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Chapter 1

Basic Concepts

1.1 The concept of a fiber bundle

Definition 1.1.1. A C*-fiber bundle (k € NyU{oo}) is a quadruple (E, M, F, q),
consisting of C*-manifolds £, M and F and a C*-map ¢: £ — B with the
following property of local triviality: Each point b € B has an open neigh-
borhood U for which there exists a C*-diffeomorphism

ou: U x F— ¢ U),

satisfying
qgoou=pu:UXxF —=U, (u,f)—u.

We use the following terminology:

e [ is called the total space.

B is called the base space.

F is called the fiber type.

q is called the bundle projection.
The sets Ej, := ¢ !(b) are called the fibers of q.

oy is called a bundle chart.

e By :=q Y(U) is called the restriction of E to U.

(E, B, F,q) is called an F-bundle over M.

1
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Remark 1.1.2. (Restriction of fiber bundles) If (E, M, F,q) is a Ck-F-
bundle over M, N C M is an open subset and Ey := ¢~'(N), then (Ey, N, F, q|g, )
is a C*-F-bundle over N.

Example 1.1.3. If M is a smooth n-dimensional manifold, then the tangent
bundle T'(M) with the projection

¢: T(M)— M, T,(M)>v~—p
yields a smooth fiber bundle (T'(M), M,R"™, q).

Examples 1.1.4. (a) If 0: Gx M — M, (g, m) — g.m is a smooth action of
the Lie group G on M which is free and proper, then the Quotient Theorem
leads to a smooth fiber bundle (M, M/G, G, q), where

M/G:={G.m: m e M}

is the set of G-orbits in M and ¢: M — M /G is the canonical map. In the
following we always write [m] := ¢(m) = G.m.

(b) The Mébius strip is an example for the situation under (b). Here

M = (Rx] - 1,1])/Z,
where the group Z acts freely and properly by
n(z,y) = (@ -+, (~1)")
(¢) The Klein bottle arises similarly as
K :=R2T,
where I' C Diff(R?) is the subgroup generated by the two elements
o(z,y):=(r+1,—y) and o9(z,y):= (z,y+1).

The relation oy090;" = o, " implies that I' is a non-abelian semidirect
product group. The map

O: LN, L —T, ¢(m,n):=o050r

is an isomorphism for a(n)(m) := (—1)"m.
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Examples 1.1.5. (a) The M&bius strip carries a natural fiber bundle struc-
ture

¢ M=Rx]-1,1))/Z —S" ={z€C*: |2| =1}, q([z,y]) = ™.

We thus obtain a smooth fiber bundle (M,S',] — 1, 1], ¢) whose fiber is the
open interval | — 1, 1].
(b) The Klein bottle has a similar bundle structure, defined by

q: K = RQ/F — St q([z,y]) == e

which leads to the fiber bundle (K,S',S! ¢). Hence K is an S!-bundle
over St

Examples 1.1.6. Let G be a Lie group and H C G be a closed subgroup.
Then the right action of H on G, by

GxH-—G, (g,h)— gh

is proper, so that the Quotient Theorem yields a manifold structure on the
space G/H = {gH: g € G} of left cosets of H in G.
If, in addition, H is a normal subgroup, then GG/ H carries a natural group
structure defined by
gH -¢'H = g¢'H.
Since the group operations on G/H are smooth, we thus obtain a Lie group
structure on G/H.

Definition 1.1.7. (a) We call a sequence
¢

i—1 \Gi—l bi /Gi dir1 /Gi+1 Pit2 \Gi+2 bit3
of group homomorphisms ezact in G; if
im(65) = ker(@is1).

We call the sequence ezact if it is exact in each Gj.
An exact sequence is said to be short if it is of the form

1— G1 ¢ >G2 v Gg — 1.

A short sequence is exact if and only if ¢ is injective, v is surjective and

im(g) = ker(4).
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(b) An extension of Lie groups is a short exact sequence of morphisms of
Lie groups
1 N——G—215Q —1.

Then N can be identified with the closed subgroup «(N) = kerq of G, so
that @ = G/u(N). As we have seen in Example 1.1.6, the right action of N
on G by g.n:=g-i(n) leads to an N-fiber bundle (G, Q, N, q).

In view of the analogy with group extensions, we may think of F-fiber
bundles over the manifold M as “extensions” of M by F.

1.2 Coverings

Definition 1.2.1. A fiber bundle (E,B,F,q) is called a covering if
dim F' = 0, i.e., F'is a discrete space.

Example 1.2.2. (a) If T is a discrete group, then an action o: I' x M — M
on M is proper if and only if for each pair K and ) of compact subsets of
M, the set

{geT: g KNQ # 0}

is finite (Exercise).

If the action is free and proper, then ¢: M — M/T" is a covering (cf.
Examples 1.1.4).

(b) If " is a discrete subgroup of the Lie group G, then the quotient map
q: G — G/I' is a covering (cf. Example 1.1.6).

Example 1.2.3. The action of the discrete group Q by translations on R
is free but not proper. The quotient group R/Q carries no natural manifold
structure.

Examples 1.2.4. (a) M = R, I' = Z with o(x,y) := x + y leads to the
quotient Lie group T := R/Z = S

(b) M =R", I' = Z" with o(z,y) := x + y leads to T" := R"/Z".

(¢c) M =C, I =2miZ with o(z,y) := x+y leads to C/2miZ = C*, where
the quotient map can be realized by the exponential function exp: C — C*.

(d) M =C, T =Z+ Zr, Im(7) > 0 with o(z,y) := x + y leads to an
elliptic curve C/T". These are one-dimensional complex manifolds which are,
as real smooth manifolds, diffeomorphic to T? = R?/Z?, but they are not
necessarily diffeomorphic to C/(Z +iZ) as a complex manifold.
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1.3 Morphisms of Bundles

Definition 1.3.1. Let (E;, B;, F;, q;), i = 1,2, be fiber bundles.
(a) A smooth map ¢g: Fy — Es is called a morphism of fiber bundles if
there exists a smooth map ¢g: B; — By with

G20 ¢ = P oq.

Since q; is surjective, the map ¢p is uniquely determined by ¢g.
(b) A morphism ¢g: Ey; — Es of fiber bundles is called an isomorphism
if there exists a morphism ¢ g: Ey — FE; satisfying

¢poyp=idg, and Ypoop=idg, .

This condition is equivalent to ¢ being a diffeomorphism mapping fibers of
E; into fibers of Ey (Exercise). If an isomorphism ¢p: E; — Fy exists, then
the corresponding bundles are said to be isomorphic.

(¢) If By = By = B and Iy = F, = F, then an isomorphism ¢g: Fy —
E5 of fiber bundles is called an equivalence if ¢p = idg. Accordingly, the
corresponding bundles are said to be equivalent. It is easy to see that we
thus obtain an equivalence relation on the class of all F-fiber bundles over
B. The set of all equivalence classes is denoted Bun(B, F'). It is a major
problem in differential topology to calculate these sets for concrete manifolds
M and F'.

(d) A fiber bundle (F, B, F,q) is called trivial if it is equivalent to the
bundle (B x F, B, F,pg), where pg(b, f) = b. It is easy to see that this re-
quirement is equivalent to E being isomorphic to (B x F, B, F, pg) (Exercise).

Remark 1.3.2. (a) A smooth map ¢r: E; — F5 is a morphism of fiber
bundles if and only if it maps each fiber Ey;, b € By, into some fiber Es .
of Ey for some ¢ € By. Then ¢p: By — By is defined by ¢p(b) = ¢, and
since ¢; is a submersion, the smoothness of ¢p follows from the smoothness
of ppoq1 = q2 0 ¢p.

Definition 1.3.3. (The group of bundle automorphisms) The set Aut(FE) of
automorphisms of the fiber bundle (E, B, F|, q) is a group under composition
of maps and

[': Aut(E) — Diff(B), 7rp(¢p) = é5

is a group homomorphism. Its kernel is the group

Gau(E) := {¢ € Aut(E): go ¢ = ¢}
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of self-equivalences of E, resp., gauge transformations. We thus obtain an
exact sequence of groups

1 — Gau(E) — Aut(E)—— Diff(B).

The automorphism group of a trivial bundle

For two manifolds B and F' we consider the trivial bundle E := B x F', defined
by the projection pp: B x ' — B. Each diffeomorphism ¢ € Diff(B) lifts
to a bundle automorphism by a(b, f) == (¢(b), f), which leads to a group
homomorphism

o: Diff(B) - Aut(B x F), ¢+ ¢

splitting I' (Definition 1.3.3).
We call a map v: B — Diff (F') smooth if the corresponding map

J:BxF—F, Fb,f):=~y0)(f)

is smooth and write C*°(B, Diff (F")) for the set of smooth maps in this sense.
We would like to turn this set into a group with respect to the pointwise
multiplication, but it is not obvious that it is closed under inversion. This is
a consequence of the following lemma.

Lemma 1.3.4. The map
¢: C°(B,Diff(F)) — Gau(B x F'), ~v—=®,, O.,(b, f) = (b,7(b)(f))

is a bijection satisfying
Dy 0Dy = Py

In particular, C*(B, Diff (F')) is a group with respect to the pointwise product:
(71 - 72)(b) := 71(b) © 72(D)
and ® is a group isomorphism.
Proposition 1.3.5. By a(¢)(7) := yo¢~! we obtain a group homomorphism
a: Diff(B) — Aut(C*(B, Diff (F))),
and the map
C=(B,Diff(F)) x4 Diff(B) = Aut(B x F), (y,¢) = ®, 06

1S a group isomorphism.



1.3. MORPHISMS OF BUNDLES 7

Pullbacks

Proposition 1.3.6. Let f: X — Z and g: Y — Z be smooth maps and
assume that either f or g is a submersion. Then the fiber product

X xzY ={(r,y) € X xY: f(x) = g(y)}

15 a closed submanifold of X xY. If f is a submersion, then the same holds
for the projection

pinXZY—>YV.

Definition 1.3.7. (Pullbacks of fiber bundles) If (E, B, F, q) is a fiber bundle
and f: X — B a smooth map, then

JE ={(z,e) e X X E: f(x) =q(e)}

carries the structure of an F-fiber bundle, defined by the projection
px: f*E — X. This bundle is called the pullback of E by f.

Remark 1.3.8. (a) If F is trivial, then any pullback f*F is also trivial.
(b) If f is constant, then f*FE is also trivial.

Proposition 1.3.9. The image of I': Aut(E) — Diff(B) coincides with the
subgroup

Diff(B)g := {¢ € Diff(B): ¢*E ~ E}.
Example 1.3.10. The Hopf fibration
q: S? - S? = P, (C) ¥ S?’/T, (z1,22) = T.(21, 22),

defines a fiber bundle (E, B, F,q) = (S3,S% S!,q) with the property that
Diff(B)g # Diff(B). As we shall see later, the diffeomorphism

¢:S* =S ox) = —x
satisfies o*FE 4 E, so that ¢ ¢ Diff(B)g. To verify such an assertion, one

needs to know that Bun(S? S') = Z (this set even has a natural group
structure!), where E corresponds to the element 1 and ¢*E to the element —1.
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1.4 Principal Bundles

Definition 1.4.1. Let G be a Lie group and k € NU {co}. A C*-principal
bundle is a quintuple (P, M,G,q,0), where o: P x G — P is a C*-right
action with the property of local triviality: Each point m € M has an open
neighborhood U for which there exists a C*-diffeomorphism

ov: U xG—q '(U),
satisfying q o ¢y = py and the equivariance property
ou(u, gh) = ¢y(u,g).h  for welUg,heQG.

Remark 1.4.2. (a) For each principal bundle (P, M, G, q,0), the quadruple
(P,M,G,q) is a fiber bundle.

(b) The right action of G on P is free and proper and the natural map
G: P/G — M,p.G — q(p), is a diffeomorphism.

(c) Conversely, in view of the Quotient Theorem, each free and proper
right C*-action o: M xG — M defines the principal bundle (M, M /G, G, q, o).

Example 1.4.3. (a) The Hopf fibration
q:S3—>S3/TgS2gP1(C), (21,22)'—>T.<21,22),

is a T-principal bundle over S2.
(b) More generally, we may consider for K € {R,C,H} and m > n the
action of the compact Lie group U, (K) on the set

S:={VeM,,(K): V'V =1,}
={(v1,...,v) € (K™)" = M, n(K): (v5,v;) = 05}

of orthonormal n-frames in K™ by V.g := V¢ (matrix product). Identifying
S with the set of isometric embeddings

oy: K" = K", -V,
we see that the map ¢ — im(¢) yields a bijection
S/ Up(K) = Grpm(K)

of the orbit space onto the Graimannian of n-dimensional subspaces in K™.
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For n =1 and d:=dimK € {1,2,4}, we have
U(K)={\eK: |\ =1} =sH!
and
GI‘Ln(K) = ]Pn_l(K) = ]P(Kn)

is the (n — 1)-dimensional projective space over K.
(c¢) There is also a non-compact picture of the GraBmannian. For that
we consider the set

S :={V € Mp,,(K): rankV =n}

and let GL,(K) act by right multiplication. Identifying S with the set of
linear embeddings
¢: K" — K™,

we see that the map ¢ — im(¢) yields a bijection
S/ GL,(K) — Gry,m(K)
of the orbit space onto the Gramannian of n-dimensional subspaces in K™.

Definition 1.4.4. Let (P, M;, G, q;), i = 1,2, be principal bundles.
(a) A smooth map ¢p: P, — P, is called a morphism of principal bundles
if it is G-equivariant, i.e.,

¢p(p.g) = ¢r(p).g for peP,ged.

Then it is in particular a morphism of fiber bundles and induces a smooth
map ¢y My — M.

(b) A morphism ¢p: P, — P, of fiber bundles is called an isomorphism
if there exists a morphism ¢p: P, — P; satisfying

¢potpp =idp, and  Ppodp =idp .

If an isomorphism ¢p: P, — P, exists, then the corresponding principal
bundles are said to be isomorphic.

(c) If My = My = M, then a morphism ¢p: P, — P, of principal bundles
is called an equivalence if ¢p; = idy;. Accordingly, the corresponding bundles
are said to be equivalent. It is easy to see that we thus obtain an equivalence
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relation on the class of all principal G-bundles over M. The set of all equiv-
alence classes is denoted Bun(M, G). For finite-dimensional Lie groups, the
description of this set is considerably easier than the corresponding classifi-
cation problem for fiber bundles.

(d) A principal bundle (P, M, G, q,0) is called trivial if it is equivalent to
the bundle (M x G, M, G, py, o), where py(m,g) = m and o((m,g),h) =
(m, gh).

The following lemma is a convenient tool to detect isomorphisms of prin-
cipal bundles.

Proposition 1.4.5. A morphism ¢p: P, — P, of G-principal bundles is an
isomorphism if and only if the induced map ¢pr: My — M, is a diffeomor-
phism.

Proposition 1.4.6. A principal G-bundle q: P — M s trivial if and only
if it has a smooth section.

Proof. If the bundle is trivial, then it clearly has a smooth section. If, con-
versely, s: M — P is a smooth section, then the map

¢: M xG— P, (m,g)— s(m)g

is a smooth morphism of principal G-bundle with ¢, = id;;, hence an equiv-
alence by Proposition 1.4.5. O

Definition 1.4.7. (The group of bundle automorphisms) For a principal
bundle (P, M, G, q,0), the automorphism group is

Aut(P) = {¢ € Diff(P): (Vg € G) ¢ o0, = 0,0 ¢} = Diff(P),
i.e., the group of all diffeomorphisms of P commuting with the G-action.

Proposition 1.4.8. (The automorphism group of a trivial principal bun-
dle) Consider the trivial G-bundle (M x G, M, G, pyr, o) with o((m, g),h) :=
(m,g).h := (m, gh). Then the group Diff (M) acts by G-bundle isomorphisms
on M x G via N

¢.(m, g) == ¢(m, g) = (¢(m), g)
and the group C*(M,G), on which we define the group structure by the
pointwise product, acts by gauge transformations via

v.(m, g) = @y (m, g) := (m,y(m)g).
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Moreover, a(p)(y) := o ¢~! defines is a group homomorphism
a: Diff(M) — Aut(C*™(M, G)),
and the map
C>(M,G) x4 Diff (M) = Aut(M x G), (y,¢) — . 0 ¢,
is an isomorphism of groups. In particular,
Gau(M x G) = C*(M,G).

Definition 1.4.9. (Pullbacks of principal bundles) If (P, M, G, q, o) is a prin-
cipal bundle and f: X — M a smooth map, then the pullback bundle of P
by f.

[P ={(z,p) € X x P: f(z) = q(p)}
carries the structure of a G-principal bundle, defined by the projection
px: [*P — X and the G-action (z,p).g := (x,p.g).

Remark 1.4.10. (a) If P is trivial, then any pullback f*P is also trivial.
(b) If f is constant, then f*P is also trivial.
(c) For the projection map ¢: P — M, the pullback ¢*P is a trivial G-
principal bundle over P. In fact, the map s(p) := (p,p) defines a smooth
section (cf. Proposition 1.4.6).

Proposition 1.4.11. The image of I': Aut(P) = Diff(P)¢ — Diff(M) co-
incides with the subgroup

Diff(M)p := {¢ € Diff(M): ¢*P ~ P}.

1.5 Vector Bundles

Definition 1.5.1. Let V' be a vector space. A vector bundle is a fiber bundle
(V, M, V,q) for which all fibers V,,, m € M, carry vector space structures,
and each point m € M has an open neighborhood U for which there exists a
C*-diffeomorphism

¢u: UxV = q ' (U)=Vy,

satisfying q o ¢y = py and all maps
bve:V =V v oy(z,v)

are linear isomorphisms.
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Example 1.5.2. For each smooth n-dimensional manifold M, the tangent
bundle T'M is a vector bundle ("M, M,R"™, q).

Definition 1.5.3. If ¢: V — M is a smooth vector bundle, then the space
I'V:i={se C®(M,V): qgos=idy}
of smooth sections carries a vector space structure defined by
(s14 s2)(m) :=s1(m) + s2(m) and  (As)(m) := As(m).
Moreover, for each f € C®°(M) := C*°(M,R) and s € I'V, the product
(fs)(m) := f(m)s(m)

is a smooth section of V. We thus obtain on I'V the structure of a C*°(M)-
module, i.e., the following relations hold for f, fi, fo € C°°(M) and s, s1, s2 €
I'v:

(fi+ f2)s= fis+ fo, (fife)s = fi(fes), f(s1+s2) = fs1+ fso.

Definition 1.5.4. A morphisms of vector bundles f: V; — V, is a mor-
phism of fiber bundles which is fiberwise linear. Accordingly we define iso-
morphisms, equivalences and triviality of a vector bundle.

In a similar way as for principal bundles, we obtain:

Proposition 1.5.5. (The automorphism group of a trivial vector bundle)
Consider the trivial vector bundle (M xV, M,V pyr). Then the group Diff (M)
acts by vector bundle isomorphisms on M XV wvia

¢.(m,v) = 5(m,v) = (¢(m),v)

and the group C°(M,GL(V)), on which we define the group structure by the
pointwise product, acts by gauge transformations via

7.(m,v) = B, (m, v) = (m, y(m)v).
Moreover, a()(y) := vy o ¢~ defines is a group homomorphism
a: Diff(M) — Aut(C*™(M,GL(V))),
and the map
C™(M,GL(V)) x4 Diff (M) — Aut(M x V), (v,¢) — &, 06,
is an isomorphism of groups. In particular,

Gau(M x V) = C*(M,GL(V)).
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Remark 1.5.6. If ¢: V — M is a trivial vector bundle with n-dimensional
fiber, then there exist n sections sy, ..., s, € I'V which are linearly indepen-
dent in each point of M. Then the map

s:MxR"—=V, (m,z)— lesl(x)
i=1

defines an isomorphism of vector bundles.

Therefore, for a vector bundle V, the maximal number k£ for which there
exists a set sqp,..., s, of sections which are everywhere linearly independent
measures the “degree of triviality” of the bundle. We call this number a(V).

The famous 1-2-4-8-Theorem asserts that the tangent bundle 7'(S™) is
trivial if and only if n = 0,1,3,7. For all other n-dimensional spheres we
have a(T'(S™)) < n. For spheres these numbers can be computed with the
theory of Clifford algebras. For n = 2, the Hairy Ball Theorem (Satz vom
Igel) asserts that each vector field has a zero, i.e., that a(T(S?)) = 0.

Proposition 1.5.7. For a vector bundle (V, M,V,q), the assignment
(0-5)(m) = ¢(s(dpy (m)))
defines a representation of the automorphism group Aut(V) on I'V.

1.6 Associated bundles and structure groups

Definition 1.6.1. Let (P, M, G, q,0) be a principal bundle and
T:GXF—=F (9,f)—g9.f
be a smooth action of G on F'. Then
T(P):=Px, F:=PxgF:=(PxF)/G
is the set of G-orbits of G in P x F' under the left action
9.0, f) = (pg7", 9-f)

(which is free and proper). We write [p, f] := G.(p, f) for the G-orbit of

(p, f). Then
G: PxgF — M, [p, f]~ q(p)

defines an F-fiber bundle (P xg F, M, F,q).
The so obtained bundle is called the bundle associated to P by 7 and G
is called the structure group of the associated bundle P x g F.
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Lemma 1.6.2. For an associated bundle E = P xXg F', the map

®: Aut(P) = Aut(E), 0(¢)([p, f]) := [6(p), f]

is a group homomorphism with ®(¢)yr = dur-

Awt(P) —25 Auwt(E)

L

Diff(M) —<- Diff(M)

The following proposition provides a realization of section of associated
bundles in terms of smooth functions on P. This is convenient in many
situations.

Proposition 1.6.3. (Sections of associated bundles) If (P, M,G,q,0) is a
principal bundle and 7: G X F — F' a smooth action, then we write

C*(P,F)% :={a € C®(P,F): (Vg € G)(Yp € P) a(p.g) = g ".a(p)}
for the space of equivariant smooth functions. Then the map
U: C®(P,F)¢ = T(P xg F),

defined by V(a)(q(p)) := [p, a(p)], is a bijection.

Example 1.6.4. If (P, M,G,q,0) is a principal bundle and 7: G — GL(V)
is a smooth representation of G on V', then the associated bundle

Vi=Px,V:=PxqgV

is a vector bundle. The canonical homomorphism Aut(P) — Aut(V) defines
a natural representation of the group Aut(P) on the vector space

[V=CxPV)Y by (.0)p):=al¢”(p)
(cf. Proposition 1.6.3).

Example 1.6.5. (Induced representations of Lie groups) Let G be a Lie
group and H C G a closed subgroup. Then ¢: G — G/H defines an H-
principal bundle over the homogeneous space M = G//H and the left action
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of G on itself defined by the group multiplication yields an action of G' by
H-bundle automorphism:

g9-(¢"-h) = gg'h = (94).h.

The map
G — Diff ()" = Auty(G), g+ A,

is the corresponding group homomorphism.

In, particular, we obtain for each smooth representation 7: H — GL(V')
a representation of G on the space I'(V,) of smooth sections of the vector
bundle V, := G x, V:

(ra(g)s)(xH) = g.s(g~ = H).
Identifying T'(V,) with C°°(G, V), this representation corresponds to
Ta(g)a = ao .

This representation is called an induced representation. More precisely, it
is called the representation of G induced by the representation 7 of H.

The conjugation bundle
Definition 1.6.6. Each Lie group G acts on itself by conjugation

C:GxG—G, (g,7) cy(x) :=gag™ .

For each principal bundle (P, M, G, q, o) we thus obtain an associated bundle
C(P):=PxgG=(PxG)/G, g.(p,h)=(pg~',ghg™"),

called the conjugation bundle of P.
Its space of smooth sections can be identified with

I(C(P)) = C®(P,G)“
={feC*(P,G): (VYpe P)(Vg€G) flp.g) =g 'f(p)g}.

We see in particular that the space of smooth sections carries a group struc-
ture, defined by pointwise multiplication.
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The following proposition shows that this space of sections is isomorphic
to the group of gauge transformations. We thus obtain a nice description of
gauge transformations by smooth functions, even if the bundle is not trivial.

Proposition 1.6.7. Each equivariant function f € C*®(P,G)Y defines a
gauge transformation of P by

¢r(p) = p.f(p)
and the map
®: T(C(P)) = C™®(P,G) — Gau(P), f ¢y

is an isomorphism of groups.



Chapter 2

Bundles and Cocycles

In this chapter we first explain how fiber bundles can be constructed from
trivial bundles by a glueing process, defined by a collection of transition
functions. This leads to a completely local description on the bundle in
terms of bundle charts. This is applied in Section 2.2 to obtain a convenient
local description of sections of associated bundle in terms of families of local
sections of trivial bundles, satisfying certain transition relations. Finally, we
use the local description of bundles to show that each vector bundle V with
fiber V' is associated in a natural way to a GL(V)-principal bundle, called
the frame bundle Fr(V) of V.

2.1 Local description of bundles

Fiber bundles from transition functions

Let (F, B, F,q) be a fiber bundle and U = (U;);c; be an open covering of B,
for which the restrictions Ey, are trivial, so that we have bundle charts

qbi = (]SUL.Z U xF — EU,L--
For i,5 € I we put U;; := U; N Uj. If this set is non-empty, then the map
gzb;logzﬁj: Uij X F—>Uw x F

is a self equivalence, i.e., a gauge transformation, of the trivial bundle U;; x F',
hence of the form

¢; Lo di(b, f) = (b, gi(b)(f)), (2.1)

17
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where g;; € C*(U;;, Diff (F')), in the sense of Lemma 1.3.4. It is clear from
the construction that the functions g;; satisfy the relations

gi =1 and 9ii95k = Gik. ~ ONl Uijk =U;N Uj NU. (22)
Proposition 2.1.1. (a) If (gij)ijer is a collection of functions
gij € C(U,;, Diff(F)) satisfying (2.2), then there exists a bundle (E, B, F, q)
and bundle charts

quiI Uz X F’—>EIUZ

such that (2.1) holds.

(b) Two bundles constructed as in (a) for families (gi;) and (g;;) are
equivalent if and only if there exist smooth functions h; € C*°(U;, Diff (F))
with

gij == hz . 923 . h]_l on Uz]

Proof. (Sketch) (a) We consider the disjoint union

E :=Ui{i} x Uy x F.
Then
(i,2, )~ (.2, f) = == f =gu@)(f)
defines an equivalence relation on E. The quotient topology turns the set
E := E/ ~ of equivalence classes into a topological space and on which the
projection map
¢ E—=B, qliz ) —e

is well-defined and continuous.
For each ¢ € I we have a map

G- Uy x F—E, (x,f)—[Gxf)
which is easily seen to be injective. These maps satisfy
(@, f) = 67" 0 ¢y(, f) = (z,95(2)(f)), x €Uy
Since for each open subset O C U; x F', the subsets
(0N (U;; x F)) CU; x F

are open, the image ¢;(O) is open in F. Hence ¢; is an open embedding. In
particular, all subsets ¢;(U; x F') of E are Hausdorft.
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Since the map ¢ is continuous, two elements p; # ps € E with q(p;) #
q(p2) have disjoint open neighborhoods. If ¢(p1) = ¢(p2), both points lie
in some set ¢;(U; x F'), which is open and Hausdorff, so that p; and po
has disjoint open neighborhoods contained in this subset. Therefore E is
Hausdorff.

Since the maps ¢;; are diffeomorphisms, there exists a unique smooth
manifold structure on E for which all maps

¢i:UiXF_>E7 (JT,f)'—)[(Z,[L',f)]

are diffeomorphisms onto open subsets. We thus obtain on E the structure
of a fiber bundle (£, B, F|, q), for which the maps ¢;, i € I, form a bundle
atlas with transitions functions g;;.

(b) If E” is the bundle constructed from the functions g;; are in (a), then
any bundle equivalence ¢g: E' — FE is given in the bundle charts over the
open sets U; by some h; € C°(U;, Diff(F)) because

o7 o prod; € Gau(U; x F), (b, f) = (b, hi(b)(f))
(cf. Lemma 1.3.4). Then we immediately get from
7 0 giod; cdpodiod od=¢;" 0ogrod

the relation
Gji * hi - géj =h; on Uy,

and hence
If, conversely, (2.3) is satisfied by the family (h;);es, then
ou(¢'(b, f)) == ¢i(b, hi(b)(f))

yields a well-defined bundle equivalence E' — E because for (b, f) € U;; X F
the relation

050, f) = (b, gi;(0)(f))
implies that

@i(b, hi(b) 0 gi;(b)(f)) = 6i(b, gi;(b) © h(B)(f)) = &;(b, h; (B)(f)).
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Principal bundles

Now let G be a Lie group and U = (U;);e;r be an open cover of the smooth
manifold M. We define the set

ZU,G) = {(g;5) € HCOO(UijaG>: 9i = 1, 915951 = gir on Uyjr, 1,5,k € I}
]

of smooth Cech-1-cocycles with values in G with respect to U. Since the

groups C(U;, ) are naturally isomorphic to the group Gau(U; x G) of

gauge transformations of the trivial G-bundle (Proposition 1.4.8), it follows

as in the preceding subsection, that each Vbundle atlas (¢;, Py, )ier of a G-
principal bundle (P, M, G, q,0) leads to a Cech-1-cocycle (g;;), defined by

¢ 0 d;(,9) = (z,9:(x)g), (2.4)

Conversely, a slight variation of Proposition 2.1.1 implies that for each ele-
ment (g;;) € Z'(U,G) there exists a principal bundle (P, M, G, ¢, o) which is
trivial on each U; and for which there exist bundle charts whose transition
functions are given by the (g;;). Moreover, the bundle constructed for two
I-cocycles (gi;) and (g;;) are equivalent if and only if there exists a collection
of smooth functions h;: U; — G, satisfying

Definition 2.1.2. To get hold of the algebraic structure behing these con-
structions, we define the set

U, G) =[] >, 6),
iel
of Cech-0-cochains, which carries a natural group structure, given by the
pointwise product in each factor. This group acts naturally on the set
ZYU,G) by
(ha) * (gi) = (higizh; ).
The set of orbits for this group action is denoted

HY(U,G):=Z'U,G)/C°U,G)

and called the first Cech cohomology set with respect to U with values in G.
This is a set with a base point [1], given by the orbit of the cocycle given by
the constant functions g;; = 1. If G is not abelian, this set carries no natural
group structure.
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Collecting the information obtained so far, we have:

Proposition 2.1.3. The construction in Proposition 2.1.1 yields a bijection
between the elements of H'(U,G) and principal bundles (P, M,G,q,0) for
which all restrictions Py, are trivial.

Since a general G-bundle over M need not be trivialized by a given open
cover U, one has to use refinements of open covers. We call an open cover
V = (V})jes a refinement of the open cover U = (U,);es if there exists for
each j € J an element a(j) € I with V; C U,(;). Then we have a natural
map

ruy: H'U,G) = H'(V,G),  [(9i3)ijer] = [(9ati).at)

v, )ijed]-
The corresponding direct limit set is denoted

HY(M,G) :=lim , H'(U,G).

Theorem 2.1.4. The cohomology set F[l(]\/[, G) parameterizes the equiva-
lence classes of principal G-bundles over M.

Remark 2.1.5. If G is abelian, then the restriction maps 7,y are group
homomorphisms, so that the direct limit H*(M,G) inherits a natural group
structure.

2.2 Sections of associated bundles

In this section (P, M, G, q, 0) denotes a principal bundle and (¢;, U;);er a cor-
responding bundle atlas with transition functions g;; € C*(U;;, G), defined
by

0i(z,9) = ¢;(x, gji(2)g)-
Let 7: G x ' — F be a smooth action of G on the manifold ' and form the
associated bundle P, = P x, F'. Then P, is also trivialized over each U; by
the canonical bundle charts

ng(l'vf) = [le(l', 1)7 f]7

so that each smooth section s: M — P, leads on each U; to a smooth function
s;: Uy — F, defined by

s(x) = ¢ (x,s:(x)), x€U.
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Proposition 2.2.1. A family s, € C*(U;, F), i € I, defines a section of P;
if and only if the relation

si(z) = gji(z).s;(x)  holds for —x € Uj;.
Remark 2.2.2. In Proposition 1.6.3 we have seen that the map
D(P) = C=(P,F)°, s—a, s(qp)=[p,ap)
is a bijection.

The passage between the family (s;);e; defining a section s and this pic-
ture is established by the formula

a(¢i(z,9)) = g~ si(x).
In fact, for z € U; and p = ¢;(x,1), we have
s(x) = o] (x, si(x)) = [di(, 1), si()].

Remark 2.2.3. For the bundle P itself, the trivializations ¢; define smooth
local sections

Yi: Ui = P, vi(x) = ¢, 1),
satisfying
Yi =795 on U

A global section s: M — P now corresponds to a family of smooth func-
tions s;: U; — G, satisfying

s(x) =v(x) - si(x), xzel, s;j=gus;i on U;.

Proposition 2.2.4. For a principal bundle (P, M, G, q,0), the following are
equivalent:

(a) P has a global smooth section.
(b) P is trivial.

(¢) There exists a smooth G-equivariant function f: P — G.
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Proof. (a) = (b): If s: M — P is a smooth section, then the map
¢: M x G — P,(m,g) — s(m)g is a G-bundle equivalence (cf. Proposi-
tion 1.4.5).

(b) = (c): If : P — M x G is a G-bundle equivalence, then prgo¢): P — G
is smooth and G-equivariant.

(¢) = (b): The map ¢ := (¢, f): P — M x G is a G-bundle equivalence.
(b) = (a) is trivial. O

Example 2.2.5. Let C'(P) = P x¢ G denote the conjugation bundle whose
space of sections I'(C(P)) is isomorphic to the group of gauge transforma-
tions. In view of Proposition 2.2.1, the sections of this bundle are given in
terms of the local trivializations by a family of smooth functions s;: U; — G,
satisfying

Sj = Gji " Si* gﬁl =gji-si- gy on Uy (2.5)

The corresponding local gauge transformations are given by
Vi: Uy x G = U X G, i(w,g) = (7, 8:(7)g).

We may also write the transformation law (2.5) as

ji = i9jis;

which identifies the tuple (s;)ic; as an element in the group C°(U, G), stabi-
lizing the cocycle (g;;). This shows that

Gau(P) = C°(U, G),

giz)*

2.3 Vector bundles as associated bundles

In Section 1.6 we have already seen how to obtain vector bundles as associated
bundle of a principal bundle (P, M, G, q, o) via representations (m, V') of the
structure group GG. The following theorem provides a converse:

Theorem 2.3.1. (a) If (P, M,GL(V),q,0) is a GL(V)-principal bundle and
(m, V') the identical representation of GL(V) on V, then V := P x, V is a
vector bundle with fiber V.
(b) If, conversely, (V,M,V,q) is a vector bundle over M, then its frame
bundle
Fr(V) = U Iso(V,V,,)

meM
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carries the structure of a GL(V')-principal bundle with respect to the action
¢.g .= ¢ og. The evaluation map

Fr(V) xV =V, (¢,v) — ¢(v)
induces a bundle equivalence
Fr(V) <z V=V, [(¢,0)] = ¢(v).

Remark 2.3.2. The preceding theorem easily implies that for two vector
bundles Vi, V5 with fiber V' over M we have

Vi ~V, <~ FT(Vl) ~ FI“(VQ)

This leads to a bijection of the set Bun(M, GL(V)) of equivalence classes
of GL(V)-bundles over M and the set Vbun(M, V') of equivalence classes of
V-vector bundles over M.

Using the frame bundle, we can immediately attach to a vector bundle
several new vector bundles in a functorial manner.

Definition 2.3.3. Let (V, M,V q) be a vector bundle over M and Fr(V) its
frame bundle.

(a) The dual bundle is defined as the vector bundle associated to Fr(V)
by the dual representation

™ GL(V) = GL(V*), 7 (g9)(a) :=aog™,

V* = Fr(V) X0 V™.

We then have V¥ = (V,,)* in each m € M.
(b) More generally, we can use the tensor representation

T =70 @ (%)% GL(V) — GL(V®" @ (V*)®*),
to define the tensor bundle
T(V) := V& @ (V¥)®5,
whose fibers are the spaces

T (V) = VET @ (V2 )85,

m m
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In particular
TOD(V) =2V and TED(V) = End(V).

(c) Of particular importance are also symmetric and alternating tensor
bundles. For example the representation

Sym*(m): GL(V) = GL(Sym*(V.R)), (g.8)(v1,v2) := B(g™ v1, 9™ 'v2)

on the space Sym*(V, R) of real-valued symmetric bilinear forms on V' leads
to the bundle
SymZ(V) = FT(V) ><Sym2(7r) Sym2(‘/7 R)7

whose fibers are the spaces
Sym*(V),,, = Sym?*(V,,, R)

of symmetric bilinear forms on V,,.

A Riemannian bundle metric on V is a smooth section ¢ = (gm)mem
of this bundle with the addition property that each g,, is positive definite.
Using partitions of unity, it is easy to show that such bundle metrics always
exist.

Definition 2.3.4. (a) The preceding constructions apply in particular to the
tangent bundle V = T'M of a smooth manifold M. In this case we also write

(M) :=T(M)*
for the cotangent bundle and
T"(M) =TT (TM)
for the tensor bundles over M.
(b) Suppose that n = dim M, so that T'M is an R™-vector bundle with

structure group GL,(R). For any finite-dimensional vector space V', the
representation

Alt*(m): GL,(R) — GL(AL*(R™,V)), (g.a)(vi,...,v) == alg  vr,..., 9 0

leads to the bundle Alt"(TM, V) whose sections form the space
QF(M, V) :=T Alt"(T M, V)
of V-valued k-forms on M. The fibers of Alt"(TM,V) are the spaces
AIH(TM, V), = Al¥(T,,, (M), V)
of alternating k-linear maps T,,,(M)* — V.

1

)
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Chapter 3

Cohomology of Lie Algebras

This chapter is of a purely algebraic nature. Here we discuss the algebraic
essentials behind the geometric theory of connections, their curvature and
characteristic classes of principal bundles. The key point which makes this
isolation of the algebraic content possible is that differential forms on a man-
ifold can be viewed as Lie algebra cochains for the Lie algebra V(M) of
smooth vector fields with values in the module C*°(M) of smooth functions
on M.

3.1 The Chevalley—Eilenberg Complex

Definition 3.1.1. Let V and W be vector spaces and p € N. A multilinear
map f: WP — V is called alternating if

fwey s ... we,) =sgn(o) f(wi, ..., wp,)

for w; € W and sgn(o) is the sign of the permutation o € S,. We write
AltP(V, W) for the set of p-linear alternating maps and Mult?(V, W) for the
space of all p-linear maps V? — W. For p = 0 we put Mult’(V, W) :=
AP (V, W) =W,

Definition 3.1.2. Let g be a Lie algebra and V' a g-module.

(a) For p € Ny, we write C?(g, V) := Alt?(g, V) for the space of alternating
p-linear mappings g? — V' and call the elements of C?(g, V') p-cochains. We
also define

C(g,V) = P C¥g. V).

27
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On C?(g,V) we define the (Chevalley—FEilenberg) differential d by

P
dw(zo, ..., Tp) == Z(—l)]xj cw(Toy . Ty Tp)

7=0
+ Z(—l)”jw([xi, L)y L0y ooy Ty ooy Ty ey Tp),
i<j

where Z; means that z; is omitted. Observe that the right hand side defines
for each w € CP(g,V) an element of CP*(g, V) because it is alternating
(Exercise!). Putting the differentials on all the spaces C?(g, V') together, we
obtain a linear map d =dy: C(g,V) = C(g, V).

The elements of the subspace

ZM(g,V) = ker(d|ck (1))
as called k-cocycles, and the elements of the spaces
B*g, V) :=d(C*'(g,V)) and Bg,V):= {0}

are called k-coboundaries. We will see below that d* = 0, which implies that
Bk(g,V) C Z*(g,V), so that it makes sense to define the k' cohomology
space of g with values in the module V:

H*(g,V) := Z"(g,V)/B"(g.V).

(b) We further define for each = € g and p > 0 the insertion map or contrac-
tion

iz: CP(g,V) = CP (g, V), (tow)(@1,...,2p1) = w(@,21,...,Tp1).
We further define i, to be 0 on C°(g, V).

Remark 3.1.3. For elements of low degree we have in particular:

p=0: dw(z) =z-w
p=1: dw(z,y) =z -w(y) —y- wx)—w(|z,y)
p=2: dw(z,y,2) =z -w(y,2) —y -wzz2)+ 2z wz,vy)

—w([x, ]’ Z) +w([w,z]7y) - w([ya Z]7I)
=z -w(y,2)+y - wizz)+z wy)
—w([a:,y],z) - w([ya Z],SE) - w([z,x],y).
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Example 3.1.4. (a) This means that
Z%g,V)=VS:={veV:g-v=1{0}}

is the maximal trivial submodule of V. Since B°(g, V') is trivial by definition,
we obtain

H(g,V)=V".

(b) The elements a € Z'(g, V) are also called crossed homomorphisms.
They are defined by the condition

af[r,y]) =z -aly) —y-a(r), =y€g.

The elements a(x) - v := - v of the subspace B'(g, V) are also called princi-
pal crossed homomorphisms. It follows immediately from the definition of a
g-module that each principal crossed homomorphism is a crossed homomor-
phism.

If V is a trivial module, then it is not hard to compute the cohomology
spaces in degree one. In view of {0} = dV = dC%@g,V) = B'(g,V), we
have H'(g,V) = Z'(g,V), and the condition that a: g — V is a crossed
homomorphism reduces to a([z,y]) = {0} for z,y € g. This leads to

Hl(ga V) = Hom(g/[g, g]a V) = HomLiealg(ga V)

Example 3.1.5. Let g be an abelian Lie algebra and V' a trivial g-module.
Then d = 0, so that H?(g, V) = C?(g,V) = Alt’(g, V') holds for each p € Ny.

Our first goal will be to show that d> = 0. This can be proved directly
by an awkward computation. We will follow another way which is more
conceptual and leads to additional insights and tools which are useful in
other situations: Let (py, V') be a g-module. Then the representations p; of
g on the space Mult”(g, V') of p-linear V-valued maps on g, defined by

(pj(z)w) (21, ... 2p) == —w(z1,...,xj_1,ad x(x}), Tjs1, . . ., Tp)

do pairwise commute. Therefore the sum of these representations is again a
representation, and since they also commute with composition with py (),
we obtain:
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Lemma 3.1.6. We have a representation g on C(g, V'), given on o € CP(g, V)

p
L.a=py(x)oa+ Z pi(x)a,
=1

i.e.,
Low(xy, ... xp)
P
=z - w(T,...,Tp) — Zw(:z:l, ey T, [, T, T, e, Tp)
j=1
p .
=z w(ay,. ) + > (e, zg) e, T, 1),
j=1

Note that po := Y7, p; is the representation on C?(g, V') corresponding
to the trivial module structure on V.

Lemma 3.1.7. (Cartan Formula) The representation p: g — gl (C(g,V))
satisfies the Cartan formula

L,=doi, +i,0d. (3.1)

Proof. Using the insertion map ¢,,, we can rewrite the formula for the dif-
ferential as

(izgdw) (z1, ..., Tp)

P
=2 w(ry, ... 1) — Y (=1 ayw(ze, . Ty, 1)
j=1
p .
+ Z(_l)JUJ(['rvaj]axly 7:/537 ,Il?p)
j=1
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p

=z - w(T1,...,Tp) — Zw(xl, e T, [T, T4, Ty, - -

j=1

P
— Z(—l)y_le cw(Ty . Ty, Tp)
j=1

— Z (=) 9w (o, 25, 5], . Ty Ty

1<i<j
=(Loyw) (1, ..., 2p) — d(igew) (21, ..., Tp).

This proves the Cartan formula.

Lemma 3.1.8. For x,y € g, we have iy = [iz, L,].

31

Proof. The explicit formula for £, (Lemma 3.1.6) yields for x = xy : i, £, =

Lty — Ty

Lemma 3.1.9. For each x € g, we have [L,,d] = 0.

Proof. In view of Lemma 3.1.8, we obtain with the Cartan formula

[Ex’ ﬁy] - [d O g, Ey] + [ZI od, ﬁy]

= [dv ‘Cy] 0iy+do i[xvy] + i[I»y] od+iz0 [d7 ‘Cy]

=[d, Ly] 0ig 4 Lizy + iz 0 [d, L],
so that the fact that p is a representation leads to

[d,Ly] 0ty +iy0][d, L,] =0.

O

(3.2)

We now prove by induction over k that [d, £,] vanishes on C*(g,V). For

we C%g, V)2V, we have
([4, LyJw) () = d(y - w)(z) = (y - (dw))(2)

=z (y-w) = (v (v-w) —dw(ly,2])) = [z.y] - w+ [y, 2] - w=0.
Suppose that [d, £,]C*(g, V) = {0}. Then (3.2) implies that

io[d, £,]C* (g, V) = —[d, £,)i.C* (g, V) €[4, £,]C*(g,V) = {0}

for each z € g. Hence [d, £,]C*™(g,V) = {0}. By induction, this leads to

[d, L,] =0 for each y € g.

]
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Proposition 3.1.10. d% = 0.
Proof. We put Lemma 3.1.9 into the Cartan Formula (3.1) and get
0=1[d,L,] =d*oi, —i,o0d” (3.3)

We use this formula to show by induction over k that d? vanishes on C*(g, V).
For w € C%g,V) 2V, we have dw(z) = z - w and

dw(z,y) = z-dw(y) —y-dw (@) —(dw)([z,y]) = 2-(y-w)—y-(zw)—[z,y]-w = 0.
If d2(C*(g,V)) = {0}, we use (3.3) to see that
id*(C* (g, V) = d%i,C* (g, V) € ¢*(C(g, V) = {0}

for all z € g, and hence that d?(C*™(g,V)) = {0}. By induction on k, this
proves d? = 0. [

Since the differential commutes with the action of g on the graded vector
space C(g, V) (Lemma 3.1.9), the space of k-cocycles and of k-coboundaries
is g-invariant, so that we obtain a natural representation of g on the quotient
spaces H*(g, V).

Lemma 3.1.11. The action of g on H*(g, V) is trivial, i.e.,
Ly(2%(9,V)) C B*(g, V).
Proof. In view of Lemma 3.1.7, we have for w € Z*(g, V) the relation
L,w = i,dw + d(i,w) = d(i,w) € B(g, V).

Hence the g-action induced on the cohomology space H*(g, V) is trivial. [

Extensions and Cocycles

In this section we interprete the cohomology spaces in degree 2 in terms of
extensions of Lie algebras.

Definition 3.1.12. (a) Let g and n be Lie algebras. A short ezact sequence
of Lie algebra homomorphisms

0 —n——g—g—0



3.1. THE CHEVALLEY-EILENBERG COMPLEX 33

(this means ¢ injective, ¢ surjective, and im ¢ = ker q) is called an extension of
g by n. If we identify n with its image in @, this means that g is a Lie algebra
containing n as an ideal satisfying g/n = g. If n is abelian (central) in g, then
the extension is called abelian (central). Two extensions n < g; —» g and
n < go —» g are called equivalent if there exists a Lie algebra homomorphism
¢: g1 — go such that the diagram

n L1 §1 q1

g
lidn ld) lidg
-~ q2

n - g — g

commutes. It is easy to see that this implies that ¢ is an isomorphism of Lie
algebras (Exercise).

(b) We call an extension ¢: g — g with kerq = n trivial, or say that the
extension splits, if there exists a Lie algebra homomorphism o: g — g with
goo =1idy. In this case the map

nxsg—g, (a,2)—a+o(x)
is an isomorphism, where the semidirect sum is defined by the homomorphism
d: g —der(n), o(z)(a) = [o(x),a.

For a trivial central extension we have 6 = 0 and therefore g =~ n x g.

(c) A particular important case arises if n is abelian. Then each Lie algebra
extension ¢: g — g of g by n leads to a g-module structure on n defined by
q(z) - n := [x,n], which is well defined because [n,n] = {0}. It is easy to
see that equivalent extensions lead to the same module structure (Exercise).
Therefore it makes sense to write Ext,(g, n) for the set of equivalence classes
of extensions of g by n corresponding to the module structure given by the
representation

p: g — gl(n) = der(n).

For a g-module V', we also write Ext(g, V') := Ext,, (g, V), where py is the
representation of g on V' corresponding to the module structure.

Proposition 3.1.13. For an element w € C*(g,V), the formula

[(v,2), W, 2")] = (z -V — 2" -v+w(x ), |z
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defines a Lie bracket on 'V x g if and only if w € Z*(g,V). For a cocycle
w € Z%(g,V) we write g, :=V @, g for the corresponding Lie algebra. Then
we obtain for each cocycle w an extension of g by the abelian ideal V :

0—=V<—=g,—>»g—0.

This extension splits if and only if w is a coboundary.
The map T: Z%(g,V) — Ext(g,V),w — [g.], defined by assigning to w
the equivalence class of the extension g, induces a bijection

[: H*(g,V) — Ext(g,V), [w]~ [g.]-

Therefore H*(g,V) classifies the abelian extensions of g by V' for which the
corresponding representation of g on'V is given by the module structure on V.

Proof. An easy calculation shows that g, = V @, g is a Lie algebra if and
only if w is a 2-cocycle, i.e., an element of Z%(g, V).

To see that every abelian Lie algebra extension ¢q: g — g with kerq =V
(as a g-module) is equivalent to some g,,, let o: g — @ be a linear map with
goo =1idy. Then the map

Vxg—g ((vz)—v+o(x)

is a bijection, and it becomes an isomorphism of Lie algebras if we endow
V' x g with the bracket of g, for

w(z,y) = lo(z),a(y)] = o[z, y]). (3.4)

This implies that ¢: g — g is equivalent to g, and therefore that T is
surjective.

Two Lie algebras g, and g, are equivalent as V-extensions of g if and
only if there exists a linear map ¢: g — V such that the map

P go=Vxg—=go=Vxg (a,z)— (a+¢(x)z)

is a Lie algebra homomorphism. This means that

o([(a,2), (', 2))) = p(z-d' — 2’ - a + w(x,2), [x,2'])
=(z-d -2 a+w(x2)+ ¢(z,2]),[z2])
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equals

[b(a, ), 6(d,2)] = (- (d + ¢(2)) — 2’ - (a + ¢(2)) + &' (z,2'), [x,2"])
=(x-d -2 -a+x- o) -2 o(x)+(x,2), [z, 2]),
which is equivalent to

w/(xvx/) - w(x,x’) = (;5([1’,&3/]) - ¢($/) + - ¢($) = —(d¢)($,$/).

Therefore g, and g, are equivalent abelian extensions of g if and only if w'—w
is a coboundary. Hence I' induces a bijection I': H?(g,V) — Ext(g,V). O

3.2 Differential forms as Lie algebra cochains

Let M be a smooth manifold, g := V(M) the Lie algebra of smooth vec-
tor fields on M and W a vector space. We consider the g-module V' :=
C>*(M,W) of smooth W-valued functions on M. We want to identify the
space QP(M, W) of W-valued p-forms with a subspace of the cochain space
CP(g,V). This is done as follows: To each w € QP(M, W) we associate the
element w € C?(g,V), defined by

(X1, ..., Xp)(m) == wn(Xa(p), ..., Xp(m))

and observe that w is C°°(M)-multilinear. We then have the following theo-
rem:

Theorem 3.2.1. The map
O: (M, W) = Altfs s VM), C*(M, W), w—= &
1S a bijection.
This will follow from three lemmas:

Lemma 3.2.2. Let M be a smooth manifold, m € M and U an open neigh-
borhood of m. Then there exists a smooth function x € C°°(M) with the
following properties:

(a) x =1 in a neighborhood of m.
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(b) supp(x) :={m € M: x(m) # 0} is a compact subset of U. In particular,
x=0on M\U.

Lemma 3.2.3. For each v € T,,(M), there exists a smooth vector field X €
V(M) with X(m) = v.

Proof. Let (¢,U) be a chart of M with m € U and y as in Lemma 3.2.2.
Then

X(q) := {X(Q)Tq(ﬁb)_le(qb)v forq e U
0 for ¢ & supp(x)

defines a smooth vector field on M with X (m) = v. O

Lemma 3.2.4. If n € Alt¢w ) (V(M),C*(M,W)) and X;(m) = 0 for
some i, then n(Xy,...,X,)(m) =0.

Proof. Since 7 is alternating, we may w.l.o.g. assume that 7o = 1.
Case 1: Suppose first that X vanishes in a neighborhood U of m. Then we
pick x as in Lemma 3.2.2. Now X; = (1 — x)X; implies that

(X, .., Xp)(m) = n((1 — x) X1, ..., Xp)(m)
= (1= x(m)n(Xy,...,X,)(m) =0

follows from x(m) =
Case 2: Let (¢, U) e a chart with m € U and x as in Lemma 3.2.2. Then

N(X1,. ., Xp)(m) = x(m)Pn(Xy, ..., Xp)(m) = x(m)*n(Xy, ..., X,)(m)
=n(x*Xy,. .. , Xp)(m).

The smooth vector fields Y; := (¢71),e; € V(U) form in each z € U a
basis of T,,(M), so that

X1|U = ZCLjY}' with Q; € COO(U)

Jj=1

Then

n

X1 =) (x-a)(x Yy,

j=1
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where we consider xa; and xY; as globally defined on M by 0 outside supp(x).
From X;(m) = 0 we now derive a;(m) = 0 for each j, and therefore

n

(X1 X m) = 3 (- a) (mn (Y, X, X,)(m) = 0.

j=1
]

Proof. (of Theorem 3.2.1) To see that ® is injective, suppose that ®(w) =
w=0. For m e M and vy,...,v, € T,,,(M), we then use Lemma 3.2.3 to
find smooth vector fields X; with X;(m) = v;. Then

Wi (V1, ..., 0p) = wW(Xy, ..., Xp)(m) =0

leads to wy,, and hence to w = 0 because m was arbitrary.

To see that ® is surjective, let 7 € Alt{u,(V(M),C*(M,W)). For

m € M, we then define w,, € Alt?(T,,(M), W) by
Wi (U1, ..., 0p) = (X, ..., Xp)(m), (3.5)

where X; € V(M) satisfies X;(m) = v;. In view of Lemma 3.2.4, the right
hand side of (3.5) does not depend on the choice of the vector fields X;. To
see that the (wy,)menm define a smooth differential form on M, we note that
for any chart (¢, U) and the corresponding basic fields Y; := T(¢) 'e; we
obtain global vector fields xY; with y as in Lemma 3.2.2. Now

(Vi V) (1) = (XY, ., XYp) (1) = n(X Vi, .., XYy (1)

is smooth on the neighborhood x (1) of m. This proves that w € QP(M, W)
and we clearly have w = 7. O

In the following we will identify QP(M, W) with the subspace of C*(M )-
multilinear elements in C?(V(M), C* (M, W)).

The elements of the space QP (M, W) are called smooth W -valued p-forms
on M, and

QM W) = (M, W)
IS

is the space of exterior W -valued forms on M. The restriction of d to these
spaces is called the exterior differential. The space Q(M, W) is invariant
under the differential d and the g-action given by the Lie derivative Lxw.



38 CHAPTER 3. COHOMOLOGY OF LIE ALGEBRAS

Together with the exterior derivative, the spaces QP(M, W) now form the de
Rham complex

LMW SO (M, W) -0 (ML W) = C(M, W),

The cohomology groups of this subcomplex are the de Rham cohomology
groups (with values in W)

ker (d|QP(M7W)>
a(Qr—t(M, W))

HE (M, W) =
of M. Here Z&, (M, W) := ker (d|aras,w)) is the space of closed forms and
BhL (M, W) := d(QP~1 (M, W)) is the space of exact forms.

Remark 3.2.5. Since this is valid in the abstract context of Lie algebra
cochains, it follows in particular that the Lie derivative Ly, the insertion
map ¢x and the exterior differential d satisfy the relations:

ﬁX:iXOd+dOix, [,Cx,iy] :Z.[va} and [,Cx,d] =0.

Here we use that the representation of V(M) on Q7(M,R) defined by the Lie
derivative is given by the same formula as in Lemma 3.1.6.

3.3 Multiplication of Lie algebra cochains
Definition 3.3.1. Let g and V;, i = 1,2, 3, be vector spaces and
m: Vi x Vo = Vi, (v1,02) ¥ vy - U2
be a bilinear map. For a € AltP(g,V;) and 8 € Alt?(g, V5) we define
aAp B € AP (g, Vi)
by

(Oé /\m 5>(ZE1, s 7‘Tp+q)
1

= il Z sgn(0)(Zo(1)s - - s To(p)) “m B(Zo@e1)s - - s To(ptq))-

0ESptq
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For p = ¢ = 1 we have in particular

(@ Am B)(x,y) = az) -m B(y) — a(y) -m B(2).
For p =1 and arbitrary ¢ we get

p

(0 A B) (o, - ) = > (1)) om B0, -, By ap). (3.6)

=0

In the following we write for a p-linear map a:: g — V and o € S

Q% (x1,. .., 2p) = ATe(1), - - - To(p)) (3.7)

and

Alt(a) = Z sgn(o)a?’.

oSy

In this sense we have
1
b:q:

where (& -, B) (21, ..., Tprq) = (T1, ..., Tp) “m B(Xpt1, - -+, Tptq)-
Lemma 3.3.2. The contraction maps
ip: Alt"(g,V;) = Alt" (g, Vi), i=1,2,3;n €Ny,
satisfy
ix(a Am /B) = (Z:ca> Am B+ (_1>p05 A iz (38)
for a € Alt?(g, V1), B € Alt?(g, V2).

Remark 3.3.3. (The action of End(g)) For D € End(g), a € Mult?(g, V)
and o € S, we put

p

(D.a)(z1,...,xp) == — Zoz(xl, e T, Dy T, 1)

i=1
Then we have the following relations:

(a) D.a” = (D.a)? (cf. (3.7)).
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(b) D.Alt(a) = Alt(D.«v).
(¢) D(a-mpB)=(D.a) -y B+ - D.S.
(d) D(aAmpB) = (D.a)\pB+an,D.gfor a € AltP(g, V1), B € Alt?(g, Va).

Remark 3.3.4. (Associativity properties) Suppose we have four bilinear
maps

mig: Vi x Vo =W, mg: W x Vs —=U
m23:V2><V3—>X, m1:V1><X—>U,
satisfying the associativity relation
U1 ‘my (UQ ‘mos U3) - (Ul ‘mio UQ) ‘ms U3

for v; € Vi, i = 1,2,3. Then we obtain for o;; € Alt? (g, V;) the relation
(1 iy O2) “my @3 = Q1 iy (2 s C3)
which in turn leads to
(01 Ay @2) A @3 = @ Ay (2 Appgs Q3).

Example 3.3.5. An important special case of the situation discussed in the
previous remark is the following. Let V' be a vector space and End(V) the
algebra of its linear endomorphisms. Then we have two bilinear maps given
by evaluation

ev: End(V)xV =V, (¢,v)+— ¢(v)

and composition
C: End(V) x End(V) — End(V), (¢,¢) — ¢ o).

They satisfy the associativity relation

ev(C(9, ), v) = (¢ o) (v) = d(¥(v)) = ev(e, ev (e, v)).

For o € AltP(g, End(V)), 8 € Alt?(g, End(V')) and v € Alt"(g, V) this leads
to the relation

a Ney (5 Nev 7) = (a Ne B) Nev V-
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Remark 3.3.6. (Commutativity properties) Now we consider a bilinear map
m:VxV-=V

and o € AltP(g, V), 5 € Alt?(g, V).
If m is symmetric, then we find for their wedge product:

B Ama= (=1 an, (3.9)
and if m is skew-symmetric, we have
B Am = (=1 a A, B (3.10)

For the proof we use that the permutation v € 5,4, exchanging the first
p elements with the last p ones, satisfies sgn(y) = (—1)".

Proposition 3.3.7. Let g be a Lie algebra, V;, i = 1,2,3, be g-modules and
m: Vi x Vo — V5 be a g-invariant bilinear map, 1.e.,

x.m(vy,ve) = m(z.vg,v2) + m(vy, x.vg), € g,v; €V
Then we have for a € C?(g, V1) and B € C(g, V) the relations
Lo(aNmB) =L Ny B4+ a Ny L5 (3.11)

and
dg( A, B) = dgax Ay, B+ (—1)Pax A, 4y 8. (3.12)

Proof. The relation (3.11) follows easily from Remark 3.3.3(d).
For (3.12), we argue by induction on p and ¢. For p = 0 we have

(N B)(x1, ..y xg) = - B(21, ..., 2y)

and

dg(Oé Am 5)($07 s 71:11)
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and
(dg0t A B) (@0, -, @ Z sgn(o o) * BTo(1)s - - - Ta(g)
! UESq+1
— Z Z sgn(o) (i) - B(Taq), - - To(g)
1=0 ¢(0)=

_Z B(xo,. .. Ty 1)

This proves the assertion for p = 0. A similar argument works for ¢ = 0. We
now assume that p, ¢ > 1 and that the assertion holds for the pairs (p — 1, q)
and (p,q — 1). Then we obtain with the Cartan formulas and Lemma 3.3.2
for x € g:

ip(dg A B+ (—1)Pax Ay, 4y B)
= (izdg@) A B+ (1P dga Ay 108 + (= 1)Pigar Ay dgB + @ Ay i2dy 3
= L0 Ay B — dg(i20) A B+ (1P g Ay i3
+ (—1)Pipa Ay dg5 + @ Ny LS — & Ay, dg(325)
= Lo(a Ay B) — dg(iza A B) + (1P dg(a Ay i)
= Ly(a Ny, B) — dglig(a Am B)) = 15(dg(x Ay B)).

Since x was arbitrary, the assertion follows. O]

Remark 3.3.8. The preceding lemma implies that products of two cocy-
cles are cocycles and that the product of a cocycle with a coboundary is a
coboundary, so that we obtain bilinear maps

HP(g, Vi) x H'(g,V2) = H""(g,V3),  ([a], [B]) = [a A 5]
which can be combined to a product H*(g,U) x H*(g,V) — H*(g, W).

Example 3.3.9. If M is a smooth manifold and V; = C*°(M,R), then we
consider the space QP(M,R) of real-valued p-forms on M as a subspace of
CP(V(M),C>*(M,R)). Then the product

m(f17f2) = fife
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on C*(M,R) defines the usual wedge product of differential forms. From
Proposition 3.3.7 we derive immediately the relations

Lx(aNp)=LiaNB+aNLxP

and
dlaAp)=daAf+ (-1)PaAndf

for « € QP(M,R) and 8 € Q4(M,R). This implies in particular that the
product of two closed forms is closed and if o = dy is exact and [ closed,
then

dYAB)=anp
is exact. We thus obtain a well-defined product
Hip (M,R) x Hip (M, R) — Hig*(M,R), ([a], [8]) = [a] A [B] := [ A f].

This leads to an associative algebra structure on the space Hgr(M,R) :=
D, cn, Hir(M,R), called the cohomology algebra of M. This algebra is
graded commutative, i.e.,

[ A [B] = (=D)™[BI A o]
for [a] € HIR(M,R), [8] € Hizx(M,R) (cf. Remark 3.3.6).

Definition 3.3.10. A Lie superalgebra (over a field K with 2,3 € K¥) is a
7./2Z-graded vector space g = gy @ gy with a bilinear map |[-, -] satisfying

(LS1) [, 8] = (—1)P2*Y[B3, o] for @ € g, and y € g,.
(LS2) [a, [8,7]] = [lev, 8], 7] + (=1)™[B, [, 7]] for o € gp, B € gg and 7 € g,
Note that (LS1) implies that
[, =0 =1[5,[8,5]] for ae€ggfegr (3.13)

Example 3.3.11. (a) Suppose that V' is a Lie algebra, considered as a trivial
g-module. The bilinear bracket on C*(g, V) := P, . C?(g, V) defined by

pENp
(g, V) x Cg, V) = C""(g, V), (e, ) = [a, B] := ALy B,

turns the Z/2Z-graded vector space C*(g, V) = C®*(g, V)@ C°d(g, V) into
a Lie superalgebra.
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In fact, (LS1) follows from Remark 3.3.6. The relation (LS2) for dega =
p, deg 3 = q and degy = r can be obtained from Remark 3.3.4 and the
Jacobi identity as follows. Let by : V x V — V denote the Lie bracket on V.
Then

1
o 18] = g Al (B ey 7).

The Jacobi identity in V' implies

A py, (ﬁ by 7) = (Oé by B) by YT (ﬁ by (Oé by 7>)U

for a permutation o € S, 44, exchanging

{1,....,p} by {q¢+1,....¢+p}

without changing the order in the subsets. Then sgn(c) = (—1)P? and ap-
plying the alternator Alt yields (LS2).
(b) If M is a smooth manifold, g a finite-dimensional Lie algebra and

(M, g) == P (M,9),

then QP(M,g) C AltP(V(M),C>*(M,g)) for each p € Ny, and on C*(M, g)
we have the Lie bracket, defined pointwise by:

[ gl(m) == [f(m), g(m)].
This Lie bracket is V(M )-invariant in the sense that

X[f, g9l =[Xf 9]+ [f, Xyg],

so that Proposition 3.3.7 applies to the corresponding wedge product:
[Oé, 6]()(17 s 7Xp+l1)

1
Tl > sen(0)[a(Xowy, - Xow) B KXo, - s Xo(pra)]
o 0€Spiq

We thus obtain on (M, g) the structure of a Lie superalgebra. Its bracket is
compatible with the exterior differential and the Lie derivative in the sense
that

Lx[a, 8] = [Lxa, B] + [a, Lx
and

d[a>ﬁ] = [dOé,B] + (_1);0[0" dﬁ]
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3.4 Covariant derivatives and curvature

Definition 3.4.1. Let g be a Lie algebra and V' a vector space, considered
as a trivial g-module, so that we have the corresponding Chevalley-Eilenberg
complex (C(g,V),dy).

We now twist the differential in this complex with a linear map

S:g— End(V),

i.e., an element S € C'(g, End(V)). First we note that the bilinear evaluation
map ev: End(V) x V — V leads to a linear operator

Sp: CP(g, V) — CP (g, V), ars S Ay a.
The corresponding covariant differential on C(g, V') is defined by
dg := S\ +dg: CP(g,V) = C*" (g, V), peN,.

In view of (3.6) this can also be written as

p

(dsa)(zo, . .., x,) = Z(—l)jS(xj).a(xo, BTy

7=0
+ Y (=Da[zg, ) w0, B B ).
1<j

Proposition 3.4.2. Let Rg(x,y) = [S(x), S(y)]—S([z,y]) forz,y € g. Then
Rg :=dgS + 1[S, 5] € C*(g,End(V)),
and for o € CP(g, V') we have
dZa = Rg Aoy av. (3.14)

In particular d% = 0 if and only if S is a homomorphism of Lie algebras, i.e.,
Rs=0.
Proof. For v € C?(g, V') we get

dia = dg(S Aey @ + dgar)
= (5 Aev (S Ney @) + S Aey dgar + dg (S Ay @) + doa
= (S A S) Nev @ 4+ S Aoy dgar + (dgS Ney @ — S Aey dg@t)
= (SN S) Nev v +dgS Ney v = (S A S+ dgS) Aey v
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Now

(S Ac S)(x,y) = S(x)S(y) — S(y)S(x) = [S(x), S)] = 5[5, S](x, ),

proves (3.14).

For v € V = C%g, V) we obtain in particular (d%v)(x,y) = Rs(x,y)v,
showing that d% = 0 on C*(g, V) is equivalent to Rg = 0, which means that
S:g— (End(V),[-,]) is @ homomorphism of Lie algebras. O

The following proposition provides an abstract algebraic version of iden-
tities originating from the context of differential forms.

Proposition 3.4.3. Suppose that V is a Lie algebra, considered as a trivial
g-module. Let 0 € C'(g,V) and put S = ad oo and

RU = dga + %[0-7 U] € 02(97 V) 2..6., Ro‘(x7y) = [O'(l'), U(Z/)] - U([l’,g/])
Then the following assertions hold:
(1) dia = [R,,qa] for a € CP(g, V).

(2) R, satisfies the abstract Bianchi identity dsR, = 0, i.e.,

> lo(x). R(y. 2)] — R([zy], 2) = 0.

cyc.

(3) For~ € C(g,V) we have

Roiy = Ro + Ry +[0,7] = Ro +ds7 + 31,7,

Proof. (1) Since ad: V' — End(V) is a homomorphism of Lie algebras, the
definition of R, and Proposition 3.4.2 immediately lead for a € C?(g, V) to

d%a = Rg Aey @ = (ad oRy) Aey @ = [Ry, @]

(Example 3.3.11).
(2) From (3.10) and Proposition 3.3.7, we further get

dglo, 0] = [d40, 0] — [0,d40] = [dg0, 0] + [d40, 0] = 2[d40, 0].
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Now the abstract Bianchi identity follows with Example 3.3.11 from

dsR, = (dg + SA) Ry = dga + %dg[a, o+ S AR, =[dy4o,0]+ [0, Ry]

= [dg0,0] — [R,, 0] = —3|[0,0],0] = 0.

(3) This relation follows from
Ry = dgo + 5l0,0] + dg7 + 3([0,7] + [v,0] + [1,7]) = Ro + R, + [0,9]
= R, +dgy + 5[1,7] + S Ay = Ry +dsy + 37,7
u

Lemma 3.4.4. Suppose that m: V x V. — V s a bilinear map and that
S: g — der(V,m) is linear. Then we have for a € CP(g,V) and 5 € C(g,V)

the relation
ds(a Ap, ) = dsa Ap, B+ (—1)Pa Ay, dgf5. (3.15)

Proof. We have dg = dy + S, and Proposition 3.3.7 implies the assertion for
S = 0. It therefore remains to show that

SA(aAmB)=(SANa)Ap B+ (=1)Pa Ap (SAB).
We recall that

SN (@ A B) = = A(S - (o )

and note that S(g) C der(V, m) implies that
S - (amﬁ)) = (Sa) 'mﬁ‘l' (a'm (S'/B)>Ua
where 0 = (12 ...p+1) € Spiq441 is a cycle of length p+ 1. Now the lemma

follows from sgn(o) = (—1)P. O

3.5 Lecomte’s generalization of the Chern—
Weil map

To define Lecomte’s characteristic map, we first have to explain how to mul-
tiply k-tuples of Lie algebra cochains with k-linear maps.
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Definition 3.5.1. For a k-linear map f: n* — V and ¢y, ..., ¢, € C?(g,n),
we define

Fonrn = e AlL(T 0 (61,6, 60)),

so that we may consider fy, 4, as a k-fold wedge product of the ¢;, defined

by f.

The following remark explains why it suffices to work with symmetric
maps.

Remark 3.5.2. (a) If f € Mult*(n, V) is not symmetric and f, = % > oes, f”
is its symmetrization, then we have f7 = (fs)? because for any permutation
o € Sy, the relation

.....

follows from the fact that

Fol@oqy-- baw) = (fo (b1, )7

holds for an even permutation o € Sy (Here we use the notation from (3.7)).
(b) We may also consider f € Sym*(n, V) as a linear map

fin® 5V with  flo1®-- @) = f(z1,...,28).
Writing Ag for the wedge products
C7(g, ™) x C?(g,n™) — C7(g, n®*+m)

defined by the canonical multiplication n®* x n®m — n®*+m) (3 ) 15 2@y
(cf. Definition 3.3.1), we find the formula

Joron =fo(¢1he  Ae i), (3.16)

expressing fs, . ¢, simply as a composition of a linear map with an iterated
wedge product (cf. Remark 3.3.4).



3.5. LECOMTE’S CHERN-WEIL MAP 49

Definition 3.5.3. If ¢: g — g is a homomorphism of Lie algebras, then we
define the pullback map

q: C"(g,V) — C*(g, V),
by
(Cw)(x1, ..., xp) == w(q(z1),...,q(zp))

and observe that
dgoq" =¢q" od,.

In particular, ¢* induces a well-defined map
¢:H*(g,V)— H*(g, V), [w]~—[¢w]

Now we turn to the subject proper of this section, a general algebraic con-
struction of P. Lecomte assigning certain cohomology classes to Lie algebra

extension.
Let
0—>n—g—sg—0

be an extension of Lie algebras and V' be a g-module which we also consider
as a g-module with respect to the action x.v := ¢(x).v for x € g. Further,
let 0: g — @ be a linear section and define R, € C*(g,n) by

Ro(x,y) = [o(x), 0(y)] — o([z,y])-
For f € Sym"(n, V), we define

fo = [Ro..r, € C*(g,V) (3.17)

in the sense of Definition 3.5.1.

Lemma 3.5.4. If [ is symmetric and g-equivariant, then dyf, = 0 and its
cohomology class [f,] € H**(g,V) does not depend on the choice of o.

Proof. Let f: n® — V be the linear map defined by f and recall from (3.16)
that

Jor.on :J?O (01 Ao P2 Ng - N Prc).
We put S(z) := ad(o(z)). From

k

v f o) = > fyn . S@yi )

=1
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we now derive with Remark 3.5.2(b), Lemma 3.4.4 and the Bianchi identity
dsR, = 0 the relation

:fodS(Ro/\@)"'/\@Ra)

Next we show that [f,] does not depend on o. Let o/ € C'(g,g) be
another section, so that D := ¢’ — o € C'(g,n). For t € R we consider the
section oy 1= 0 +tD = (1 — t)o + to’ and put Si(z) := ad(o¢(x)). Then
Proposition 3.4.3(3) implies that

2

h
Royy, = Roy + hds,D + =[D, D]

Ot+h

and therefore p

dt
From the symmetry of f we now derive with the Product Rule (cf. Re-
mark 3.5.2(b) and Lemma 3.4.4)

d d
%fmg = EfRat ..... Ro, = kJas,D,Ro,.... e, -

Again, we use Remark 3.5.2(b), Lemma 3.4.4 and the Bianchi identity
ds, R,, = 0 to obtain

R,, = dg,D.

:}:Odst(D Ne RJt Ng " Ng RO’t)
= fo(ds,D Ag Ro, A - As Ro,) = D Agds,Ryy Agp -+ ... )
:fo (dStD/\® RO’t /\®"'/\® Rgt)

We combine all this to
d

Efo’t - kdng7Ro't ..... Rat7

and find that

1 d 1
for=fo= [ Gttt =ay [ Ko, i
0 0

is a coboundary. O
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Remark 3.5.5. (Polynomial functions) A map p: n — V is called a V -valued
polynomial of degree k if there exists a symmetric k-linear map f: n* — V

with .
p(z) = Eﬁ(m,x, ., T), TEMN

For each polynomial of degree k, we have
p(tz) =t'p(z), xenteck
Moreover, for vq,...,v; € n, the map
KF =V, (t,... t,) = p(tivy + tavs + ...+ tuy)
is a V-valued polynomial function in k-variables and we recover the k-linear
map p via

ak
p(v1,...,v5) = 5 p(tivr + tavg + ... + trvg),

ty - Oty lti=0

where the partial derivatives are to be understood in the formal sense, i.e.,
p(v1, ..., vg) is the “coefficient” of the monomial ¢1¢, - - - ¢ in the polynomial
p(twl + ...+ tk’Uk>.

In this sense polynomials of degree k and symmetric k-linear maps can
be considered as the same mathematical structures.

Proposition 3.5.6. Let V' be an associative algebra. Then we define on

Sym(n, V') a multiplication by

aVp:= Z (- B)°, a € SymF(n,V),3 e Sym™(n,V),

I
k!m! il

where

(CY . ﬁ)(.Tl, Ce >Ik+m) = a(a:l, Ce ,xk)ﬂ($k+1, e 7xk+m)-
Then the map

B: Sym*(n, V) = Pol*(n, V), &(f)(x) ;:% (#,3,...,2), f€Sym*(n,V),

defines an isomorphism of associative algebras.
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Proof. For that we only have to observe that for a € Sym*(n,V) and § €
Sym™(n, V') we have

m<avﬁ)<x7”'7x>:_CY(x,...,JI)ﬂ(JZ,...,JJ),
L]

Theorem 3.5.7. (Lecomte) (a) For each k € Ny, we have a natural map
k f] 2k 1
Cux Sym(n, V)E = H* (@, V), [ (fo]

(b) Suppose, in addition, that my: V x V — V is an associative multi-
plication and that g acts on V' by derivations, i.e., my is g-invariant. Then
(C*(g,V), Amy,) is an associative algebra, inducing an algebra structure on
H*(g,V). Further, (Sym®(n, V), V.. is an associative algebra, and the maps
(Ck)ken, combine to an algebra homomorphism

C': Sym*(n,V)® — H*(g,V).

Proof. (a) follows from Lemma 3.5.4.
(b) With the notation from (3.7), we have for f; € Sym" (n,V):

1 g
fivmg fo= g D0 (iomy 1)

UGSk1+k2

We therefore have

,,,,,

1 o
(fl vmV f2)¢1 ----- Py thy klle' Z (fl ’ f2)¢1 Bloy ko

UESk1+k2

(k1 + k2)!
= W(fl f2)ér, Py +ho

(k1 + k2)!
W(fl)m ..... o (J2) b1y 1,80, 0y

This implies that for each o, the maps

Ci Sym(n, V) = CH@ V), o il
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define an algebra homomorphism
C: Sym*(n,V) — C**(g,V),

satisfying C' ( Sym®(n, V)a) C Z?*(g,V), hence inducing a homomorphism
C: Sym*(n, V) — H*(g,V).

In view of Lemma 3.5.4, this map does not depend on the choice of o. O

Example 3.5.8. If n is abelian, then we take V' := n and note that idy
is equivariant. Then (3.4) in the proof of Proposition 3.1.13 implies that
C(idy) = [R,] € H?(g,n) is the characteristic class of the abelian Lie algebra
extension g. As Proposition 3.1.13 asserts, this class determines the extension
g of g by n uniquely in the sense that two extensions with the same class are
equivalent.



54

CHAPTER 3. COHOMOLOGY OF LIE ALGEBRAS



Chapter 4

Smooth Functions with Values
in Lie Groups

In this chapter we provide some basic results on Lie groups and their Lie
algebras which are relevant for the understanding of the basic differential
theory of fiber bundles.

4.1 Lie Groups and Their Lie Algebras

Let G be a Lie group. We recall that we define the Lie algebra g = L(G)
of G, as the vector space T1(G), endowed with the Lie bracket, obtained by
identifying this space with the space V(G); of left invariant vector fields on
G, ie.,

ev: V(G), — L(G), X w— X(1)

is an isomorphism of Lie algebras.

Examples 4.1.1. (a) G = GL(V) for a finite-dimensional vector space.
Since GL(V') is an open subset of End(V'), we have a natural trivialization
of the tangent bundle. A vector field X on G is left invariant if and only if
it is of the form X (v) = Av for A € End(V'). This leads to

L(GL(V)) :=gl(V) := (End(V), [-,*]), [A,B]:= AB — BA.

(b) For G = R", the left invariant vector fields are the constant ones.
They form an abelian Lie algebra, so that L(R") = R", with the trivial Lie
bracket.

95
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Proposition 4.1.2. The map
O:Gxg—TG, (9,2)— gx:=Ti(A\)x

15 a bundle equivalence. In particular, the tangent bundle of each Lie group
18 trivial.

Definition 4.1.3. We define the (left) Maurer—Cartan form rg € QY(G, g)
by
KG := Pr 0d 1 TG — g,

ie.,
kalgx) =z forge G,z e g.

In the literature one also finds the notation kg = ¢~ 'dg which is slightly
ambiguous. We will not use it here.

The Exponential Function of a Lie Group

Lemma 4.1.4. On a Lie group G, each left invariant vector field X is com-
plete, i.e., has a global flow ®*: R x G — G.

Definition 4.1.5. The exponential function of a Lie group G is defined by
expg: g — G, expg(x) = ¢7'(1),
where 2; € V(G) denotes the left invariant vector field with x;(1) = x.

Remark 4.1.6. The curves v,: R — G, 7,(t) := expg(tx) are smooth group
homomorphisms with +/(0) = z. In particular

TO (eXpG) = idQ?

so that exp is a local diffeomorphism in 0.

Derived Actions

Proposition 4.1.7. (The derived action/representation) Let G be a Lie
group and M be a smooth manifold.
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(1) Ifo: M x G — M, (m,g) — m.g =: c™(g) is a smooth right action of
G on M, then

o: L(G) = VM),  (z)(m) := Tim1)(0)(0,2) = Ta(a™)(x)
defines a homomorphism of Lie algebras.
(ii) If o: G x M — M is a smooth left action of G on M, then
o: L(G) = V(M),  d(x)(m) = —Tam(o)(x,0)
defines a homomorphism of Lie algebras.
(i) If m: G — GL(V) is a smooth representation of G on'V, i.e., o(g,v) :=
7(g)v defines a smooth action of G on V', then
L(7m)(2)v = Taw(0)(x,0) = =o(2)(v)
defines a homomorphism of Lie algebras L(m): L(G) — gl(V).

Proof. (i) We pick m € M and write ¢™: G — M, g — m.g := o(m,g) for
the orbit map of m. Then ¢™ o A\, = 0™ leads to

T(o")(xi(9)) = Ta(0™ )z = 6(2)mg = (6(x) 0 0™)(9),

which means that the vector fields x; and &(x) are o™-related. We conclude
that for 2,y € L(G) the vector fields [x;, ] = [z, y]; and [6(x),d(y)] are also
o™-related, which leads to

[5(2),6())(m) = Ta(o™) [z, yli(1) = Tim1) (@)(0, [z, 9]) = &([z, y])(m).
(i) If o is a left action, then (m, g) := o(g~!,

and T1(ne)r = —x (Exercise 4.1.1) implies that

0(z) = =Tam(0)(x,0) = Tim1)(5)(0, ),

so that the assertion follows from (i).
(iii) For linear vector fields X a(x) = Az, Xp(z) = Bz, A, B € gl(V), we
have

m) defines a right action,

(X4, Xp](x) = dXp(z)Xa(x) —dXa(x)Xp(z) = BAx — ABx = —[A, Bz,

so that the corresponding map gl(V') — V(V), A — — X4 is a homomorphism
of Lie algebras. Therefore (iii) follows from (ii). O
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Remark 4.1.8. (a) For G = R, smooth actions on manifolds are the same
as global flows ®: R x M — M. Thinking of a flow as a smooth right action,
its infinitesimal generator is the vector field

X = &(1) € V(M).

It satisfies ® = ®X.
(b) For a general Lie group G, the homomorphism ¢ can be calculated
with the one-parameter groups 7,(t) = expqs(tz) via

) d
o(x)(m) = E}tzom' expg(tr).

Proposition 4.1.9. If ¢: G — H is a morphism of Lie groups, then
L(¢) := T1(¢): L(G) = L(H)

1s a homomorphism of Lie algebras.

This completes the definition of the Lie functor L, which assigns to a Lie
group G its Lie algebra its Lie algebra L(G) and to each morphism ¢ of Lie
groups a morphism of Lie algebras L(¢). It follows immediately from the
Chain Rule that

L(idg) =idn) and  L(¢y 0 ¢2) = L(¢1) o L(¢2),

so that L is indeed a (covariant) functor, i.e., compatible with composition
of morphisms.

Remark 4.1.10. If ¢ € Aut(G) is an automorphism of the Lie group G,
then L(¢) € Aut(L(G)).

Example 4.1.11. [The adjoint representation| For each Lie group G, the
conjugation action C(g,x) = grg~" defines a homomorphism

C: G — Aut(G),g— ¢y cy(z) = grg™!,

so that
Ad: G — Aut(g), Ad(g) :=L(cy)

also is a group homomorphism. This defines a smooth representation of GG
on its Lie algebra g, called the adjoint representation.
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Writing g.v := T(A\,)v and v.g := T(p,)v for the canonical left, resp.,
right action of G on its tangent bundle T'G, the adjoint action can also be
written as

Ad(g)z = g.(z.g7") = (g.2).97" € g =Ta(G) C T(G).
The corresponding derived representation is given by

L(Ad)(z)(y) = [z, y] = ad x(y).

Exercises for Section 4.1

Exercise 4.1.1. Let GG be a Lie group with multiplication mg: G X G — G
and inversion ng: G — G. Show that:

(1) For g,h € G and v € Ty(G) and w € T),(G), we have

Tigmy(ma) (v, w) = Ty(pr)v + Th(Ag)w

(2) Ti(ne) = — id,.

Exercise 4.1.2. Let G be a Lie group and x; € V(G) the left invariant vector
field with z;(1) = z. Show that:

(a) &% = &X for any X € V(M).

(b) Y2: R — G,7,(t) := expgs(tx), is a group homomorphism.

(c) The local flow maps ®;" commute with all left translations A,.
(

d) ®y'(g) = gexpg(tz) is the flow of z;.

4.2 The Local Fundamental Theorem

In this section we introduce the logarithmic derivative §(f) € QY(M, g) of a
Lie group-valued smooth function f: M — G. We shall see that any loga-
rithmic derivative satisfies the Maurer-Cartan equation and that, conversely,
this equation implies local integrability of an element of Q'(M, g) (the Local
Fundamental Theorem).
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Definition 4.2.1. For a smooth function f: M — G with values in the Lie
group G, the g-valued 1-form

0f):=fhg: TM — g
in QY(M, g) is called its logarithmic derivative. In m € M we have

0(f)m = f(m)™" - Tou(f) = f(m)"Hdf)m: Tu(M) — g,

which justifies the common notation §(f) = f~'df. In this sense, the relation
§(idg) = K¢ justifies the notation g~'dg for k¢ if one denotes the identity of
G simply by g.

Lemma 4.2.2. For each f € C®(M,G), the 1-form o := 6(f) satisfies the
Maurer—Cartan equation
1
da+ =[o,a] =0.
2
Proof. First we show that k¢ satisfies the Maurer—Cartan equation. It suf-

fices to evaluate dk¢ on left invariant vector fields x;, y;, where z,y € g. Since
ka(z;) = x is constant, we have

dka(r,y) = wka() — yika(r) — kal[z, ) = —kallz, yl) = —[z, 9]
1

- —§[r<ca,/fc](xlvyl>'

Since k¢ satisfies the MC equation, a = f*kq satisfies

da = ffdkg = —%f*[lig,lig] = —%[f*lig,f*/ig] = —%[a,a},

which is the Maurer—Cartan equation. O

Example 4.2.3. For G = R" we identify TG = T(R") with R™ x R™ and
obtain kg(x,v) = v. Therefore we have for f € C*°(M,R")

o(f) =df.

Since g = L(G) is abelian, for a € Q'(M,g), the MC equation simple is
da = 0, which means that « is a closed 1-form. Closedness is a necessary

condition for « to be exact, i.e., of the form df for a smooth function
f: M — R"
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Remark 4.2.4. (a) Let I C R be an open interval. Then Q*(I,g) = {0},
so that each o € Q(I, g) trivially satisfies the MC equation. Moreover, the
map

C>®(I,g) = Q' I,g), fredz-f

is a linear isomorphism. We may therefore identify 1-forms on I with smooth
curves in g.
For a smooth curve 7: I — G this identification leads to

3 =) () = Ty (M- ()
(b) If U C R? is an open subset, then

V(U) = C=(U) - % ®C=(U) - a%'

Therefore each o € Q(U, g) is given by the two smooth functions

f= 04((%) and = a((%).

In these terms, the MC equation is equivalent to the PDE

dg Of
%—a—y—[%ﬂ

If f: M — G is a smooth function and o € Q'(M,g), then we use the
short hand notation

(Ad(f).0),, = Ad(f(m)) o
and note that Ad(f)a € Q' (M, g).
Lemma 4.2.5. For f,g € C*°(M,G), the following assertions hold:
(1) The map f~*: M — G,m s f(m)~! is smooth with
0(f7h) = —Ad(f).8(f).
(2) We have the following product and quotient rules:
0(fg) =d(g) +Ad(g™").0(f)

and

6(fg~") = Ad(g)-(6(f) — d(g)).
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(3) (Uniqueness Lemma) If M is connected, then the relation §(f1) = §(f2)
is equivalent to the existence of a g € G with fo = Ago f1. In particular

0(f1) =6(f2) and  fi(mo) = f2(mo)  for some mo € M

imply fr = f.

Proof. (1), (2): Writing fg = mg o (f, g), we obtain from
Tign)(me)(v,w) = Ty(pr)v + Th(Ag)w = v.h + g.w

(Exercise 4.1.1) the relation

T(fg) =T(mg) o (T(f),T(9)) =T(f).g+ [T(9): M = T(G),
which immediately leads to
(fg) = (f9) ' (T(f).9+ fT(9)) = g~".8(f)-g+06(g) = Ad(g)".3(f) +(9).

From the Product Rule and §(ff~1) = 0, the formula for §(f~!) follows,
and by combining this with the Product Rule, we get the Quotient Rule.

(3) If 6(f1) = (f2), then the Quotient Rule implies that §(f1f; ") = 0,
so that fif, ! is locally constant. This implies (3). O

Lie group homomorphisms and Maurer—Cartan forms
Lemma 4.2.6. Let ¢: G — H be a morphism of Lie groups. Then
6(¢) = ¢"rm = L(9) o kg,
and for each smooth map f: M — G we have
(¢ o f) =L(¢)od(f).

Proof. For g € G we have ¢ o \y = Ag(y) © ¢, which implies that for g € G
and z € L(G) we have

3(6)(g-x) = d(9) " Ty(¢)(9.2) = Ta(d)z = L(¢)z,

which immediately shows that d(¢) = L(¢) o k.
The second assertion follows from

(@o f)hg=f"¢"ka = f"(L(®) okg) =L(¢) o (f'ra) =L(¢) o d(f).
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Proposition 4.2.7. If GG is connected and ¢1, ¢y : G — H are morphism of
Lie groups with L(¢1) = L(¢2), then ¢1 = ¢s.

Proof. In view of Lemma 4.2.6, §(¢1) = L(¢1) 0 kg = L(¢2) 0 kg = §(¢2), so

that the uniqueness assertion follows from Lemma 4.2.5(3). O]
The preceding observation has some interesting consequences:

Corollary 4.2.8. If G is a connected Lie group, then
ker Ad = Z(G) :={g € G: (Vh € G) gh = hg}
is the center of G.

Proof. Let c,(x) = gxg~'. In view of Proposition 4.2.7, for g € G the
conditions ¢, = idg and L(c,) = Ad(g) = idy(q) are equivalent. This implies
the assertion. [

The Local Fundamental Theorem

Now we turn to the local version of the Fundamental Theorem of Calculus
for Lie group-valued smooth functions.

Definition 4.2.9. Let G be a Lie group, I = [0,1] and £ € C*°(I,g) be a
smooth curve in its Lie algebra. Then the initial value problem

10)=1, ) =7""7=¢ (4.1)
has a unique solution .. We write

evolg: C™(1,9) = G, &+ (1)
for the corresponding evolution map.

Definition 4.2.10. Let G be a Lie group with Lie algebra g = L(G). We call
a g-valued 1-form o € Q' (M, g) integrable if there exists a smooth function
f: M — G with §(f) = a. The 1-form « is said to be locally integrable if
each point m € M has an open neighborhood U such that «|y is integrable.

We know already from Lemma 4.2.2 that any locally integrable element
a € Q' (M, g) satisfies the MC equation and we want to show that the con-
verse is also true. We start with the first crucial case where the MC equation
is non-trivial, namely smooth 1-forms on the square.



64 CHAPTER 4. SMOOTH G-VALUED FUNCTIONS

Remark 4.2.11. Let I = [0,1] be the unit interval. A smooth g-valued
I-form o € Q(I?, g) can be written as

a=dr-v+dy-w with v,we C®(I%g),

and we have already seen in Remark 4.2.4 that it satisfies the MC equation
if and only if

ov Ow
- 7 . 4.2
oy Ox [v, w] (42)

Suppose that the two smooth functions v, w: I? — g satisfy (4.2). We
define a function f: I? — G by

f(@,0) ==y o)(x) and  f(z,y) = f(2,0) Y@, (Y)

(here we use the notation from Definition 4.2.10.
The smoothness of f follows from the smooth dependence of the solutions
of ODEs from parameters. Now

0f=dr-v+4+dy-w with 9(z,0)=wv(z,0) for ze€l.

We now show that ¥ = v, so that 6(f) = a. The Maurer-Cartan equation
for o f implies

o ow .
oy "~k
so that subtraction of this equation from (4.2) leads to
ov—10 -
v —-1) _ v — .
y
As (v — v)(z,0) = 0, the uniqueness of solutions of linear ODEs for a

given initial value, applied to n(t) := (v — v)(x,t), = fixed, implies that
(v —0)(z,y) = 0 for all z,y € I, hence that v = v. This means that
(f)=dz-v+dy-w=a.

Theorem 4.2.12. (Local Fundamental Theorem) Let U be an open convex
subset of R", G a Lie group with Lie algebra g and o € QY(U, g) satisfying
the Maurer—Cartan equation. Then « is integrable.
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Proof. We may w.l.o.g. assume that o = 0 € U. For x € U we then consider
the smooth curve

&ei I =g, t— ap(x).

Since ¢ depends smoothly on x, the function
f:U—=G, z—evolg(&)

is smooth.

First we show that f(sz) = ¢, (s) holds for each s € I. For s € [0, 1], the
curve 7)(t) 1= 7, (st) satisfies

5(77)t = Sfx(3t> = Sastx(x) = astaz(sx) = é-sx(t)a

so that
f(s7) = evol(€er) = n(1) = Ve, (5).

For x,x + h € U, we now consider the smooth map
B:IxI—=U, (st)—t(x+sh)

and the smooth function F' := f o 8. Then the preceding considerations
imply F'(s,0) = f(0) =1 and

oF d d
E(Sﬂf) = Ef(t(x + Sh)) = £7§x+sh (t) = F(Svt)'fa:-i-sh(t)
0

= Fls, ) e+ sh) = F(s,0). (80 ().

As we have seen in Remark 4.2.11, these two relations already imply that
)(F)=p« on [IxI.
We therefore obtain
0 0
%f(:z + sh) = %F(s, 1) = F(s,1).azisn(h) = f(x + sh).azisn(h),

and for s = 0 this leads to T,(f)(h) = f(z).cx(h), which means that
I(f) =« O



66 CHAPTER 4. SMOOTH G-VALUED FUNCTIONS

Exercises for Section 4.2

Exercise 4.2.1. Let M be a smooth manifold and G a Lie group. Show that
for each smooth function f: M — G, each a € Q'(M, g) and each smooth
map ¢: N — M, we have

¢*(Ad(f).c) = Ad(¢* f).0"v.

4.3 Some Covering Theory

In this section we recall some of the main results on coverings of topological
spaces needed to develop coverings of Lie groups and manifolds. In particular,
this material is needed to extend the local Fundamental Theorem to a global
one. The proofs not written in detail can all be found in the chapter on
covering theory in Bredon’s book [Br93].

The Fundamental Group

To define the notion of a simply connected space, we first have to define
its fundamental group. The elements of this group are homotopy classes of
loops. The present section develops this concept and provides some of its
basic properties.

Definition 4.3.1. Let X be a topological space, I := [0, 1], and xy € X. We
write

P(X,zo) :={y€ C(I,X): v(0) = zo}

and
P(X,xo,21) :={y € P(X,20): v(1) = a1 }.

We call two paths ag, ay € P(X, xg, z1) homotopic, written ag ~ ay, if there
exists a continuous map

H: IxI—>X with HOZOéQ, H1:Oél
(for Hy(s) := H(t,s)) and
(Vtel) H(t,O):ZE(), H(t,l):l’l

It is easy to show that ~ is an equivalence relation (Exercise 4.3.2), called
homotopy. The homotopy class of « is denoted [a].
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We write Q(X, zg) := P(X, o, x0) for the set of loops based at z,. For
a € P(X,xo,x1) and f € P(X, 1, x5), we define a product axf in P(X, zg, x5)
by
o a(2t) for 0 <t
(o B)(t) == {ﬁ(2t —1) for i<t

Lemma 4.3.2. If ¢: [0,1] — [0,1] is a continuous map with ¢(0) = 0 and
o(1) =1, then for each o € P(X, xg,21), we have a ~ v o ¢.

Proof. Use H(t,s) := a(ts + (1 —t)¢p(s)). O
Proposition 4.3.3. The following assertions hold:

(1) a3 ~ ag and By ~ Po implies ay * Py ~ g * [y, so that we obtain a
well-defined product

o] % 6] := [+ f]

of homotopy classes.

(2) If zo also denotes the constant map I — {xo} C X, then

[xo] * [a] = [a] = [a] x [x1]  for a € P(X, xg,x1).
(3) (Associativity) [0+ 8] % [1] = [a] « [3 %] for a € P(X,z0,21),
€ P(X,x1,x9) and v € P(X, 29, 23).

(4) (Inverse) For a € P(X,xg,x1) and a(t) :== a(l —t) we have
[o] + [a] = [zo].

(5) (Functoriality) For any continuous map ¢: X — Y with ¢(zo) = yo we
have

(poa)x(pofB)=do(axp)
and o ~ 3 implies poa ~ ¢ o f3.

Proof. (1) If H* is a homotopy from a; to as and H? a homotopy from (3,
to P, then we put

o H(t,2s) for 0 < s <
H(t,s) = {Hﬁ(t, 2s—1) forl<s<
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(cf. Exercise 4.3.1).
(2) For the first assertion we use Lemma 4.3.2 and
0 for 0
roxa=ao¢ for gb(t)::{zt_l !

For the second, we have

B ]2t forOgtS%
axr=aocg for (b(t)'_{l for 2 <t <1
(3) We have (a*x 3) v = (ax (B*7))o ¢ for
2t for 0<t <3
Pp(t) =1+t fori<t<i
B forl<t<l
(4)
a(2s) for s < 1
H(t,s):=1¢ a(l—1t) for Lt < s <t
a(2s—1) for s > L.
(5) is trivial. O

Definition 4.3.4. From the preceding definition, we derive in particular that
the set
T (X, o) := QX x0)/ ~

of homotopy classes of loops in z( carries a natural group structure. This
group is called the fundamental group of X with respect to xy.

A pathwise connected space X is called simply connected (or 1-connected)
if m1 (X, o) vanishes for some zo € X (which implies that is trivial for each
xo € X; Exercise 4.3.4).

Lemma 4.3.5. (Functoriality of the fundamental group) If f: X — Y is a
continuous map with f(xg) = yo, then

T (f): m(X,20) = m(Y, %), [y~ [fo"]

15 a group homomorphism. Moreover, we have

m(idy) = ide, (xap) and m(fog) =m(f)om(g).
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Proof. This follows directly from Proposition 4.3.3(5). ]

Theorem 4.3.6. (The Path Lifting Property) Let ¢: X — Y be a covering
map and v: [0,1] =Y a path. Let xo € X be such that q(zo) = v(0). Then
there exists a unique path 7: [0,1] — X such that

goF=7 and F(0) =z,

Theorem 4.3.7. (The Covering Homotopy Theorem) Let I := [0,1], and
q: X =Y be a covering map and H: I*> — Y be a homotopy with fized
endpoints of the paths v := Hy and n := Hy. For any lift v of v there exists
a unique lift G: I* — X of H with Gy = 7. Then 1 := Gy is the unique
lift of n starting in the same point as 7y and G is a homotopy from 7 to 1.
In particular, lifts of homotopic curves in'Y starting in the same point are
homotopic in X.

Corollary 4.3.8. If ¢: X — Y s a covering with q(xo) = yo, then the
corresponding homomorphism

mi(q): m(X,20) = m(Yiy), [+ [go7]
1S 1njective.
Proof. 1f v, n are loops in z¢ with [goy] = [gon], then the Covering Homotopy

Theorem 4.3.7 implies that v and i are homotopic. Therefore [y] = [n] shows
that 7 (¢) is injective. O

Corollary 4.3.9. IfY is simply connected and X is arcwise connected, then
each covering map q: X — Y 1s a homeomorphism.

Proof. Since ¢ is an open continuous map, it remains to show that ¢ is in-
jective. So pick zg € X and yg € Y with ¢(xg) = yo. If 2 € X also satisfies
q(z) = yo, then there exists a path o € P(X, zg,z) from 2y to . Now ¢q o «
is a loop in Y, hence contractible because Y is simply connected. Now the
Covering Homotopy Theorem implies that the unique lift « of g o o starting
in x( is a loop, and therefore that xq = x. This proves that ¢ is injective. [

The following theorem provides a more powerful tool, from which the
preceding corollary easily follows. We recall that a topological space X is
called locally arcwise connected if each point x € X possesses an arcwise
connected neighborhood. All manifolds have this property because each point
of a manifold M has an open neighborhood homeomorphic to an open convex
set in R™.
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Theorem 4.3.10. (The Lifting Theorem) Assume that ¢: X — Y is a cov-
ering map with q(zo) = Yo, that W is arcwise connected and locally arcwise
connected, and that f: W — Y is a given map with f(wo) = yo. Then a
continuous map g: W — X with

glwg) =29 and qog=Ff
exists if and only if

T () (W, wo)) € m(q)(m (X, 20)), d-e. im(m(f)) € im(mi(q)).  (4.3)

If g exists, then it is uniquely determined. Condition (4.3) is in particular
satisfied if W is simply connected.

Corollary 4.3.11. (Uniqueness of simply connected coverings) Suppose that
Y is locally arcwise connected. If ¢1: X1 — Y and qy: Xo — Y are two simply
connected arcwise connected coverings, then there exists a homeomorphism
¢: X1 — Xo with g0 ¢ = q.

Proof. Since Y is locally arcwise connected, both covering spaces X; and X5
also have this property. Pick points z; € Xy, x5 € Xs with y := ¢1(21) =
¢2(x2). According to the Lifting Theorem 4.3.10, there exists a unique lift

¢: X1 — Xy of ¢ with ¢(z1) = z2. We likewise obtain a unique lift

¥ Xo — X of go with ¥(z9) = 1. Then ¢potp: X7 — X is a lift of idy
fixing 1, so that the uniqueness of lifts implies that ¢ oy = idx,. The
same argument yields 1 o ¢ = idy,, so that ¢ is a homeomorphism with the
required properties. L]

Theorem 4.3.12. FEach manifold M has a simply connected covering
qu: M — M.

Definition 4.3.13. Let ¢: X — Y be a covering. A homeomorphism
¢: X — X is called a deck transformation of the covering if go¢ = idy. This
means that ¢ permutes the elements in the fibers of g. We write Deck(X, q)
for the group of deck transformations.

Example 4.3.14. (a) For the covering map exp: C — C*, the deck trans-
formations have the form

o(2) = z+2min, n € Z.

(b) For the covering map ¢: R — T = R/Z, the deck transformations
have the form
o(z)=z+n, neZ.
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Proposition 4.3.15. Let q: X > X bea simply connected covering of X
with base point To. For each [y] € (X, xg) we write ¢, € Deck(X, q) for
the unique lift of idx mapping Ty to the endpoint (1) of the canonical lift ¥
of v starting in xo. Then the map

®: mi (X, 20) — Deck(X,q),  ®([7]) = dyy
s an isomorphism of groups.

Proof. The composition ¢ 0 ¢y, is a deck transformation mapping 7o to the
endpoint of ¢, o7 which coincides with the endpoint of the lift of n starting
in 7(1). Hence it also is the endpoint of the lift of the loop «y * 7. Therefore
® is a group homomorphism.

To see that ® is injective, we note that ¢, = id; implies that ¥(1) = @,
so that 7 is a loop, and hence that [y] = [x].

For the surjectivity, let ¢ be a deck transformation and y := ¢(Zy). If «
is a path from zy to y, then v := g o a is a loop in xg with a = 7, so that
¢1(Zo) = ¥, and the uniqueness of lifts implies that ¢ = ¢y,;. ]

Exercises for Section 4.3

Exercise 4.3.1. If f: X — Y is a map between topological spaces and
X = X jU...UX, holds with closed subsets Xy, ..., X, then f is continuous
if and only if all restrictions f|x, are continuous.

Exercise 4.3.2. Show that the homotopy relation on P(X,xo,21) is an
equivalence relation. Hint: Exercise 4.3.1 helps to glue homotopies.

Exercise 4.3.3. Show that for n > 1 the sphere S" is simply connected. For
the proof, proceed along the following steps:

(a) Let y : [0,1] — S™ be continuous. Then there exists an m > 0 such that
I9(t) =A@ < 5 for [t —¢/| < .

(b) Define & : [0,1] — R™™ as the piecewise affine curve with a(£) =
Y(£) for k = 0,...,m. Then a(t) := ma(t) defines a continuous curve
a:[0,1] — S™.

(¢) a ~ . Hint: Consider H(t,s) := %

(d) «v is not surjective. The image of « is the central projection of a polygonal
arc on the sphere.

(e) If B € Q(S', yo) is not surjective, then 5 ~ g (it is homotopic to a con-
stant map). Hint: Let p € S” \ im . Using stereographic projection, where
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p corresponds to the point at infinity, show that S™ \ {p} is homeomorphic
to R™, hence contractible.
(f) m1(S™, yo) = {[vo]} for n > 2 and y, € S™.

Exercise 4.3.4. Let X be a topological space xg, 1 and a € P(X, z9,x1) a
path from xg to ;. Show that the map

C:m(X,z) = m(X,z0), [y]— [axy*q]

is an isomorphism of groups. In this sense the fundamental group does not
depend on the base point if X is arcwise connected.

4.4 The Fundamental Theorem for Lie group-
valued functions

Proposition 4.4.1. Let M be a connected manifold, G a Lie group with Lie
algebra g and o € QY(M,g) a 1-form. If a is locally integrable, then there
erists a connected covering q: M — M such that q*« is integrable. If, in
addition, M s simply connected, then « is integrable.

Proof. We consider the product set P := M x G with the two projection
maps F': P — G and q: P — M. We define a topology on P as follows. For
each pair (U, f), consisting of an open subset U C M and a smooth function
f: U — G with 6(f) = aly, the graph I'(f,U) = {(z, f(z)): x € U} is a
subset of P.

Step 1: We claim that the sets I'(f,U) form a basis for a topology 7
on P. In fact, let p = (m,g) € I'(f1,U1) N T'(fa, Us). We choose a connected
open neighborhood U of m, contained in U; N U,. Then fi(m) = fo(m) =g
and 0(filv) = d(f2lv) = |y imply that f; = fo on U (Lemma 4.2.5(c)),
so that p € I'(fi|y,U) C I'(f1,U1) N I(fa,Uz). This proves our claim. We
endow P with the topology 7.

Step 2: 7 is Hausdorff: It is clear that the projection ¢: P — M is
continuous with respect to 7. It therefore suffices to show that two different
points (m,g1),(m,gs) € P can be separated by open subsets. If U is a
connected open neighborhood of m on which « is integrable, we find a smooth
function f,: U — G with fi(m) = g, and §(f1) = a. Now fo := g, g1 f1
satisfies fo(m) = g2 and 6(f2) = a. Hence I'(f1,U) is an open neighborhood
of (m,¢g1) and I'(f,U) an open neighborhood of (m,g2). If both intersect,
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there exists a point x € U with fi(z) = fa(x), so that the connectedness
of U implies f; = fo, contradicting g, = g» (Lemma 4.2.5(c)). Hence P is
Hausdorft.

Step 3: The restrictions ¢|pr(s,v) are homeomorphisms. We know already
that ¢ is continuous. Let o := (idy, f): U — I'(f,U) C P. Then, for each
basic neighborhood I'(g, V'), we have

o« ([(g.V)) = fx € UNV: f(z) = gla)}.

In view of the uniqueness assertion of Lemma 4.2.5(c), the latter set is open,
so that o is continuous. Now qo o = idy implies that ¢|r(s,) is a homeomor-
phism onto U.

Step 4: The mapping ¢q: P — M is a covering. Let x € M. Since «
is integrable, there exists a connected open neighborhood U, of x such that
a|y, is locally integrable. Then there exists for each g € G a smooth function
fo: Us = G with f,(z) = g and §(f,) = a|y. Now ¢ '(U) = U x G =
U,ee T'(fy: U) is a disjoint union of open subsets of P, as we have seen in
Step 1, and in Step 3 we have seen that it restricts to homeomorphisms on
each of these sets. Hence ¢ is a covering.

Step 5: We conclude that P carries a natural manifold structure for
which ¢ is a local diffecomorphism (Exercise!). For this manifold structure,
the function F': P — G is smooth, because for each basic open set I'(f,U),
U connected, the inverse of the corresponding restriction of U is given by

ooy = (drg) ™ U = T(f,U), 2= (z, f(z)),

and F ooy = f is smooth. Moreover, f oq = F|pu) leads to

on each set I'(f,U), hence on all of P.

Fix a point mg € M. Then the connected component M of (mo,1) in P
is a connected covering manifold of M with the required properties.

If, in addition, M is simply connected, then ¢ is a trivial covering, hence
a diffeomorphism (Corollary 4.3.9), and therefore « is integrable. ]

Let « € Q' (M, g). If v: I =[0,1] — M is a piecewise smooth loop, then
v € QN I, g) = C(I,g) and we get the element evolg(y*a) € G.
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Lemma 4.4.2. Suppose that M is connected and o € QY(M,g) is locally
integrable. Pick mg € M. Then the element evolg(v*«) does not change
under homotopies with fized endpoints and

perl: m (M, mg) — G, [y] — evolg(v @)
1$ a group homomorphism.

Proof. Let qur: M — M denote a simply connected covering manifold of M
(Theorem 4.3.12) and choose a base point my € M with ga(mg) = mo. Then
the g-valued 1-form ¢}, on M also satisfies the Maurer—Cartan equation,
so that Proposition 4.4.1 implies the existence of a unique smooth function

fi M — G with 6(f) = ¢,o and f(mg) = 1.
We write

o: m (M, mg) X M — M, (d,m) — d.m = oq(m)

for the left action of the fundamental group (M, mg) on M by deck trans-
formations (cf. Proposition 4.3.15). Then

0(f 0 00) = i = iy = 6(f)
for each d € m (M, mg) implies the existence of a function
x:m(M,mg) — G with  fooy=x(d)-f, dem(M, my).

For dy,ds € m(M,mg), we then have

fotua, = foos 004 = (x(d) f)oos = x(d) (foos) = x(d)x(ds)- [,

hence x is a group homomorphism. -
We now pick a piecewise smooth curve v: I — M with gy 07 = v
(Theorem 4.3.6) and observe that

6(f o) =7"qye =",

so that B B
x(]) = f([v]-mo) = f(5(1)) = evola(y"a).
This completes the proof. n
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Definition 4.4.3. For each locally integrable o € Q'(M,g), the homomor-
phism

per, :=pern®: m (M, mg) - G with  perl®([y]) = evolg(7v* ),

for each piecewise smooth loop v: I — M in my, is called the period homo-
morphism of a with respect to my.

The following theorem is a global version of the Fundamental Theorem
of calculus for functions with values in Lie groups.

Theorem 4.4.4. (Fundamental Theorem for Lie group-valued functions) Let
M be a smooth manifold, G a Lie group with Lie algebra g, and o € QY(M, g).
Then the following assertions hold:

(1) « is locally integrable if and only if it satisfies the Maurer—Cartan equa-
tion do + 3o, a] = 0.

(2) If M is 1-connected and « is locally integrable, then it is integrable.

(3) If M is connected, o is locally integrable, and my € M, then perl®
vanishes if and only if « is integrable.

Proof. (1) If «v is locally integrable, then Lemma 4.2.2 implies that it satisfies
the Maurer—Cartan equation. If, conversely, it satisfies the MC equation,
then Lemma 4.2.2 implies its local integrability.

(2) Proposition 4.4.1.

(3) The function f constructed in the proof of Lemma 4.4.2 above factors
through a smooth function on M if and only if the period homomorphism is
trivial. This implies (3). O

Corollary 4.4.5. Let M be a smooth connected manifold, G = T" = R"/Z"™
and o € QY(M,R™). Then the following assertions hold:

(1) « is locally integrable if and only if o is closed.

(2) « is integrable to a smooth G-valued function if and only if all integrals
of a over piecewise smooth loops are contained in Z".

Corollary 4.4.6. Let M be a connected smooth connected manifold and mg €
M. Then the map

P: Hiz(M,R) — Hom(m (M, mo),R), [a] — per™

18 1njective.
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Proof. To see that P is well-defined, we note that pery; = 0 for any smooth
function f: M — R. If, conversely, per’® o = 0 holds for a closed 1-form
a € QY(M,R), then the Fundamental Theorem implies that o = df for some
smooth function f: M — R, so that [a] = 0. O

Remark 4.4.7. Let M be a connected smooth manifold, mg € M, and G a
Lie group with Lie algebra g. We write

MC(M, g) := {a € O (M,g): da + %[a,a] = O}

for the set of solutions of the MC equation. If g is abelian, then MC(M, g)
is the space of closed g-valued 1-forms.
From the Fundamental Theorem, we obtain a sequence of maps

G — C®(M,G)— MC(M, g)—" s Hom(my (M, my), G),
which is exact as a sequence of pointed sets, i.e., in each place, the inverse

image of the base point is the range of the preceding map.

Applications of the Fundamental Theorem

Proposition 4.4.8. Let G and H be Lie groups. Assume that G is connected
and that ¢ : L(G) — L(H) is a morphism of Lie algebras. If ¢: G — H is a

smooth map with
¢(1g) =1y and ¢*kg =1 o kg,
then ¢ is a homomorphism of Lie groups.

Proof. Let x € G. Then we obtain a smooth map

f - )\qb(x)*l © Qb © )\x: G — H7 Y= ¢(Z’)_1¢(.Ty)

with f(1g) = 1y. Further, we obtain with Lemma 4.2.6

5(f) = 6<)‘¢(x)—1 o ¢ o )\x) = 5(¢ o )\I) = )\;¢*/€H
= Nokg) =y o(Mhg) = v ok =0(¢).

Since G is connected and f(1g) = ¢(1g), we obtain f = ¢ from the Unique-
ness Lemma. This means that ¢(xy) = ¢(z)o(y) for z,y € G. ]
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Theorem 4.4.9. If H is a Lie group, G is a 1-connected Lie group, and
Y L(G) — L(H) is a continuous homomorphism of Lie algebras, then there
exists a unique Lie group homomorphism ¢: G — H with L(¢) = 1.

Proof. The uniqueness assertion follows from Proposition 4.2.7. On G we
consider the smooth L(H)-valued 1-form given by « := ¢ o kg. That it
satisfies the Maurer—Cartan equation follows from

4o =1 0 g = ~ 1 o [ra ig] = 5[0 v, ¥ 0 ] = —3la al.

Therefore the Fundamental Theorem implies the existence of a unique smooth
function ¢: G — H with §(¢) = a and ¢(1g) = 1y. In view of Proposi-
tion 4.4.8, the function ¢ is a morphism of Lie groups, and we clearly have

L(¢) = a(1) = v. .

Corollary 4.4.10. If G1 and G5 are simply connected Lie groups with iso-
morphic Lie algebras, then Gy and G5 are isomorphic.

Proof. Let ¢: L(G;) — L(G2) be an isomorphism of Lie algebras. Then
there exists a unique morphism of Lie - groups ¢: G — G with L(¢) = 1,
and likewise there exists a morphism gb Gy — G with L(gb) =1, Then

L(¢o gzﬁ) = idy@,) and L(gb ¢) = idy(a,), together with the uniqueness, leads
to aogb = idg, and gboa = idg,. Thus ¢ is an isomorphism of Lie groups. [
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Chapter 5

Connections on Principal
Bundles

In this chapter we introduce connections on principal bundles. They are the
key tool to the differential theory of fiber bundles. In particular, they are
crucial for the calculation of characteristic classes.

Throughout this chapter, (P, M, G, q, o) denotes a principal bundle, g =
L(G). We recall the notation o4(p) := p.g and *(g) = p.g.

5.1 The Lie Algebra of Infinitesimal Bundle
Automorphisms

Definition 5.1.1. Motivated by the relation
Aut(P) :={¢ € Diff(P): (Vg € G)po o, =040 ¢},
we consider the Lie algebra
aut(P) :={X € V(P): (Vg € G) (0,). X = X}
of G-invariant vector fields on P.
Lemma 5.1.2. The following assertions hold for aut(P):
(a) aut(P) is a Lie subalgebra of V(P).

79
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(b) We have a well-defined map

¢ aut(P) — V(M), (¢.X)(q(p)) :=Tp(q) X (p)

which is a homomorphism of Lie algebras.

(¢) aut(P) is a C*(M)-module w.r.t.

(fX)(p) == fla(p)) X (p)
and g, is C(M)-linear.
(d) [6(x),Y] =0 forxz €gandY € aut(P).

Proof. (a) That X € aut(P) is equivalent to X being o -related to itself for
each g € G. Therefore the Related Vector Field Lemma implies that aut(P)
is a Lie subalgebra.

(b) The relation (0,),X = X means that for each p € P we have

T(og)X(p) = X(p.g).

Hence

T(q)X(p.g) = T(q)T(04)X(p) =T(qo0,)X(p) =T(q)X(p)

implies that ¢, X is well-defined. Since (¢.X) o q = T(q) o X is smooth and
q: P — M is a submersion, the vector field ¢, X is smooth.

For X, Y € aut(P) we use that the vector fields X and ¢.X are g-related
to see that [ X, Y] and [¢. X, ¢.Y| are g-related. This implies that ¢.[X,Y] =
(¢ X, q.Y].

(c) For g € G we have (0,).(fX)=f-(0,):X=f-X.
(d) follows from

. d d
[O'(l'), Y} = ;Cg(x)y = %‘t:()(UeXPG(_tx))*Y = E’tz()y =0.

Definition 5.1.3. The ideal
gau(P) := ker(q,) < aut(P)

describes those vector fields which are tangent to the G-orbits in P.
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Recall the derived action
o:9g—=>V(P), o(z),= %L:Op. exp(tx).
We know from Proposition 4.1.7 that ¢ is a homomorphism of Lie algebras.
Lemma 5.1.4. (a) For each p € P, the map
op: 8 = ker(Ty(q)) S T,(P), == o(x)(p) = Ta(o”)(x)

1$ a linear isomorphism.
(b) If f: N — G and s: N — P are smooth functions, then the function
s.f: N — P,x > s(x).f(x), satisfies

To(s.f) = T(0f@)) © Te(8) + Fsa).fa) © (f ) (5.1)

Proof. (a) Since this is a local assertion, we may assume that P = M x G is
the trivial bundle. Then

o(x)(m,g) = (0,9.2) € Timg) (M x G) = T, (M) x Ty(G),

so that the assertion follows from Proposition 4.1.2.
(b) We simply calculate with the Chain Rule

Tx(s'f)UZ w(oo (s, f)v
Ty ) (o) (Tx(5)v, 0)+T( @), (0)(0, T (f)v)

= T(Uf(a: )T (8)0 + Tis@), () (0)(0, f(2)-6(f)av)
=T(of@)Ta(s)v + T( f(x )(6(f)av)
— Ty Tuls)v + 6(6(f > ).
O
Definition 5.1.5. For each p € P, we define the vertical subspace of T,,(P)

by
Vo(P) := 6p(g) = ker(T},(q))
and call its elements the vertical tangent vectors.

Proposition 5.1.6. (The Lie algebra gau(P)) Let Ad: G — Aut(g) denote
the adjoint action of G on its Lie algebra g and

Ad(P) = P xaq g0

the corresponding associated bundle. Then the following assertions hold:
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(a) The map
U: C=(P,g)¢ 2T Ad(P) — gau(P), W (&)(p) := —6,(£(p))

is an isomorphism of Lie algebras, where C*=(P,g)% is endowed with
the pointwise Lie bracket

[€,n](p) == [£(p), n(p)].

(b) The map
exp,: C=(P,g)¢ — C%(P,G)° = Gan(P), € — expgof
associates to each &€ € C®(P,g)¢ the smooth flow

; (p) = p. expe (t(p))
by bundle automorphisms. Its infinitesimal generator is —W(§).

(¢) (The adjoint action of Gau(P)) For h € C=(P,G)% and ¢y,(p) = p.h(p),
we have

(0n)U(f) = W(Ad(h).f).

Proof. The first part is an immediate consequence of Proposition 1.6.3 which

asserts that
I'(Ad(P)) = C>(P,g)°.

We first show (b) and (c), then (a).
(b) Since the exponential function exp,: g — G is equivariant:

expg(Ad(g)z) = expg(L(cy)z) = co(expg () = gexpg ()9,

it follows that
(expe)«(C(P,g)%) € C®(P,G)“.

For each £ € C*(P,g),
(L, p) := p. expg(té(p))

defines a smooth flow on P whose infinitesimal generator is the vector field
—U(§). From ¢eyp,o¢ € Gau(P) we thus derive

d _
(04): V(&) = 7 li=0%9 © P, 0 a, L=w() for ged.
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Since U(&) is clearly vertical, we find that V() € gau(P).
(c) Since ¢ := ¢, € Gau(P) C Aut(P), we have ¢ o 0, = 0, 0 ¢, which leads
to
Tp(9)dp(x) = () (2),
ie.,
¢.0(x) = o(x).

This leads to

(0:9(€))(p) = T(¢)¥(E)(p-h(p)~"
= —6,(&(p-h(p) ™))

(a) For ¢(p) = p. expg(—t&(p)) = ;" (p), we derive
W), W) = LaigWlm) = ], (#*1). %)

= oW Adexpg (1)) 1) = 1] W) = (e, ).

This proves that ¥ is a homomorphism of Lie algebras. Since all the maps
0, are injective, ¥ is injective. To see that it is surjective, let X € gau(P)

and define

IIV
A
\_/
@
|
—
~
I
)
s
=
—
=
N~—
L
N~—

§(p) = 0‘1(X(p))-
Then ¢: P — g is a function with ¥(¢) = X. Further

X(p-g) = T(04) X (p) = =T(04)(£(p)) = =T(0y)T(0")E(p)
= —T(o")T(c,)&(p) = —T(o") Ad(g™")E(p)

implies that
¢(p-g) = Ad(g™)é(p)-
The smoothness of { can be verified locally, so that we may assume that
the bundle is trivial. Then X (m,g) = (0,X(m,g)) for a smooth function
X: M x G — TG with X(m,g) € T, 9(G). Now () (2) = (0,g.2) implies
that _ _
E(m.g) = —g~".X(m,g) = —ra(X(m,g))

is a smooth function. This proves that ¥ is bijective. ]

We collect some useful formulas for the calculation with the group of
gauge transformations and its Lie algebra.
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Lemma 5.1.7. Using the map f + ¢, we identify C=(P,G)¢ with Gau(P)
(Proposition 1.6.7). We then have

(a) ¢po ¢fo o Gfogp—1 for ¢ € Aut(P).
(b) 6.U(E) = U(E o 6) for £ € CX(P,g)¢ and 6 € Aut(P).
(c) [X,¥(8)] = U(X.£) for X € aut(P) and & € C°(P,g)“.

Proof. (a) For p € P we have ¢ o ¢y 0 ¢~ (p) = ¢(¢7'(p)-f(¢7'(p)) =
p-f(6~'(p))-

(b) Applying (a) to f(p) = exps(t&(p)) for € € C=(P, g)¢ and taking deriva-
tives in ¢ = 0, we obtain (b).

(c) For X € aut(P) we get with (b):

X W) = Lx() = 4|, (@%).0(0) = 4| w(eo0f) = w(X).
O

Remark 5.1.8. For the trivial bundle P = M x G with o,(m, h) = (m, hg),
we have

aut(P) = gau(P) x V(M) = C*®(P,g)% x V(M) = C*(M, g) x V(M),

where V(M) acts on C°(M, g) by (X.£)(m) := d&(m)X (m).

5.2 Paracompactness and Partitions of Unity

In this section we recall a central tool for the analysis on manifolds: smooth
partitions of unity. They are used in various situations to localize problems,
i.e., to turn them into problems on open subsets of R", which are usually
easier to solve.

To obtain sufficiently fine smooth partitions of unity on a manifold, we
have to impose a condition on the underlying topological space.

Definition 5.2.1. (a) A topological space X is said to be o-compact if there
exists a sequence (K,)qen of compact subsets of X such that X = J, .y Xn.

(b) If (U;)ier and (V}) ey are open covers of the topological space X, then
we call (V;);es a refinement of (U;);er if for each j € J there exists some
ij € I with V; C Uy
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A family (5;);er of subsets of X is called locally finite if each point p € X
has a neighborhood V' intersecting only finitely many of the sets S;.

A topological space X is said to be paracompact if each open cover has a
locally finite refinement.

Theorem 5.2.2. For a finite-dimensional (topological) manifold M, the fol-
lowing are equivalent:

(1) M is paracompact.

(2) Each connected component of M is o-compact.

Definition 5.2.3. A smooth partition of unity on a smooth manifold M is
a family (1;);er of smooth functions ¢; € C*°(M,R) such that

(P1) 0 <4, for each i € I.
(P2) Local finiteness: each point p € M has a neighborhood U such that
{i € I: Y|y # 0} is finite.
(P3) Y0 = 1.
Note that (P2) implies that in each p € M
Z%‘(p) = Z vi(p)
el ¥i(p)#0
is a finite-sum, so that it is well-defined, even if [ is an infinite set.

If U = (U;) ey is an open cover, then a partition of unity (1;) e, is said
to be associated to U if supp(v);) C U, holds for each j € J.

Theorem 5.2.4. If M is paracompact and (U;)jes is a locally finite open
cover of M, then there exists an associated smooth partition of unity on M.
Corollary 5.2.5. Let M be a paracompact smooth manifold, F C M a closed

subset and U C M an open neighborhood of F'. Then there exists a smooth
function f: M — R with

(Ho<f<l
2) flr = 1.

(3) supp(f) C U.

Proof. In view of Theorem 5.2.4, there exists a smooth partition of unity
associated to the open cover {U, M \ F'}. This is a pair of smooth functions
(f,g) with supp(f) C U, supp(g) C M\ F,0< f,g,and f+¢g = 1. We thus
have (1) and (3), and (2) follows from g|r = 0. O
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Applications to affine bundles

Let G = (V,+) be the additive group of a vector space. Then a principal
G-bundle is called an affine bundle. Although the fibers of an affine bundle
(P,M,V,q,0) are isomorphic to V as an affine space, they do not carry a
natural vector space structure; affine bundle are NOT vector bundles.

As an immediate consequence of the existence of smooth partitions of
unity, we obtain:

Theorem 5.2.6. Each affine bundle over a paracompact manifold M is
trivial.

Proof. The main point of the proof is that convex combinations make sense in
affine bundles. Let (P, M,V q, o) be an affine bundle over M, then we define
for z1,...,2, € P, and \; € R with ) .\; = 1 the convex combination
> Aix; as follows.

If oy: U x V — Py is a bundle chart and z; = ¢y (m,v;), we put

Z /\zl’z = (bU(m, Z )\zvz)

If opw: W x V — Py is another chart with m € W, then ¢w(m,v) =
ou(m, g(m) 4+ v) for a smooth function g: UNW — V and

= wa(m, Vi — g(m))a

so that

% (m, Z Aivi — g(m))> = ow (m, Z Aiv; — Z Aig(m)>
:qbw( Z)\UZ —g(m ) ( Z/\UZ)

Therefore the convex combination ) . A\;z; is well-defined.

Now let (¢, U;)icr be a bundle atlas. In view of the paracompactness of
M, we may w.l.o.g. assume that the open cover U = (U;);es is locally finite,
and hence that there exists a subordinated smooth partition of unity (;)ie;-
The functions s;: U; — Py,, s;(m) := ¢;(m,0) define smooth sections of Py,

and therefore
s(m) = Z Xi(m)s;(m)
Ai (m)#0
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is in each point m € M a convex combination of elements of P,,. Moreover,
the local finiteness of U implies that s is a smooth section of P, so that P is
trivial (Proposition 2.2.4). O

5.3 Bundle-valued Differential Forms

We have already seen that for a vector space V, the space QF(M,V) can
be identified in a natural way with the space Altl(‘}oo(M)(V(M), C>*(M,V)) of
C°°(M)-multilinear k-cochains of the Lie algebra V(M) with values in the
C*°(M)-module C*°(M, V) (Theorem 3.2.1). This identification suggests the
following definition of differential forms with values in vector bundles.

Definition 5.3.1. Let (V, M,V q) be a vector bundle. Then we put
QF(M,V) = Altge )y (V(M),TV),
and call the elements of this space V-valued k-forms.

Remark 5.3.2. (Local description of bundle-valued forms in trivializations)
Let (¢4, U;)icr be a vector bundle atlas of V with transition functions g;; €
C*>(U;j, GL(V)). Each V-valued differential form w € QF(M,V) yields a
family of differential forms

w; € Q¥(U;, V) =2 QF U, V)
(Exercise 5.3.1) satisfying the transformation rule
wj =g -w; on U
Conversely, each family (w;);c; satisfying the above transformation rule yields
a V-valued k-form w by
w(Xy, ..., Xg)(m) == ¢i(m,w;(X1(m), ..., Xg(m))) for meU. (52)

Definition 5.3.3. We call a differential form w € QF(P,V) horizontal if
is()w = 0 holds for each z € g. We write QOF(P,V)per for the subspace of
horizontal V-valued k-forms on P.

If 7: G — GL(V) is a representation, then w € Q*(P,V) is called equiv-
ariant if

opw=m(g)" ow

holds for each g € G. We write Q¥(P, V)¢ for the space G-equivariant k-
forms with values in V. Both carry natural C*°(M)-module structures.
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Proposition 5.3.4. IfV = P x,V is associated to P by the representation
(m, V) of G, then w — W, defined by
Wq(p) (T(Q)Ul, cee ,T(Q)Uk) = [p7ajp(vlv cee avk’)]
yields a well-defined C*°(M)-linear bijection
QF (M, V) — Q*(PV)E

Proof. (a) From the local description in (5.2) in Remark 5.3.2, it follows that
the forms @, € Alt"(T,(M),V) are well-defined and combine to an element
of Q%(P, V) with 7,0, = 0 for each vertical vector v. From the relation

hor*

[p7 a)p(vla ce avk)] = Wq(p) (T(q)Uh e 7T(q>vk>
= [p.9,Wpg(T(0g)v1, ..., T(0g)vi)]
= [p, m(9)Wp.o(T'(ag)v1, ..., T(0g)vk)]

we further derive that

Therefore @ € QF(P, V) .
(b) Suppose, conversely, that n € QF(P, V)% . We choose a bundle atlas
(¢4, U;) which leads to the local sections s;(m) := ¢;(m,1). We thus obtain
a family of differential forms

w; i= sin € QF(U;, V).

We recall from Remark 2.2.3 the relation s; = s;g;; and note that for m € U;;
and v € T,,,(M) the difference

T(s:)v = T(0g;,6m)) T (55)V = ;) (0(g5i ) )
(cf. Lemma 5.1.4(b)) is a vertical vector. We thus obtain
wi(m)(vi, ..., V) = Nsyom) (T (83)v1, ..., T(85) k)
= Ms;j(m)g;i(m) (T(Ugﬂ(m)>T<5j)Ula . T(Ugji(m)>T<5j)Uk)
= ﬂ(gji(m))’l.nsj ) (T (s5)v1, ..., T(sj)vp) = W(gji(m))’l.wj(vl, cey UR).

This means that w; = 7(gj;) - w;, so that Remark 5.3.2 implies that there
exists an element w € QF(M, V) with

W(Xl,...,Xk)() [¢z< 1) (Xl(m) (m))]
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Since this expression also equals
[si(m), Wsm) (T (5:) X1 (m), ..., T () Xy (m))],
it follows that w = 7. ]

With the preceding proposition, we now easily see that the full automor-
phism group Aut(P) acts linearly on the space of bundle-valued differential
forms:

Proposition 5.3.5. If V= P %,V is associated to P by the representation
(7, V) of G, then for ¢ € Aut(P) and a € Q¥(P,V)S = QF(M,V), the
pullback ¢*a is also contained in QF(P, V)<, so that

bas’
b= (¢ )«

defines a representation of Aut(P) on QF(P, V)< . For a gauge transforma-
tion ¢5, f € C®(P,G)Y, we simply have

(¢Fa)y = 7(f(p)) ™" 0 .
Proof. That ¢*« is also equivariant follows from
0,(¢"a) = op¢"a = ¢"oya = ¢*(n(g) " o a) = m(g) " o (¢" ).
Further, ¢.c(x) = 6(x) for z € g leads to
lo(x) (9" @) = ¢ (is@)a) = 0.

Therefore the space of horizontal equivariant differential forms is Aut(P)-
invariant and we thus obtain a representation by ¢.a := (¢~ 1)*a.

For f € C°(P,G)% and the corresponding gauge transformation ¢(p) =
p.f(p), we obtain with Lemma 5.1.4(b)

Tp(d)v = Tp(0 )V + Gp. 1) (0(f)pv)-

Since the second summand is a vertical vector, we obtain for any a €
QF(P,V)Z | the relation

((b;oz)p(vl, s 0) = ) (T(opp)vr, - T (0 ) 0k)
= (0} @)p(v1; -, 0%) = m(f(p) (v, ..., vp).
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We also take a brief look at the Lie algebra level of this representation.

Remark 5.3.6. Let 7: G — GL(V) be a representation of V.

The subspace Qk(P, V)hor of horizontal V-valued k-forms is invariant un-
der the action of aut(P) C V(P) by the Lie derivative. In fact, for x € g and
Y € aut(P) we have

Y. 6(@)] = LoV =0

(Lemma 5.1.2(d)) because (0,),Y =Y for each g € G. This implies that
Ly, is@)] = iye@) =0,
so that we obtain for w € QF(M,V )yor:

io@)(Lyw) = Ly (is@xw) = 0.

From (0,).Y =Y for each Y € aut(P) we also derive that Q*(P, V)¢ is
invariant under aut(P). In fact, for w € Q¥(P, V)% g € G and Y € aut(P),
we have

(04)" (Lyw) = Ly (ogw) = Ly (m(g) " ow) =7(g) " o (Lyw).

Combining the preceding two observations, we see that aut(P) also acts
on their intersection QF(P, V)& =2 QF(M, V) by the Lie derivative.

hor

Exercises for Section 5.3

Exercise 5.3.1. Let (V, M,V,q) be a vector bundle and w € QF(M,V) =
Altéoo(M)(V(M), I'V) be a V-valued k-form. Further, let U C M be an open
subset. We want to show that w defines a restriction wy € QF(M,Vy). For
Xi,...,Xx € V(U) and m € M we pick a smooth function xy : U — M
with compact support and x(m) = 1 in a neighborhood of m. Then we may
consider xX; as an element of V(M) and put

wu(X1, .., Xp)(m) == wx X, ..., xXk)(m).
Show that this definition does not depend on the choice of the function x.

Exercise 5.3.2. Let 0: P x G — P be a smooth right action and f: P — G
an equivariant smooth function, i.e., f(p.g) = f(p)g for p € P and g € G.
Show that 4(f) € Q'(P, g) is an equivariant 1-form, i.e.,

015(f) = Ad(g) ™" 0 6(f).
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Exercise 5.3.3. Let V= P x, V be a vector bundle over M associated to
P via the representation (m,V’) of G. Recall that the G-bundle ¢* P over P
has a canonical section defined by s(p) := (p,p). Show that:

(1) The map
¢: PxV = ¢V, (pv)— (p[p,v])

is a global bundle map. In particular, ¢*V is trivial.

(2) T'(¢*'V) = C>=(P,V), where a section s corresponds to the function
f: P =V, defined by s(p) = (p, [p, f(P))-

(3) If w € QF(M,V) is a bundle-valued k-form, then we obtain a ¢*V-valued
k-form by

(@ w)p(v1, - - vk) 1= we) (T(@)vr, - -, T(Q)vr) € Vo) = (q7V),.

(4) With respect to the trivialization of ¢*V from (1), the form ¢*w €
QF(P,q*V) corresponds to the lift @ € QF(P, V)¢ | defined in Proposi-
tion 5.3.4.

5.4 Connection 1-Forms

Connections on principal bundles are the fundamental tool in the theory of
differentiable fiber bundles. They are most conveniently defined in terms of
Lie algebra-valued 1-forms.

Definition 5.4.1. A 1-form 6 € Q'(P, g) is called a connection 1-form if
(C1) 6(6(z)) =« for each = € g.

(C2) 030 = Ad(g)™"' 00 for each g € G, ie., 0 € Q'(P,g)° (cf. Defini-
tion 5.3.3).

We write C(P) for the space of connection 1-forms. This is obviously an
affine subspace of Q'(P, g) whose translation vector space is

QNP g)c, = QY (M, Ad(P)).

bas
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Definition 5.4.2. For each p € P, we recall the vertical subspace of T,(P),
defined by

Vo(P) := op(g) = ker(T,,(q))-

If, in addition, # € C(P) is a connection 1-form, then
H,(P) := ker#,

is a vector space complement to V,(P), called the horizontal subspace. Vec-
tors in H,(P) are called horizontal, those in V,(P) are called vertical. We
then have

T,(P) = Vp(P) @ Hp(P)

and
T(og)Hy(P) = Hpo(P), T(0g)V,(P)=V,4(P) for geGaG,

i.e., the decomposition into vertical and horizontal subspace is G-invariant.

Since a horizontal k-form w € Qk(P, V)hor vanishes on all tuples contain-
ing a vertical vector, they are completely determined by their values on the
horizontal subspace H,(P). This justifies the terminology.

Remark 5.4.3. Note that each connection 1-form 6 € C(P) can be recon-
structed from the family of horizontal subspaces because, for each p € P, we
have

T,(P) = 6,(9) © Hp(P),
and on v = ,(x)+w, w € H,(P), we have 0,(v) = x. Therefore the subspace
H,(P) determines the linear map 6,: T,,(P) — g completely.

Proposition 5.4.4. The group Aut(P) acts on the affine space C(P) of
connection 1-forms from the right via 0.¢ == ¢*0 by affine maps.

For each smooth function f: P — G and the corresponding map
¢r: P — P,p— p.f(p), we have

630 = 5(f) + Ad(f)""6. (5.3)

Proof. Let 0 € C(P) be a connection 1-form.
(a) Since each ¢ € Aut(P) commutes with each oy, the pullback ¢*6 is also
equivariant: !

0,(0.0) = 0,00 = ¢"0,0 = ¢"(Ad(g) " 0 0) = Ad(g)" o (¢"0).

n general we have ¢*(6(X)) = ¢*0((¢71).X).
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Next we note that ¢.6(z) = d(x) leads to
(¢"0)(o(x)) = ¢"(0(0(x))) = ¢"x = .

(b) First we use Lemma 5.1.4(b)) to get the formula

Tp(9f)v = Ty(04p))V + 6p.1p) (0(f)p0)-

We thus obtain

(070)0 = Op. 1) L1(D4)v = 615 T (6(f)pv) + Op.p )T () )0
= 0p. 1) (0(f)pv) + (05 0)v = 3(f)pv + Ad(f(p)) ™ 0(0).

This means that ¢50 = o(f) + Ad(f)~'.0. O

Remark 5.4.5. (a) If P = M x G is the trivial principal bundle with
o4(x, h) = (z, hg), then

OY(M, Ad(P)) = QY(P,Ad(P))g,, = Q'(M, g)
parameterizes the space of connection 1-forms.

The Maurer—Cartan form kg € Q!(G, g) is the unique connection 1-form
for the trivial G-bundle {*} x G = G because in this case ¢(x), = g.x = 21(g)
is a left invariant vector field, so that kg(x;) = x. We further obtain with
the Product Rule for logarithmic derivatives

pakic = 0(pg) = 6(idg -g) = Ad(g) ™! o kg. (5.4)

If p: M x G — G is the G-projection and py;: M x G — M is the M-
projection, this implies that each connection 1-form 6 € C(M x G) is of the
form

0 = pikg + (Adopg) Loy A, Ae QY M, g).

It is uniquely determined by the property that, for the canonical section
s(z) := (z,1), we have A = s*0. For A = 0 we obtain the canonical connec-
tion 1-form of the trivial bundle

ecan = p*G’iG = 6(pG)>

i.e., the logarithmic derivative of pg.
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(b) Now let (¢, U;);er be a bundle atlas of P and s;(z) := ¢;(z,1) be the
corresponding local sections. Then we obtain a collection of 1-forms

A; =510 € QY Uy, g),
called the local gauge potentials.
We rewrite the relation s; = s;g5; with g;; € C®(U;;, G) as
Si = ¢Q*gji © 5y,
where ¢g-g.. (2, h) = (x, hgji(z)) (Proposition 5.4.4). Then we use formula (5.3)
in Proposition 5.4.4 (for the restriction Py,;) to obtain with ¢ o s; = idy;:
A =510 = s;fqﬁ:;*gji@ = 5 (5(q*gﬁ) + Ad(q*gﬁ)’lﬂ)
= 57q70(g5i) + 5;((q* Ad(gji)’l)ﬂ) = 0(g;i) + Ad(gji)’l.sjﬁ
= 6(g;0) + Ad(gz) 1A
We thus obtain the relation
Ay = 6(g53) + Ad(gzi) 1 Aj = 6(gji) + Ad(gi;). A;. (5.5)
Using smooth partitions of unity, we obtain:

Proposition 5.4.6. If M is paracompact, then each principal bundle
(P,M,G,q,0) possesses a connection 1-form.

Proof. Let (¢;);cr be a bundle atlas with the bundle charts
(bi: UzXG_>PUZ

Since M is paracompact, we may w.l.o.g. assume that U = (U;);es is locally
finite. Then there exists a subordinate smooth partition of unity (x;):er-
Let 6, € C(Py,) be any connection 1-form of the trivial bundle (Re-

mark 5.4.5. Then
0= Z(q*Xi>9i
icl

defines an element of C(P). Indeed, since the support of x is a closed subset
of M, contained in U;, we may consider the forms (¢*y;)0;, extended by 0
outside U;, as smooth g-valued 1-forms on P. Since the covering is locally
finite, it follows that 6§ € Q'(P, g) is a smooth 1-form.

Now (C1) follows from ), , xi(m) = 1 for each m € M, and the equiv-
ariance of @ follows from the equivariance of each 6;. n
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Definition 5.4.7. (Horizontal lifts) Let 6 € C(P) be a connection 1-form
and H,(P) = kerf,. For X € V(M), we define a vector field X € V(P) by

X(p) = (Tp()|m,cp)) " X (a(p))-
The vector field X clearly satisfies
X=X and 6(X)=0.

That X is smooth can be verified locally, so that we may assume that
P = M x @G is trivial. Then 6 is of the form 0 = pr¢ + (Ad opg)~'.p3,A for
some A € Q' (M, g). Now 0, )(v, w) = 0 is equivalent to

g~ w+ Ad(g) " Ay (v) =0,

which is equivalent to w = —A,(w).g. Hence the horizontal lift X of X €
V(M) is given by

which is smooth.

Proposition 5.4.8. For any 6 € C(P), the horizontal lift defines a C*(M)-
linear map

To: V(M) —>aut(P), XHX with q*OTQZidy(M).

In particular, q.: aut(P) — V(M) is surjective. For each C*(M)-linear
section T of q., there exists a unique 0 € C(P) with T = 7.

Proof. (1) First we show that X € aut(P):

(Tp.g(qyHM(P))_IX(Q(P)) =T (0g)(To(q)|m,p) " X (q(p))

T(o4)X(p).

(2) (f- X)) = flap)X (p) = (f-X)(p).
(3) Let 7: V(M) — aut(P) be a C*°(M)-linear cross section of ¢.. Since 7

is C°°(M)-linear, it defines over each open subset U C M a C°°(U)-linear
cross section of ¢,. If Py is trivial, then we thus obtain a C'°°(M)-linear map

X(p.g)

7 V(U) = aut(Py) = C*(U,g) x V(U).
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This map is of the form
(X)) = (-A(X), X)

with a C*°(U)-linear map A: V(U) — C*(U, g), and this means that A €
QYU g) is a g-valued 1-form. In terms of vector fields on U x G, we then

have
Tu(X)(m, g) = (X (m), —A(X)(m)g)

(cf. Definition 5.4.7). We conclude that 7y coincides with the horizontal
section with respect to the connection 1-form

v = pikic + (Adope) ™' piA.

Now 0y € C(Py) is a connection 1-form for which 7y is the corresponding
horizontal lift. From the uniqueness of 6y we derive that for each open
subset V' C U we have 6y = 0y |p,, so that the collection of the 6;’s defines
an element 6 € C(P) with 7y = 7. O

Corollary 5.4.9. If M s paracompact, then the homomorphism
¢ aut(P) — V(M) is surjective and we obtain a short eract sequence of
Lie algebras

0 — gau(P) = aut(P)Z5V(M) — 0.

Induced connections

Definition 5.4.10. Let ¢: G — H be a morphism of Lie groups and
(P,M,G,q,0) a principal bundle. Then ¢ defines a smooth action of G
on H by g.h := ¢(g)h, so that we obtain the associated bundle

P¢ I:PX¢H: (PXH)/G,

where G acts on P x H by g.(p,h) = (p.g,¢(g)"*h). Since the G-action on
P x H commutes with the H-action by right multiplications o ((p, h), ') :=
(p, hh'), there exists a unique smooth action

/(\T/SP(bXH—)Pd), [ h]h/ = [p,hh/]
For the smoothness of this action we simply note that the map

PxHxH— Py, (p,h,h)— [p, hl]
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is smooth and the projection P x H — Py is a submersion.
If (¢,U) is a bundle chart of P on U, then the associated chart

du: Ux H— (P)y, (,h)— [¢(z,1),h]

is a bundle chart and it is obvious that it is H-equivariant. Therefore Py is
an H-principal bundle. It is called the H-principal bundle induced from P
via ¢.

Proposition 5.4.11. Let ¢ € Hom(G, H) and
¢3P—>P¢> p'_>[p71}

the canonical bundle map. Then, for each connection 1-form 0 € C(P), there
exists a unique connection 1-form ¢ € C(Py) with

50 = L(6) o 0.
Then ' is called the connection on P, induced by 6.

Proof. Let (¢;,U;)icr be a bundle atlas of P and s;(z) := ¢;(x,1) be the
corresponding local sections, so that 6 is represented by the gauge potentials

A =510 € QY Uy, 9),
satisfying
Ay = 6(g5) + Ad(gz) Ay
Then B; := L(¢) o A; € QY (U;, h) is a collection of 1-forms satisfying
B; = L(¢) 0 0(g;:) + L(9) 0 Ad(g;i) . A; = 6(¢ 0 gji) + Ad(¢ 0 gi) "B,

Since the functions ¢ o g; are the transition functions for the associated
bundle Py, we see that there exists a unique connection 1-form 6" € C(P;)
with 576’ = B; for the local sections

si(z) = ¥(si(x)) = [¢s(z, 1), 1].
Then
s;U*0 =570 = B; = L(¢) 0 A; = L(¢) 0 570 = 57 (L(¢) 0 )

for each i implies that ¥*0" = L(¢) o 0.
To see that 6’ is uniquely determined by this property, we observe that it
implies

50 = 510 = s (L(¢) 00) = L(¢) 0510 = L(¢) o A; = B
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Exercises for Section 5.4

Exercise 5.4.1. If ¢: P, — P, is an isomorphism of G-principal bundles
and 0 € C(P,), then ¢*0 € C(P,) also is a connection 1-form.



Chapter 6

Curvature

In this last chapter we discuss curvature issues of principal bundles. First
we define the curvature of a connection 1-form 6 and find that it is a 2-form
with values in the bundle Ad(P) = P X g. Then we explain in Section 6.2
how the theory of characteristic classes that we encountered in the algebraic
context of Lie algebra extensions can be adapted to obtain characteristic
classes of principal bundles derived from G-invariant polynomials on the Lie
algebra g. If a principal bundle P is flat in the sense that it carries a connec-
tion with vanishing curvature, then all its characteristic classes are trivial. In
Section 6.3 we take a closer look at flat bundles over a connected manifold M
and explain how they can be classified by the cohomology set H'(m (M), G),
where the corresponding notion of equivalence also takes the connection into
account, hencs is much finer than bundle equivalence. We conclude this
section with a brief discussion of bundles with abelian structure group.

Throughout this chapter, (P, M,G,q,0) denotes a principal bundle and
g = L(G). We recall the notation o,(p) := p.¢g and o?(g) = p.g.

6.1 The Curvature of a Connection 1-Form

Definition 6.1.1. If § € C(P) is a connection 1-form, then
F(0) :=df + 3[0,0] € Q*(P, g)

is called the curvature of 6.

We call the connection flat if F() = 0, i.e., if  satisfies the Maurer—
Cartan equation. The bundle P is called flat if it permits a flat connection
1-form 6.

99
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Lemma 6.1.2. For each connection 1-form 6 we have
F(0) € Q*(P. g = Q*(M, Ad(P)).

Proof. Since 0 is equivariant and d commutes with pullbacks, we obtain for
each g € G:

o, F(0) = 0,d0 + 30,[0,0] = d(0,0) + (0.0, 0,0)
=d(Ad(g)"" 0 0) + 3[Ad(g) " 0 0, Ad(g) " 0 0]
=d( d(g) ™" 00) + 3 Ad(g) " o [0.6]
= Ad(g)"" o F(0).

To see that F'(#) is horizontal, we show that ¢, F'(f), = 0 for each vertical
vector v € V,(P). If w € V,(P), then there exist z,y € g with v = ¢,(x) and
w = 6,(y). Now

F(0)y(v, w) = F(0)(o(x),5(y))p,

and this is the value in p of the function

o(x).0(6(y)) — 6(y).0(c(x)) = 0([6(x),6(y)]) + 5[0, 0](o(x), 5(y))

= —[l’,y] + [l‘,y] =0

because the functions 6(¢(x)) = x and 6(d(y)) = y are constant.
For Y € V(M) and its horizontal lift Y, we further have

F(0)(6(2),Y) = (2).0(Y) = Y 8(6()) — 0([6(2), Y]) + 516, 6)(6(2),Y) = 0

because 0(Y) = 0 and the G-invariance of the vector field Y implies
[6(2),Y] = 0. This proves that F(0) € Q2(P,g)¢ . O
Remark 6.1.3. (Local description of the curvature) Let (¢;, U;);e; be a bun-
dle atlas for (P, M,G,q,0) and s;: U; — P,z — ¢;(z,1), the corresponding
local sections. Then any connection 1-form 6 € C(P) is determined by the
gauge potentials A; := s70 € Q'(U;, g) (cf. Remark 5.4.5). For the curvature
we obtain accordingly

siF(0) = F(A;) = d4; + LA, A;] € Q*(U;, 9).
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Remark 6.1.4. Let X,Y € V(M) and X,V the horizontal lifts. The curva-
ture 2-form F(0) € Q?(P, g) satisfies

FO)(X,Y)=d0(X,Y)+[0(X),00Y)] = —0([X,Y]) = 0(|X, YT — [X,Y]).
Restricting 6 to aut(P) C V(P), we also obtain a map
: aut(P) — C*(P,g)%, X — 0(X)
because (0y),X = X implies that
03(60X)) = (036)(X) = Ad(g) ™" 0 0(X).
On the ideal gau(P) < aut(P), we then obtain a bijection
0: gau(P) — C=(P, )",
inverting the isomorphism of Lie algebras (Proposition 5.1.6)
Wi C%(P,g)% - gau(P), W(E)(p) = —0,((p))
in the sense that
OV (&) =—¢ and V(X)) =-X for X €gau(P).
For the C*°(M)-linear section
T=19: V(M) = aut(P), X — X
defined by the horizontal lift, we have
Ro(X,Y) := [r(X),7(Y)] = 7([X,Y]) = [X.Y] = [X, YT € gau(P),
and the calculation from above now shows that R, and F(0) are related by
U(F(0)(X,Y)) = R(X,Y). (6.1)

We conclude in particular that R, is C°°(M)-bilinear.
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Exercises for Section 6.1

Exercise 6.1.1. Show that for a principal bundle (P, M, G, ¢, o), the loga-
rithmic derivative defines a map

§: Gau(P) = C*®(P,G)% — Q'(P,g)°.

Exercise 6.1.2. Let ¢: g — g be a surjective homomorphism of Lie algebras
with kernel n. Then n is a g-module with respect to the action z.y := [z, y].
Let —6: g — n be a linear projection, i.e., f(x) = —z for x € n. Show that:

(i) g = ndker § and there exists a unique linear map o: g — g with goo = id,
and o(g) = ker 6.

(ii) The element F(0) := d30 + 5[0, 6] € C*(g, n) satisfies

(a) F(0) is horizontal, i.e., i, F'(f) = 0 for x € n.

(b) F(0)(o(x),0(y)) = lo(x),0(y)] — o[z, y]) = Ro(x,y) for z,y € g.
(¢) F(0) =q" R
T

(iii) The following are equivalent
(a) F(0) =0, i.e., 0 satisfies the MC equation.
(b) o is a homomorphism of Lie algebras.

(c) ker is a subalgebra of g.

6.2 Characteristic Classes

Chern—Weil Theory

We want to assign to a principal bundle (P, M, G, q,0) characteristic co-
homology classes in the de Rham cohomology Hagr(M,K) for K € {R,C}.
Here the term characteristic means that equivalent bundles should lead to
the same characteristic classes.
The idea is to apply Lecomte’s abstract construction which assigns to a
Lie algebra extension
0O—-n—-g—g—0

and a symmetric k-linear g-invariant map ]7: nf — V with values in a g-
module V' a cohomology class [f,] € H*(g,V).



6.2. CHARACTERISTIC CLASSES 103

To make this fit to the context of principal bundles, we consider the short
exact sequence of Lie algebras

0 — gau(P) — aut(P)—E=—V(M) — 0 (6.2)

which is an extension of the Lie algebra V(M) by the Lie algebra gau(P) =
C>®(P,g)¢ 2T Ad(P).

Let p: g — K be a homogeneous polynomial function of degree k which
is Ad(G)-invariant. Then the corresponding symmetric k-linear map

1
p:gf > K with p(z)= gﬁ(x,x, ce, )
is also Ad(G)-invariant:

p(Ad(g)zy, ..., Ad(g)xx) = p(x1,...,2x) for z;€g9,9€G.

Taking derivatives in ¢ = 1 at x € g, this leads with the Product Rule to

k

Zﬁ(ml,...,[x,a:i],...,xk) =0,

i=1

i.c., that p € Sym*(g, K)s.
The space V = C*°(M,K) carries a natural V(M )-module structure

defined by X.f := dfoX and each invariant polynomial p defines on gau(P)*
a C°(M)-k-linear map

M (C=(Pg)S) =V, pM(E &) D) =& D), D).

That this is well-defined follows from the fact that the equivariance of the
& € C®(P,g)¢ and the invariance of p implies that the right hand side is
constant on the G-orbits in P, so that it factors through a smooth function
on M.

Next we recall that the action of X € aut(P) on ¥(§) € gau(P) is given
by [X,¥(¢)] = U(X.£) (Lemma 5.1.7), to see that

7 ((.X)pM (&, &) = X(g" Y (&, - &) = Xp(&rs - &)

k
- ZﬁM(£177X5177§k) = Zq*pM(€1;;X§z77€k)7
; =1
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which means that
" € Sym*(C(P,g)%, V)™,

Therefore we can apply Lecomtes construction to p™ to obtain characteristic
classes
'] € H*(V(M), V)

for each linear section 7: V(M) — aut(P). Actually, we can do better. We
are not interested in general linear sections without geometric meaning. In
our context it is much more natural to consider C*°(M)-linear sections, and
we have seen in Proposition 5.4.8 that each section with this property is the
horizontal lift X +— X = 7(X) for some connection 1-form § € C(P). If 7 is
C*°(M)-linear, the same holds for

R.: V(M) x V(M) — gau(P), R, (X,Y)=[r(X),7(Y) —7([X,Y)),
resp., the corresponding map
F(@) < Altéoo(M)(V(M% COO<P79>G) = Q2(P7 g)for
(Remark 6.1.4). This implies that
is C°(M )-linear, hence a K-valued differential form (Theorem 3.2.1).

Proposition 6.2.1. The form p)! is closed and its cohomology class [p)!] €
H2:(M,K) does not depend on the connection 0.

Proof. Since pj)' defines a Lie algebra cocycle (Lemma 3.5.4), it is a closed
differential form. From the proof of Lemma 3.5.4, we also recall that, if 6’ is
another connection 1-form and

D=0 -0,
which is an element of Q'(P, g)< | then

1
Py —pg’ = dva /0 kng(et) ..... Fop) At

hold for 6, := (1 —t)0 +t0' = 6 + tD. Since, for each t € [0, 1],
PADJ,F(@) F) € O* (P K, = O (M K)

..... hor

is a differential form in Q2~1(M,K) depending polynomially on ¢, it follows
that ph! — pj! is exact. O
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Definition 6.2.2. For a Lie group GG we write
1(G,K) := Pol(g, K)¢

for the space of K-valued polynomials invariant under the adjoint action of
G on g. We also put

1(G) = I(G,R).

Clearly, this is an algebra, and for each G-invariant polynomial all its homo-
geneous components are also G-invariant, so that

1(G,K) = @ Pol’(g,K)“.
d=0

Remark 6.2.3. If GG is connected, then the invariance of a polynomial p of
degree d on g is equivalent to the invariance of the corresponding d-linear
symmetric map p: g* — K under the Lie algebra, which means that

d
Zﬁ(wl,...,[x,xi],...,:zd) =0 for z,x1,...,24€ 9.
i=1

If G is not connected, then the algebra I(G,K) may be strictly smaller than
I(Go,K). As we shall seen in Example 6.2.10, this happens for G = Oy, (R).

Theorem 6.2.4. (Abstract Chern-Weil Homomorphism) Let G be a Lie
group and (P,M,G,q,0) a principal bundle. Then we have an algebra ho-
momorphism

1

This homomorphism does not depend on the connection 6 € C(P).

For K = R the homomorphism if often simply called the Weil homomor-
phism, whereas it is called the Chern—Weil homomorphism for K = C.

Proof. This follows immediately by combining Theorem 3.5.7 with Proposi-
tion 6.2.1. n
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Remark 6.2.5. Let ¢: P, — P, be an equivalence of G-principal bundles
over M. We claim that the corresponding Weil homomorphisms

Wi I(G) — HiR(M.K), i=1,2,

coincide. In fact, let 3 € C(P;) be a connection 1-form and note that 0; :=
¢*6s is a connection 1-form on P;. Then ¢*F(6y) = F(6,). For X, Y € V(M)
we then have

(6" F(0:)) (r2(X), 2(Y) = F(61) (1 (X), 71(Y))
because the respective horizontal lifts 7;(X) € aut(P) of X € V(M) satisfy
¢+71(X) = 172(X). This implies that qﬁ*q;pgf = q’{pé‘f, so that go 0 = ¢ leads
to py = py! and therefore to Wy = Wa. This means that the homomorphism
W leads indeed to characteristic classes of the bundle P.
Proposition 6.2.6. If (P, M, G, q;,0;), 1 = 1,2, are principal bundles whose
Weil homomorphisms

Wp,: 1(G) — Hip(M,K)

do not coincide, then Py o Ps.
Proposition 6.2.7. If P is a flat G-bundle, then Wp = 0.

Since Wp vanishes for a flat bundle P, we have:

Corollary 6.2.8. If Wp # 0, then the bundle P does not possess any flat
connection.

Invariant polynomials for classical groups

Of particular importance in the theory of fiber bundles are the bundles with
compact structure groups. This is due to the fact that each finite-dimensional
Lie group G with finitely many components has a maximal compact subgroup
K, and for this subgroup the natural map

Bun(M, K) — Bun(M,G), [P]— [P xk G]

defined by induction (cf. Definition 5.4.10) is a bijection (cf. [Hu94]).

For GL,,(C) the maximal compact subgroup is U, (C) and for GL,(R) the
maximal compact subgroup is O,,(R). The set Bun(M, GL,(C)) classifies n-
dimensional complex vector bundles over M and Bun(M, GL,(R)) classifies
n-dimensional real vector bundles. Therefore we take a closer look at the two
compact groups U, (C) and O, (R).
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Example 6.2.9. For G = GL,,(R) and k € Ny, we write P for the homoge-
neous polynomial on g = gl,,(R) of degree k defined by

A n
det (tl - %) — ; P(A)F, A€ gl (R).

In particular, we have

Py(A) = 1, Pl(A):—% and Pn(A):(—nnd(‘;t;ﬁ).

The invariance of the polynomials P follows immediately from the invariance
of the characteristic polynomial of A under conjugation. It is called the
k-th Pontrjagin polynomial, and one can show that they are algebraically
independent and generate I(GL,(R)), so that

I(GL,(R)) = R[py, - .., pn]

(cf. [Bou90, Ch. VIII, §13, no. 1]). The key ingredient of the argument
is to reduce the study of the algebra I(GL,(R)), by restriction to diagonal
matrices, to the isomorphic algebra R[z1, ..., x,]°" of symmetric polynomials
(Chevalley’s Restriction Theorem).

The elementary symmetric polynomials are defined by

n n

[t =a)=> (-Dfor(a)t™™*, acR"

i=1 k=0

In particular,

oi(a) = ZC% oa(a) = Zaiaﬁ and  o,(a) =a;---a,.
i=1

i<j
On diagonal matrices we clearly have
(=1)*
(2m)*

If (P,M,GL,(R),q,0) is a principal bundle, then the image Wp(Py) €
H?!(M,R) under the Weil homomorphism is called the k-th Pontrjagin class
of P. Accordingly, we define for a real vector bundle V with n-dimensional

Pr(diag(ay, ..., a,)) = or(ay, ... a,).
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fiber V= R" the Pontrjagin classes by W v)(F;) and the Pontrjagin classes
of a manifold M are defined as the Pontrjagin classes of its tangent bundle
TM. !

Example 6.2.10. The Lie algebra of G = O, (R) is
g=0,R)={regl,(R): 2" =z},

which implies that
da@1-§):da@1+£ﬁ

for A € 0,(R). Hence the restriction of Py to 0,(R) is an even polynomial
which implies that it vanishes if k£ is odd. As we have already mentioned
above, each GL,,(R)-bundle is induced from an O,,(R)-bundle, which implies
that its Pontrjagin classes Wp(Py) vanish if £ is odd. Only the polynomials

P27P47"‘7P2[%}

may lead to non-trivial characteristic classes of O, (R), resp., GL, (R)-bundles.

For the subgroup SO, (R), the identity component of O, (R), the picture
only changes a little. Its Lie algebra so,(R) = 0,(R) is the same, but since
SO, (R) is smaller, the space of invariant polynomials can be larger. If n =
2m + 1 is odd, then

I(O,(R)) = I(SO,(R)) = R[Py, ..., Pop)

and the p; are algebraically independent (cf. [Bou90, Ch. VIII, §13, no. 2|),
but if n = 2m is even, then

I(0,(R)) = R[P, ..., Py,]
with algebraically independent generators, whereas

I(SOL(R)) =R[Py, ..., Pyp_s, Pf

!The purpose of the 2m-factor in the definition of the Pontrjagin classes ensures that
these classes are integral, i.e., lie in the image of the Z-valued singular cohomology. Al-
though this may seem artificial at first sight, it is crucial to compare the characteristic
classes in de Rham cohomology with those obtained in the purely topological theory of
fiber bundles.
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—~2
also is also generated by m algebraically independent generators, where Pf =
Py, (cf. (cf. [Bou90, Ch. VIII, §13, no. 4]). We now take a closer look at

this remarkable polynomial Pf showing up for n = 2m.
We associate to the skew-symmetric matrix A the alternating bilinear
form
WA(xv y) = ITAyu x,y € R2m
with
(.UA(ei, ej) = Qyj for 1< j,
so that
wq = Zaijef A e;f.
i<j

We now define the Pfaffian of A by the relation

1 m * *

in the algebra Alt(R*™, R).
For g € Oy,,(R) we have Ad(g)A = gAg~" and
wad()a(T,y) = walg™'z, 97" y) = (g.wa)(z,y).
Therefore
wiaga = m! PE(A)g.(e] A ... Aes,,) = m!PE(A) det(g)(e] A ... Aes,,)
implies that
Pf(Ad(g)A) = det(g) Pf(A).
We conclude that Pf is invariant under SOy, (R), but not under Oy, (R).
_ _ (4
IfA—Al@AQ—(O Ay

m = my + me, then wy = wa, + wy, is an orthogonal direct sum and

> is a block diagonal matrix and, accordingly,

mi + Mo

mi+mo __ mi+mo __ mi mo
Wy = (wa, +wa,) = ( m )WAl N Wy,

follows from w’ = 0 for k > m,;. We thus obtain

PE(A; ® As) = PE(A;) PE(Ay). (6.3)
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0

Form=1and A = ( ?):) we have wy = xej A e}, so that Pf(A) ==

and det(A) = 2. From the normal form of skew-symmetric matrices, which
is a block diagonal matrix with (2 x 2)-diagonal blocks, we thus obtain with
(6.3)

det(A) = Pf(A)*.

This shows that Pf := ﬁ Pf satisfies ﬁ2 =D,,.
For an SOy, (R)-bundle P, the class

Wp(Pf) € H**(M,R)

is called the Fuler class. This class shows up in a remarkable generalization of
the GauBB—Bonnet Theorem from Riemannian Geometry, namely the Chern—
Gaufl-Bonnet Theorem, asserting that for an oriented Riemannian manifold
and the SOy, (R)-bundle P of positively oriented orthonormal (2m)-frames,
we have

[ W) = x()
M
where x(M) denotes the Fuler characteristic of M (cf. [Du78, p.112]).

Example 6.2.11. For the complex Lie group G = GL,(C), we are only
interested in the space

I(GLR(C)) = (C[ZH, A ,Znn]GLn(C)

of invariant holomorphic polynomials on its Lie algebra gl,(C). Here we con-
sider the complex-valued invariant polynomials C} which are the coefficients
of "% in the polynomial

det <t1 — ;) = zn: Cr(A)"% A e M,(C).
k=0

)

Their invariance follows immediately from the invariance of the characteristic
polynomial of A under conjugation and, with the same argument as in the
real case,

I(GL,(C)) = C[CY, ..., C,l,

where the Chern polynomials C1, ..., (), are algebraically independent.
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The image Wp(Cy) of C) under the Chern—Weil map is called the k-th
Chern class of the bundle P. Note that the restriction of Cj, to gl,,(R) satisfies

i*Cr(A) = Pi(A),

so that the m-th Pontrjagin class of an n-dimensional real vector bundle V is
(—1)™ times the 2m-th Chern class of its complexification V¢. For a complex
manifold M, the Chern classes of M are defined as the Chern classes of its
tangent bundle T'M.

Example 6.2.12. For the subgroup U,(C), the Lie algebra is
u,(C) ={x € gl,(C): ¥ = -z}
which is a totally real subspace of gl,,(C) = M, (C), i.e.,
90, (C) = u,(C) & iu,(C).

Therefore each polynomial function p: u,(C) — C has a unique extension
to a holomorphic polynomial pc: gl,,(C) — C. This extension is invariant
under GL,(C) if and only if p is invariant under the connected Lie group
U,(C):

Ic(GL,(C)) = I(U,(C),C).

For A € u,(C), the relation A = —A* = oy implies that
Cr(A) = Cr(A),
so that the Chern polynomials are real-valued on u,(R). We thus obtain

I(U,(C),R) 2 R[CY,...,Chl.

In particular, the Chern classes of U,(C)-bundles take values in the real-
valued cohomology Hag(M,R).

6.3 Flat Bundles

A principal bundle (P, M, G, q,0) is called flat if it has a connection 1-form
@ with vanishing curvature F'(f) = 0. Since all characteristic classes of a flat
bundle vanish, the Lie algebraic methods provide no means to distinguish flat
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bundles. Actually it turns out that the theory of flat bundles essentially is a
theory of bundles with discrete structure groups. In this section we show that
for a connected manifold M, each flat bundle is associated to the universal
covering qpr: M — M with respect to a homomorphism y: m (M) — G.
In this sense flat bundles can be parameterized by the set Hom(m (M), G).
In particular, flat bundles over simply connected manifolds are trivial. We
shall also see that the equivalence classes of flat bundles, as bundles with
connection, correspond to the quotient set

H'(m (M), G) = Hom(m (M), R)/G, g.x:=c,ox forgeQG,

of Hom(m(M),G) by the conjugation action of G. A crucial tool in our
discussion is the Fundamental Theorem on Lie group valued functions, which
is applied to a flat connection 1-form.

Constructing flat bundles

Let M be a connected manifold and mg € M a base point. We write
v M — M for a simply connected covering manifold of M and

m (M) := Deck(M, qu) = {¢ € Diff(M): qar 0 ¢ = qus}

for its group of deck transformation which is isomorphic to 71 (M, mg) (Propo-
sition 4.3.15).

The trivial bundle M x G has a flat connection 1-form, given by 6 = §(p¢),
where pg: M x G — G is the projection (Remark 5.4.5).

A more interesting class of flat bundle is obtained as follows:

Definition 6.3.1. Let G be a Lie group and x: m (M) — G a group homo-
morphism. Then

P, := (M x G)/m (M) =M x,, G,
where 71 (M) acts on M x G by

¢.(m, g) = (p(m), x(¢)g)

is a G-principal bundle. It is the bundle associated to the (M )-principal
bundle (M, M, m (M), qur, o) with o(m, ¢) := ¢~ (m) with respect to the ac-
tion of 1 (M) on G by left multiplications ¢.g := x(¢)g (cf. Definition 5.4.10).
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Lemma 6.3.2. The G-bundle P, carries a unique connection 1-form 0, €
C(Py) for which the map s: M — P,,s(m) = [m, 1] satisfies s*0,, = 0. The
connection 0, is flat and we also have

qos=qy and sod=sx(d)' for decm(M).

Proof. Let 6 € C(P,) be the unique connection on P, with s*¢ = 0. Its
existence follows from Proposition 5.4.11 because 0 is the unique connection
1-form on the m (M)-bundle M.

To see that 0 is flat, we note that we obtain local sections s;: U; — P,

from local sections s;: U; — M by s; = sos;. Then the local gauge potentials

Ai=50=5s0=0

7

vanish, and therefore ¢ is flat (Remark 6.1.3). O
Lemma 6.3.3. If 0 € C(P) and s1, s5: M — P are two smooth maps with

;06 =0 and qos;=qu,

)

then there exists a unique g € G with sy = s1.9.

Proof. There exists a smooth function f: M — G with sy(z) = s1(z).f(x)
for each € M. Then

T(s2) = T(0p(x)) © Tu(s1) + Fspw) © 6(f)
(Lemma 5.1.4(b)) implies that
0 = 30 = Ad(f) 510+ 6(F) = 3(f),
so that f is constant, i.e., s = s1.¢g for some g € G. ]

Definition 6.3.4. Let (P, M,G,q;,0;), i = 1,2, be principal bundles and
0; € C(P;). Then a bundle morphism ¢: P, — P, is called a morphism of
bundles with connection if, in addition, ¢*6y = ;. Similarly, we define an
equivalence of bundles with connection and write CBun(M, G) for the set of
equivalence classes of G-bundles with connection over M.
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Remark 6.3.5. (a) If M is paracompact, then each G-bundle over M has a
connection (Proposition 5.4.6), so that the natural map

I': CBun(M,G) — Bun(M, G), [(P,0)] — [P]

is surjective. The fiber of this map over the class [P] can be identified with
the set of equivalence classes [(P,6)] in CBun(M, G), which can be identified
with the set

C(P)/ Gau(P)

of orbits of the group Gau(P) of gauge transformations on the set C(P) of
connections on P.

(b) It is an important and difficult question which bundles P admit a
flat connection. For the case where M is a compact orientable surface and
G = GLy(R)g, the G-bundles with a flat connection have been classified by
Milnor in [Mi58]. We have

Bun(M, G) = Bun(M, SOy (R)) = Bun(M, T) = H' (M, T) = H*(M,Z) = 7Z

(where H?(M,Z) denotes the second singular cohomology group) and n € Z
corresponds to a flat bundle if and only if |n| < g, where g is the genus of M.

Lemma 6.3.6. Let (P,0) is a G-bundle with connection and s: M — Pa
smooth map with s*0 = 0 and qos = qy;. Then there exists a homomorphism
Xs: T (M) = G with

sod=sx(d)™" for de&m(M)

and the map .
MxG— P, (z,9) s(z)g (6.4)

induces an equivalence (Py,,0,,) — (P, 0) of bundles with connection.

Proof. For each d € m (M), the function s o d: M — P, also satisfies (s o
d)*0 = 0, so that Lemma 6.3.3 implies that s o d = s.x,(d)™! for some
Xs(d) € G. Then
50 (didy) = (s.xs(dy) ") ody = (s0dy).xs(d)) ™" = 50 xs(da) xs(dy) ™
=80 (Xs(dl)Xs(d2))_l

implies that xs: m (M) — G is a group homomorphism.
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Now the map in (6.4) factors through a bundle equivalence
¢: Py, = P, [z, 9] = s(z)g.

Further ¢*6 is the unique connection 1-form on P, vanishing on [M x {1}],
so that ¢ is an equivalence of bundles with connection. ]

Proposition 6.3.7. Let x1, x2 € Hom(m (M), G)) and 6; = 6., be the canon-
ical flat connection on P,,. Then (P,,01) and (Py,,02) are equivalent as
bundles with connection if and only if there exists a g € G with

X2 = C4 O X1-
In particular, the set
H' (7 (M), G) := Hom(m (M), G) /G, gx:=cyox for geG,

classifies the set of equivalence classes of flat G-bundles with connection
over M.

Proof. We write s;: M — P,, for the canonical maps with s70; =0, gos; =
gy and consider the correspondlng homomorphisms x; := xs,.

Suppose first that ¢: P, — P is a bundle equivalence with ¢*0; = 0;.
Then ¢ o sq: M — P, satisfies

(¢ 9 81)*92 = STQS*QQ = ST&l = O,
so that Lemma 6.3.3 implies that ¢ o s; = s9.g for some g € G. Comparing

¢ O 810 d= (¢ o} 81).X1<d)_1

with
(s2.9) 0 d = 52.x2(d)g = (52.9)-(97 ' x2(d)g),
it follows that x2 = ¢4 0 x1.
If, conversely, x2 = ¢4 © X1, then the map s := s5.9: M — P, , satisfies

shod = (syod).g=ss.x2(d)""g=s2.9x1(d) " = sh.x1(d) ",

so that x4 = x1 and Lemma 6.3.6 implies that (Py,,01) ~ (P,,0) a
bundles with connection. D
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Proposition 6.3.8. For a homomorphism x: m (M) — G, the following are
equivalent:

(i) The bundle P, is trivial.

(ii) There exists a smooth function f: M — G with f(d.z) = x(d)f(x) for
dem (M), ze M.

(iii) There exists some o € MC(M, g) and mo € M with per® = x.

«

Proof. (i) < (ii): The bundle P, is trivial if and only if it has a smooth
section s: M — P,. Since P, is a bundle associated to the (M )-bundle

M , smooth sections of P, correspond to smooth functions f: M — G which
are equivariant in the sense that

flzd) = f(d (@) = x(d) " f(z), dem(M),zeM

(Proposition 1.6.3).

(ii) = (iii): Pick 7o € M and put mo := qu(7g). Replacing f by
[+ f(mo)~!, we may assume that f(mg) = 1. Consider a := §(f) € Ql(ﬁ,g).
Then (ii) implies that for each d € 7 (M) we have

d*a=d'6(f) = 6(d"f) = 0(f od) = 6(x(d) - f) = 0(f) = &,

so that there exists a unique 1-form a € Q'(M,g) with ¢};a = &. Since
a = §(f) satisfies the Maurer—Cartan equation, the same holds for a.

Let [v] € m (M, mg) and 7: [0,1] — M be the lift of v starting in 7.
From Proposition 4.3.15 we recall the group isomorphism

®:m(M,mo) = m (M), ([v]) = &), dpi(mo) =7(1).
Then v*a = v*¢3,a = v*« implies that

per™([4]) = evolg(v*a) = evolg(7*a) = evola(7*3(f)) = F(F(1))

= f(¢)(0)) = X (1)) f (7o) = X (D}))-

(iii) = (ii): Since M is simply connected, there exists a smooth function

fi M — G with §(f) = gy and f(mg) = 1. From the calculation in the
proof of Lemma 4.4.2 we know that f satisfies (ii) with y = per'. O
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Remark 6.3.9. With the information of the preceding proposition, we can
continue the exact sequence

G < C°(M,G)-2 MC(M, g)—L" s Hom(m, (M, mp), G)

from Remark 4.4.7 by

per™0

MC(M, g)——— Hom(m (M, my), G)i) Bun(M, G),

where B(x) := [Py]. We know already that the image of the map B is
contained in the set Bun(M, G)ga of classes of flat G-bundles. Below we
shall see that this is precisely the image.

From flat bundles to associated bundles

Lemma 6.3.10. If 0 is a flat connection 1-form on P, py € P a base point,
mo = q(po), and G is connected, then the corresponding period homomor-
phism

perp’: m (P, po) = G

factors through the surjective homomorphism m1(q): m (P, po) — m1 (M, mg)
to a group homomorphism

pery’: (M, mg) — G.

Proof. If G is connected, then my(G) is trivial, so that m(q) is surjective
by Theorem 6.3.17 in the appendix below. From the same theorem get
kermi(q) = im(m(o?°)). If n: I = [0,1] — G is a piecewise smooth loop
in G, then

perp’([c™ on]) = evolg((a? on)*0) = evolg(n*(c™°)*0) = evolg(n* k)
= evolg(d(n)) =n(0) 'n(1) = 1.
This proves the lemma. ]

Proposition 6.3.11. Let G be a connected Lie group and q: P — M a
principal G-bundle over the connected manifold M.

(1) A smooth function f: P — G is G-equivariant with respect to the canon-
ical right action of G on itself if and only if 5(f) € Q' (P,g) is a con-
nection 1-form.
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(2) The 1-form 0 € C(P) C QY(P,g) is integrable if and only if 0 is flat and
the period homomorphism

pery’: m (M) — G
vanishes.

(3) The bundle P is trivial if and only if it admits a flat connection with
vanishing periods.

Proof. (1) If f: P — G is smooth and equivariant, then §(f) € Q'(P,g) and
the equivariance of f implies that

0,0(f) =0(og0 f) =0(f-g) =Ad(g) " 0d(f) and &(f)(6(z)) ==

for each g € G and = € g. Hence §(f) is a connection 1-form.
If, conversely, f: P — G is a smooth function for which 6 := 6(f) is a
connection 1-form, then

0(f 0 0g) = 0,0(f) = Ad(g) " 0 6(f) =d(f - 9)

holds for each g € G.
Fix p € P. Then

kg = (07)°0 = (0")"0(f) = 0(f 0 0”)

and the connectedness of G imply that f(p.g) = f(p)g for each g € G. Hence
foo, coincides with f-g¢ in p, and now the connectedness of P (which follows
from the connectedness of M and G), together with 6(foo,) = 0(f-g) implies
that foo,=f-g.

(2) This follows by combining Lemma 6.3.10 with the Fundamental Theo-
rem 4.4.4 and the observation that € is flat if and only if it satisfies the MC
equation.

(3) This follows by combining (1) and (2) with the triviality criterion in
Proposition 2.2.4(c), which states that P is trivial if and only if there exists
an equivariant function P — G. O

Theorem 6.3.12. Each flat G-bundle (P, 0) is equivalent, as a bundle with
connection, to some P,, x € Hom(m (M), G). In particular, it is trivial if
M is stmply connected.
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Proof. Step 1: First we consider the case where M is simply connected.
We show that (P,6) has a horizontal section s: M — P. We reduce the
assertion to the case where G is connegged. Let Gy C G be the identity com-
ponent. Then the quotient manifold M := P/Gy is a principal bundle with
the discrete structure group mo(G) = G/Gy over M, so that the natural map
q: M — M is a covering map. Since M is simply connected, each connected
component of M is mapped diffeomorphically onto M (Corollary 4.3.9). Since
the connected components of M are the image of the connected components
of P under the quotient map (the fibers of this map are homeomorphic to
Gy, hence connected), it follows that each connected component P; of P is a
G-principal bundle over M.

If 6 € C(P) is a flat connection 1-form, then |p, € C(P;) also is a flat
connection 1-form. Since 7 (M) is trivial, Proposition 6.3.11(1),(2) imply the
existence of a smooth Gy-equivariant function f: P, — Go with 6(f) = 0|p,.
Now Proposition 2.2.4(c) shows that P; has a smooth section s: M — P,
with s(M) C f71(1). Hence s*0 = s*6(f) = 6(f os) = 0, and s also is a
section of P. -

Step 2: Now we turn to the general case. Let gy : M — M be the universal
covering map. Then g}, P is a G-bundle over M and p},0 is a flat connection 1-
form. In view of the preceding corollary, ¢}, P has a flat section f: M — au P,
which means that projecting to P yields a smooth map s :=ppo f: M= P
with g o s = gy and s*0 = f*ppf = 0. Now Lemma 6.3.6 implies that
(P,0) ~ (P,,,0,,) as bundles with connection. O

Example 6.3.13. If dim M = 1, then all 2-forms on M are trivial, which
implies in particular that all G-bundles over M are flat.

For M = R this implies in particular that all G-bundles are trivial because
R is simply connected.

For M = S' we have m;(S') & Z, so that G-bundles with connection over
S! are classified by the set H(Z, G) of conjugacy classes in the group G.

Example 6.3.14. Assume that M is connected and G is discrete. Then
C(P) = {0} and each G-bundle over M is flat, hence equivalent to a bundle
of the form P, x € Hom(m (M), G) (Theorem 6.3.12). This result can be
obtained quited directly from covering theory which implies the existence of a
continuous map s: M — P with gos = gy (cf. the Lifting Theorem 4.3.10).
Since ¢ is a local diffeomorphism, the map s is actually smooth, and now
Lemma 6.3.6 applies.
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Since each equivalence of G-bundles automatically is an equivalence of
G-bundles with connection, Proposition 6.3.7 implies that

Bun(G, M) = H'(7(M), G)

is the set of G-conjugacy class in Hom(m (M), G).

Gauge transformations correspond to equivariant functions f: M= G
with respect to the action of (M) on G, defined by d.g := x(d)gx(d)™!
(Proposition 1.6.3). Since M is connected, all these functions are constant,
and we find that

Gau(P) = Cg(im(x)) = {g € G: (Vd € m(M)) x(d)g = gx(d)}.

Remark 6.3.15. If G is a Lie group, then we write G, for G, considered as
a discrete group. We then have a natural map

H'Y(m(M),G) = Bun(M,Gy) = H'(M,Gy) — Bun(M,G) = H (M, G)

(Theorem 2.1.4). As we have just seen, a G-bundle is flat if and only if it is
associated to a G4-bundle with respect to the natural map G4 — G.

Proposition 6.3.16. A principal bundle (P,0) with connection is flat if and
only if there exists a bundle atlas (¢;, U;)ier for which all local gauge potentials
A; vanish.

Proof. 1f all A; vanish, then Remark 6.1.3 implies that F'(6) = 0.

If, conversely, F'(f) = 0, we choose a bundle atlas (¢;, U;);cs for which
all sets U; are simply connected. Then A; := s70 € Q' (U;, Q) satisfies the
Maurer—Cartan equation, so that the Fundamental Theorem implies the ex-
istence of some f;: U; — G with §(f;) = A;. For the new section 3; := s;.f; ',
we then have

550 = Ad(fi(x)) o si0+ 5(f;1) = Ad(fi(x)) o 6(fi) +0(fH) =0
(Lemma 4.2.5), where we have used that
To(8i) = T(0p () © To(si) + 65 © 5(fi e

(Lemma 5.1.4(b)). Therefore the local gauge potentials vanish for the new
bundle charts defined by ¢(z, g) := ¢i(x, fi(z)1g). O
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Appendix: The Exact Homotopy Sequence

Theorem 6.3.17. (Exact homotopy sequence of a principal bundle) Let
(P,M,G,q,0) be a principal bundle, py € P, and mqy := q(po). Then there
exists a group homomorphism

512 7T1(M, mo) — 7T0(G)

such that the sequence

w1 (aP0)

m1(q) 5
m(G) (P, po)—711 (M, o) 570 (G) — mo( P, po) — mo(M,my)
is exact as a sequence of groups resp., pointed spaces. Here mo(M, mg) denotes
the set or arc-components of M with the component [mg| containing mg as a
base point. The homomorphism &1 is defined by 5, ([7]) = [g] = 9Go if

F(1) =5(0).g7"
holds for a continuous lift 7: [0,1] — P of the loop v in P with ¥(0) = po.

Proof. (cf. [Br93, Thm. VIL.6.7]) We give a direct argument for the exactness
in m (M, mg). If v:[0,1] — M is a loop in myg, then there exists a lift
~:[0,1] = P with ¥(0) = po. Then 7(1) € P, = po.G. If 61([7]) = 1, then
(1) € po.Go. Let a: [0,1] — G be a continuous path with a(0) = 1 and
~¥(1).a(1) = po. Then F(t) := 7(t).a(t) is a closed lift of 4. This implies that
[v] = m(a)[7], so that [7] € im(m(q)).

That §; o m(q) = 1 follows from the fact that for each loop 7 in pg, 7 is
a closed lift of v :=qo7. ]

)

Remark 6.3.18. Assume that M is connected but that P is not. Let P, C P
be a connected component. Using local trivializations, it is easy to see that
q(Py) is open and closed in M, so that the connectedness of M implies that
q(Py) = M. The subgroup

Gi:={9ge€G: Ph.g= P}

of G is open because it contains Gg. Since the diffeomorphisms o4, g € G,
permute the connected components of P, the relation o,(P;)N P, # 0 implies
g € G1, and from that one readily verifies with bundle charts of P that P; is
a G1-principal bundle over M.
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One can show that the image of Gy in my(G) = G/G, coincides with the
range of the connecting homomorphism

511 7'('1(]\47 mo) — 7T0(G)

of the exact homotopy sequence of P. In particular, the connectedness of P
is equivalent to the surjectivity of d;.

Remark 6.3.19. If P is connected, then P/Gy — M is a connected covering
of M which is a 7my(G)-principal bundle, called the associated squeezed bundle.
If M is simply connected, then this covering must be trivial which implies
that G is connected. Note that this also follows from the exactness of the
exact homotopy sequence in 7y(G) (Theorem 6.3.17).

We claim that P/Gj is the bundle associated to the connecting homo-
morphism d1: m (M) — m(G). Indeed, let M:=M x5, mo(G) denote the
covering of M associated to d;. If P is connected, then ¢; is surjective (Re-
mark 6.3.18) and therefore M is connected.

Pick a base point py € P and put mg := q(py). Then the exactness of the
long exact homotopy sequence of the bundle P implies that

m1(q)(m1 (P, po)) = ker 0;.

Therefore ¢: P — M lifts to a unique smooth map ¢: P — M with q(po) =

mo, where mg = [my, 1] is a base point of M over mq (Lifting Theorem 4.3.10).
The uniqueness of lifts now easily implies that q is G-equivariant, and this
entails that M = P/G.

6.4 Abelian Bundles

In this section we consider principal bundles with abelian structure groups.
Let G be an abelian Lie group, m(G) := G/Gj its group of connected com-
ponent and 71 (G) its fundamental group. Since the exponential function

expg: g — G
is a covering morphism of Lie groups, we have

Go = g/ kerexp,, where kerexp, = m(G)
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is a discrete subgroup of the vector space g. Further, since GG is a divisible
abelian group, the short exact sequence

0—Gy—G—m(G)—0
of abelian groups split, which implies that
G= GO X WQ(G),

where (@) is considered as a 0-dimensional abelian Lie group. From that
we immediately derive that

Bun(M,G) =2 HY(M,G) = H (M, Gy) x H'(M,m(Q)),
and we have already seen that
HY (M, 70(G)) = Bun(M, 7o(G)) = Hom(m, (M), 70(G))

(Example 6.3.14). Therefore we may concentrate in the following on the case
of connected groups.

From now on G = g/T', where I' = m,(G) is a discrete subgroup of g.
A case of particular importance is the circle group T = R/Z. We write
g = expe: g — G for the quotient map.

Flat abelian bundles

We continue the discussion from Remark 6.3.9 for the special case of abelian
groups G = g/I". Since each (g, +)-bundle is trivial (Theorem 5.2.6), the
map

MC(M, g) = Zjy (M, g) =" Hom(m (M, m), g)

is surjective, so that Corollary 4.4.6 shows that
P: Hiz(M,g) — Hom(m (M, mg),g), [a]+— perl® (6.5)

is a linear isomorphism.
Let us write

Hy(M) = m (M, mg) /D" (71 (M, mg))
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for the quotient of (M, mg) by its commutator group (its first derived
group). This is the maximal abelian quotient group of (M, mg), so that
we have for each abelian group A a natural isomorphism:

Hom(m (M, mg), A) = Hom(H, (M), A).
This leads in particular to
Hir(M, g) = Hom(m (M, mq), ) = Hom(Hy(M), g).
Next we note that ¢g induces a homomorphism of abelian groups
(4a)-: Hom(H, (M), g) — Hom(Hy (M), G)
and the G-valued period map per:° can be factored as
perg® = (qa)« o perg” .
This implies that for the map
B: Hom(m (M, my),G) = Hom(H,(M),G) — Bun(M, G),

we have
ker B = im(per°) = im((g¢)+)-

This means that a homomorphism x: w1 (M, my) — G defines a trivial bundle
P, if and only if y lifts to a homomorphism x: m (M, mg) — g. Therefore
we may rewrite the information in a short exact sequence

0 — Hom(H,(M),g) — Hom(H,(M),G) — Bun(M, G).

If A and B are abelian group, then we write Ext(A, B) for the set of
equivalence classes of abelian extensions of A by B. From abelian group
theory, we know that Ext(A, B) carries a natural abelian group structure
and that the short exact sequence

0T —-g—-G—0
of abelian groups induces a long exact sequence

0 — Hom(H,(M),I") — Hom(H,(M),g) — Hom(H, (M), G)
— Bxt(H,(M),T) - 0
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because the divisibility of g implies that Ext(H;(M),g) = 0. This implies
that we may identify the set Bun(M, G)ga of equivalence classes of flat G-
bundles with

Bun(M, G)gas = Ext(H (M), T). (6.6)

As a discrete subgroup of g, the group I' is isomorphic to Z* for some k.

Hence
Ext(H,(M),T) = Ext(H, (M), Z)*.

If H1(M) is a finitely generated (which is the case if M is compact), then it
is a direct sum of cyclic groups. This reduces the computation of the group
of flat bundles to the determination of the groups Ext(Z/mZ,7Z) for m € Z.
For m = 0 the freeness of the group Z implies that

Ext(Z,Z) = 0.
If m # 0, then one can show that
Ext(Z/mZ,Z) = Hom(mZ, Z)/ Hom(Z, Z) |z = Z/mZ.

Curvature of abelian bundles
If G is abelian, then
Gau(P) = C*(P,G)% = C™(M, G),

where f € C°(M,G) acts on P by ¢,¢(p) = p.f(q(p)).
The bundle Ad(P) is trivial, so that the translation space of C(P) is
QY(M, Ad(P)) = Q' (M, g) and F(0) = df vanishes if and only if 6 is closed.

Lemma 6.4.1. For each connection 1-form 6 € C(P), there exists a unique
2-form w € Q*(M, g) with

This 2-form is closed.

Proof. Since F(0) is a horizontal equivariant 2-form, the assumption that G
is abelian implies that it is actually invariant. Therefore

wep) (T (@)1, T(q)va) == F(0),(v1, v2)
is a well-defined 2-form on M with F(f) = ¢*w. From
¢"dw = dq*w = dF () = d%0 = 0

we derive that w is closed because ¢ is a submersion. O
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Definition 6.4.2. The 2-form w € Q?(M,g) with ¢*w = df is called the
curvature of (P,0).

Its cohomology class [w] € Hiz (M, g) is called the Chern class of P. Tt
can be obtained by applying the Chern—Weil construction to the invariant
linear map idg: g — g, which leads to the 2-cohomology class

Wp(idg) = [p'] = [w] € Hip(M, g).

Remark 6.4.3. The Chern class does not depend on the connection . This
does also follow directly from the fact that each other connection is of the
form 6 = 6+ ¢*a for some a € Q' (M, g), which leads to F'(¢") = F(0)+q*da,
and hence to W’ = w + da.

Remark 6.4.4. Let M be a connected manifold and (P, M, G, q,0) a prin-
cipal bundle.

We take a closer look at the action of the group Gau(P) = C*(M,G)
of gauge transformations on the affine space C(P). According to Proposi-
tion 5.4.4, it is given by

Ggest =06(a"f) +0=q"5(f) +0.

In particular, ¢4 fixes 6 if and only if ¢*f is locally constant, which is
equivalent to f being locally constant. If M is connected, this proves that

Gau(P)y = G,

is the subgroup of constant functions in C*°(M, G).
Identifying Q'(P, g)¢ = ¢*QY (M, g) with Q'(M, g), we have

@70 = 6(f) + 9,
which implies that the orbits of Gau(P) correspond to the cosets of the
subgroup 6(C*°(M,G)) in the space Q'(M,g). In particular, the quotient

group
Q'(M,9)/0(C(M,G))

acts simply transitively on the quotient space C(P)/ Gau(P).
Since the forms 0(f) are closed, the curvature induces a map

F:C(P)/Gau(P) — Q*(M,g), 0w F(0).
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Its fibers are acted upon simply transitively by the group
Hag(M,9.T) = Zgp(M, ) /0(C* (M, G)),
so that we obtain an exact sequence
0 — Hiz(M,g,T) — QYM,g)/6(C>(M, G))LQZ(M,Q). (6.7)

From the Fundamental Theorem 4.4.4 we obtain the exact sequence of
abelian groups

per'nLO

O (M, G)—"— Z1x (M, )" Hom(m, (M, my), G),
showing that per” induces an embedding
Hix(M,g,T) < Hom(m (M, mg),G), [a] — per™

of abelian groups. In view of the isomorphism

per™0

P: Hix(M,g)——— Hom(m (M, my), g)
from (6.5), we obtain
H(%R(Ma g, F) = (qG)* ( Hom(ﬂ—l (Ma mo), 9)) g HOHl(ﬂ'l (Ma mo), G)

We know already that the set Bun(M,G) = H'(M, Q) carries a natural
group structure given by multiplication of the corresponding Cech cocycles
(Remark 2.1.5). It is therefore of some interest to see how the curvature can
be calculated from the corresponding Cech cocycles.

Remark 6.4.5. If 0 is a connection 1-form on a G-bundle P and (U;, ¢;)icr
a bundle atlas, then the corresponding local gauge potentials A; € Q'(Uj;, g)
satisfy

Ai = 0(g51) + A,

(Remark 5.4.5) and the restriction of the curvature 2-form w; € Q*(U;, g)
satisfies
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Proposition 6.4.6. Let § € C(P) with curvature w € Q*(M,g). Then the
subgroup G = Gau(P)y C C°(M,G) = Gau(P) is central. The group

Aut(P,0) := {6 € Aut(P): ¢°0 = 0}

is mapped by the natural map I': Aut(P) — Diff (M) into the symplectomor-
phism group
Sp(M,w) :={¢n € Diff(M): ¢*'w = w},

which leads to an exact sequence
1— G — Aut(P,0) — Sp(M,w).

Proof. If ¢*0 = 6 holds for § € Aut(P), then the induced diffeomorphism
oy = T'(¢) of M satisfies

¢ oyw = (pmoq)'w = (g0 ¢)'w=¢"¢'w = ¢"df = d(¢*0) = df = ¢"w,

which implies that ¢},w = w. []

6.5 Appendices

Transformation behavior of the curvature

Lemma 6.5.1. Let G be a Lie group with Lie algebra g. For f € C*°(M, Q)
and o € QY(M, g), we have

d(Ad(f).a) = Ad(f).(da + [5(f), a)).

Proof. We consider Ad(f) as a smooth function M — End(g). Then Exam-
ple 3.3.9 implies that

A(Ad(f).a) = d(Ad(f)) A a + Ad(f).da,

where A is defined in terms of the evaluation map End(g) x g — g. Now the
definition of the left logarithmic derivative, Lemma 4.2.6 and L(Ad) = ad
(Example 4.1.11) lead to

d(Ad(f)) = Ad(f) - 6(Ad(f)) = Ad(f) - ad((f)),
where - denotes the product in End(g). We thus obtain
d(Ad(f).c) = Ad(f)-(da+ad(6(f)) A a) = Ad(f).(da + [0(f), ).
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Lemma 6.5.2. Let M be a smooth manifold and G a Lie group with Lie
algebra g. Then the prescription

ax fi=040(f)+Ad(f) ".a
defines an affine right action of the group C*°(M,G) on QY (M, g) and for
F(a) :=da+ i[a,a] wehave Flaxf)=Ad(f)"".F(a).

In particular, the subset MC(M, g) of solutions of the MC' equation is invari-
ant under this action.

Proof. That «a * f defines an action of the group C*°(M, G) follows with the
Product Rule (Lemma 4.2.5) from

(ax fi)* fa = 6(f2) +Ad(f2)"".(6(f1) + Ad(f1) ")
= O(fife) + Ad(fifo) o= ax (fifa).

Since 0(f) satisfies the MC equation, Lemma 6.5.1 implies that
Flaxf)=d(sf)+ glaxfox]]
= A(3(f)) + Ad(f) " (da + [6<f—1>, o) + = [6(F), 6(F)]

2
(), Ad() o] + SAA() 0, Ad(F) ]
= Ad(f)"(da + 5o, a]) + [A() S(F7), Ad(F).))

+[5(f),Ad(f)*1-Oé]
= Ad(f)".F(a),

where we have used that §(f~1) = — Ad(f).6(f). O
Example 6.5.3. We have seen in Proposition 5.4.4 that
Gau(P) = {¢;: f € C%(P,G)"}

acts on C(P) by

@30 = o(f) + Ad(f) L0 =0xf.
Therefore the preceding lemma implies that the curvature transforms under
gauge transformations according to

F(636) = Ad(f).F ().
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Chapter 7

Perspectives

To develop the theory of fiber bundles further from where we stand, one needs
various tools from algebraic topology, differential geometry (integration of
differential forms) and sheaf theory.

7.1 Abelian Bundles and More Cohomology

First of all one needs the singular cohomology of a topological space X.

Definition 7.1.1. (Singular homology and cohomology) (a) Let X be a
topological space and

A, = {z € RPT: (Vi)z; > 0, sz =1}

be the p-dimensional standard simplex. The group C,(X) is the space of
singular p-chains is the free group over the set C'(A,, X) of continuous maps
A, — X. It consists of all formal linear combinations

Z Cljfj7 fj S C(Ap, X) with Q; €.
J
We now form the abelian group

C(X) =P CX)

p=0

of singular chains.

131



132 CHAPTER 7. PERSPECTIVES

There is a natural boundary operator
0: Cp(X) = Cpq(X),

defined on f € C(4A,, X) by
of =Y (=1)'o.f,
=0

where
@f Ap_1—>X7 ZEP—>f(l’o,...7l‘i_1,07f£i,...,l’p).

For p = 0 we put 6(f) := 0. One easily verifies that the corresponding
endomorphism

0: C(X) = C(X)
satisfies 92 = 0. The elements of the group

Zp(X) = ker(d]c,x))
are called p-cycles, and the elements of the group
By(X) := 0(Cpya (X)) € Z,(X)
are called p-boundaries. The quotient
Hy(X) = Z,(X)/By(X)

is called the p-th singular homology group of X.
(b) Now let A be any abelian group. The elements of the group

CP(X, A) = Hom(C,(X), A)

are called singular p-cochains with values in A. On the space
C(X, A):=EPCr(x, A
p=0

we now define a coboundary operator by

d: CP(X, A) = CP(X, A), (df)(0) == f(Do)



7.1. ABELIAN BUNDLES AND MORE COHOMOLOGY 133

and find that d?> = 0 because 9? = 0. The elements of the group
ZP(X, A) = ker(d|cr(x,a))
are called p-cocycles, and the elements of the group
BP(X,A) :=d(CP (X, A)) C ZP(X, A)
are called p-boundaries. The quotient

Hp

sing

(X, A) = HP(X, A) := ZP(X, A)/B"(X, A)

is called the p-th singular cohomology group of X with values in A.

(c) If X is a smooth manifold, it makes sense to speak of smooth maps
o: A, = X. These are maps which are smooth on the relative interior of A,
in its affine span, and for which all partial derivatives extend continuously
to the boundary. We use these cochains we obtain the smooth singular
cohomology groups

We now have natural homomorphisms

¢p: HE (X, A) — H7,

sing

(X, 4)

and it is part of an important Theorem of de Rham that each ¢, is an
isomorphism for each abelian group A.

If, in addition, A = V is a vector space, then each differential form
w € QP(X,V) defines an element @ of C4+(X, V) by

S(o) = [wi= [ o

In view of Stoke’s Theorem, which holds in this context:

/w:/dw,
do o

so that we obtain a linear map
Y Hig (M, V) = Hg(M,V),  [w] — [@].

Again, de Rham’s Theorem (cf. [Wa83]) asserts that this map is an isomor-
phism.
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Definition 7.1.2. As we have already seen in Chapter 2, there is another
type of cohomology that shows up naturally in bundle theory, namely Cech
cohomology. We know already how to define H'(M, G) for a non-abelian Lie
group G, so let us assume here that G is abelian.

We start with an open cover U = (U;);es of the smooth manifold M. For
a = (iy,...,i,) € IP, we write

Ua = UilﬂUizﬁ...ﬂUiP
and write I, := {« € I?: U, # 0}. Then we consider the group
crU,G) =[] c*(U..G)
a61p+1
of smooth p-cochains. We then have a coboundary map
§: CP(U,G) — CPTHU,G),
defined by
p+1
7=0
Again, one can show that §2 = 0, which leads to cohomology groups
HPU, G) = ker(8]co ) /0(CP (U, G)).

If the open cover V = (Vj);es is a refinement of U, then we have a natural
homomorphism

Tuy: Hp(u, G) — ﬁp(V, G)
and the corresponding direct limit group is denoted
HP(M,G) :=lim H?(U,G).

—

Again, as a consequence of de Rham’s Theorem, we obtain for a discrete
abelian group G an isomorphism

HP(M? G) = Hgng<M7 G) = Hgiff(Mv G)

To analyze abelian bundles further, one needs results on these cohomology
groups. We have already seen that for vector groups G = (V,+), each G-
bundles is trivial, which means that

HY(M,V) = 0.
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This generalizes to
HP(M,V)=0 for p>0.

If G =g/ is a connected abelian Lie group, then the short exact sequence
0T —-g—-G—0

induces a long exact cohomology sequence
... — HP(M,T) — H?(M,g) — H*(M,G) — H""'(M,T) —

so that the vanishing of the groups I:IP(M ,g) for p = 1,2 yields an isomor-
phism
6: HY(M,G) — H*(M,T) = H2 (M,T).

sing

This result can be viewed as a classificaton of principal G-bundles in terms
on singular homology:

Bun(M,G) = HE, ,(M,T).
For G = T = R/Z, we obtain in particular

Bun(M,T) = HZ (M, Z).
For each connection on a G-bundle we have defined the curvature of
a G-bundle as an element of Hiz(M,g). This corresponds to the natural
homomorphism

R: H?

sing

(M,T) — HgiH(Ma g) — HgR(Mu g).

Its image is called the I'-integral de Rham cohomology of M and denoted
by H2y(M,g,T). It consists of those cohomology classes [w] for which the
corresponding singular cocycle

oo / w

defined by integration has values in the discrete subgroup I' of g. The map
R has a certain kernel corresponding to the flat G-bundles. We know already
that

Bun(M, G)gay = Ext(H,(M),T).
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In terms of homological algebra, this corresponds to the Universal Coef-
ficient Theorem (cf. [Br93]), which provides for each abelian group A a short
exact sequence

0 — Ext(H,(M),A) = H*(M, A) — Hom(Hy(M), A) — 0.
Applying this to A = g, we first find with Ext(-, g) = 0 (g is divisible) that
H*(M, g) = Hom(H,(M), g)

and by applying it to A = I, this leads to the exact sequence

0 — Ext(H(M),T') — H*(M,T) — Hom(Hy(M),T) = H3z(M,g,T) — 0.

7.2 Homotopy Theory of Bundles

To obtain a classification of GG-bundles in more concrete terms than the non-
abelian cohomology group H'(M, G), one translates the classification of bun-
dles into a homotopy theoretic problem.

To do that, we first move from the smooth category to the topological
category. Every Lie group G also is a topological group and we may thus con-
sider locally trivial topological G-bundles (P, M, G, q, o), where o is simply a
continuous action. That this change of perspective does not lead to a loss of
information is contained in the theorem that the corresponding natural map

Bun(M, G) — Bun(M, G)top

assigning to the smooth bundle the class of the corresponding topological
bundle actually is a bijection.

The next major step is to show that for each topological group G there
exists a universal bundle (EG, BG, G, q,0) with the property that for any
other G-bundle there exists a continuous map f: M — BG with

P EG

and that two bundles f;{EG and f;EG are equivalent if and only if the two
maps f;: M — BG are homotopic. We thus obtain a bijection

[M, BG| — Bun(M, G)op, [f] — [fTEG]
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which leads to a classification of G-bundles in terms of homotopy classes.
For simple manifolds such as spheres, the basic tools of homotopy theory
now lead to
Bun(S",G) = [S", BG| = m,-1(G), n > 1,

whereas we find for n = 1 that Bun(S', G) can be identified with the set
HY(Z,7(G)) of conjugacy classes in m(G) (Example 6.3.13). Here we see
quite explicitly how the classification of flat bundles (as bundles with con-
nection) and the classifications of bundles differ. Each bundle over S! is flat,
so that

Bun(S*, G) = Bun(S', G)pa = HY(Z, mo(G))

(Example 6.3.13). but the equivalence classes of flat bundles with connection
are parameterizes by the set H'(Z, ). There is a natural surjective map

HYZ,G) — HYZ,m(G)),

but it is far from being injective.
On the topological level the characteristic classes of a G-bundle P &
f*EG are obtained from the natural homomorphism

F*t Hyng(BG,K) — H(M,K) = Hop (M, K).
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