughout this section, we assume that the data (Σ,Γ, H) is fixed and
satisfies the conditions above.

Definition 3.5.1: The Kitaev model for (Σ,Γ, H) consists of the following data:

1. The extended Hilbert space: the vector space H⊗E.

2. The edge operators:

The edge operators for a triple (e, h, α) of an edge e ∈ E and elements h ∈ H, α ∈ H∗
are the linear maps Lhe±, T

α
e± : H⊗E → H⊗E given by

Lhe+ : ...⊗ke⊗... 7→ ...⊗(h�L k
e)⊗... = ...⊗(hke)⊗... (31)

Tαe+ : ...⊗ke⊗... 7→ ...⊗(α�∗R k
e)⊗... = ...⊗(Σ(ke)α(ke(2))k

e
(1))⊗...

Lhe− = S ◦ Lhe+ ◦ S : ...⊗ke⊗... 7→ ...⊗(ke �R S(h))⊗... = ...⊗(keS(h))⊗...
Tαe− = S ◦ Tαe+ ◦ S : ...⊗ke⊗... 7→ ...⊗(ke �∗L S(α))⊗... = ...⊗(Σ(ke)α(S(ke(1)))k

e
(2))⊗...
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Figure 1: Embedded graph Γ with markings and the induced ordering of edges at the vertices
and faces of Γ.

3. The vertex and face operators:

• The vertex operator for a pair (v, h) of a vertex v ∈ V and h ∈ H is the linear map

Ahv = Σ(h) L
h(1)
e1,ε1 ◦ L

h(2)
e2,ε2 ◦ ... ◦ L

h(n)
en,εn : H⊗E → H⊗E

where e1, ..., en are the incident edges at v, numbered counterclockwise from the marking
at v, εi = + if ei is incoming at v and and εi = − if ei is outgoing from v.

• The face operator for a pair (f, α) of a face f ∈ F and α ∈ H∗ is the linear map

Bα
f = Σ(α) T

α(1)
e1,ε1 ◦ T

α(2)
e2,ε2 ◦ ... ◦ T

α(n)
en,εn : H⊗E → H⊗E,

where e1, ..., en are the edges in f , numbered counterclockwise from the marking, εi = +
if ei is traversed in its orientation and εi = − if ei is traversed against its orientation.

4. The protected space or ground state:

The protected space of a Kitaev model is the linear subspace

H⊗Einv = {x ∈ H⊗E |Ahvx = ε(h)x, Bα
f (x) = ε(α)x ∀h ∈ H,α ∈ H∗, v ∈ V, f ∈ F}.

These Definitions can be generalised to graphs Γ with loops or with faces that traverse certain
edges more than once. In this case, one simply replaces the word edge in the definition by edge
ends. However, to keep notation simple, we will not consider this in the following.

The main reason why Kitaev models are interesting from the mathematics perspective is that
their protected space H⊗Einv does not depend on the choice of the graph Γ or its embedding into
Σ but only on the homeomorphism class of the surface Σ. It is a topological invariant of Σ,
which was shown to be related to certain topological quantum field theories [BK].

Theorem 3.5.2 ([BMCA]): The protected space of a Kitaev model is a topological in-
variant: Its dimension depends only on the homeomorphism class of the surface Σ an not on
the embedded graph Γ.
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(a) (b)

(c) (d)

(e)

Figure 2: Contracting the edges of a maximal tree in a graph: (b)→(c), (c)→(d) and removing
loops: (d)→(e).

Sketch of Proof: The proof is performed by selecting a maximal tree T ⊂ Γ as in Figure 2
(b). This is a subgraph T ⊂ Γ with no non-trivial closed paths or, equivalently, with trivial fun-
damental group that contains each vertex of Γ. One then contracts all edges in the tree towards
a chosen vertex as in Figure 2 (b),(c),(d). One can show that these edge contractions induce
isomorphisms between the protected spaces of the associated Kitaev models. By contracting all
edges in the tree T one obtains a graph Γ′ as in Figure 2 (d) whose ground state is isomorphic
to the one of Γ and which contains only a single vertex. By removing loops of Γ′ that can be
removed without violating the condition that Σ \ Γ is a disjoint union of discs as in Figure
2 (d),(e) one obtains another graph Γ′′ whose protected space is isomorphic to the one of Γ,
with a single vertex, a single face and 2g edges, where g is the genus of Σ. After performing
some further graph transformations which again induce isomorphisms between the protected
spaces of the associated Kitaev models, one obtains a standard graph Γ′′′ which depends only
on the genus of the surface Σ and such that the protected space of the associated Kitaev model
is isomorphic to the one for Γ. This shows that the protected space of the Kitaev model for
(Σ,Γ, H) depends only on H and the genus of Σ. 2

We will now investigate the mathematical structure of the Kitaev model and and show that
it is an application of the concepts introduced in this chapter. We first show that the edge
operators span an algebra that is related to cross product H#H∗ from Proposition 3.1.7 with
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the multiplication law

(h⊗α) · (k⊗β) = Σ(α)(k) α(1)(k(2)) hk(1)⊗α(2)β

This allows us to identify the algebra generated by the edge operators Lhe± and Tαe± for edges
e ∈ E with an E-fold tensor product of the cross product H#H∗ with itself and to show that
it is isomorphic to EndF(H⊗E).

Proposition 3.5.3 ([BMCA]): For all edges e ∈ E the linear map

ρe : H#H∗ → EndF(H⊗E), h⊗α 7→ Lhe+ ◦ Tαe+

defines a representation of H#H∗ on H⊗E. This induces an algebra isomorphism

ρ : (H#H∗)⊗E → EndF(H⊗E).

Proof:
That the maps ρe define a representation of H#H∗ on H⊗E follows by a direct computation.
By definition of the edge operators, we have ρe(1H⊗1H∗) = L1

e+T
ε
e+ = idH⊗E and

ρe(h⊗α)ρe(k⊗β)(...⊗le⊗...) = Lhe+T
α
e+L

k
e+T

β
e+(...⊗le⊗...) = Σ(le)β(le(2))L

h
vT

α
f (...⊗kle(1)⊗...)

= Σ(k)(le)β(le(2))α((kle(1))(2)) ...⊗h(kle(1))(1)⊗... = Σ(k)(le)β(le(3))α(k(2)l
e
(2)) ...⊗hk(1)l

e
(1)⊗...

= Σ(k)(le)(α)α(1)(k(2)) (α(2)β)(le(2)) ...⊗hk(1)l
e
(1)⊗... = Σ(k)(α)α(1)(k(2)) L

hk(1)
e+ T

α(2)β
e+ (...⊗le⊗...)

= Σ(k)(α)α(1)(k(2)) ρ(hk(1)⊗α(2)β)(....⊗le⊗...) = ρe((h⊗α) · (k⊗β))(...⊗le⊗...)

for all h, k, le ∈ H and α, β ∈ H∗. This shows that ρe is an algebra homomorphism. To show that
this induces an algebra isomorphism ρ : (H#H∗)⊗E → EndF(H⊗E), we consider the algebra
homomorphism ρ′ : H#H∗ → EndF(H) with ρ′(h⊗α)k = Σ(k) α(k(2))hk(1), which is related to
ρe by the condition

ρe(α⊗h)(...⊗le⊗...) = Lhe+T
α
e+(...⊗le⊗...) = Σ(le) α(le(1)) ...⊗hle(1)⊗... = ...⊗ρ′(α⊗h)(le)⊗....

As the edge operators for different edges commute by definition, this induces an algebra ho-
momorphism ρ = ⊗e∈Eρ′ : (H#H∗)⊗E → EndF(H⊗E). To show that ρ is an algebra iso-
morphism, it is sufficient to show that the algebra homomorphism ρ′ is surjective. As H is
finite-dimensional, this implies that ρ′ is an isomorphism and it follows that ρ = ⊗e∈Eρ′ :
(H#H∗)⊗E → EndF(H⊗E) is an isomorphism as well.

As H is finite-dimensional semisimple, by Theorem 3.4.10 the dual Hopf algebra H∗ is finite-
dimensional semisimple as well, and by Theorem 3.4.5 and Corollary 3.4.7 there are normalised
Haar integrals ` ∈ IL(H) = IR(H) and λ ∈ IL(H∗) = IR(H∗). We consider an ordered basis
(x1, ..., xn) of H and the dual basis (α1, ..., αn) of H∗. With this, we compute for i, j, k ∈ {1, .., n}

ρ′((xi⊗λ) · (`⊗αj))xk = Σ(λ)(`)λ(1)(`(2)) ρ(λ(2)α
j⊗xi`(1))xk

= Σ(λ)(`)(xk)λ(1)(`(2)) (λ(2)α
i)(xk(2)) xi`(1)xk(1) = Σ(`)(λ)(xk)λ(1)(`(2))λ(2)(xk(2))α

j(xk(3))xi`(1)xk(1)

= Σ(`)(xk)λ(`(2)xk(2))α
j(xk(3))xi`(1)xk(1) = Σ(xk)λ(`xk(1))α

j(xk(2))xi = λ(`)αj(xk)xi = λ(`)δjkxi,

where we used the multiplication law of H#H∗ in the first line, the definition of ρ′ to pass to
the second line, the duality between the multiplication in H∗ and the comultiplication in H in
the second line and to pass to the third line, then the identity (λ⊗id) ◦ ∆(k) = 1⊗λ(k) for
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all k ∈ H and then the fact that ` ∈ H is an integral. As λ(`) 6= 0 by Proposition 3.3.6 and
the linear maps φij ∈ EndF(H) with φij(xk) = δjkxi form a basis of EndF(H), the claim follows. 2

We have shown that the algebra generated by the edge operators in the Kitaev model is just
the E-fold tensor product of the cross product H#H∗ with itself. Proposition 3.5.3 also implies
that every linear map φ : H⊗E → H⊗E can be realised as a a linear combination of finite
composites of edge operators Le+h and Tαe−. Hence, the edge operators in the Kitaev model can
be viewed as a particularly nice generating set of the algebra EndF(H⊗E) that is adapted to
the embedded graph Γ.

We now consider the vertex and face operators in the Kitaev model. From the definition of the
model it is apparent that they play the role of a symmetry algebra that acts on the extended
Hilbert space and defines the protected space by the condition that their action on an element
of H⊗Einv is trivial, i. e. given by the counits of H and H∗. As vertices and faces of Γ are grouped
into pairs (v, f) that share a common marking, it is natural to combine the vertex and face
operators Ahv and Bα

f for such a pair. It is then natural to expect that each such pair defines a
Hopf algebra structure on H∗⊗H, that the extended Hilbert space H⊗E is a module over this
Hopf algebra and that the protected space is its submodule of invariants. However, it turns out
that the relevant Hopf algebra is not simply the tensor product of H∗ and H but another Hopf
algebra structure on the vector space H∗⊗H, the so-called Drinfeld double D(H).

Lemma 3.5.4: Let H be a finite-dimensional Hopf algebra over F and H∗ its dual. Then the
following defines a Hopf algebra structure on H∗⊗H

(α⊗h) · (β⊗k) = Σ(h),(β) β(3)(h(1)) β(1)(S
−1(h(3))) αβ(2)⊗h(2)k 1 = 1H∗⊗1H

∆(α⊗h) = Σ(h),(α) α(2)⊗h(1)⊗α(1)⊗h(2) ε(α⊗h) = εH∗(α)εH(h)

S(α⊗h) = (1⊗S(h)) · (S(α)⊗1) = Σ(h)(α)α(1)(h(3))α(3)(S
−1(h(1)))S(α(2))⊗S(h(2)).

It is called the Drinfeld double or quantum double of H and denoted D(H).

Proof:
The coassociativity and counitality follow directly from the coassociativity and counitality for
H and H∗. That ∆ and ε are algebra homomorphisms follows, because this holds in H and H∗

and from the identity α⊗h = (α⊗1) · (1⊗h) for all h ∈ H and α ∈ H∗. The same holds for the
antipode condition, since we have

Σ(h)(α) (1⊗S(h(1))) · (S(α(1))⊗1) · (α(2)⊗1) · (1⊗h(2)) = (1⊗S(h(1))) · (S(α(1))α(2)⊗1) · (1⊗h(2))

= ε(α)Σ(h) 1⊗S(h(1))h(2) = ε(α)ε(h) 1H∗⊗1H

and similarly for the other equation in the antipode condition. It follows directly from the
formulas that 1H∗⊗1H is a unit for the multiplication

(α⊗h) · (1H∗⊗1H) = Σ(h) 1H∗(h(1)) 1H∗(S
−1(h(3))) α1H∗⊗h(2)1H

= Σ(h) ε(h(1)) ε(S
−1(h(3))) αε⊗h(2) = α⊗h

(1H∗⊗1H) · (β⊗k) = Σ(β) β(3)(1H) β(1)(S
−1(1H)) 1H∗β(2)⊗1Hk

= Σ(β) ε(β(3))ε(β(1))β(2)⊗k = β⊗k.
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It remains to prove the associativity of the multiplication, which follows by a direct computation:(
(α⊗h) · (β⊗k)

)
· (γ⊗l) = Σ(h),(β) β(3)(h(1)) β(1)(S

−1(h(3))) (αβ(2)⊗h(2)k) · (γ⊗l)
= Σ(h),(k),(β),(γ) β(3)(h(1)) β(1)(S

−1(h(3)))γ(3)(h(2)k)(1))γ(1)(S
−1((h(2)k)(3))) αβ(2)γ(2)⊗(h(2)k)(2)l

= Σ(h),(k),(β),(γ) β(3)(h(1)) β(1)(S
−1(h(5)))γ(3)(h(2)k(1))γ(1)(S

−1(h(4)k(3))) αβ(2)γ(2)⊗h(3)k(2)l

(α⊗h) ·
(
(β⊗k) · (γ⊗l)

)
= Σ(k),(γ) γ(3)(k(1)) γ(1)(S

−1(k(3))) (α⊗h) · (βγ(2)⊗k(2)l)

= Σ(k),(h),(β),(γ) γ(3)(k(1)) γ(1)(S
−1(k(3)))(βγ(2))(3)(h(1))(βγ(2))(1)(S(h(3))) α(βγ(2))(2)⊗h(2)k(2)l

= Σ(k),(h),(β),(γ) γ(5)(k(1)) γ(1)(S
−1(k(3)))(β(3)γ(4))(h(1))(β(1)γ(2))(S

−1(h(3))) αβ(2)γ(3)⊗h(2)k(2)l

= Σ(k),(h),(β),(γ) β(3)(h(1))γ(3)(h(2)k(1)) γ(1)(S
−1(h(4)k(3)))β(1)(S

−1(h(5))) αβ(2)γ(2)⊗h(3)k(2)l. 2

We will later derive Lemma 3.5.4 in a more conceptual way and gain more insight into the
meaning of the Drinfeld double. We will now show that the Hopf algebra symmetry associated
with a pair (v, f) of a vertex v and a face f that share a marking is a representation of the
Drinfeld double. By combining these symmetries for all such pairs, we find that H⊗E is a
module algebra over the V -fold product of the Drinfeld double D(H) and that its submodule
of invariants is the protected space.

Proposition 3.5.5 ([BMCA]):

1. If a vertex v and face f share a marking, then the associated vertex and face operator
define a representation of D(H) on H⊗E

ρ(v,f) : D(H)→ EndF(H⊗E), α⊗h 7→ Bα
f ◦ Ahv .

2. This induces a representation ρ : D(H)⊗V → EndF(H⊗E), whose submodule of invariants
is the protected space: (H⊗E)D(H)⊗V

= H⊗Einv .

3. Let λ ∈ H∗ and ` ∈ H be normalised Haar integrals. Then the vertex and face operators
A`v and Bλ

f do not depend on the choice of markings at v and f . All vertex and face

operators A`v and Bλ
f commute, and a projector on H⊗Einv is given by

P = ρ( (λ⊗`)⊗E) =
∏
(v,f)

Bλ
fA

`
v : H⊗E → H⊗E

Proof:
1. Suppose that e1, ..., en are the edges at v, numbered counterclockwise from the marking as
in Figure 1, and that all edges e1, ..., en are incoming. Then the vertex operator for v is

Ahv = Σ(h) L
h(1)
e1+ ◦ L

h(2)
e2+ ◦ ... ◦ L

h(n)

en+ = L
h(1)
e1+ ◦X(h(2)) ◦ L

h(3)
en+

with a linear map X : H → EndF(H⊗E), h 7→ X(h) such that X(h) commutes with Lke1+ and
Lken+ for all h, k ∈ H. As the face f shares a marking with v and turns maximally right at
each vertex, the edge en is the first edge in f and traversed with its orientation, and the edge
e1 is the last edge in f and traversed against its orientation, as shown in Figure 1. Hence, the
associated face operator is of the form

Bα
f = Σ(α) T

α(1)

en+ ◦ Y (α(2)) ◦ T
α(3)

e1−

with a linear map Y : H∗ → EndF(H⊗E), α 7→ Y (α). For all α, β ∈ H∗ and h ∈ H, the element
Y (α) commutes with T βe1−, T βen+, Lhe1+ and Lhen+, since every edge is traversed at most once by
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f and the edge operators for different edges commute. If f does not traverse any edges incident
at v except e1, en then this also implies that Y (α) commutes with X(h) for all h ∈ H.

If f traverses any edge ei with i ∈ {2, .., n − 1} in the direction of its orientation, it also
traverses the edge ei+1 against its orientation and i < n− 1, since f turns maximally right at
each vertex and traverses each edge only once. Conversely, if f traverses the edge ei+1 against
its orientation, then it also traverses ei with its orientation. This is pictured in Figure 1. The
contribution for the edges ei and ei+1 to the face operator is then of the form Σ(α) T

α(1)

ei+1− ◦T
α(2)

ei+

with i ∈ {2, ..., n−2}. This commutes with Lhek+ for all k /∈ {i, i+1}. To show that it commutes
with X(h) for all h ∈ H, we use the definition of the edge operators and the identity S2 = idH ,
which follows with the semisimplicity of H from Theorem 3.4.10. This yields for all e ∈ E

Tαe+ ◦ Lhe+ = Σ(α)(h) α(1)(h(2))L
h(1)
e+ ◦ T

α(2)

e+ Tαe− ◦ Lhe+ = Σ(α)(h) α(2)(S(h(1)))L
h(2)
e+ ◦ T

α(1)

e−

Lhe+ ◦ T
α
e+ = Σ(α)(h) α(1)(S(h(2)))T

α(2)

e+ ◦ Lh(1)e+ Lhe+ ◦ T
α
e− = Σ(α)(h) α(2)(h(1))L

h(2)
e+ T

α(1)

e− .

It follows that the contributions of the edges ei+1 and ei to the vertex and face operator commute(
Σ(α) T

α(1)

ei+1−T
α(2)

ei+

)
(Σ(h) L

h(1)
ei+L

h(2)
ei+1+)

= Σ(α)(h) α(2)(1)(h(1)(2))α(1)(2)(S(h(2)(1)))L
h(1)(1)
ei+ L

h(2)(2)
ei+1+T

α(1)(1)

ei+1− T
α(2)(2)

ei+

= Σ(α)(h) α(3)(h(2))α(2)(S(h(3)))L
h(1)
ei+L

h(4)
ei+1+T

α(1)

ei+1−T
α(4)

ei+

= Σ(α)(h) α(2)(S(h(3))h(2))L
h(1)
ei+L

h(4)
ei+1+T

α(1)

ei+1−T
α(3)

ei+

= Σ(α)(h) ε(α(2))ε(h(2))L
h(1)
ei+L

h(3)
ei+1+T

α(1)

ei+1−T
α(3)

ei+

= (Σ(h) L
h(1)
ei+L

h(2)
ei+1+)(Σ(α) T

α(1)

ei+1−T
α(2)

ei+ ),

and this implies that the elements Y (α) and X(h) commute for all h ∈ H and α ∈ H∗. With
these results, we compute

ρ(v,f)(α⊗h)ρ(v,f)(β⊗k)

= Σ(h)(k)
(α)(β)

T
α(1)

en+Y (α(2))T
α(3)

e1− L
h(1)
e1+X(h(2))L

h(3)
en+T

β(1)
en+Y (β(2))T

β(3)
e1−L

k(1)
e1+X(k(2))L

k(3)
en+

= Σ(h)(h)
(α)(β)

β(1)(1)(S(h(3)(2)))β(3)(2)(h(1)(1))

T
α(1)

en+T
β(1)(2)
en+ Y (α(2))Y (β(2))T

α(3)

e1− T
β(3)(1)
e1− L

h(1)(1)
e1+ L

k(1)
e1+X(h(2))X(k(2))L

h(3)(1)
en+ L

k(3)
en+

= Σ(h)(k)
(α)(β)

β(1)(S(h(5)))β5(h(1)) T
α(1)β(2)
en+ Y (α(2)β(3))T

α(3)β(4)
e1− L

h(2)k(1)
e1+ X(h(3)k(2))L

h(4)k(3)
en+

= Σ(β)(h) β(1)(S(h(3)))β3(h(1)) ρ(v,f)(αβ(2)⊗h(2)k)

= ρ(v,f)(Σ(β)(h) β(1)(S(h(3)))β3(h(1))αβ(2)⊗h(2)k)

As S2 = idH , this coincides with the formula for the multiplication of D(H) in Lemma 3.5.4.
As we also have ρ(1H∗⊗1H) = B1H∗

f A1H
v = idH⊗E , this proves that ρ(v,f) is a representation of

D(H). The proof for the case where some of the edges at v are outgoing is analogous.

2. To prove that the representations ρ(v,f) induce a representation ρ : D(H)⊗V → EndF(H⊗E),
it is sufficient to show that the vertex operators Ahv and Akw commute for v 6= w, the face
operators Bα

f and Bβ
g commute for f 6= g and that a vertex operator Ahv commutes with a face

operator Bα
f if v and f do not share a marking.

If v 6= w are vertices of Γ such that there is no edge that is incident at both vertices, then the
vertex operators Ahv and Akw commute. If e ∈ E is an edge that is incident at both v and w,

87



then it is incoming at one vertex and outgoing at the other. This implies that one of the vertex
operators contains an edge operator Lxe+ and the other the edge operator Lye− for some x, y ∈ H.
It follows directly from the expression for these edge operators in Definition 3.5.1 that these
edge operators commute and hence Ahv and Akw commute. Similarly, if e ∈ E is an edge that is
traversed by both faces f, g then it is traversed with its orientation by one of the two faces and
against its orientation by the other. Hence, one of the face operators contains the edge operator
T γe+ and the other an edge operator T δe− for some γ, δ ∈ H∗. Again it follows directly from the
expressions for these edge operators in Definition 3.5.1 that these edge operators commute and
hence the two face operators commute as well.

If v and f do not share a marking, then f cannot start or end at v or traverse the marking
at v, since each face contains exactly one marking. By the same reasoning as in 1. one finds
that if e1, ..., en are the edges incoming at v, ordered counterclockwise from the cilium, then
f either traverses none of the edges e1, ..., en or it traverses two consecutive edges ei and ei+1.
The same reasoning as in 1. then shows that Ahv and Bα

f commute for all h ∈ H and α ∈ H∗.
This proves that ρ = ⊗v∈V ρ(v,f) : D(H)⊗V → EndF(H⊗E) is a representation. By definition of
ρ, its submodule of invariants is the ground state H⊗Einv .

3. As H is finite-dimensional semisimple, by Theorem 3.4.10, the dual Hopf algebra H∗ is finite-
dimensional semisimple as well, and by Theorem 3.4.5 and Corollary 3.4.7 there are normalised
Haar integrals ` ∈ IL(H) = IR(H) and λ ∈ IL(H∗) = IR(H∗). By Corollary 3.4.11, one has
∆op(`) = ∆(`) and ∆op(λ) = ∆(λ). This implies that ∆(n−1)(`) = (∆⊗id⊗n−2)◦...◦(∆⊗id)◦∆(`)
and ∆(n−1)(λ) are invariant under cyclic permutations of the n factors in the tensor products
for all n ∈ N (see Exercise 41). From the multiplication law of the Drinfeld double D(H) in
Lemma 3.5.4 it then follows that λ⊗` is a normalised Haar integral for D(H) since

(α⊗h) · (λ⊗`) = Σ(h),(λ) λ(3)(h(1))λ(1)(S(h(3))) αλ(2)⊗h(2)`

= Σ(h),(λ) ε(h(2))λ(3)(h(1))λ(1)(S(h(3))) αλ(2)⊗` = Σ(h),(λ) λ(3)(h(1))λ(1)(S(h(2))) αλ(2)⊗`
= Σ(h),(λ) (λ(3)S(λ(1)))(h)αλ(2)⊗` = Σ(h),(λ) (λ(1)S(λ(2)))(h)αλ(3)⊗` = Σ(h),(λ) ε(λ(1))ε(h)αλ(2)⊗`
= ε(h)αλ⊗` = ε(h)ε(α)λ⊗`

where we used the identity S2 = idH , then the fact that ` ∈ H is a Haar integral to pass to the
second line, then the duality between multiplication in H∗ and comultiplication in H to pass
to the third line, then the cyclic invariance of ∆(2)(`), the antipode condition for H∗ and the
fact that λ is a Haar integral for H∗. This shows that λ⊗` is a left integral for D(H), and by a
similar computation, it follows that it is a right integral. As we have ε(λ⊗`) = εH∗(λ)ε(`) = 1,
it is normalised, and hence (λ⊗`)⊗V is a normalised Haar integral for D(H)⊗V . Lemma 3.2.8
then implies that P is a projector on H⊗Einv .

As the different choices of the markings at a vertex v correspond to a cyclic permutation of
the edge numbering at v and hence to a cyclic permutation of the tensor factors of ∆(n−1)(`)
in A`v, it follows from the cyclic invariance of ∆(n−1)(`) that A`v does not depend on the choice
of the marking at v. Similarly, different choices of a marking of a face f correspond to cyclic
permutations of the numbering of edges traversed by f and hence to cyclic permutations of the
tensor factors of ∆(m−1)(λ) in Bλ

f . It then follows from the cyclic invariance of ∆(m−1)(λ) that

Bλ
f does not depend on the choice of the marking at f .

It remains to show that the vertex and face operators A`v and Bλ
f commute if the face f and the

vertex ` share a marking. This follows by a direct computation from the fact that they define
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a representation of the Drinfeld double:

A`v ◦Bλ
f = ρ(v,f)(1⊗`) ◦ ρ(v,f)(λ⊗1) = ρ(v,f)(Σ(`)(λ) λ(3)(`(1))λ(1)(S(`(3)))λ(2)⊗`(2) )

= ρ(v,f)(Σ(`)(λ) λ(1)(`(2))λ(2)(S(`(1)))λ(3)⊗`(3) ) = ρ(v,f)(Σ(`)(λ) λ(1)(`(2)S(`(1)))λ(2)⊗`(3) )

= ρ(v,f)(Σ(`)(λ) ε(λ(1))ε(`(1))λ(2)⊗`(2) ) = ρ(v,f)(λ⊗`) = ρ(v,f)(λ⊗1) ◦ ρ(v,f)(1⊗`) = Bλ
f ◦ A`v,

where we used first the fact that ρ(v,f) is an algebra homomorphism and the multiplication
law of D(H), then the cyclic invariance of ∆(2)(`) and ∆(2)(λ) to pass to the second line, then
the duality between multiplication in H and comultiplication in H∗, the antipode condition
to pass to the third line, the counit condition and again the fact that ρ(v,f) is an algebra
homomorphism and the multiplication law of D(H). 2

We will now investigate how the Hopf algebra D(H)⊗V formed by the vertex and face operators
acts on the edge operators, or, equivalently, on linear maps φ : H⊗E → H⊗E.

Proposition 3.5.6:

1. If a vertex v and a face f share a marking, then (H#H∗)⊗E ∼= EndF(H⊗E) is a right
module algebra over D(H) with

�(v,f) : EndF(H⊗E)⊗D(H)→ EndF(H⊗E)

Y �(v,f) (α⊗h) = Σ(h),(α)A
S(h(2))
v ◦BS(α(1))

f ◦ Y ◦Bα(2)

f ◦ Ah(1)v .

2. This induces a D(H)⊗V -right module structure � : EndF(H⊗E)⊗D(H)⊗V → EndF(H⊗E)
on EndF(H⊗E) that gives EndF(H⊗E) the structure of a D(H)⊗V -right module algebra.

3. The protected space H⊗Einv is a module over the subalgebra of invariants EndF(H⊗E)D(H)⊗V
.

Proof:
The first claim follows because the linear map ρ(v,f) : D(H) → EndF(H⊗E) from Proposition
3.5.5 is an algebra homomorphism. One can show that for any finite-dimensional semisimple
Hopf algebra K, any algebra A and any algebra homomorphism ρ : K → A the linear map

� : A⊗K → A, k⊗a 7→ Σ(k) ρ(S(k(2))) · a · k(1)

defines a K-right module algebra structure on A (Exercise). As the vertex and face operators for
vertices and faces that do not share a marking commute, this defines a D(H)⊗V -module algebra
structure on EndF(H⊗E). To prove the last claim, it is sufficient to show that Y (H⊗Einv ) ⊂ H⊗Einv
for Y ∈ EndF(H⊗E)D(H)⊗V

. The EndF(H⊗E)D(H)⊗V
-module structure on H⊗Einv is then given by

restricting the EndF(H⊗E) module structure on H⊗E from Definition 3.5.1. For this, we show
first that Y ◦Bλ

f ◦A`v = Bλ
f ◦A`v ◦ Y for all Y ∈ EndF(H⊗E)D(H)⊗V

, vertices v and faces f that
share a marking. This follows by a direct computation

Y ◦Bλ
f ◦ A`v = Σ(`),(λ)(B

λ(1)
f A

`(3)
v A

S(`(2))
v B

S(λ(2))

f Y B
λ(3)
f A

`(1)
v )

= Σ(`),(λ)(B
λ(1)
f A

`(2)
v (Y �v,f (λ(2)⊗`(1))) = Σ(`),(λ)ε(λ(2))ε(`(1)) B

λ(1)
f A

`(2)
v Y = Bλ

f ◦ A`v ◦ Y,

where we used that ` ∈ H, λ ∈ H∗ are Haar integrals, the antipode condition, that A`v and Bλ
f

commute and the definition of an invariant. By Proposition 3.5.5, this implies Y ◦ P = P ◦ Y
for all Y ∈ EndF(H⊗E)D(H)⊗V

and hence Y (x) ∈ H⊗Einv for all x ∈ H⊗Einv . 2

Hence, we have clarified the mathematical stucture of Kitaev models and shown that they form
a simple application of the concepts introduced in this section:
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• The edge operators associated with an edge e ∈ E form an algebra that is isomorphic to
the cross product H#H∗ and to the algebra EndF(H) .

• The vertex and face operator for a given marking define a representation of the Hopf
algebra D(H) on the extended Hilbert space H⊗E, and by combining the operators for
all markings, one obtains a representation of D(H)⊗V .

• The submodule of invariants of this D(H)⊗V -module is the protected space. The
normalised Haar integrals for H and H∗ define a projector on the protected space.

• Similarly, the vertex and face operator for a given marking define a D(H)-module algebra
structure on the algebra of edge operators for the different edges e ∈ E. By combining
the vertex and face operators for different markings, one obtains a D(H)⊗V module
algebra structure on the algebra of edge operators.

• The subalgebra of invariants of this D(H)-module algebra structure acts on the protected
space. The normalised Haar integrals of H and H∗ define a projector on the subalgebra
of invariants.

3.6 Representations of Uq(sl2)

In this section, we consider the representations of an infinite-dimensional Hopf algebra, namely
the q-deformed universal enveloping algebra Uq(sl2) for the case where q ∈ C is not a root of
unity. This is one of the most important examples which gives rise to many applications in knot
theory. As we will see in the following, in the case where q is not a root of unity, the finite-
dimensional simple complex representations of Uq(sl2) can be classified in a very similar manner
to the finite-dimensional representations of the Lie algebra sl(2,C) and its universal enveloping
algebra U(sl2). In both cases, the key concepts are the so-called highest weight vectors and
highest weight modules.

Definition 3.6.1: Let q ∈ C and (V,�) be a module over Uq(sl2).

1. A weight of V is an eigenvalue of the linear map φK : V → V , v 7→ K � v. The
associated eigenspace is denoted V λ = ker(φK − λidV ) = {v ∈ V |K � v = λv}.

2. An eigenvector v ∈ V λ \ {0} is called a highest weight vector of weight λ if E� v = 0.

3. The module V is called a highest weight module of highest weight λ if it is generated
by a highest weight vector v of weight λ.

As a highest weight vector v ∈ V λ is annihilated by the generator E ∈ Uq(sl2) and mapped
to a multiple of itself by the generators K±1 ∈ Uq(sl2), the only way of obtaining a basis of a
highest weight module V from v is to act on it with the generators F . The relations of Uq(sl2)
in (9) ensure that this yields eigenvectors of φK for other eigenvalues and hence a set of linearly
independent vectors in V . By normalising these vectors with the q-binomials and q-factorials
from Definition 2.3.3 and their evaluations from Definition 2.3.5, we obtain the following lemma.
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Lemma 3.6.2: Suppose that q ∈ C is not a root of unity and (V,�) a module over Uq(sl2).

1. Then one has E � V λ ⊂ V q2λ and F � V λ ⊂ V q−2λ for all weights λ.

2. For an eigenvector v ∈ V λ \ {0} we define v0 := v and vp := qp(p−1)/2/(p)!q2 F
p � v for all

p ∈ N. Then one has for all p ∈ N0

K � vp = λq−2p vp, E � vp+1 =
q−pλ− qpλ−1

q − q−1
vp, F � vp = q−p(p+ 1)q2 vp+1.

Proof:
From the relations of Uq(sl2) in (9), we obtain for every v ∈ V λ

K � (E � v) = (KE) � v = (q2EK) � v = q2E � (K � v) = q2λE � v

K � (F � v) = (KF ) � v = (q−2FK) � v = q−2F � (K � v) = q−2λF � v.

This shows that E � V λ ⊂ V q2λ and F � V λ ⊂ V q−2λ. To prove 2. note that vp is well-defined
for all p ∈ N0 since q ∈ C is not a root of unity and hence (p)!q2 6= 0. The first and the last
identity in 2. then follow directly from the relations of Uq(sl2) and the definition of vp

F � vp =
qp(p−1)/2

(p)!q2
F � (F p � v0) = (p+ 1)q2q

−p qp(p+1)/2

(p+ 1)!q2
F p+1 � v0 = (p+ 1)q2q

−p vp+1

K � vp =
qp(p−1)/2

(p)!q2
(KF p) � v0 = q−2p q

p(p−1)/2

(p)!q2
(F pK) � v0 = λq−2p q

p(p−1)/2

(p)!q2
F p � v0 = λq−2p vp.

The remaining identity follows by induction over p. If it holds for p, then one has

E � vp+1 =
qp

(p+ 1)q2
E � (F � vp) =

qp

(p+ 1)q2

(
F � (E � vp) +

K −K−1

q − q−1
� vp

)
=

qp

(p+ 1)q2

(
q1−pλ− qp−1λ−1

q − q−1
F � vp−1 +

λq−2p − λ−1q2p

q − q−1
vp

)
=

qp

(p+ 1)q2

(q1−pλ− qp−1λ−1)q1−p(p)q2 + λq−2p − λ−1q2p

q − q−1
vp

=
qp

(p+ 1)q2

(q1−pλ− qp−1λ−1)q1−p(q2p − 1) + (λq−2p − λ−1q2p)(q2 − 1)

(q − q−1)(q2 − 1)
vp

=
qp

(p+ 1)q2

λ(q2 − q2−2p + q2−2p − q−2p) + λ−1(1− q2p − q2p+2 + q2p)

(q − q−1)(q2 − 1)
vp

= qp
λq2(1− q−2p−2) + λ−1(1− q2p+2)

(q − q−1)(q2p+2 − 1)
vp =

λq−p − λ−1qp

(q − q−1)
vp.

2

The expressions in Lemma 3.6.2 for the action of the generators K±1, E, F on an eigenvector
v ∈ V λ and the associated vectors vp closely resemble the expressions that one would obtain if for
the Lie algebra sl2 or, equivalently, the universal enveloping algebra U(sl2). The only difference
is that binomials and factorials are replaced by q-binomials and q-factorials. In particular, it
follows that every finite-dimensional complex representation of Uq(sl2) must have a highest
weight vector. This is a direct consequence of the fact that there can be only finitely many
linearly independent eigenvectors of φK .

Corollary 3.6.3: Suppose that q ∈ C is not a root of unity. Then every finite-dimensional
complex module over Uq(sl2) has a highest weight vector, and every simple finite-dimensional
complex module over Uq(sl2) is a highest weight module.

91



Proof:
If V is a finite-dimensional Uq(sl2)-module over C, then the linear map φK : V → V , v 7→ K�v
has at least one eigenvalue µ ∈ C and because φK−1 : V → V , v 7→ K−1 � v is inverse to φK
one has µ 6= 0. If v ∈ V µ \ {0} is an associated eigenvector, then by Lemma 3.6.2, one has
En�v ∈ V q2nµ for all n ∈ N0 and hence En�v is either an eigenvector for φK for the eigenvalue
q2nµ or En� v = 0. As q is not a root of unity and µ 6= 0, all values µq2n are different and their
eigenvectors are linearly independent. As V is finite-dimensional, the number of linearly inde-
pendent eigenvectors must be finite, and it follows that there is an eigenvector v′ of of φK with
E�v′ = 0. This is a highest weight vector. If V is simple, then the submodule of V generated by
v′ must be V , since it contains the vector v′ ∈ V \{0}, and hence V is a highest weight module. 2

With Lemma 3.6.2 one can show that the structure of a finite-dimensional highest weight
module is determined uniquely by its weight, and that the weight is determined, up to a sign,
by the dimension of the module. It also follows that a highest weight vector is unique up to
multiplication by a scalar and that every finite-dimensional highest weight module is simple.
This is again a direct analogue of the situation for finite-dimensional modules over the Lie
algebra sl(2,C), and the proof proceeds along the same lines as the proof for sl(2,C). The only
difference is that the eigenvalues of the map φK : V → V , v 7→ K � v and the eigenvectors are
modified by powers, factorials and binomials of q.

Theorem 3.6.4: Suppose that q ∈ C is not a root of unity and (V,�) an (n+1)-dimensional
highest weight module over Uq(sl2) that is generated by a highest weight vector v of weight λ.

1. With vp ∈ V as in Lemma 3.6.2 one has vp = 0 for p > n, and {v0, v1, ..., vn} is a basis of V .

2. The weight λ is given by λ = εqn with ε ∈ {±1} and φK : V → V , v 7→ K � v is
diagonalisable with eigenvalues εqn, εqn−2, ..., εq−n+2, εq−n.

3. Every highest weight vector of V is of weight λ and a scalar multiple of v.

4. The module V is simple.

Proof:
1. If v ∈ V is a highest weight vector of weight λ and V a highest weight module, then the
relations from Lemma 3.6.2 imply V = spanF{vp | p ∈ N0}. As K � vp = λq−2pvp for all p ∈ N0

by Lemma 3.6.2, one has either vp = 0 or vp is an eigenvector of K for the eigenvalue q−2pλ. As q
is not a root of unity and λ 6= 0, all eigenvalues q−2pλ are different. As eigenvectors for different
eigenvalues are linearly independent and V is finite-dimensional, there must be a n ∈ N0 with
vn 6= 0 and vn+1 = 0. As vk = 0 implies vp = 0 for all p ≥ k, it follows that vp = 0 for all
p ≥ n+ 1 and vp 6= 0 for all 0 ≤ p ≤ n. This shows that {v0, ..., vn} is a basis of V .

2. By Lemma 3.6.2 one has

0 = E � 0 = E � vn+1 =
λq−n − λ−1qn

q − q−1
vn

vn 6=0⇒ λ2 = q2n ⇒ λ = εqn with ε ∈ {±1}.

This implies that φK : V → V , v 7→ K � v is diagonalisable with n + 1 distinct eigenvalues
λ = εqn, λq−2 = εqn−2,..., λq−2n+2 = εq−n+1, λq−2n = εq−n.

3. If w ∈ V is another highest weight vector of weight λ′, then w is an eigenvector of φK . As
φK is diagonalisable with n+ 1 pairwise distinct eigenvalues and dimF(V ) = n+ 1, this implies
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w = µvi with µ ∈ F \ {0} and i ∈ {0, ..., n}. By Lemma 3.6.2, the condition E � w = 0 then
implies i = 0 and w = µv.

4. Suppose that {0} ( U ⊂ V is a submodule. Then U has a highest weight vector u ∈ U \ {0}
by Corollary 3.6.3 and u is also a highest weight vector for V . By 4. this implies u = µv with
µ ∈ F \ {0} and U = V . 2

By combining this Theorem with Corollary 3.6.3, we obtain a complete classification of all
finite-dimensional complex simple Uq(sl2)-modules. As every finite-dimensional complex simple
Uq(sl2)-module is a highest weight module by Corollary 3.6.3, it only remains to show that
highest weight modules of the same weight are isomorphic as Uq(sl2)-modules. This is a direct
consequence of the fact that any highest weight module is spanned by its highest weight vector
v ∈ V λ and the vectors F p � v for p ∈ N.

Corollary 3.6.5: Suppose that q ∈ C is not a root of unity. Then:

1. Finite-dimensional complex highest weight modules over Uq(sl2) of the same weight are
isomorphic as Uq(sl2)-modules.

2. Every n-dimensional simple complex Uq(sl2)-module is a highest weight module of weight
λ = ±qn−1.

Proof:
By Corollary 3.6.3 every finite-dimensional simple module V over Uq(sl2) has a highest weight
vector v ∈ V of weight λ. As V is simple and v 6= 0, the submodule generated by v must be
V and hence V is a highest weight module. If V and W are finite-dimensional highest weight
modules of weight λ, then there are highest weight vectors v ∈ V and w ∈ W of weight λ. By
Theorem 3.6.4 one has V = spanF{v0, ..., vn} and W = spanF{w0, ..., wn} with λ = εq2n and vp
and wp defines as in Lemma 3.6.2. By Lemma 3.6.2, the linear map ψ : V → W with ψ(vp) = wp
for all p ∈ {0, 1, ..., n} is a linear isomorphism, and by Lemma 3.6.2 it is an isomorphism of
representations. By Corollary 3.6.3 every simple complex n-dimensional Uq(sl2)-module is a
highest weight module, and by Theorem 3.6.4 is weight is given by λ = ±qn−1. 2

To conclude our discussion of finite-dimensional complex simple Uq(sl2) modules, we note that
there is a universal module V (λ) from which every finite-dimensional complex Uq(sl2)-module
of weight λ can be obtained by taking the quotient with respect to a suitable submodule. As
there are simple complex Uq(sl2)-modules of any dimension, it is clear that any such universal
module must be infinite-dimensional. Moreover, by the same considerations as in the proof of
Lemma 3.6.2, we find that it must be generated by a highest weight vector v of weight λ, from
which all other vectors in a basis of V (λ) can be obtained by acting on it with the generators
F p ∈ Uq(sl2). This leads to the concept of a Verma module.

Theorem 3.6.6: Suppose that q ∈ C is not a root of unity and λ 6= 0.

1. Let V be the complex vector space with basis {vp}p∈N0 . Then

K±1 � vp = λ±1q∓2p vp, E � vp =
q1−pλ− qp−1λ−1

q − q−1
vp−1, F � vp = q−p(p+ 1)q2 vp+1

with v−1 := 0 defines a Uq(sl2)-module structure on V . This module is denoted V (λ) and
called the Verma module of highest weight λ.
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2. The vector v0 ∈ V generates V (λ) and is a highest weight vector of weight λ.

3. The Verma module V (λ) has the following universal property: Any highest weight
Uq(sl2)-module of highest weight λ is a quotient module of V (λ).

Proof:
To show that this defines a Uq(sl2)-module structure on V it is sufficient to verify the multipli-
cation relations of Uq(sl2) from (9)

(K∓1K±1) � vp = K±1 � (K±1 � vp) = λ±1q∓2pK∓1 � vp = λ±1q∓2p λ∓1q±2p vp = vp = 1 � vp

(KE) � vp = K � (E � vp) =
q1−pλ− qp−1λ−1

q − q−1
K � vp−1 = λq2−2p q

1−pλ− qp−1λ−1

q − q−1
vp−1

= q2λq−2p q
1−pλ− qp−1λ−1

q − q−1
vp−1 = q2E � (λq−2pvp) = (q2EK) � vp

(KF ) � vp = K � (F � vp) = q−p(p+ 1)q2 K � vp+1 = λq−2p−2q−p(p+ 1)q2 vp+1

= q−2F � (λq−2pvp) = q−2F � (K � vp) = (q−2FK) � vp

([E,F ]) � vp = E � (F � vp)− F � (E � vp)

= q−p(p+ 1)q2E � vp+1 −
q1−pλ− qp−1λ−1

q − q−1
F � vp−1

=
q−p(q2p+2 − 1)(λq−p − λ−1qp)− q1−p(q2p − 1)(q1−pλ− qp−1λ−1)

(q2 − 1)(q − q−1)
vp

=
λ(q2 − q−2p − q2 + q2−2p) + λ−1(1− q2p+2 − 1 + q2p)

(q2 − 1)(q − q−1)
vp =

λq−2p − q2pλ−1

(q − q−1)
vp

= (q − q−1)(K −K−1) � vp

for all p ∈ N0. This shows that V (λ) is a Uq(sl2)-module. As we have E�v0 = 0 and K�v0 = λv0

by definition of V (λ), the vector v0 is a highest weight vector of weight λ. As we also have
by definition V = spanF{vp | p ∈ N0} and the relation F � vp = q−p(p + 1)q2vp+1 implies
vp = µpF

p� v0 for some µp 6= 0, the vector v0 generates V (λ). To verify the universal property
of the Verma module V (λ), suppose that W is a highest weight module of highest weight λ and
w ∈ W a highest weight vector. Then the linear map

ψ : V (λ)→ W, vp 7→
qp(p−1)/2

(p)!q2
F p � w

is a surjective homomorphism of representations. This implies W ∼= V (λ)/ ker(ψ) as a
Uq(sl2)-module. 2

Finally, we note that every finite-dimensional Uq(sl2) module is semisimple and hence can be
decomposed as a direct sum of the highest weight modules from Theorem 3.6.4. The proof
proceeds by constructing a complement of a submodule U ⊂ V of a finite-dimensional Uq(sl2)-
module V , where the cases dimF V −dimF U = 1 and dimF V −dimF U > 1 are treated separately
and one performs an induction over the dimension of U . As it is lengthy and technical and mainly
based on techniques from linear algebra, we omit this proof and refer to [Ka, Theorem VII.2.2].

Theorem 3.6.7: Suppose that q ∈ C is not a root of unity. Then every finite-dimensional
Uq(sl2)-module is semisimple.
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Although the classification of finite-dimensional complex simple Uq(sl2)-modules is achieved
by the same methods and structurally very similar to the classification of finite-dimensional
complex simple modules over sl2 and U(sl2), there is an important difference between mod-
ules over Uq(sl2) and over U(sl2): representations of Uq(sl2) and U(sl2) on tensor products of
Uq(sl2)-modules and U(sl2)-modules are constructed with the comultiplication of Uq(sl2) and
U(sl2). While the comultiplication of U(sl2) is cocommutative, this is not the case for Uq(sl2).
Consequently, if V and W are modules over U(sl2), then the flip map τ : V⊗W → W⊗V ,
v⊗w 7→ w⊗v is a module isomorphism between the U(sl2)-modules V⊗W and W⊗V , while
this does not hold in general for modules over Uq(sl2). The Uq(sl2)-module structure of the
tensor product of Uq(sl2)-modules depends on the order of the factors in the tensor product.

To conclude the discussion of the finite-dimensional Uq(sl2)-modules, we comment on the case
where q ∈ C is a root of unity. In this case, the relevant Hopf algebra is the finite-dimensional
Hopf algebra U r

q (sl2) from Proposition 2.3.12 which is obtained as a quotient of Uq(sl2). It was
shown in Example 3.4.12 that this Hopf algebra is not semisimple. Hence, it exhibits finite-
dimensional representations that are not simple and cannot be decomposed as a direct sum of
simple representations.

It is nevertheless instructive to consider its finite-dimensional simple representations. One find
that in addition to a finite set of highest weight modules from Theorem 3.6.4 for certain values
of λ, there is another set of finite-dimensional simple modules V ′λ,r, given as vector spaces by
V ′λ,r = span{v0, ..., vr−1} and with the Uq(sl2)-module structure

K � vp = λq−2pvp E � vp = q1−p(p)q2

(
q1−pλ− qp−1λ−1

q − q−1

)
vp−1 F � vp = vp+1

where we set v−1 = vr = 0. The classification of finite-dimensional simple complex U r
q (sl2)-

modules is then given as follows.

Remark 3.6.8: Suppose that q ∈ C is a primitive nth root of unity and set r = n if n is odd
and r = n/2 if p is even. Then every finite-dimensional nonzero simple module over the Hopf
algebra U r

q (sl2) from Proposition 2.3.12 is of the form

• r = n odd: A highest weight module from Theorem 3.6.4 with λ = qm and 0 ≤ m < r−1
or the module V ′q−1,r.

• n even, r = n/2 even: A highest weight module from Theorem 3.6.4 with λ = ±qm
with 0 ≤ m < r − 1 even.

• n even, r = n/2 odd: A highest weight module from Theorem 3.6.4 with λ = qm and
0 ≤ m < r − 1 even, or with λ = −qm and 0 < m < r − 1 odd, or the module V ′−q−1,r.
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4 Monoidal categories and monoidal functors

4.1 Monoidal categories

Bialgebras were introduced as algebras with additional structure that ensured that their rep-
resentation theory behaves like the one of a group. More precisely, we required a trivial rep-
resentation on the underlying field F and a canonical representation on the tensor product of
two representation spaces. In addition to these requirements, we imposed that the canonical
linear isomorphisms aU,V,W : (U⊗V )⊗W → U⊗(V⊗W ), lV : F⊗V → V and rV : V⊗F → V
are isomorphisms of representations.

In this section, we take a more abstract viewpoint and formulate the concept of a tensor product
for general categories. This requires a formulation that relies only on objects, morphisms, func-
tors and natural transformations. For this, recall that the tensor product of vector spaces induces
tensor products of linear maps. For each pair (f, g) of linear maps f : V → V ′ and g : W → W ′

there is a linear map f⊗g = (idV ′⊗g)◦(f⊗idW ) = (f⊗idW ′)◦(idV⊗g) : V⊗W → V ′⊗W ′. This
states that the tensor product is a functor ⊗ : VectF×VectF → VectF, since the composition of
morphisms in the category VectF×VectF is given by the composition in VectF and the relation
f × g = (f × idW ′) ◦ (idV × g) = (idV ′ × g) ◦ (f × idW ).

The associativity isomorphisms aU,V,W : (U⊗V )⊗W → U⊗(V⊗W ) relate the value of the
functors ⊗(⊗× idVectF) and ⊗(idVectF×⊗) on the triple (U, V,W ) of objects in VectF. Similarly,
if F × idVectF : VectF → VectF × VectF denotes the functor that assigns to a vector space V
the pair (F, V ) and to a linear map f : V → W the pair (idF, f), then the left and right unit
isomorphisms lV : F⊗V → V and rV : V⊗F→ V relate the values of the functors ⊗(F× idVectF)
and ⊗(idVectF×F) on an object V to the values of the functor idVectF . Moreover, the associativity
and unit isomorphisms are compatible with linear maps in the sense that

aU ′,V ′,W ′ ◦ ((f⊗g)⊗h) = (f⊗(g⊗h)) ◦ aU,V,W , lU ′ ◦ (idF⊗f) = f ◦ lU , rU ′ ◦ (f⊗idF) = f ◦ rU

for all linear maps f : U → U ′, g : V → V ′ and h : W → W ′. We can therefore interpret
them as component morphisms of natural isomorphisms a : ⊗(⊗ × idVectF) → ⊗(idVectF × ⊗),
l : ⊗(F × idVectF) → idVectF and r : ⊗(idVectF × F) → idVectF . If we also take into account the
compatibility conditions between multiple composites of the associativity isomorphisms and
between associativity and unit morphisms, we obtain the following definition that generalises
the tensor product of vector spaces to tensor products in a general category.

Definition 4.1.1:

A monoidal category or tensor category is a sextuple (C,⊗, e, a, l, r) consisting of

• a category C,
• a functor ⊗ : C × C → C, the tensor product,
• an object e in C, the tensor unit,
• a natural isomorphism a : ⊗(⊗× idC)→ ⊗(idC ×⊗), the associator,
• natural isomorphisms r : ⊗(idC×e)→ idC and l : ⊗(e×idC)→ idC, the unit constraints,

subject to the following two conditions:
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1. pentagon axiom: for all objects U, V,W,X of C the following diagram commutes

((U⊗V )⊗W )⊗X
aU,V,W⊗1X

��

aU⊗V,W,X// (U⊗V )⊗(W⊗X)
aU,V,W⊗X// U⊗(V⊗(W⊗X))

(U⊗(V⊗W ))⊗X aU,V⊗W,X

// U⊗((V⊗W )⊗X).

1U⊗aV,W,X

44

2. triangle axiom: for all objects V,W of C the following diagram commutes

(V⊗e)⊗W
aV,e,W //

rV ⊗1W &&

V⊗(e⊗W )

1V ⊗lWxx
V⊗W.

A monoidal category is called strict if the natural isomorphisms a, r and l are the identity
natural transformations.

Remark 4.1.2:

1. The tensor unit and the unit constraints are determined by ⊗ uniquely up to unique
isomorphism: If e′ is an object in C with natural isomorphisms r′ : idC × e′ → idC and
l′ : e′× idC → idC, then there is a unique isomorphism φ : e→ e′ with r′X ◦ (1X × φ) = rX
and l′X ◦ (φ× 1X) = lX . (Exercise).

2. One can show that if C,D are objects of a monoidal category (C,⊗, e, a, l, r) and
f, g : C → D morphisms in C that are obtained by composing identity morphisms, com-
ponent morphisms of the associator a and component morphisms of the left and right unit
constraints l, r with the composition of morphisms and the tensor product, then f and
g are equal. This is MacLane’s famous coherence theorem. A proof of this statement
can be found in [McL, Chapter VI.2] and [Ka, Chapter XI.5].

Examples of Mac Lane’s coherence theorem are the following lemma and corollary about the
properties of the tensor unit and the associated left and right unit constraints. They motivate
the name monoidal category.

Lemma 4.1.3: Let (C,⊗, e, a, l, r) be a monoidal category. Then the diagrams

(e⊗V )⊗W

lV ⊗1W &&

ae,V,W // e⊗(V⊗W )

lV⊗Wxx
V⊗W

(V⊗W )⊗e

rV⊗W &&

aV,W,e // V⊗(W⊗e)

1V ⊗rWxx
V⊗W

commute for all objects V,W , and one has le⊗V = 1e⊗lV , rV⊗e = rV⊗1e and le = re.
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Proof:
1. We consider for objects U, V,W of C the diagram

((U⊗e)⊗V )⊗W
aU,e,V ⊗1W //

(rU⊗1V )⊗1W

))
aU⊗e,V,W

��

(U⊗(e⊗V ))⊗W
(1U⊗lV )⊗1W

uu
aU,e⊗V,W

��

(U⊗V )⊗W
aU,V,W

��
(U⊗e)⊗(V⊗W )

rU⊗1V⊗W //

aU,e,V⊗W ))

U⊗(V⊗W ) U⊗((e⊗V )⊗W )

1U⊗ae,V,Wuu

1U⊗(lV ⊗1W )oo

U⊗(e⊗(V⊗W )).

1U⊗lV⊗W

OO

The outer pentagon in this diagram commutes by the pentagon axiom, the upper triangle and
the lower left triangle commute by the triangle axiom and the two quadrilaterals by the natu-
rality of a : ⊗(⊗× idC)→ ⊗(idC×⊗). As all arrows in this diagram are isomorphisms, it follows
that the lower right triangle commutes as well. To show that this implies the commutativity of
the first triangle in the lemma, we choose U = e and use the naturality of l : ⊗(e× idC)→ idC,
which implies f = g for all morphisms f, g : X → Y with 1e⊗f = 1e⊗g:

X

f

$$

g

::e⊗XlXoo
1e⊗f ++

1e⊗g
33 e⊗Y

lY // Y.

This shows that the first triangle commutes, and the proof for the second triangle is similar.

2. To prove the last three identities in the lemma, we consider the commutative diagrams

e⊗(e⊗V )
le⊗V //

1e⊗lV
��

e⊗V
lV
��

e⊗V
lV

// V

(e⊗e)⊗e
re⊗1e

zz
ae,e,e

��

le⊗1e

$$
e⊗e

1e⊗e

55e⊗(e⊗e)1⊗leoo le⊗e // e⊗e

The first diagram commutes by the naturality of l : ⊗(e× idC)→ idC. Because lV : e⊗V → V
is an isomorphism, it follows that le⊗V = 1e⊗lV . The proof of the identity rV⊗e = rV⊗1e is
analogous. In the second diagram, the lower triangle is the identity le⊗e = 1e⊗le, which follows
from the first diagram with V = e, the left triangle commutes by the triangle axiom and the
right triangle commutes by 1. Hence, the outer triangle commutes as well and le⊗1e = re⊗1e.
By the same argument as in 1. this implies re = le. 2

Corollary 4.1.4: The endomorphisms of the tensor unit in a monoidal category form a
commutative monoid.
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Proof:
In any category C and for any object C the set HomC(C,C) is a monoid with the composition
of morphisms. To show that HomC(e, e) is commutative, we consider the diagram

e
g //

f

��

e

f

��

e⊗e

re

le

aa

f⊗1e
��

1e⊗g // e⊗e
f⊗1e
��

re

le

==

e⊗e
le
re

}}

1e⊗g
// e⊗e

le
re

!!
e

g // e

where we used the identity le = re from Lemma 4.1.3. The inner rectangle commutes because
⊗ : C ×C → C is a functor. The inner quadrilaterals commute by the naturality of r and l, and
hence the outer square commutes as well. 2

Many categories from algebra or topology have a monoidal structure. This includes in particular
any category with finite products or coproducts. Note that a given category can have several
non-equivalent monoidal structures. Specifying the functor ⊗ : C ×C → C and the associativity
constraint a amount to a choice of structure, while the tensor unit and unit constraints are
essentially determined by the functor ⊗.

Example 4.1.5:

1. The category VectF of vector spaces over F is a monoidal category with:

• the functor ⊗ : VectF×VectF → VectF that assigns to a pair (V,W ) of vector spaces
over F the vector space V⊗W and to a pair (f, g) of linear maps f : V → V ′,
g : W → W ′ the linear map f⊗g : V⊗W → V ′⊗W ′, v⊗w 7→ f(v)⊗g(w),
• the tensor unit e = F,
• the associator with component isomorphisms
aU,V,W : (U⊗V )⊗W ∼−→ U⊗(V⊗W ), (u⊗v)⊗w 7→ u⊗(v⊗w)
• the unit constraints with component morphisms
rV : V⊗F ∼−→ V , v⊗λ 7→ λv and lV : F⊗V ∼−→ V , λ⊗v 7→ λv.

2. More generally, for any commutative ring R, the category R-Mod of modules over R is a
monoidal category with:

• the functor ⊗R : R-Mod × R-Mod → R-Mod that assigns to a pair (M,N) of R-
modules the module M⊗RN and to a pair (f, g) of R-linear maps f : M → M ′,
g : N → N ′ the R-linear map f⊗Rg : M⊗RN →M ′⊗RN ′, m⊗n 7→ f(m)⊗g(n),
• the tensor unit e = R,
• the associator with component morphisms
aM,N,P : (M⊗RN)⊗RP

∼−→M⊗R(N⊗RP ), (m⊗n)⊗p 7→ m⊗(n⊗p)
• the unit constraints with component morphisms
rM : M⊗RR

∼−→M , m⊗r 7→ r �m and lM : R⊗RM
∼−→M , r⊗m 7→ r �m.
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3. For any small category C, the category End(C) of endofunctors F : C → C and natural
transformations between them is a strict monoidal category with:

• the functor ⊗ : End(C)×End(C)→ End(C) that assigns to a pair (F,G) of functors
F,G : C → C the functor FG : C → C and to a pair (µ, η) of natural transformations
µ : F → F ′, η : G→ G′ the natural transformation µη : FG→ F ′G′ with component
morphisms (µη)C = µG′(C) ◦ F (ηC) = F ′(ηC) ◦ µG(C) : FG(C)→ F ′G′(C),
• the identity functor as the tensor unit: e = idC.

4. The categories Set and Top are monoidal categories with:

• the functor ⊗ : Set× Set→ Set that assigns to a pair of sets (X, Y ) their cartesian
product X × Y and to a pair (f, g) of maps f : X → X ′, g : y → Y ′ the product
f×g : X×Y → X ′×Y ′, (x, y) 7→ (f(x), g(y)) and the functor ⊗ : Top×Top→ Top
that assigns to a pair (X, Y ) of topological spaces the product space X × Y and to
a pair of continuous maps f : X → X ′, g : Y → Y ′ the product map f × g,
• the one-point set {p} and the one-point space {p} as the tensor unit,
• the associators with component morphisms
aX,Y,Z : (X × Y )× Z → X × (Y × Z), ((x, y), z) 7→ (x, (y, z)),
• the unit constraints with component morphisms
rX : X × {p} → X, (x, p) 7→ x and lX : {p} ×X → X, (p, x) 7→ x.

5. More generally, any category C with finite (co)products is a tensor category with:

• the functor ⊗ : C × C → C that assigns to a pair of objects their (co)product and
to a pair of morphisms the corresponding morphism between (co)products that is
induced by their universal property,
• the empty (co)product, i. e. the initial or final object in C as the tensor unit,
• the associators induced by the universal properties of the (co)products,
• the unit constraints induced by the universal properties of the (co)products.

This includes:

• the category Set with the disjoint union of sets and the empty set,
• the category Top with the sum of topological spaces and the empty space,
• the category Mfldn of topological or smooth n-dimensional manifolds with the dis-

joint union and the empty manifold,
• the category R-Mod for any ring R with direct sums and the null module,
• the category Top1 of pointed topological spaces with wedge sums and the one-point

space or with products of pointed spaces and the one-point space,
• the category Grp with the direct product of groups and the trivial group or with

the free product of groups and the trivial group.

6. For any commutative ring R, the category ChR-Mod of chain complexes in R-Mod is a
strict monoidal category with the tensor product of chain complexes given by

(C•⊗D•)n = ⊕nk=0Ck⊗RDn−k, dC⊗D(c⊗d) = dC(c)⊗d+ (−1)deg(c)c⊗dD(d)

and the induced tensor product of chain maps.
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Example 4.1.6: The simplex category ∆ has as objects ordinal numbers [0] = ∅ and
[n] = {0, 1, ..., n − 1} for n ∈ N and as morphisms f : [n] → [m] monotone maps, i. e. maps
f : {0, ..., n − 1} → {0, ...,m − 1} with f(i) ≤ f(j) for all 0 ≤ i ≤ j < n. It is a strict tensor
category with:

• the functor ⊗ : ∆ × ∆ → ∆ that assigns to a pair ([m], [n]) of ordinals the ordinal
[m + n] and to a pair (f, g) of monotone maps f : [m] → [m′] and g : [n] → [n′]
the map f⊗g : [m + n] → [m′ + n′] with (f⊗g)(i) = f(i) for 0 ≤ i ≤ m − 1 and
(f⊗g)(i) = m′ + g(i−m) for m ≤ i ≤ n+m− 1,

• the ordinal [0] = ∅ as the tensor unit.

Our algebraic main example of a monoidal category is the representation category of a bialgebra.
The condition that the representations of a bialgebra should form a tensor category was our
original motivation for the bialgebra axioms. We can now formulate this result in the language
of monoidal categories.

Theorem 4.1.7: Let (A,m, η) be an algebra over F, ∆ : A → A⊗A, ε : A → F algebra
homomorphisms and (V,�V ), (W,�W ) modules over A.

1. Then F and V⊗W become A-modules with

�F : A⊗F→ F, a⊗λ 7→ ε(a)λ

�V⊗W : A⊗(V⊗W )→ V⊗W, a⊗(v⊗w) 7→ Σ(a)(a(1) �V v)⊗(a(2) �W w).

2. The induced functor ⊗ : A-Mod×A-Mod→ A-Mod equips A-Mod with the structure of
a monoidal category if and only if (A,m, η,∆, ε) is a bialgebra.

Proof:
It was shown in Section 2.1 that any algebra homomorphism ∆ : A→ A⊗A defines an A-module
structure on V⊗W . It also follows directly that for any pair (f, g) of A-module homomorphisms
f : V → V ′ and g : W → W ′ the linear map f⊗g : V⊗W → V ′⊗W ′ is a module isomor-
phism if V⊗W and V ′⊗W ′ are equipped with this A-module structure. Hence, for any algebra
homomorphism ∆ : A→ A⊗A, we obtain a functor ⊗ : A-Mod× A-Mod→ A-Mod.

It was also shown in Section 2.1 that any algebra homomorphism ε : A → F defines an A-
module structure on F and that the linear isomorphisms aU,V,W : (U⊗V )⊗W → U⊗(V⊗W ),
(u⊗v)⊗w 7→ u⊗(v⊗w), lV : F⊗V → V , λ⊗v → λv and rV : V⊗F→ V , v⊗λ 7→ λv are module
isomorphisms if (A,m, η,∆, ε) is a bialgebra. As they are natural and satisfy the pentagon
and the triangle axioms, this shows that for any bialgebra (A,m, η,∆, ε) the category A-Mod
becomes a monoidal category when equipped with these structures.

Conversely, if A-Mod is a monoidal category when equipped with this tensor functor and
the trivial module structure on F, then the linear maps aA,A,A : (A⊗A)⊗A → A⊗(A⊗A),
lA : F⊗A → A and rA : A⊗F → A are isomorphisms of representations when A is equipped
with its canonical A-module structure by left multiplication. This implies

(∆⊗id) ◦∆(a) = a� ((1A⊗1A)⊗1A) = a� (1A⊗(1A⊗1A)) = (id⊗∆) ◦∆(a)

lA ◦ (ε⊗id) ◦∆(a) = lA(a� (1F⊗1A)) = a� 1A = a

rA ◦ (id⊗ε) ◦∆(a) = rA(a� (1A⊗1F)) = a� 1A = a

for all a ∈ A, and hence (A,m, η,∆, ε) is a bialgebra. 2
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Two important examples of monoidal categories with a geometrical interpretation arise from a
construction involving groups. For this, note that a group can be viewed as a category with a
single object, with the group elements as morphisms and the composition of morphisms given
by the group multiplication. Given a family (Gn)n∈N0 of groups, one can construct a category
whose objects are number n ∈ N0, with Hom(n, n) = Gn and all other morphism sets empty. If
there is a family of group homomorphisms relating the groups Gm and Gn to the group Gm+n

and subject to some consistency conditions, then this category becomes monoidal.

Example 4.1.8: Suppose (Gn)n∈N0 is a family of groups with G0 = {e} and (ρm,n)m,n∈N0 a
family of group homomorphisms ρm,n : Gm×Gn → Gm+n such that ρ0,m and ρm,0 are given by
ρ0,m : {e} ×Gm → Gm, (e, g) 7→ g and ρm,0 : Gm × {e} → Gm, (g, e) 7→ g and

ρm+n,p ◦ (ρm,n × idGp) = ρm,n+p ◦ (idGM
× ρn,p) ∀m,n, p ∈ N0. (32)

Then one obtains a strict tensor category C as follows:

• The objects of C are nonnegative integers n ∈ N0.
• The set of morphisms HomC(n,m) is given by

HomC(m,n) =

{
∅ n 6= m

Gn n = m,

• The tensor product ⊗ : C × C → C given by m⊗n = m + n for all n,m ∈ N0 and
f⊗g = ρm,n(f, g) for all morphisms f ∈ Gm, g ∈ Gn and the tensor unit e = 0.

In particular, the construction from Example 4.1.8 can be applied to the braid groups and
permutation groups, which both form families of groups with the required families of group
homomorphisms.

Definition 4.1.9: For n ∈ N the braid group Bn on n strands is the group presented by
generators σ1, .., σn−1 and relations

σiσi+1σi = σi+1σiσi+1 ∀i ∈ {1, ..., n− 2}
σiσj = σjσi ∀i, j ∈ {1, ..., n− 1} with |i− j| > 1.

The braid group Bn is closely related to the permutation group Sn. This is easy to see if
one presents the latter in terms of generators and relations. The permutation group Sn is
presented with generators π1, ..., πn−1 and relations

πiπi+1πi = πi+1πiπi+1 ∀i ∈ {1, ..., n− 2}
πiπj = πjπi ∀i, j ∈ {1, ..., n− 1} with |i− j| > 1

π2
i = 1 ∀i ∈ {1, ..., n− 1},

where πi is the elementary transposition with πi(i) = i + 1, πi(i + 1) = i and πi(j) = j for
j /∈ {i, i+1}. As the permutation group Sn is presented by the same relations as the braid group
Bn and the additional relations π2

i = 1, there is a unique group homomorphism Πn : Bn → Sn
with Πn(σi) = πi.

To apply the construction from Example 4.1.8 to the families (Bn)n∈N0 and (Sn)n∈N0 , note that
the relations of the braid and permutation groups imply that the maps

ρm,n : Bm ×Bn → Bn+m, (σi, σj) 7→ σi ◦ σm+j ρ′m,n : Sm × Sn → Sm+n, (πi, πj) 7→ πi ◦ πm+j

are group homomorphisms that satisfy the condition (32).
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Definition 4.1.10:

1. The braid category B is the strict monoidal category from Example 4.1.8 asso-
ciated with the family (Bn)n∈N0 of braid groups and the group homomorphisms
ρm,n : Bm ×Bn → Bn+m above.

2. The permutation category S is the strict monoidal category from Example 4.1.8 as-
sociated with the family (Sn)n∈N0 of permutation groups and the group homomorphisms
ρ′m,n : Sm × Sn → Sn+m above.

The name braid group stems from the fact that elements σ ∈ Bn can be visualised by braid
diagrams, which involve two parallel horizontal lines with n marked points, labelled from the
left to the right by 1, ..., n. The diagram for an element σ ∈ Bn is obtained by drawing n
smooth curves that are nowhere horizontal and connect the point i on the upper line to the
point Πn(σ)(i) on the lower line. The intersection points of these curves are then changed to
overcrossings and undercrossings, in such a way that at each intersection point exactly one
curve crosses over another. The diagrams for the generators σi and their inverses σ−1

i are

1

1

. . .

i− 1

i− 1

i

i

i+ 1

i+ 1

i+ 2

i+ 2

. . .

n

n

1

1

. . .

i− 1

i− 1

i

i

i+ 1

i+ 1

i+ 2

i+ 2

. . .

n

n

The generator σi ∈ Bn. The generator σ−1
i ∈ Bn.

The group multiplication in Bn is given by the vertical composition of diagrams. The diagram
for the group element τ ◦ σ ∈ Bn is obtained by putting the diagram for τ below the one
for σ such that the points on the horizontal lines match, erasing the middle lines, connecting
the strands of the two diagrams and tightening them to remove unnecessary crossings. This
corresponds to applying the relations σ∓1

i ◦ σ±1
i = 1:

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

The relation σ−1
i ◦ σi = 1 = σi ◦ σ−1

i .

The remaining relations of the braid group in Definition 4.1.9 correspond to sliding two crossings
that do not share a strand past each other and to sliding one crossing point in a triple crossing
below the remaining strand.
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1

1

. . .

i

i

i+ 1

i+ 1

j

. . .

j

j + 1

j + 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

j

. . .

j

j + 1

j + 1

. . .

n

n

The relation σi ◦ σj = σj ◦ σi for |i− j| > 1.

1

1

. . .

i− 1

i− 1

i

i

i+ 1

i+ 1

i+ 2

i+ 2

. . .

i+ 3

i+ 3

n

n

=

1

1

. . .

i− 1

i− 1

i

i

i+ 1

i+ 1

i+ 2

i+ 2

. . .

i+ 3

i+ 3

n

n

The relation σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1.

Elements of the permutation group Sn are represented by the same diagrams, but with cross-
ings instead of overcrossings and undercrossings. This corresponds to the additional relations
π2
i = 1 or, equivalently, πi = π−1

i for all i ∈ {1, ..., n− 1}, which identify overcrossings and un-
dercrossings. This implies that the group homomorphism Πn : Bn → Sn, σi 7→ πi is represented
graphically by changing each overcrossing or undercrossing in a braid diagram to a crossing:

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

n

n

The relation πi = π−1
i in Sn.

Elements of the braid category and the permutation category are visualised by the same di-
agrams. The only difference is that in addition to the vertical composition of diagrams that
corresponds to the composition of morphisms, there is also a horizontal composition corre-
sponding to the tensor product. The tensor product f⊗g : m + n → m + n of two morphisms
f : m→ m and g : n→ n is obtained by putting the diagram for g with n strands to the right
of the diagram for f and adding m to each number in the diagram for g.

1

1

. . .

i

i

i+ 1

i+ 1

. . .

m

m

⊗

1

1

. . .

j

j

j + 1

j + 1

. . .

n

n

=

1

1

. . .

i

i

i+ 1

i+ 1

. . .

m

m

m+ 1

m+ 1

. . .

m+ j

m+ j

. . .

m+ n

m+ n
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Many applications of Hopf algebras arise from the fact that their representation categories
can be related to certain monoidal categories from low dimensional topology such as the braid
category and certain categories of manifolds. Such a relation must be given by a functor and re-
quires a notion of functor that is compatible with the monoidal structures of the two categories,
i. e. the tensor product, the tensor units, the associator and the unit constraints. Compatibility
with the former takes the form of additional structure, namely certain (natural) isomorphisms
associated with the functor, while compatibility with the latter leads to consistency conditions,
i. e. requirements that certain diagrams involving this additional structure commute. Natural
transformation between such functors should also compatible with the additional structure for
the functors. This takes the form of consistency conditions, i. e. certain diagrams involving their
component morphisms and the additional structure for the functors commute.

Definition 4.1.11:
Let (C,⊗C, eC, aC, lC, rC) and (D,⊗D, eD, aD, lD, rD) be monoidal categories.

1. A monoidal functor or tensor functor from C to D is a triple (F, φe, φ⊗) of

• a functor F : C → D,
• an isomorphism φe : eD → F (eC) in D,
• a natural isomorphism φ⊗ : ⊗D(F × F )⇒ F⊗C,

that satisfy the following axioms:

(a) compatibility with the associativity constraint:
for all objects U, V,W of C the following diagram commutes

(F (U)⊗F (V ))⊗F (W )
aD
F (U),F (V ),F (W )//

φ⊗U,V ⊗1F (W )

��

F (U)⊗(F (V )⊗F (W ))

1U⊗φ⊗V,W
��

F (U⊗V )⊗F (W )

φ⊗U⊗V,W
��

F (U)⊗F (V⊗W )

φ⊗U,V⊗W
��

F ((U⊗V )⊗W )
F (aCU,V,W )

// F (U⊗(V⊗W )).

(b) compatibility with the unit constraints:
for all objects V of C the following diagrams commute

eD⊗F (V )

lD
F (V )

��

φe⊗1F (V )// F (eC)⊗F (V )

φ⊗eC ,V
��

F (V ) F (eC⊗V )
F (lCV )

oo

F (V )⊗eD
rD
F (V )

��

1F (V )⊗φe// F (V )⊗F (eC)

φ⊗V,eC
��

F (V ) F (V⊗eC).
F (rCV )

oo

A monoidal functor (F, φe, φ⊗) is called strict if φe = 1eD and φ⊗ = idF⊗C is the identity
natural transformation. It is called a monoidal equivalence if F : C → D is an
equivalence of categories.

2. Let (F, φe, φ⊗), (F ′, φ′e, φ′⊗) : C → D be monoidal functors. A monoidal natural
transformation from F to F ′ is a natural transformation η : F → F ′ that satisfies:

105



(a) compatibility with φe and φ′e: the following diagram commutes

F (eC)
ηeC // F ′(eC)

eD.
φe

cc

φ′e

;;

(b) compatibility with φ⊗ and φ′⊗: For all objects V,W of C the diagram

F (V )⊗F (W )

φ⊗V,W
��

ηV ⊗ηW// F ′(V )⊗F ′(W )

φ′⊗V,W
��

F (V⊗W ) ηV⊗W

// F ′(V⊗W ).

commutes. A monoidal natural transformation η : F ⇒ F ′ is called monoidal isomor-
phism if for all objects V of C the morphism ηV : F (V )→ F (V ′) is an isomorphism.

Remark 4.1.12:

1. The isomorphism φe and the natural isomorphism φ⊗ are sometimes called the coher-
ence data of the monoidal functor (F, φe, φ⊗).

2. One can show that for any monoidal category there is a monoidal equivalence of categories
to a strict monoidal category. This is MacLane’s strictification theorem and directly
related to the coherence theorem. The proof is given in [McL, VI.2] and [Ka, XI.5].

Example 4.1.13:

1. The forgetful functor F : Top → Set, that assigns to a topological space the underlying
set and sends each continuous map to itself is a strict monoidal functor with respect to
the product of topological spaces and the cartesian product of sets and with respect to
the sum of topological spaces and the disjoint union of sets.

2. For any bialgebra B over F, the forgetful functor F : B-Mod→ VectF that assigns to a
B-module M the underlying vector space M over F and to a B-module homomorphism
f : M → N the linear map f : M → N is a strict monoidal functor.

3. The functor F : Set → VectF that assigns to a set X the free vector space F (X) = 〈X〉F
generated by X and to a map f : X → Y the unique linear map F (f) : 〈X〉F → 〈Y 〉F
with F (f)|X = f is a monoidal equivalence with respect to the cartesian product of sets
and the tensor product of vector spaces. Its coherence data is given by φe : F → 〈{p}〉F,
λ 7→ λp, and φ⊗X,Y : 〈X〉F⊗〈Y 〉F → 〈X × Y 〉F, x⊗y 7→ (x, y).

4. A bialgebra homomorphism φ : B → C induces a monoidal functor Fφ : C-mod→ B-Mod
that assigns to a B-module (M,�C) the B-module (M,�B) with module structure
b�B m = φ(b) �C m and each a C-module map f : M → N to itself.

5. Let H be a Hopf algebra and g ∈ H grouplike. Then one obtains a monoidal functor
F : H-Mod → H-Mod by assigning to a H-module (M,�) the module (M,�′) with
h�′m = (ghg−1)�m and to a H-module morphism f : (M,�)→ (N,�) the H-module
morphism f : (M ′,�) → (N ′,�). The morphisms µM : (M,�) → (M,�′), m 7→ g �m
define a monoidal natural isomorphism µ : idH-Mod → F .
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Our aim in the following sections will be to construct interesting monoidal functors between
monoidal categories from low-dimensional topology and between the representation categories
of bialgebras and Hopf algebras. As a preparation, we introduce a diagrammatic calculus for
monoidal categories that will give us a more geometrical picture.

Objects in a monoidal category C are represented by vertical lines labelled with the name of
the object. The unit object e is represented by the empty line, i. e. not drawn in the diagrams.
A morphism f : X → Y is represented as a vertex on a vertical line that divides the line in
to an upper part labelled by X and a lower part labelled by Y . Unit morphisms in C are not
represented by vertices in the diagrams.

X e

X

Y

f

X

X

1X

e

e

f

the object X the tensor unit e a morphism identity morphism an endomorphism
f : X → Y 1X : X → X f : e→ e

The composition of morphisms is given by the vertical composition of diagrams, whenever the
object at the bottom of one diagram matches the object at the top of the other. More precisely,
the composite g ◦ f : X → Z of two morphisms f : X → Y and g : X → Z is obtained
by putting the diagram for g below the one for f . The associativity of the composition of
morphisms and the properties of the unit morphisms ensure that this is consistent for multiple
composites and that it is possible to omit identity morphisms.

X

Y

Z

X

Z

=

f

g

g ◦ f

X

Y

1X

f

=

X

Y

1Y

f
=

X

Y

f

Tensor products of objects and morphisms are given by the horizontal composition of diagrams.
The diagram for the tensor product U⊗X involves two parallel vertical lines, the one on the
left labelled by U and the one on the right labelled by X. The tensor product of morphisms is
represented by vertices on such lines. The condition that ⊗ : C × C → C is a functor allows one
to slide these vertices past each other and to compose them individually on each line:

U

V

h

X

Y

f
=

U

V

h

X

Y

f
=

U

V

h

X

Y

f =

U⊗X

V⊗Y

h⊗f

U

V

h

e

=

e U

V

h =

U

V

h (33)

X

Y

Z

X

Z

=

f

g

g ◦ f

U U X

Y

Z

X

Z

=

f

g

g ◦ f

U U
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Note that just as the tensor unit and the identity morphisms, the component morphisms of the
associator and of the left and right unit constraints are not represented in this diagrammatical
calculus. This is consistent because of MacLane’s coherence theorem. As any two morphisms
represented by the same diagram are related by identity morphisms, component morphisms of
the associator and the left and right unit constraints, the coherence theorem implies that two
morphisms represented by the same diagram are related by a unique isomorphism built up of
identity morphisms and these component morphisms.

In particular, this graphical representation gives rise to a graphical calculus for algebras, coalge-
bras modules and comodules in monoidal categories. As the definition of an algebra or coalgebra
can be given purely in terms of linear maps m : A⊗A → A, η : F → A or ∆ : A → A⊗A,
ε : A → F, subject to (co)associativity and (co)unitality axioms, these notions have a direct
generalisation to monoidal categories. They are obtained by replacing linear maps with mor-
phisms, and the field F by the tensor unit. Similarly, one obtains a general notion of modules
and comodules in a monoidal category.

Definition 4.1.14: Let (C,⊗, e, a, l, r) be a monoidal category.

1. An algebra or an algebra object in C is an object A in C together with morphisms
µ : A⊗A→ A and η : e→ A such that the following diagrams commute

(A⊗A)⊗A
µ⊗1A

��

aA,A,A // A⊗(A⊗A)

1A⊗µ
��

A⊗A µ
// A A⊗Aµ
oo

e⊗A

lA $$

η⊗1A // A⊗A
µ

��

A⊗e1A⊗ηoo

rA
zz

A

2. A coalgebra or a coalgebra object in C is an object C in C together with morphisms
∆ : C → C⊗C and ε : C → e such that the following diagrams commute

(C⊗C)⊗C
aC,C,C // C⊗(C⊗C)

C⊗C

∆⊗1C

OO

C
∆

oo
∆
// C⊗C

1C⊗∆

OO
e⊗C C⊗Cε⊗1Coo 1C⊗ε // C⊗e

C

∆

OO

l−1
C

dd

r−1
C

::

3. Let (A, µ, η) be an algebra object in C. An A-left module or A-left module object in
C is an object M in C together with a morphism � : A⊗M →M such that the following
diagrams commute

(A⊗A)⊗M
µ⊗1M

��

aA,A,M// A⊗(A⊗M)
1A⊗� // A⊗M

�
xx

A⊗M
�

//M

M

1M
��

lM // e⊗M
η⊗1M
��

M A⊗M.
�

oo

Right module and bimodule objects in C and left, right and bicomodule objects in C are
defined analogously.

Example 4.1.15:

1. An algebra object in the category VectF is an algebra over F and a coalgebra object in
the category VectF is a coalgebra over F.
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2. Let B be a bialgebra and B-Mod the category of modules over B. An algebra object
in B-Mod is a module algebra over B, and a coalgebra object in B-Mod is a module
coalgebra over B.

3. An algebra object in the strict monoidal category End(C) for a small category C is also
called a monad. It is a triple (T, µ, η) of a functor T : C → C together with natural
transformations µ : T 2 ⇒ T and η : idC ⇒ T such that the following diagrams commute

T 3 Tµ //

µT
��

T 2

µ

��
T 2

µ
// T

T
ηT //

idT   

T 2

µ

��

T
Tηoo

idT~~
T.

A coalgebra object in End(C) is called a comonad. It is a triple (S,∆, ε) of a functor
S : C → C and natural transformations ∆ : S ⇒ S2 and ε : S ⇒ idC such that the
diagrams dual to the monad diagrams commute.

4. Any algebra object (A, µ, η) in C is a module object over itself with � = µ : A⊗A→ A.

Algebra, coalgebra and module objects in a monoidal category C can be described graphically.
They are given by the following diagrams and consistency conditions:

1. algebra object:

A A

A A

A

A

=

A

A

=

A

A AA

A

=

A AA

A

multiplication unit unitality condition associativity condition
µ : A⊗A→ A η : e→ A

2. coalgebra object:

C C

C C

C

C

=

C

C

=

C

C CC

C

=

C CC

C

comultiplication counit counitality condition coassociativity condition
∆ : C → C⊗C ε : C → e

3. module object over an algebra object:

M

M

A M

M

A =

M A A M

M
A

=

M

M

AA

M

morphism compatibility with compatibility with
� : A⊗M →M η : e→ A µ : A⊗A→ A.

Note that the structures introduced so far are not sufficient to define bialgebra object in a
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monoidal category. This requires a generalisation of the flip map τ : U⊗V → V⊗U , which is
needed in the condition that the comultiplication of a bialgebra is an algebra homomorphism.

4.2 Braided monoidal categories and the braid category

To generalise the notion of the flip map τ : U⊗V → V⊗U in the category of vector spaces to
a monoidal category, we require a notion of an opposite tensor product. For this, note that for
any functor ⊗ : C × C → C, there is an opposite functor ⊗op : C × C → C that assigns to a
pair (U, V ) of objects in C the object U⊗opV = V⊗U and to a pair of morphisms f : U → U ′,
g : V → V ′ the morphism f⊗opg = g⊗f : V⊗U → V ′⊗U ′. Moreover, if (C,⊗, e, a, l, r) is a
tensor category then (C,⊗op, e, a′, r, l) becomes a tensor category as well with the associator a′

given by a′U,V,W = a−1
W,V,U . (Exercise).

In this formulation, it is apparent that the flip map should be replaced by a natural isomorphism
c : ⊗ → ⊗op that relates the tensor product and the opposite tensor product. If this natural
isomorphism is also compatible with the tensor product in the sense that flipping an object
with the tensor product of two other objects is the same as performing two individual flips,
then it is called a braiding.

Definition 4.2.1: Let (C,⊗, e, a, l, r) be a monoidal category.

1. A commutativity constraint for C is a natural isomorphism c : ⊗ → ⊗op. A commu-
tativity constraint is called a braiding if it satisfies the hexagon axioms

(U⊗V )⊗W
aU,V.W

��

cU,V ⊗1W// (V⊗U)⊗W
aV,U,W// V⊗(U⊗W )

1V ⊗cU,W

��
U⊗(V⊗W )cU,V⊗W

// (V⊗W )⊗U aV,W,U

// V⊗(W⊗U)

U⊗(V⊗W )

a−1
U,V,W

��

1U⊗cV,W// U⊗(W⊗V )
a−1
U,W,V // (U⊗W )⊗V

cU,W⊗1V
��

(U⊗V )⊗W cU⊗V,W

//W⊗(U⊗V )
a−1
W,U,V // (W⊗U)⊗V

.

2. A braiding is called symmetric if for all objects V,W in C one has cW,V = c−1
V,W .

3. A monoidal category together with braiding is called a braided monoidal category or
braided tensor category. A monoidal category together with a symmetric braiding is
called a symmetric monoidal category or symmetric tensor category.

Remark 4.2.2:

1. If (C,⊗, e) is a strict monoidal category, then the hexagon axioms reduce to the equations

cU⊗V,W = (cU,W⊗1V ) ◦ (1U⊗cV,W ) cU,V⊗W = (1V⊗cU,W ) ◦ (cU,V⊗1W ).

2. If c : ⊗ → ⊗op is a braiding for (C,⊗, e, a, l, r), then c′ : ⊗ → ⊗op with component
morphisms c′U,V = c−1

V,U : U⊗V → V⊗U is a braiding as well (Exercise). This shows that
a braiding is a choice of structure and not a property.
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3. For all objects V in a braided tensor category (C,⊗, e, a, l, r, c) one has

cV,e = l−1
V ◦ rV = c−1

V,e.

This is obtained from the diagram

(V⊗e)⊗W

cV,e⊗1W

��

aV,e,W //

rV ⊗1W ''

V⊗(e⊗W )
cV,e⊗W //

1V ⊗lW
��

(e⊗W )⊗V
lW⊗1V

��
ae,W,V

��

V⊗W
cV,W //W⊗V

(e⊗V )⊗W ae,V,W

//

lV ⊗1W

77

e⊗(V⊗W )

lV⊗W

OO

1e⊗cV,W

// e⊗(W⊗V ),

lW⊗V

OO

in which the two rectangles commute by the naturality of c, the triangle on the upper
left by the triangle axiom, the triangles on the lower left and on the right by Lemma
4.1.3, and the outer hexagon by the first hexagon axiom. As all arrows are labelled by
isomorphisms, this implies that the middle triangle on the left commutes as well and
hence (lV ◦ cV,e)⊗1W = rV⊗1W for all objects V,W . Setting W = e and applying the
same argument as in the proof of Lemma 4.1.3 one then obtains cV,e = l−1

V ◦ rV . The
proof of the second identity is analogous.

4. For all objects U, V,W in in a braided tensor category (C,⊗, e, a, l, r, c) the dodecagon
diagram commutes:

(V⊗U)⊗W
aV,U,W

��

(U⊗V )⊗W
cU,V ⊗1Woo

aU,V,W// U⊗(V⊗W )

1U⊗cV,W

��

cU,V⊗W

zz

V⊗(U⊗W )

1V ⊗cU,W

��

U⊗(W⊗V )

a−1
U,W,V
��

cU,W⊗V

zz

V⊗(W⊗U)

a−1
V,W,U

��

(U⊗W )⊗V
cU,W⊗1V
��

(V⊗W )⊗U
cV,W⊗1U

��

(W⊗U)⊗V
aW,U,V

��
(W⊗V )⊗U aW,V,U

//W⊗(V⊗U) W⊗(U⊗V )
1W⊗cU,V

oo

This follows because the two hexagons commute by the hexagon axioms and the
parallelogram commutes by the naturality of the braiding.

If (C,⊗, e, a, l, r, c) is strict, the dodecagon diagram reduces to the identity

(cV,W⊗1U) ◦ (1V⊗cU,W ) ◦ (cU,V⊗1W ) = (1W⊗cU,V ) ◦ (cU,W⊗1V ) ◦ (1U⊗cV,W )

Example 4.2.3:

1. The category VectF is a symmetric monoidal category with the braiding given by
cU,V : U⊗V → V⊗U , u⊗v 7→ v⊗u. More generally, for any commutative ring R, the
category (R-Mod, ⊗R, R) is a symmetric monoidal category with cU,V : U⊗RV → V⊗RU ,
u⊗v 7→ v⊗u.
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2. If B is a cocommutative bialgebra, then B-Mod is a symmetric monoidal category with
the component morphisms of the braiding given by cU,V : U⊗V → V⊗U , u⊗v 7→ v⊗u.

3. The categories Set and Top with, respectively, the cartesian product of sets and the
product of topological spaces are symmetric monoidal categories with the braiding
cX,Y : X × Y → Y ×X, (x, y) 7→ (y, x). More generally, any monoidal category C whose
tensor product arises from products or coproducts in C is a symmetric monoidal category.

4. The category ChR-Mod of chain complexes and chain maps is a symmetric monoidal cate-
gory.

Example 4.2.4: Let G be a group.

1. A crossed G-set is a triple (X,�, µ) of a set X, a right action � : X × G → X and a
map µ : X → G that satisfy µ(x� g) = g−1 · µ(x) · g for all x ∈ X and g ∈ G.

2. A morphism of crossed G-sets from (X,�X , µX) to (Y,�Y , µY ) is a map f : X → Y
with f(x�X g) = f(x) �Y g for all x ∈ X and g ∈ G and µY ◦ f = µX .

3. The tensor product of crossed G-sets (X,�X , µX) and (Y,�Y , µY ) is the crossed G-set
(X × Y,�, µ) with (x, y) � g = (x�X g, y �Y g) and µ(x, y) = µX(x) · µY (y). The tensor
product of morphisms f : X → Y and h : U → V of crossed G-sets is the morphism
g × f : U ×X → V × Y .

Crossed G-sets form a monoidal category X(G), where the tensor unit is the one-point set {p}
with the trivial group action and the map µ : {p} → G, p 7→ e. It is braided with the component
morphisms of the braiding given by

cX,Y : X × Y → Y ×X, (x, y) 7→ (y, x�X µY (y)).

As suggested by the name braiding, the component morphisms of the natural isomorphism
c : ⊗ → ⊗op in a braided monoidal category are represented diagrammatically by pairs of lines
that braid above or below each other:

U V

V U

V U

U V

V U

U V

U V

V U

cU,V : U⊗V → V⊗U c−1
U,V : V⊗U → U⊗V cV,U : V⊗U → U⊗V c−1

V,U : U⊗V → V⊗U

The identities in Remark 4.2.2, 3. ensure that it is still consistent to omit the tensor unit from
the graphical calculus, since they imply that the braiding of the tensor unit with any other
object is given by the left and right unit constraints: ce,V = l−1

V ◦ rV = c−1
V,e. The conditions

c−1
U,V ◦ cU,V = 1U⊗V = cV,U ◦ c−1

V,U read

U V

U V

=

U V

=

U V

U V

(34)
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and the condition that a braiding is symmetric amounts to the statement that overcrossings
are equal to undercrossings and can be represented by simple crossings. The naturality of the
braiding implies that morphisms can slide above or below a crossing in the diagram without
changing the morphism represented by this diagram

U V

U ′

V U ′

f

=

V U ′

U V

U

f

U V

V ′

V ′ U

g

=

V ′ U

U V

V

g

(35)

The hexagon axioms state that the two possible interpretations of the following diagrams,
namely as the composite of two braidings or as a braiding of the morphism represented by one
strand with the tensor product of the morphisms represented by the other two coincide:

U V W

V W U

U V W

W U V

(36)

The dodecagon identity states that the following two diagrams represent the same morphism:

U V W

W V U

=

U V W

W V U

(37)

That the diagrams for a braided monoidal category resemble the diagrams for the braid category
B from Definition 4.1.10 is not coincidental. We will show that the braid category B is not only
a strict braided monoidal category but can be viewed as the prototype of a braided monoidal
category and is characterised by a universal property.

Theorem 4.2.5:

1. The braid category B is a strict braided monoidal category.
2. The permutation category S is a strict symmetric monoidal category.

Proof:
We take as the component morphisms of the braiding for the braid category B the morphisms

cm,n = (σn ◦ ... ◦ σ2 ◦ σ1) ◦ (σn+1 ◦ ... ◦ σ3 ◦ σ2) ◦ ... ◦ (σn+m−1 ◦ ... ◦ σm+1 ◦ σm) (38)

that braid the first m strands over the last n strands:
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1 ... m m+ 1 ... m+ n

1 ... m m+ 1 ... m+ n

... ...

...

... ...

Then the hexagon axioms follow directly from the definition of the braiding. To prove naturality
of the braiding, it is sufficient to show that

cm,n ◦ (σi⊗σj) = (σj⊗σi) ◦ cm,n

for all i ∈ {1, ...,m−1} and j ∈ {1, ..., n−1}. This follows by repeatedly applying the relations

=

=

σi ◦ σi+1 ◦ σi = σi+1 ◦ σi ◦ σi+1 σi ◦ σj = σj ◦ σi
for all i ∈ {1, ..n+m− 2} for all i ∈ {1, ..n+m− 2}, |i− j| > 1.

This shows that B is a braided monoidal category. The permutation category S is described
by the same relations and diagrams as the braid category B. Replacing the generators
σi by πi in (38) yields a braiding for the permutation category. As each generator πi of
Sn satisfies πi = π−1

i , which implies that overcrossings in the associated diagrams can be
changed to undercrossings and vice versa, it follows that S is a symmetric monoidal category. 2

To show that the braid category plays a special role among the braided monoidal categories and
is characterised by a universal property, we require the concept of a functor between braided
monoidal categories that is compatible not only with the monoidal structure but also with the
braiding. Such a functor is called a braided monoidal functor, and there is also a corresponding
notion of braided natural transformation.

Definition 4.2.6: Let C, D be braided monoidal categories.

1. A monoidal functor (F, φe, φ⊗) : C → D is called a a braided monoidal functor or
braided tensor functor from C to D if for all objects V,W in C the following diagram
commutes

F (V )⊗F (W )

φ⊗V,W
��

cD
F (V ),F (W )// F (W )⊗F (V )

φ⊗W,V
��

F (V⊗W )
F (cCV,W )

// F (W⊗V ).
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If C and D are symmetric tensor categories, then a braided monoidal functor F : C → D
is also called a symmetric monoidal functor.

2. A braided natural transformation is a natural transformation between braided
monoidal functors. A braided natural isomorphism is a braided natural transfor-
mation that is a natural isomorphism.

Example 4.2.7:

1. The forgetful functors Top → Set, VectF → Set from Example 4.1.13 and the forgetful
functors R − Mod → Ab for a commutative ring R and B−Mod → VectF for a
cocommutative bialgebra B over F are symmetric monoidal functors.

2. The functor F : Set → VectF from from Example 4.1.13 that assigns to a set X the free
vector space 〈X〉F generated by X and to a map f : X → Y the unique linear map
F (f) : 〈X〉F → 〈Y 〉F with F (f)|X = f is a symmetric monoidal functor.

3. The family (Πn)n∈N0 of group homomorphisms Πn : Bn → Sn, σi 7→ πi introduced after
Definition 4.1.9 defines a strict braided tensor functor F : B → S with F (n) = n for all
n ∈ N0 and F (f) = Πn(f) for all morphisms f ∈ HomB(n, n) = Bn.

With the concept of a braided tensor functor, we can now show that the braid category B plays
a special role among the strict braided tensor categories and is characterised by a universal
property that allows one to associate a unique braided tensor functor FV : B → C to any object
V in C. This is due to the fact that B is generated via the tensor product and the composition
of morphisms by the object 1 and a the morphism σ1 : 2 → 2 and the only relations between
morphisms are the ones required for the for the naturality of the tensor product, the naturality
of the braiding and its compatibility with the tensor product.

Proposition 4.2.8: Let (C,⊗, e, c) be a strict braided tensor category. Then for any object
V of C there is a unique strict braided tensor functor FV : B → C with FV (1) = V .

Proof:
If F : B → C is a strict tensor functor then one has F (n) = F (1⊗...⊗1) = F (1)⊗...⊗F (1) for
all n ∈ N and F (0) = e. This shows that F is determined uniquely on the objects by F (1) =: V .
The condition that F is a braided strict tensor functor implies that the image of the morphism
c1,1 = σ1 : 2 → 2 is given by F (c1,1) = cV,V : V⊗V → V⊗V and F (c−1

1,1) = F (c1,1)−1 = c−1
V,V .

To show that this determines F uniquely on the morphisms, note that any morphism in B is
a given as a composite of identity morphisms, tensor products of the morphism c1,1 : 2 → 2
and its inverse. More specifically, we have σ±1

i = 1i−1⊗c±1
1,1⊗1n−i−1 : n → n for all n ∈ N and

i ∈ {1, ..., n−1}. As F is a strict tensor functor, this implies F (σ±1
i ) = 1V ⊗(i−1)⊗c−1

V,V⊗1V ⊗(n−i−1)

and hence F (c1,1) = cV,V determines F uniquely on the morphisms.

Conversely, for any object V in C setting FV (n) = V ⊗n for n ∈ N, FV (0) = e and defining
FV (σ±1

i ) = 1V ⊗(i−1)⊗c±1
V,V⊗1V ⊗(n−i−1) for all n ∈ N and σi : n→ n yields a functor FV : B → C,

since the functoriality of ⊗ : C → C implies FV (σi) ◦ FV (σj) = FV (σj) ◦ FV (σi) for all i, j ∈
{1, ..., n− 1} with |i− j| > 1 and the dodecagon identity in C implies for all i ∈ {1, ..., n− 2}

FV (σi) ◦ FV (σi+1) ◦ FV (σi) = FV (σi+1) ◦ FV (σi) ◦ FV (σi+1). 2
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It is clear from the proof of this proposition that monoidal functors B → C into a monoidal
category C can be defined by specifying the images of the object 1 ∈ B and the morphism
σ1 ∈ HomB(2, 2) in a much more general setting. All that is required is an object V in C and a
morphism σ : V⊗V → V⊗V that satisfies the dodecagon identity, while a braiding of V with
other objects in C is not necessary.

Definition 4.2.9: Let (C,⊗, e, a, l, r) be a monoidal category. A Yang-Baxter operator
in C is an object V in C together with an isomorphism σ : V⊗V → V⊗V such that the
dodecagon diagram commutes

(V⊗V )⊗V
aV,V,V

��

(V⊗V )⊗Vσ⊗1Voo
aV,V,V // V⊗(V⊗V )

1V ⊗σ
��

V⊗(V⊗V )

1V ⊗σ
��

V⊗(V⊗V )

a−1
V,V,V
��

V⊗(V⊗V )

a−1
V,V,V

��

(V⊗V )⊗V
σ⊗1V
��

(V⊗V )⊗V
σ⊗1V

��

(V⊗V )⊗V
aV,V,V

��
(V⊗V )⊗V aV,V,V

// V⊗(V⊗V ) V⊗(V⊗V )
1V ⊗σ
oo

Example 4.2.10:

1. If C is a braided monoidal category with braidings cU,V : U⊗V → V⊗U , then (V, cV,V ) is
a Yang-Baxter operator for any object V of C.

2. If (F, φ⊗, φe) is a tensor functor from a monoidal category C to a monoidal cate-
gory D, then for any Yang-Baxter operator (V, σ) in C, the pair (F (V ), σ′) with
σ′ = φ⊗ −1

V,V ◦ F (σ) ◦ φ⊗V,V is a Yang-Baxter operator in D.

3. A Yang-Baxter operator in VectF is also called a braided vector space. It is a pair
(V, σ) of a vector space V and a linear map σ : V⊗V → V⊗V such that the dodecagon
in Definition 4.2.9 commutes.

4. Let q, λ ∈ F \ {0} and V a vector space over F with an ordered basis (v1, ..., vn). Then
the linear map σ : V⊗V → V⊗V with

σ(vi⊗vj) =


λ vj⊗vi i < j

λq vi⊗vi i = j

λ vj⊗vi + λ(q − q−1)vi⊗vj i > j

gives V the structure of a braided vector space.

Proposition 4.2.11: Let C be a braided monoidal category and (V, σ) a Yang-Baxter operator
in C. Then there is a tensor functor F : B → C, unique up to natural isomorphisms composed
of the associators and unit constraints in C, with F (1) = V and F (c1,1) = σ.
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Proof:
We prove the claim for the case where C is strict. The proof is analogous to the one of
Proposition 4.2.8. The only difference is that the condition F (c1,1) = cV,V in Proposition 4.2.8
that followed from the requirement that F is a braided monoidal functor is replaced by the
condition F (c1,1) = σ. 2

Corollary 4.2.12: Let (V, σ) be a braided vector space. Then the maps

ρn : Bn → AutF(V ⊗n), σi 7→ idV ⊗(i−1)⊗σ⊗idV ⊗(n−i−1)

define a family of representations of the braid groups Bn on V ⊗n.

Proof:
We define ρ on the generators of Bn by setting ρ(σ±1

i ) = idV ⊗(i−1)⊗σ±⊗idV ⊗(n−i−1) for all
i ∈ {1, ..., n − 1}. As (V, σ) is a Yang-Baxter operator in VectF, the functoriality of the
tensor product and the dodecagon identity allow one to extend ρ to a group homomorphism
ρ : Bn → AutF(V ⊗n). 2

4.3 Application: topological quantum field theories

The concept of a topological quantum field theory was developed by Atiyah in [At], originally
to describe quantum field theories on manifolds. The basic idea is to assign to each oriented
closed (n − 1)-dimensional manifold S a vector space Z(S) and to each oriented, compact
n-manifold M with boundary ∂M = S̄ q S ′ a linear map Z(M) : Z(S) → Z(S ′) in such a
way that this assignment is compatible with disjoint unions of manifolds and with gluing. The
latter can be implemented by requiring that the (n − 1)-manifolds are objects in a suitable
category C and the n-manifolds with boundary morphisms between them. The compatibility of
the assignment with the gluing of manifolds then amounts to the statement that Z is a functor.
The disjoint union of manifolds should be viewed as a tensor product in the category C, and
the compatibility of Z with the disjoint union of manifolds states that the category C should
be a symmetric monoidal category and Z should be a symmetric monoidal functor. We start
by introducing the category C, known as the cobordism category.

Definition 4.3.1: The cobordism category Cobn,n−1 for n ∈ N is the symmetric monoidal
category given as follows:

• The objects of Cobn,n−1 are oriented closed smooth (n− 1)-manifolds.

• Morphisms in Cobn,n−1 are equivalence classes of cobordisms.

A cobordism from a closed oriented smooth (n − 1)-manifold S to a closed oriented
smooth (n − 1)-manifold S ′ is a pair (M,φ) of a smooth compact oriented n-manifold
M with boundary ∂M and an orientation preserving diffeomorphism φ : S̄ q S ′ → ∂M ,
where S̄ denotes the manifold with the reversed orientation and q the disjoint union of
manifolds.

117



Two cobordisms (M,φ), (M ′, φ′) : S → S ′ are called equivalent if there is an orientation
preserving diffeomorphism ψ : M →M ′ such that the following diagram commutes

M
ψ //M ′

S̄ q S ′

φ
cc

φ′
;; .

• The identity morphism 1S is the equivalence class of the cobordism ([0, 1] × S, φS)
with the smooth diffeomorphism φS : S̄ q S → {0, 1} × S with φS(x) = (1, x) and
φS(y) = (0, y) for all x ∈ S̄, y ∈ S.

• The composite of morphisms (M,ρ) : S → S ′ and (N, σ) : S ′ → S ′′ is the equivalence
class of the cobordism (P, τ) obtained by gluing M and N along S ′ to a manifold P ,
with the gluing maps given by ρ|′S : S ′ → ∂M and σ|S′ : S ′ → ∂N and by combining the
diffeomorphisms φ and χ to a diffeomorphism ρ : S̄ q S ′′ → ∂P . The construction of the
smooth structure on P involves the choice of collars around S ′, but the the equivalence
class of the resulting cobordism does not depend on this choices.

• The tensor product of cobordisms is given by the disjoint union of manifolds and the
tensor unit is the empty manifold ∅, viewed as an oriented smooth (n− 1)-manifold2.

Remark 4.3.2:

1. There are other versions of topological quantum field theories based on topological or
piecewise linear manifolds with boundary. For n ≤ 3 the associated cobordism categories
are equivalent. For n ≥ 4 the smooth framework is the most common and well-developed.

2. Orientation reversal defines a functor ∗ : Cobn,n−1 → Cobopn,n−1 with ∗∗ = idCobn,n−1 . This
functor assigns to a smooth oriented (n−1)-manifold S the manifold S̄ with the opposite
orientation and to the equivalence class of a cobordism (M,φ) : S → S ′ the equivalence
class of the cobordism (M̄, φ) : S̄ ′ → S̄, where M̄ is the smooth n-manifold with the
opposite orientation.

With the notion of the cobordism category it is simple to define a topological quantum field
theory. Although one usually considers topological quantum field theories with values in the
category VectfinF , the notion can be generalised to any symmetric monoidal category.

Definition 4.3.3: Let C be a symmetric monoidal category.

1. An oriented n-dimensional topological quantum field theory with values in C is a
symmetric monoidal functor Z : Cobn,n−1 → C.

2. Two oriented topological n-dimensional quantum field theories Z,Z ′ : Cob2,1 → VectfinF
are called equivalent if there is a monoidal natural isomorphism φ : Z → Z ′.

To construct topological quantum field theories, it is reasonable to request that there is also
functor ∗ : C → Cop and a natural isomorphism ∗∗ → idC that implements orientation reversal.

2Note that the empty set ∅ is by definition an n-dimensional smooth oriented manifold for all n ∈ N0.
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If we work with the category VectfinF of finite-dimensional vector spaces over F, the natural

candidate is the functor ∗ : VectfinF → Vectfin opF that assigns to each vector space V the dual
vector space V ∗ and to each linear map f : V → W the dual map f ∗ : W ∗ → V ∗, α 7→ α ◦ f .

It is also advantageous to describe the category Cobn,n−1 as explicitly and concretely as possible,
namely to present it in terms of generators and relations. A presentation of a monoidal category
is very similar to presentations of algebras or groups in terms of generators and relations, but
the rigorous formulation of this is time consuming and technical. We refer to [Ka, XII.1] for
details. Roughly speaking, a presentation of a monoidal category C consists of a set O of objects,
a set G of generating morphisms and a set R of defining relations. The morphisms of C are
equivalence classes of free words in the morphisms in G and in the identity morphisms for each
object in O. These free words are taken with respect to two compositions, one representing
the tensor product and one representing the composition of morphisms. In both cases, free
words are composed by concatenation, and the equivalence relations are given by relations
that implement (i) the associativity of the composition of morphisms, (ii) the properties of the
identity morphisms, (iii) the properties of the tensor product, (iv) the properties of the tensor
unit and (v) the relations in R.

Example 4.3.4: The cobordism category Cob1,0

The symmetric monoidal category Cob1,0 has as objects disjoint unions of oriented points and as
morphisms finite unions of oriented circles and oriented lines with endpoints at the objects such
that the orientations of lines match the orientations of their endpoints. This can be depicted
by a diagram in the plane as follows:

+

+

+ − −−

−−

− +

+ −− +

A morphism f : (+,+,−,−,−,−,+)→ (+,−,−,+,−,+) in Cob1,0.

The category Cob1,0 is generated by the three morphisms

and the corresponding morphisms with reversed orientation. Its defining relations are

= =
=

= =

and the corresponding relations for the morphisms with the reversed orientations.
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Example 4.3.5: The cobordism category Cob2,1

• objects:
The cobordism category Cob2,1 has as objects finite unions of oriented circles.

• generating morphisms:
The cobordism category Cob2,1 is generated by the following six morphisms. Each of these
morphisms arises in two versions with opposite orientation, and the orientation of the boundary
circles is understood to be induced by the orientations of the surfaces:

trinion opposite trinion cap cup cylinder exchanging cylinder

• relations:
The generators are subject to the following defining relations:

(a) identity relations

= = =

= =
=

= = =

These relations state that the identity morphism on a finite union of oriented circles is the finite
union of cylinders over these circles.

(b) associativity and unitality

=
= =
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(c) coassociativity and counitality

= = =

(d) Frobenius relation

==

(e) commutativity and cocommutativity

= =

(f) relations for the exchanging cylinder

= =

=
=

=

=

While the first four relations describe the interaction of the exchanging cylinder with cap, cup
and trinions, the last two relations correspond to relations in the permutation category S.

This presentation of the cobordism category is obtained with techniques from Morse theory,
for a brief summary of the general techniques and their applications to Cob2,1 and Cob1,0, see
[Kock, Chapter 1], for general background on Morse theory and Cobordisms, see [H, Chapter
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6,7]. In principle, these techniques allow one to obtain a presentation of Cobn,n−1 for any n ∈ N,
but the description in terms of generators and relations becomes increasingly complicated with
growing dimension. Given this presentation of the Cobordism category Cob2,1, one can classify

all oriented 2-dimensional topological quantum field theories with values in VectfinF .

Theorem 4.3.6: Equivalence classes of 2-dimensional oriented topological quantum field
theories Z : Cob2,1 → VectfinF with ∗Z = Z∗ are in bijection with isomorphism classes of
commutative Frobenius algebras over F.

Proof:
A monoidal functor Z : Cob2,1 → VectfinF with ∗Z = Z∗ is determined uniquely (up to re-
bracketing and left and right unit constraints) by its value on the positively oriented circle and
on the six generating morphisms. If Z assigns to the positively oriented circle a vector space
Z(O) = V , then it assigns to the circle with the opposite orientation the dual vector space
Z(Ō) = V ∗, to an n-fold union of circles the vector space Z(Oq ...qO) = V⊗...⊗V and to the
empty set the underlying field Z(∅) = F. This implies that Z associates to the six generating
morphisms linear maps

m : V⊗V → V ∆ : V → V⊗V η : F→ V ε : V → F idV : V → V τ : V⊗V → V⊗V

where we took already into account the identity relations for cylinders and suppose that all
circles on top of these diagrams are positively and all circles at the bottom of these diagrams
are negatively oriented. In order to define a functor Z : Cob2,1 → VectfinF the linear maps m,
η, ∆, ε, τ must satisfy certain relations that correspond to the defining relations of Cob2,1.

(b) associativity and unitality: They state that (V,m, η) is an algebra:

m ◦ (m⊗id) = m ◦ (id⊗m) m ◦ (η⊗idV ) = idV = m ◦ (idV⊗η).

In fact, by shrinking the cylinders in the associativity and unitality condition to lines, one
obtains the diagrams for an algebra in a monoidal category from Section 4.1.

(c) coassociativity and counitality: They state that (V,∆, ε) is a coalgebra:

(∆⊗id) ◦∆ = (id⊗∆) ◦∆ lV ◦ (ε⊗idV ) ◦∆ = idV = rV ◦ (idV⊗ε) ◦∆

Again, shrinking the cylinders in this relation to lines, one obtains the diagrams for a coalgebra
in a monoidal category from the end of Section 4.1.

(d) Frobenius relation: the Frobenius relation states that the algebra and coalgebra structure
on V satisfy the compatibility condition:

(idV⊗m) ◦ (∆⊗idV ) = ∆ ◦m = (m⊗idV ) ◦ (idV⊗∆)

Together (b), (c), (d) state that (V,m, η,∆, ε) is a (∆, ε)-Frobenius algebra and hence a Frobe-
nius algebra by Exercise 45.

(f) relations for the exchanging cylinder: The last two relations state that the linear map
τ : V⊗V → V⊗V is an involution and defines a functor S → VectfinF . The remaining ones are

τ ◦ (η⊗idV ) = idV⊗η, (m⊗id) ◦ (idV⊗τ) ◦ (τ⊗idV ) = τ ◦ (idV⊗m),

(idV⊗ε) ◦ τ = ε⊗idV (τ⊗idV ) ◦ (idV⊗τ) ◦∆ = (idV⊗∆) ◦ τ.
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We conclude that τ is the flip map τ : V⊗V → V⊗V , v⊗v′ 7→ v′⊗v.

(e) commutativity and cocommutativity relations: They state that the (∆, ε)-Frobenius
algebra (V,m, η,∆, ε) is commutative and cocommutative:

m ◦ τ = m τ ◦∆ = ∆.

One can show (Exercise) that a (∆, ε)-Frobenius algebra is commutative and cocommutative if
and only if the associated Frobenius algebra from Exercise 45 is commutative. This shows that
every oriented topological quantum field theory Z : Cob2,1 → VectfinF defines a commutative
Frobenius algebra and vice versa.

Due to the conditions in Definition 4.1.11, 2. a monoidal natural isomorphism φ : Z → Z ′

between two oriented topological quantum field theories Z and Z ′ is specified uniquely by
the linear map φO : V = Z(O) → Z ′(O) = V ′. The naturality of φ implies that the map
φO is an algebra and coalgebra isomorphism, which is the case if and only if φ is an algebra
isomorphism that preserves the Frobenius form. Conversely, every algebra isomorphism
φ : V = Z(O)→ Z ′(O) defines a monoidal natural isomorphism φ : Z → Z ′. 2
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5 Quasitriangular Hopf algebras

5.1 Quasitriangular bialgebras and Hopf algebras

In this chapter we investigate bialgebras and Hopf algebras with additional structure that
relate their representation on the tensor product of two representation spaces to the one on
the opposite tensor product. Clearly, the condition that the flip map τ : V⊗W → W⊗V is
an isomorphism of representations for all representations V,W of a bialgebra B would too
restrictive. If this holds for all representations of B, then it holds also for the representation of
B on B⊗B by left multiplication. This implies for all b ∈ B

∆(b) = Σ(b)b(1)⊗b(2) = b� (1⊗1) = b�op (1⊗1) = Σ(b)b(2)⊗b(1) = ∆op(b)

and hence B must be cocommutative. Moreover, this condition is undesirable, from the repre-
sentation theoretical viewpoint. It amounts to the statement that the representation category
of B is a symmetric monoidal category and hence does not carry any interesting braid group
representations, i. e. braid group representations that are not induced by representations of
permutation groups.

A weaker and more sensible condition is the requirement that for allB-modules V,W there exists
an isomorphism of representations between the representations of B on V⊗W and on W⊗V
and that this isomorphism is compatible with tensor products. This amounts to the statement
that the category B-Mod is a braided monoidal category. We will show in the following that
this is equivalent to the following conditions on the bialgebra B.

Definition 5.1.1:

1. A quasitriangular bialgebra is is a pair (B,R) of a bialgebra B and an an invertible
element R = R(1)⊗R(2) ∈ B⊗B, the universal R-matrix, that satisfies

∆op(b) = R ·∆(b) ·R−1 (∆⊗id)(R) = R13 ·R23 (id⊗∆)(R) = R13 ·R12,

where R12 = R(1)⊗R(2)⊗1, R13 = R(1)⊗1⊗R(2) and R23 = 1⊗R(1)⊗R(2) ∈ B⊗B⊗B.

2. A homomorphism of quasitriangular bialgebras from (B,R) to (B′, R′) is a bialgebra
map φ : B → B′ with R′ = (φ⊗φ)(R).

3. A quasitriangular bialgebra is called triangular if its R-matrix satisfies τ ◦ R = R−1,
where τ : B⊗B → B⊗B, b⊗b′ 7→ b′⊗b denotes the flip map.

4. A (quasi)triangular Hopf algebra is a (quasi)triangular bialgebra that is a Hopf algebra.

Note that the notation R = R(1)⊗R(2) is symbolic. It stands for a finite sum R = Σn
i=1bi⊗b′i with

bi, b
′
i ∈ B. To distinguish it from the Sweedler notation for a coproduct ∆(b) = Σ(b)b(1)⊗b(2),

we do not use a summation sign in this case.

Theorem 5.1.2: Let B be a bialgebra. Then the category B-mod is a braided monoidal
category if and only if B has the structure of a quasitriangular bialgebra. It is symmetric if and
only if B is triangular.
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Proof:
⇐: If (B,R) is a quasitriangular bialgebra, then we define for a pair of B-modules (V,�V ) and
(W,�W ) a linear map cV,W : V⊗W → W⊗V by setting

cV,W (v⊗w) = τ(R�V⊗W v⊗w) = R21 �W⊗V τ(v⊗w) ∀v ∈ V,w ∈ W, (39)

where R21 = τ(R) is the flipped R-matrix. Then cV,W is a linear isomorphism with inverse
c−1
V,W (v⊗w) = τ(R−1

21 �W⊗V w⊗v), and one has

b�W⊗V (cV,W (v⊗w)) = τ((∆op(b) ·R) �V⊗W v⊗w) = τ((R ·∆(b)) �V⊗W v⊗w)

= τ(R�V⊗W (b�V⊗W v⊗w)) = cV,W (b�V⊗W (v⊗w))

for all b ∈ B, v ∈ V and w ∈ W . This shows that cV,W : V⊗W → W⊗V is a B-module isomor-
phism and hence an isomorphism in B-Mod. To show that this defines a natural isomorphism
c : ⊗ → ⊗op in B-Mod, we consider B-module maps f : V → V ′ and g : W → W ′ and compute

(cV ′,W ′ ◦ (f⊗g))(v⊗w) = τ(R�V ′,W ′ f(v)⊗g(w)) = (τ ◦ (f⊗g))(R�V⊗W v⊗w)

= ((g⊗f) ◦ τ)(R�V⊗W v⊗w) = ((g⊗f) ◦ cV,W )(v⊗w)

where we used first the definition of cV ′,W ′ , then the fact that f and g are B-module homo-
morphisms and then the definition of cV,W . This proves the naturality of c. For the proof of the
hexagon relations note that in Sweedler notation the conditions on the universal R-matrix read

(∆⊗id)(R) = R13R23 ⇔ Σ(R(1))R(1)(1)⊗R(1)(2)⊗R(2) = R′(1)⊗R(1)⊗R′(2)R(2)

(id⊗∆)(R) = R13R12 ⇔ Σ(R(2))R(1)⊗R(2)(1)⊗R(2)(2) = R′(1)R(1)⊗R(2)⊗R′(2).

With this, we obtain the two hexagon relations

(1V⊗cU,W ) ◦ aV,U,W ◦ (cU,V⊗1W )((u⊗v)⊗w) = (1V⊗cU,W )(R(2) �V v⊗(R(1) �U u⊗w))

= R(2) �V v⊗(R′(2) �W w⊗(R′(1)R(1)) �U u) = Σ(R(2)) (R(2)(1) �V v⊗R(2)(2) �W w)⊗R(1) �U u

= aV,W,U(R(2) �V⊗W (v⊗w)⊗R(1) �U u) = aV,W,U ◦ cU,V⊗W ◦ aU,V,W ((u⊗v)⊗w)

(cU,W⊗1V ) ◦ a−1
U,W,V ◦ (1U⊗cV,W )(u⊗(v⊗w)) = (cU,W⊗1V )((u⊗R(2) �W w)⊗R(1) �V v)

= ((R′(2)R(2)) �W w⊗R′(1) �U u)⊗R(1) �V v = Σ(R(1)) (R(2) �W w⊗R(1)(1) �U u)⊗R(1)(2) �V v

= a−1
W,U,V (R(2) �W w⊗R(1) �U⊗V (u⊗v)) = a−1

W,U,V ◦ cU⊗V,W ◦ a
−1
U,V,W (u⊗(v⊗w)).

This shows that the B-module isomorphisms cV,W : V⊗W → W⊗V define a braiding.

⇒: Let B be a bialgebra, c : ⊗ → ⊗op a braiding for B-Mod and define R := τ ◦cB,B(1B⊗1B) ∈
B⊗B. Then R is invertible with inverse R−1 = τ ◦ c−1

B,B(1B⊗1B). To prove that the conditions
on the universal R-matrix are satisfied, note that for all B-modules (V,�V ) and (W,�W ) and
elements v ∈ V , w ∈ W , the linear map φv,w : B⊗B → V⊗W , a⊗b 7→ (a�V v)⊗(b�W w) is a
B-module homomorphism. The naturality of the braiding implies cV,W ◦ φv,w = φw,v ◦ cB,B and

R�V⊗W (v⊗w) = φv,w(R) = τ(φw,v ◦ cB,B(1B⊗1B)) = τ(cV,W ◦ φv,w(1B⊗1B)) = τ(cV,W (v⊗w))

for all v ∈ V and w ∈ W . For v = w = 1B ∈ B we obtain

∆op(b) ·R = τ(b�B⊗B cB,B(1B⊗1B)) = τ(cB,B(b�B⊗B 1B⊗1B)) = τ(cB,B(∆(b))) = R ·∆(b),
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where we used first the definition of R, then that cB,B is a module map, the B-module structure
on B⊗B and the identity for R. The remaining identities follow from the hexagon relations:

(idB⊗∆)(R) = R�B⊗(B⊗B) (1B⊗(1B⊗1B)) = τ(cB,B⊗B(1B⊗(1B⊗1B)))

= τ((a−1
B,B,B ◦ (idB⊗cB,B) ◦ aB,B,B ◦ (cB,B⊗idB) ◦ a−1

B,B,B)(1B⊗(1B⊗1B))

= R13R12 �(B⊗B)⊗B ((1B⊗1B)⊗1B) = R13R12

(∆⊗idB)(R) = R�(B⊗B)⊗B ((1B⊗1B)⊗1B) = τ(cB⊗B,B((1B⊗1B)⊗1B))

= τ(aB,B,B ◦ (cB,B⊗idB) ◦ a−1
B,B,B ◦ (idB⊗cB,B) ◦ aB,B,B)((1B⊗1B)⊗1B)

= R13R23 �B⊗(B⊗B) (1B⊗(1B⊗1B)) = R13R23.

That the representation category B-Mod is symmetric if and only if (B,R) is triangular follows
directly from the expressions for the braiding in terms of the universal R-matrix since we have

cV,W (v⊗w) = τ(R�V⊗W v⊗w) c−1
W,V (v⊗w) = τ(R−1

21 �V⊗W v⊗w).

This shows that R = R−1
21 if and only if cV,W = c−1

W,V . 2

In particular, this theorem implies that quasitriangular bialgebras give rise to braid group
representations. This follows directly from Corollary 4.2.12, since every object in a braided
monoidal category is a Yang-Baxter operator.

Corollary 5.1.3: Let (B,R) be a quasitriangular bialgebra, ρ : B → EndF(V ) a representa-
tion of B on V and ρV ⊗n : B → EndF(V ⊗n) the associated representation on V ⊗n. Then

ρ : Bn → EndF(V ⊗n), σi 7→ (idV ⊗(i−1)⊗τ⊗idV ⊗(n−i−1)) ◦ ρV ⊗n(1⊗(i−1)⊗R⊗1⊗(n−i−1))

is a representation of the braid group Bn on V ⊗n for all n ∈ N0. It defines a representation of
Sn if and only if (B,R) is triangular.

Clearly, every cocommutative bialgebra is quasitriangular with universal R-matrix R = 1⊗1.
This includes in particular group algebras of finite groups, tensor algebras of vector spaces
and universal eveloping algebras of Lie algebras. However, these bialgebras do not give rise to
interesting representations of the braid group. The associated representations of Bn permute
the factors in the tensor product V ⊗n via the flip map and are induced by representations of
the permutation group Sn via the group homomorphisms Πn : Bn → Sn. This gives a strong
motivation to consider bialgebras that are quasitriangular but not cocommutative.

Example 5.1.4:

1. A commutative bialgebra B is quasitriangular if and only if it is cocommutative, since
in this case, one has ∆op(b) = R · ∆(b) · R−1 for all b ∈ B if and only if ∆ = ∆op. This
shows that the algebra of functions FunF(G) on a non-abelian finite group G cannot be
quasitriangular, since it is commutative, but not cocommutative.

2. The group algebra C[Z/nZ] is quasitriangular with universal R-matrix

R = 1
n
Σn−1
j,k=0e

2πi jk/n ⊗k.
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3. For n = 2 and char(F) 6= 2, the Taft algebra from Example 2.3.6 is presented with
generators x, y and relations xy = −yx, y2 = 1, x2 = 0, and Hopf algebra structure

∆(y) = y⊗y, ∆(x) = 1⊗x+ y⊗x, ε(y) = 1, ε(x) = 0, S(y) = y, S(x) = −xy.

This Hopf algebra is quasitriangular with universal R-matrices

Rα = 1
2

(1⊗1 + 1⊗y + y⊗1− y⊗y) + α
2

(x⊗x− x⊗xy + xy⊗xy + xy⊗x) forα ∈ F.

4. Let q ∈ F be a primitive rth root of unity with r > 1 odd. Then the Hopf algebra U r
q (sl2)

from Proposition 2.3.12 is quasitriangular with universal R-matrix

R =
1

r

r−1∑
i,j,k=0

(q − q−1)k

(k)!q2
qk(k−1)+2k(i−j)−2ij EkKi⊗F kKj. (40)

If Vm denotes the simple U r
q (sl2)-module of weight λ = qm, 0 ≤ m < r− 1 from Theorem

3.6.4 and Remark 3.6.8, then the braiding cVm,Vn : Vm⊗Vn → Vn⊗Vm is given by

cVm,Vn(vp⊗vt) =

min{n−t,p}∑
k=0

(q − q−1)k(k)!q2 q
nm
pt (k, α)

(
m− p+ k

k

)
q2

(
t+ k
k

)
q2
vt+k⊗vp−k

where vp with 0 ≤ p ≤ m are the basis vectors of Vm from Lemma 3.6.2, the integer α ∈ Z
is chosen such that n+ αr is even and

qmnpt (k, α) = qk(n−m)−k(m−p)−kt−pn−mt−2(k−p)(k+t)+(n+αr)m/2.

For n = m = 1, we can take α = 1 and obtain:

cV1,V1(v0⊗v0) = λq v0⊗v0 cV1,V1(v0⊗v1) = λ v1⊗v0

cV1,V1(v1⊗v0) = λ(v0⊗v1 + (q − q−1)v1⊗v0) cV1,V1(v1⊗v1) = λq v1⊗v1

with λ = q(r−1)/2. This is the braided vector space from Example 4.2.10, 4.

These examples show that, just like a braiding in a monoidal category, quasitriangularity is a
structure and not a property. For a given bialgebra or Hopf algebra B, there may be several
different universal R-matrices that satisfy the requirements in Definition 5.1.1, or none. We now
investigate the basic properties of quasitriangular bialgebras. Our first result is an important
equation on the universal R-matrix, the quantum Yang-Baxter equation (abbreviated QYBE)
that can be viewed as the algebra counterpart of the dodecagon identity and has important
applications in knot theory and mathematical physics.

Proposition 5.1.5: Let (B,R) be a quasitriangular bialgebra.

1. Then the universal R-matrix satisfies (ε⊗id)(R) = (id⊗ε)(R) = 1 and the quantum
Yang-Baxter equation (QYBE): R12R13R23 = R23R13R12.

2. (B,R−1
21 ) with R−1

21 = τ(R−1) is a quasitriangular bialgebra as well.

Proof:
1. With the defining condition on the universal R-matrix we compute

R = (id⊗id)(R) = (ε⊗id⊗id) ◦ (∆⊗id)(R) = (ε⊗id⊗id)(R13 ·R23)

= (ε⊗id⊗id)(R13) · (ε⊗id⊗id)(R23) = ε(1) (ε⊗id⊗id)(R13) ·R = (1⊗(ε⊗id)(R)) ·R
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As R is invertible, right multiplication of this equation with R−1 yields 1⊗(ε⊗id)(R) = 1⊗1,
and applying ε⊗id to this equation we obtain (ε⊗id)(R) = (ε⊗id)(1⊗1) = ε(1)1 = 1. The
proof of the identity (id⊗ε)(R) = 1 is analogous. The QYBE follows directly from the defining
properties of the universal R-matrix:

R12R13R23 = R12 · (∆⊗id)(R) = (∆op⊗id)(R) ·R12 = (τ⊗id)(R13R23) ·R12 = R23R13R12.

2. Applying the flip map τ : B⊗B → B⊗B, b⊗c 7→ c⊗b to the defining conditions in Definition
5.1.1 yields for all b ∈ B
∆(b) = τ ◦∆op(b) = τ(R ·∆(b) ·R−1) = R21 ·∆op(b) ·R−1

21

(id⊗∆)(R−1
21 ) = (τ⊗id) ◦ (id⊗τ) ◦ (∆⊗id)(R−1) = (τ⊗id) ◦ (id⊗τ)(R−1

23 R
−1
13 ) = (R−1

21 )13(R−1
21 )12

(∆⊗id)(R−1
21 ) = (id⊗τ) ◦ (τ⊗id) ◦ (id⊗∆)(R−1) = (id⊗τ) ◦ (τ⊗id)(R−1

12 R
−1
13 ) = (R−1

21 )13(R−1
21 )23.

Conjugating the first equation with R−1
21 shows that R−1

21 is another universal R-matrix for B.
2

Another way to motivate quasitriangular bialgebras that does not rely on representation the-
ory and braided monoidal categories is from the viewpoint of module algebras and module
coalgebras. As shown in Section 3.1, one can view a module coalgebra over a bialgebra as a
non-commutative generalisation of a space with a group action and a module algebra as a
non-commutative generalisation of the algebra of functions on this space. The compatibility
between the algebra and the module structure ensures that the invariants of this module form
a subalgebra which can be viewed as the algebra of functions on the orbit space.

This raises the question about non-commutative counterparts of products of spaces with group
actions or, equivalently, noncommutative function algebras on such product spaces. The natural
candidate for the product of two module algebras (A,�) and (A′,�′) over a bialgebra B is the
tensor product A⊗A′ with the canonical algebra and B-module structure. However, one can
show that in general this is not a module algebra over B unless B is cocommutative. However, if
(B,R) is quasitriangular, then it is possible to deform the multiplication of A⊗A′ in such a way
that it becomes a module algebra with the induced B-module structure. This is the so-called
braided tensor product of module algebras.

Proposition 5.1.6: Let (B,R) be a quasitriangular bialgebra and (A,�), (A′,�′) module
algebras over B. Then the vector space A⊗A′ with the canonical B-module structure

� : B⊗A⊗A′ → A⊗A′, b� (a⊗a′) = Σ(b)(b(1) � a)⊗(b(2) �
′ a′) (41)

is a module algebra over H with the twisted multiplication

(a⊗a′) · (c⊗c′) = a(R(2) � c)⊗(R(1) � a′)c′. (42)

Proof:
To show that it is an algebra, we verify unitality and associativity

(a⊗a′) · (1A⊗1A′)
(42)
= a(R(2) � 1A)⊗(R(1) �

′ a′)1A′ = ε(R(2)) a⊗(R(1) �
′ a′)

5.1.5
= a⊗a′

(1A⊗1A′) · (a⊗a′)
(42)
= 1A(R(2) � a)⊗(R(1) �

′ 1A′)a
′ = ε(R(1))(R(2) � a)⊗a′ 5.1.5

= a⊗a′

((a⊗a′) · (c⊗c′)) · (d⊗d′) (42)
= (a(R(2) � c)⊗(R(1) �

′ a′)c′) · (d⊗d′)
(42) = a(R(2) � c)(R′(2) �

′ d)⊗(R′(1) �
′
a ((R(1) �

′ a′)c′)d′

(module algebra) = Σ(R′) a(R(2) � c)(R′(2) � d)⊗(R′(1)(1)R(1)) �
′ a′)(R′(1)(2) �

′ c′)d′

((∆⊗id)(R) = R13R23) = a(R(2) � c)(R′(2)R
′′

(2) � d)⊗R′(1)R(1) �
′ a′)(R′′(1) �

′ c′)d′

128



(a⊗a′) · ((c⊗c′) · (d⊗d′)) (42)
= (a⊗a′) · (c(R(2) � d)⊗(R(1) �

′ c′)d′)

(42) = a(R′(2) �A (c(R(2) � d)))⊗(R′(1) �
′ a′)(R(1) �

′ c′)d′

(module algebra) = Σ(R′) a(R′(2)(1) � c)(R′(2)(2)R(2) � d)))⊗(R′(1) �
′ a′)(R(1) �

′ c′)d′)

((id⊗∆)(R) = R13R12) = a(R′′(2) � c)(R′(2)R(2) � d)))⊗(R′(1)R
′′
(1) �

′ a′)(R(1) �
′ c′)d′)

To show that it is a module algebra, we compute

b� ((a⊗a′) · (c⊗c′)) (42)
= b� (a(R(2) � c)⊗(R(1) �

′ a′)c′)

(41) = Σ(b)(b(1) � (a · (R(2) � c)))⊗(b(2) �
′ ((R(1) �

′ a′) · c′))
(module algebra) = Σ(b)(b(1)(1) � a)((b(1)(2)R(2)) � c)⊗((b(2)(1)R(1)) �

′ a′)(b(2)(2) �
′ c′)

(coassociativity) = Σ(b)(b(1) � a)((b(2)R(2)) � c)⊗((b(3)R(1)) �
′ a′)(b(4) �

′ c′)

(coassociativity) = Σ(b)(b(1) � a)((b(2)(1)R(2)) � c)⊗((b(2)(2)R(1)) �
′ a′)(b(4) �

′ c′)

(∆op ·R = R ·∆) = Σ(b)(b(1) � a)((R(2)b(2)(2)) � c)⊗((R(1)b(2)(1)) �
′ a′)(b(4) �

′ c′)

(coassociativity) = Σ(b)(b(1) � a)((R(2)b(3)) � c)⊗((R(1)b(2)) �
′ a′)(b(4) �

′ c′)

(42) = Σ(b)(b(1) � a⊗b(2) �
′ a′) · (b(3) � c⊗b(4) �

′ c′)

(coassociativity) = Σ(b)(b(1)(1) � a⊗b(1)(2) �
′ a′) · (b(2)(1) � c⊗b(2)(2) �

′ c′)

(41) = Σ(b)(b(1) � (a⊗a′)) · (b(2) � (c⊗c′))

h� (1A⊗1A′) = Σ(b) (b(1) � 1A)⊗(b(2) �
′ 1A′) = Σ(b)ε(b(1))ε(b(2)) 1A⊗1A′ = ε(b) 1A⊗1A′ .2

If (H,R) is a quasitriangular Hopf algebra, the quasitriangularity has important consequences
for the behaviour of the antipode. It implies that the antipode is invertible and that its square is
given by conjugation with an element of H. This can be viewed as a generalisation of Radford’s
formula. However, in the quasitriangular case, these properties are not obtained from integrals.

Theorem 5.1.7: Let (H,R) be a quasitriangular Hopf algebra. Then:

1. The antipode of (H,R) is invertible.

2. The universal R-matrix satisfies

(S⊗id)(R) = (id⊗S−1)(R) = R−1 (S⊗S)(R) = (S−1⊗S−1)(R) = R.

3. The Drinfeld element u = S(R(2))R(1) is invertible with inverse u−1 = R(2)S
2(R(1))

and coproduct ∆(u) = (u⊗u) · (R21R)−1.

4. The element g = uS(u)−1 is grouplike.

5. One has S2(h) = uhu−1 and S4(h) = ghg−1 for all h ∈ H.

Proof:
1. To prove the identities (S⊗id)(R) = R−1 and (S⊗S)(R) = R, we compute

(m⊗id) ◦ (S⊗id⊗id) ◦ (∆⊗id)(R) = (1Hε⊗id)(R) = 1⊗1

=(m⊗id) ◦ (S⊗id⊗id)(R13R23) = (S⊗id)(R) ·R.

Right multiplication by R−1 then yields (S⊗id)(R) = R−1. As τ ◦ R−1 = R−1
21 is another

universal R-matrix for H by Proposition 5.1.5, we also obtain (id⊗S)(R−1) = R and

(S⊗S)(R) = (id⊗S) ◦ (S⊗id)(R) = (id⊗S)(R−1) = R.

129



The identities (id⊗S−1)(R) = R−1 and (S−1⊗S−1)(R) = R then follow by applying S−1⊗S−1

to these two equations, once it is established that S is invertible.

2. To prove that S is invertible, we first show that S2(h)u = hu for all h ∈ H and then use
this identity to prove that u is invertible with inverse u−1 = R(2)S

2(R(1)). It then follows that
S2(h) = uhu−1 for all h ∈ H, and this implies that S2 and S are invertible. For this, we compute

S2(h)u = S2(h)S(R(2))R(1) = S2(h(3))S(R(2))S(h(1))h(2)R(1) = S2(h(3))S(h(1)R(2))h(2)R(1)

= S2(h(3))S(R(2)h(2))R(1)h(1) = S2(h(3))S(h(2))S(R(2))R(1)h(1) = S2(h(3))S(h(2))uh(1)

= S(h(2)S(h(3)))uh(1) = uh,

where we used first the definition of u, then the identity S(h(1))h(2)⊗h(3) = 1⊗h, then the fact
that S is an anti-algebra homomorphism, then the identity ∆op(h)·R = R·∆(h), then again that
S is an anti-algebra homomorphism, the definition of u and the identity h(1)⊗h(2)S(h(3)) = h⊗1.
We now show that u is invertible. For this we compute with the identity (S⊗S)(R) = R

u ·R(2)S
2(R(1)) = S2(R(2))uS

2(R(1)) = R(2)uR(1) = R(2)S
2(R(1)) · u.

Using this equation together with the definition of u, the identities (S⊗S)(R) = R and
(S⊗id)(R) = R−1 and the fact that S is an anti-algebra homomorphism and the identity
S2(h)u = uh for all h ∈ H, we then obtain

u ·R(2)S
2(R(1)) = R(2)S

2(R(1)) · u = R(2)uR(1) = R(2)S(R′(2))R
′
(1)R(1) = S(R(2))S(R′(2))R

′
(1)S(R(1))

= S(R′(2)R(2))R
′
(1)S(R(1)) = mop ◦ (id⊗S)(R · (S⊗id)(R)) = mop ◦ (id⊗S)(R ·R−1) = 1.

This shows that u is invertible with inverse u−1 = R(2)S
2(R(1)), that S2(h) = uhu−1 for all

h ∈ H and and that S2 and S are invertible.

3. To prove that S4(h) = ghg−1 with g = uS(u)−1, we consider the quasitriangular Hopf algebra
(Hop,cop, R) with the opposite product and coproduct, the same antipode and the same R-
matrix. Then the element S(u) = R(1)S(R(2)) takes the role of u = S(R(2))R(1) for (Hop,cop, R).
This implies S2(h) = S(u)−1hS(u) and S4(h) = uS2(h)u−1 = uS(u)−1hS(u)u−1 = ghg−1.

4. To prove the identity ∆(u) = (u⊗u) · (R21R)−1 we use the identities (∆⊗id)(R) = R13R23

and (id⊗∆)(R) = R13R12 to compute

∆(u) = ∆(S(R(2))R(1)) = ∆(S(R(2))) ·∆(R(1)) = ∆(S(R(2)R
′
(2))) · (R(1)⊗R′(1))

=(S⊗S)(∆op(R(2)) ·∆op(R′(2))) · (R(1)⊗R′(1)) = (S⊗S)(R(2)R
′
(2)⊗R̃(2)R̃

′
(2)) · (R(1)R̃(1)⊗R′(1)R̃

′
(1))

=S(R′(2))S(R(2))R(1)R̃(1)⊗S(R̃′(2))S(R̃(2))R
′
(1)R̃

′
(1)) = S(R′(2))uR̃(1)⊗S(R̃′(2))S(R̃(2))R

′
(1)R̃

′
(1))

=uS−1(R′(2))R̃(1)⊗S(R̃′(2))S(R̃(2))R
′
(1)R̃

′
(1)) = uR′(2)R̃(1)⊗S(R̃′(2))S(R̃(2))S(R′(1))R̃

′
(1))

To simplify this expression, we consider the QYBE and multiply it with from the left and from
the right with R−1

12 , which yields R13R23R
−1
12 = R−1

12 R23R13. In Sweedler notation, this reads

R(1)S(R′(1))⊗R̃(1)R
′
(2)⊗R(2)R̃(2) = S(R(1))R

′
(1)⊗R(2)R̃(1)⊗R̃(2)R

′
(2).

Applying the map (m⊗id) ◦ τ12 ◦ τ23 ◦ (id⊗id⊗S) to both sides of this equation yields

S(R̃(2))S(R(2))R(1)S(R′(1))⊗R̃(1)R
′
(2) = S(R′(2))S(R̃(2))S(R(1))R

′
(1)⊗R(2)R̃(1),
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and by inserting this equation into the last term in the expression for ∆(u), we obtain

∆(u) = uR̃(1)R
′
(2)⊗S(R̃(2))S(R̃′(2))R̃

′
(1)S(R′(1)) = uR̃(1)R

′
(2)⊗S(R̃(2))uS(R′(1))

= uR̃(1)R
′
(2)⊗uS−1(R̃(2))S(R′(1)) = uS(R̃(1))R

′
(2)⊗uR̃(2)S(R′(1))

= (u⊗u) · (R−1R−1
21 ) = (u⊗u) · (R21R)−1

As the element S(u) = R(1)S(R(2)) takes the role of u = S(R(2))R(1) for (Hop,cop, R), its coprod-
uct satisfies ∆(S(u)) = (R21R)−1(S(u)⊗S(u)). Moreover, the identities S2(h) = S(u)−1hS(u)
and (S⊗S)(R) = R imply

(S(u)−1⊗S(u)−1)(R21R) = (S2⊗S2)(R21R)(S(u)−1⊗S(u)−1) = (R21R) · (S(u)−1⊗S(u)−1),

and by combining these equations with the expression for the coproduct of u, we obtain

∆(g) = ∆(uS(u)−1) = ∆(u) ·∆(S(u))−1 = (u⊗u)(R21R)−1 · (S(u)−1⊗S(u)−1) · (R21R)

= (u⊗u)(R21R)−1 · (R21R) · (S(u)−1⊗S(u)−1) = uS(u)−1⊗uS(u)−1 = g⊗g. 2

Remark 5.1.8: IfH is finite-dimensional and quasitriangular and α ∈ Gr(H∗) and a ∈ Gr(H)
are the modular elements of H and H∗, then S4(h) = a−1(α �∗R h �∗L α

−1) · a by Radford’s
formula. One can show that the element g ∈ H from Theorem 5.1.7 is given in terms of the
modular elements by g = a−1 · (α⊗id)(R) = (α⊗id)(R) · a.

We will now consider a systematic construction that associates a quasitriangular Hopf algebra
to every finite-dimensional Hopf algebra H, namely the Drinfeld double or quantum double
D(H) from Lemma 3.5.4. Drinfeld doubles are the most important and widely used Examples
of quasitriangular Hopf algebras and can be viewed as the smallest quasitriangular Hopf algebra
that contains both H and H∗cop as Hopf subalgebras.

Theorem 5.1.9: For every finite-dimensional Hopf algebra H there is a unique quasitrian-
gular Hopf algebra structure on the vector space H∗⊗H such that the inclusion maps

ιH : H → H∗⊗H, h 7→ 1⊗h ιH∗ : H∗cop → H∗⊗H, α 7→ α⊗1

are homomorphisms of Hopf algebras. This is the Drinfeld double or quantum double D(H)
from Lemma 3.5.4 with the Hopf algebra structure

(α⊗h) · (β⊗k) = Σ(h),(β) β(3)(h(1)) β(1)(S
−1(h(3))) αβ(2)⊗h(2)k 1 = 1H∗⊗1H

∆(α⊗h) = Σ(h),(α) α(2)⊗h(1)⊗α(1)⊗h(2) ε(α⊗h) = εH∗(α)εH(h)

S(α⊗h) = (1⊗S(h)) · (S(α)⊗1)

A universal R-matrix for D(H) is given by R = Σn
i=11⊗xi⊗αi⊗1, where (x1, ..., xn) is an ordered

basis of H with dual basis (α1, ..., αn).

Proof:
It was already shown in Lemma 3.5.4 that above expressions define a Hopf algebra structure
on H∗⊗H. That the inclusion maps ιH : H → H∗⊗H and ιH∗ : H∗cop → H∗⊗H are homomor-
phisms of Hopf algebras follows directly from the expressions for (co)multiplication, (co)unit
and antipode. To show that R = Σn

i=11⊗xi⊗αi⊗1 is a universal R-matrix for D(H) we use the
auxiliary identities

Σn
i=1∆(xi)⊗αi = Σn

i,j=1xi⊗xj⊗αiαj Σn
i=1xi⊗∆(αi) = Σn

i,j=1xixj⊗αi⊗αj (43)
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which follow by evaluating the left and right hand side on elements of H and H∗:

Σn
i=1(β⊗γ)(∆(xi))α

i(k) = Σi=1(β · γ)(xi)α
i(k) = (βγ)(k) = (β⊗γ)(∆(k))

= Σn
i,j=1β(xi)γ(xj)(α

i⊗αj)(∆(k)) = Σn
i,j=1(β⊗γ)(xi⊗xj)(αi · αj)(k)

Σn
i=1β(xi)∆(αi)(h⊗k) = Σn

i=1β(xi)α
i(h · k) = β(h · k) = ∆(β)(h⊗k)

= Σn
i,j=1∆(β)(xi⊗xj)αi(h)αj(k) = Σn

i,j=1β(xixj)⊗(αi⊗αj)(h⊗k)

for all β, γ ∈ H∗ and k, h ∈ H. With the identities (43) we compute

(∆⊗id)(R) = Σn
i=1∆(1⊗xi)⊗αi⊗1 = Σn

i=11⊗xi(1)⊗1⊗xi(2)⊗αi⊗1 = Σn
i,j=11⊗xi⊗1⊗xj⊗αiαj⊗1

= (Σn
i=11⊗xi⊗1⊗1⊗αi⊗1) · (Σn

j=11⊗1⊗1⊗xj⊗αj⊗1) = R13 ·R23

(id⊗∆)(R) = Σn
i=11⊗xi⊗∆(αi⊗1) = Σn

i=11⊗xi⊗αi(2)⊗1⊗αi(1)⊗1 = Σn
i,j=11⊗xixj⊗αj⊗1⊗αi⊗1

= (Σn
i=11⊗xi⊗1⊗1⊗αi⊗1) · (Σn

j=11⊗xj⊗αj⊗1⊗1⊗1) = R13 ·R12,

and show that R is invertible:

R · (S⊗id)(R) = (Σn
i=11⊗xi⊗αi⊗1) · (Σn

i=11⊗S(xj)⊗αj⊗1) = Σn
i,j=11⊗xiS(xj)⊗αiαj⊗1

= Σn
i=11⊗xi(1)S(xi(2))⊗αi⊗1 = Σn

i=1ε(xi)1⊗1⊗αi⊗1 = 1⊗1⊗1⊗1.

The condition R ·∆ = ∆op ·R then follows again from (43) by a direct computation

R ·∆(α⊗h) = Σ(h),(α)Σ
n
i=1(1⊗xi⊗αi⊗1) · (α(2)⊗h(1)⊗α(1)⊗h(2))

= Σ(h),(α)Σ
n
i=1α(2)(3)(xi(1))α(2)(1)(S

−1(xi(3)))α(2)(2)⊗xi(2)h(1)⊗αiα(1)⊗h(2)

= Σ(h),(α)Σ
n
i,j,k=1α(4)(xi)α(2)(S

−1(xk))α(3)⊗xjh(1)⊗αiαjαkα(1)⊗h(2)

= Σ(h),(α)Σ
n
j=1α(3)⊗xjh(1)⊗α(4)α

jS−1(α(2))α(1)⊗h(2)

= Σ(h),(α)Σ
n
j=1ε(α(1))α(2)⊗xjh(1)⊗α(3)α

j⊗h(2) = Σ(h),(α)Σ
n
j=1α(1)⊗xjh(1)⊗α(2)α

j⊗h(2)

∆op(α⊗h) ·R = Σ(h),(α)Σ
n
i=1(α(1)⊗h(2)⊗α(2)⊗h(1)) · (1⊗xi⊗αi⊗1)

= Σ(h),(α)Σ
n
i=1α

i
(3)(h(1)(1))α

i
(1)(S

−1(h(1)(3)))α(1)⊗h(2)xi⊗α(2)α
i
(2)⊗h(1)(2)

= Σ(h),(α)Σ
n
i,j,k=1α

k(h(1))α
i(S−1(h(3)))α(1)⊗h(4)xixjxk⊗α(2)α

j⊗h(2)

= Σ(h),(α)Σ
n
i,j,k=1α(1)⊗h(4)S

−1(h(3))xjh(1)⊗α(2)α
j⊗h(2)

= Σ(h),(α)Σ
n
i,j,k=1ε(h(3))α(1)⊗xjh(1)⊗α(2)α

j⊗h(2) = Σ(h),(α)Σ
n
i,j,k=1α(1)⊗xjh(1)⊗α(2)α

j⊗h(2). 2

Example 5.1.10: Let G be a finite group. Then the Drinfeld double D(F[G]) is given by

(δu⊗g) · (δv⊗h) = δu(gvg
−1)δu⊗gh 1 = 1⊗e = Σg∈G δg⊗e

∆(δu⊗g) = Σxy=u δy⊗g⊗δx⊗g ε(δu⊗g) = δu(e)

S(δu⊗g) = δg−1u−1g⊗g−1 R = Σg∈G1⊗g⊗δg⊗e

Integrals of the Drinfeld double D(H) are obtained in a simple way from the integrals of H and
H∗. The properties of the integrals in H and H∗ and the Hopf algebra structure of D(H) then
imply that that the Drinfeld double D(H) is always unimodular. In particular, it follows for
char(F) = 0 that the Drinfeld double of any semisimple Hopf algebra H is again semisimple.

132



Theorem 5.1.11: Let H be a finite-dimensional Hopf algebra. Then D(H) is unimodular:
If ` ∈ H is a non-trivial right integral and λ ∈ H∗ a non-trivial left integral, then λ⊗` is a
two-sided integral in D(H).

Proof:
This is a direct consequence of the multiplication of the Drinfeld double and the formula for
the Nakayama automorphism from Proposition 3.3.6. By Proposition 3.3.6, 4. we have for any
left integral λ′ ∈ IL(H∗) and x, y ∈ H

Σ(λ′)(λ
′
(1)⊗λ′(2))(x⊗y) = ∆(λ′)(x⊗y) = λ′(x · y) = λ′(ρ(y) · x) = λ′((Σ(y)α(y(1))S

2(y(2))) · x)

= (Σ(λ′)λ
′
(2)⊗αS2(λ′(1))(x⊗y),

where ρ : H → H, h 7→ Σ(h)α(h(1))S
2(h(2)) is the Nakayama automorphism for the Frobenius

form κ : H⊗H → F, x⊗y 7→ λ′(x · y) and α ∈ Gr(H∗) is the modular element of H. By using
the fact that S(λ) ∈ IL(H∗) for all λ ∈ IR(H∗), S±1(α) = α−1 and exchanging the roles of H
and H∗, we obtain the following two formulas for the integrals λ ∈ IR(H∗) and ` ∈ IL(H)

Σ(λ)λ(2)⊗λ(1) = Σ(λ)λ(1)⊗S2(λ(2))α
−1 Σ(`)`(1)⊗`(2) = Σ(`)`(2)⊗aS2(`(1)),

where α ∈ Gr(H∗) and a ∈ Gr(H) are the modular elements of H and H∗. By applying the
maps (id⊗m) ◦ (id⊗S⊗id) ◦ (id⊗∆) ◦ τ and (id⊗m) ◦ (id⊗S⊗id) ◦ (∆⊗id) to the first and the
second equation, respectively, we obtain

Σ(λ)S
2(λ(3))α

−1S(λ(1))⊗λ(2) = Σ(λ)λ(1)S(λ(2))⊗λ(3) = Σ(λ)ε(λ(1))1⊗λ(2) = 1⊗λ (44)

Σ(`)`(2)⊗S(`(3))aS
2(`(1)) = Σ(`)`(1)⊗S(`(2))`(3) = Σ(`)ε(`(2)) `(1)⊗1 = `⊗1.

With the multiplication law of the Drinfeld double, we then compute

(λ⊗`) · (β⊗h) = Σ(`)(β)β(3)(`(1))β(1)(S
−1(`(3)))λβ(2)⊗`(2)h

λ∈IL(H∗)
= Σ(`)(β)β(2)(a)β(3)(`(1))β(1)(S

−1(`(3)))λ⊗`(2)h

= Σ(`)β(S−1(`(3))a`(1))λ⊗`(2)h

= Σ(`)(β ◦ S−2)(S(`(3))aS
2(`(1)))λ⊗`(2)h

(44)
= (β ◦ S−2)(1)λ⊗`h

`∈IR(H)
= β(1)ε(h)λ⊗`,

(β⊗h) · (λ⊗`) = Σ(λ)(h)λ(3)(h(1))λ(1)(S
−1(h(3))) βλ(2)⊗h(2)`

`∈IR(H)
= Σ(λ)(h)α

−1(h(2))λ(3)(h(1))λ(1)(S
−1(h(3))) βλ(2)⊗`

= Σ(λ)(λ(3)α
−1S−1(λ(1)))(h) βλ(2)⊗`

= Σ(λ)(S
2(λ(3))α

−1S(λ(1)))(S
−2(h)) βλ(2)⊗`

(44)
= ε(S2(h)) βλ⊗`

λ∈IL(H∗)
= ε(h)β(1)λ⊗`.

This shows that λ⊗` is a two-sided integral in D(H). As dimF IL(D(H)) = dimF IR(D(H)) = 1
by Theorem 3.2.15, it follows that IL(D(H)) = IR(D(H)) and D(H) is unimodular. 2

Corollary 5.1.12: For a finite-dimensional Hopf algebra H over a field F with char(F) = 0,
the following are equivalent:

(i) H is semisimple.
(ii) H∗ is semisimple.
(iii) D(H) is semisimple.
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Proof:
The equivalence of (i) and (ii) follows from Theorem 3.4.10 by Larson and Radford, which also
implies that (i) and (ii) are equivalent to S2

H = idH and S2
H∗ = idH∗ . As one has for all α ∈ H∗

and h ∈ H

S2
D(H)(α⊗h) = S2

D(H)((α⊗1)(1⊗h)) = S2
D(H)(α⊗1)S2

D(H)(1⊗h) = (S2
H∗(α)⊗1)(1⊗S2

H(h))

= (S2
H∗(α)⊗S2

H(h)),

if follows that (i) and (ii) are equivalent to the condition S2
D(H) = id, which by Theorem 3.4.10

is equivalent to (iii). 2

5.2 *Factorisable Hopf algebras

Clearly, the Drinfeld double D(H) of a finite-dimensional Hopf algebra H is not just a quasi-
triangular Hopf algebra, but a quasitriangular Hopf algebra that contains H and H∗cop as Hopf
subalgebras in such a way that every element of D(H) can be factorised uniquely as a product
α⊗h = (α⊗1) · (1⊗h) of an element α ∈ H∗ and an element h ∈ H. This becomes even sim-
pler for the dual Hopf algebra D(H)∗ = Hop⊗H∗, which is the tensor product of the algebras
Hop and H∗. It turns out that parts of this pattern generalise to quasitriangular Hopf algebras
(H,R). More specifically, the universal R-matrix gives rise to two canonical (anti)algebra and
(anti)coalgebra homomorphisms H∗ → H, which can be viewed as the counterparts of the
projectors

πH : D(H)∗ → H, h⊗α 7→ ε(α)h πH∗ : D(H)∗ → H∗, h⊗α 7→ ε(h)α.

Proposition 5.2.1: Let (H,R) be a finite-dimensional quasitriangular Hopf algebra. Then:

1. The linear map φR : H∗ → H, α 7→ (id⊗α)(R) is an anti-algebra homomorphism and a
coalgebra homomorphism and satisfies φR ◦ S±1 = S∓1 ◦ φR.

2. The linear map φ̄R = S ◦ φR−1
21

: H∗ → H, α 7→ (α⊗id)(R) is an algebra homomorphism

and an anti-coalgebra homomorphism and satisfies φ̄R ◦ S±1 = S∓1 ◦ φ̄R.

3. The linear map D = φ̄R ∗ φR : H∗ → H, α 7→ (id⊗α)(Q) with Q = R21R is a module
homomorphism with respect to the left regular action �L : H∗⊗H∗ → H∗, α� β = α · β
and the H∗-module structure � : H∗⊗H → H, α� h = Σ(α) φ̄R(α(1)) · h · φR(α(2)).

4. The element Q = R21R satisfies Q · ∆(h) = ∆(h) · Q for all h ∈ H and is called the
monodromy element.

Proof:
The second claim follows from the first, the fact that R−1

21 is another universal R-matrix for H
by Proposition 5.1.5 and the fact that the antipode is an anti-algebra and coalgebra homomor-
phism. The first follows by a direct computation using the properties of the universal R-matrix.
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Using Sweedler notation for the universal R-matrix, we then obtain with

φR(1H∗) = φR(ε) = ε(R(2))R(1) = m ◦ (id⊗ε)(R) = m ◦ (1⊗1) = 1

φR(αβ) = (αβ)(R(2))R(1) = (α⊗β)(∆(R(2)))R(1) = (α⊗β)(R(2)⊗R′(2))R
′
(1)R(1) = φR(β) · φR(α)

(φR⊗φR)(∆(α)) = Σ(α) α(1)(R(2))α(2)(R
′
(2))R(1)⊗R′(1) = α(R(2)R

′
(2))R(1)⊗R′(1)

= (id⊗α)(R13R23) = (id⊗α)(∆⊗id)(R) = ∆(α(R(2))R(1)) = ∆(φR(α))

ε ◦ φR(α) = α(R(2))ε(R(1)) = α(1)1

S(φR(α)) = α(R(2))S(R(1)) = α(S−1(R(2)))R(1) = φR(S−1(α)).

That � : H∗⊗H → H, α � h = Σ(α) φ̄R(α(1)) · h · φR(α(2)) defines an H∗-module structure on
H follows directly from the fact that φR is an anti-algebra homomorphism and φ̄R and ∆ are
algebra homomorphisms. As we have Q = R21 ·R, the Definition of D implies for all α ∈ H∗

D(α) = (id⊗α)(R21R) = Σ(α) (id⊗α(1))(R21)·(id⊗α(2))(R) = Σ(α) φ̄R(α(1))·φR(α(2)) = (φ̄R∗φR)(α).

Using again the fact that φR is an anti-algebra and φ̄R an algebra homomorphism, one obtains

D(αβ) = φ̄R(α(1)β(1)) · φR(α(2)β(2)) = φ̄R(α(1))φR(β(1))φR(β(2))φR(α(2)) = φ̄R(α(1)) ·D(β) · φR(α(2)).

The identity for the monodromy element follows directly from its definition. With the identites
Q = R21R = R(2)R

′
(1)⊗R(1)R

′
(2) and R ·∆ = ∆op ·R, we compute for all h ∈ H

∆(h) ·Q = Σ(h)(h(1)⊗h(2)) · (R(2)R
′
(1)⊗R(1)R

′
(2)) = Σ(h)h(1)R(2)R

′
(1)⊗h(2)R(1)R

′
(2)

= Σ(h)R(2)h(2)R
′
(1)⊗R(1)h(1)R

′
(2) = Σ(h)R(2)R

′
(1)h(1)⊗R(1)R

′
(2)h(2)

= Σ(h)(R(2)R
′
(1)⊗R(1)R

′
(2)) · (h(1)⊗h(2)) = Q ·∆(h). 2

Clearly, if the map D : H∗ → H from Proposition 5.2.1 is surjective, then every element
of H can be factorised as the product of an elements in the subalgebras φ̄R(H∗) ⊂ H and
φR(H∗) ⊂ H. As dimFH = dimF H

∗ for every finite-dimensional Hopf algebra H, this is the
case if and only if the Drinfeld map D : H → H∗ is a linear isomorphism.

Definition 5.2.2: A finite-dimensional quasitriangular Hopf algebra (H,R) is called fac-
torisable if the Drinfeld map D : H∗ → H is a linear isomorphism.

Example 5.2.3: For any finite-dimensional Hopf algebra H, the Drinfeld double D(H) is
factorisable. If (x1, ..., xn) is an ordered basis of H and (α1, ..., αn) its dual basis, one has for
the universal R-matrix R = Σn

i=11⊗xi⊗αi⊗1:

φR : H⊗H∗ → H∗⊗H, h⊗α 7→ ε(α) 1⊗h φ̄R : H⊗H∗ → H∗⊗H, h⊗α 7→ ε(h)α⊗1

D : H⊗H∗ → H∗⊗H, h⊗α 7→ Σn
i,j=1α

jαS−1(αi)⊗xihxj.
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This follows directly from the expression for the R-matrix

R21R = Σn
i,j=1(αi⊗1⊗1⊗xi) · (1⊗xj⊗αj⊗1) = Σn

i,j=1Σ(xi)(αj)α
j
(3)(xi(1))α

j
(1)(S

−1(xi(3)))α
i⊗xj⊗αj(2)⊗xi(2)

= Σn
u,v,w,j=1α

j
(3)(xu)α

j
(1)(S

−1(xw))αuαvαw⊗xj⊗αj(2)⊗xv
= Σn

v,j=1α
j
(3)α

vS−1(αj(1))⊗xj⊗α
j
(2)⊗xv = Σn

v,i,j,k=1α
kαvS−1(αi)⊗xixjxk⊗αj⊗xv

φR(h⊗α) = Σn
i=1(h⊗α)(αi⊗1) 1⊗xi = Σn

i=1ε(α)αi(h)1⊗xi = ε(α)1⊗h
φ̄R(h⊗α) = Σn

i=1(h⊗α)(1⊗xi)αi⊗1 = Σn
i=1ε(h)α(xi)α

i⊗1 = ε(h)α⊗1

D(h⊗α) = Σn
v,i,j,k=1α

j(h)α(xv)α
kαvS−1(αi)⊗xixjxk = Σn

i,k=1α
kαS−1(αi)⊗xihxk

D−1(α⊗h) = Σn
i,k=1α

kαlαi⊗S(xi)xjxk = Σn
i,k=1xkhS

−1(xi)⊗αiααk

D−1(D(h⊗α)) = Σn
i,k,u,v=1 xuxihxkS

−1(xv)⊗αvαkαS−1(αi)αu

= Σn
i,k=1 xihxk(2)S

−1(xk(1))⊗αkαS−1(αi(2))α
i
(1) = Σn

i,k=1 ε(xk)ε(α
i)xih⊗αkα = h⊗α

Another important conceptual motivation for the Drinfeld map D : H∗ → H is that it relates
the characters of the Hopf algebra H, i. e. the invariants under the coadjoint action of H on
H∗, to elements of the center C(H). If H is factorisable, then the character algebra and the
center are isomorphic.

Theorem 5.2.4: Let H be a finite-dimensional quasitriangular Hopf algebra. Then the
invariants under the coadjoint action

�∗ad : H∗⊗H → H∗, α�∗ad h = Σ(α)(α(1)S(α(3)))(h)α(2).

form a subalgebra C(H) = (H∗)�
∗
ad ⊂ H∗, the character algebra of H. The Drinfeld map

induces an algebra homomorphism D : C(H) → Z(H). If H is factorisable, then this is an
algebra isomorphism.

Proof:
That C(H) ⊂ H∗ is a subalgebra follows by a direct computation: if α, β ∈ C(H), then one has

Σ(h) (αβ)(S(h(2))kh(1)) = Σ(h) α(S(h(2)(2))k(1)h(1)(1))β(S(h(2)(1))k(2)h(1)(2))

= Σ(h)(k) α(S(h(3))k(1)h(1))β(S(h(2)(2))k(2)h(2)(1))
β∈C(H)

= Σ(h)(k) ε(h(2))α(S(h(3))k(1)h(1))β(k(2)) = Σ(h)(k) α(S(h(2))k(1)h(1))β(k(1))
α∈C(H)

= Σ(k) ε(h)α(k(1))β(k(2)) = ε(h)(αβ)(k)

for all h, k ∈ H. With the definition of the Drinfeld map from Proposition 5.2.1 and the identity
in Proposition 5.2.1, 4. one then obtains

h ·D(β) = β(Q(2))hQ(1) = Σ(h) β(S−1(h(3))h(2)Q(2))h(1)Q(1)

Prop.5.2.1
= Σ(h)β(S−1(h(3))Q(2)h(2))Q(1)h(1)

β∈C(H)
= β(Q(2))Q(1)h = D(β)h

D(αβ) = φ̄R(α(1))D(β)φR(α(2)) = φ̄R(α(1))φR(α(2))D(β) = D(α)D(β).

This shows that the Drinfeld map induces an algebra homomorphism D : C(H)→ Z(H). If H
is factorisable, then this algebra homomorphism is injective. To show that it is surjective, it is
sufficient to show that dimFC(H) = dimF Z(H).
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For this, we consider a right integral λ ∈ IR(H∗) \ {0} and the associated map ψλ : H → H∗,
h 7→ Σ(λ)λ(2)(h)λ(1), which is an isomorphism by Theorem 3.2.15. As H is factorisable, it is
unimodular by Theorem 5.1.11 and hence one has α = ε for the modular element α ∈ Gr(H∗)
by Proposition 3.2.16. This implies that for any left integral λ′ ∈ IL(H∗) \ {0} the Nakayama
automorphism from Proposition 3.3.6 is given by ρ(h) = S2(h) for all h ∈ H and hence
λ′(x · y) = λ′(S2(y) · x) for all x, y ∈ H. As the element S(λ) ∈ IL(H∗) \ {0} is a left integral,
it follows that λ(x · y) = λ(y · S2(x)), and we obtain for all x, y ∈ H

Σ(x)ψλ(h)(S−1(x(2))yx(1)) = Σ(x)(λ)λ(2)(h)λ(1)(S
−1(x(2))yx(1)) = Σ(x)λ(S−1(x(2))yx(1)h)

= Σ(x)λ(yx(1)hS(x(2))) = Σ(x)ψλ(x(1)hS(x(2)))(y).

As ψλ is injective, this implies that ψλ(h) ∈ C(H) if and only if h ∈ Z(H) and hence
dimFC(H) = dimF Z(H). 2

5.3 *Twisting

Clearly, the Drinfeld doubleD(H) differs from the tensor product H∗⊗H since its multiplication
is not the tensor product multiplication but a mixed multiplication law in which both, H and
H∗ act on each other. However, its coalgebra structure is simply the tensor product coalgebra
structure on H∗cop⊗H and hence we the dual Hopf algebra D(H)∗ coincides with Hop⊗H∗ as an
algebra, while its comultiplication differs from the tensor product coalgebra structure. It turns
out that this is a spacial case of a systematic construction that associates to a bialgebra B
bialgebra a new bialgebra B with the same multiplication, unit and counit, but with a different
coproduct. The ingredient in this construction is a so-called em 2-cocycle.

Definition 5.3.1: A 2-cocycle for a bialgebra B is an invertible element F = F(1)⊗F(2) ∈
B⊗B satisfying

F12 · (∆⊗id)(F ) = F23 · (id⊗∆)(F ) (ε⊗id)(F ) = 1F⊗1 (id⊗ε)(F ) = 1⊗1F. (45)

Example 5.3.2:

1. If R is a universal R-matrix for a bialgebra B, then R is a 2-cocycle for B, since we
have R12(∆⊗id)(R) = R12R13R23 = R23R13R12 = R23(id⊗∆)(R), (ε⊗id)R = 1F⊗1 and
(id⊗ε)(R) = 1⊗1F by Proposition 5.1.5. .

2. If G is a 2-cocycle for (B,m, η,∆, ε) and F a 2-cocycle for (B,m, η,∆G, ε), then FG is a
cocycle for (B,m, η,∆, ε) (Exercise).

3. One can show that if F is a cocycle for (B,m, η,∆, ε), then F−1 is a cocycle for
(B,m, η,∆F , ε) (Exercise).

4. If F = F(1)⊗F(2) ∈ B⊗B is a 2-cocycle for a bialgebra B, then G = 1⊗F(1)⊗F(2)⊗1 is a
2-cocycle for B⊗B with the tensor product bialgebra structure (Exercise).

Given a cocycle F ∈ B⊗B, one can form a new bialgebra by conjugating the comultiplication
of B with F . If B is a Hopf algebra and the antipode of B is twisted as well, then twisting
yields another Hopf algebra and twists of quasitriangular bialgebra are again quasitriangular.
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Theorem 5.3.3: Let (B,m, η,∆, ε) be bialgebra and F = F(1)⊗F(2) ∈ B⊗B a 2-cocycle.

1. (B,m, η,∆F , ε) is a bialgebra with the twisted coproduct

∆F : H → H⊗H, h 7→ F ·∆(h) · F−1

2. If (B,m, η,∆, ε) is a Hopf algebra with antipode S : B → B, then (B,m, η,∆F , ε) is a
Hopf algebra with the twisted antipode

SF : H → H, h 7→ vS(h)v−1 with v = m ◦ (id⊗S)(F ) = F(1)S(F(2))

3. If (B,m, η,∆, ε) is quasitriangular with a universal R-matrix R ∈ B⊗B, then
(B,m, η,∆F , ε) is quasitriangular with universal R-matrix RF = F21 ·R · F−1.

Proof:
1. It follows directly from the definition of ∆F that ∆F is an algebra homomorphism

∆F (ab) = F ·∆(ab) ·F−1 = F ·∆(a) ·∆(b) ·F−1 = F ·∆(a) ·F−1 ·F ·∆(b) ·F−1 = ∆F (a) ·∆F (b)

for all a, b ∈ B. The counitality of ∆F follows from the counitality of ∆ and the last two
equations in the definition of the 2-cocycle

(ε⊗id) ◦∆F (b) = (ε⊗id)(F ·∆(b) · F−1) = (ε⊗id)(F )(ε⊗id)(∆(b))(ε⊗id)(F−1)

= (ε⊗id)(F ) · (1⊗b) · (ε⊗id)(F )−1 = 1⊗b
(id⊗ε) ◦∆F (b) = (id⊗ε)(F ·∆(b) · F−1) = (id⊗ε)(F )(id⊗ε)(∆(b))(id⊗ε)(F−1)

= (id⊗ε)(F ) · (b⊗1) · (id⊗ε)(F )−1 = b⊗1.

The coassociativity of ∆F follows from the coassociativity of ∆ and the first equation in the
definition of a 2-cocycle

(∆F⊗id) ◦∆F (b) = (∆F⊗id)(F ·∆(b) · F−1) = (∆F⊗id)(F ) · (∆F⊗id) ◦∆(b) · (∆F⊗id)(F−1)

= F12 · (∆⊗id)(F ) · F−1
12 · F12 · (∆⊗id) ◦∆(b) · F−1

12 · F12 · (∆⊗id)(F )−1 · F−1
12

= (F12 · (∆⊗id)(F )) · (∆⊗id) ◦∆(b) · (F12 · (∆⊗id)(F ))−1

(id⊗∆F ) ◦∆F (b) = (id⊗∆F )(F ·∆(b) · F−1) = (id⊗∆F )(F ) · (id⊗∆F ) ◦∆(b) · (id⊗∆F )(F−1)

= F23 · (id⊗∆)(F ) · F−1
23 · F23 · (id⊗∆) ◦∆(b) · F−1

23 · F23 · (id⊗∆)(F )−1 · F−1
23

= (F23 · (id⊗∆)(F )) · (id⊗∆) ◦∆(b) · (F23 · (id⊗∆)(F ))−1.

2. To prove that SF is an antipode for (B,m, η,∆F , ε) we show first that

v−1 = v′ = m ◦ (S⊗id)(F−1) = S(F−1
(1) )F−1

(2)

This follows from the first identity in (45), which also implies

(∆⊗id)(F−1) · F−1
12 = (id⊗∆)(F−1) · F−1

23 . (46)
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Using the Definition of v and v′, we then obtain

v′v = S(F ′
−1
(1))F

′−1
(2)F(1)S(F(2)) = S(F ′

−1
(1)(F

′′
(1)ε(F

′′
(2))))F

′−1
(2)F(1)S(F(2))

= Σ(F ′′
(2)

)S(F ′
−1
(1)F

′′
(1))F

′−1
(2)F(1)F

′′
(2)(1)S(F ′′(2)(2))S(F(2))

= Σ(F ′′
(2)

)S(F ′
−1
(1)F

′′
(1))F

′−1
(2)F(1)F

′′
(2)(1)S(F(2)F

′′
(2)(2))

= m ◦ (m⊗id) ◦ (S⊗id⊗S)(Σ(F ′′
(2)

)F
′−1
(1)F

′′
(1)⊗F ′−1

(2)F(1)F
′′

(2)(1)⊗F(2)F
′′
(2)(2))

= m ◦ (m⊗id) ◦ (S⊗id⊗S)(F12F23(id⊗∆)(F ))
(45)
= m ◦ (m⊗id) ◦ (S⊗id⊗S) ◦ (∆⊗id)(F )

= m((m ◦ (S⊗id) ◦∆)(F(1))⊗F(2)) = m(ε(F(1))1⊗F(2)) = m(1⊗1) = 1

vv′ = F(1)S(F(2))S(F ′
−1
(1))F

′−1
(2) = F(1)S(F ′

−1
(1)F(2))F

′−1
(2) = (ε(F ′′

−1
(2))F

′′−1
(1)) F(1)S(F ′

−1
(1)F(2))F

′−1
(2)

= Σ(F ′′−1
(2)

) F
′′−1

(1)F(1)S(F ′
−1
(1)F(2))S(F ′′−1

(2)(1))F
′′−1
(2)(2)F

′−1
(2)

= Σ(F ′′−1
(2)

) F
′′−1

(1)F(1)S(F ′′−1
(2)(1)F

′−1
(1)F(2))F

′′−1
(2)(2)F

′−1
(2)

= m ◦ (m⊗id) ◦ (id⊗S⊗id)(Σ(F ′′−1
(2)

) F
′′−1

(1)F(1)⊗F ′′−1
(2)(1)F

′−1
(1)F(2)⊗F ′′−1

(2)(2)F
′−1
(2))

= m ◦ (m⊗id) ◦ (id⊗S⊗id)((id⊗∆)(F−1) · F−1
23 · F12)

(46)
= m ◦ (m⊗id) ◦ (id⊗S⊗id)((∆⊗id)(F−1))

= m((m ◦ (id⊗S) ◦∆)(F(1))⊗F(2)) = m(ε(F(1))1⊗F(2)) = m ◦ (ε⊗id)(F ) = m(1⊗1) = 1.

This shows that v′ = v−1. With the definition of the twisted comultiplication and antipode, we
then obtain for all b ∈ B

m ◦ (SF⊗id) ◦∆F (b) = Σ(b) SF (F(1)b(1)F
′−1
(1))F(2)b(2)F

′−1
(2)

= Σ(b) SF (F ′−1
(1) )SF (b(1))SF (F(1))F(2)b(2)F

′−1
(2) = Σ(b) vS(F ′−1

(1) )S(b(1))S(F(1))v
−1F(2)b(2)F

′−1
(2)

= Σ(b) F̃ (1)S(F̃ (2))S(F ′−1
(1) )S(b(1))S(F(1))S(F̃ ′

−1

(1))F̃
′−1

(2)F(2)b(2)F
′−1
(2)

= Σ(b) F̃ (1)S(F̃ (2))S(F ′−1
(1) )S(b(1))S(F̃ ′

−1

(1)F(1))(F̃
′−1

(2)F(2))b(2)F
′−1
(2)

= Σ(b) F̃ (1)S(F̃ (2))S(F ′−1
(1) )S(b(1))b(2)F

′−1
(2) = ε(b) F̃ (1)S(F̃ (2))S(F ′−1

(1) )F ′−1
(2) = ε(b) vv−1 = ε(b)1.

The proof of the identity m ◦ (id⊗SF ) ◦∆F = ηε is analogous.

3. To prove that (B,m, η,∆F , ε) is quasitriangular with universal R-matrix RF = F21 ·R ·F−1,
we compute first for all b ∈ B

RF ·∆F (b) ·R−1
F = (F21 ·R · F−1) · F ·∆(b) · F−1 · (F21 ·R · F−1)−1

= F21 ·R ·∆(b) ·R−1 · F−1
21 = F21 ·∆op(b) · F−1

21 = ∆op
F (b).

It remains to show that (∆F⊗id)(RF ) = (RF )13(RF )23 and (id⊗∆F )(RF ) = (RF )13(RF )12. For
the first of these identities, we compute with the definition of ∆F and RF , the properties of the
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2-cocycle F and the identity (∆⊗id)(R) = R13R23

(∆F⊗id)(RF ) = F12 · (∆⊗id)(F21 ·R · F−1) · F−1
21

= F12 · (∆⊗id)(F21) · (∆⊗id)(R) · (∆⊗id)(F−1) · F−1
21

= F12 · (∆⊗id)(F21) ·R13R23 · (∆⊗id)(F−1) · F−1
21

(46) = F12 · (∆⊗id)(F21) ·R13R23 · (id⊗∆)(F−1) · F−1
23

= (id⊗τ) ◦ (τ⊗id)(F23 · (id⊗∆)(F )) ·R13R23 · (id⊗∆)(F−1) · F−1
23

(45) = (id⊗τ) ◦ (τ⊗id)(F12 · (∆⊗id)(F )) ·R13R23 · (id⊗∆)(F−1) · F−1
23

= (id⊗τ)(F21 · (∆op⊗id)(F )) ·R13R23 · (id⊗∆)(F−1) · F−1
23

= (id⊗τ)(F21 · (∆op⊗id)(F ) ·R12) · (R23 · (id⊗∆)(F−1) · F−1
23 )

(R∆ = ∆opR) = (id⊗τ)(F21 ·R12 · (∆⊗id)(F )) · ((id⊗∆op)(F−1) ·R23 · F−1
23 )

= F31 ·R13 · (id⊗τ)(∆⊗id)(F )) · (id⊗∆op)(F−1) ·R23 · F−1
23

(F−1F = 1) = F31 ·R13 · F ′−1
13 · F ′′13 · (id⊗τ)(∆⊗id)(F ) · (id⊗∆op)(F−1) ·R23 · F−1

23

= F31 ·R13 · F ′−1
13 · (id⊗τ)(F ′′12 · (∆⊗id)(F )) · (id⊗∆op)(F−1) ·R23 · F−1

23

(45) = F31 ·R13 · F ′−1
13 · (id⊗τ)(F ′′23 · (id⊗∆)(F )) · (id⊗∆op)(F−1) ·R23 · F−1

23

= F31 ·R13 · F ′−1
13 · (id⊗τ)(F ′′23 · (id⊗∆)(F ) · (id⊗∆)(F−1)) ·R23 · F−1

23

= F31 ·R13 · F ′−1
13 · (id⊗τ)(F ′′23) ·R23 · F−1

23 = F31 ·R13 · F ′−1
13 · F ′′32 ·R23 · F−1

23

= (RF )13(RF )23.

The proof of the identity (id⊗∆F )(RF ) = (RF )13(RF )12 is analogous. 2

The results of this theorem and the statements about twists in Example 5.3.2 2. and 3. show
that being related by twists defines an equivalence relation on the set of bialgebras, of Hopf
algebras and of quasitriangular Hopf algebras over F. Two bialgebras are Hopf algebras that are
related by a twist are often called twist equivalent. One can show that the categories B-Mod
and B′-Mod for two twist equivalent bialgebras B and B′ are related by a monoidal equivalence
of categories. In this sense, twist equivalent bialgebras have the same representations. It is also
clear from Example 5.3.2, 1. that one can view a quasitriangular bialgebra as a bialgebra that is
twist equivalent to the bialgebra with the opposite coproduct. In the case of a Drinfeld double
D(H) there is an even stronger statement, namely that the dual of D(H)∗ is twist equivalent
to the tensor product Hopf algebra Hop⊗H.

Theorem 5.3.4: Let H be a finite-dimensional Hopf algebra. Then the Drinfeld double D(H)
is the dual of the Hopf algebra (Hop⊗H∗)F obtained by twisting Hop⊗H∗ with the 2-cocycle
F = Σn

i=11⊗αi⊗xi⊗1 from Theorem 5.1.9.

Proof:
We show first that F = Σn

i=11⊗αi⊗xi⊗1 is a 2-cocycle for Hop⊗H. The identities in (43) imply

(ε⊗id)(F ) = Σn
i=1ε(1H)αi(1)⊗xi⊗1H∗ = Σn

i=11F⊗αi(1)xi⊗1H∗ = 1F⊗1H⊗1H∗

(id⊗ε)(F ) = Σn
i=11H⊗αi⊗1H∗(1H)ε(xi) = Σn

i=11H⊗ε(xi)αi⊗1F = 1H⊗1H∗⊗1F

F12 · (∆⊗id)(F ) = (Σn
i=11⊗αi⊗xi⊗1⊗1⊗1) · (Σn

j=11⊗αj(1)⊗1⊗αj(2)⊗xj⊗1)
(43)
= Σn

i,j,k=1(1⊗αi⊗xi⊗1⊗1⊗1) · (Σn
j=11⊗αj⊗1⊗αk⊗xjxk⊗1)

= Σn
i,j,k=11⊗αiαj⊗xi⊗αk⊗xjxk⊗1 = Σn

i,j,k=1(1⊗1⊗1⊗αk⊗xk⊗1) · (1⊗αiαj⊗xi⊗1⊗xj⊗1)
(43)
= (Σn

k=11⊗1⊗1⊗αk⊗xk⊗1) · (Σn
j=11⊗αj⊗xj(1)⊗1⊗xj(2)⊗1) = F23 · (id⊗∆)(F ).
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A short computation analogous to the one in the proof of Theorem 5.1.9 and taking into account
that the antipode of Hop is S−1 shows that its inverse is given by

F−1 = Σn
i=11⊗S(αi)⊗xi⊗1 = Σn

i=11⊗αi⊗S−1(xi)⊗1.

Using this identity and the multiplication of Hop⊗H∗, we obtain

∆F (h⊗α) = (Σn
i=11⊗αi⊗xi⊗1) · (Σ(h)(α)h(1)⊗α(1)⊗h(2)⊗α(2)) · (Σn

j=11⊗αj⊗S−1(xj)⊗1⊗1⊗1)

= Σn
i,j=1Σ(h)(α)h(1)⊗αiα(1)α

j⊗S−1(xj)h(2)xi⊗α(2).

The dual algebra structure on H∗⊗H is given by

((β⊗x) · (γ⊗y))(h⊗α) = (β⊗x⊗γ⊗y)(∆(h⊗α))

= Σn
i,j=1Σ(h)(α)(β⊗x⊗γ⊗y)(h(1)⊗αiα(1)α

j⊗S−1(xj)h(2)xi⊗α(2))

= Σn
i,j=1Σ(h)(α) β(h(1))(α

iα(1)α
j)(x)γ(S−1(xj)h(2)xi)α(2)(y)

= Σn
i,j=1Σ(h)(α)(x)(γ) β(h(1))α

i(x(1))α(1)(x(2))α
j(x(3))γ(1)(S

−1(xj))γ(2)(h(2))γ(3)(xi)α(2)(y)

= Σ(x)(γ) (βγ(2))(h)α(x(2)y)γ(3)(x(1))γ(1)(S
−1(x(3)))

= (Σ(x)(γ)γ(3)(x(1))γ(1)(S
−1(x(3))) βγ(2)⊗x(2)y)(h⊗α).

This is the multiplication of the Drinfeld double D(H). Similarly, one finds that the dual
coalgebra structure on H∗⊗H is the comultiplication of D(H):

∆(γ⊗y)(h⊗α⊗k⊗β) = (γ⊗y)((h⊗α) · (k⊗β)) = (γ⊗y)(kh⊗αβ) = γ(kh)(αβ)(y)

= Σ(γ)(y) γ(1)(k)γ(2)(h)α(y(1))β(y(2)) = (Σ(γ)(y) γ(2)⊗y(1)⊗γ(1)⊗y(2))(h⊗α⊗k⊗β).

As the Hopf algebra structure of D(H) is determined uniquely by its multiplication and
comultiplication, this proves the claim. 2
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6 Ribbon categories and and ribbon Hopf algebras

6.1 Knots, links, ribbons and tangles

In the last section, we showed that a quasitriangular structure on a bialgebra B is exactly the
additional data needed so that its representations form a braided monoidal category B-Mod.
This shows in particular that every quasitriangular bialgebra gives rise to representations of
the braid group, which can be realised as a functor F : B → B-Mod. However, this did not
make use of the additional data in a quasitriangular Hopf algebra, namely the antipode, which
defines representations on the duals of the representation spaces such that the right evaluation
and coevaluation are homomorphisms of representations.

In this section, we consider not only braids but knots and links and show that the antipode
of quasitriangular the Hopf algebra, subject to some additional conditions, is precisely the
information needed to include them into this picture.

Definition 6.1.1:

1. A link is a compact one-dimensional smooth submanifold of L ⊂ R3. A knot is a
connected link.

2. A oriented link is a link together with a choice of an orientation on each of its connected
components.

3. Two (oriented) links L,L′ are called equivalent or ambient isotopic3 if there is an
orientation preserving diffeomorphism f : R3 → R3 with f(L) = L′ (and such that the
orientations on f(L) and L′ agree).

Links in R3 can be described by link diagrams. A link diagram is obtained by projecting a link
L ⊂ R3 onto the plane with the map P : R3 → R2, (x, y, z) 7→ (x, y). By applying an orientation
preserving diffeomorphism to L one can always achieve that the projection P (L) ⊂ L is generic,
i. e. satisfies the following conditions:

(i) |P−1(x) ∩ L| < 3 for all x ∈ R2,

(ii) there are only finitely many points x ∈ R2 with |P−1(x) ∩ L| = 2,

(iii) if P−1(x) = {p, q}, then there are neighbourhoods Up, Uq ⊂ R3 such that P (Up ∪ Uq)
can be mapped to the following diagram by an orientation preserving diffeomorphism
f : R2 → R2

Up ∩ L

Up ∩ L

Uq ∩ L

Uq ∩ L

This means that each crossing point in the link projection involves exactly two strands.

3Note that this definition of ambient isotopy is only possible for links in R3 and S3, due to a famous result
of Cerf that states that every orientation preserving diffeomorphism f : R3 → R3 or f : S3 → S3 is isotopic to
the identity. The general notion of ambient isotopy is more complicated.
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Definition 6.1.2: A link diagram for a link L ⊂ R3 is a generic link projection of L together
with the information which of the two points p, q ∈ P−1(x) has the greater z-coordinate.

The information about the z coordinates in a crossing point of a link diagram is indicated in
diagrams by drawing the crossing as an overcrossing or undercrossing, where the strand
with greater z coordinate crosses over the one with smaller z-coordinate. The same diagrams are
used for oriented links, with the orientation of the link indicated by arrows on each connected
component. A knot diagram without crossing points is called a unknot. One can show, see for
instance [Mn, Mu], that (oriented) link diagrams capture all information about the equivalence
of (oriented) links.

Theorem 6.1.3: Two (oriented) links L,L′ ⊂ R3 are equivalent of and only if their (oriented)
link diagrams DL and DL′ are equivalent, that is related by a finite sequence of orientation
preserving diffeomorphisms f : R2 → R2 and the three Reidemeister moves:

= = = =
=

Reidemeister move RM1 Reidemeister move RM2 Reidemeister move RM3.

These moves are understood as local moves that change only the depicted region in the link
diagram and leave the rest of the link diagram invariant. They are defined analogously for
oriented links.

Besides the notion of a link, there is also the related concept of a framed link or ribbon, which
can also be oriented. It can be viewed as a link that is thickened to a strip or ribbon, and the
information needed to define the thickening is contained in the framing.

Definition 6.1.4:

1. A framed link or ribbon is a link L ⊂ R3 together with a vector field X on L that is
nowhere tangent to L, i. e. a smooth map X : L→ R3 with X(l) /∈ TlL ⊂ R3 for all l ∈ L.

2. Two framed links (L,X) and (L′, X ′) are called equivalent or ambient isotopic if
there is an orientation preserving diffeomorphism f : R3 → R3 with f(L) = L′ and
X ′(f(l)) = Tlf(X(l)) for all l ∈ L.

Given a link L ⊂ R3 and a vector field X on L that is nowhere tangent to L, we can thicken the
link to a ribbon, that is twisted around itself only by multiples of 2π. Note that this excludes
Möbius strips.
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If one is only interested in equivalence classes of framed links, one can therefore forget about
the vector field and define a framed link as a link with an assignment of an integer z ∈ Z to
each connected component that indicates how many times the connected component is twisted
around itself. By using the relation

=

we can transform any projection of a ribbon onto the plane R2 into a blackboard framed
ribbon projection that only involves twists of the type on the left but not the twist on the right.
This corresponds to colouring the ribbon in R3 in two colours, black and white, and projecting
in such a way that the white side is up in all parts of the projection. Blackboard framed links
can be characterised by the same diagrams as links, where the link diagram represents the
projection of a line in the middle of a ribbon, the core.

The only difference is that link diagrams that are related by the the Reidemeister move RM1
no longer describe projections of equivalent ribbons. Instead, one has the following.

Theorem 6.1.5: Two framed (oriented) links L,L′ ⊂ R3 are equivalent if and only if the
associated link diagrams are related by a finite sequence of orientation preserving diffeomor-
phisms f : R2 → R2 and of the three Reidemeister moves RM1’, RM2, RM3 below. In this
case, the ribbon diagrams are called equivalent.

= =

= =
=

Reidemeister move RM1’ Reidemeister move RM2 Reidemeister move RM3.
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The central question of knot theory is to decide from two given link diagrams DL, DL′ if the
associated links L,L′ ∈ R3 or framed links in L,L′ ⊂ R3 are equivalent. By Theorem 6.1.3 and
6.1.5 this is the case if and only if the associated link diagrams are related by finite sequences
of orientation preserving diffeomorphisms f : R2 → R2 and the three Reidemeister moves RM1,
RM2, RM3 or the three Reidemeister moves RM1’, RM2, RM3, respectively. However, it is not
practical to address this question by the Reidemeister moves alone. Instead, one considers link
invariants or ribbon invariants, which are functions from the set of links or ribbons into a
commutative ring or monoid R that are constant on the equivalence classes of links or framed
links. A good link or ribbon invariant should be (i) easy to compute from a diagram and (ii)
distinguish as many nonequivalent links or ribbons in R3 as possible. By Theorem 6.1.3 and
6.1.5 , we can also define a link invariant or ribbon invariant in terms of diagrams.

Definition 6.1.6: Let R be a commutative monoid or a commutative ring.

1. An (oriented) link invariant is a map f : D → R from the set D of (oriented)
link diagrams to R that is invariant under orientation preserving diffeomorphisms
f : R2 → R2 and the Reidemeister moves RM1, RM2, RM3.

2. An (oriented) ribbon invariant is a map f : D → R from the set D of (oriented) link
diagrams to R that is invariant under orientation preserving diffeomorphisms f : R2 → R2

and the Reidemeister moves RM1’, RM2, RM3.

An obvious but not very useful invariant of a link or ribbon is the number of connected com-
ponents. Two famous and important link invariants that can distinguish many links are the
HOMFLY polynomial and the Kauffman polynomial of a link. For more detailed information
and the proofs of the following theorems see [Ka] and [Mn].

Theorem 6.1.7: There is a unique invariant of oriented links with values in Z[x, x−1, y, y−1],
the HOMFLY polynomial H, that satisfies the following conditions:

1. It takes the value 1 on the unknot, whose diagram is a circle in the plane: H(O) = 1.

2. If the diagrams of oriented links L,L′ ∈ R3 are related by the three Reidemeister moves
RM1-RM3 and orientation preserving diffeomorphisms f : R2 → R2, then H(L) = H(L′).

3. If the diagrams of the oriented links L+, L−, L0 are skein related, i. e. locally related by

L+ L− L0

while the rest of their diagrams coincide, then

x ·H(L+)− x−1 ·H(L−) = y ·H(L0). (47)

Proof:
That the HOMFLY polynomial is defined uniquely by these conditions follows because every
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link can be transformed into an unknot by applying the skein relation and the Reidemeister
relations RM1-RM3. To show that the HOMFLY polynomial is defined, it is sufficient to
prove that the skein relation is compatible with the Reidemeister relations RM1-RM3. This
follows by applying the skein relation to the diagrams on the left and right in the Reidemeister
relations RM2 and RM3 and show that this does not give rise to any contradictions (Exercise).
We will give an alternative proof in Section 6.3. 2

Another important knot invariant is the Kauffman invariant. It is obtained from an invariant
of framed knots be rescaling the invariant with the writhe of the knot, which describes how
often each connected component of the knot twists around itself.

Definition 6.1.8: The writhe w(K) of a knot K is the sum over all crossing points p in the
knot diagram for K over the signs of the crossing

w(K) =
∑

p∈K∩K

sgn(p),

where K is given an arbitrary orientation and the sign sgn(p) of a crossing point p is

positive crossing point p negative crossing point p
lower strand crosses from right to left lower strand crosses from left to right
sgn(p) = 1 sgn(p) = −1

The writhe of a link is the sum of the writhes of its connected components.

Note that in the definition of the writhe, only the the crossings of a connected component of the
link with itself are taken into account, but not the crossings involving two different connected
components. This implies that the writhe does not depend on the orientation of a link. Reversing
the orientation of a connected component K ⊂ L reverses the orientation of both strands in
each crossing point and hence does not change the sign of the crossing. It also follows directly
from the definition that the writhe is invariant under the Reidemeister moves RM2 and RM3,
since the Reidemeister move RM2 for one connected component of a link creates two additional
crossings with opposite sign and the Reidemeister move RM3 does not change the number of
crossings. It is also invariant under the Reidemeister move RM1’, which creates or removes two
crossings with opposite signs, but not under the Reidemeister move RM1, since which creates
or removes a crossing point with sign 1 or -1 and hence changes the writhe by ±1. Hence, the
writhe is an invariant of framed links but not a link invariant.

Theorem 6.1.9: There is a unique link invariant P with values in Z[z, z−1, a, a−1], the
rescaled Kauffman polynomial, that is given as P (L) = a−w(L)K(L), where w(L) is the
writhe of the oriented link L and K the Kauffman polynomial of L defined by the following
conditions:
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1. It takes the value 1 on the unknot, whose diagram is a circle in the plane: K(O) = 1.

2. If the diagrams of two links L,L′ ∈ R3 are related by the Reidemeister moves RM2, RM3
and orientation preserving diffeomorphisms f : R2 → R2, then K(L) = K(L′).

3. If the diagrams of links L′+, L
′
0, L

′
− are locally related by

L′+ L′0 L′−

while the rest of their diagrams coincide, then

a−1 ·K(L′+) = K(L′0) = a ·K(L′−).

4. If the diagrams of the links L+, L−, L0, L∞ are locally related by

L+ L− L0 L∞

while the rest of their diagrams coincide, then

K(L+) +K(L−) = z ·K(L0) + z ·K(L∞).

Proof:
It is clear that the Kauffman polynomial and the rescaled Kauffman polynomial are defined
uniquely by these conditions, since any link L can be transformed into an unknot by removing
twists as in 2. and transforming overcrossings into undercrossings and vice versa as in 4.

To show that the Kauffman polynomial and the rescaled Kauffman polynomial are well-defined
and invariants of framed links, it is sufficient to show that the relations in 2. and in 4. are com-
patible with the Reidemeister relations RM1’, RM2 and RM3. For the Reidemeister relation
RM1’, this follows directly from 2. For the Reidemeister relations RM2 and RM3, it follows by
applying the relations in 2. and 4. to the diagrams on the left and right in the Reidemeister rela-
tions RM2 and RM3 and to show that the resulting polynomials are indeed equal. (Exercise). 2

Note that the Kauffman polynomial K(L) and the rescaled Kauffman polynomial P (L) do not
depend on the orientation of L and are both invariant under the Reidemeister moves RM2
and RM3. However, the Kauffman polynomial is invariant only under the Reidemeister move
RM1’ and not under RM1 and hence an invariant of framed links, while the polynomial P is
invariant under the Reidemeister moves RM1 and hence a link invariant. More generally, it is
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always possible to obtain a link invariant from an invariant of framed links by rescaling with
an appropriate function of the writhe.

Two other famous link invariants that can be viewed as special cases of the HOMFLY polyno-
mial and the rescaled Kauffman polynomial are the following:

Remark 6.1.10:

1. The Alexander polynomial of an oriented link L is the polynomial in Z[t] given by

A(L)(t) = H(L)(1, t1/2 − t−1/2)

2. The Jones polynomial of an oriented link L is the polynomial in Z[t1/2, t−1/2] given by

J(L)(t) = H(L)(t−1, t1/2 − t−1/2) = −P (L)(−t−1/4 − t1/4, t−3/4)

The aim is now to understand invariants of (framed, oriented) links from a representational
perspective, as this was achieved for braids in Section 4.2. For this we introduce the category
T of ribbon tangles that resembles the braid category B but takes into account orientation and
contains additional morphisms that allow one to close oriented braids to oriented framed links.
Just as the braid category, the category T is a strict monoidal category that is presented in
terms of generating morphisms and defining relations given by diagrams.

Definition 6.1.11: The category T of ribbon tangles is the strict monoidal category with
finite sequences (ε1, ..., εn) in Z/2Z as objects, six generating morphisms ∪,∪′,∩,∩′, X,X−1

∪ : ∩ : ∪′ : ∩′ : X : X−1 :
−⊗+→ ∅ ∅ → +⊗− +⊗− → ∅ ∅ → −⊗+ +⊗+→ +⊗+ +⊗+→ +⊗+

and the following relations:

• 1. RM1’: 2. RM2 3. RM3

= =
= = =

• 4. Snake identities:

= = = =
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• 5. Snaked braiding:

= =

• 6. Modified RM2:

= = = =

The identity morphisms 1+ : +→ + and 1− : − → − are denoted

1+ = 1− =

A morphism f : (ε1, ..., εm)→ (ε′1, ..., ε
′
n) in T is called an (m,n)-ribbon tangle.

Remark 6.1.12: There is an analogous category T ′, the tangle category, presented by
the same objects and generating morphisms as T , with the defining relations 2-6 but with an
oriented version of the Reidemeister move RM1 instead of RM1’.

Clearly, the category T of ribbon tangles contains morphisms X±1 whose diagrams and defining
relations resemble the ones for the morphisms σi in the braid category B. The only difference is
that the lines in the morphisms X±1 are oriented. This suggests that T is a braided monoidal
category with a braiding similar to the one in B defined in the proof of Theorem 4.2.5.

Proposition 6.1.13: The category T of ribbon tangles is a strict braided monoidal category.

Proof:
By definition, the category T is a strict monoidal category. It remains to show that it is
braided. For this, note that a braiding in T is defined uniquely by its component morphisms
cε,ε′ : (ε, ε′)→ (ε′, ε) for ε, ε′ ∈ {±} since every object (ε1, ..., εn) = ε1⊗...⊗εn in T is a multiple
tensor product of the objects ±, and the braiding in a strict monoidal category satisfies

ce,U = cU,e = 1U cU⊗V,W = (cU,W⊗1V ) ◦ (1U⊗cV,W ) cU,V⊗W = (1V⊗cU,W ) ◦ (cU,V⊗1W )

for all objects U, V,W by the hexagon identity, see Remark 4.2.2. We define

c+,+ := X = c−1
+,+ := X−1 =

:=c−,+ := :=c−1
−,+ :=
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:=c+,− := :=c−1
+,− :=

:=c−,− := 5.
=

:=c−1
−,− := 5.

=

1. We show that the braiding is invertible: The identities c∓1
+,+ ◦ c±1

+,+ = 1+⊗+ follow directly
from the defining relation 2, and the identities c∓1

+,− ◦ c±1
+,− = 1±⊗∓ and c∓1

−,+ ◦ c±1
−,+ = 1∓⊗± follow

from the defining relation 6. The identity c−,− ◦ c−1
−,− = 1−⊗− is then obtained as follows

4.
=

2.
= = 4.

=

and the identity c−1
−,− ◦ c−,− = 1−⊗− follows analogously. This shows that cε,ε′ : ε⊗ε′ → ε′⊗ε for

ε, ε′ ∈ {±} are isomorphisms.

2. It remains to prove the naturality of the braiding. As the morphisms ∩, ∩, ∪′, ∩′ and X±1

generate T , it is sufficient to prove naturality for ∩, ∩, ∪′, ∩′ and X . To prove the naturality
for ∩ we note that the definition of c−,+ and the snake identity imply

c−,+
=

4.
=

⇒
= 2.

=

This proves the naturality for ∩ for a line that is oriented downwards and crosses under the
strands ∩. The corresponding identity for a line that is oriented upwards and crosses under the
strands of ∩ follows in a similar way from the definition of c−,− and c−1

+,−, which imply

c−,−
= 4.

=
c−1
+,−
=

⇒ = 2.
=

The corresponding identities where the line crosses over the strands of ∩ and the identities for
∩′, ∪ and ∪′ follow analogously. This proves the naturality of the braiding with respect to the
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morphisms ∩,∪,∩′,∪′. It remains to prove the naturality of the braiding with respect to the
morphism X. For a line that is oriented downwards and crosses over or under the strands of X
this follows directly from the defining relation 3. For a line that is oriented upwards it follows
from the definition of c−,+, the snake identity 4. and the Reidemeister move 3:

c−,+
= 4.

= 3.
=

4.
=

c−,+
=

2

From the definition of the category of ribbon tangles, it is apparent that one can represent
oriented link diagrams by ribbon tangles. By applying an orientation preserving diffeomorphism
f : R2 → R2 to an oriented link diagram, one can always achieve that the intersection of the
link diagram with any horizontal line is a a discrete subset of the line. Such an oriented link
diagram defines a unique (0, 0)-ribbon tangle, with morphisms cε,ε′ at each crossing, as defined
above. The defining relations of the category T are chosen in precisely such a way that oriented
link diagrams that are related by orientation preserving diffeomorphisms f : R2 → R2 and the
Reidemeister moves RM1’, RM2 and RM3 define the same ribbon tangles. Hence, equivalence
classes of framed oriented links are in bijection with (0, 0)-ribbon tangles.

If C is a strict braided monoidal category, then a braided monoidal functor F : T → C assigns
to a (0, 0)-ribbon tangle t : ∅ → ∅ an endomorphism F (t) : e → e in the commutative monoid
EndC(e), and this morphism is an invariant of framed links due to the defining relations in T .
Hence, to define an invariant of framed links, we require a functor F : T → C into a braided
monoidal category C. Such a functor can only exist if C contains additional structure that
corresponds to orientation reversal of lines and to the morphisms ∩,∪,∩′,∪′. In the next section,
we will investigate systematically which additional structure in a braided monoidal category
guarantees the existence of such a functor and which additional structure on a quasitriangular
Hopf algebra H equips its representation category H-Mod with this structure.

6.2 Dualities and traces

In this section, we investigate the additional structure in a monoidal category that corresponds
to the orientation of lines and to the morphisms ∩,∪,∩′ and ∪′ in the category T of ribbon
tangles. For this, note that if F : T → C is a monoidal functor with V = F (+), then there is
another object V ∗ := F (−) in C and morphisms F (∩) : e → V⊗V ∗ and F (∪) : V ∗⊗V → e as
well as morphisms F (∩′) : e→ V ∗⊗V and F (∪′) : V ∗⊗V → e and F (∩′) : e→ V⊗V ∗ such that
both pairs of morphisms satisfy the snake identity. It is also clear that for C = VectfinF we can
take for V ∗ the dual vector space and set F (∩) = coevRV : F→ V⊗V ∗, F (∪) = evRV : V ∗⊗V →
F, F (∩′) = coevLV : F → V ∗⊗V , F (∪′) = evLV : V⊗V ∗ → F. For a general monoidal category,
one should consider the pairs (∩,∪) and (∩′,∪′) separately, and require that the corresponding
objects and morphisms exist for all objects V in C.
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Definition 6.2.1: Let C be a tensor category.

1. An object X of C is called right dualisable if there is an object X∗, the right dual of
X, and morphisms

evRX : X∗⊗X → e coevRX : e→ X⊗X∗

such that the following diagrams commute

X

1X
��

l−1
X // e⊗X

coevR
X⊗1X// (X⊗X∗)⊗X

aX,X∗,X
��

X X⊗erX
oo X⊗(X∗⊗X)

1X⊗evR
X

oo

X∗

1X∗

��

r−1
X∗ // X∗⊗e

1X∗⊗coevR
X// X∗⊗(X⊗X∗)

a−1
X∗,X,X∗
��

X∗ e⊗X∗
lX∗
oo (X∗⊗X)⊗X∗.

evR
X⊗1X∗
oo

(48)

2. An object X of C is called left dualisable if there is an object ∗X, the left dual of X,
and morphisms

evLX : X⊗∗X → e coevLX : e→ ∗X⊗X

such that the following diagrams commute

X

1X
��

r−1
X // X⊗e

1X⊗coevL
X// X⊗(∗X⊗X)

a−1
X,∗X,X
��

X e⊗X
lX

oo (X⊗∗X)⊗X
evL

X⊗1X

oo

∗X

1∗X
��

l−1
∗X // e⊗∗X

coevL
X⊗1∗X// (∗X⊗X)⊗∗X

a∗X,X,∗X
��

∗X ∗X⊗er∗X
oo ∗X⊗(X⊗∗X).

1∗X⊗evL
X

oo

(49)

3. The category C is called right rigid if every object in C is right dualisable, left rigid if
every object of C is left dualisable, and rigid if it is both right and left rigid.

Inspired by the diagrams for the morphisms ∩,∪,∩′,∪′ in the category T of ribbon tangles,
we represent right and left (co)evaluation for right and left dualisable objects in a monoidal
category by diagrams. The commuting diagrams (48) and (49) in Definition 6.2.1 then generalise
the snake identity in T from Definition 6.1.11.

X∗ X
X X∗

XX ∗X
∗X X

right evaluation left evaluation
and right coevaluation and left coevaluation

X∗

X

X

=

X X∗

= X

X∗

X∗

X

∗X

∗X

=

∗X X

= ∗X

X

X

snake identities: snake identities:
commuting diagrams (48) for the commuting diagrams (49) for the
right evaluation and coevaluation left evaluation and coevaluation.
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Example 6.2.2:

1. The category VectfinF of finite-dimensional vector spaces over F is rigid with the dual
vector space V ∗ = ∗V as the left and right dual and the left and right evaluation and
coevaluation maps

coevRV : F→ V⊗V ∗, λ 7→ λΣn
i=1vi⊗αi evRV : V ∗⊗V → F, α⊗v 7→ α(v) (50)

coevLV : F→ V ∗⊗V, λ 7→ λΣn
i=1α

i⊗vi evLV : V⊗V ∗ → F, v⊗α 7→ α(v),

where (v1, ..., vn) is a basis of V and (α1, ..., αn) the dual basis of V ∗. To show that VectfinF
is right rigid, we verify the snake identities

rV ◦ (idV⊗evRV ) ◦ (coevRV⊗idV ) ◦ l−1
V (v) = rV ◦ (idV⊗evRV )(Σn

i=1vi⊗αi⊗v) = Σn
i=1α

i(v)vi = v

lV ◦ (evRV⊗idV ∗) ◦ (idV ∗⊗coevRV ) ◦ r−1
V (β) = lV ◦ (evRV⊗idV ∗)(Σ

n
i=1β⊗vi⊗αi) = Σn

i=1β(vi)α
i = β

for all v ∈ V , β ∈ V ∗. A similar computation shows that VectfinF is left rigid.

2. The category T of ribbon tangles is rigid with (ε1, ..., εn)∗ = ∗(ε1, ..., εn) = (−εn, ...,−ε1)
and evaluation and coevaluation maps given as composites of the morphisms ∩,∪,∩′,∪′

coevR(−,+,−,−) = coevL(+,+,−,+) evR(−,+,−,−) = evL(+,+,−,+)

Although in the two examples considered so far left dual objects are right dual and vice versa, it
is necessary to distinguish left and right dual objects in general. The main example that shows
the need for this distinction is the category H-Modfin of finite-dimensional representations for a
Hopf algebra H. As discussed in Section 2.2, the properties of the antipode ensure that the right
evaluation and coevaluation from (50) are homomorphisms of representations if the dual V ∗ of a
finite-dimensional H-module V is equipped with the H-module structure � : H⊗V ∗ → V ∗ with
h�α(v) = α(S(h)�v), while the left evaluation and coevaluation from (50) are homomorphisms
of representations if S is invertible and the vector space V ∗ is equipped with the H-module
structure � : H⊗V ∗ → V ∗ with h� α(v) = α(S−1(h) � v).

Theorem 6.2.3: Let H be a Hopf algebra over F. Then the tensor category H-Modfin of
finite-dimensional H-modules is right rigid. If the antipode of H is invertible, then the category
H-Modfin is rigid.

Proof:
It was already shown at the beginning of Section 2.2 that for every finite-dimensional module
(V,�) over a Hopf algebra H, the right evaluation and coevaluation maps evRV : V ∗⊗V → F,
α⊗v 7→ α(v) and coevRV : F→ V⊗V ∗, λ 7→ Σn

i=1vi⊗αi, where (v1, ..., vn) is an ordered basis of
V and (α1, ..., αn) the dual basis of V ∗, are H-module morphisms when V ∗ is equipped with the
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H-module structure � : H⊗V ∗ → V ∗, h�V ∗ α = α ◦ S(h). Together with Lemma 2.2.6, 1. the
discussion at the beginning of Section 2.2 also implies that in the case of a Hopf algebra with an
invertible antipode the left evaluation and coevaluation maps evLV : V⊗V ∗ → F, v⊗α 7→ α(v)
and coevLV : F → V ∗⊗V , λ 7→ Σn

i=1α
i⊗vi are H-module morphisms when V ∗ is equipped

with the H-module structure � : H⊗V ∗ → V ∗, h �V ∗ α = α ◦ S−1(h). As the right and left
evaluation and coevaluation satisfy the snake identities by Example 6.2.2, 1. the claim follows. 2

There is also a more conceptual interpretation of right and left duals in a right or left rigid
monoidal category, which makes it clear that such duals can be viewed as a symmetry. The
appropriate notion of a symmetry for a monoidal category C is that of a monoidal functor
∗ : C → C(op), which may reverse the composition of morphisms or the tensor product. As the
right and left duals in a left or right rigid monoidal category correspond to a 180◦ rotation
of the associated diagrams in the plane, the associated monoidal functor reverses both, the
composition of morphisms and the tensor product in C.

Theorem 6.2.4: Let C be a right rigid monoidal category. Then the right duals define a
monoidal functor ∗ : C → Cop,op where Cop,op is the category with the opposite composition and
the opposite tensor product.

Proof:
We define ∗ on morphisms by setting

f ∗ := lX ◦ (evRY⊗1X∗) ◦ ((1Y ∗⊗f)⊗1X∗) ◦ a−1
Y ∗,X,X∗ ◦ (1Y ∗⊗coevRX) ◦ r−1

Y ∗ (51)

Y ∗

X∗

f ∗ :=
X

Y

Y ∗

X∗

f

With the snake identity (48), this implies

X∗

Y ∗

f ∗
X

=
Y

X

f

Y ∗

X
f

Y X∗

=
f ∗
Y ∗

X∗Y

(52)

for all objects X, Y and morphisms f : X → Y . The snake identity (48) also implies 1∗X = 1X
for all objects X and (g ◦ f)∗ = f ∗ ◦ g∗ for all morphisms g : Y → Z:

Y ∗

Z∗

X∗

f ∗

g∗

=
Y

Z

Z∗

Y ∗
g

X

Y

X∗

f =

Z∗

X∗

f

g
Y

X

Z

=

Z∗

X∗

(g ◦ f)∗
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This shows that ∗ : C → Cop is a functor. To prove that it is a monoidal functor, we need to
construct an isomorphism φe : e → e∗ and a natural isomorphism φ⊗ : ⊗op(∗ × ∗) → ∗⊗ that
satisfy the compatibility conditions with the associator and unit constraints from Definition
4.1.11. For this, we define φe := le∗ ◦ coevRe : e→ e∗ and for all objects X, Y

φ⊗X,Y =

X∗Y ∗

X Y

1X⊗Y

X⊗Y

(X⊗Y )∗

By combining the commuting diagram in Definition 6.2.1, 1. with Lemma 4.1.3, one finds that
φe is invertible, with inverse φe−1 = re ◦ (1e⊗evRe ) ◦ l−1

e∗⊗e ◦ r−1
e (Exercise). The snake identity

implies that φX,Y in invertible with inverse

φ⊗ −1
X,Y =

Y ∗ X∗

YX

1X⊗Y

X⊗Y

(X⊗Y )∗

The naturality of φ⊗ follows from the identity (52), together with the fact that ⊗ is a functor
and the naturality of the associator and the unit constraints. The compatibility condition
from Definition 4.1.11 with the associator follows directly from the definition of φ⊗ and φe

and the coherence theorem, and the same holds for the compatibility condition with the unit
constraints. This shows that ∗ is monoidal. 2

Clearly, there is an analogous definition of a duality functor for a left rigid monoidal category,
which is obtained by replacing all right dual objects by left dual objects and right (co)evaluations
by left(co)evaluations. It is also clear from the diagrammatic definition of the dual morphisms
in (51) that taking multiple right or left duals corresponds to wrapping the lines representing
the objects X and Y around the morphism f : X → Y . However, since taking duals should
correspond to a 180◦ rotations of the diagrams in the plane, there should be a way to unwrap
morphisms in a consistent way. This amounts to a natural isomorphism from the identity functor
idC : C → C to the dual functor ∗∗ : C → C.

155



Definition 6.2.5: Let C be a right rigid monoidal category. A pivotal structure on C is a
monoidal natural isomorphism ω : idC → ∗∗. A pivotal category is a pair (C, ω) of a right
rigid monoidal category C and a pivotal structure ω.

Example 6.2.6:

1. The rigid monoidal category VectfinF is pivotal with the pivot ω given by the canonical
isomorphisms ωV = canV : V → V ∗∗, v 7→ fv with fv(α) = α(v) for α ∈ V ∗, v ∈ V .

2. The category T of ribbon tangles is pivotal with the identity natural transformation on
the functor idT as the pivot (Exercise).

A indicated by the discussion above, the pivot of a pivotal category is represented diagrammat-
ically as a morphism that unwraps the double dual of each morphism in C. The naturality of
the pivot states that morphisms ωX can be moved through any morphism f : X → Y , provided
that suitable double duals are taken and the argument of the pivot is adjusted:

X

Y

f

Y ∗

X∗

X

Y ∗∗

ωX

X∗∗

=

X

ωX

X∗∗

f ∗∗

Y ∗∗

=

X

f

Y

ωY

Y ∗∗

(53)

It turns out that the pivot of a pivotal category guarantees that right dual objects are also
left dual objects and vice versa, just as in the pivotal category finite-dimensional vector spaces.
More specifically, one can use the pivot to define the left evaluation and coevaluation for an
object X by composing it with the right evaluation and coevaluation of its right dual X∗.

Proposition 6.2.7: Every pivotal category is left rigid, and right dual objects and left dual
objects in a pivotal category coincide.

Proof:
Let C be a pivotal category. Define ∗X := X∗ for all objects X of C and define the morphisms
evLX : X⊗∗X → e and coevLX : e → ∗X⊗X in terms of the morphisms evRX : X∗⊗X → e,
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coevRX : e→ X⊗X∗ and the pivot as

X∗ X := X∗∗

ω−1
X

X∗ X

X X∗ := X∗∗ X∗

ωX

X X∗

(54)

To show that the snake identities are satisfied for this left evaluation and coevaluation mor-
phisms, we compute graphically with the definition of the left evaluation and coevaluation and
the snake identities for the right evaluation and coevaluation:

X

X∗

X∗

(54)
=

X∗∗

X∗
X∗∗

X∗

X
ωX

ω−1
X

X∗∗

X∗

X∗

= (48)
=

X∗

X∗

X

X

(54)
=

X∗∗
X∗

X

ωX

X∗∗

X

ω−1
X

X

X

(48)
=

ω−1
X

ωX
X∗∗ =

X

2

Proposition 6.2.7 allows one to simplify the graphical calculus for a pivotal category. As left
and right dual objects in a pivotal category coincide, we can denote the object X∗ = ∗X
diagrammatically by an arrow labelled with X that points upward and the object X by an
arrow labelled by X that points downwards. The left evaluation can be represented by the
diagrams in (54) and all labels corresponding to left and right duals can be omitted.

X

:=

X X∗

:=

X
Y

X

f ∗ :=

Y ∗

X∗

f ∗

Another fundamental benefit of a pivotal structure is that any pivotal category is equipped
with the notion of a left trace and right trace that generalises the notion of a trace in the
category VectfinF of finite-dimensional vector spaces over F. Just as the trace in the category

VectfinF assigns to each endomorphism f : V → V a number, i. e. an endomorphism of the
unit object F, the left and right trace in a pivotal category (C, ω) assign to each endomorphism
f : X → X an endomorphism of the unit object e, i. e. an element of the commutative monoid
EndC(e). In particular, this yields a generalised notion of dimension for each object X, namely
the left and right traces of the identity morphism 1X : X → X. The only difference is that
in a general pivotal category it is not guaranteed that left and right traces coincide. A pivotal
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category with this property is called spherical, because the diagrams for left and right traces
can be deformed onto each other if they are drawn on a sphere S2 by pulling the left strand of
the left trace behind the sphere and making it reappear on the right.

Definition 6.2.8: Let C be a pivotal category, equipped with the left evaluation and
coevaluation from Proposition 6.2.7, X an object in C and f : X → X a morphism.

1. The left and right trace of f are defined as

trL(f) = evRX ◦ (1X∗⊗f) ◦ coevLX trR(f) = evLX ◦ (f⊗1X∗) ◦ coevRX

trL(f) =

XX∗

X∗ X

f trR(f) =

X∗X

X X∗

f

2. The left and right dimension of X are defined as

dimL(X) = trL(1X) = evRX ◦ coevLX dimR(X) = trR(1X) = evLX ◦ coevRX

dimL(X) = XX∗ dimR(X) = X∗X

3. The category C is called spherical if trL(f) = trR(f) for all endomorphisms f in C.

The left and right traces in a pivotal category have many properties that are familiar from
the traces in VectfinF such as cyclic invariance and compatibility with duality. They are also
compatible with tensor products, provided the morphisms satisfy a mild addition assumption.
In particular, this implies that the left and right dimensions of objects in C behave in a way
that is very similar to the dimensions of vector spaces.

Lemma 6.2.9: Let C be a pivotal category. The traces in C have the following properties:

1. cyclic invariance: trL,R(g ◦ f) = trL,R(f ◦ g) for all morphisms f : X → Y , g : Y → X.

2. duality: trL,R(f) = trR,L(f ∗) = trL,R(f ∗∗) for all endomorphisms f : X → X.

3. compatibility with tensor products:
If re ◦ (1X⊗h) ◦ r−1

e = le ◦ (h⊗1X) ◦ l−1
e for all endomorphisms h : e → e and objects X,

then trL,R(f⊗g) = trL,R(g) · trL,R(f) for all endomorphisms f : X → X, g : Y → Y .

Proof:
We prove these identities graphically for the left traces. The proofs for the right traces are
analogous. The definition of the left evaluation and coevaluation and the pivot implies:
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Y

X

f

Y ∗

(54)
=

X Y ∗

Y ∗∗

f
ωY nat.ω

=

X Y ∗

Y ∗∗
f ∗∗
ωX

(52)
= X∗∗

X
ωX

Y ∗

f ∗
(54)
= X∗

Y ∗

f ∗
X

(55)

Y ∗

X∗
f ∗

Y

(54)
=

X∗ Y

Y ∗ Y ∗∗
f ∗ ω−1

Y

(52)
=

X∗ Y

X∗∗

f ∗∗

ω−1
Y

nat.ω
=

X∗ Y

X∗∗

f
ω−1
X

(54)
=

X

Y

f

X∗

By combining these identities with the corresponding identities for the right evaluation and
coevaluation in (52), we obtain:

trL(g ◦ f) =

X∗

X∗

f
X

Y
g

X

(52)
=

X∗

Y ∗

f
X

Yg∗
=

X∗

Y ∗
f
X

Y

g∗

(55)
=

Y ∗

Y ∗

g
Y

X
f

Y

= trL(f ◦ g)

2. Similarly, we obtain for all endomorphisms f : X → X

trL(f) =

XX∗

X∗ X

f (52)
=

XX∗

X∗ X

f ∗ = trR(f ∗)

To prove the identity trL(f) = trL(f ∗∗), we insert ω−1
X ◦ωX in the diagram for trL(f ∗∗) and use

the cyclic invariance of the trace and the properties of the pivot:

X∗∗X∗∗∗

X∗∗∗ X∗∗

f ∗∗ =

X∗∗
X∗∗∗

X∗∗∗
X∗∗

f ∗∗

ω−1
X
ωX

1.
=

X
X∗

X∗
X

ωX

f ∗∗

ω−1
X

nat.ω
=

X
X∗

X∗
X

ωX

ω−1
X

f

=

XX∗

X∗ X

f

3. The condition re ◦ (1X⊗h) = le ◦ (h⊗1X) for all objects X and endomorphisms h : e → e
implies that we can move trL(f) : e → e to the left of the endomorphism 1Y ∗ in the picture
for trL(f⊗g), as shown below. As the endomorphisms of e form a commutative monoid by
Corollary 4.1.4, the claim follows:
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trL(f⊗g) =

XX∗

X∗ XY ∗ Y

f

Y ∗ Y

g =

XX∗

X∗ X

f

YY ∗

Y ∗ Y

g = trL(f) · trL(g)

2

Remark 6.2.10: The condition re ◦ (1X⊗h) = le ◦ (h⊗1X) for all objects X and endomor-
phisms h : e → e holds in the category H-Modfin for any Hopf algebra H and for all braided
pivotal categories since rX ◦ ce,X = lX ◦ cX,e = 1X .

Corollary 6.2.11: Let C be a pivotal category. Then:

1. X ∼= Y implies dimL,R(X) = dimL,R(Y ).

2. dimL,R(X) = dimR,L(X∗) = dimL,R(X∗∗) for all objects X.

3. If re ◦ (1X⊗h) ◦ r−1
e = le ◦ (h⊗1X) ◦ l−1

e for all endomorphisms h : e → e and objects X,
then dimL,R(X⊗Y ) = dimL,R(X) · dimL,R(Y ) for all objects X, Y .

4. dimL(e) = dimR(e) = 1e.

Proof:
1. If X ∼= Y , then there are morphisms f : X → Y and g : Y → X with g ◦ f = 1X and
f ◦ g = 1Y . With the cyclic invariance of the trace one obtains

dimL(X) = trL(1X) = trL(g ◦ f) = trL(f ◦ g) = trL(1Y ) = dimL(Y ).

2. Follows directly from Lemma 6.2.9, 2. by setting f = 1X and using the identity 1X∗ = 1∗X
and 1X∗∗ = 1∗∗X which follow from the fact that ∗ : C → Cop is a functor. Similarly, 3. is obtained
from Lemma 6.2.9, 3. by setting f = 1X and g = 1Y .

4. By Lemma 4.1.3 we have re = le, and the naturality of the unit constraints implies re ◦
(1e⊗h) ◦ r−1

e = h = le ◦ (h⊗1e) ◦ l−1
e . With the cyclic invariance of the trace from Lemma 6.2.9,

1. this yields

trL,R(h) · dimL,R(e) = trL,R(h⊗1e) = trL,R(r−1
e ◦ h ◦ re) = trL,R(h)

for all endomorphisms h : e→ e and hence dimL,R(e) = 1. 2

We will now investigate which additional structures on a Hopf algebra H are needed in order
to make its representation category H-Modfin is pivotal or spherical. It turns out that this the
appropriate condition for the former is that the square of the antipode is given by conjugation
with a grouplike element and that the latter depends on the way this grouplike element acts
on the finite-dimensional representations of H.
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Definition 6.2.12:

1. A pivotal Hopf algebra is a Hopf algebra H over F together with an element
g ∈ Gr(H), the pivot, such that S2(h) = g · h · g−1 for all h ∈ H.

2. A pivotal Hopf algebra (H,ω) is called spherical if for all finite-dimensional representa-
tions (V, ρV ) of H and all homomorphisms of representations φ : V → V one has

Tr (φ ◦ ρV (g)) = Tr (φ ◦ ρV (g−1)).

Example 6.2.13:

1. Every finite-dimensional semisimple Hopf algebra H over a field of characteristic zero is
spherical with pivot 1 ∈ H. This follows from the Theorem of Larson and Radford.

2. By Theorem 5.1.7, 4. every triangular Hopf algebra is pivotal with the Drinfeld element
u = S(R(2))R(1) as the pivot, since triangularity implies R21R = 1 and u grouplike. Note
that this does not hold for quasitriangular Hopf algebras, since their antipode satisfies
S2(h) = uhu−1 for all h ∈ H, but the element u ∈ H is not necessarily grouplike.

3. In general, the pivot of a pivotal Hopf algebra is not unique. If g ∈ Gr(H) is a pivot for
H and v ∈ Gr(H) a central grouplike element, then gv is another pivot for H.

Proposition 6.2.14:

1. If (H, g) is a pivotal Hopf algebra, then the representation category H-Modfin is pivotal
with ωV = canV ◦ ρV (g) for all finite-dimensional H-modules (V, ρV ). If H is spherical,
then H-Modfin is spherical.

2. If H is a finite-dimensional Hopf algebra and H-Modfin is pivotal with pivot ω : idC ⇒ ∗∗,
then H is a pivotal Hopf algebra with pivot g = can−1

H ◦ωH(1H). If H-Modfin is spherical,
then (H, g) is spherical.

Proof:
1. Let (H, g) be a pivotal Hopf algebra. Then H-Modfin is rigid by Theorem 6.2.3. The functor
∗∗ : H-Modfin → H-Modfin assigns to each H-module (V, ρV ) the H-module (V ∗∗, ρV ∗∗) with

(ρV ∗∗(h)x)(α) = (x ◦ ρV ∗(S(h)))(α) = x(ρV ∗(S(h))α) = x(α ◦ ρV (S2(h)))

for all x ∈ V ∗∗, α ∈ V ∗. This implies ρV ∗∗(h) ◦ canV = canV ◦ ρV (S2(h)) and

ρV ∗∗(h) ◦ ωV = ρV ∗∗(h) ◦ canV ◦ ρV (g) = canV ◦ ρV (S2(h)) ◦ ρV (g) = canV ◦ ρV (S2(h)g)

= canV ◦ ρV (gh) = canV ◦ ρ(g) ◦ ρV (h) = ωV ◦ ρV (h)

for all h ∈ H. This shows that ωV : V → V ∗∗ is a homomorphism of representations. Clearly, ωV
is invertible with inverse ω−1

V = ρV (g−1)◦can−1
V . The naturality of ω follows from the naturality

of can, which implies for all H-module homomorphisms f : V → W

f ∗∗ ◦ ωV = f ∗∗ ◦ canV ◦ ρV (g) = canW ◦ f ◦ ρV (g) = canW ◦ ρW (g) ◦ f = ωW ◦ f.

That ω is a monoidal natural isomorphism follows from the fact that g is grouplike

ωV⊗V = canV⊗V (ρV⊗V (g)) = (canV⊗canV )(ρV (g)⊗ρV (g)) = ωV⊗ωV .

This shows that H-Modfin is pivotal with ωV = canV ◦ ρV (g).
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Theorem 6.2.3 and the definition of the left duals in (54) imply that the left and right evaluation
and coevaluation maps for a finite-dimensional H-module (V, ρV ) with basis (x1, ..., xn) and dual
basis (α1, ..., αn) are given by

evRV : V ∗⊗V → F, α⊗v 7→ α(v) coevRV : F→ V⊗V ∗, λ 7→ λΣn
i=1xi⊗αi (56)

evLV : V⊗V ∗ → F, v⊗α 7→ α(ρV (g)v) coevLV : F→ V ∗⊗V, λ 7→ λΣn
i=1α

i⊗ρV (g−1)xi.

With the expressions for the left and right traces in Definition 6.2.8 this implies

trL(f) = trV (f ◦ ρV (g−1)) trR(f) = trV (f ◦ ρV (g)). (57)

and hence H-Modfin is spherical if (H, g) is spherical.

2. Let H be a finite-dimensional Hopf algebra such that H-Modfin is a pivotal category and
define g = can−1

H (ωH(1H)) ∈ H. Then for all h ∈ H, the linear map φh : H → H, k 7→ kh is an
H-module homomorphism and by the naturality of ω, one has ωH ◦ φh = φ∗∗h ◦ ωH . Using the
identity ρH∗∗(h)canH(k) = canH(S2(h) · k), which follows from 1., we then obtain

canH(S2(h) · g) = canH(ρH(S2(h))g) = ρH∗∗(h)canH(g) = ρH∗∗(h)ωH(1H) = ωH(ρH(h)1H)

= ωH(h) = ωH(φh(1H)) = φ∗∗h (ωH(1H)) = φ∗∗h (canH(g)) = canH(φh(g)) = canH(g · h),

where we used that ωH : H → H∗∗ is a module homomorphism in the first line and then the
condition ωH ◦ φh = φ∗∗h ◦ ωH together with the definition of g. As canH : H → H∗∗ is a linear
isomorphism, this shows that S2(h) · g = g · h for all h ∈ H. To show that g is grouplike, we
note that ∆ : H → H⊗H is a module homomorphism, which implies ωH⊗H ◦ ∆ = ∆∗∗ ◦ ωH
and that ω is a monoidal natural isomorphism, which implies ωH⊗H = ωH⊗ωH . Identifying the
vector spaces (H⊗H)∗∗ ∼= H∗∗⊗H∗∗, we then obtain

canH(g)⊗canH(g) = ωH(1H)⊗ωH(1H) = ωH⊗H(1H⊗1H) = ωH⊗H ◦∆(1H)

= ∆∗∗(ωH(1H)) = ∆∗∗(canH(g)) = canH⊗H(∆(g)) = (canH⊗canH)(∆(g))

This shows that ∆(g) = g⊗g and hence g is grouplike and (H, g) a pivotal Hopf algebra. If
H-Modfin is spherical, then it follows from (57) that (H, g) is spherical as well. 2

6.3 Ribbon categories and ribbon Hopf algebras

The notion of a pivotal category captures all geometrical content of the category T of ribbon
tangles except the one related to the braiding. The pivot guarantees the existence of dual
objects, given by diagrams with the same labels but lines that are oriented upwards, and of left
and right (co)evaluations that satisfy snake identities analogous to the ones in T .

By the proof of Proposition 6.1.13, the braiding of T is determined uniquely by the morphism
X in T , its inverse X−1 and their duals defined in terms of ∪,∩,∪′,∩′. The results in Section
4.2, in particular Propositions 4.2.8 and 4.2.11, imply that if C is a braided pivotal category,
then any object in C is a Yang-Baxter operator and one obtains analogues of the morphism X
that satisfy analogues of the Reidemeister relations RM2 and RM3 in Definition 6.1.11.

It is also apparent that combining the braiding of an object X in C with itself with the coeval-
uation and evaluation morphisms yields analogues of the twists that arise in the Reidemeister
relation RM1’ in Definition 6.1.11. However, it is not guaranteed that these analogues satisfy
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analogues of the Reidemeister relation RM1’. We will now show that an analogue of the the
Reidemeister relation RM1’ in Definition 6.1.11 holds for an object X in C if and only if the
associated twist morphism is self-dual. If this is the case for all objects in C, then the category
C is called a ribbon category.

Definition 6.3.1: Let C be a braided pivotal category.

1. For any object X in C the twist on X is the morphism

θX = rX ◦ (1X⊗evLX) ◦ aX,X,X∗ ◦ (cX,X⊗1X∗) ◦ a−1
X,X,X∗ ◦ (1X⊗coevRX) ◦ r−1

X (58)

θX =

X

X

2. A ribbon category is a braided pivotal category in which all twists are self-dual:
θ∗X = θX∗ for all objects X in C.

A more detailed investigation of the properties of the twist shows that the twists define a natural
isomorphism θ : idC → idC, but that this natural isomorphism is in general not monoidal. It also
follows directly from the graphical representation of the twists and the duals that the twists are
self-dual if and only if they satisfy an analogue of the Reidemeister relation RM1’ in Definition
6.1.11. More specifically, we have the following Lemma.

Lemma 6.3.2: Let C be a braided pivotal category.

1. The twist is invertible with inverse

θ−1
X = lX ◦ evRX ◦ a−1

X∗,X,X ◦ (1⊗c−1
X,X) ◦ aX∗,X,X ◦ coevLX ◦ l−1

X

θ−1
X =

X

X

(59)

2. The twist satisfies θe = 1e and θX⊗Y = cY,X ◦ cX,Y ◦ (θX⊗θY ) = (θX⊗θY ) ◦ cY,X ◦ cX,Y .

3. The twist is natural: f ◦ θX = θY ◦ f for all morphisms f : X → Y .

4. C is ribbon if and only if for all objects X one has

θX = θ′X := rX ◦ (evRX⊗1X) ◦ a−1
X∗,X,X ◦ (1X∗⊗cX,X) ◦ aX∗,X,X ◦ (coevLX⊗1X) ◦ l−1

X

θX =

X

X

= = θ′X

X

X

(60)
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Proof:
1. We prove graphically that θ−1

X ◦ θX = 1X :

X

X

=

X

X

==

X

X

=

X

X

=

X

where we used the naturality of the braiding with respect to the twist in the first setp, the
naturality of the braiding with respect to ∪ in the second step and then the snake identity in
the third and fourth step. The graphical proof that θX ◦ θ−1

X = 1 is analogous (Exercise).

2. That θe = 1e follows directly from the identities ce,e = 1e and trL(e) = trR(e) = 1. The
identities for θX⊗Y can be proved graphically. From the diagram for the twist θX⊗Y we obtain

Y

Y

X

X

X Y

X Y

=

X Y

Y

X

Y

X Y

=

YX

X Y

X Y

=

XY

X Y

Y X

X Y

Y X

=

YX

X Y

X Y

where we used the naturality of the braiding with respect to the twist on Y and the Reidemeister
identity RM3 in the first step and then twice the naturality of the braiding with respect to the
twist.
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3. The naturality of the twist follows from the naturality of the braiding and the identities (52)
and (55) for the left and right evaluation and coevaluation. This yields:

X

Y

f

Y

=

X

Y

Y

f

=

X

Y

Y

f ∗ =

X

X

Y

f =

X

X

Y

f

4. To prove 4. we use the definition of the dual morphism θ∗X in (51) and compute

θ∗X =

X

X

=

X

X

=

X

X

=

X

X

= θ′X∗

where we used the naturality of the braiding and the Reidemeister identity RM2 in the first
step, the snake identity in the second step, then the Reidemeister relation RM2 and the
naturality if the braiding with respect to ∩ in the third step and then the definition of θX∗ .
Hence we have θ∗X = θX∗ if and only if θX = θ′X . 2

By inserting the graphical identity in (60) into the Reidemeister relation RM1’ from Definition
6.1.11 together with expression (58) for θX and (59) for θ−1

X , we find that a braided pivotal
category C is a ribbon category if and only if the diagrams for the twist morphism on each
object X satisfy an analogue of the Reidemeister relation RM1’ from Definition 6.1.11. In
particular, this relation allows one to transform left traces of morphisms into right traces and
vice versa.

Corollary 6.3.3: Every ribbon category is spherical.

Proof:

X

X

f =

X

X

θ′X

f

θ−1
X

=

X

X

f

θ′X

θ−1
X

X

X

f= X f ∗= =

X

X

f ∗ =
X

X

f
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where we used the identity θX = θ′X in the first step, the naturality of θ′ in the second step, the
definition of θX and θ′X in the third step, then the naturality of the braiding with respect to f
and the pivotality of C, the Reidemeister relation RM2 and the naturality of the braiding with
respect to ∪′, ∩ and f in the fifth step and the snake identity and the pivotality in the last step. 2

To construct interesting examples of ribbon categories, we need to determine the additional
structure on a quasitriangular Hopf algebra (H,R) that is required to ensure that the category
H-Modfin of its finite-dimensional representations is a ribbon category. It turns out that this
requires a central invertible element, the so-called ribbon element that is related to the Drinfeld
element u = S(R(2))R(1).

Definition 6.3.4: A ribbon Hopf algebra is a quasitriangular Hopf algebra (H,R) together
with an invertible central element ν ∈ H, the ribbon element, such that

uS(u) = ν2 ∆(ν) = (ν⊗ν) · (R21R)−1.

Remark 6.3.5:

1. A ribbon element is unique only up to right multiplication with a central grouplike
element g ∈ H satisfying g2 = 1.

2. One can show that any ribbon element satisfies ε(ν) = 1 and S(ν) = ν.

Example 6.3.6:

1. If H is quasitriangular with S2 = idH , then H is a ribbon Hopf algebra with ribbon
element u. By the Larson-Radford theorem, this holds in particular for finite-dimensional
semisimple quasitriangular Hopf algebras over fields of characteristic zero.

The identity S2 = idH implies u = S(R(2))R(1) = R(2)S(R(1)), u
−1 = R(2)R(1) and

S(u) = S(R(1))R(2) = R(1)S(R(2)). This implies

S(u)u−1 = R(1)S(R(2))R
′
(2)R

′
(1) = 1 = R′(2)R

′
(1)S(R(1))R(2) = u−1S(u)

This shows that u = S(u) and uS(u) = u2. The remaining conditions follows from
Theorem 5.1.7, which implies in particular that uhu−1 = S2(h) = h for all h ∈ H and
hence u is central.

2. The Drinfeld double of any finite-dimensional semisimple Hopf algebra H over a field of
characteristic zero is a ribbon Hopf algebra with ribbon element ν = u = S(R(2))R(1).

By corollary 5.1.12, the Drinfeld double D(H) of a finite-dimensional semisimple Hopf
algebra H is semisimple as well, and its antipode satisfies S2 = idH . Hence, D(H) is a
ribbon Hopf algebra by 1.

3. Let q ∈ F be a primitive rth root of unity with r > 1 odd. Then the Hopf algebra
U r
q (sl2) from Proposition 2.3.12 is ribbon with ribbon element ν = K−1u = uK−1 where

u = S(R(2))R(1) for the R-matrix (40).

That ν is central follows from the identity S2(h) = KhK−1 = uhu−1 for all h ∈ U r
q (sl2).

The identity ∆(ν) = (ν⊗ν)(R21R)−1 follows from the identity ∆(K±1) = K±1⊗K±1 and
the corresponding identity for u in Theorem 5.1.7.
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Proposition 6.3.7:

1. If (H,R, ν) is a ribbon Hopf algebra, then the category H −Modfin is a ribbon category.

2. If (H,R, g) is a finite-dimensional quasitriangular pivotal Hopf algebra and ν ∈ H such
that the linear maps θV : V → V , v 7→ ν−1�v define a twist on H-modfin, then ν = g−1u
and ν is a ribbon element.

Proof:
1. If ν ∈ H is invertible and central with uS(u) = ν2 and ∆(ν) = (ν⊗ν)(R21R)−1, then its
inverse satisfies ∆(ν−1) = (ν−1⊗ν−1)(R21R). It follows that the element g := uν−1 is grouplike
since we obtain with the coproduct of u from Theorem 5.1.7

∆(g) = ∆(u) ·∆(ν−1) = (u⊗u)(R21R)−1 · (ν−1⊗ν−1)(R21R) = uν−1⊗uν−1 = g⊗g.

Moreover, since ν is central, we have ghg−1 = (uν−1)h(νu−1) = uhu−1 = S2(h) for all h ∈ H.
This shows that g = uν−1 is a pivot for H and hence H −Modfin is a braided pivotal category
by Theorem 5.1.2 and Proposition 6.2.14.

It remains to verify that the twist in H-Modfin satisfies the condition in Lemma 6.3.2, 4. Let V
be a finite-dimensional H-module with basis (x1, ..., xn) and dual basis (α1, ..., αn) of V ∗. With
formula (56) for the evaluation and coevaluation maps, formula (39) for the braiding and the
formulas from Theorem 5.1.7 we compute

θV (v) = Σn
i=1α

i((gR(1)) � v)R(2) � xi = (R(2)gR(1)) � v = (R(2)S
2(R(1))g) � v = (u−1g) � v

= ν−1 � v

θ′V (v) = Σn
i=1α

i(R(2)) � v)(R(1)g
−1) � xi = (R(1)g

−1R(2)) � v = (g−1S2(R(1))R(2)) � v

= (νu−1S(u−1)) � v = (ν(S(u)u)−1) � v = (ν(uS(u))−1) � v = (νν−2) � v = ν−1 � v.

This shows that the condition from Lemma 6.3.2 is satisfied and H-Modfin is a ribbon category.

2. Let H be a finite-dimensional quasitriangular pivotal Hopf algebra with pivot g ∈ H and
µ ∈ H such that θV : V → V , v 7→ ν−1 � v is a twist on H-Modfin. Then by Lemma 6.3.2,
4. and the computation above we have

u−1g = θH(1) = ν−1 = θ′H(1) = g−1S(u)−1

and this implies ν−2 = (u−1g)(g−1S(u)−1) = (S(u)u)−1 = (uS(u))−1 and ν2 = uS(u). By
Lemma 6.3.2, 2, we also have

∆(ν−1) = ∆(ν)−1 = θH⊗H(1) = cH,H ◦ cH,H ◦ (θH⊗θH)(1) = (R21R)(ν−1⊗ν−1),

which implies that ∆(ν) = (ν⊗ν)(R21R)−1. As θH : H → H is a H-module homomorphism, we
have ν−1h = θH(h) = θH(h�1) = h�θH(1) = hν−1 for all h ∈ H and hence ν is central in H. 2

This Proposition shows that the different Hopf algebras in Example 6.3.6 give interesting and
non-trivial examples of ribbon categories. We will now prove that any object in a ribbon category
C defines a braided monoidal functor F : T → C from the category T of ribbon tangles to C. This
allows us to obtain invariants of framed links or ribbons based on from the finite-dimensional
representations of ribbon Hopf algebras.
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Theorem 6.3.8: Let C be a ribbon category and V ∈ Ob C. Then there is a braided monoidal
functor FV : T → C, unique up to natural isomorphisms composed of associators and unit
constraints in C, with FV (+) = V , FV (−) = V ∗ and

FV (∪) = evRV : V ∗⊗V → e FV (∩) = coevRV : e→ V⊗V ∗

FV (∪′) = evLV : V⊗V ∗ → e, FV (∩′) = coevLV : e→ V ∗⊗V.

Proof:
We prove the claim for the case where C is a strict braided monoidal category and FV : T → C
is a strict braided monoidal functor. If FV : T → C is a strict braided monoidal func-
tor with FV (+) = V and FV (−) = V ∗, then one has FV (∅) = FV (e) and F (ε1, ..., εn) =
FV (ε1)⊗...⊗FV (εn) for all n ∈ N and ε1, ..., εn ∈ {±} and hence FV is defined uniquely on
the objects by FV (+) = V and FV (−) = V ∗. As FV : T → C is braided, one needs to have
FV (X±1) = FV (c±1

+,+) = c±1
V,V : V⊗V → V⊗V , and by assumption one has FV (∪) = evRV ,

FV (∩) = coevRV , FV (∪′) = evLV , FV (∩′) = coevLV . As the morphisms ∪,∩,∪′,∩′, X±1 generate
T , this defines FV uniquely on the morphisms. To show that this defines a braided monoidal
functor FV : T → C, we have to show that these assignments are compatible with the defining
relations in T , i. e. that the morphisms FV (∪), FV (∩), FV (∪′), FV (∩′) and FV (X±1) satisfy
analogues of the defining relations from Definition 6.1.11.

The Reidemeister relation RM1’ follows directly from the fact condition θV = θ′V in Lemma
6.3.2 and the associated diagrams (58), (59) and (60) for the component morphisms of the
twist θ and its dual. The Reidemeister relations RM2 and RM3 follow directly from the
fact that C is braided and FV (X) = cV,V . The snake identities for FV (∪), FV (∩), FV (∪′)
and FV (∩′) follow from the fact that C is pivotal and hence left and right rigid, see the
corresponding diagrams after Example 6.2.2. The snaked braiding identities in Definition
6.1.11 follow from the identities (52) and (55), applied to the braiding in C and the snake
identities in C. The modified RM2 relations in Definition 6.1.11 follow again from the
identities (52) and (55), applied to the braiding, and the snake identities. This shows that the
assgnments are compatible with the relations in T and define a monoidal functor FV : T → C.
This functor is braided, since it is compatible with the relations for X and sends X to cV,V .
As the braiding in T is determined uniquely by the morphism X, it follows that FV is braided. 2

To see how this theorem gives rise to invariants of framed links, recall that any framed link
L ⊂ R3 projects to a generic link diagram DL and two framed links L,L′ ∈ R3 are equivalent if
and only if their link diagramsDL andDL′ are related by orientation preserving diffeomorphisms
f : R2 → R2 and the three Reidemeister moves RM1’, RM2 and RM3 for ribbons. As every
generic link diagram describes a (0, 0)-ribbon tangle and the ribbon tangles of links that are
related by orientation preserving diffeomorphisms f : R2 → R2 and the three Reidemeister
moves RM1’, RM2 and RM3 are equal, (0, 0)-ribbon tangles are in bijection with equivalence
classes of framed oriented links in R3. The functor FV from Theorem 6.3.8 assigns to each (0, 0)-
ribbon tangle t an endomorphism F (t) ∈ EndC(e). This defines a map FV : FO → EndC(e) from
the set of oriented framed links in R3 to the commutative monoid EndC(e) that is constant on
equivalence classes of framed links.

Corollary 6.3.9: Let C be a ribbon category and V ∈ Ob C. Assign to every oriented framed
link L ⊂ R3 the endomorphism FV (DL) : e→ e obtained by projecting L to a generic oriented
link diagram DL and applying the functor FV : T → C from Theorem 6.3.8. Then this defines
an invariant of framed oriented links.
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Just as the construction of a functor F : B → C from the braid category B into a monoidal
category C required only a Yang-Baxter operator (V, σ) in C, it is sufficient to have one object
V in a braided tensor category C, together with left and right coevaluation morphisms that
satisfy the axioms of a ribbon category to obtain a braided tensor functor F : T → C.

Example 6.3.10: Suppose that q ∈ F is not a root of unity, and consider the braided vector
space V = spanF{v0, v1} from Example 4.2.10. Then the full monoidal subcategory of VectfinF
that is generated by V and V ∗ with the braiding, left and right (co)evaluation

cV,V (v0⊗v0) = λq v0⊗v0 cV,V (v1⊗v1) = λq v1⊗v1

cV,V (v0⊗v1) = λv1⊗v0 cV,V (v1⊗v0) = λ v0⊗v1 + λ(q − q−1)v1⊗v0

evRV (αi⊗vj) = δij coevRV (1F) = v0⊗α0 + v1⊗α1

evLV (αi⊗vj) = q δi0δ
0
j + q−1δi1δ

1
j coevLV (1F) = q−1 α0⊗v0 + q α1⊗v1

and the induced morphisms for V ∗ is a ribbon category. The inverse of the braiding is given by

c−1
V,V (v0⊗v0) = λ−1q−1 v0⊗v0 cV,V (v1⊗v1) = λ−1q−1 v1⊗v1

c−1
V,V (v0⊗v1) = λ−1 v1⊗v0 − λ−1(q − q−1)v0⊗v1 cV,V (v1⊗v0) = λ−1 v0⊗v1,

and this implies
λc−1

V,V − λ
−1cV,V = (q−1 − q) idV⊗V

which is precisely the skein relation (47) for the HOMFLY polynomial if we set x = λ and
y = q−1 − q. A short computation shows that the twist is given by

θV (v0) = θ′V (v0) = λq2v0 θV (v1) = θ′V (v1) = λq2v1.

Hence, we have a ribbon category and obtain invariants of oriented links. If we choose λ = q−2,
then θV = θ′V = idV , and we obtain an invariant of oriented links whose value on the unknot
is given by dimq(V ) = evLV ◦ coevRV = evRV ◦ coevLV = q + q−1. Up to normalisation, this is the
HOMFLY polynomial for x = λ = q−2 and y = q−1 − q.
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7 Exercises

7.1 Exercises for Chapter 1

Exercise 1: Let V,W be finite-dimensional vector spaces over F. Prove that the vector space
HomF(V,W ) of linear maps φ : V → W is isomorphic to V ∗⊗W .

Exercise 2: Let V, V ′,W,W ′ be vector spaces over F. Use the universal property of the tensor
product to prove:

(a) For every pair of linear maps f : V → V ′ and g : W → W ′ there is a unique linear map
f⊗g : V⊗W → V ′⊗W ′ with (f⊗g) ◦ τV⊗W = τV ′⊗W ′ ◦ (f × g), where

f × g : V ×W → V ′ ×W ′, (v, w) 7→ f(v)⊗g(w)

τV⊗W : V ×W → V⊗W, (v, w) 7→ v⊗w
τV ′⊗W ′ : V ′ ×W ′ → V ′⊗W ′, (v′, w′) 7→ v′⊗w′.

(b) One has f⊗g = (idV ′⊗g) ◦ (f⊗idW ) = (f⊗idW ′) ◦ (idV⊗g)

Exercise 3: Let F be a field, viewed as a vector space over itself.

(a) Determine a basis of the tensor algebra T (F).

(b) Show that the tensor algebra T (F) is isomorphic to the algebra F[x] of polynomials with
coefficients in F.

Exercise 4: Let V and W be vector spaces over F. Show with the universal property of the
tensor algebra that every linear map φ : V → W induces a linear map T (φ) : T (V ) → T (W )
such that the following diagram commutes

V
φ //

ιV
��

W

ιW
��

T (V )
T (φ)
// T (W ).

Exercise 5: Let V be a vector space over F. Show that the tensor algebra T (V ) is unique up
to unique isomorphism:

If T ′(V ) is an algebra over F and ι′V : V → T ′(V ) a linear map such that for every linear map
φ : V → W there is a unique algebra homomorphism φ′ : T ′(V ) → W with φ′ ◦ ι′V = φ, then
there is a unique algebra isomorphism f : T (V )→ T ′(V ) with f ◦ ιV = ι′V .

Hint: Use the universal properties of T (V ) and T ′(V ) to construct algebra isomorphisms be-
tween T (V ) and T ′(V ).

Exercise 6: Let g be a Lie algebra over F. Show that the universal enveloping algebra U(g)
is unique up to unique isomorphism:

If U ′(g) is an algebra over F and ι′g : g → U ′(g) a Lie algebra homomorphism such that for
every Lie algebra homomorphism φ : g→ A into an algebra A over F, there is a unique algebra

170



homomorphism φ′ : U ′(g) → A with φ′ ◦ ι′g = φ, then there is a unique algebra isomorphism
f : U(g)→ U ′(g) with f ◦ ιg = ι′g.

Hint: Use the universal properties of U(g) and U ′(g) to construct algebra isomorphisms between
U(g) and U ′(g).

Exercise 7: Let (g, [ , ]g) and (h, [ , ]h) be Lie algebras over F and g ⊕ h their direct sum,
i. e. the vector space g⊕ h with the Lie bracket

[x+ y, x′ + y′] = [x, x]g + [y, y]h ∀x, x′ ∈ g, y, y′ ∈ h

Prove that the universal enveloping algebra U(g⊕ h) is isomorphic to the algebra U(g)⊗U(h).

Exercise 8: Give a presentation of the following algebras in terms of generators and relations

(a) the algebra Mat(n× n,F) of (n× n)-matrices with entries in F,
(b) the algebra Diag(n× n,F) of diagonal (n× n)-matrices with entries in F
(c) the group algebra F[G] for G = Z/2Z× Z/2Z.

Exercise 9: Show that the algebra over F with generators x, y, z and the relation z−xy+y3x
is isomorphic to T (F2).

Exercise 10: Show that the algebra Mat(2 × 2,R) can be presented with generators x, y, z
and relations x2 = y2 = 1, z2 = −1, xy = −yx = z, xz = −zx = y, yz = −zy = x.

Hint: Find a basis B of Mat(2 × 2,R) that contains only diagonal and antidiagonal matrices
and such that each matrix M ∈ B satisfies M2 ∈ {1,−1}.

Exercise 11: Let G,H be groups and F[G], F[H] their group algebra over a field F.

(a) The left regular representation of G on F[G] is defined by ρ : G→ AutF(G), g 7→ ρ(g) with
ρ(g)(Σh∈Gλh h) = Σh∈Gλh gh. Show that this is a representation of G.

(b) The right regular representation of G on F[G] is defined by ρ : G → AutF(G), g 7→ ρ(g)
with ρ(g)(Σh∈Gλh h) = Σh∈Gλh hg

−1. Show that this is a representation of G.

(c) A group action of G on H is a map ρ : G × H → H with ρ(g · g′, h) = ρ(g, ρ(g′, h)) and
ρ(1, h) = h for all g, g′ ∈ G and h ∈ H. Show that every group action of G on H defines a
representation of G on F[H].

Exercise 12: An (n × n)-permutation matrix with entries in F is an (n × n)-matrix with
entries in F that has a single entry 1 in each row and column and zeros in all other entries.
Show that the (n× n)-permutation matrices define a representation of the group Sn on Fn.

Exercise 13: Let G be a group and ρV : G→ AutF(V ), ρW : G→ AutF(W ) representations
of G on vector spaces V,W over F. Prove that the following are representations of G:

(a) the trivial representation on F: ρF : G→ AutF(F), g 7→ idF.
(b) the tensor product of representations ρV⊗W : G→ AutF(V⊗FW ), g 7→ ρV (g)⊗W (g).
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(c) the dual representation: ρV ∗ : G → AutF(V ∗), g 7→ ρV ∗(g) with ρV ∗(g)α = α ◦ ρ(g) for all
α ∈ V ∗.

Exercise 14: Let G be a group, U, V,W vector spaces over F and ρU : G → AutF(U),
ρV : G→ AutF(V ), ρW : G→ AutF(W ) representations of G. Prove the following statements.

(a) the associativity isomorphism aU,V,W : (U⊗V )⊗W → U⊗(V⊗W ),
(u⊗v)⊗w 7→ u⊗(v⊗w) is an isomorphism of representations from ρ(U⊗V )⊗W to ρU⊗(V⊗W ).

(b) the unit isomorphisms rV : V⊗F → V , v⊗λ 7→ λv and lV : F⊗V → V , λ⊗v 7→ λv are
isomorphisms of representations from ρV⊗F and ρF⊗V to ρV .

(c) the flip isomorphism cU,V : U⊗V → V⊗U , u⊗v 7→ v⊗u is an isomorphism of representa-
tions from ρU⊗V to ρV⊗U .

(d) the evaluation maps evLV : V⊗V ∗ → F, v⊗α 7→ α(v), evRV : V ∗⊗V → F, α⊗v 7→ α(v) are
homomorphisms of representations from ρV⊗V ∗ and ρV ∗⊗V to ρF.

(e) If dimF(V ) <∞, the coevaluation maps coevLV : F→ V ∗⊗V , λ 7→ λΣn
i=1β

i⊗bi and coevRV ∗ :
F→ V⊗V ∗, λ 7→ λΣn

i=1bi⊗βi are homomorphisms of representations from ρF to ρV ∗⊗V and
ρV⊗V ∗ . Here, B = (b1, .., bn) is an ordered basis of V and B∗ = (β1, ..., βn) the dual basis
of V ∗.

Exercise 15: Let A be an algebra over F, (V,�) and A-module and W ⊂ V an submodule,
i. e. a linear subspace W ⊂ V with a�w ∈ W for all w ∈ W . Show that the A-module structure
on V induces an A-module structure on the quotient space V/W .

Exercise 16: Let G be a group, N = 〈R〉 ⊂ G a normal subgroup and G/N the factor group.

(a) Prove that for any field F the group algebra F[G/N ] is isomorphic to the quotient algebra
F[G]/I, where I is the two-sided ideal generated by the set {r − e | r ∈ R}.

(b) Show that every representation ρ : G→ AutF(V ) with ρ(n) = idV for all n ∈ N induces a
representation of G/N on V .

Exercise 17: True or false? Prove the claim or give a counterexample.

(a) If G is a finite group and ρ : G → AutF(V ) a representation of G on V , then there is an
n ∈ N with ρ(g)n = ρ(g) ◦ ... ◦ ρ(g) = idV for all g ∈ G.

(b) The only representations of the permutation group Sn on C are the trivial representation
and the representation ρ : Sn → AutC(V ), π 7→ sgn(π)

(c) If G is an abelian group, then for every representation ρ : G→ AutC(V ) on a complex vec-
tor space V there is a one-dimensional subspace U ⊂ V with ρ(g)u ∈ U for all g ∈ G, u ∈ U .

(d) If G is an abelian group, then for every representation ρ : G → AutC(V ) on a finite-
dimensional complex vector space V there is a one-dimensional subspace U ⊂ V with
ρ(g)u ∈ U for all g ∈ G, u ∈ U .

(e) If G is an abelian group, then for every representation ρ : G → AutR(V ) on a finite-
dimensional real vector space V there is a one-dimensional subspace U ⊂ V with ρ(g)u ∈ U
for all g ∈ G, u ∈ U .
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7.2 Exercises for Chapter 2

Exercise 18: Let (C,∆, ε) and (C ′,∆′, ε′) be coalgebras over F, I ⊂ C a linear subspace and
π : C → C/I, c 7→ c+ I the canonical surjection. Prove the following:

(a) The counit is unique: If ε′′ : C → F is a linear map that satisfies for all c ∈ C
(idC⊗ε′′) ◦∆(c) = (ε′′⊗idC) ◦∆(c) = 1F⊗c, then ε′′ = ε.

(b) For every coalgebra homomorphism φ : C → C ′, the kernel ker(φ) ⊂ C is a coideal in C
and the image im(φ′) ⊂ C ′ is a subcoalgebra of C ′.

(c) δ : C/I → C⊗C/I, c + I 7→ (id⊗π) ◦ ∆(c) defines a C-left comodule structure on C/I if
and only if I is a left coideal.

(d) If I ⊂ C is a left coideal, a right coideal or a subcoalgebra of C, then ε(I) = {0} if and
only if I = {0}.

Exercise 19: Show that the tensor product coalgebra C⊗C ′ for two coalgebras (C,∆, ε) and
(C ′,∆′, ε′) has the following universal property:

The projection maps π : C⊗C ′ → C, c⊗c′ 7→ ε′(c′) c and π′ : C⊗C ′ → C ′, c⊗c′ 7→ ε(c) c′ are
coalgebra homomorphisms. For every cocommutative coalgebra D and every pair of coalgebra
homomorphisms f : D → C, f ′ : D → C ′ there is a unique coalgebra homomorphism f̃ : D →
C⊗C ′ with π ◦ f̃ = f and π′ ◦ f̃ = f ′.

Exercise 20: Consider the vector space F[x] of polynomials with coefficients in F with the
multiplication m : F[x]⊗F[x]→ F[x] and comultiplication ∆ : F[x]→ F[x]⊗F[x] given by

m(xn⊗xm) =

(
n+m
n

)
xm+n ∆(xm) =

m∑
n=0

xn⊗xm−n ∀n,m ∈ N0.

Show that these maps define a Hopf algebra structure on F[x].

Exercise 21: In this exercise, we show that for the vector space F[x] of polynomials with
coefficients in F we have F[x]∗⊗F[x]∗ ( (F[x]⊗F[x])∗.

Recall that F[x]⊗F[x] ∼= F[x, y] as a vector space. Consider for n ∈ N0 the linear subspaces

F[x]≤n = spanF{xk | 0 ≤ k ≤ n} ⊂ F[x] F[x, y]≤n = spanF{xkyl | 0 ≤ k, l ≤ n} ⊂ F[x, y],

and the linear maps δn : F[x, y]≤n → F, δ : F[x, y]→ F with δn(xkyl) = δ(xkyl) = δkl.

(a) Show that for f = Σm
i=1α

i⊗βi ∈ F≤n[x, y]∗ with αi ∈ F[x]∗≤n and βi ∈ F[y]∗≤n the matrix
with entries f(xi−1yj−1) for i, j ∈ {1, ..., n+ 1} has rank at most m.

(b) Conclude that if δn = Σm
i=1α

i⊗βi with αi ∈ F[x]∗≤n and βi ∈ F[y]∗≤n, then m ≥ n.

(c) Suppose that δ = Σm
i=1α

i⊗βi with αi ∈ F[x]∗ and βi ∈ F[y]∗ and restrict δ to F≤n[x, y] to
obtain a contradiction.

Exercise 22: Let (A,m, η) be an algebra over F, m∗ : A∗ → (A⊗A)∗ and η∗ : F → A∗ the
dual maps of m : A⊗A→ A and η : F→ A and A◦ = {α ∈ A∗ |m∗(α) ∈ A∗⊗A∗}.

Prove that (A◦,m∗|A◦ , η∗|A◦) is a coalgebra over F:

173



(a) Prove first the following fact from linear algebra:

Let V be a vector space over F and α1, ..., αn ∈ V ∗ linearly independent. Then for all
λ1, ..., λn ∈ F, there is a vector v ∈ V with αi(v) = λi for i = 1, ..., n.

(b) Use (a) and the coassociativity of m∗ : A∗ → (A⊗A)∗ to prove that for every element
α ∈ A◦, one has m∗(α) ∈ A◦⊗A◦.

Exercise 23: Let (H,m, η,∆, ε, S) be a Hopf algebra and consider the algebra EndF(H) with
the convolution product. We define ψn ∈ EndF(H) by

ψn =


id∗nH = idH ∗ .... ∗ idH︸ ︷︷ ︸

n×

n ∈ N

S∗n = S ∗ ... ∗ S︸ ︷︷ ︸
n×

−n ∈ N

η ◦ ε n = 0.

(a) Give a formula for ψn(h) in Sweedler notation for all n ∈ Z.

(b) Determine ψn for the group algebra F[G] of a finite groupG and for its dual Fun(G) = F[G]∗.

(c) Determine ψn for the Hopf algebra from Exercise 20.

(d) Show that if H is commutative, then ψn : H → H is an algebra homomorphism, and if H
is cocommutative, then ψn : H → H is a coalgebra homomorphism for all n ∈ Z.

Exercise 24: Let (B,m, η,∆, ε) and (B′,m′, η′,∆′, ε′) be finite-dimensional bialgebras over
F. Show that the vector space HomF(B,B′) becomes a bialgebra when eqipped with

m̃ : HomF(B,B′)⊗HomF(B,B′)→ HomF(B,B′), f⊗g 7→ f ∗ g = m′ ◦ (f⊗g) ◦∆

∆̃ : HomF(B,B′)→ HomF(B,B′)⊗HomF(B,B′), f 7→ ∆′ ◦ f ◦m.

where we identify the vector spaces HomF(B,B′)⊗HomF(B,B′) ∼= HomF(B⊗B,B′⊗B′). Show
that if both B and B′ are Hopf algebras, then the bialgebra HomF(B,B′) is a Hopf algebra.

Exercise 25: Let B be a finite-dimensional bialgebra over F. Prove the following:

(a) The field F has a canonical right comodule structure over B.

(b) For all right comodules (V, δV ), (W, δW ) over B the tensor product V⊗W has a canonical
left comodule structure over B.

(c) If B is a Hopf algebra, then for all right comodules (V, δV ) over B, the dual vector space
V ∗ has a canonical right comodule structure over B.

Exercise 26: Let V be a vector space over F and T (V ) the tensor algebra over V with the
Hopf algebra structure from Example 2.3.1. Show that the Hopf algebra structure of T (V )
induces a Hopf algebra structure on the symmetric algebra S(V ) = T (V )/(x⊗y − y⊗x).

Exercise 27: Prove the q-Chu-Vandermonde formula for the q-binomials:(
m+ n
p

)
q

=

p∑
k=0

q(m−k)(p−k)

(
m
k

)
q

(
n

p− k

)
q

∀0 ≤ p ≤ n,m.
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Exercise 28: Let F be a field and q ∈ F \ {0, 1,−1}.
The q-deformed universal enveloping algebra Uq(sl2) is the algebra over F with generators
E,F,K,K−1 and relations

K±1K∓1 = 1, KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
. (61)

Show that Uq(sl2) is a Hopf algebra with the comultiplication, counit and antipode

∆(K±1) = K±1⊗K±1, ∆(E) = 1⊗E + E⊗K, ∆(F ) = F⊗1 +K−1⊗F
ε(K±1) = 1, ε(E) = 0, ε(F ) = 0

S(K±1) = K∓1 S(E) = −EK−1 S(F ) = −KF. (62)

Hint: The proof is analogous to the one for Taft’s example and for the Hopf algebra SLq(2,F).

Exercise 29: Let F be a field, q ∈ F \ {0, 1,−1} and Uq(sl2) the q-deformed universal en-
veloping algebra from Example 2.3.9. Prove the following:

(a) The quantum Casimir element

Cq = EF +
q−1K + qK−1

(q − q−1)2
= FE +

qK + q−1K−1

(q − q−1)2

is in the centre of Uq(sl2): Cq ·X = X · Cq for all X ∈ Uq(sl2).

(b) The antipode of Uq(sl2) is invertible.

(c) For all elements X ∈ Uq(sl2) one has S2(X) = KXK−1.

(d) There is a unique Hopf algebra isomorphism φ : Uq(sl2)→ Uq(sl2)cop with

φ(E) = F φ(F ) = E φ(K) = K−1.

It is called the Cartan automorphism of Uq(sl2).

Exercise 30: Let q be a primitive nth root of unity and let H be Taft’s Hopf algebra with
generators x, y and relations xy = qyx, xn = 0 and yn = 1.

(a) Show that Taft’s Hopf algebra is isomorphic as an algebra to a semidirect product F[Z/nZ]n
F[x]/(xn),.i. e. to the vector space F[Z/nZ]⊗F[x]/(xn) with the multiplication

(k̄⊗[x]) · (m̄⊗[x′]) = k +m⊗([x] + ρ(k̄) � [x′])

with a group homomorphism ρ : Z/nZ→ AutF(F[x]/(xn)). Determine ρ.

(b) Show that the dual Hopf algebra H∗ is isomorphic to Taft’sHopf algebra H as a Hopf
algebra: Consider the linear maps α, β : H → F defined by α(ykxj) = q−kδj0 and β(ykxj) =
δj1 for all k, j ∈ {0, 1, .., n− 1} and show that there is a unique Hopf algebra isomorphism
φ : H → H∗ with φ(y) = α, φ(x) = β.
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Exercise 31: Let F be a field of prime characteristic char(F) = p. A restricted Lie algebra
over F is a Lie algebra (g, [ , ]) over F together with a map φ : g→ g, x 7→ x[p] that satisfies

(λx)[p] = λpx[p], adx[p] = adpx = adx ◦ ... ◦ adx, (x+ y)[p] = x[p] + y[p] +

p−1∑
k=1

σk(x, y)

k

where adx : g→ g, y 7→ [x, y] is the adjoint action and σk(x, y) is given by

adp−1
λx+y(x) = [λx+ y, [λx+ y, [· · · [λx+ y, [λx+ y, x]] · · · ]]] = Σp−1

k=1λ
k−1σk(x, y)

(a) Show that any algebra A over F is a restricted Lie algebra with the commutator as the Lie
bracket and the map φ : A→ A, a 7→ ap.

(b) Let (g, [ , ], φ) be a restricted Lie algebra and U = U(g)/(xp − φ(x)) the quotient of its
universal enveloping algebra by the two-sided ideal (xp − φ(x)) in U(g) generated by the
elements xp − φ(x) for x ∈ g. Denote by π : U(g) → U , x 7→ [x] the canonical surjection,
by ιg : g→ U(g) the canonical inclusion and set and τ = π ◦ ιg : g→ U . Show that U is a
Hopf algebra with the comultiplication, counit and antipode given by

∆(τ(x)) = 1⊗τ(x) + τ(x)⊗1 ε(τ(x)) = 0 S(τ(x)) = −τ(x).

(c) Show that U is a finite-dimensional cocommutative Hopf algebra, but that it is not isomor-
phic to the group algebra of a finite group.

7.3 Exercises for Chapter 3

Exercise 32: Let B be a bialgebra and H a Hopf algebra over F. Prove the following:

(a) H is a module algebra over itself with the adjoint action

�ad : H⊗H → H, h⊗k 7→ h�ad k with h�ad k = Σ(h) h(1) · k · S(h(2)).

(b) The dual algebra (B∗,∆∗, ε∗) is a module algebra over B with the right dual action

�∗R : B⊗B∗ → B∗, b⊗α 7→ b�∗R α with b�∗R α = Σ(α)α(2)(b)⊗α(1).

and a module algebra over Bop with the left dual action

�∗L : Bop⊗B∗ → B∗, b⊗α 7→ b�∗L α with b�∗L α = Σ(α)α(1)(b)α(2)

This gives B∗ the structure of a B⊗Bop-module algebra.

(c) If V is a comodule (co)algebra over B with δ : V → B⊗V , then V is a B∗op module
(co)algebra with � : B∗⊗V → V , β � v = (β⊗id) ◦ δ(v).

(d) If B is finite-dimensional and (A,mA, ηA) is a finite-dimensional module algebra over B,
then (A∗,m∗A, η

∗
A) is a comodule coalgebra over B∗ and vice versa.

Exercise 33: Let C be a module coalgebra and D a comodule coalgebra over a Hopf algebra
H. Do the invariants of C and the coinvariants of D form cosubalgebras of C and D?
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Exercise 34: Consider for q ∈ F \ {0,±1} the quantum plane Fq[x, y] as a module algebra
over Uq(sl2) with

E � (ymxn) = q1−n(n)q2y
m+1xn−1 F � (ymxn) = q1−m(m)q2y

m−1xn+1

K � (ymxn) = qm−nymxn K−1 � (ymxn) = qn−mymxn.

(a) Determine the action of the quantum Casimir Cq = EF + q−1K+qK−1

(q−q−1)2
on Fq[x, y].

(b) Determine the invariants of the Uq(sl2)-module algebra Fq[x, y] for (i) the case where q is
not a root of unity and for (ii) the case where q is a primitive nth root of unity.

(c) Show that the subalgebra H of Uq(sl2) generated by K±1 is a Hopf subalgebra of Uq(sl2).
Determine the the invariants of Fq[x, y] as a module algebra over H for (i) the case where
q is not a root of unity and (ii) the case where q is a primitive nth root of unity.

(d) Consider for q = 1 the plane F[x, y] as a module algebra over U ′1(sl2) ∼= U(sl2). Determine
the invariants of F[x, y] as a module over the Hopf subalgebras generated by the elements
e, f and l, respectively.

Hint: In (b) it is helpful to consider r := n for n odd and r := n/2 for n even.

Exercise 35: Let G be a group and F a field. Prove that an algebra A over F has the structure
of a comodule algebra over the group algebra F[G] if and only if A it is a G-graded algebra,
i. e. it is given as a direct sum A = ⊕g∈GAg with linear subspaces Ag ⊂ A such that 1A ∈ Ae
and Ag · Ah = Agh for all g, h ∈ G.

Exercise 36: Let H be a Hopf algebra over F with an invertible antipode. A left (right) inte-
gral for H is an invariant of the left (right) action of H on itself by left (right) multiplication,
i. e. an element ` ∈ H with h · ` = ε(h) ` (with ` · h = ε(h) `) for all h ∈ H.

(a) Show that for every left integral ` ∈ H one has

Σ(`) S(`(1))h⊗`(2) = Σ(`) S(`(1))⊗S−2(h) `(2) Σ(`) h`(1)⊗S(`(2)) = Σ(`) `(1)⊗S(`(2))h

(b) Show that for every right integral ` ∈ H one has

Σ(`) hS(`(1))⊗`(2) = Σ(`) S(`(1))⊗`(2)h Σ(`)`(1)h⊗S(`(2)) = Σ(`)`(1)⊗S2(h)S(`(2)).

Exercise 37: Let H be a Hopf algebra over F and A a module algebra over H. We consider
the cross product A#H with multiplication law

(a⊗h) · (b⊗k) = Σ(h)a(h(1) � b)⊗h(2)k.

Show that the cross product has the following universal property: for every triple (B, φA, φH)
of an algebra B over F and algebra homomorphisms φA : A→ B, φH : H → B with

φA(h� a) = Σ(h) φH(h(1)) · φA(a) · φH(S(h(2)))

there is a unique algebra homomorphism ψ : A#H → B such that the following diagram
commutes

A
a7→a⊗1//

φA ""

A#H

∃!ψ
��

H
h7→1⊗hoo

φH||
B.
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Exercise 38:

(a) Determine the vector spaces of left and right integrals for:

(i) The Hopf algebras F[G] and Fun(G,F) for a finite group G,
(ii) the Taft algebra,

(iii) the q-deformed universal enveloping algebra U r
q (sl2) at a root of unity,

(iv) the tensor algebra T (V ) and the universal enveloping algebra U(g).

(b) Determine the modular element for (i), (ii) and (iii).

Exercise 39: Let H be a finite-dimensional Hopf algebra. Show the following:

(a) If there is a left integral ` ∈ H with ε(`) 6= 0, then H is unimodular.

(b) The converse of this statement is false.

Exercise 40: Let (A,m, η) be an algebra over F and (A◦,m∗, η∗) its finite dual coalgebra.
Let Gr(A◦) ⊂ A◦ be the set of algebra homomorphism α : A→ F and define for α ∈ Gr(A◦)

Lα = {` ∈ A | a · ` = α(a) ` ∀a ∈ A} Rα = {` ∈ A | ` · a = α(a) ` ∀a ∈ A}.

Prove the following:

(a) Lα and Rα are two-sided ideals in A for all α ∈ Gr(A◦). Any element of A that gener-
ates a one-dimensional left (right) ideal in A is contained in Lα (in Rα) for some α ∈ Gr(A◦).

(b) If Lα = Lβ 6= {0} or Rα = Rβ 6= {0} then α = β. If α(Lα) 6= {0} or α(Rα) 6= {0} then
RαLα 6= {0}.

(c) For all α, β ∈ Gr(A◦) with RβLα 6= {0} the following hold:

(i) Lα = Rβ,

(ii) dimF Lα = dimFRβ = 1,

(iii) Lα is generated by an idempotent, i. e. an element ` ∈ Lα with ` · ` = `.

(d) For all algebra isomorphisms f : A → A and g : A → Aop one has f(Lα) = Lα◦f−1 ,
f(Rα) = Rα◦f−1 and g(Lα) = Rα◦g−1 , g(Rα) = Lα◦g−1 for all α ∈ Gr(A◦).

Exercise 41: Let H be a finite-dimensional Hopf algebra. The coadjoint action is given by

�∗ad : H⊗H∗ → H∗ h�∗ad α = Σ(α) (α(3) · S(α(1)))(h)α(2).

Prove that this defines a left action of H on H∗ whose invariants are given by

H∗ad = {α ∈ H∗ |∆(α) = ∆op(α)}.

Hint: Show first that ∆(α) = ∆op(α) implies that (∆⊗id) ◦ ∆(α) is invariant under cyclic
permutations of the factors in the tensor product and vice versa.

Exercise 42: Let H be a finite-dimensional Hopf algebra over F. We consider the convolution
Hopf algebra C = HomF(H,H) with the Hopf algebra structure from Exercise 24

f ∗ g = mH ◦ (f⊗g) ◦∆H ∆H(f) = ∆H ◦ f ◦mH S(f) = SH ◦ f ◦ SH
1 = ηH ◦ εH ε(f) = εH(f(1H)).
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(a) Prove that f ∈ IL(C) if and only if f is of the form f : H → H, h 7→ η(h) ` with left
integrals η ∈ IL(H∗) and ` ∈ IL(H).

(b) Let M be a finite-dimensional vector space over F. Show that C-left module structures on
M are in bijection with pairs (�, δ), where � : H⊗M → M is a H-left module structure
on M and δ : M →M⊗H, m 7→ Σ(m)m(0)⊗m(1) a H-right comodule structure on M such
that δ(h�m) = Σ(m)h�m(0)⊗m(1) for all h ∈ H and m ∈M .

(c) Let M be a finite-dimensional left module over C. Show that MC = MH ∩M coH , where
MH is the set of invariants for � and M coH the set of coinvariants for δ in (b).

Exercise 43: Consider the algebra Mat(n×n,F) with the linear map λA : Mat(n×n,F)→ F,
λA(M) = tr(M · A) for a fixed matrix A ∈ GL(n,F). Determine a set of dual bases for λA.

Exercise 44: Let G be a finite group and F a field. We consider the bilinear forms

κ : F[G]⊗F[G]→ F κ(g⊗h) = δe(gh) ∀g, h ∈ G
γ : Fun(G,F)⊗Fun(G,F)→ F γ(f1, f2) = Σg∈Gf1(g)f2(g) ∀f1, f2 ∈ Fun(G,F)

(a) Show that (F[G], κ) and (Fun(G,F), γ) are Frobenius algebras.

(b) Determine for both Frobenius algebras the dual bases {r1, ..., rn} and {l1, ..., ln} that arise
from integrals in F[G] and Fun(G,F). Show by an explicit calculation that they are indeed
dual bases.

Exercise 45: A (∆, ε)-Frobenius algebra is a pentuple (A,m, η,∆, ε) such that (A,m, η)
is an algebra, (A,∆, ε) is a coalgebra and ∆ : A → A⊗A is a morphism of A⊗Aop modules,
i. e. ∆(a · b) = (a⊗1) ·∆(b) = ∆(a) · (1⊗b) for all a, b ∈ A.

(a) Show that every Frobenius algebra (A, κ) has a (∆, ε)-Frobenius algebra structure with

ε = κ ◦ (idA⊗1A) ∆ = (χ−1
κ ⊗χ−1

κ ) ◦mop∗ ◦ χκ,

where m∗ : A∗ → A∗⊗A∗ is the dual of m : A⊗A → A and χκ : A → A∗, a 7→ κa is given
by κa(b) = κ(b⊗a) for all a, b ∈ A.

(b) Show that every (∆, ε)-Frobenius algebra is Frobenius algebra with κ = ε ◦m.

(c) Show that if (A,m, η,∆, ε) is both, a bialgebra and a (∆, ε)-Frobenius algebra over F, then
A ∼= F.

Exercise 46: An algebra A over F is called separable if the multiplication m : A⊗A → A
has a right inverse in the category of A⊗Aop-modules, i. e. there is a linear map φ : A→ A⊗A
with m ◦ φ = idA that is a homomorphism of A⊗Aop-modules.

(a) Show that A is separable if and only if there is an element e ∈ A⊗Aop, the separability
idempotent, with e2 = e, m(e) = 1 and (a⊗1) · e = e · (1⊗a) for all a ∈ A.

(b) Let H be a finite-dimensional semisimple Hopf algebra. Show that H is separable by spec-
ifying a separability idempotent for H.
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Exercise 47: Let H be a Hopf algebra over F and (M,ρM) and (N, ρN) finite-dimensional
modules over H. We denote by (M ⊕ N, ρM⊕N) the H-module structure on M ⊕ N given by
ρM⊕N(h)m = ρM(h)m and ρM⊕N(h) = ρN(h)n for all m ∈ M , n ∈ N and by (M⊗N, ρM⊗N)
the H-module structure on M⊗N . The character of (M,ρM) is the linear map

χM : H → F, h 7→ tr(ρM(h))

(a) Prove that χM(1H) = dimF(M), χM⊕N = χM +χN and χM⊗N = χM ·χN for all H-modules
M,N , where · denotes the multiplication of H∗.

(b) Prove that χM = χN if the H-modules M and N are isomorphic.

(c) Suppose that H is finite-dimensional and consider H as a left module over itself with the
left multiplication. Show that χ2

H = χH · dimFH and χH ◦ S2 = χH .

Exercise 48: Let F be a field with char(F) = 0. The algebra H8 is the algebra with generators
x, y, z and relations

xy = yx zx = yz, zy = xz, x2 = y2 = 1, z2 = 1
2
(1 + x+ y − xy)

(a) Show that

∆(x) = x⊗x ∆(y) = y⊗y ∆(z) = 1
2
(z⊗z + yz⊗z + z⊗xz − yz⊗xz)

ε(x) = 1 ε(y) = 1, ε(z) = 1.

defines a Hopf algebra structure on H8 and determine its antipode.

(b) Determine a basis of H8 and its dimension as a vector space over F.

(c) Show that Gr(H8) ∼= Z/2Z× Z/2Z and determine Pr(H8).

(d) Determine the left and right integrals and cointegrals of H8.

(e) Show that the Hopf algebra H8 is semisimple.

Remark: H8 is an important example, because it is the lowest-dimensional semisimple Hopf
algebra that is not a group algebra of a finite group

Exercise 49: We consider a directed graph Γ. We denote by E the set of oriented edges of
Γ and by V the set of vertices of Γ and use the same letters for their cardinalities. For an edge
e ∈ E we denote by s(e) the starting vertex and by t(e) the target vertex of e. We denote by
e−1 the edge with the reversed orientation and set s(e−1) = t(e) and t(e−1) = s(e).

A path in Γ is either a vertex v ∈ V or a finite sequence of the form p = (eεnn , ..., e
ε1
1 ) with

n ∈ N, εi ∈ {±1} and ei ∈ E, subject to the condition s(e
εi+1

i+1 ) = t(eεii ) for all i ∈ {1, ..., n− 1}.
The starting and target vertex of a path are given by s(p) = s(eε11 ) and t(p) = t(eεnn ) and
s(v) = t(v) = v. If p, q are paths with s(p) = t(q), then p and q are called composable and
their composite is defined as

p • q =


(eεnn , ..., e

ε1
1 , f

τm
m , ..., f τ11 ) if p = (eεnn , ..., e

ε1
1 ), q = (f τmm , ..., f τ11 ) with s(eε11 ) = t(f τmm )

p if q = s(p)

q if p = t(q)
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Suppose that H is a finite-dimensional semisimple Hopf algebra over a field of characteristic
zero and consider the tensor product H⊗E, where each copy of H is assigned to an oriented
edge e ∈ E. A holonomy for Γ is a map

Hol : {paths in Γ} → HomF(H⊗E, H), p 7→ φp

that assigns to each path p in Γ a linear map φp : H⊗E → H such that the following conditions
are satisfied for all e ∈ E, v ∈ V and composable paths p, q in Γ

φv(h
1⊗...⊗hE) = Πe∈Eε(h

e)1 φe(h
1⊗...⊗hE) = Πf 6=eε(h

f )he

φe−1 = S ◦ φe φp•q = φp ? φq,

with a fixed linear map ? : HomF(H⊗E, H)⊗HomF(H⊗E, H)→ HomF(H⊗E, H).

(a) Show that the conditions on the holonomy for general graphs Γ imply that the linear map
? must be associative and that φv must be a unit for ?.

(b) Show that choosing for ? the convolution product with respect to the multiplication of H
and the tensor product coalgebra structure on H⊗E defines a holonomy for Γ.

(c) Determine the holonomy maps φp for the case where H = F[G] is the group algebra of a
finite group and interpret them geometrically.

(d) We consider the equivalence relation on the set of paths in Γ induced by e−1 • e ∼ s(e) and
e • e−1 ∼ t(e) for all edges e ∈ E. Show that the holonomy from (b) satisfies φp = φp′ for
all paths p ∼ p′.

(e) For a path p = (eεnn , .., e
ε1
1 ) the reversed path is defined as p−1 = (e−ε11 , ..., e−εnn ) and for

p = v ∈ V one sets p−1 = v. Show that for every path p = (eεnn , .., e
ε1
1 ) with ei 6= ej for

i 6= j one has φp−1 = S ◦ φp. Does this hold in general? Does this still hold if one drops the
assumption that H is semisimple?

Exercise 50: Suppose that q ∈ C is not a root of unity and let Vε,n denote the (n+1)-
dimensional highest weight module over Uq(sl2) of weight λ = εqn with ε = {±1}. Show that
Vε,n ∼= Vε,0⊗V1,n

∼= V1,n⊗Vε,0 as Uq(sl2)-modules.

Exercise 51: Suppose that q ∈ C is not a root of unity and n,m ∈ N0 with n ≥ m. Let
V1,n denote the (n+1)-dimensional highest weight module over Uq(sl2) of weight λ = qn and
v(n) ∈ V1,n and v(m) ∈ V1,m highest weight vectors and set vp = qp(p−1)/(p)!q2 F

p � v for
p ∈ {0, ..., n} and a highest weight vector v ∈ V1,n. Show that for all p ∈ {0, ...,m} the vector

v(n+m−2p) =

p∑
j=0

(−1)j
(m− p+ j)!q2(n− j)!q2

(m− p)!q2(n)!q2
q−j(2m−3p−n+2j+1) v

(n)
j ⊗v

(m)
p−j

is a highest weight vector in V1,n⊗V1,m of weight qn+m−2p.

Exercise 52: Suppose that q ∈ C is not a root of unity, n,m ∈ N0 with n ≥ m and denote
by V1,n denote the (n+1)-dimensional highest weight module over Uq(sl2) of weight λ = qn.

(a) Show that for all p ∈ {0, ...,m}, there is an injective Uq(sl2)-module homomorphism
φp : V1,n+m−2p → V1,n⊗V1,m.

(b) Conclude that V1,n⊗V1,m
∼= V1,n+m⊕V1,n+m−2⊕ ...⊕V1,n−m+2⊕V1,n−m as Uq(sl2)-modules.

Exercise 53: Suppose that q ∈ C, n ∈ N0 and denote by Vε,n denote the (n+1)-dimensional
highest weight module over Uq(sl2) of weight λ = εqn with ε = {±1}. Show that for all n ∈ N0

there is an Uq(sl2)-module isomorphism between the module Vε,n and the dual module V ∗ε,n.
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7.4 Exercises for Chapter 4

Exercise 54: We consider a group G as a category with a single object, with group elements
g ∈ G as morphisms, the group multiplication as the composition of morphisms and the unit
e ∈ G as the identity morphism.

(a) Show that functors F : G → VectF correspond to representations of G on vector spaces
over F and natural transformations η : F → F ′ between functors F, F ′ : G → VectF to
homomorphisms of representations.

(b) Characterise all functors F : G → H for groups G, H viewed as categories with a single
object and all natural transformation between such functors.

(c) Describe the functor category Fun(G,H) for two groups G,H and the monoidal category
End(G) for a group G.

Exercise 55: Let G be a group and F a field. A G-graded vector space over F is a vector
space V over F with a direct sum decomposition V = ⊕g∈GVg and a homomorphism of
G-graded vector spaces is a linear map f : V → W with f(Vg) ⊂ Wg for all g ∈ G. Show
that G-graded vector spaces and homomorphisms of G-graded vector spaces form a monoidal
category.

Exercise 56: Express the following elements of the braid groups Bn as a product in the
generators σi for i ∈ {1, ..., n− 1} and their inverses:

(a) (b) (c)

Determine the the images of these elements under the group homomorphism Πn : Bn → Sn,
σi → πi and express them in terms of elementary transpositions πi for i ∈ {1, ..., n} using as
few elementary transpositions as possible.

Exercise 57: Let (Gn)n∈N0 be a family of groups with G0 = {e} and (ρm,n)m,n∈N0 a family
of group homomorphisms ρm,n : Gm × Gn → Gm+n such that ρ0,m and ρm,0 are given by
ρ0,m : {e} ×Gm → Gm, (e, g) 7→ g and ρm,0 : Gm × {e} → Gm, (g, e) 7→ g and

ρm+n,p ◦ (ρm,n × idGp) = ρm,n+p ◦ (idGm × ρn,p) ∀m,n, p ∈ N0. (63)
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(a) Show that this defines a strict tensor category G with objects n ∈ N0, morphisms

HomG(n,m) =

{
∅ n 6= m

Gn n = m

such that the composition of morphisms is given by the group multiplication, the tensor
product by m⊗n := m+n on objects m,n ∈ N0 and by f⊗g := ρm,n(f × g) on morphisms
f ∈ Gm, g ∈ Gn and the tensor unit by e = 0.

(b) Let ((Gn)n∈N0 , (ρm,n)m,n∈N0) and ((Hn)n∈N0 , (τm,n)m,n∈N0) be two families of groups and
group homomorphisms that satisfy the conditions above and G and H the associated strict
tensor categories. Show that a family (µn)n∈N of group homomorphisms µn : Gn → Hn

defines a strict tensor functor F : G → H if and only if

τm,n ◦ (µm × µn) = µn+m ◦ ρm,n ∀m,n ∈ N0.

(c) Use (b) to construct a strict tensor functor F : B → S from the braid category B to the
permutation category S.

(d) Consider the family of groups (GL(n,F))n∈N0 , where GL(n,F) is the group of invertible
(n × n)-matrices with entries in F. Define a family (νm,n)m,n∈N0 of group homomorphisms
νm,n : GL(m,F) × GL(n,F) → GL(m + n,F) with the properties above and construct the
associated strict tensor category GL(F). Construct a strict tensor functor F : S → GL(F).

Exercise 58: Let H be a Hopf algebra and g ∈ Gr(H) a grouplike element.

(a) Show that for every H-module (M,�), one obtains an H-module (M,�g) by set-
ting h �g m = (ghg−1) � m for all h ∈ H, m ∈ M and that every H-module map
f : (M,�)→ (N,�′) is also an H-module map f : (M,�g)→ (N,�′g).

(b) Show that this defines a tensor functor Fg : H-Mod→ H-Mod. Is it strict?

(c) Show that the maps µg : M → M , m 7→ g � m define a monoidal natural isomorphism
µ : idH-Mod → Fg.

Exercise 59: A (∆, ε)-Frobenius algebra over F is a pentuple (A,m, η,∆, ε) such that
(A,m, η) is an algebra, (A,∆, ε) is a coalgebra over F and ∆ : A → A⊗A is a morphism of
A⊗Aop modules, i. e. ∆(a · b) = (a⊗1) ·∆(b) = ∆(a) · (1⊗b) for all a, b ∈ A.

A Frobenius algebra over F is a quadruple (A,m, η, κ) such that (A,m, η) is an algebra over
F and κ : A⊗A→ F a non-degenerate linear map with κ(a · b, c) = κ(a, b · c) for all a, b, c ∈ A.

(a) Generalise the concepts of a Frobenius algebra and a (∆, ε)-Frobenius algebra to a
Frobenius algebra and an (∆, ε)-Frobenius algebra in a general monoidal category C and
describe their defining properties by diagrams.

(b) Show with a diagrammatical proof that every that every (∆, ε)-Frobenius algebra is a
Frobenius algebra with κ = ε ◦m.

(c) Show with a diagrammatical proof that every that every Frobenius algebra is a (∆, ε)-
Frobenius algebra.
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Hint: In (a) the non-degeneracy of the Frobenius form κ implies that there are diagrams of
the form

A A
,

A A
such that

A

A

=

A

=

A

A

Exercise 60:
Let C be a category with finite products and D a category with finite coproducts.

(a) Show that C and D have the structure of monoidal categories with the tensor product
given on objects by their (co)product and the empty (co)product as the tensor unit.

(b) Show that every object in C has the structure of a coalgebra object and every object in D
the structure of an algebra object.

Exercise 61: Let (C,⊗, e, a, l, r) be a monoidal category. Show that if c : ⊗ → ⊗op is a
braiding, then c′ : ⊗ → ⊗op with c′U,V = c−1

V,U : U⊗V → V⊗U is also a braiding.

Exercise 62: Let q, λ ∈ F\{0} and V a vector space over F with an ordered basis (v1, ..., vn).
Show that the linear map σ : V⊗V → V⊗V with

σ(vi⊗vj) =


λ vj⊗vi i < j

λq vi⊗vi i = j

λ vj⊗vi + λ(q − q−1)vi⊗vj i > j

gives V the structure of a braided vector space.

Exercise 63: Let G be a group. A crossed G-set is a triple (X,�, µ) of a set X, a right
action � : X ×G→ X and a map µ : X → G such that µ(x� g) = g−1µ(x)g for all x ∈ X and
g ∈ G. A morphism of crossed G-sets f : (X,�X , µX) → (Y,�Y , µY ) is a map f : X → Y
with µY ◦ f = µX and f(x�X g) = f(x) �Y g for all x ∈ X and g ∈ G.

(a) Show that crossed G-sets and morphisms of crossed G-sets form a monoidal cate-
gory G-Set with the tensor product (X,�X , µX)⊗(Y,�Y , µY ) = (X × Y,�, µ) with
(x, y) � g = (x�X g, y �Y g) and µ(x, y) = µX(x) · µY (y).

(b) Show that cX,Y : X × Y → Y ×X, (x, y) 7→ (y, x�X µY (y)) defines a braiding in G-Set.

(c) Determine the morphisms cX×m,X×n : X×m⊗X×n → X×n⊗X×m for a crossed G-set
(X,�, µ) and n,m ∈ N0 and the images of the following braids under the braided monoidal
functor FX : B → G-Set with F (1) = X.

(i)

(ii)
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(d) Show that there is a terminal object in G-set, i. e. a crossed G-set (T,�T , µT ) such that
for every crossed G-set (X,�X , µX), there is a unique morphism of crossed G-sets f :
(X,�X , µX)→ (T,�T , µT ).

Exercise 64: Let B be the braid category and C a strict monoidal category.
A Yang-Baxter operator in C is a pair (X, σ) of an objectX in C and a morphism σ : X⊗X →
X⊗X that satisfies the dodecagon identity. A morphism of Yang-Baxter operators f :
(X, σ)→ (Y, τ) is a morphism f : X → Y with τ ◦ (f⊗f) = (f⊗f) ◦ σ.

(a) Show that Yang-Baxter operators in C and morphisms of Yang-Baxter operators in C form
a category YB(C).

(b) For a Yang-Baxter operator (X, σ) in C, denote by F(x,σ) : B → C the strict tensor functor
with F(X,σ)(1) = X and F(X,σ)(c1,1) = σ. Show that monoidal natural transformations
η : F(X,σ) → F(Y,τ) are in bijection with morphisms f : (X, σ) → (Y, τ) of Yang-Baxter
operators.

(c) Denote by Fun⊗(B, C) the category of strict monoidal functors F : B → C and monoidal
natural transformations between them. Show that the categories Fun⊗(B, C) and YB(C)
are equivalent.

(d) Suppose now that C is braided and denote by Funbr(B, C) the category of strict braided
monoidal functors F : B → C and monoidal natural transformations between them. Show
that the categories Funbr(B, C) and C are equivalent.

Exercise 65: The centre construction associates to every strict monoidal category C a
strict braided monoidal category Z(C), defined as follows:

• objects of Z(C) are pairs (Z, c−,Z) of an object Z ∈ Ob(C) and a family of isomorphisms
cY,Z : Y⊗Z → Z⊗Y for all objects Y in C such that:

(i) cX⊗Y,Z = (cX,Z⊗1Y ) ◦ (1X⊗cY,Z) for all X, Y ∈ Ob C.
(ii) The family of morphisms c−,Z is natural in the first argument: for all morphisms

f : X → Y the following diagram commutes

X⊗Z
f⊗1Z

��

cX,Z // Z⊗X
1Z⊗f
��

Y⊗Z cY,Z

// Z⊗Y

• morphisms f : (Y, c−,Y ) → (Z, c−,Z) of Z(C) are morphisms f : Y → Z in C for which
the following diagram commutes for all X ∈ Ob C

X⊗Y
1X⊗f

��

cX,Y // Y⊗X
f⊗1X
��

X⊗Z cX,Z

// Z⊗X

(a) Show that Z(C) is a strict monoidal category with tensor unit (e, id−) and tensor product
(Y, c−,Y )⊗(Z, c−,Z) = (Y⊗Z, c−,Y⊗Z), where

cX,Y⊗Z := (1Y⊗cX,Z) ◦ (cX,Y⊗1Z) : X⊗Y⊗Z → Y⊗Z⊗X
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(b) Show that the strict monoidal category Z(C) is braided with the braiding

c(Y,c−,Y ),(Z,c−,Z) = cY,Z : Y⊗Z → Z⊗Y.

(c) Let A be a strict braided monoidal category and denote by Π : Z(C) → C the strict
tensor functor with F ((Z, c−,Z)) = Z and F (f) = f : Y → Z for all objects (Z, c−,Z) and
morphisms f : (Y, c−,Y )→ (Z, c−,Z) in Z(C). Suppose that F : A → C is a strict monoidal
functor that is bijective on the objects and surjective on the morphisms. Show that there
is a unique braided monoidal functor F̃ : A → Z(C) with ΠF̃ = F .

Exercise 66: Use the presentation of the cobordism category Cob1,0 to classify all 1d oriented

topological quantum field theories Z : Cob1,0 → VectfinF with Z∗ = ∗Z.

Exercise 67: Let G be a group, F a field and λ ∈ F \ {0}. We consider the commutative
Frobenius algebra Fun(G,F) with the pointwise product and the Frobenius form

κ(f⊗h) = λ
∑
g∈G

f(g)h(g)

and the associated 2d topological quantum field theory Z : Cob2,1 → VectfinF .

(a) Determine the corresponding (∆, ε)-Frobenius structure on Fun(G,F).

(b) Compute Z(S) for the case where S is an oriented surface of genus g ∈ N0.

(c) Compute Z(S) for the case where S is the disjoint union of n ∈ N tori.

Exercise 68: (Fukuma-Hosono-Kawai model)

Let Σ be a triangulated oriented surface, i. e. an oriented surface obtained by gluing finitely
many triangles along their edges, I a finite set and F a field. We associate to Σ a number
Z(Σ) ∈ F defined as follows:

1. Assign to each edge in an oriented triangle t an element of I, and to the oriented triangle
t = (abc) formed by edges labelled with a, b, c ∈ I a number Cabc ∈ F, the triangle
constant, satisfying Cabc = Ccab = Cbca.

c b

a

Cabc

2. Each edge in the surface Σ occurs in two adjacent triangles t, t′ and carries two labels
a, a′ ∈ I. Assign to such an edge a number Baa′ ∈ F, the gluing constant, such that the
matrix B = (Baa′)a,a′∈I is symmetric and invertible.

c b

a

Cabc

d e

a′

Cdea′

Baa′
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3. Assign to the triangulated surface Σ the number

Z(Σ) = R−V
∑

f :E→I×I

∏
e∈E

Bee′
∏

t=(efg)∈T

Cefg

where R ∈ F \ {0}, V is the number of vertices, E the set of edges and T the set of
triangles of the triangulated surface Σ, the sum runs over all assignments f : E → I × I
of pairs (a, b) ∈ I × I to the edges in E and the products are taken over all labelled edges
and labelled triangles.

One can show that two triangulated surfaces are homeomorphic if and only if the triangulations
are related by a finite sequence of the two Pachner moves

P2,2 P1,3

If Z(Σ) is invariant under the two Pachner moves P2,2 and P1,3, then Z(Σ) depends only on
the homeomorphism class of the oriented surface Σ and not on the choice of the triangulation,
i. e. Z(Σ) is a topological invariant.

Show that Z(Σ) is a topological invariant if and only if the constants Cabc and Baa′ define a
Frobenius algebra (A,m, 1,∆, ε) over F with ε ◦ m ◦ ∆ = Rε and ε(1) = R−1 |I|. Proceed as
follows:

(a) Derive the conditions on the constants Cabc, B
ab, Bcd that are equivalent to the statement

that Z(Σ) is invariant under the two Pachner moves.

(b) Consider the free vector space A = 〈I〉F with basis I, define a linear map κ : A⊗A → F
and a multiplication map m : A⊗A→ A by

a · b = m(a⊗b) =
∑
c,d∈I

CabcB
cdd κ(c⊗d) = Bcd ∀a, b, c, d ∈ I,

where Baa′ are the coefficients of the inverse matrix B−1 = (Baa′)a,a′∈I . Show that the
conditions on the coefficients Cabc, B

ab, Bcd from (a) guarantee that (i) · is associative, (ii)
κ satisfies κ(a · b⊗c) = κ(a⊗b · c) and (iii) 1 = R−1

∑
a,b,c,d∈I CabcB

abBcdd is a unit for the
multiplication ·.

(c) Show that the (∆, ε)-Frobenius algebra associated with the Frobenius algebra in (b)
satisfies the conditions ε ◦m ◦∆ = R ε and ε(1) = R−1 |I|.

(d) Show that any (∆, ε)-Frobenius algebra that satisfies the two conditions in (c) gives rise to a
finite set I, triangle constants Cabc and gluing constants Bab such that Z(Σ) is a topological
invariant.
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7.5 Exercises for Chapters 5 and 6

Exercise 69: Let G be a finite group and F[G] its group algebra over F. Verify that the
Drinfeld double D(F[G]) is given by

(δu⊗g) · (δv⊗h) = δu(gvg
−1)δu⊗gh 1 = 1⊗e = Σg∈G δg⊗e

∆(δu⊗g) = Σxy=u δy⊗g⊗δx⊗g ε(δu⊗g) = δu(e)

S(δu⊗g) = δg−1u−1g⊗g−1

and that R = Σg∈G1⊗g⊗δg⊗e is a universal R-matrix for D(F[G]).

Exercise 70: Let G be a finite group.

(a) Show that a module V over the Drinfeld double D(F[G]) is a module (V,�) over F[G]
together with a decomposition V = ⊕g∈GVg such that h� Vg ⊂ Vhgh−1 for all g, h ∈ G.

(b) Let V = ⊕g∈GVg and W = ⊕h∈GWh be modules over D(F[G]). Show that the maps
cV,W : V⊗W → W⊗V defined by cV,W |Vg⊗Wh

: Vg⊗Wh → Wh⊗Vhgh−1 , v⊗w 7→ w⊗h � v
for all g, h ∈ G, v ∈ V and w ∈ W define a braiding for D(F[G])-Mod.

Exercise 71: A matched pair of groups is a pair (H,K) of groups together with a left
action � : K ×H → H and a right action � : K⊗H → K such that

(k · k′) � h = (k � (k′ � h)) · (k′ � h) eK � h = eK

k � (h · h′) = (k � h) · ((k � h) � h′) k � eH = eH

for all h, h′ ∈ H and k, k′ ∈ K. Prove the following:

(a) If (H,K) is a matched pair of groups, then there is a unique group structure on the set
H ×K, the bicrossproduct H ./ K, such that

(h, k) · (h′, k′) = (h(k � h′), (k � h′)k′).

(b) If G is a group and H,K ⊂ G subgroups such that µ|H×K : H × K → G is a bijection,
then (H,K) is a matched pair of groups and G is isomorphic as a group to H ./ K.

(c) Products and semidirect products of groups are special cases of bicrossproducts of groups.

Exercise 72: A matched pair of bialgebras is a pair (H,K) of bialgebras together with
a K-left module coalgebra structure � : K × H → H on H and a H-right module coalgebra
structure � : K⊗H → K on K such that

(k · k′) � h = Σ(h),(k′) (k � (k′(1) � h(1))) · (k′(2) � h(2)) 1K � h = ε(h) 1K

k � (h · h′) = Σ(h),(k) (k(1) � h(1)) · ((k(2) � h(2)) � h′) k � 1H = ε(k) 1H

Σ(h)(k) (k(1) � h(1))⊗(k(2) � h(2)) = Σ(h)(k) (k(2) � h(2))⊗(k(1) � h(1))

for all h, h′ ∈ H and k, k′ ∈ K.

(a) Show that if (H,K) is a matched pair of bialgebras, then the following defines a bialgebra
structure on H⊗K

(h⊗k) · (h′⊗k′) = Σ(k)(h′)h(k(1) � h′(1))⊗(k(2) � h′(2))k
′

∆(h⊗k) = Σ(h),(k) h(1)⊗k(1)⊗h(2)⊗k(2).

This bialgebra is called the bicrossproduct of H ./ K.
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(b) Show that if H and K are Hopf algebras, then the bicrossproduct H ./ K is a Hopf
algebra as well.

(c) Show that every x ∈ H ./ K can be factorised uniquely as x = (h⊗1) · (1⊗k) =
(1⊗k′) · (h′⊗1). Determine k′, h′ in terms of h, k and h, k in terms of h′, k′.

(d) Show that tensor products of bialgebras and cross products of bialgebras are examples of
bicrossproduct bialgebras.

(e) Show that the Drinfeld doubleD(H) of a finite-dimensional Hopf algebraH is a bicrossprod-
uct H and H∗cop.

Exercise 73: Express the following morphisms in the category T of ribbon tangles

(a) (b) (c)

in terms of the generators

∪ : ∩ : ∪′ : ∩′ : X : X−1 :
−⊗+→ ∅ ∅ → +⊗− +⊗− → ∅ ∅ → −⊗+ +⊗+→ +⊗+ +⊗+→ +⊗+
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A Algebraic background

A.1 Modules over rings

In this section, we assemble without proofs some basic facts about modules over rings. The
notion of a module over a ring R unites concepts such as vector spaces (modules over fields),
abelian groups (modules over Z), group representations (modules over the group algebra) and
representations of algebras (modules over an algebra) in a common framework.

Definition 1.1.1:

1. A left module (M,�) over a ring R is an abelian group (M,+) together with a map
� : R×M →M , (r,m) 7→ r �m that satisfies for all r, r′ ∈ R and m,m′ ∈M

r�(m+m′) = (r�m)+(r�m′) (r+r′)�m = (r�m)+(r′�m) (r·r′)�m = r�(r′�m).

If R is unital, one also requires 1 �m = m for all m ∈M .

2. A morphism of left modules or an R-linear map from (M,�M) to (N,�N) is a group
homomorphism φ : M → N with φ(r�M m) = r�N φ(m) for all m ∈M and r ∈ R. If φ
is bijective it is called a module isomorphism and the modules are called isomorphic.

Remark 1.1.2:

1. Analogously one defines a right module over R as an abelian group (M,+) together
with a map � : M×R→M , (m, r) 7→ m�r that satisfies for all r, r′ ∈ R and m,m′ ∈M

(m+m′)�r = (m�r)+(m′�r) m�(r+r′) = (m�r)+(m�r′) m�(r·r′) = (m�r)�r′.

If R is unital, one also requires m� 1 = m for all m ∈M .

2. Every right module (M,�) over R has a canonical left module structure over the ring
Rop with the opposite multiplication given by r �op m = m � r, and every left module
(M,�) over R is a right module over Rop with m�op r := r �m.

3. An (R, S)-bimodule is a abelian group (M,+) together with an R-left module structure
� : R × M → M and an S-right module structure � : M × S → M such that
(r �m) � s = r � (m � s) for all r ∈ R, s ∈ S and m ∈ M . Alternatively, we can view
an (R, S)-bimodule as a left module over R× Sop.

4. If R is a commutative ring, then every R-left module is an R-right module and an (R,R)-
bimodule and vice versa.

In the following, we take the term module to mean left module. A right module over a ring is
either interpreted as a left module over Rop or explicitly referred to as a right module.

Example 1.1.3:

1. Every ring unital ring R is a left module over itself with the left multiplication
� : R×R→ R, (r, s) 7→ r · s and a right module over itself with the right multiplication
� : R×R→ R, (s, r) 7→ s · r. Together, they give R the structure of an (R,R)-bimodule.
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2. For any ring R and set M , the set of maps f : M → R has the structure of an R-left
module with the pointwise addition and pointwise left multiplication by R

(f + f ′)(m) = f(m) + f ′(m) (r � f)(m) = r · f(m).

3. For every ring R and R-left module M , the set EndR(M) = HomR(M,M) of module
endomorphisms f : M →M is a unital ring with the pointwise addition and composition.
This is called the endomorphism ring of M . The R-left module structures on an
abelian group (M,+) correspond bijectively to ring homomorphisms R→ EndZ(M).

4. If φ : R→ S is a unital ring homomorphism, then every S-module becomes an R-module
with the module structure given by r �m := φ(r) �m. This is called the pullback of
the S-module structure on M by φ.

5. In particular, for any subring U ⊂ R, the inclusion map ι : U → R, u 7→ u is a unital
ring homomorphism and induces a U -module structure on any R-module M . This is
called the restriction of the R-module structure to U

6. A module over the ring Z is an abelian group. Any abelian group (M,+) has a unique Z-
module structure given by � : Z×M →M , (z,m) 7→ z�m, where z�m = (m+...+m) is
the z-fold sum of m with itself for z ∈ N, 0�m = 0 and z�m = −(m+...+m) for −z ∈ N.

7. A module over a field F is a vector space V over F. The F-action is given by the scalar
multiplication: λ� v = λv for all v ∈ V and λ ∈ F.

The concepts of a linear subspace and of a quotient vector space of a vector space can be
generalised to modules over a ring. Their counterpart for modules over rings are submodules
and quotients of modules.

Definition 1.1.4: Let R be a unital ring and M an R-module. A submodule of M is a
subgroup (U,+) ⊂ (M,+) that is an R-module with the restriction of the action map, i. e. a
subgroup with r � u ∈ U for all u ∈ U and r ∈ R.

Example 1.1.5:

1. For every R-module homomorphism φ : M → N , the kernel ker(φ) = φ−1(0) ⊂ M and
the image Im(φ) ⊂ N are submodules of M and N .

2. For any subset U ⊂M of an R-module M , the set

〈U〉M = {Σn
i=1ri � ui |n ∈ N, ri ∈ R, ui ∈ U} ⊂M

is a submodule of M , the submodule generated by U . For any submodule U ⊂ N ⊂M ,
one has 〈U〉M ⊂ N . If 〈U〉M = N one says that U generates N .

3. If R = F is a field, a submodule of an F-module V is a linear subspace U ⊂ V .

4. If R = Z, a submodule of an Z-module A is a subgroup of the abelian group A.

5. If we consider a ring R as a left, right or bimodule over itself, then a submodule I ⊂ R
is a left, right or two-sided ideal in R.
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The quotient of an module M by a submodule N ⊂ M is constructed in a similar way as
the quotient of a vector space by a linear subspace. It has a canonical module structure and is
characterised by a universal property that generalises the universal property of quotients vector
spaces. In particular, the following proposition implies that every module homomorphism φ :
M → M ′ induces a canonical isomorphism φ : M/ ker(φ)

∼−→ Im(φ). Similarly, for submodules
U ⊂ V ⊂M , one obtains a canonical isomorphism (M/U)/(V/U)

∼−→M/V . (Exercise)

Proposition 1.1.6: Let R be a unital ring, M an R-module and N ⊂M a submodule.

1. There is a unique R-module structure on the group (M/N,+) for which the canonical
surjection π : M → M/N , m 7→ [m] is a module homomorphism. The group (M/N,+)
with this module structure is called the quotient module of M by N .

2. It has the following universal property: for any module homomorphism φ : M → M ′

with ker(φ) ⊂ N , there is a unique module homomorphism φ̃ : M/N →M ′ such that the
following diagram commutes

M

π
��

φ //M ′

M/N.
∃!φ̃

;;

Example 1.1.7:

1. If R = F is a field, a submodule of an F-module V is a linear subspace U ⊂ V and the
quotient module is the quotient vector space V/U .

2. If we consider a ring R as a left, right or bimodule over itself, then a submodule I ⊂ R
is a left, right or two-sided ideal in R, and the quotient module is the abelian group R/I
with the induced module structure.

Although modules over general rings share many features with vector spaces, a fundamental
difference is that a module over a ring does not necessarily have a basis. Although the definition
of a basis can be generalised straightforwardly to modules over rings, the existence of a basis
for a given module is not guaranteed. Modules over a ring that have a basis are called free. For
every ring R and set M , there is a module with basis M , the free R-module generated by M .

Definition 1.1.8: Let R be a unital ring and M a set. The free R-module generated by M
is the set of maps 〈M〉R = {f : M → R | f(m) = 0 for almost all m ∈ M} with the pointwise
addition and the module structure � : R×M →M , (r � f)(m) = r · f(m).

Remark 1.1.9:

1. The maps δm : M → R with δm(m) = 1 and δm(m′) = 0 for m′ 6= m generate 〈M〉R,
because any map f : M → R with f(m) = 0 for almost all m ∈ M can be written as a
finite sum f = Σm∈Mf(m) � δm.
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2. The free R-module 〈M〉R generated by a set M has the following universal property:

For every map f : M → N into an R-module N , there is a unique module homomorphism
φ̃ : 〈M〉R → N with φ̃ ◦ ι = φ, where ι : M → 〈M〉R, m 7→ m is the inclusion map.

3. If R = F is a field, then 〈M〉R is the free F-vector space generated by M . If R = Z, then
〈M〉Z is the free abelian group generated by M .

The free module generated by a set is a specific case of a more general construction, namely
the direct sum of modules. Direct sums of and products of modules over a ring are defined
analogously to direct sums and products of vector spaces. For a family (Mi)i∈I of modules over
a ring R we consider the disjoint union ∪̇i∈IMi. Its elements are families (mi)i∈I of elements
mi ∈ Mi. The R-module structure of ∪̇i∈IMi is given by the module structure on Mi, and the
elements (mi)i∈I with mi = 0 for almost all i ∈ I form a submodule.

Definition 1.1.10:
Let (Mi)i∈I be a family of modules over a ring R, indexed by a set I. Then

(mi)i∈I + (m′i)i∈I := (mi +m′i)i∈I r � (mi)i∈I := (r �mi)i∈I

defines an R-module structure on the sets

M := {(mi)i∈I : mi ∈Mi} M ′ = {(mi)i∈I : mi ∈Mi,mi = 0 for almost all i ∈ I} ⊂M.

The set M with this R-module structure is called the product of the modules Mi and denoted
Πi∈IMi. The set M ′ with this R-module structure is called the direct sum of the modules Mi

and denoted ⊕i∈IMi.

Just as in the case of vector spaces, direct sums and product of modules over a ring R have
universal properties that characterise them in terms of the inclusion and projection maps

ιj : Mj → ⊕i∈IMi, m 7→ (mδij)i∈I πj : Πi∈IMi →Mj, (mi)i∈I 7→ mj.

This allows one to efficiently construct module homomorphisms between direct sums and prod-
ucts, without defining them explicitly.

Proposition 1.1.11: Let (Mi)i∈I be a family of modules over a ring R. Then the direct sum
⊕i∈IMi and the product Πi∈IMi have the following universal properties:

1. The inclusion maps ιj : Mj → ⊕i∈IMi, m 7→ (mδij)i∈I are module homomorphisms. For
every family (φi)i∈I of module homomorphisms φi : Mi → N there is a unique module
homomorphism φ̃ : ⊕i∈IMi → N such that the following diagram commutes for all j ∈ I

Mj

ιj

��

φj // N

⊕i∈IMi

∃!φ̃

;; ,
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2. The projection maps πj : Πi∈IMi →Mj, (mi)i∈I 7→ mj are module homomorphisms. For
every family (ψi)i∈I of module homomorphisms ψi : L → Mi there is a unique module
homomorphism ψ̃ : L→ Πi∈IMi such that the following diagram commutes for all j ∈ I

Mj L
ψjoo

∃!ψ̃||
Πi∈IMi

πj

OO
,

Remark 1.1.12:

1. If R = F, then the direct sum and the product of R-modules are simply the direct sum
and product of vector spaces.

2. For R = Z, the direct sum and product of R-modules coincide with the direct sum and
product of abelian groups.

3. If I is finite, then Πi∈IMi = ⊕i∈IMi, but if I is infinite, then πi∈IMi and ⊕i∈IMi are not
isomorphic.

4. The direct sum ⊕i∈IR is canonically isomorphic to the free R-module 〈I〉R.

The last important construction that generalises directly from vector spaces to modules over a
general ring are tensor products. However, unless R is commutative, we cannot take the tensor
product of two left modules over R and obtain another left module over R. Instead, we combine
a left module over R with a right module over R and obtain an abelian group. Otherwise, the
construction is analogous to the one for vector spaces.

Definition 1.1.13: Let R be a ring, M a right module and N a left module over R. The
tensor product M⊗RN is the quotient M⊗RN = 〈M ×N〉Z/A, where A ⊂ 〈M ×N〉Z is the
subgroup of the free abelian group 〈M ×N〉Z that is generated by the elements

δm,n+δm′,n−δm+m′,n, δm,n+δm,n′−δm,n+n′ , δm,r�n−δm�r,n ∀m,m′ ∈M, n, n′ ∈ N, r ∈ R.

The equivalence class of δm,n : M ×N → R in M⊗RN is denoted m⊗n.

Remark 1.1.14:

1. Note that the tensor product M⊗RN of an R-right module M and an R-left module N is
an abelian group, but in general not an R-module. However, if N is an (R, S)-bimodule
or M an (P,R)-bimodule, then M⊗RN is an (P, S)-bimodule.

2. For a commutative ring R, every left or right module over R is an (R,R)-bimodule and
hence the tensor product M⊗RN is an (R,R)-bimodule. For left modules M1, ...,Mn over
R, we can therefore define multiple tensor products by

M1⊗R...⊗RMn := (...(M1⊗RM2)⊗RM3)⊗R . . .⊗RMn−1)⊗RMn.

This holds in particular for tensor products of vector spaces and of abelian groups.
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3. If R = F is a field, the tensor product of R-modules is the tensor product of vector
spaces. In this case, for any bases B of M and C of N , the set D = {b⊗c | b ∈ B, c ∈ C}
is a basis of M⊗FN . This implies in particular dimF(M⊗FN) = dimF(M) · dimF(N),
where we take ∞ · n = n · ∞ =∞ for n ∈ N and 0 · ∞ =∞ · 0 = 0.

4. As every module over a ring R exhibits a unique Z-module structure, one can also form
the tensor product M⊗ZN for any right module M and left module N over a ring R.
However, this is general very different from the tensor product M⊗RN and the two should
not be confused.

Tensor products of modules can be characterised by a universal property that resembles the one
for tensor products of vector spaces. This universal property states that the R-bilinear maps
M × N → A for an R-left module N , an R-right module M and an abelian group A are in
bijection with group homomorphisms M⊗RN → A.

Proposition 1.1.15: Let R be a ring, M a right module and N a left module over R. Then
the tensor product M⊗RN has the following universal property:

The map τ : M ×N →M⊗RN , (m,n) 7→ m⊗n is R-bilinear:

τ(m+m′, n) = τ(m,n)+τ(m′, n), τ(m,n+n′) = τ(m,n)+τ(m,n′), τ(m�r, n) = τ(m, r�n)

for all m,m′ ∈M , n, n′ ∈ N , r ∈ R. For every R-bilinear map φ : M ×N → A into an abelian
group A there is a unique group homomorphism φ̃ : M⊗RN → A such that the following
diagram commutes

M ×N φ //

τ
��

A

M⊗RN.
∃!φ̃

::

Remark 1.1.16: The universal property of tensor allows one to define a tensor product of
module homomorphisms. If R is a ring, M,M ′ are all right modules and N,N ′ left modules
over R, then the maps τ : M × N → M⊗RN and τ ′ : M ′ × N ′ → M ′⊗RN ′ from Proposition
1.1.15 are R-bilinear. Moreover, for each pair of module homomorphisms f : M → M ′ and
g : N → N ′, the map τ ′ ◦ (f × g) : M × N → M ′⊗RN ′ is R-bilinear. By the universal
property of the tensor product, there is a unique linear map f⊗g : M⊗RN → M ′⊗RN ′ with
(f⊗g) ◦ τ = τ ′ ◦ (f × g). This map is called the tensor product of f and g and satisfies

f⊗g = (f⊗idN ′) ◦ (idM⊗g) = (idM ′⊗g) ◦ (f⊗idN).

Besides the universal properties of tensor products, some canonical linear maps between multi-
ple tensor products of vector spaces also have analogues for modules over a general ring. They
are obtained by replacing the field with the ring R and linear maps with module homomor-
phisms. The most important ones are the following.

Proposition 1.1.17: Let R, S be rings, M,Mi right modules over R, N,Ni left modules over
R for all i ∈ I, P an (R, S)-bimodule and Q a left module over S. Then 0⊗RN = M⊗RN = 0,
and the following are module isomorphisms:
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• the maps M⊗RR→M , m⊗r 7→ m� r and R⊗RN → N , r⊗n 7→ r � n,

• the maps
(⊕i∈IMi)⊗RN → ⊕i∈IMi⊗RN, (mi)i∈I⊗n 7→ (mi⊗n)i∈I

M⊗R (⊕i∈INi)→ ⊕i∈IM⊗RNi, m⊗(ni)i∈I 7→ (m⊗ni)i∈I ,

• the map (M⊗RP )⊗SQ→M⊗R(P⊗SQ), (m⊗p)⊗q 7→ m⊗(p⊗q).

A.2 Categories and functors

In this section, we summarise the basics about categories, functors and natural transformations.
For more information we refer to the book [McL] and [Ka, Chapter XI].

Definition 1.2.1: A category C consists of:

• a class Ob C of objects,
• for each pair (X, Y ) of objects a set HomC(X, Y ) of morphisms,
• for each triple (X, Y, Z) ob objects a composition map

◦ : HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z), (f, g) 7→ f ◦ g

such that the following axioms are satisfied:

(C1) The morphism sets HomC(X, Y ) are pairwise disjoint.

(C2) The composition is associative: f ◦ (g ◦ h) = (f ◦ g) ◦ h for all objects W,X, Y, Z of C and
morphisms f ∈ HomC(Y, Z), g ∈ HomC(X, Y ), h ∈ HomC(W,X).

(C3) For each object Y there is a morphism 1Y ∈ HomC(Y, Y ), the identity morphism on Y ,
with f ◦ 1Y = f and 1Y ◦ g = g for all morphisms f ∈ HomC(Y, Z) and g ∈ HomC(X, Y ).

Instead of f ∈ HomC(Y, Z) one also writes f : Y → Z. The object Y is called the source and
the object Z the target of f .

A morphism f : Y → Z is called an isomorphism if there is a morphism f−1 : Z → Y with
f−1 ◦ f = 1Y and f ◦ f−1 = 1Z . Two objects Y, Z in C are called isomorphic Y ∼= Z, if there
is an isomorphism f : Y → Z. A category in which all morphisms are isomorphisms is called a
groupoid.

The reason why it is not required in Definition 1.2.1 that the objects of a category form a set
is that one wants to consider the category Set whose objects are sets and whose morphisms
f : X → Y are maps from X to Y . The requirement that objects of a category form a set
would then force one to the consider the set of all sets, which does not exist. A category whose
objects form a set is called a small category. Important examples of categories are given in
Table 1. Additional examples are the following.

Example 1.2.2:

1. Every group G can be viewed as a groupoid with a single object •, elements g ∈ G as
morphisms, the group multiplication as the composition of morphisms and the identity
morphism 1• = e ∈ G.
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category objects morphisms isomorphisms

Set sets maps bijections

Setfin finite sets maps bijections

Grp groups group homomorphisms group isomorphisms

Ab abelian groups group homomorphisms group isomorphisms

URing unital rings unital ring homomorphisms unital ring isomorphisms

Field fields field homomorphisms field isomorphisms

VectF vector spaces over F F-linear maps F-linear isomorphisms

VectfinF finite-dimensional F-linear maps F-linear isomorphisms
vector spaces over F

AlgF algebras over F algebra homomorphisms algebra isomorphisms

A-Mod left modules over A left module maps left module isomorphisms

Mod-A right modules over A right module maps right module isomorphisms

A−Modfin finite-dimensional left module maps left module isomorphisms
left modules over A

RepF(G) representations homomorphisms isomorphisms
of G over F of representations of representations

Top topological spaces continuous maps homeomorphisms

Mfld smooth manifolds smooth maps diffeomorphisms

Table 1: Examples of categories
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2. The category Ord that has ordinal numbers 0 = ∅ and n = {0, 1, ..., n − 1} for n ∈ N
as objects and maps f : {0, 1, ...,m− 1} → {0, 1, ..., n− 1} as morphisms f : n→ m.

Many constructions that are familiar in the context of sets, groups or rings have analogues for
categories. Examples are the following.

Definition 1.2.3: Let C,D be categories.

1. The opposite category Cop is the category with the same objects as C, morphism sets
HomCop(Y,X) = HomC(X, Y ) and the reversed composition of morphisms g ◦op f = f ◦ g
for all f ∈ HomCop(Z, Y ) and g ∈ HomCop(Y,X).

2. The cartesian product C × D is the category that has as objects pairs (C,D)
of objects C ∈ Ob C and D ∈ ObD, whose morphism sets are given by
HomC×D((C,D), (C ′, D′)) = HomC(C,C

′) × HomD(D,D′) and whose composition
of morphisms is given by (f, h) ◦ (g, k) = (f ◦ g, h ◦ k).

3. A subcategory of C is a category C ′ whose objects form a subclass Ob C ′ ⊂ Ob C such
that HomC′(X, Y ) ⊂ HomC(X, Y ) for all X, Y ∈ ObC ′ and the composition in C ′ agrees
with the one in C. A subcategory C ′ of C is called full if HomC′(X, Y ) = HomC(X, Y ) for
all X, Y ∈ ObC ′.

As a category consists of both, objects and morphisms between them, the appropriate way
to relate different categories must take into account both, objects and morphisms, as well as
the category axioms. this forces one to consider assignments of objects and maps between
the morphisms sets that are compatible with the composition of morphisms and send identity
morphisms to identity morphisms.

Definition 1.2.4: Let B, C,D be categories. A functor F : C → D consists of

• an assignment of an object F (C) ∈ ObD to each object C ∈ Ob C,
• for each pair of objects C,C ′ ∈ Ob C a map

F : HomC(C,C
′)→ HomD(F (C), F (C ′)), f 7→ F (f)

that are compatible with the composition of morphisms and the identity morphisms:

F (f◦g) = F (f)◦F (g) ∀f ∈ HomC(C
′, C ′′), g ∈ HomC(C,C

′) F (1C) = 1F (C) ∀C ∈ Ob C.

A functor F : C → C is called an endofunctor of C and a functor F : Cop → D a contravariant
functor from C to D. The composite of functors F : C → D, G : B → C is the functor
FG : B → D with the assignment B 7→ F (G(B)) for all objects B ∈ ObB and the maps

FG : HomB(B,B′)→ HomD(F (G(B)), F (G(B′))), f 7→ F (G(f)).

It follows from the definition that any functor F : C → D send isomorphisms in C to isomor-
phisms in D. This is essential since in many contexts one is not interested in the objects of a
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category but only in isomorphism classes of objects, such as vector spaces up to linear isomor-
phisms, groups up to group isomorphisms, modules up to module isomorphisms etc. The fact
that a functor maps isomorphisms to isomorphisms ensures that this is still consistent when
one considers relations between categories.

Example 1.2.5:

1. For every category C, there is a identity functor idC : C → C that assigns every object
and morphism in C to itself is an endofunctor.

2. The functors VectF → Set, Grp → Set, Top → Set that assign to a vector space, a
group or a topological space the underlying set and to a an F-linear map, a group
homomorphism or a continuous map the underlying map. The functors AlgF → VectF,
A−Mod → VectF that assign to an algebra over F or to a module over an F-algebra A
the underlying vector space. Functors of this type are called forgetful functors.

3. The functor ∗ : VectF → VectF that assigns to every vector space V over F the dual
vector space V ∗ and to every F-linear map f : V → W the dual map f ∗ : W ∗ → V ∗,
α 7→ α ◦ f is a contravariant endofunctor of VectF.

4. The functor F : Set→ VectF that assigns to a set X the free vector space F (X) = 〈X〉F
with basis X and to a map f : X → Y the unique F-linear map F (f) : 〈X〉F → 〈Y 〉F
with F (f)|X = f .

5. Every algebra homomorphism φ : A → B defines a functor F : B-Mod → A-Mod
that assigns to a B-module (V,�) the A-module (A,�′) with a �′ v = φ(a) � v and
to a B-module morphism φ : (V,�V ) → (W,�W ) the associated A-module morphism
φ : (V,�′V )→ (W,�′W ).

6. For every category C and object C ∈ Ob C there is a functor Hom(C,−) : C → Set that
assigns to an object C ′ in C the set HomC(C,C

′) and to a morphism f : C ′ → C ′′ the
map Hom(C, f) : HomC(C,C

′) → HomC(C,C
′′), g 7→ f ◦ g. Similarly, one has a functor

Hom(−, C) : Cop → Set that assigns to an object C ′ ∈ Ob C the set HomC(C
′, C) and to

a morphism f : C ′ → C ′′ the map Hom(f, C) : HomC(C
′′, C)→ HomC(C

′, C), g 7→ g ◦ f .
These functors are called Hom-functors.

7. Let G be a group, viewed as a category with a single object as in Example 1.2.2, 1. Then
a functor F : G → Set is a pair (X,�) of a set X with a group-action � : G ×X → X
and a functor F : G→ VectF is a representation (V, ρ) of G.

Just as a functor F : C → D relates the categories C and D, there is another mathematical
structure that relates different functors F : C → D. As a functor FC → D assigns to each object
in C an object in D a mathematical structure that relates functors F,G : C → D must relate
the objects F (C) and G(C) for each object C in C. Hence, we require a collection of morphisms
ηC : F (C) → G(C) indexed by the objects in C. Two morphisms ηC : F (C) → G(C) and
ηC′ : F (C ′)→ G(C ′) in this collection can be composed with the images F (f) : F (C)→ F (C ′)
and G(f) : G(C) → G(C ′) of a morphism f : C → C ′, either on the left or on the right. This
yields two morphisms G(f) ◦ ηC : F (C) → G(C ′) and ηC′ ◦ F (f) : F (C) → G(C ′), and it is
sensible to impose that these morphisms agree for all morphisms f : C → C ′. This is called the
naturality condition.
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Definition 1.2.6: Let F,G : C → D be functors. A natural transformation η : F → G
is an assignment of a morphism ηC : F (C) → G(C) to each object C ∈ Ob C such that the
following diagram commutes for all objects C,C ′ ∈ Ob C and morphisms f ∈ HomC(C,C

′)

F (C)

F (f)
��

ηC // G(C)

G(f)
��

F (C ′)
ηC′ // G(C ′).

The morphisms ηC : F (C)→ F (C ′) are called component morphisms of η. A natural trans-
formation η : F → G for which all component morphisms ηC : F (C)→ G(C) are isomorphisms
is called a natural isomorphism.

Example 1.2.7:

1. For every functor F : C → C there is a natural transformation idF : F → F with
component morphisms (idF )C = 1F (C) : F (C) → F (C). This is called the identity
natural transformation on F .

2. Let ∗ : VectF → VectF be the contravariant functor from Example 1.2.5, 3. Then the
morphisms canV : V → V ∗∗, v 7→ fv with fv(α) = α(v) for all α ∈ V ∗ define a natural
transformation can : idVectF → ∗∗. It is not a natural isomorphism, but the associated
natural transformation can : idVectfinF

→ ∗∗ is a natural isomorphism.

3. Let G be a group and g ∈ G fixed. Then one has a functor Fg : RepF(G) → RepF(G)
that sends a representation (V, ρ) to (V, ρ′) with ρ′(h) = ρ(ghg−1) : V → V for all
h ∈ H and each homomorphism of representations to itself. Then the homomorphisms of
representations η(ρ,V ) = ρ(g) : V → V define a natural isomorphism η : idRepF(G) → Fg.

4. Consider for n ∈ N the functor GLn : Field→ Grp that assigns to F the group GL(n,F) of
invertible (n× n)-matrices with entries in F and to a field homomorphism f : F→ G the
group homomorphism F (f) : GL(n,F)→ GL(n,G) obtained by applying f to all entries
of a matrix. Then the determinant defines a natural transformation det : GLn → idField.

Natural transformations η : G → H between functors G,H : C → D can be composed with
both, functors F : B → C and functors L : D → E as well as with natural transformations
µ : H → K. These composites are obtained by applying the relevant functors to either the
component morphisms or the objects indexing the component morphisms and by composing
the component morphisms of the natural transformations.

Lemma 1.2.8: Let F : B → C, G,H,K : C → D and L : D → E be functors and η : G→ H,
µ : H → K natural transformations. Then:

1. The morphisms (Lη)C := L(ηC) : LG(C) → LH(C) define a natural transformation
Lη : LG→ LH.

2. The morphisms (ηF )B := ηF (B) : GF (B) → HF (B) define a natural transformation
ηF : GF → HF ..
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3. The morphisms (µ ◦ η)C := µC ◦ ηC : G(C) → K(C) define a natural transformation
µ ◦ η : G→ K.

Proof:
One only has to check the naturality of these collections of morphisms, i. e. that the diagram
in Definition 1.2.6 commutes. In the first case, this follows by applying the functor L to the
diagram in Definition 1.2.6 and using the compatibility of L with the composition of morphisms.
In 2. this follows by restricting the commuting diagram for η to objects F (B) and morphisms
F (f) : F (B) → F (B′) for objects B ∈ ObB and morphisms f : B → B′. The third claim
follows by composing the commuting diagrams for η and µ:

G(C)

G(f)

��

ηC // H(C)

H(f)

��

µC // K(C)

K(f)

��
G(C ′) ηC′

// H(C ′) µC′
// K(C ′)

2

The fact that the composition of the component morphisms of two natural transformations is
associative implies that this also holds for the composition of the natural transformations. Sim-
ilarly, the fact that the identity natural transformation on F has as component morphisms the
identity morphisms implies that composing a natural transformation with an identity natural
transformation does not change the natural transformation. This shows that functors between
two fixed categories and natural transformations between them form again a category.

Corollary 1.2.9: Let C be a small category and D a category. Then the functors F : C → D
and natural transformations between them form a category with the composition of natural
transformations as composition of morphisms and the identity natural transformations as iden-
tity morphisms. This category is called the functor category and denoted Fun(C,D).

As a functor relates different categories it is natural to ask what is the appropriate concept of
a reversible functor and under what criteria a functor can be reversed. The naive approach to
this would be to define a reversible functor as an invertible functor F : C → D, i. e. a functor
such that there is a functor G : D → C with GF = idC and FG = idD. However, it turns
out that there are very few examples of such functors and that this concept is of limited use.
Moreover, it is unnecessary to impose that GF and FG are equal to the identity functors idC
and idD since there are structures that can be used to relate them to identity functors. These
structures are natural isomorphisms and lead to the following concept of a reversible functor.

Definition 1.2.10: A functor F : C → D is called equivalence of categories if there is a
functor G : D → C and natural isomorphisms η : idC → GF and ε : FG → idD. In this case,
the categories C and D are called equivalent.

This definition is well motivated, since it establishes the most general notion of a reversible
functor that can be defined with the concepts at hand. However, it is difficult to handle and
does not give a useful criterion under which conditions a functor is an equivalence of categories.
such a criterion is provided by the following theorem whose proof maxes use of the axiom of
choice and can be found in [Ka, Prop.XI.1.15].
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Theorem 1.2.11: A functor F : C → D is an equivalence of categories if and only if it is

• essentially surjective: for every object D in D there is an object C in C with D ∼= F (C).

• fully faithful: for all objects C,C ′ in C the map F : HomC(C,C
′)→ HomD(F (C), F (C ′))

is a bijection.

In each of the following Examples, it is much easier to prove the equivalence of the given
categories by guessing one the functors that forms the equivalence of categories and then arguing
that it is essentially surjective and fully faithful (Exercise).

Example 1.2.12:

1. The category Setfin is equivalent to the category Ord from Example 1.2.2.

2. The category VectfinF is equivalent to the category that has as objects numbers n ∈ N0

and as morphisms f : m → n matrices in Mat(m × n,F) with the matrix multiplication
as composition of morphisms and the unit matrices as identity morphisms.

3. For any pair of rings R, S the category (R× S)-Mod is equivalent to R-Mod× S-Mod.

4. A skeleton of a category C is a full subcategory D of C such that every object of D is
isomorphic to a unique object in C. If D is a skeleton of C, then the inclusion functor
ι : D → C that sends every object and morphism of D to the corresponding object and
morphism in C is an equivalence of categories.

The notion of a skeleton and the associated equivalence of categories capture the notion of
a mathematical classification problem. Classifying the objects of a category C usually means
classifying them up to isomorphisms in C, e. g. vector spaces up to linear isomorphisms, groups
up to group isomorphisms, A-modules up to module isomorphisms, finite abelian groups up to
group isomorphisms etc. This amounts to giving a list of objects such that each object in C is
isomorphic in C to exactly one object in this list. This amounts to the construction of a skeleton
of C. One can show (Exercise) that if C ′ is a skeleton of C and D′ a skeleton of D, then C and
D are equivalent if and only if C ′ and D′ are isomorphic.
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alternating algebra, 8
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associator, 96
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bimodule algebra, 55
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braided monoidal functor, 114
braided natural isomorphism, 115
braided natural transformation, 115
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braided tensor product

of module algebras, 128
braided vector space, 116
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class functions, 54
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coalgebra, 16
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in monoidal category, 108
over F[[~]], 45

coalgebra map, 17
coalgebra object

in monoidal category, 108
cobordism, 117
cobordism category, 117
cocommutator, 47
cocycle condition, 47
coevaluation maps, 14
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coherence theorem, 97, 108
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coinvariant, 60
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commutative, 5
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comodule algebra, 57
comodule coalgebra, 57
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component morphisms, 200
composition

functors, 198
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contravariant functor, 198
convolution algebra, 22
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convolution product, 10, 22
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crossed G-set, 112
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Drinfeld double, 85, 131
Drinfeld element, 129
Drinfeld-Jimbo deformations, 38
dual bases, 71
dual Lie bialgebra, 48
dual representation, 14
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knots, 142
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links, 142
of categories, 201
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flip map, 6, 17
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framed link, 143
framed link invariant, 145
free module over ring, 192
Frobenius algebra, 69
Frobenius form, 69
Frobenius map, 67
Fukuma-Hosono-Kawai model, 186
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fully faithful, 202
functor, 198
functor category, 201
fundamental theorem of Hopf modules, 64

Gauß polynomial, 29
group action, 54
group algebra, 10
grouplike element, 39
groupoid, 196

Haar integral, 62
Heisenberg double, 59
hexagon axioms, 110
highest weight module, 90
highest weight vector, 90
Hom-functors, 199
HOMFLY polynomial, 145
homomorphism

of algebras, 5, 6
of bialgebras, 20
of coalgebras, 17
of Lie algebras, 9
of modules, 11
of algebra representations, 11
of comodules, 19
of group representations, 11
of Hopf modules, 64
of quasitriangular bialgebras, 124

homomorphism of G-graded vector spaces, 182
Hopf algebra, 22
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identity functor, 199
identity morphism, 196
identity natural transformation, 200
inclusion map

tensor algebra, 7
universal enveloping algebra, 9

invariant, 60
invariant of framed links, 145
invariant of framed oriented links, 145
isomorphic

objects, 196
isomorphic modules, 190
isomorphism

category, 196

Jacobi identity, 9
Jones polynomial, 148

Kauffman polynomial, 146
Kitaev model, 81

edge operators, 81
extended Hilbert space, 81
face operator, 82
ground state, 82
marked face, 81
marked vertex, 81
protected state, 82
site, 81
vertex operator, 82

knot, 142

Larson-Radford Theorem, 79
left and right coevaluation maps, 15
left coideal, 18
left comodule, 19
left dimension

object, 158
left dual action, 55
left dualisable, 152
left Hopf module, 63
left integral, 62
left module, 11, 190
left regular action, 58
left rigid, 152
left trace

morphism, 158
Lie algebra, 9
Lie bialgebra, 47
Lie bracket, 9
link, 142

link diagram, 143
link invariant, 145

Maschke’s Theorem
for finite groups, 78
for Hopf algebras, 77

matched pair of bialgebras, 188
matrix algebra, 33
matrix elements, 18
modular element, 68
module, 190

in monoidal category, 108
module algebra, 55
module coalgebra, 57
module isomorphism, 190
module object

in monoidal category, 108
monad, 109
monodromy element, 134
monoidal category, 96
monoidal equivalence, 105
monoidal functor, 105

strict, 105
monoidal isomorphism, 106
monoidal natural transformation, 105
morphism, 196
morphism of crossed G-sets, 112
morphism of left modules, 190

Nakayama automorphism, 69
natural isomorphism, 200
natural transformation, 200
non-degenerate

Frobenius form, 69
normalised, 62

object, 196
opposite algebra, 6
opposite category, 198
opposite coalgebra, 17
orbit, 54
orbit space, 54
ordinal numbers, 101
oriented

link, 142
oriented link invariant, 145
oriented ribbon invariant, 145
overcrossing, 143

pentagon axiom, 97
permutation category, 103
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permutation group, 102
pivot, 161
pivotal category, 156
pivotal Hopf algebra, 161
pivotal structure, 156
Poincaré-Birkhoff-Witt basis, 10
primitive element, 39
product of modules, 193
pullback, 13, 191

quantum Casimir, 175
quantum double, 85, 131
quantum plane, 32, 56
quantum Yang-Baxter equation, 127
quasitriangular

bialgebra, 124
Hopf algebra, 124

quotient
of algebra, 5
of module, 192

QYBE, 127

Radford’s formula, 74
rational modules, 20
Reidemeister moves, 143

for framed links, 144
for ribbons, 144

representation
of algebra, 11
of group, 11

rescaled Kauffman polynomial, 146
restriction

of modules to subring, 191
of modules to subalgebra, 13

ribbon, 143
ribbon category, 163
ribbon element, 166
ribbon Hopf algebra, 166
ribbon invariant, 145
ribbon tangle, 148
right coideal, 18
right dimension

object, 158
right dual, 152
right dual action, 55
right dualisable, 152
right Hopf module, 63
right integral, 62
right regular action, 58
right rigid, 152

right trace
morphism, 158

rigid, 152

semisimple
module, 75
algebra, 75

separability idempotent, 179
separable algebra, 179
shuffle permutations, 27
simple

algebra, 75
module, 75

simplex category, 101
skein related, 145
skeleton, 202
small category, 196
smash product, 59
snake identities, 152
source

morphism, 196
spherical

category, 158
Hopf algebra, 161

strict tensor category, 97
strictification theorem, 106
structure constants, 9
subalgebra, 5
subcategory, 198
subcoalgebra, 18
submodule, 191

generated by a subset, 191
Sweedler notation, 17
Sweedler’s example, 32
symmetric

Frobenius algebra, 69
braiding, 110
monoidal category, 110

symmetric algebra, 8
symmetric monoidal functor, 115

Taft’s example, 31
tangle, 149
tangle category, 149
target

morphism, 196
tensor algebra, 7
tensor category, 96
tensor functor, 105

strict, 105
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tensor product
of bialgebras, 20
of group representations, 14
of module morphisms, 195
of modules over a ring, 194
crossed G-sets, 112
monoidal category, 96
of algebras, 7
of coalgebras, 18
of Hopf algebras, 26
of modules, 195

tensor unit, 96
topological bialgebra, 45
topological invariant, 82
topological quantum field theory, 118
triangle axiom, 97
triangular

bialgebra, 124
Hopf algebra, 124

trivial
representation of group, 14
Hopf module, 64

twist, 163
twist equivalence, 140
twist equivalent, 140
twisted antipode, 138
twisted coproduct, 138
twisting

bialgebra, 138
Hopf algebra, 138
of Frobenius algebra, 70

undercrossing, 143
unimodular, 62
unit constraints, 96
universal R-matrix, 124
universal enveloping algebra, 9
universal property

~-tensor product, 44
direct sum of modules, 193
free module, 193
product of modules, 193
quotient module, 192
quotient of coalgebra, 18
tensor algebra, 8
universal enveloping algebra, 9
Verma module, 94

unknot, 143, 145, 147

Verma module, 93

weight, 90
writhe, 146

Yang-Baxter operator, 116
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