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Introduction

Geometry has a long tradition in Erlangen. One of the most significant milestones in our
present understanding of geometric structures was Felix Klein’s “Erlanger Programm”1 Its
main point is to define geometric properties in terms of a corresponding group of transfor-
mations. This leads to an identification of geometries with the groups of transformations
preserving the corresponding geometric properties. This correspondence is best understood
in terms of some examples of geometries on the same underlying set Rn.

Linear geometry: The linear geometry on Rn is specified by the group GL(Rn) of linear
automorphisms of Rn, which can be identified with the group GLn(R) of invertible (n× n)-
matrices. In this context geometric properties are: “being 0” (for an element of Rn), “linear
(in-)dependence” (for subsets of Rn), “being collinear” (for subsets of Rn).

Affine geometry: The affine geometry on Rn is specified by the group of all invertible
affine maps φ(x) = Ax+b forA ∈ GLn(R), b ∈ Rn. The main difference to the linear geometry
is that there is no origin specified, i.e., “being 0” is not an affine geometric property. Typical
affine geometric properties are: “parallelity of two affine lines”, “the dimension of the affine
subspace spanned by a subset”, “proportions”, i.e., “the ratio of the lengths of two segments
of a line”. Since the affine group is larger than the linear group, all affine properties are in
particular linear.

Euclidean geometry: The euclidean geometry on Rn is specified by the group of all
isometries, i.e., length preserving transformations, with respect to the euclidean metric

d(x, y) =
( n∑
j=1

(xj − yj)2
) 1

2
.

These are the affine maps of the form φ(x) = Ax + b for A ∈ On(R), b ∈ Rn, also called
congruence transformations. Typical metric properties are: “the distance d(x, y) of two
points”, resp., “the length of a line segment”, “the angle between two non-zero vectors”,
“the surface area of a triangle”.

In addition to the three types of geometries mentioned above, we shall study
• Spherical geometry, i.e., the metric geometry of the unit sphere S(E) in a euclidean
vector space E with respect to its natural metric. The corresponding group consists of the
restrictions of elements of the orthogonal group O(E). For E = Rn+1 we obtain in particular
the sphere Sn and the group On+1(R).
• Projective geometry on the projective space P(V ) of one-dimensional subspaces of a
vector space. The corresponding group is the projective linear group PGL(V ) ∼= GL(V )/K×,
consisting of the projectivities, i.e., those maps P(V ) → P(V ) induced by invertible linear
maps φ ∈ GL(V ) by φ(Kv) := Kφ(v). Over the real field we shall also discuss metric pro-
jective geometry on P(Rn), for which the corresponding group is the projective orthogonal
group PSOn(R) := On(R)/{±1}.

1Christian Felix Klein (25 April 1849 to 22 June 1925) was a German mathematician, known for his work
in group theory, complex analysis, non-euclidean geometry, and on the connections between geometry and
group theory. His 1872 Erlangen Program, defining geometries in terms of their underlying symmetry groups,
was a very influential synthesis of much of the mathematics of the day.
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Notation and Terminology

We write
R+ := [0,∞[ for the closed real half line, and
N = {1, 2, 3, . . .} for the natural numbers.

1 Affine Geometry

We start our geometric journey with the kind of geometry that is closest to the concepts
we know from Linear Algebra, namely vector spaces. Conceptually we want to deal with
vector spaces where we “forget” the origin, i.e., we want a geometric structure for which all
translations become isomorphisms. This leads naturally to the concept of an affine space
which distinguishes between points and vectors, which is usually not done in Linear Algebra

courses. In affine geometry vectors are arrows
−→
ab determined by a pair (a, b) of points and

these vectors represent translations of our space moving a to b.

1.1 Affine spaces

Definition 1.1. (a) An affine space (over the field K) is a triple (A, V,+), where A is a set,
V a K-vector space and + a map

+: A× V → A, (a,x) 7→ a+ x,

satisfying the following conditions:

(A1) a+ o = a for all a ∈ A.

(A2) a+ (x + y) = (a+ x) + y for a ∈ A,x,y ∈ V .

(A3) For a, b ∈ A, there exists a unique x ∈ V with b = a+x. This element
−→
ab := x is called

the translation (vector) from a to b.

The vector space V is called the translation space of A. It is sometimes denoted
−→
A . Elements

of A are called points and elements of V are called vectors.
In this notation the axioms (A1-3) take the form

(A1) −→aa = o for a ∈ A.

(A2)
−→
ab +

−→
bc = −→ac for a, b, c ∈ A.

(A3) a+
−→
ab = b and

−→
ab is uniquely determined by this relation for a, b ∈ A.

Example 1.2. (a) The prototypical example of an affine space is obtained as (V, V,+), where
V is a K-vector space and + is the addition map of V . Then (A1-3) are obviously satisfied

with
−→
ab = b− a.

(b) For V = Kn we so obtain the n-dimensional affine (coordinate)-space

An := (Kn,Kn,+).

(c) A = ∅ is an affine space for every vector space V with respect to the empty map
A× V → A.
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1.2 Affine maps

Definition 1.3. (a) Let (A, V,+) and (B,W,+) be affine spaces. A map φ : A→ B is called
affine if there exists a linear map φL : V →W such that

φ(a+ v) = φ(a) + φL(v) for a ∈ A, v ∈ V.

Clearly, φL : V → V is uniquely determined by φ.
(b) An affine map φ : A→ B is called an affine isomorphism if there exists an affine map

ψ : B → A satisfying
φ ◦ ψ = idB and ψ ◦ φ = idA .

It is easy to see that this condition is equivalent to the requirement that φ is bijective because
then the inverse map φ−1 : B → A is automatically affine (Exercise 1.1). We write Aff(A,B)
for the set of affine maps A→ B and Aff(A) for the set of affine maps A→ A. For the group
of affine automorphisms of A, i.e., isomorphisms A→ A, we write Aut(A).

Example 1.4. Translations
τv : A→ A, a 7→ a+ v

are affine maps with (τv)L = idV because

τv(a+ w) = (a+ w) + v = (a+ v) + w = τv(a) + w for a ∈ A,w ∈ V.

Example 1.5. For A = (V, V,+) and B = (W,W,+), the canonical affine spaces defined by
the vector spaces V and W , a map φ : V →W is affine if and only if

φ(v) = φL(v) + w0

for some linear map φL : V → W and an element w0 ∈ W . In fact, that φ necessarily has
this form follows immediately from the definition (for a = 0). Conversely, an easy calculation
shows that all maps of this form are affine. We conclude that the affine maps between vector
spaces are simply the sums of linear maps and constant ones.

For V = Kn and W = Km the preceding observation shows that the affine maps φ : Kn →
Km have the form

φ(x) = Ax+ b

for a matrix A ∈Mm,n(K) and b ∈ Km. For n = m = 1 we obtain in particular the form

φ(x) = ax+ b.

Remark 1.6. (Embedding affine spaces into linear ones) (a) Let V be a linear space. We

identify the affine space A := (V, V,+) with the affine subspace A := V ×{1} ⊆ V̂ := V ×K.

We write End(V̂ )A ⊆ End(V̂ ) for the monoid of those linear maps preserving the affine

hyperplane A. Clearly, every element φ ∈ End(V̂ )A induces an affine map φ|A. If, conversely,
φ : A→ A is an affine map, then it is of the form

φ(v, 1) = (ψv + b, 1), v ∈ V, ψ ∈ End(V ), b ∈ V,

and
φ̂ : V̂ → V̂ , φ̂(v, t) := (ψv + tb, t)
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is an element of End(V̂ )A with φ̂|A = φ. Since every φ ∈ End(V̂ )A is uniquely determined
by its restriction to A, we thus obtain an isomorphism of monoids

End(V̂ )A → Aff(A), φ 7→ φ|A.

Restricting to invertible affine maps, we obtain a group isomorphism

GL(V̂ )A := End(V̂ )×A → Aut(A), φ 7→ φ|A.

(b) It is also instructive to take a look at the concrete matrix picture of V = Kn. Then

V̂ = Kn+1 and

End(Kn+1)A =
{(

A b
0 1

)
: A ∈Mn(K), b ∈ Kn

}
.

Remark 1.7. (a) Composition of affine maps are affine. In particular, for each affine plane
A, the set Aff(A) of affine maps A → A is a monoid w.r.t. composition and the neutral
element idA.

(b) The map
Aff(A)→ End(V ), φ→ φL

is a morphism of monoids, i.e.,

(idA)L = idV and (φ ◦ ψ)L = φL ◦ ψL.

Example 1.8. (of affine maps) (a) For a point a ∈ A, the map

ia : V → A, ia(v) := a+ v

is an affine isomorphism (V, V,+)→ (A, V,+) with φL = idV . In fact, it is bijective and, for
b = a+ w and v ∈ V we have

ia(w + v) = a+ (w + v) = (a+ w) + v = ia(w) + v.

We conclude that:
Every affine space (A, V,+) is isomorphic to an affine space of the form (V, V,+).

(b) Fix points a0, b0 ∈ A. Then every linear map ψ : V → V defines a unique affine map
φ : A→ A with φ(a0) = b0 and φL = ψ. This map is defined by

φ : A→ A, a0 + v 7→ b0 + ψ(v).

To see that this map is affine, we first note that φ = ib0 ◦ ψ ◦ i−1a0 . Since all three factors are
affine maps by (a) and Example 1.5, Remark 1.7 implies that φ is affine.

Proposition 1.9. (Structure of the group Aut(A)) Let (A, V,+) be a non-empty affine space.

(a) The translations form an abelian subgroup τV ∼= (V,+) of Aut(A). In particular, τvτw =
τv+w for v, w ∈ V .

(b) The map q : Aut(A) → GL(V ), φ 7→ φL is a surjective homomorphism whose kernel
ker q = τV is the subgroup of translations.

(c) For every point a ∈ A, the stabilizer subgroup Aut(A)a is mapped isomorphically by q to
GL(V ).

5



(d) For ψ ∈ GL(V ), we write ψa ∈ Aut(A)a for the unique affine map with (ψa)L = ψ and
ψa(a) = a. Then the map

Γ: V ×GL(V )→ Aut(A), Γ(v, ψ) 7→ τv ◦ ψa

is a bijection. It is an isomorphism of groups with respect to the group structure on
V ×GL(V ), given by

(v, ψ)(v′, ψ′) := (v + ψ(v′), ψψ′), v, v′ ∈ V, ψ, ψ′ ∈ GL(V ).

Proof. (a) is an immediate consequence of the definitions.
(b) We have already observed in Remark 1.7 that

q(φ ◦ ψ) = (φ ◦ ψ)L = φL ◦ ψL = q(φ) ◦ q(ψ),

so that q is a group homomorphism. It is surjective by Example 1.8(b). To determine its
kernel, we assume that φL = idV . We pick an element a ∈ A. For w ∈ A we now find

φ(w) = φ(a+−→aw) = φ(a) +−→aw = (a+
−−−→
aφ(a)) +−→aw = a+−→aw +

−−−→
aφ(a) = w +

−−−→
aφ(a).

This shows that φ is the translation τv with v :=
−−−→
aφ(a). We conclude that ker q = τV is the

subgroup of translations. In particular, the kernel intersects the subgroup Aut(A)a trivially.

(c) If a translation τv fixes a, then v =
−−−−→
aτv(a) = −→aa = 0 implies that τv = idA. Therefore

ker q ∩Aut(A)a = {idA}, so that the restriction of q to Aut(A)a is injective.
Example 1.8(b) implies in particular that, for every ψ ∈ GL(V ), there exists an affine

map φ : A→ A with φL = ψ that fixes a. Therefore q|Aut(A)a is also surjective.

(d) To see that Γ is surjective, we start with φ ∈ Aut(A) and put v :=
−−−→
aφ(a). Then

τ−vφ ∈ Aut(A)a is of the form ψa for some ψ ∈ GL(V ), and therefore φ = τv ◦ψa = Γ(v, ψ).

If φ = Γ(v, ψ) = τv ◦ ψa, then ψ = φL and v =
−−−→
aφ(a), so that Γ is also injective.

For v ∈ V and ψ ∈ GL(V ) we have

ψa ◦ τv = τψ(v) ◦ ψa

because both sides have the same linear part and map a to the same point a+ψ(v). For the
composition of two affine maps, this leads to the formula

(τv1 ◦ ψa1 ) ◦ (τv2 ◦ ψa2 ) = τv1+ψ1(v2) ◦ (ψ1ψ2)a.

1.3 Semidirect products of groups

In the language of group theory, Proposition 1.9 asserts that Aut(A) is a semidirect product
V oα GL(V ) of the groups V and GL(V ) with respect to the action of GL(V ) on V given by
αψ(v) := ψ(v). To understand what this means, we now take a closer look at the concept of
a semidirect product of groups. We start with the formal definition of a semidirect product.

Definition 1.10. Let G and N be groups and α : G→ Aut(N), g 7→ αg be a homomorphism.
Then N ×G is a group with respect to the multiplication

(n, g)(n′, g′) := (nαg(n
′), gg′) and (n, g)−1 = (α−1g (n−1), g−1).
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It is called the semidirect product of N and G with respect to α. It is denoted N oα G.
The direct product ofG andN corresponds to the trivial homomorphism with αG = {idN}.

It is denoted N ×G, and the group structure is given by

(n, g)(n′, g′) := (nn′, gg′).

Remark 1.11. If Ĝ := N oα G is a semidirect product, then

π : Ĝ→ G, (n, g) 7→ g,

σ : G→ Ĝ, g 7→ (1, g) and ι : N → Ĝ, n 7→ (n,1)

are group homomorphisms with π ◦ σ = idG. In particular, ι is an isomorphism of N onto
the normal subgroup kerπ of Ĝ and σ is an isomorphism of G onto a subgroup of Ĝ. These
two subgroups have the property that the multiplication map

N ×G→ Ĝ, (n, g) 7→ ι(n)σ(g) = (n,1)(1, g) = (n, g)

is bijective. The main point in the concept of a semidirect product is that it describes the
group structure in these product coordinates.

The following proposition provides a criterion that permits us to recognize semidirect
product groups in a similar way as for the affine group (see also Exercise 1.2).

Proposition 1.12. Let Ĝ be a group, N E Ĝ be a normal subgroup and G ⊆ Ĝ be a subgroup
such that the multiplication map

N ×G→ Ĝ, (n, g) 7→ ng

is bijective. Then
α : G→ Aut(N), αg(n) := gng−1

is a homomorphism and
Φ: N oα G→ Ĝ, (n, g) 7→ ng

is an isomorphism of groups.

Proof. Since N is a normal subgroup of Ĝ, it is invariant under conjugation with elements of
G. From that it easily follows that αg ∈ Aut(N), and it is clear that α is a homomorphism
of groups. We can thus construct the semidirect product group N oαG. A direct calculation
shows that Φ is a group homomorphism (Exercise).

We have already seen that the group Aut(A) of affine automorphisms of an affine space

is isomorphic to a semidirect product V o GL(V ) for V =
−→
A . Here are some examples of a

more group theoretic flavor.

Example 1.13. (a) For n = p+ q, we consider the group

Ĝ :=
{(a 0

c d

)
∈Mn(K) : a ∈ GLp(K), d ∈ GLq(K), c ∈Mq,p(K)

}
.

Then

G :=
{
g =

(
a 0
0 d

)
: a ∈ GLp(K), d ∈ GLq(K)

}
∼= GLp(K)×GLq(K)

7



is a subgroup, and

N :=
{
g =

(
1 0
c 1

)
: c ∈Mq,p(K)

}
∼= (Mq,p(K),+)

is a normal subgroup because it is the kernel of the homomorphism

Ĝ→ G,

(
a 0
c d

)
7→
(
a 0
0 d

)
.

In this case the multiplication map

N ×G→ Ĝ,
((

1 0
c 1

)
,

(
a 0
0 d

))
7→
(

1 0
c 1

)(
a 0
0 d

)
=

(
a 0
ca d

)
is bijective. We thus obtain

Ĝ ∼= N oα G ∼= Mq,p(K) oα (GLp(K)×GLq(K)), where α(a, d)(c) := dca−1.

(b) The group

Ĝ := {φ(x) = ax+ b : a ∈ K×, b ∈ K}

of all affine automorphism of the affine line A1 = (K,K,+) has the subgroup

G := {φ(x) = ax : a ∈ K×} ∼= (K×, ·)

of all linear automorphisms of K and the normal subgroup

N := {φ(x) = x+ b : b ∈ K} ∼= (K,+)

of all translations. We have already seen that Ĝ ∼= N oα G ∼= Koα K× with αa(b) = ab.
(c) The cyclic group C4 := {z ∈ C× : z4 = 1} has a surjective homomorphism

q : C4 → C2, z 7→ z2

with kernel N := ker q = {±1}. However, there is no complementary subgroup G with

Ĝ ∼= N oα G because every element g ∈ C4 \ N has order 4, hence generates the whole
group C4. Put more formally, the surjective homomorphism q : C4 → C2 does not split in
the sense that there exists a homomorphism σ : C2 → C4 with q ◦ σ = idC2

.

1.4 Affine coordinates

Definition 1.14. Let (A, V,+) be an affine space. Note that A is allowed to be empty. If
this is not the case, we call

dimA := dimV ∈ N0 ∪ {∞}

the dimension of A. An affine line is an affine space of dimension 1 and an affine plane is an
affine space of dimension 2.

Example 1.15. If (A, V,+) is an affine space of dimension 0, then V = {0} and (A1/3)
implies that A consists of a single point: Points are affine spaces of dimension 0.
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In vector spaces we can form linear combinations of elements. In an affine space, there
is a similar concept, but here the sum of all scalars must be one to obtain a well-defined
expression.

Definition 1.16. (Affine combinations) Let (A, V,+) be an affine space, a1, . . . , an ∈ A and
t1, . . . , tn ∈ K with

∑n
j=1 tj = 1. We want to define the corresponding affine combination by

t1a1 + · · ·+ tnan := a0 +

n∑
j=1

tj
−−→a0aj ,

where a0 ∈ A is an arbitrary element. To see that this makes sense, we first have to show
that the right hand side does not depend on the choice of the point a0. In fact, for any other
point a′0 ∈ A we have

a′0 +

n∑
j=1

tj
−−→
a′0aj = a0 +

−−→
a0a
′
0 +

n∑
j=1

tj
−−→
a′0aj = a0 +

n∑
j=1

tj
−−→
a0a
′
0 +

n∑
j=1

tj
−−→
a′0aj

= a0 +

n∑
j=1

tj(
−−→
a0a
′
0 +
−−→
a′0aj) = a0 +

n∑
j=1

tj
−−→a0aj .

Therefore our definition of affine combinations makes sense.

Remark 1.17. In the context of the preceding definition, we find for a ∈ A, t1, . . . , tn ∈ K
with

∑n
j=1 tj = 1 and vi ∈ V the relation

n∑
j=1

ti(a+ vj) = a+

n∑
j=1

tivj (1)

by applying the definition of affine combinations with a0 = a.

Lemma 1.18. Affine maps are compatible with affine combinations: If φ : A→ B is affine,
a1, . . . , an ∈ A and t1, . . . , tn ∈ K with

∑n
j=1 tj = 1, then

φ
( n∑
j=1

tjaj

)
=

n∑
j=1

tjφ(aj). (2)

If, conversely, (2) is always satisfied, then φ is affine.

Proof. Fix a0 ∈ A. If φ is affine, then φ(a0 + v) = φ(a0) + φL(v) for v ∈
−→
A . Writing

aj = a0 + vj , we obtain in particular

φ
( n∑
j=1

tjaj

)
= φ

(
a0 +

n∑
j=1

tjvj

)
= φ(a0) + φL

( n∑
j=1

tjvj

)
= φ(a0) +

n∑
j=1

tjφL(vj)

(1)
=

n∑
j=1

tj(φ(a0) + φL(vj)) =

n∑
j=1

tjφ(aj).

Now we assume that (2) is satisfied for the map φ : A→ B and that a0 ∈ A. We consider
the map

ψ :
−→
A →

−→
B, ψ(v) :=

−−−−−−−−−−→
φ(a0)φ(a0 + v) with φ(a0 + v) = φ(a0) + ψ(v).
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Then ψ(0) = 0, and for v, w ∈
−→
A , λ, µ ∈ K, we obtain

φ(a0) + ψ(λv + µw) = φ(a0 + λv + µw)
(1)
=φ((1− λ− µ)a0 + λ(a0 + v) + µ(a0 + w))

(2)
=(1− λ− µ)φ(a0) + λφ(a0 + v) + µφ(a0 + w)

= (1− λ− µ)φ(a0) + λ(φ(a0) + ψ(v)) + µ(φ(a0) + ψ(w))

= φ(a0) + λψ(v) + µψ(w).

This shows that
ψ(λv + µw) = λψ(v) + µψ(w),

so that ψ is linear, and hence φ is affine.

Definition 1.19. (Affine basis/affine independence) Let (A, V,+) be an affine space. We
call an (n+ 1)-tuple (a0, . . . , an) of points in A an affine basis, resp., affinely independent, if
the vectors

bj := −−→a0aj , j = 1, . . . , n

form a basis of the vector space V , resp., are linearly independent.

We now turn to two kinds of coordinates for elements of an affine space.

Definition 1.20. (Affine coordinates) Let (A, V,+) be an affine space of dimension n and
(a0, . . . , an) an affine basis of A.

(a) Then there exists for every a ∈ V uniquely determined numbers x1, . . . , xn in K with

a = a0 + x1
−−→a0a1 + · · ·+ xn

−−→a0an.

We call (x1, . . . , xn) the affine coordinates of a with respect to (a0, . . . , an).
The point a0 is called the origin, its coordinates are (0, . . . , 0). The points aj , j = 1, . . . , n

have the coordinates ej = (0, . . . , 0, 1, 0, . . . , 0) (1 in the jth place).
(b) For x0 := 1−

∑n
j=1 xj , we obtain the relation

a = a0 + x1
−−→a0a1 + · · ·+ xn

−−→a0an = x0a0 + x1a1 + · · ·+ xnan.

The (n+ 1)-tuple (x0, . . . , xn) ∈ Kn+1 is called the barycentric coordinates of a with respect
to the affine basis.

Although the barycentric coordinates have the unpleasant feature of satisfying the equa-
tion

∑n
j=0 xj = 1, they are often better adapted to the context of affine spaces than the

affine coordinates (x1, . . . , xn) are.

Remark 1.21. (Changing coordinates) Suppose that (a0, . . . , an) and (a′0, . . . , a
′
n) are affine

bases of A. We put bj := −−→a0aj and b′j :=
−−→
a′0a
′
j . Then there exist numbers x0j and sij with

a′0 = a0 +

n∑
j=1

x0jbj and b′j :=

n∑
i=1

sijbi.

We now obtain

a0+

n∑
j=1

xjbj = a = a′0+

n∑
j=1

x′jb
′
j = a0+

n∑
j=1

x0jbj+

n∑
i,j=1

sijx
′
jbi = a0+

n∑
j=1

x0jbj+

n∑
i,j=1

sjix
′
ibj

10



and therefore

x = x0 + Sx′ for x =

x1...
xn

 ∈ Kn and S = (sij) ∈ GLn(K).

This means that changing the affine basis leads to the following transformation of the coor-
dinates

x = x0 + Sx′ and x′ = S−1x− S−1x0.

Note that these transformations define affine maps on Kn.

We conclude this subsection with two important fact that we shall repeatedly use later
on.

Lemma 1.22. If A is a finite-dimensional affine space and (a0, . . . , ak) is affinely indepen-
dent, then there exist ak+1, . . . , an such that (a0, . . . , an) is an affine basis of A.

Proof. Extend the linearly independent system bj := −−→a0aj , j = 1, . . . , k of
−→
A to a basis

b1, . . . ,bn and put aj := a0 + bj for j = k + 1, . . . , n.

Lemma 1.23. Let A and B be affine spaces. If (a0, . . . , an) is an affine basis of A and
b0, . . . , bn ∈ B arbitrary elements, then there exists a unique affine map φ : A → B with
φ(aj) = bj for j = 0, . . . , n.

Proof. Put ψ(a0+v) := b0+ψ(v), where ψ :
−→
A →

−→
B is the unique linear map with ψ(−−→a0aj) =

−−→
b0bj for j = 1, . . . , n (Existence follows from Linear Algebra). Then φ(aj) = bj , and that φ
is uniquely determined by this property follows from Lemma 1.18 and the existence of affine
coordinates (Definition 1.20).

1.5 Affine subspaces

Definition 1.24. Let (A, V,+) be an affine space. A subset B ⊆ A is called an affine
subspace if, for b, b′, b′′ ∈ B, we have

b+ K ·
−−→
b′b′′ ⊆ B.

The following lemma links our concept of an affine subspace to the well-known form of
an affine subspace in the context of Linear Algebra.

Lemma 1.25. If B ⊆ A is a non-empty affine subspace, then

UB := {u ∈ V : B + u ⊆ B}

is a linear subspace of V , and, for every b ∈ B, we have

B = b+ UB .

Conversely, for every point b ∈ A and every linear subspace U ⊆ V , the subset B := b+U is
an affine subspace with translation space U = UB.

11



Proof. Clearly, 0 ∈ U . For u, u′ ∈ UB , we have

B + (u+ u′) = (B + u) + u′ ⊆ B + u′ ⊆ B,

so that UB + UB ⊆ UB . If b ∈ B, u ∈ UB and b′ := b + u, then u =
−→
bb′ and therefore

Ku ⊆ UB . This implies that KUB = UB , i.e., that UB is a linear subspace of V .

Now fix b ∈ B. We have seen above that every u ∈ UB is of the form u =
−→
bb′ for some

b′ ∈ B. This implies that B ⊆ b+ UB ⊆ B, and hence that B = b+ UB .
Finally, we consider a subset B ⊆ A of the form B = b + U for some b ∈ A and a linear

subspace U ⊆ V . Then
−−→
b′b′′ ∈ U for b′, b′′ ∈ B follows from

−−→
b′b′′ =

−→
bb′′ −

−→
bb′. This implies

that B is an affine subspace, and it is clear that UB = U .

As a consequence of the preceding lemma, we immediately obtain:

Lemma 1.26. Let (A, V,+) be an affine space. Every affine subspace B ⊆ A is an affine
space with translation group UB with respect to the restriction of + to B × UB.

Definition 1.27. Two non-empty affine subspaces B1, B2 ⊆ A are called parallel if UB1
=

UB2
. This means that there exist a1, a2 ∈ A such that U := UB1

= UB2
satisfies

B1 = a1 + U and B2 = a2 + U.

Lemma 1.28. Parallel affine subspaces are either disjoint or equal.

Proof. If a ∈ (b+ U) ∩ (c+ U), then Lemma 1.25 implies that b+ U = a+ U = c+ U .

Example 1.29. (a) Points B = {a} are affine subspaces of dimension 0.

(b) For a 6= b ∈ A, the subset a + K
−→
ab is called the affine line ab through a and b. It is

an affine subspace of dimension 1.
Using affine combinations, we obtain for λ ∈ K the relation

a+ λ
−→
ab = a+ (1− λ)−→aa+ λ

−→
ab = (1− λ)a+ λb.

For λ = 0 we obtain the point a, and for λ = 1 the point b. Therefore the affine line generated
by a and b is the set of points

ab = {λa+ µb : λ, µ ∈ K, λ+ µ = 1}.

Remark 1.30. After these preparations, we can rephrase the definition of an affine subspace

B ⊆ A as follows: For b, b′, b′′ ∈ B with b′ 6= b′′ and v :=
−−→
b′b′′, the line b + Kv through b

which is parallel to the line b′b′′ is contained in B.

Proposition 1.31. Let (A, V,+) be an affine space and B ⊆ A. Then the following are
equivalent:

(i) B is an affine subspace.

(ii) For b1, . . . , bn ∈ B, all affine combinations of these elements belong to B.

(iii) (for |K| > 2) With two elements b1, b2 ∈ B, the line b1b2 is also contained in B.
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Proof. Since (i)-(iii) are trivially satisfied for B = ∅, we may assume that B is non-empty.
(i)⇒ (ii): We write B = b0+UB . For b1, . . . , bn ∈ B and t1, . . . , tn ∈ K with

∑n
j=1 tj = 1,

we then have
n∑
j=1

tjbj = b0 +

n∑
j=1

tj
−−→
b0bj ∈ b0 + U = B.

(ii) ⇒ (i): Let b, b′, b′′ ∈ B and λ ∈ K. Then

b+ λ
−−→
b′b′′ = b+ 1 ·

−→
bb − λ

−→
bb′ + λ

−→
bb′′ = 1 · b− λb′ + λb′′ ∈ B.

(ii) ⇒ (iii) is trivial because b1b2 consists of affine combinations of b1 and b2 (Exam-
ple 1.29(b)).

(iii) ⇒ (i): Suppose that K has at least three elements, i.e., there exists an element
µ ∈ K \ {0, 1}. Let b, b′, b′′ ∈ B and λ ∈ K. Then

b+ λ
−−→
b′b′′ = b+ λ

−→
bb′′ − λ

−→
bb′ = µ

(
b+

λ

µ

−→
bb′′
)

︸ ︷︷ ︸
∈B

+(1− µ)
(
b− λ

1− µ
−→
bb′
)

︸ ︷︷ ︸
∈B

∈ B.

1.6 Affine geometric properties of tuples

In this subsection we discuss transitivity properties of the affine group Aut(A) on the finite-
dimensional affine space A. We shall see that it is 2-transitive in the sense that it acts
transitively of the set of all pairs (a, b) ∈ A2 with a 6= b. This implies that pairs (a, b) of
different points in an affine space have no affine geometric property. This changes when
we consider triples. The affine group does not act transitively on all non-degenerate triples
because it preserves the collinearity relation. On the set of collinear triples we shall see that
the classification of the Aut(A)-orbits on this space leads to the notion of “proportions”,
resp., ratios, as affine geometric properties. Further, the fact that Aut(A) acts transitively
on the set of affinely independent triples, implies that triangles have no affine geometric
properties.

Definition 1.32. Let X be a set and G be a group. A map σ : G×X → X, (g.x) 7→ σg(x) =
g.x is called an action of G on X if the following two conditions are satisfied:

(GA1) σ1 = idX , and

(GA2) σgh = σg ◦ σh for g, h ∈ G.

Note that this implies that the map G→ SX , g 7→ σg is a group homomorphism from G
into the group SX of all permutations (=bijections) of X. Conversely, we obtain from any
such homomorphism σ : G→ SX an action g.x := σg(x).

Examples 1.33. (a) For any subgroup G ⊆ SX , the map σg(x) := g(x) defines an action of
G on X.

More concrete examples are G = GL(V ) for a vector space X = V and G = Aut(A) for
an affine space X = A.

(b) For any group G, we obtain an action of G on X = G by σg(x) := gxg−1. It is called
the conjugation action.

(c) For G = GLn(K) and X = Kn we have a natural action given by σg(x) = gx (matrix
multiplication).
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Definition 1.34. Let σ : G×X → X be an action of G on X. For x ∈ X, we call the subset

Ox := G.x := {g.x : g ∈ G} = {σg(x) : g ∈ G}

the orbit of x.
The action is said to be transitive if there is only one orbit. Since the orbits form a

partition of X (Exercise 1.11), this is equivalent to the requirement that, for x, y ∈ X, there
exists a g ∈ G with g.x = y

Definition 1.35. Let σ : G × X → X, (g, x) 7→ σg(x) be an action of the group G on the
set X. Then we obtain for every n ∈ N an action

σn : G×Xn → Xn, σng (x1, . . . , xn) = (σg(x1), . . . , σg(xn)).

Let Xn
× ⊆ Xn be the set of all n-tuples (x1, . . . , xn) for which x1, . . . , xn are pairwise

different. We say that G acts n-transitively on X if the action σn on Xn
× is transitive. It acts

sharply n-transitively if, in addition, the stabilizer subgroup of any element in Xn
× is trivial.

Remark 1.36. (a) If |X| ≥ 2, then the action σ2 on the set X2 of pairs preserves the
diagonal

∆X := {(x, x) : x ∈ X},

so that it cannot act transitively on X2. The partition X2 = ∆X ∪̇X2
× is G-invariant.

(b) The set X3 contains many “partial diagonals”:

∆1,2
X := {(x, x, y) : x 6= y ∈ X}, ∆1,3

X := {(x, y, x) : x 6= y ∈ X},

and
∆2,3
X := {(y, x, x) : x 6= y ∈ X},

and all these subsets are invariant under the G-action defined by σ3. This leads to the
partition

X3 = ∆X ∪̇∆1,2
X ∪̇∆1,3

X ∪̇∆2,3
X ∪̇X

3
×.

Suppose that G is 3-transitive on X, i.e., transitive on X3
×, and that this set is non-empty,

i.e., |X| ≥ 3. Then G acts transitively on all the sets ∆i,j
X (Exercise), so that we obtain 5

orbits in X3.

Lemma 1.37. If the G-action on X is n-transitive and |X| ≥ n, then it is k-transitive for
every k ≤ n.

Proof. For (x1, . . . , xk), (y1, . . . , yk) in Xk
×, we find points xk+1, . . . , xn ∈ X such that x :=

(x1, . . . , xn) ∈ Xn
× and, likewise, yk+1, . . . , yn ∈ X with y := (y1, . . . , yn) ∈ Xn

×. Let g ∈ G
with σng (x) = y. Then σg(xj) = yj for j = 1, . . . , k.

After these generalities, we now turn to the action of the affine group Aut(A) on a finite-
dimensional affine space A.

Proposition 1.38. Let A be an n-dimensional affine space. Then, for every k ≤ n+ 1, the
group Aut(A) acts transitively on the subset Akindep of affinely independent k-tuples in Ak.

For k = n + 1, we thus obtain a sharply transitive action on the set An+1
indep of all affine

bases, i.e., for two affine bases (a0, . . . , an) and (a′0, . . . , a
′
n), there exists a unique φ ∈ Aut(A)

with φ(aj) = a′j for j = 0, . . . , n.
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Proof. Let (a0, . . . , ak−1) and (a′0, . . . , a
′
k−1) be affinely independent. Let bj := −−→a0aj and

b′j :=
−−→
a′0a
′
j be the corresponding vectors in V . Then b1, . . . ,bk−1 are linearly independent in

V , hence can be enlarged to a linear basis b1, . . . , bn, and then aj := a0+bj , j = k, . . . , n, leads
to an affine basis (a0, . . . , an). We likewise obtain an affine basis (a′0, . . . , a

′
n). If ψ ∈ GL(V )

is a linear isomorphism with ψ(bj) = b′j for j = 1, . . . , n, then

φ(a0 + v) := a′0 + ψ(v)

is an affine automorphism of A mapping each aj , j = 0, . . . , n, to a′j . This proves for each k
the transitivity of Aut(A) on the set of affinely independent k-tuples.

To see that this action is sharply transitive for k = n+ 1, we note that the uniqueness of
φ ∈ Aut(A) mapping the affine basis (a0, . . . , an) to the affine basis (a′0, . . . , a

′
n) follows from

Lemma 1.23.

Since a pair (a, b) ∈ A2 is affinely independent if and only if a 6= b, we have A2
× = A2

indep.
For an affine line, this is the set of affine bases. Hence the preceding proposition implies:

Corollary 1.39. Let A be a finite-dimensional affine space. Then the action of Aut(A) on
A is 2-transitive. It is sharply transitive for dimA = 1, i.e., if A is an affine line.

Proposition 1.40. Let A be a finite-dimensional affine space and B1, B2 ⊆ A affine sub-
spaces. Then every affine isomorphism ψ : B1 → B2 extends to an affine isomorphism
φ ∈ Aut(A). In particular, for k ∈ N, the group Aut(A) acts transitively on the set of
all k-dimensional affine subspaces of A.

Proof. Clearly, the second part follows from the first because affine subspaces of the same
dimension k are isomorphic to Ak (Example 1.8(a)), hence in particular isomorphic.

So let ψ : B1 → B2 be an affine isomorphism of affine k-dimensional subspaces of A.
Let (a0, . . . , ak) be an affine basis of B1 and enlarge it to an affine basis (a0, . . . , an) of A
(Lemma 1.22). We likewise enlarge the affine basis (a′0, . . . , a

′
k) := (ψ(a0), . . . , ψ(ak)) of B2 to

an affine basis (a′0, . . . , a
′
n) of A. Then there exists a unique affine isomorphism φ ∈ Aut(A)

with φ(aj) = a′j for j = 0, . . . , n (Proposition 1.38). This implies in particular that φ(B1) =
B2 with φ|B1 = ψ.

Definition 1.41. We call a subset E ⊆ A collinear if |E| ≤ 1 or E is contained in an affine
line.

Proposition 1.38 implies in particular that affinely independent tuples carry no affine
geometric information, they are all conjugate under the affine group Aut(A). For pairs (a, b),
being different is the same as being affinely independent, so that the first non-trivial situation
arises for triples (a0, a1, a2) that are collinear. Since we know already the Aut(A)-orbits in
A2 (Corollary 1.39), it suffices to consider triples (a0, a1, a2) with a0 6= a1. Let A3

r ⊆ A3

denote the set of all these triples. To any triple (a0, a1, a2) ∈ A3
r, we associate its ratio:

r(a0, a1, a2) := t ∈ K where a2 = (1− t)a0 + ta1.

Proposition 1.42. (The ratio as an affine geometric property) Two triples (a0, a1, a2),
(a′0, a

′
1, a
′
2) ∈ A3

r are contained in the same Aut(A)-orbit if and only if they have the same
ratio.
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Proof. The function r : A3
r → K is invariant under the action of Aut(A) because

a2 = (1 − t)a0 + ta1 implies φ(a2) = (1 − t)φ(a0) + tφ(a1). If, conversely, the triples
(a0, a1, a2), (a′0, a

′
1, a
′
2) ∈ A3

r have the same ratio t, then there exists a φ ∈ Aut(A) with
φ(a0) = a′0 and φ(a1) = a′1 (Corollary 1.39), and this implies that

φ(a2) = φ((1− t)a0 + ta1) = (1− t)φ(a0) + tφ(a1) = (1− t)a′0 + ta′1 = a′2.

Therefore Aut(A) acts transitively on the subsets of triples with the same ratio.

For (a0, a1, a2) ∈ A3
r, the ratio t = r(a0, a1, a2) can be computed by

−−→a0a2 = t−−→a0a1,

so it can be interpreted as a scale factor corresponding to the relative length of the vector
−−→a0a2 with respect to the gauge −−→a0a1. In this sense the “ratio” of two collinear line segments
is an affine geometric concept.

Exercises for Section 1

Exercise 1.1. Show that every bijective affine map φ : A → B between affine spaces A
and B is an isomorphism, i.e., there exists an affine map ψ : B → A with φ ◦ ψ = idB and
ψ ◦ φ = idA.

Exercise 1.2. Let N and G be groups and α : G→ Aut(N), g 7→ αg be a group homomor-
phism. Then we obtain on the set G×N a group structure by

(g, n)(g′, n′) := (gg′, α−1g′ (n)n′),

and this group is denoted Gnα N. Show also that

Φ: N oα G→ Gnα N, (n, g) 7→ (g, α−1g (n))

is an isomorphism of groups.

Exercise 1.3. Show that

G :=
{(

A b
0 1

)
∈ GLn+1(K) : A ∈ GLn(K), b ∈ Kn

}
is a subgroup of GLn+1(K) and that G is isomorphic to the automorphism group Aut(An)
of the n-dimensional affine space An := (Kn,Kn,+) over K.

Exercise 1.4. (Affine group action) Let G be a group and A := (V, V,+) the affine space
underlying the vector space V . An affine action of G on V is a group action σ : G × V →
V, (g, v) 7→ g.v for which all maps σg(v) := g.v are affine. 2

(a) Show that affine actions of G on A are in one-to-one correspondence with homomorphisms
γ : G→ Aut(A), the automorphism group of the affine space.

2Recall that, for a set X and a group G, a map σ : G × X → X, (g, x) 7→ g.x = σg(x) is called a group
action if the map g 7→ σg defines a homomorphism of G into the group SX of all permutations (=bijections)
of X.
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(b) Writing
γ(g)(v) = π(g)v + β(g), π(g) ∈ GL(V ), β(g) ∈ V,

show that γ is a group homomorphism if and only if π : G→ GL(V ) is a group homo-
morphism and β satisfies the cocycle condition

β(gh) = β(g) + π(g)β(h) for all g, h ∈ G.

(c) Show that the affine action g.v = γ(g)v = π(g)v + β(g) has a fixed point if and only if
there exists an element v0 ∈ V with

β(g) = v0 − π(g)v0 for all g ∈ G.

Exercise 1.5. Let K = {0, 1} be the 2-element field and (A, V,+) an affine space over K.

(a) Show that every subset B ⊆ A has the property that a, b ∈ B implies ab ⊆ B.

(b) Which affine spaces V over K contain subsets that are not affine subspaces?

Exercise 1.6. Let φ : A→ B be an affine map. Show that:

(a) If C ⊆ A is an affine subspace, then φ(C) ⊆ B is an affine subspace.

(b) If C ⊆ B is an affine subspace, then φ−1(C) ⊆ A is an affine subspace.

Exercise 1.7. Let A be an n-dimensional affine space and B be an m-dimensional affine
space. We fix affine bases a0, . . . , an in A and b0, . . . , bm in B. Show that, for every affine
map φ : A→ B, there exists a uniquely determined matrix S = (sij) ∈Mm,n(K) with

φ
( n∑
i=0

xiai

)
=

n∑
j=0

n∑
i=0

sjixibj .

Show further that this matrix satisfies∑
j

sji = 1 for i = 1, . . . , n,

and that every matrix satisfying this condition corresponds to an affine map φ : A→ B.

Exercise 1.8. Let A and B be non-empty affine spaces and φ : A→ B be a map. Show that
φ is affine if and only if its graph

Γ(φ) := {(a, φ(a)) : a ∈ A} ⊆ A×B

is an affine subspace with respect to the affine space structure on A×B with
−−−−→
A×B :=

−→
A×
−→
B

and
(a, b) + (v, w) := (a+ v, b+ w), a ∈ A, b ∈ B, v ∈

−→
A,w ∈

−→
B.

Exercise 1.9. Let A be an affine space. Show that:

(a) For every family (Bj)j∈J of affine subspaces of A the intersection B :=
⋂
j∈J Bj is an

affine subspace.
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(b) Every subset M ⊆ A is contained in a minimal affine subspace spana(M). It coincides
with the intersection of all affine subspaces of A containing M and the set of all affine
combinations of elements of M .

Exercise 1.10. Let A and B be affine spaces and φ : A→ B be a map. Suppose that

φ
( n∑
j=1

tjaj

)
=

n∑
j=1

tjφ(aj) (3)

holds for a1, . . . , an ∈ A and t1, . . . , tn ∈ K with
∑
j tj = 1. Show that this implies that φ is

affine. If, in addition, the field K has at least 3 elements, then it suffices that (3) holds for
n = 2. Hint: Exercise 1.8.

Exercise 1.11. Let µ : G×M →M be an action of the group G on the set M .

(1) The orbits of G in M form a partition of M into pairwise disjoint subsets.

(2) For each p ∈M the set Gp := {g ∈ G : gp = p} is a subgroup of G and the map

σp : G/Gp →M, gGp 7→ gp

is a well defined injective map which is equivariant, i.e., σp(gxGp) = gσp(xGp) for all
g, x ∈ G.

(3) The action of G on M is transitive if and only if there exists an equivariant bijection
σ : G/H →M for some subgroup H ⊆ G.

Exercise 1.12. Recall the definition of an affinely independent tuple (a0, . . . , ak) from Defi-
nition 1.19. Show that this is equivalent to the condition that no aj is contained in the affine
subspace generated by a0, . . . , aj−1, aj+1, . . . , ak.

Exercise 1.13. Let K be a finite field with q elements and A an n-dimensional affine space
over K. Calculate the following numbers:

(a) the number |A| of elements of A.

(b) the number |Akindep| of affinely independent k-tuples in A.

(c) the number |Aut(A)| of elements of the affine group.

Exercise 1.14. Suppose that the action σ : G×X → X of the group G on the non-empty X
is n-transitive and |X| ≥ n. Show that Xn contains only finitely many G-orbits with respect
to σn.

2 Euclidean Geometry

Euclidean geometry is the oldest branch of geometry. Its development started in the period
between 350 and 200 BC. Up to that time people where dealing with mathematical facts as
a collection of formulas and rules how to deal with numbers and geometric objects. A proper
understanding of mathematics as a science with a clear (axiomatic) foundation from which
mathematical truths can be derived by logical deduction emerged with Euclid’s axiomatic
approach to geometry in the plane. In the language used below, Euclid was dealing with
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the euclidean plane, i.e., a 2-dimensional affine euclidean space. Here we follow a more
direct approach based on the concept of a euclidean vector space as a metric space. This
permits us to define affine euclidean spaces and we recover the euclidean planes as the 2-
dimensional objects in this theory. Restricting to the n-dimensional euclidean space En = Rn,
this corresponds to the cartesian approach to euclidean geometry where points correspond to
coordinate tuples. To keep the formulation of the results as “geometric” as possible, we try to
avoid coordinates as much as possible because they are not invariant under the corresponding
group, hence have no geometric meaning.

2.1 The euclidean metric

Euclidean metrics are defined in terms of a scalar product. We therefore recall briefly some
concepts that are well-known from Linear Algebra.

Definition 2.1. A euclidean vector space E is a real vector space endowed with a positive
definite symmetric bilinear form (x, y) 7→ 〈x, y〉, called the scalar product.

Proposition 2.2. (Cauchy–Schwarz inequality) In a euclidean vector space the Cauchy–
Schwarz inequality holds:

〈x, y〉 ≤ 〈x, x〉
1
2 〈y, y〉

1
2 for x, y ∈ E. (CS)

If 0 6= y, then equality holds in (CS) if and only if x ∈ R+y.

Proof. Fix x, y ∈ E. For y = 0, the CS inequality holds trivially, so that we may assume
that y 6= 0. We consider the function

f : R→ R+ = [0,∞[, f(λ) := 〈x− λy, x− λy〉.

Expanding the right hand side, we find

f(λ) = 〈x, x〉 − 2λ〈x, y〉+ λ2〈y, y〉.

As 〈y, y〉 > 0, this quadratic function has a unique minimal value at λ0 := 〈x,y〉
〈y,y〉 :

0 ≤ f(λ0) = 〈x, x〉 − 2
〈x, y〉2

〈y, y〉
+
〈x, y〉2

〈y, y〉
= 〈x, x〉 − 〈x, y〉

2

〈y, y〉
.

Now the assertion follows by multiplication with 〈y, y〉.
If x = µy for some µ ≥ 0, then we obtain the equality

〈x, y〉 = µ〈y, y〉 = 〈x, x〉
1
2 〈y, y〉

1
2 .

Suppose, conversely, that y 6= 0 and that

〈x, y〉 = 〈x, x〉
1
2 〈y, y〉

1
2 .

Then f(λ0) = 0 implies that x − λ0y = 0, i.e., x = λ0y, and since 〈x, y〉 ≥ 0, we obtain
λ0 ≥ 0.
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Lemma 2.3. In a euclidean vector space E,

‖x‖ :=
√
〈x, x〉

defines a norm and
d(x, y) := ‖x− y‖ =

√
〈x− y, x− y〉

defines a metric.

Proof. Clearly, ‖x‖ ≥ 0, and ‖x‖ = 0 implies x = 0. Further, ‖λx‖ = |λ|‖x‖ is immediate
from the definition. From the Cauchy–Schwarz inequality, we further derive

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉
≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

This shows that ‖ · ‖ is a norm. Now it is clear that d(x, y) := ‖x− y‖ is a metric.

Definition 2.4. (Affine euclidean space) An affine space E whose translation group is a
euclidean space E is called an affine euclidean space. Then we obtain a metric on E by

d(a, b) := ‖
−→
ab‖.

An affine basis (a0, a1, . . . , an) in E for which the vectors −−→a0a1, · · · ,−−→a0an form an orthonor-
mal basis of E is called a euclidean affine basis or a euclidean frame.

Remark 2.5. (a) All translations τv(a) := a+ v on an affine euclidean space are isometries:

d(a+ v, b+ v) = d(a+ v, a+ v +
−→
ab) = ‖

−→
ab‖ = d(a, b).

(b) Let p be a point in the euclidean affine space E. Then the bijection

ηp : E → E, v 7→ p+ v

is an affine isometry. Therefore E and E are isomorphic as affine euclidean spaces.

The following proposition shows that any affine euclidean space is metrically isomorphic
to Rn, endowed with the canonical metric.

Proposition 2.6. If E is an affine euclidean space and (a0, a1, . . . , an) a euclidean frame in
E, then the corresponding coordinate map

Γ: Rn → E, Γ(x) := a0 +

n∑
j=1

xj
−−→a0aj

is an affine isometry with Γ(0) = a0 and Γ(ej) = aj for j = 1, . . . , n.

Lemma 2.7. (Triangle equality) Three points x, y, z ∈ E satisfy the triangle equality

d(x, y) + d(y, z) = d(x, z) (4)

if and only if
y ∈ [x, z] := {tx+ (1− t)z : 0 ≤ t ≤ 1},

i.e., y is contained in the line segment joining x and z.
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Proof. If y = tx+ (1− t)z for some t ∈ [0, 1], then

d(x, y)+d(y, z) = ‖(t−1)x+(1−t)z‖+‖tz−tx‖ = (1−t)‖x−z‖+t‖x−z‖ = ‖x−z‖ = d(x, z).

Suppose, conversely, that x, y, z satisfy the triangle equality (4). If x = y, then y ∈ [x, z].
We may therefore assume that v := −→xy 6= 0. For w := −→yz we now obtain the equality

‖v‖+ ‖w‖ = ‖v + w‖.

Taking squares, we arrive at

‖v‖2 + ‖w‖2 + 2‖v‖‖w‖ = ‖v‖2 + ‖w‖2 + 2〈v, w〉,

which leads to 〈v, w〉 = ‖v‖‖w‖. Now the second part of Proposition 2.2 on the Cauchy–
Schwarz inequality implies that w = λv for some λ ≥ 0. Hence z = x+ v+w = x+ (1 + λ)v
and y = x+ v imply that y ∈ [x, z].

Definition 2.8. In a euclidean vector space we define the angle between two non-zero vectors
x, y by

](x, y) = arccos
( 〈x, y〉
‖x‖ · ‖y‖

)
,

where arccos is the inverse function of cos |[0,π]. According to the Cauchy–Schwarz inequality,
the right hand side takes values in [−1, 1], so that ](x, y) ∈ [0, π] is defined. We say that x
and y are orthogonal if ](x, y) = π

2 , i.e., if 〈x, y〉 = 0.
The second part of Proposition 2.2 on the Cauchy–Schwarz inequality implies that ](x, y) ∈

{0, π} is equivalent to x ∈ Ry. If x ∈ R+y we have ](x, y) = 0 and for x ∈ −R+y we have
](x, y) = π.

In the axiomatic development of euclidean geometry one first develops the concept of the
length of a line segment and further the concept of a right angle. In this context Pythagoras’
Theorem is an important result derived from the axioms. Here it is a mere observation that
follows from the description of affine euclidean spaces in terms of scalar products.

Lemma 2.9. (Pythagoras’ Theorem) If x, y, z are three points in an affine euclidean space
and −→xy⊥−→yz, then

d(x, z)2 = d(x, y)2 + d(y, z)2.

Proof. For v := −→xy and w := −→yz, this follows immediately by

d(x, z)2 = ‖v + w‖2 = 〈v + w, v + w〉 = ‖v‖2 + ‖w‖2 = d(x, y)2 + d(y, z)2.

2.2 The euclidean motion group Mot(E)
In this subsection we show that all isometries of an affine euclidean space are affine maps.
This means in particular that the group Mot(E) := Isom(E, d) of all bijective isometries of
E, the euclidean motion group, is a subgroup of the affine group Aut(E). In the sense of
the Erlangen Program, we thus consider euclidean geometry as a refinement of real affine
geometry. Here the idea is that the subgroup Mot(E) of the affine group has more invariants,
which leads to more euclidean geometric properties than affine ones.
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Definition 2.10. For two points x, y in a metric space (X, d), a point m ∈ X is called a
midpoint if

d(x,m) = d(y,m) =
1

2
d(x, y).

Lemma 2.11. In a euclidean affine space E, two points x, y ∈ E have a unique midpoint. It
is given by the arithmetic mean

m := x+ 1
2
−→xy = y − 1

2
−→xy.

Proof. Clearly
d(x,m) = 1

2‖
−→xy‖ = 1

2d(x, y)

and likewise d(y,m) = 1
2d(x, y). Therefore m is a midpoint of x and y.

To prove uniqueness of midpoints, we may w.l.o.g. assume that x 6= y. Every midpoint z
of x and y satisfies

d(x, y) = d(x, z) + d(z, y),

so that Lemma 2.7 implies the existence of some t ∈ [0, 1] with z = (1− t)x+ ty = x+ t−→xy.
Then

1

2
d(x, y) = d(z, x) = t‖y − x‖ = td(x, y)

leads to t = 1
2 .

The following theorem is one of a series of results asserting that, for several geometric
structures endowed with a metric, any isometry automatically preserves the other structure.
For affine euclidean spaces, this means that any isometry is automatically affine. This is also
true for general normed spaces, but in this case it is slightly harder to prove (cf. Exercise 2.13).

Theorem 2.12. Every isometry of an affine euclidean space (E, d) is affine. For bijective
isometries we obtain in particular Mot(E) ⊆ Aut(E).

Proof. Since E is metrically isomorphic to the euclidean vector space E (Remark 2.5(b)), we
may w.l.o.g. assume that E = E is a euclidean vector space. Let φ : E → E be isometric.
Composing φ with the translation τ−φ(0), we may further assume that φ(0) = 0. We now
show that φ is linear.

For x, y ∈ E with midpoint m = 1
2 (x+ y) we have

d(φ(x), φ(m)) = d(x,m) = 1
2d(x, y) = 1

2d(φ(x), φ(y)),

and likewise
d(φ(y), φ(m)) = d(y,m) = 1

2d(φ(x), φ(y)).

Therefore φ(m) is the unique midpoint of φ(x) and φ(y) (Lemma 2.11), i.e.,

φ( 1
2 (x+ y)) = 1

2 (φ(x) + φ(y)), x, y ∈ E. (5)

For y = 0, we obtain in particular

φ( 1
2x) = 1

2φ(x) for x ∈ E. (6)

Iterating this relation leads to

φ
( 1

2n
x
)

=
1

2n
φ(x) for x ∈ E,n ∈ N.
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Combining (6) with (5) implies

φ(x+ y) = φ(x) + φ(y) for x, y ∈ E.

In particular, we get φ(mx) = mφ(x) for m ∈ Z. This leads to

φ
(m

2n
x
)

=
m

2n
φ(x) for x ∈ E,m ∈ Z, n ∈ N.

Since isometries are in particular continuous and the dyadic numbers m
2n form a dense subset

of R, we obtain
φ(λx) = λφ(x) for λ ∈ R, x ∈ E.

This shows that φ is linear.

Remark 2.13. If dimE <∞, then every isometry φ : E→ E is surjective because the linear
map φL : E → E is injective, hence also surjective.

If E is infinite-dimensional, then there are isometries which are not surjective. A typical
example is the right shift S on the space

E := R(N) = {(an)n∈N ∈ RN : (∃N ∈ N)(∀n > N)an = 0}

of all finite sequence, endowed with the canonical scalar product 〈a, b〉 :=
∑∞
n=1 anbn. It is

defined by
S(a1, a2, . . .) := (0, a1, a2, . . .).

This map is a linear isometry which is not surjective.

Definition 2.14. (a) For a euclidean vector space E, we write

O(E) := {ψ ∈ GL(E) : (∀v, w ∈ E) 〈ψ(v), ψ(w)〉 = 〈v, w〉}

for the orthogonal group of E. In view of Exercise 2.14, we have

O(E) := {ψ ∈ GL(E) : (∀v ∈ E) ‖ψ(v)‖ = ‖v‖},

so that O(E) is the group of invertible linear isometries of E.
(b) If E = Rn, then we identify linear endomorphisms with (n×n)-matrices. Accordingly,

we define the orthogonal group

On(R) := {A ∈Mn(R) : (∀v, w ∈ Rn) v>A>Aw = v>w}
= {A ∈Mn(R) : A>A = 1} = {A ∈ GLn(R) : A> = A−1}.

Observe that O(Rn) ∼= On(R).

Example 2.15. (a) For the n-dimensional affine euclidean space En = Rn, Theorem 2.12
implies that every isometry is of the form

φ(x) = Ax+ b,

where the matrix A ∈ GLn(R) corresponds to a length preserving linear map, i.e., A ∈ On(R)
is an orthogonal matrix. We thus obtain

Mot(Rn, d) ∼= Rn oα On(R) with αg(x) = gx.

(b) If E = (E,E,+) is the affine space underlying a euclidean vector space E, then
Theorem 2.12 implies that every surjective isometry is of the form

φ(x) = ψ(x) + b, where ψ ∈ O(E), b ∈ E.
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Example 2.16. For n = 1 and E = R, we have O1(R) = {±1}, so that every isometry is
either of the form φ(x) = x+ b (a translation) or φ(x) = −x+ b, which is a reflection in the
point b

2 .

Example 2.17. For n = 2, we have

O2(R) = O2(R)+∪̇O2(R)−, where O2(R)± := {Q ∈ O2(R) : detQ = ±1}.

From Linear Algebra we know that, if detQ = 1, then Q describes a rotation of the plane
around the origin by some angle θ ∈ [0, 2π[:

Q = D(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
.

If detQ = −1, then

Q =

(
cos θ sin θ
sin θ − cos θ

)
= D(θ) ·

(
1 0
0 −1

)
.

This describes a reflection in the line ` intersecting the x1-axis in the angle θ
2 (Exercise 2.5).

Theorem 2.18. (Geometric classification of planar isometries) The isometries of the plane
are of the form φ(x) = Qx+ b for some Q ∈ O2(R). The following, mutually exclusive, cases
occur:

(a) (Translations) If Q = 1, then φ is a translation.

(b) (Rotations) If Q 6= 1 and detQ = 1, then φ has a unique fixed point and φ is a rotation
around this fixed point.

(c) (Reflections) If detQ = −1 and φ has a fixed point, then φ is a reflection in a line.

(d) (Glide reflections) If detQ = −1 and φ has no fixed point, then φ is a glide reflection
in a line.

Proof. (b) We first observe that the fixed point equation φ(x) = x has a unique solution x0
because the matrix 1 − Q is invertible (it suffices to verify that its kernel is trivial because
non-trivial rotations have no non-zero fixed vectors). Then φ(x0 + v) = x0 +Qv shows that
φ is a rotation around x0.

(c) If detQ = −1 and φ has a fixed point x0, then φ(x0 + v) = x0 +Qv is a reflection in
the line x0 + Rv1, where v1 is a non-zero fixed vector of Q.

(d) Let v± be an orthonormal basis of Q-eigenvectors for the eigenvalues ±1. Then

φ(x) = φ(x+v+ + x−v−) = x+v+ − x−v− + b = (x+ + b+)v+ + (b− − x−)v−.

From this formula we see that φ(x)− = x− is equivalent to x− = b−
2 and, in general, the

x−-component is reflected in b−
2 . The non-existence of fixed points therefore implies that

b+ 6= 0. Then 2x− = b− specifies a line ` which is φ-invariant, and on this line φ acts by
translation by b+v+. In particular, the condition that φ has no fixed point is equivalent to
b+ 6= 0. In the above coordinates, it is clear that φ is a glide reflection with axis `.
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2.3 Reflections

We now turn to an important fact about isometries of finite-dimensional euclidean spaces,
namely that they are finite products of orthogonal reflections in hyperplanes.

Definition 2.19. Let E be an affine euclidean space and ~n ∈ E be a unit vector. For a ∈ E
we call the subset

H = a+ ~n⊥

an affine hyperplane with (unit) normal vector ~n.3

Then we have an orthogonal decomposition E =
−→
H ⊕

−→
H⊥, where

−→
H⊥ = R~n is one-

dimensional (Exercise!). We now define the orthogonal reflection in H by

rH : E→ E, rH(a+ w) := a− w for a ∈ H,w ∈
−→
H⊥.

To see that rH is well-defined, we first observe that every element p ∈ E can be written
in a unique way as p = a + w as above. In fact, if a + w = a′ + w′ with a, a′ ∈ H and

w,w′ ∈
−→
H⊥, then a + w = a +

−→
aa′ + w′ leads to w − w′ =

−→
aa′ ∈

−→
H ∩

−→
H⊥ = {0}, so that

w = w′ and a = a′. This implies that rH is well-defined.

Fixing a0 ∈ H, we have for v ∈
−→
H and w ∈

−→
H⊥ the relation

rH(a0 + v + w) = a0 + v − w,

so that rH is affine and the associated linear map is the orthogonal reflection

(rH)L(x) = x− 2〈x, ~n〉~n.

In this sense we can also write

rH(p) = p− 2〈−→ap, ~n〉~n for any a ∈ H. (7)

Example 2.20. (a) Let a, b ∈ E be two different points and m be their midpoint. Then

H := m+
−→
ab⊥ is an affine hyperplane in E containing m. The reflection rH then satisfies

rH(b) = rH

(
m+ 1

2

−→
ab
)

= m− 1
2

−→
ab = a,

so that it exchanges a and b.
(b) (Linear case) If a 6= b ∈ E (the corresponding euclidean vector space) and ‖a‖ = ‖b‖,

then m = 1
2 (a+ b) ∈ (b− a)⊥ implies that H is a linear subspace of E, so that rH is a linear

reflection.

Lemma 2.21. Orthogonal reflections in hyperplanes are isometries.

Proof. Let H ⊆ E be an affine hyperplane with unit normal vector ~n and rH be the corre-

sponding orthogonal reflection. We have already seen above that, for any a0 ∈ H, v ∈
−→
H

and w ∈
−→
H⊥ we have

rH(a0 + v + w) = a0 + v − w.
3If E is complete, i.e., a real Hilbert space, one can show that all closed affine hyperplanes in E are of this

form. Since all linear subspaces of finite-dimensional euclidean spaces are closed, this covers in particular the
finite-dimensional case. However, we can ignore this difficulty by simply working with hyperplanes with a
normal vector.
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Since the map ηa0 : E → E, v 7→ a0 + v is an affine isometry, it remains to show that the
linear reflection defined by

r(x) := x− 2〈x, ~n〉~n
on E is isometric. This follows from

〈r(x), r(y)〉 = 〈x− 2〈x, ~n〉~n, y − 2〈y, ~n〉~n〉
= 〈x, y〉 − 2〈x, ~n〉〈~n, y〉 − 2〈y, ~n〉〈x, ~n〉+ 4〈x, ~n〉〈y, ~n〉 = 〈x, y〉.

Lemma 2.22. Let E be a euclidean vector space and (b1, . . . , bk), (c1, . . . , ck) be two or-
thonormal systems of the same length k. Then there exists a product φ of at most k linear
reflections with φ(bj) = cj for j = 1, . . . , k.

Proof. We argue by induction on k. If k = 0, then we take φ := idE .
If b1 = c1, then we put φ1 := idE , and otherwise, we write φ1 := rH for the reflection in

the hyperplane (b1 − c1)⊥. It is linear by Example 2.20. In both cases φ1(b1) = c1.
Now b′j := φ1(bj), j = 2, . . . , k, is an orthonormal system in the hyperplane c⊥1 ⊆ E, and

the induction hypothesis implies the existence of a product φ2 of at most k − 1 reflections
rj in hyperplanes of c⊥1 such that φ2(b′j) = cj for j = 2, . . . , k. Since each hyperplane in c⊥1
corresponds to a hyperplane in E containing c1, we see that φ := φ2 ◦ φ1 is a product of at
most k reflections, φ(b1) = φ2(φ1(b1)) = φ2(c1) = c1, and, for j > 1, φ(bj) = φ2(φ1(bj)) =
φ2(b′j) = cj .

Proposition 2.23. For every euclidean vector space E, the orthogonal group O(E) acts
transitively on the following sets:

(i) All spheres Sr(E) := {v ∈ E : ‖v‖ = r}, r ≥ 0.

(ii) The set Fk ⊆ Ek of orthonormal k-tuples, k ∈ N.

(iii) The set Grk of k-dimensional linear subspaces of E, k ∈ N.

Proof. (i) It suffices to consider the case r = 1 which follows from (ii).
(ii) Since reflections are isometries, this follows from Lemma 2.22.
(iii) Let F1, F2 ⊆ E be two k-dimensional linear subspaces. Let (b1, . . . , bk) be an or-

thonormal basis of F1 and (c1, . . . , ck) be an orthonormal basis of F2. Then (ii) implies the ex-
istence of φ ∈ O(E) with φ(bj) = cj for j = 1, . . . , k, and this clearly implies φ(F1) = F2.

Up to now, we did not assume that E is finite-dimensional, but the following theorem
becomes false for infinite-dimensional spaces (Exercise 2.15).

Theorem 2.24. If E is an n-dimensional affine euclidean space, then every element of
Mot(E) can be written as a product of at most n+ 1 reflections.

Proof. Let φ ∈ Mot(E). We fix a euclidean frame (a0, . . . , an) of E. If φ(a0) 6= a0, then
we write r0 for an orthogonal reflection exchanging a0 and φ(a0) (Example 2.20). Then
φ0 := r0◦φ is an isometry and, in addition, it fixes a0. Using the affine isometric isomorphism
ηa0 : E → E, v 7→ a0 +v and the fact that φ is affine, we see that it suffices to show that every
linear isometry ψ of the n-dimensional euclidean vector space E is a product of n reflections.

Let b1, . . . , bn be an orthonormal basis of E. Then cj := ψ(bj) is a second orthonormal
basis. In view of Lemma 2.22, there exists a product γ of at most n reflections, such that
γ(bj) = cj for j = 1, . . . , n. Since γ and ψ are determined by their values on a basis of E, it
follows that ψ is a product of at most n reflections.
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2.4 Geodesics

In this subsection we first introduce geodesics in general metric spaces. This requires in
particular the concept of the length of a curve in a metric space. A geodesic is then defined
as a length minimizing curve between two points whose velocity (defined suitably) is constant.
We then show that geodesics in euclidean spaces are simply straight lines parametrized in an
affine way.

Definition 2.25. (Curve length in metric spaces) Let (X, d) be a metric space and γ : [a, b]→
X be a continuous path. We want to define the length of γ, whenever it makes sense. The
basic idea is that, for a ≤ t ≤ s ≤ b, the length of γ|[t,s] should at least be d(γ(t), γ(s)). We
call a tuple

t = (t0, . . . , tn) with t0 = a < t1 < . . . < tn = b

a subdivision of the interval [a, b]. For each such subdivision, we obtain the number

Lt(γ) :=

n−1∑
j=0

d(γ(tj), γ(tj+1)).

γ(a)

γ(t  )
1

γ(t  )
2

γ(t  )
3

γ(b)

For any refinement t′ of t (i.e., t′ is obtained by inserting more subdivision points), we
then have

Lt′(γ) ≥ Lt(γ)

by the triangle inequality. Now we say that γ is rectifiable (Germ.: rektifizierbar) if its length

L(γ) := sup
t
Lt(γ) ∈ [0,∞]

is finite. By definition, this implies that

d(γ(a), γ(b)) ≤ L(γ). (8)

Lemma 2.26. If γ : [a, b]→ X is a continuous curve in the metric space (X, d) and a < c <
b. Then γ is rectifiable if and only if this is the case for its restrictions to [a, c] and [c, b],
and in this case we have

L(γ) = L(γ[a,c]) + L(γ[c,b]).

Proof. Since every subdivision of [a, b] has a refinement containing c, it suffices to consider
such subdivisions t. Write t1 and t2 for the corresponding subdivisions of [a, c] and [c, a].
Then

Lt(γ) = Lt1(γ|[a,c]) + Lt2(γ|[c,b]).
Passing to the supremum over all such subdivisions, we obtain

L(γ) = L(γ[a,c]) + L(γ[c,b]).

In particular L(γ) is finite if and only if this is the case for L(γ[a,c]) and L(γ[c,b]).
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Definition 2.27. A curve γ : [a, b] → En (Rn, considered as an affine space) is said to be
differentiable in t ∈ [a, b] if its velocity vector

γ′(t) = lim
h→0

1

h

−−−−−−−−→
γ(t)γ(t+ h)

exists. It must be interpreted as an element of the translation group E = Rn. Accordingly,
we define the velocity of γ in t as ‖γ′(t)‖.

For differentiable curves in E, the length can be computed as an integral. This is very
helpful for concrete calculations.

Lemma 2.28. If γ : [a, b] → En is continuously differentiable, then it is rectifiable and its
length can be computed by

L(γ) :=

∫ b

a

‖γ′(t)‖ dt.

Proof. For a ≤ t ≤ s ≤ b, the Fundamental Theorem of Calculus yields

−−−−−→
γ(t)γ(s) =

∫ s

t

γ′(τ) dτ,

and this implies

d(γ(t), γ(s)) = ‖
−−−−−→
γ(t)γ(s)‖ =

∥∥∥∫ s

t

γ′(τ) dτ
∥∥∥ ≤ ∫ s

t

‖γ′(τ)‖ dτ.

For every subdivision

t = (t0, . . . , tn) with t0 = a < t1 < . . . < tn = b

this leads to

Lt(γ) =

n−1∑
j=0

d(γ(tj), γ(tj+1)) ≤
n−1∑
j=0

∫ tj+1

tj

‖γ′(τ)‖ dτ =

∫ b

a

‖γ′(τ)‖ dτ,

and hence to

L(γ) = sup
t
Lt(γ) ≤

∫ b

a

‖γ′(τ)‖ dτ. (9)

To prove equality, we consider the function

f : [a, b]→ R, f(t) := L(γ|[a,t]) ≤
∫ t

a

‖γ′(τ)‖ dτ.

From Lemma 2.26 and (9) we derive

1

h
‖
−−−−−−−−→
γ(t)γ(t+ h)‖ ≤ 1

h
L(γ|[t,t+h]) =

1

h
(f(t+ h)− f(t)) ≤ 1

h

∫ t+h

t

‖γ′(τ)‖ dt.

By passing to the limit h → 0 we see that f is differentiable in t with f ′(τ) = ‖γ′(τ)‖, and
since this function is continuous, we arrive at the formula

L(γ) = f(b) =

∫ b

a

f ′(τ) dτ =

∫ b

a

‖γ′(τ)‖ dτ.
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Lemma 2.29. If the curve γ : [a, b] → X in the metric space (X, d) satisfies L(γ) =
d(γ(a), γ(b)), then

L(γ[t,s]) = d(γ(t), γ(s)) for a ≤ t ≤ s ≤ b.

Proof. From

d(γ(a), γ(b)) = L(γ)
2.26
= L(γ|[a,t]) + L(γ|[t,s]) + L(γ|[s,b])

≥ d(γ(a), γ(t)) + d(γ(t), γ(s)) + d(γ(s), γ(b)) ≥ d(γ(a), γ(b)),

we derive that, for each of the 3 summands, the corresponding inequality is an equality. In
particular, L(γ[t,s]) = d(γ(t), γ(s)).

Definition 2.30. Let (X, d) be a metric space. A curve γ : [a, b]→ X is called a geodesic of
speed c if there exists a constant c ≥ 0 such that

L(γ) = d(γ(a), γ(b)) and d(γ(a), γ(t)) = c(t− a) for a ≤ t ≤ b.

This property implies in particular that γ is a “shortest curve” from γ(a) to γ(b). In addition,
it imposes a condition on the parametrization of the curve.

Examples 2.31. (of curves) (a) The simplest curves are parametrized lines

γ : R→ En, t 7→ p+ tv,

for p ∈ En, v ∈ E fixed. Then γ′(t) = v is constant and the arclength is

L(γ) = |b− a| · ‖v‖ = d(p, p+ bv).

These curves are geodesics in En.
(b) The curve γ : [0, 2π] → E2 = R2, t 7→ (r cos t, r sin t) parametrizes a circle of radius r

with center 0. Its velocity vector is

γ′(t) = (−r sin t, r cos t) ∈ R2,

so that the velocity is ‖γ′(t)‖ = r and L(γ) = 2πr is the length of a circle of radius r.
(c) A screw line in the euclidean space E3

∼= R3 is given by the curve

γ : R→ R3, γ(t) = (cos t, sin t, t).

Then
γ′(t) = (− sin t, cos t, 1),

and the velocity of γ is constant ‖γ′(t)‖ =
√

2.

Theorem 2.32. (Line segments as shortest curves) If γ : [a, b] → En is a continuous curve
with L(γ) = d(γ(a), γ(b)), then

γ([a, b]) = [γ(a), γ(b)] = {tγ(s) + (1− t)γ(b) : 0 ≤ t ≤ 1}

is the line segment from γ(a) to γ(b). If v :=
−−−−−→
γ(a)γ(b) 6= 0, it can be written as

γ(t) = γ(a) + f(t)v,

where f : [a, b] → [0, 1] is surjective and monotone. Conversely, any such curve satisfies
L(γ) = d(γ(a), γ(b)).
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Proof. For every t ∈ [a, b], we derive from Lemma 2.29 that

d(γ(a), γ(t)) = L(γ|[a,t]) and d(γ(t), γ(b)) = L(γ|[t,b]).

We thus obtain

d(γ(a), γ(b)) = L(γ) = L(γ|[a,t]) + L(γ|[t,b]) = d(γ(a), γ(t)) + d(γ(t), γ(b)).

Now Lemma 2.7 implies that
γ([a, b]) ⊆ [γ(a), γ(b)].

If v 6= 0, i.e., γ is not constant, then we can write γ(t) = γ(a) + f(t)v with 0 ≤ f(t) ≤ 1.
For a ≤ s ≤ t ≤ b we likewise obtain from Lemma 2.29 that γ(s) ∈ [γ(a), γ(t)], so that
f(s) ≤ f(t), i.e., f is monotone.

If, conversely, γ(t) = γ(a) + f(t)v with a monotone function f , then we obtain for every
partition t of [a, b] the relation

Lt(γ) =

n−1∑
j=0

d(γ(tj), γ(tj+1)) =

n−1∑
j=0

(f(tj+1)− f(tj))‖v‖ = (f(b)− f(a))‖v‖ = d(γ(a), γ(b)).

This implies that L(γ) = d(γ(a), γ(b)).

Corollary 2.33. A curve γ : [a, b]→ E is a geodesic if and only if it is affine, i.e.,

γ(t) = γ(a) +
t− a
b− a

−−−−−→
γ(a)γ(b).

Here we call γ affine because it is the restriction of an affine map to the interval [a, b].

Proof. We may w.l.o.g. assume that γ(a) 6= γ(b). If γ : [a, b] → E is a geodesic of speed c,

then we write it as γ(t) = γ(a) + f(t)v with v :=
−−−−−→
γ(a)γ(b) (Theorem 2.32). Then

c(t− a) = d(γ(a), γ(t)) = f(t)‖v‖

implies that f(t) = c
‖v‖ (t− a) is affine, and hence also γ is affine.

2.5 Triangles

In the following we study triangles in an affine euclidean space E. Any such triangle is
specified by the triple (A,B,C) of vertices, and we assume these to be pairwise different. We
now put

~a :=
−−→
BC, a := d(B,C) = ‖~a‖,

~b :=
−→
CA, b := d(C,A) = ‖~b‖,

~c :=
−−→
AB, c := d(A,B) = ‖~c‖.

Then a, b, c are the lengths of the sides opposite to the vertices A,B,C, respectively. For the
corresponding angles we write

α := ](
−−→
AB,

−→
AC), β := ](

−−→
BA,

−−→
BC), γ := ](

−−→
CB,

−→
CA).
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A

α

B

β

C

γ

c

b

a

In this notation, we now derive the fundamental relations between these objects.

Proposition 2.34. (Cosine Rule of euclidean geometry)

c2 = a2 + b2 − 2ab cos(γ).

Proof. This follows from ~c = −~a−~b and

c2 = 〈~c,~c〉 = 〈~a+~b,~a+~b〉 = b2 + a2 + 2〈~a,~b〉 = b2 + a2 − 2ab cos(γ).

Remark 2.35. (a) Note that the Cosine Rule generalizes Pythagoras’ Theorem to arbitrary
triangles.

(b) The Cosine Rule shows in particular, that the length c of the side AB is determined
by the lengths of the other two sides and the angle γ.

Proposition 2.36. (Sine Rule of euclidean geometry)

a

b
=

sinα

sinβ
.

Proof. According to the Cosine Rule we have

−2bc cos(α) = a2 − (b2 + c2)

and thus
4b2c2 cos2(α) = (−a2 + b2 + c2)2.

We likewise obtain
4a2c2 cos2(β) = (a2 − b2 + c2)2.

This leads to

sin2(α)

sin2(β)
=

4a2b2c2(1− cos2(α))

4a2b2c2(1− cos2(β))
=

4a2b2c2 − a2(−a2 + b2 + c2)2

4a2b2c2 − b2(a2 − b2 + c2)2

=
a2

b2
· 4b2c2 − (a4 + b4 + c4 − 2a2b2 − 2a2c2 + 2b2c2)

4a2c2 − (a4 + b4 + c4 − 2a2b2 + 2a2c2 − 2b2c2)
=
a2

b2
.

Proposition 2.37. (Sum of angles in a euclidean triangle)

α+ β + γ = π.
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Proof. Since any triangle is contained in an affine plane, we may w.l.o.g. assume that E = E2

is the two-dimensional euclidean plane. Let φA ∈ Mot(E) denote the unique motion mapping
A to B and ~c to a positive multiple of ~a. Then

φA(A+ x) = B +D(π − β)x.

We likewise define

φB(B + x) = C +D(π − γ)x and φC(C + x) = A+D(π − α)x.

Then the composition φ := φC ◦φB ◦φA is an affine map fixing A, and its linear part is given
by the matrix

D := D(π − α)D(π − γ)D(π − β) = D(3π − α− β − γ)

(cf. Exercise 2.4). Since D~c is a positive multiple of ~c, we actually have D = 1, so that

3π − (α+ β + γ) ∈ 2πZ.

Since the left hand side is positive and smaller than 3π, it must be equal to 2π. This completes
the proof.

2.6 Euclidean geometric properties

Since the euclidean motion group Mot(E) contains all translations, it acts transitively on E.
Therefore all points look alike and points are not distinguished by any geometric property.
For pairs of points (a0, a1) in E, their distance d(a0, a1), i.e., the length of the line segment
joining a0 and a1, is clearly a geometric property, i.e., invariant under the euclidean group.
More generally, we can ask for geometric properties of finite or infinite configurations, i.e.,
subsets S ⊆ E.

The following proposition implies that this is the only geometric property of a pair of
points.

Proposition 2.38. If E is a euclidean affine space, then the two pairs (a0, a1), (a′0, a
′
1) ∈ E2

lie in the same orbit of Mot(E) if and only if

d(a0, a1) = d(a′0, a
′
1).

Proof. Clearly, d(a0, a1) = d(a′0, a
′
1) holds if the two pairs lie in the same orbit. Suppose,

conversely, that this condition is satisfied. Since Mot(E) contains all translations, it acts
transitively on E, and we may thus assume that a′0 = a0. The stabilizer group Mot(E)a0
is isomorphic to the linear isometry group O(E), so that we have to recall that O(E) acts
transitively on all spheres in E (Proposition 2.23).

Alternative argument: Suppose that a0 = a′0, a1 6= a′1, and consider the hyperplane

H :=
1

2
(a1 + a′1) +

−−→
a1a
′
1
⊥

orthogonal to the line segment from a1 to a′1 and containing the midpoint. Then d(a0, a1) =
d(a0, a

′
1) implies that a0 ∈ H (apply Example 2.20(b) with a0 = 0). Therefore the reflection

rH fixes a0 and exchanges a1 and a′1.
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The natural next step is to ask for the orbits of Mot(E) in the space E3 of triples which
we discuss next:

Proposition 2.39. (Congruence of triangles) If E is a euclidean affine space, then the triples
(x, y, z), (x′, y′, z′) ∈ E3 lie in the same orbit of Mot(E) if and only if

d(x, y) = d(x′, y′), d(x, z) = d(x′, z′) and d(y, z) = d(y′, z′).

Proof. Clearly, d(x, y), d(x, z) and d(y, z) are functions on triples (x, y, z) that are invariant
under the action of Mot(E). Suppose that (x, y, z), (x′, y′, z′) are two triples with

d(x, y) = d(x′, y′), d(x, z) = d(x′, z′) and d(y, z) = d(y′, z′),

then the preceding proposition implies the existence of some φ ∈ Mot(E) with φ(x) = x′ and
φ(y) = y′. If x = y, then x′ = y′ and Proposition 2.38 even provides an element φ that also
satisfies φ(z) = z′.

We may therefore assume that x = x′ 6= y = y′. Using the affine isometry ηx : E → E, we
may w.l.o.g. assume that E = E and x = 0. Then Mot(E)0 ∼= O(E) and O(E)y ∼= O(y⊥) is
the orthogonal group of the hyperplane y⊥ ⊆ E.

Let a := d(x, z) = ‖z‖, b := d(y, z) and c := d(x, y) = ‖y‖. We then have a ≤ ‖y‖+ b by
the triangle inequality. Writing z = λy + z1 with z1⊥y and z′ = λ′y + z′1 with z′1⊥y,

a2 = ‖z‖2 = λ2c2 + ‖z1‖2 and b2 = ‖z − y‖2 = (λ− 1)2c2 + ‖z1‖2. (10)

Therefore
b2 − a2 = (1− 2λ)c2 = (1− 2λ′)c2

implies λ = λ′, so that ‖z1‖ = ‖z2‖. Therefore the set of all z′ ∈ E with the fixed distance a
from x and b from y is of the form

λy + {z′ ∈ y⊥ : ‖z′‖ = ‖z‖},

i.e., a sphere in the affine euclidean space y+y⊥. Since O(y⊥) acts transitively on this sphere
(Proposition 2.23), there exists a φ ∈ Mot(E) fixing x and y and mapping z to z′.

Alternative argument: Suppose that x = x′, y = y′ and z 6= z′. We consider the
hyperplane

H :=
1

2
(z + z′) +

−→
zz′⊥.

Then d(x, z) = d(x, z′) implies x ∈ H (apply Example 2.20(b) with x = 0). We likewise
obtain y ∈ H. Therefore the reflection rH fixes x and y and exchanges z and z′.

Remark 2.40. The preceding proposition provides a classification of all triangles up to
congruence, i.e., elements of the motion group. It says that two triangles with vertices
(x, y, z) and (x′, y′, z′) are congruent if and only if corresponding sides have the same length.

If a := d(x, y), b := d(y, z) and c := d(x, z), then the triple (a, b, c) determines the
congruence class of the triangle with sides of length a, b and c. According to the triangle
inequality, we have

c ≤ a+ b, a ≤ b+ c and b ≤ c+ a. (11)

If, conversely, these 3 inequalities are satisfied for (a, b, c) ∈ R3
+, then (10) has a solution z

(cf. Exercise 2.9). Therefore the orbits of Mot(E) in E3 are classified by the triples (a, b, c)
satisfying (11).
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2.7 Orientation

If E is a finite-dimensional euclidean vector space, then we define the special orthogonal group

SO(E) := {g ∈ O(E) : det g > 0} := {g ∈ O(E) : det g = 1}.

From det(g) ∈ {±1} for g ∈ O(E), it follows that SO(E) is a subgroup of index 2. The
corresponding cosets are

SO(E) and O(E)− := {g ∈ O(E) : det g = −1}.

For E = Rn, we write

SOn(R) := SO(Rn) = {g ∈ On(R) : det g = 1}.

Example 2.41. For n = 2 and E = R2, we have

SO2(R) = {D(θ) : θ ∈ R}.

i.e., the special orthogonal group consists of rotations.

Definition 2.42. We call a linear basis b1, . . . , bn of Rn positively oriented if

det(b1, . . . , bn) := det(bij)i,j=1,...,n > 0

and negatively oriented otherwise.

Remark 2.43. The action of SOn(R) preserves the orientation of a basis because g ∈ SOn(R)
implies

det(gb1, . . . , gbn) = det g det(b1, . . . , bn) = det(b1, . . . , bn).

For n = 2, the orientation leads to an additional invariant for the action of SO2(R) on
pairs of vectors.

Remark 2.44. Specializing Proposition 2.39 to the case where z = z′ = 0 (0 is a vertex of
the triangle), it follows that two pairs (x, y) and (x′, y′) are conjugate under the orthogonal
group O2(E) ∼= Mot(E)0 if and only if

‖x‖ = ‖x′‖, ‖y‖ = ‖y′‖ and ‖x− y‖ = ‖x′ − y′‖.

Since
‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉 = ‖x‖2 + ‖y‖2 − 2 cos(](x, y))‖x‖‖y‖,

it follows that two pairs (x, y) and (x′, y′) are conjugate under the orthogonal group O2(E)
if and only if

‖x‖ = ‖x′‖, ‖y‖ = ‖y′‖ and ](x, y) = ](x′, y′).

In terms of the corresponding triangles ∆(x, y, z), this means that they are determined, up
to congruence, by the lengths d(x, z) and d(y, z) of the sides xz and yz and the (non-oriented)
angle in z.
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Example 2.45. Under the action of the subgroup

SMot(R2) := R2 o SO2(R)

of orientation preserving isometries of the plane, the “orientation” of a triangle is also pre-
served. This is reflected by the fact that two pairs (x, y) and (x′, y′) of non-zero vectors in
the plane R2 are conjugate under SO2(R) if and only if

‖x‖ = ‖x′‖, ‖y‖ = ‖y′‖, ](x, y) = ](x′, y′), and sgn(det(x, y)) = sgn(det(x′, y′)).

Accordingly, two planar triangles ∆(x, y, z) and ∆(x′, y′, z′) are conjugate under SMot(R2)
if and only if they are conjugate under Mot(R2) and, in addition,

sgn(det(−→zx,−→zy)) = sgn(det(
−−→
z′x′,

−−→
z′y′)).

In R3 the orientation is defined for triples of vectors via their determinant. Therefore it
does not make sense to say that two triangles in space are equally oriented. We now make
this more precise in terms of congruence with respect to Mot(R3) and SMot(R3).

Proposition 2.46. If n > 2, then two triples (x, y, z) and (x′, y′, z′) in Rn are congruent
under Mot(Rn) if and only if they are congruent under the smaller group SMot(Rn).

Proof. Every triangle ∆(x, y, z) in Rn is conjugate under Mot(Rn) to a triangle in R2. The
assumption n > 2 implies the existence of some g0 ∈ On(R) with det(g0) = −1 and g0|R2 =
idR2 . A typical example is the orthogonal reflection in the hyperplane Rn−1 ∼= Rn−1×{0} ⊆
Rn. Hence every triangle can be moved into R2 by an element of SMot(Rn). If two triangles
∆(x, y, z) and ∆(x′, y′, z′) in R2 are congruent under Mot(Rn), composition with g0 implies
that they are also congruent under SMot(Rn).

2.8 Embeddings of metric spaces in euclidean spaces

In this section we discuss the problem of embedding a metric space (X, d) into some affine
euclidean space E, i.e., we are looking for a map j : X → E with dE(j(x), j(y)) = dX(x, y)
for x, y ∈ X. This problem has been studied for about 80 years starting with the work
of Blumenthal, Menger, Schoenberg and Wilson. It has many interesting connections to
other branches of mathematics such a representation theory, geometric group theory and
probability theory, but first of all it is about the special metric properties of subsets of
euclidean spaces.

To warm up, let us discuss some simple cases.

Examples 2.47. (a) If X = {x, y} consists of at most 2 points, then there exists an isometric
embedding j : X → R. Simply put j(x) := 0 and j(y) := d(x, y).

(b) If X = {x, y, z} consists of at most 3 points, then there exists an isometric embedding
j : X → R2. We put j(x) := (0, 0), j(y) := (d(x, y), 0). The triangle inequalities

d(x, y) ≤ d(x, z) + d(z, y), d(y, z) ≤ d(y, x) + d(x, z), d(z, x) ≤ d(z, y) + d(y, x)

hold in X, so that there exists a point p ∈ R2 with d(p, j(x)) = d(x, z) and d(p, j(y)) = d(y, z)
(Exercise 2.9). Then j(z) := p yields an isometric embedding j : X → R2.

(c) If there exists an isometric embedding j : X → E, then midpoints in X have to be
unique because j maps midpoints to midpoints. We can thus construct metric spaces with
four points which have no embedding into euclidean space.
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Let X := {±e1,±e2} ⊆ R2, endowed with the metric

d(a, b) := max(|a1 − b1|, |a2 − b2|).

Then
d(e1,−e1) = 2 and d(±e1,±e2) = 1.

Therefore ±e2 are two different midpoints for ±e1.

We have already seen that, for |X| ≥ 4, an isometric embedding j : X → E need not exist.
Therefore it is a non-trivial problem to decide when a given metric space admits an isometric
embedding into some euclidean space. The euclidean metric, when restricted to subsets with
more than three elements of some euclidean space, has a property that is not shared by all
metric spaces, and we have to see if we can formulate this property as explicitly as possible.
The appropriate concept is that of a positive definite kernel.

Definition 2.48. Let X be a set and K : X ×X → R be a symmetric function, i.e.,

K(x, y) = K(y, x) for x, y ∈ X.

We say that K is positive definite if, for (x1, c1), . . . , (xn, cn) in X × R, we have

n∑
j,k=1

cjckK(xj , xk) ≥ 0.

This means that all the finite symmetric matrices (K(xj , xk))1≤j,k≤n are positive semidefi-
nite.4

The main point of the concept of a positive definite kernel is that it is an abstraction of
the Gram matrix (〈vi, vj〉)i,j=1,...,n of vectors v1, . . . , vn in a euclidean space.

To verify positive definiteness of a kernel, one needs criteria for positive semidefiniteness
of real symmetric matrices, such as the following.

Proposition 2.49. A real symmetric matrix A ∈ Mn(R) is positive semidefinite if and
only if all its minors are non-negative. Recall that a minor is the determinant of a matrix
AF := (aij)i,j∈F , where F ⊆ {1, . . . , n} is a subset.

Proof. If A is positive semidefinite, then all the matrices AF are positive semidefinite. Hence
all eigenvalues of AF are non-negative, and thus det(AF ) ≥ 0.

Suppose, conversely, that det(AF ) ≥ 0 holds for all subsets F ⊆ {1, . . . , n}. Proceeding by
induction on n, we may assume that all matrices AF , for |F | < n, are positive semidefinite. To
see that A is positive semidefinite, we assume the contrary, i.e., that A has a unit eigenvector
v with eigenvalue λ < 0. If A has only one eigenvalue ≤ 0, then all other eigenvalues of
A are positive, and this leads to the contradiction det(A) < 0. Hence there exists a unit
eigenvector u orthogonal to v with eigenvalue µ ≤ 0. Since u is non-zero, some component
ui is non-zero. Hence there exists an s ∈ R so that the vector w = v + su satisfies wi = 0.
If A′ is the matrix obtained from A by removing the ith column and row and w′ is obtained
by removing the ith coordinate of w, then

(w′)>A′w′ = w>Aw = (v + su)>(λv + sµu) = λ+ s2µ < 0,

contradicting that A′ is positive semidefinite.
4Actually this observation shows that it would be more natural to call these kernels positive semidefinite,

but we follow the traditional terminology. However, this leads to the ugly situation, that a square matrix
A = (aij)1≤i,j≤n is positive semidefinite if and only if the kernel defined by K(i, j) := aij is positive definite.
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Corollary 2.50. A symmetric kernel K : X ×X → R is positive definite if and only if, for
every finite subset {x1, . . . , xn} ⊆ X, the determinant of the matrix (K(xi, xj))i,j=1,...,n is
non-negative.

Example 2.51. A symmetric matrix A =

(
a b
b d

)
∈ M2(R) is positive semidefinite if and

only if
a ≥ 0, d ≥ 0 and detA = ad− b2 ≥ 0.

Proposition 2.52. (Characterization of positive definite kernels) Let K : X ×X → R be a
symmetric kernel.

(a) The kernel K is positive definite if and only if there exists a euclidean vector space E
and a map γ : X → E with K(x, y) = 〈γ(x), γ(y)〉 for x, y ∈ X.

(b) If γ′ : X → E′ is another map into a euclidean space E′ with K(x, y) = 〈γ′(x), γ′(y)〉
for x, y ∈ X and γ(X) spans E, then there exists a unique linear isometry α : E → E′

with γ′ = α ◦ γ.

(c) If γ′ : X → E is another map with K(x, y) = 〈γ′(x), γ′(y)〉 for x, y ∈ X, then there exists
an α ∈ O(E) with γ′ = α ◦ γ if

(i) γ(X) and γ′(X) span E, or

(ii) γ(X) spans a finite-dimensional subspace.

Proof. (a) Suppose first that γ : X → E is a map into a euclidean vector space and K(x, y) :=
〈γ(x), γ(y)〉. For x1, . . . , xn ∈ X and c1, . . . , cn ∈ R, we then have

n∑
j,k=1

cjckK(xj , xk) =

n∑
j,k=1

cjck〈γ(xj), γ(xk)〉 = ‖
n∑
j=1

cjγ(xj)‖2 ≥ 0.

Therefore K is positive definite.
Suppose, conversely, that K is positive definite. In the space RX of real-valued functions

on X, we consider the subspace E spanned by the functions Kx(y) := K(x, y). We want to
put 〈∑

j

cjKxj
,
∑
k

dkKxk

〉
:=
∑
j,k

cjdkK(xk, xj), (12)

so that we have to show that this is well-defined.
So let f =

∑
j cjKxj

and h =
∑
k dkKxk

∈ E. Then we obtain for the right hand side∑
j,k

cjdkK(xk, xj) =
∑
j,k

cjdkKxj (xk) =
∑
k

dkf(xk). (13)

This expression does not depend on the representation of f as a linear combination of the
Kxj

. Similarly, we see that the right hand side does not depend on the representation of h
as a linear combination of the Kxk

. Therefore

〈f, h〉 :=
∑
j,k

cjdkK(xk, xj)
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is well-defined. Since K is positive definite, we thus obtain a positive semidefinite symmetric
bilinear form on E. From (13) we obtain for h = Kx the relation

〈f,Kx〉 = f(x) for x ∈ X, f ∈ E.

If 〈f, f〉 = 0, then the Cauchy–Schwarz inequality yields

|f(x)|2 = |〈f,Kx〉|2 ≤ ‖Kx‖2〈f, f〉 = 0,

so that f = 0. Therefore E is a euclidean space. Now the map γ : X → E, γ(x) = Kx satisfies
K(x, y) = 〈γ(x), γ(y)〉 for x, y ∈ X.

(b) Let c1, . . . , cn ∈ R and x1, . . . , xn ∈ X. Then∥∥∥ n∑
j=1

cjγ
′(xj)

∥∥∥2 =
n∑

j,k=1

cjck〈γ′(xj), γ′(xk)〉 =

n∑
j,k=1

cjckK(xk, xj) =
∥∥∥ n∑
j=1

cjγ(xj)
∥∥∥2.

We therefore have a well-defined linear map

α : E → E′, φ
( n∑
i=1

ciγ(xi)
)

:=

n∑
i=1

ciγ
′(xi).

As the preceding calculation shows, α is isometric. By definition, it satisfies α ◦ γ = γ′.
(c) (i) If γ(X) and γ′(X) both span E, the linear isometry α from (b) is bijective, hence

an element of O(E).
(ii) If γ(X) spans a finite-dimensional subspace, then (b) provides a bijective linear isom-

etry
α0 : F := span γ(X))→ G := span(γ′(X)).

In particular, dimF = dimG. In view of Proposition 2.23(iii), there exists a φ ∈ O(E) with
φ(F ) = G, which further implies that φ(F⊥) = G⊥. Hence

α(x+ y) := α0(x) + φ(y) for x ∈ F, y ∈ F⊥

is a linear isometry whose range is G+G⊥ = E. Therefore α ∈ O(E) and

α ◦ γ = α0 ◦ γ = γ′.

Theorem 2.53. (Embedding Theorem for metric spaces) (a) For a metric space (X, d), the
following are equivalent:

(i) There exists an isometric embedding of X into an affine euclidean space E.

(ii) For every x0 ∈ X, the kernel K(x, y) := d(x, x0)2+d(y, x0)2−d(x, y)2 is positive definite.

(iii) For some x0 ∈ X, the kernel K(x, y) := d(x, x0)2+d(y, x0)2−d(x, y)2 is positive definite.

(b) If γ : X → E and γ′ : X → E′ are two isometric embeddings and γ(X) is not contained
in a proper affine subspace of E, then there exists a unique affine isometry α : E → E′ with
γ′ = α ◦ γ.

(c) If γ, γ′ : X → E are two isometric embeddings and either γ(X) and γ′(X) are not
contained in a proper affine subspace of E or γ(X) is contained in a finite-dimensional affine
subspace, then there exists an α ∈ Mot(E) with γ′ = α ◦ γ.
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Proof. (a) (i)⇒ (ii): Let γ : X → E be an isometric embedding into a euclidean vector space
E and x0 ∈ X. For η(x) := γ(x)− γ(x0) we then obtain

K(x, y) = d(x, x0)2 + d(y, x0)2 − d(x, y)2

= ‖γ(x)− γ(x0)‖2 + ‖γ(y)− γ(x0)‖2 − ‖γ(y)− γ(x)‖2

= ‖η(x)‖2 + ‖η(y)‖2 − ‖η(x)− η(y)‖2 = 2〈η(x), η(y)〉.

Therefore K is positive definite by Proposition 2.52.
(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i): Suppose that the kernel K(x, y) := d(x, x0)2 + d(y, x0)2 − d(x, y)2 is positive

definite. Then there exists a map η : X → E into a euclidean space E with

K(x, y) = 2〈η(x), η(y)〉 for x, y ∈ X

(Proposition 2.52). From K(x0, x0) = 0 it then follows that η(x0) = 0. We thus obtain

2‖η(x)‖2 = K(x, x) = 2d(x, x0)2,

and therefore

‖η(x)−η(y)‖2 = ‖η(x)‖2+‖η(y)‖2−2〈η(x), η(y)〉 = d(x, x0)2+d(y, x0)2−K(x, y) = d(x, y)2.

This shows that η is isometric.
(b) Fix a point x0 ∈ X. As we have seen in (a) above, η := γ − γ(x0) satisfies

K(x, y) := 2〈η(x), η(y)〉 = d(x, x0)2 + d(y, x0)2 − d(x, y)2.

Likewise, η′ := γ′ − γ′(x0) satisfies

2〈η′(x), η′(y)〉 = d(x, x0)2 + d(y, x0)2 − d(x, y)2 = K(x, y).

Therefore Proposition 2.52(b) implies the existence of a unique linear isometry β : E → E
with β ◦ η = η′. Now

β ◦ γ = β ◦ η + β(γ(x0)) = η′ + β(γ(x0)) = γ′ − γ′(x0) + β(γ(x0)).

Hence the isometry
α := β + γ′(x0)− β(γ(x0))

satisfies α ◦ γ = γ′. Since α is an affine map and γ(X) generates the affine space E, it is
uniquely determined by its values on γ(X).

(c) follows by combining the proof of (b) with Proposition 2.52(c).

Remark 2.54. If |X| = n and γ : X → E is an isometric embedding generating the affine
space E, then dimE ≤ n− 1.

More precisely, the construction of the embedding from the kernel

K(x, y) = d(x, x0)2 + d(y, x0)2 − d(x, y)2

implies that dimE = rank(K), where K is considered as an (n× n)-matrix (Exercise).
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The preceding theorem also solves the so-called congruence problem for euclidean spaces:
We call two subsets X,Y ⊆ E isometric if there exists a surjective isometry γ : X → Y . We
say that X and Y are congruent if there exists a motion φ ∈ Mot(E) with φ(X) = Y . Clearly,
congruent subsets are isometric, and if X and Y generate E as an affine space, the converse
is also true:

Theorem 2.55. (Congruence Theorem for euclidean spaces) Let X and Y be two isometric
subsets X,Y of a euclidean affine space E. If X and Y both generate E as an affine space or
X is contained in a finite-dimensional affine subspace, then they are congruent.

Proof. Let γ : X → Y be a surjective isometry. Then Theorem 2.53(c) implies the existence
of a φ ∈ Mot(E) with φ|X = γ. In particular, we then have φ(X) = γ(X) = Y .

Remark 2.56. Let d : X ×X → R be a symmetric non-negative function on the 3-element
set X = {a, b, c}. We put x0 := a and consider the kernel

K(x, y) := d(x, x0)2 + d(y, x0)2 − d(x, y)2.

Then

A :=

K(a, a) K(a, b) K(a, c)
K(b, a) K(b, b) K(b, c)
K(c, a) K(c, b) K(c, c)


=

0 0 0
0 2d(a, b)2 d(a, b)2 + d(a, c)2 − d(b, c)2

0 d(a, b)2 + d(a, c)2 − d(b, c)2 2d(a, c)2


is positive semidefinite if and only if the lower right (2× 2)-minor is non-negative (cf. Propo-
sition 2.49, Example 2.51):

4d(a, b)2d(a, c)2 ≥
(
d(a, b)2 + d(a, c)2 − d(b, c)2

)2
This relation is equivalent to the two inequalities

2d(a, b)d(a, c) ≥ ±
(
d(a, b)2 + d(a, c)2 − d(b, c)2

)
.

The +-inequality is equivalent to

2d(a, b)d(a, c) ≥ d(a, b)2 + d(a, c)2 − d(b, c)2,

which is equivalent to
d(b, c)2 ≥ (d(a, b)− d(a, c))2,

i.e.,
d(b, c) ≥ ±(d(b, a)− d(a, c)),

i.e.,
d(a, b) ≤ d(b, c) + d(a, c) and d(a, c) ≤ d(a, b) + d(b, c).

The −-inequality is equivalent to

2d(a, b)d(a, c) ≥ d(b, c)2 − d(a, b)2 − d(a, c)2,
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which is equivalent to
d(b, c)2 ≤ (d(a, b) + d(a, c))2,

i.e.,
d(b, c) ≤ d(a, b) + d(a, c).

We conclude that the positive definiteness of the kernel K is equivalent to the triangle
inequality for (X, d).

If, conversely, (X, d) is a metric space, then Theorem 2.53 leads to an isometric embedding
of X into a euclidean space, actually into R2.

Example 2.57. On R2 we consider the sup-metric

d(x, y) := max(|x1 − y1|, |x2 − y2|) = ‖x− y‖∞.

Then X := {0, e1, e1 ± e2} is a four-element metric space. We have

d(0, e1) = d(0, e1 ± e2) = 1, d(e1, e1 ± e2) = 1, d(e1 − e2, e1 + e2) = 2.

For x0 := 0, x1 := e1, x2 := e1 + e2 and x3 := e1 − e2, we thus obtain the kernel

K(x, y) = d(x, x0)2 + d(y, x0)2 − d(x, y)2

with the matrix

(K(xi, xj))1≤i,j≤4 =


0 0 0 0
0 2 1 1
0 1 2 −2
0 1 −2 2

 .

This matrix has a negative minor

det

2 1 1
1 2 −2
1 −2 2

 = 8− 2− 2− (2 + 8 + 2) = −8 < 0,

so that K is not positive definite. This means that (X, d) has no isometric embedding into
a euclidean space R3.

Remark 2.58. We have above that four-point subsets of a metric space (X, d) are not
necessarily isometric to a subset of euclidean space. Accordingly one says that a metric space
(X, d) has the n-point property if every n-element subset F ⊆ X is isometric to a subset of
euclidean space. That every metric space has the 3-point property corresponds to the triangle
inequality (cf. Example 2.47 and Remark 2.56). Likewise the inequalities corresponding to
the 4-point property are called tetrahedral inequalities. These are inequalities of the form
detA ≥ 0, where A = (K(xi, xj))1≤i,j≤3 and

K(x, y) = d(x, x0)2 + d(y, x0)2 − d(x, y)2.

As a consequence of the Embedding Theorem 2.53, a metric space has the n-point property
for every n ∈ N if and only if it can be embedded in some euclidean space. This follows from
the fact that a kernel is positive definite if and only if all its restrictions to finite subsets are
positive definite.

It can be shown for a rather large class of metric spaces that the 4-point property implies
the n-point property for every n ∈ N ([Wi32]). For an interesting survey on the 4-point
property we refer to [Bl75].
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Definition 2.59. (The parallelogram law in metric spaces) Let E be an affine euclidean

space and E =
−→
E be the corresponding euclidean vector space. For v, w ∈ E, we then have

the relation
‖v − w‖2 + ‖v + w‖2 = 2‖v‖2 + 2‖w‖2, (EPL)

which is also called the euclidean parallelogram law.
For any triangle ∆(x0, x1, x2) and the midpoint x3 of x1 and x2 (with v = −−→x0x1 and

w = −−→x0x2) we thus obtain the relation

d(x1, x2)2 + 4d(x0, x3)2 = 2d(x0, x1)2 + 2d(x0, x2)2 (PL)

which is called the (metric) parallelogram law because it relates the sides of the parallelogram
with vertices (x0, x1, x2, x0 +−−→x0x1 +−−→x0x2) to the lengths of the diagonals.

X
0

X
1

X
2

X
3

X
0

X
1

X
2

X
3

Example 2.60. (The parallelogram law) Let (X, d) be a metric space and

S := {x0, x1, x2, x3} ⊆ X

such that x3 is a midpoint of x1 and x2, i.e.,

d(x1, x3) = d(x2, x3) = 1
2d(x1, x2). (14)

We want to see when S has an embedding into a euclidean space. If this is the case for
all subsets S as above, then (X, d) is said to have the weak 4-point property because it is a
condition referring only to special point configurations (cf. [Bl75]).

We consider the kernel

K(x, y) = d(x, x3)2 + d(y, x3)2 − d(x, y)2.

For h := d(x1, x3) and dj := d(x0, xj), j = 1, 2, 3, we obtain for K the matrix
2d23 d23 + h2 − d21 d23 + h2 − d22 0

d23 + h2 − d21 2h2 −2h2 0
d23 + h2 − d22 −2h2 2h2 0

0 0 0 0

 .

Since the triangle equality holds in X, all 2× 2-minors are non-negative. Therefore K is
positive definite if and only if

det

 2d23 d23 + h2 − d21 d23 + h2 − d22
d23 + h2 − d21 2h2 −2h2

d23 + h2 − d22 −2h2 2h2


= −2h2(2(d23 + h2 − d21)(d23 + h2 − d22) + (d23 + h2 − d22)2 + (d23 + h2 − d21)2)

= −2h2
(
(d23 + h2 − d22) + (d23 + h2 − d21)

)2
= −2h2

(
2(d23 + h2)− (d22 + d21)

)2 ≤ 0.
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This expression is non-negative if and only if it vanishes, which means that

2(d23 + h2) = d22 + d21,

after multiplication by 2,

4d(x0, x3)2 + d(x1, x2)2 = 2d(x0, x1)2 + 2d(x0, x2)2. (15)

For points x0, x1, x2 in a euclidean affine space E and the midpoint x3 of x1 and x2, this is
the parallelogram law. Therefore (15) is necessary for the embeddability of (X, d) into some
euclidean space. Conversely, the Embedding Theorem 2.53 also shows that it is sufficient
for the subset S ⊆ X. In this sense the weak 4-point property is an abstract form of the
parallelogram law in the metric space (X, d).

A closely related problem is to determine when a normed spaces (X, ‖ · ‖) is euclidean,
i.e., there exists a scalar product 〈·, ·〉 such that ‖v‖ =

√
〈v, v〉 holds for v ∈ X. Clearly, the

parallelogram law
‖v − w‖2 + ‖v + w‖2 = 2‖v‖2 + 2‖w‖2

is a necessary condition. It has been shown by Jordan and von Neumann that this condition,
which corresponds to the weak 4-point property in the corresponding metric space (X, d), is
also sufficient ([JvN35]). An earlier result in this context is the observation by M. Fréchet
[Fr35] that a necessary and sufficient condition is that the kernel

K(v, w) := ‖v‖2 + ‖w‖2 − ‖v − w‖2

is positive definite. By Theorem 2.53, Fréchet’s condition implies the existence of an isometric
embedding γ : X → E into a euclidean space E with γ(0) = 0, so that it encodes the n-point
property of (X, d) for every n. The main point of the Jordan–von Neumann Theorem is that
it reduces all that to the weak 4-point property, which is much easier to verify.

Theorem 2.61. (Jordan–von Neumann) Let (X, ‖ · ‖) be a normed space satisfying the
parallelogram law

‖v − w‖2 + ‖v + w‖2 = 2‖v‖2 + 2‖w‖2 for v, w ∈ X.

Then X is euclidean, i.e., there exists a symmetric bilinear form 〈·, ·〉 on X with ‖v‖2 = 〈v, v〉
for v ∈ X.

Proof. (cf. [Gl66]) For Q(x) := 1
4‖x‖

2, we consider the map

γ : X ×X → R, γ(x, y) := Q(x+ y)−Q(x− y).

The parallelogram law asserts that

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) for x, y ∈ X. (16)

We clearly have Q(0) = 0, so that we get for x = 0 the relation Q(−y) = Q(y). This implies
that γ is symmetric. For x = y, we further get γ(x, x) = Q(2x) = 4Q(x) = ‖x‖2.

Next we show that γ is additive in the first argument. For x, y, z ∈ X, we obtain

2γ(x, z) + 2γ(y, z) = 2Q(x+ z) + 2Q(y + z)− 2Q(x− z)− 2Q(y − z)
= Q(x+ y + 2z) +Q(x− y)−Q(x+ y − 2z)−Q(x− y)

= γ(x+ y, 2z),
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so that
2γ(x, z) + 2γ(y, z) = γ(x+ y, 2z). (17)

For y = 0 we obtain with γ(x, 0) = 0 = γ(0, y),

2γ(x, z) = γ(x, 2z),

so that (17) yields
γ(x, z) + γ(y, z) = γ(x+ y, z).

For x = y we obtain by induction γ(nx, z) = nγ(x, z) for n ∈ N. Replacing x by x
n , leads to

γ( xn , z) = 1
nγ(x, z) for n ∈ N. Therefore the map γ(·, z) is Q-linear, and since it is continuous,

it is R-linear. Finally we recall that γ is symmetric, hence bilinear. Therefore γ is a scalar
product on X for which ‖ · ‖ is the corresponding norm.

We conclude this section with a result on the compatibility of embeddings into euclidean
spaces with isometries of (X, d).

Theorem 2.62. Let (X, d) be a metric space and γ : X → E be an isometric embedding
into an affine euclidean space whose image is not contained in a proper affine subspace of E.
Then, for every isometry g ∈ Isom(X, d), there exists a unique αg ∈ Mot(E) with

αg ◦ γ = γ ◦ g. (18)

The following assertions hold:

(i) α : Isom(X, d)→ Mot(E) is a group homomorphism, so that we obtain an affine isometric
action of Isom(X, d) on E.

(ii) γ : X → E is Isom(X, d)-equivariant, i.e., (18) holds.

Proof. Since γ ◦ g : X → E is also isometric, Theorem 2.55 implies for each g ∈ Isom(X, d)
the existence of a unique isometry αg ∈ Mot(E) with αg ◦ γ = γ ◦ g.

(i) For g, h ∈ Isom(X, d) we have

αgαh ◦ γ = αg ◦ γ ◦ h = γ ◦ gh = αgh ◦ γ,

and since γ(X) generates the affine space E, we obtain αg ◦ αh = αgh.
(ii) is a consequence of the definition of αg.

Remark 2.63. The preceding theorem can be used to obtain a new proof for the fact that
every isometry of an affine euclidean space E is affine (cf. Theorem 2.12). In fact, let g : E→ E
be an isometry. We apply Theorem 2.62 with X = E and γ = idE. This leads to g = αg, so
that g is affine.

Example 2.64. For X := R, we call a metric d translation invariant if all the translations
τx(y) := x + y are isometries. Any such metric is of the form d(x, y) = f(|x − y|) for a
function f : R+ → R+. The functions f for which we thus obtain a metric that permits an
isometric embedding γ : R → E into euclidean spaces have been determined by Schoenberg
and von Neumann ([SvN41]). Then the embedding γ is called a screw line or a helix.

Typical examples of helices in R3 are given by

ξ : R→ R3, ξ(x) = (a cosx, a sinx, bx).
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Then

d(x, y) := ‖ξ(x)− ξ(y)‖ =

√
4a2 sin2

(x− y
2

)
+ b2(x− y)2

is a translation invariant metric on R and ξ is an isometric embedding (R, d) ↪→ R3.
The corresponding affine isometric action α of the groupG = (R,+) on R3 whose existence

is ensured by Theorem 2.62 is given by

αt(x, y, z) := (cos t · x− sin t · y, sin t · x+ cos t · y, z + bt),

so that ξ(x) = αx(a, 0, 0) is an orbit of this action.

Exercises for Section 2

Exercise 2.1. Find examples of points x, y in metric spaces for which:

(i) No midpoint exists.

(ii) More than one midpoint exists.

Exercise 2.2. Consider the euclidean space

E := R(N) = {(an)n∈N ∈ RN : (∃N ∈ N)(∀n > N)an = 0}

of all finite sequence, endowed with the canonical scalar product 〈a, b〉 :=
∑∞
n=1 anbn. Show

that
H :=

{
a = (an) ∈ E :

∑
n

an = 0
}

is a hyperplane with H⊥ = {0}.

Exercise 2.3. Let E be a euclidean space and 0 < k1 < . . . < kN natural numbers. We
consider the corresponding set of flags

F :=
{

(F1, . . . , FN ) ∈
n∏
j=1

Grkj (E) : F1 ⊆ . . . ⊆ FN ,dimFj = kj

}
,

where the Fj ⊆ E are linear subspaces of dimension kj . Show that the orthogonal group
O(E) acts transitively on F . Hint: Proposition 2.23.

Exercise 2.4. Show that, for α, β ∈ R, we have

D(α)D(β) = D(α+ β) for the rotation matrices D(θ) :=

(
cos θ − sin θ
sin θ cos θ

)
.

Exercise 2.5. Show that the linear endomorphism φ : R2 → R2, x 7→ Qx, defined by the
matrix

Q =

(
cos θ sin θ
sin θ − cos θ

)
= D(θ) ·

(
1 0
0 −1

)
is a reflection in the line ` intersecting the x1-axis in the angle θ

2 .
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Exercise 2.6. Let M ∈ R2 and θ ∈ R. Find a formula for the rotation φ of the euclidean
plane R2 with fixed point M and angle θ.

Exercise 2.7. Show that, for a closed convex polygon in the plane, with vertices P1, . . . , PN
and the corresponding angles

α1 := ](
−−−→
P1PN ,

−−−→
P1P2), αj := ](

−−−−→
PjPj−1,

−−−−→
PjPj+1) for j > 1,

we have
α1 + · · ·+ αN = (N − 2)π.

Hint: Generalize the proof of Proposition 2.37.

Exercise 2.8. Let a, b, c ∈ R with (a, b) 6= (0, 0) and consider the affine line

H := {(x, y) ∈ R2 : ax+ by = c}.

Find a formula for the orthogonal reflection r : R2 → R2 in terms of a, b, c.

Exercise 2.9. Let E be an affine euclidean space. For m ∈ E, we consider the sphere

S(m, r) := {P ∈ E : d(P,m) = r}

of radius r and center m.

(i) Show that, for two such spheres S(m, r) and S(m′, r′), the intersection is either empty or
a sphere in an affine subspace of E. Determine the center and the radius of this sphere.
Hint: If this is a little too abstract, discuss the case E = R2 first. In this case we are
dealing with intersections of two circles.

(ii) S(m, r) and S(m′, r′) intersect if and only if the following “triangle inequalities” hold:

d(m,m′) ≤ r + r′, r′ ≤ d(m,m′) + r, r ≤ d(m,m′) + r′.

Exercise 2.10. Let E be an affine euclidean space and rH1
, rH2

∈ Mot(E) be two orthogonal
reflections in parallel hyperplanes H1 and H2. Show that their composition rH1

◦ rH2
is a

translation in the direction of a vector orthogonal to both hyperplanes.

Exercise 2.11. Let E be an affine euclidean space and rH1
, rH2

∈ Mot(E) be two orthogonal
reflections in two hyperplanes H1 and H2 which are not parallel. Give a geometric description
of their composition rH1

◦ rH2
. Hint: Start with the case dimE = 2 and reduce the general

case to the 2-dimensional case.

Exercise 2.12. (Metric characterization of midpoints) Let (X, ‖ · ‖) be a normed space and
x, y ∈ X distinct points. Let

M0 := {z ∈ X : ‖z − x‖ = ‖z − y‖ = 1
2‖x− y‖} and m :=

x+ y

2
.

For a subset A ⊆ X we define its diameter

δ(A) := sup{‖a− b‖ : a, b ∈ A}.

Show that:
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(1) For z ∈M0, we have ‖z −m‖ ≤ 1
2δ(M0) ≤ 1

2‖x− y‖.

(2) For n ∈ N we define inductively:

Mn := {p ∈Mn−1 : (∀z ∈Mn−1) ‖z − p‖ ≤ 1
2δ(Mn−1)}.

Then we have for each n ∈ N:

(a) Mn is a convex set.

(b) Mn is invariant under the point reflection rm(a) := 2m− a in m.

(c) m ∈Mn.

(d) δ(Mn) ≤ 1
2δ(Mn−1).

(3)
⋂
n∈NMn = {m}.

Exercise 2.13. (Isometries of normed spaces are affine maps) Let (X, ‖·‖) be a normed space
endowed with the metric d(x, y) := ‖x− y‖. Show that each isometry φ : (X, d) → (X, d) is
an affine map by using the following steps:

(1) It suffices to assume that φ(0) = 0 and to show that this implies that φ is a linear map.

(2) φ(x+y2 ) = 1
2 (φ(x) + φ(y)) for x, y ∈ X. Hint: Exercise 2.12.

(3) φ is continuous.

(4) φ(λx) = λφ(x) for λ ∈ 2Z ⊆ R.

(5) φ(x+ y) = φ(x) + φ(y) for x, y ∈ X.

(6) φ(λx) = λφ(x) for λ ∈ R.

Exercise 2.14. Let β : V ×V → V be a symmetric bilinear form on the vector space V and

q : V → V, v 7→ β(v, v)

the corresponding quadratic form. Then, for φ ∈ End(V ), the following are equivalent:

(1) (∀v ∈ V ) q(φ(v)) = q(v).

(2) (∀v, w ∈ V ) β(φ(v), φ(w)) = β(v, w).

Hint: Use the polarization identity β(v, w) = 1
4

(
q(v + w)− q(v − w)

)
.

Exercise 2.15. Let E be a euclidean vector space and φ ∈ O(E) a product of n reflections.
Show that

rank(φ− 1) ≤ n.

Conclude that, if V is infinite-dimensional, then not every element of O(E) is a finite product
of reflections.

Exercise 2.16. Consider in R2 the curve

γ : [0, 2π]→ R2, γ(t) = (cos t, sin t).

Calculate its length and explain how the definition of L(γ) as a limit of the numbers of the
form Lt(γ) can be used to derive a practical method to calculate π.
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3 Spherical Geometry

After the euclidean affine geometry in the preceding section, we now turn to spherical ge-
ometry, i.e., the metric geometry of the unit sphere in a euclidean vector space. Here the
2-sphere S2 ⊆ R3 is of particular interest because it corresponds quite well to the geometry
on the surface of the earth.

We start by defining the metric on the unit sphere S(E) in a euclidean vector space E.
Then we show that its group of isometries can be identified with the orthogonal group O(E)
of linear isometries of E. We then turn to geodesics and triangles and conclude this section
with a brief discussion of the link with the Riemannian approach to geometry where the
distance is derived from the lengths of curves.

3.1 The metric on the euclidean sphere

We consider the n-dimensional unit sphere

Sn := {x ∈ Rn+1 : ‖x‖ = 1} = {x ∈ Rn+1 : x21 + · · ·+ x2n+1 = 1}

and more generally, the unit sphere

S(E) := {x ∈ E : ‖x‖ = 1}

in a euclidean vector space. For x, y ∈ S(E), the Cauchy–Schwarz inequality implies that
|〈x, y〉| ≤ 1, so that we may define a function

d : S(E)× S(E)→ R+, d(x, y) := ](x, y) = arccos(〈x, y〉) ∈ [0, π].

YX
d(X,Y)

Lemma 3.1. (S(E), d) is a metric space.

Proof. Clearly, d(x, y) = d(y, x) and d(x, x) ≥ 0. If d(x, y) = 0, then 〈x, y〉 = 1, so that the
second part of Proposition 2.2 on the Cauchy–Schwarz inequality implies that x = y.

It therefore remains to verify the triangle inequality. So let x, y, z ∈ S(E). To verify that

d(x, z) ≤ d(x, y) + d(y, z),
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we may w.l.o.g. assume that d(x, y) + d(y, z) ≤ π; otherwise there is nothing to show. Then
it suffices to verify the relation

〈x, z〉 = cos(d(x, z)) ≥ cos(d(x, y) + d(y, z))

= cos(d(x, y)) cos(d(y, z))− sin(d(x, y)) sin(d(y, z))

= 〈x, y〉〈y, z〉 −
√

1− 〈x, y〉2
√

1− 〈y, z〉2.

To verify this relation, we write x = x0 + x1, z = z0 + z1 with x0, z0 ∈ Ry and x1, z1⊥y, i.e.,

x0 := 〈x, y〉y, x1 := x− x0, z0 := 〈z, y〉y, z1 := z − z0.

Then Pythagoras’ Theorem (Lemma 2.9) leads to

1 = ‖x‖2 = ‖x0‖2 + ‖x1‖2 = 〈x, y〉2 + ‖x1‖2 and 1 = ‖z‖2 = 〈z, y〉2 + ‖z1‖2.

We thus obtain with the CS inequality

〈x, y〉〈y, z〉 −
√

1− 〈x, y〉2
√

1− 〈y, z〉2 = 〈x0, z0〉 − ‖x1‖‖z1‖ ≤ 〈x0, z0〉+ 〈x1, z1〉 = 〈x, z〉.

This proves the triangle inequality.

Remark 3.2. For any metric space (X, d), it is of some interest to analyze for which triples
(x, y, z) we have the triangle equality:

d(x, z) = d(x, y) + d(y, z). (19)

If this is the case for x, y, z ∈ S(E), then the preceding proof implies that

〈x1, z1〉 = −‖x1‖‖z1‖.

This means that either x1 = 0 or that z1 ∈ Rx1 with 〈z1, x1〉 ≤ 0 (cf. the second part of
Proposition 2.2 on the Cauchy–Schwarz inequality).

In the first case x ∈ Ry implies x ∈ {±y}. The case x = y is trivial, and if x = −y, then
the assumption d(x, y) + d(y, z) ≤ π leads to y = z. Likewise z = −y leads to x = y. This is
the case where all three points lie in a one-dimensional linear subspace of E.

In the other case (x1 6= 0), so that x, y and z generate a 2-dimensional plane F in which
y and 1

‖x1‖x1 form an orthonormal basis and x, y, z ∈ S(F ) ∼= S1. In this case the triangle

equality holds if and only if z1 ∈ −R+x1, i.e., 〈z1, x1〉 ≤ 0, and d(x, y)+d(y, z) ≤ π (Exercise:
Visualize this condition on the unit circle!).

Remark 3.3. If ι : E1 → E2 is an isometric embedding of euclidean vector spaces, then the
corresponding map

ι|S(E1) : S(E1)→ S(E2)

also is an isometry.

3.2 Geodesics on spheres

Proposition 3.4. (Uniqueness of midpoints on spheres) For two points x, y ∈ S(E) with
d(x, y) < π, there exists a unique midpoint m, i.e., d(x,m) = d(y,m) = 1

2d(x, y). It lies in
the plane generated by x and y.
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Proof. We may w.l.o.g. assume that x 6= y, which implies that both are linearly independent
because x 6= −y follows from d(x, y) < π. Clearly F := Rx + Ry is 2-dimensional because
y 6∈ Rx, and therefore S(F ) ∼= S1 contains a midpoint z of x and y. It can be obtained as one
of the two points in S(F ) that are fixed by the linear reflection in the line (x − y)⊥ which
exchanges x and y (Example 2.20).

Any midpoint m of x and y satisfies the triangle equality d(x,m) +d(m, y) = d(x, y) < π,
so that Remark 3.2 implies that x, y,m lie in a linear subspace of dimension 2, so that m ∈ F .
Now an elementary consideration in S1 shows that m = z.

Remark 3.5. (Maximal geodesics) Suppose that v1, v2 ∈ E are orthogonal unit vectors. We
consider the curve

γ : [0, π]→ S(E), γ(t) := cos t · v1 + sin t · v2
from γ(0) = v1 to γ(π) = −v1. For 0 ≤ t ≤ s ≤ π we then have

d(γ(t), γ(s)) = arccos(〈γ(t), γ(s)〉) = arccos(cos t cos s+sin t sin s) = arccos(cos(s−t)) = s−t.

Therefore γ is a geodesic of unit speed. Since the maximal distance between two points
in S(E) is π, the geodesic γ cannot be extended to a geodesic curve defined on any larger
interval.

Definition 3.6. If F ⊆ E is a 2-dimensional linear subspace, then F ∩S(E) = S(F ) is called
a great circle in the sphere S(E). In Remark 3.5 we have seen that any half of a great circle
leads to a geodesic in the metric space S(E), and this is also true for any subsegment of
length smaller than π.

Clearly, for dimE ≥ 2, there are many geodesics connecting two opposite points ±x in
the sphere S(E). However, if two points do not lie on the same line, they can be connected
by a unique geodesic:

Theorem 3.7. (Uniqueness of geodesics) For any two points x, y ∈ S(E) with d(x, y) < π,
there is a unique geodesic

γ : [0, 1]→ S(E) with γ(0) = x, γ(1) = y.

Proof. The existence of a geodesic follows from the observation that F := Rx+Ry is a plane
for which the great circle S(F ) contains x and y (Recall that x 6= y and d(x, y) < π imply
that x and y are linearly independent). The smaller piece of S(F ) obtained by cutting in the
two points x and y now provides a geodesic segment γ as required.

To see that this is unique, let η : [0, 1] → S(E) be any geodesic from x to y. Then its
speed is c = d(x, y). Any z := η(t) satisfies

d(x, z) = d(η(0), η(t)) = td(x, y) and d(z, y) = d(η(t), η(1)) = (1− t)d(x, y),

so that
d(x, z) + d(z, y) = d(x, y).

Now Remark 3.2 implies that η([0, 1]) ⊆ F . The uniqueness of midpoints further leads to

η
(
1
2

)
= γ

(
1
2

)
,

and we inductively obtain η(t) = γ(t) for all dyadic numbers t = n
2k

, 0 ≤ n ≤ 2k, k ∈ N.
Since both curves η and γ are continuous, it follows that η = γ.
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3.3 The group of isometries

In this subsection we show that every isometry of the sphere S(E) is obtained by the restric-
tion of a unique orthogonal linear map. This shows that the symmetry group Isom(S(E), d)
of spherical geometry is the orthogonal group O(E) of the euclidean space E.

Theorem 3.8. (Isometries are orthogonal maps) For φ ∈ O(E), the restriction to S(E)
defines a surjective isometry φS of S(E) and all surjective isometries of S(E) are of this
form.

Proof. It is obvious that every φ ∈ O(E) of E preserves the sphere

S(E) = {v ∈ E : d(v, 0) = 1}

because it fixes 0. Since φ preserves scalar products, it induces a surjective isometry φS of
S(E).

Suppose, conversely, that ψ : S(E) → S(E) is a surjective isometry. For x, y ∈ S(E) we
then have the relation

〈φ(x), φ(y)〉 = cos(d(φ(x), φ(y))) = cos(d(x, y)) = 〈x, y〉,

so that Proposition 2.52 implies the existence of a linear isometry α : E → E with α|S(E) = φ.
The surjectivity of φ now implies that the linear map α is also surjective, hence an element
of O(E).

Corollary 3.9. For every euclidean vector space E, we have Isom(S(E), d) ∼= O(E).

The preceding theorem shows that O(E) is the symmetry group of spherical geometry.
Proposition 2.23 asserts in particular that O(E) acts transitively on S(E). For its action on
the set S(E)2 of pairs by g.(x, y) := (gx, gy), the distance function d : S(E) × S(E) → R is
invariant. We actually have the following converse, which means that the distance functions
actually separates the O(E)-orbits in S(E).

Theorem 3.10. The action of O(E) on S(E) is 2-point transitive, i.e., if x, y, x′, y′ ∈ S(E)
satisfy

d(x, y) = d(x′, y′),

then there exists a φ ∈ O(E) with φ(x) = x′ and φ(y) = y′.

Proof. Using Proposition 2.23, we find a φ ∈ O(E) with φ(x) = x′, so that we may assume
that x = x′. For every r ∈ [0, π], the set

Br(x) = {v ∈ S(E) : d(x, v) = r}

is of the form

{v ∈ S(E) : 〈v, x〉 = cos r} =
{
v ∈ S(E) : v = (cos r)x+ w,w ∈ x⊥, ‖w‖ = sin r

}
.

It may therefore be identified with the sphere of radius sin r in the hyperplane x⊥. Since
O(x⊥) = O(E)x acts transitively on this sphere (Proposition 2.23), there exists a φ ∈ O(E)
with φ(x) = x and φ(y) = y′.
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Remark 3.11. For a metric space (X, d), the condition that its isometry group Isom(X, d)
acts 2-point transitively in the sense that, for x, y, x′, y′ ∈ X

d(x, y) = d(x′, y′) ⇒ ∃φ ∈ Isom(X, d) φ(x) = x′, φ(y) = y′

is quite strong. Metric spaces with this property are called 2-point homogeneous. We know
already that affine euclidean spaces (Proposition 2.38) and euclidean spheres are 2-point
homogeneous.

For x = y, we see in particular that, for any 2-point homogeneous space Isom(X, d) acts
transitively on (X, d), so that (X, d) is homogeneous. For a homogeneous metric space, the
2-point homogeneity is equivalent to the transitivity of the stabilizer groups Isom(X, d)x of
every x ∈ X on the spheres

Sr(x) := {y ∈ X : d(x, y) = r}

(Exercise!). Therefore it can be interpreted as an abstract version of isotropy, i.e., viewed
from each point x ∈ X, the space X looks the same in the “direction” of any other y ∈ X.

One can show that there are very view types of 2-point homogeneous spaces. The basic
examples are the affine spaces, spheres, projective (Section 4) and hyperbolic spaces (Sec-
tion ??) over the fields R, C and the skew-field H of quaternions. There is also an exceptional
space corresponding to the “projective plane” over the 8-dimensional algebra O of octonions
(cf. [Wa51, Wa52] for details and classification results).

Remark 3.12. (The Banach–Mazur problem) We have seen above that, for a euclidean
space E, the group O(E) of linear isometries of E acts transitively on the unit sphere S(E).
Simple examples, such as the norms ‖ · ‖1 and ‖ · ‖∞ on R2, show that, for a normed space
(X, ‖ · ‖), the group

O(X) := {φ ∈ GL(X) : (∀v ∈ X) ‖φ(x)‖ = ‖x‖}

need not act transitively on the unit sphere S(X) = {v ∈ X : ‖v‖ = 1}. In particular, for
‖ · ‖1 and ‖ · ‖∞ on R2, the group O(X) has 8 elements, it is the symmetry group of a square.

Therefore it is a natural question to ask if there are normed spaces for which O(X) acts
transitively on S(X) but which are not euclidean. If dimX <∞, the answer to this question
is ‘no’, but the proof requires some more advanced tools. There exist examples of inseparable
Banach spaces X which are not euclidean, but for which O(X) acts transitively on S(X).
For separable Banach spaces, it is still an open problem, whether such examples exist or not
(cf. [Ra02] for recent progress and more references concerning this problem).

Sketch of the proof for dimX < ∞: We may assume that X = Rn. Then O(X) ⊆
GLn(R) can be viewed as a group of matrices. It is easily seen to be closed, and since
all norms on Rn are equivalent, it is also bounded, hence compact. For compact groups
the existence of an invariant probability measure on the group implies the existence of an
invariant scalar product 〈·, ·〉, so that there exists an O(X)-invariant euclidean norm ‖ · ‖′ on
X. Pick x0 ∈ S(X) and let c := ‖x0‖′. Then ‖φ(x0)‖′ = ‖x0‖′ = c for every φ ∈ O(X), and
since O(X) acts transitively on S(X), it follows that ‖ · ‖′ = c‖ · ‖. This shows that the norm
‖ · ‖ is euclidean and corresponds to the scalar product 1

c 〈·, ·〉.

3.4 Congruence in the sphere

As in euclidean spaces, we call two subsets X,Y ⊆ S(E) isometric if there exists a surjec-
tive isometry γ : X → Y . We say that X and Y are congruent if there exists a motion
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φ ∈ Iso(S(E)) with φ(X) = Y . Clearly, congruent subsets are isometric, and if X and Y
generate E as a linear space, the converse is also true. The following theorem is a substantial
generalization of Theorem 3.10.

Theorem 3.13. (Congruence Theorem for spheres) If two isometric subsets X,Y of S(E)
generate E linearly or X is contained in a finite-dimensional subspace, then they are congru-
ent.

Proof. Let γ : X → Y be a surjective isometry. Then the definition of the metric on S(E)
implies that

〈x, x′〉 = 〈γ(x), γ(x′)〉 for x, x′ ∈ X.

Therefore Proposition 2.52(c) implies the existence of φ ∈ O(E) with φ|X = γ.

3.5 Spherical Triangles

In this section we study triangles on the euclidean sphere S2.

Definition 3.14. A spherical triangle ∆(ABC) is given by three points A,B,C ∈ S2 con-
nected by geodesic segments (pieces of great circles) a from B to C, b from C to A, and c
from A to B. 5

We write ∠A, ∠B and ∠C for the vertex angles between the two sides of the triangle in
A, B and C, respectively.

a

A

B

b

C

c

Theorem 3.15. In a spherical triangle with vertices A,B,C in S2, we have

∠A+ ∠B + ∠C = π + area(∆(ABC)).

Proof. Let SA ⊆ S2 be the sector bounded by the two geodesic arcs b and c from A to −A,
obtained by extending b and c. Then

area(SA) =
∠A
2π

area(S2) = 2∠A.

We likewise defines SB and SC and obtain

area(SB) = 2∠B and area(SC) = 2∠C.

5Recall that the geodesic segment connecting two points P,Q is uniquely determined if d(P,Q) < π
(Theorem 3.7). Otherwise P = −Q and every great circle through P defines two geodesic segments from P
to Q. To specify a triangle for which one side has length π, we therefore have to specify the corresponding
geodesic segment explicitly. It is not determined by the vertices.
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S
A

A

-A

B

C

We write CAB for the great circle containing A and B, and HC for the hemisphere
bounded by CAB and containing C. It is the union of 4 triangles intersecting only in mutual
boundaries:

HC = ∆(ABC) ∪∆((−A)BC) ∪∆((−A)(−B)C) ∪∆(A(−B)C).

We also have

SA = ∆(ABC)∪∆((−A)BC), SB = ∆(ABC)∪∆(A(−B)C), SC = ∆(ABC)∪∆(AB(−C)).

Since the map f : S2 → S2, f(x) := −x is an isometry preserving area, we have

area
(
∆((−A)(−B)C)

)
= area

(
∆(AB(−C))

)
.

We thus obtain

2(∠A+ ∠B + ∠C) = area(SA) + area(SB) + area(SC) = area(HC) + 2 area(∆(ABC))

= 2π + 2 area(∆(ABC)).

The preceding result asserts in particular that the sum of the angles in a spherical triangle
is larger than π. This is interpreted as positive curvature of the sphere. In Section ?? below,
we shall see that, in hyperbolic space, the sum of angles in a geodesic triangle is smaller than
π, and this is interpreted as negative curvature.

3.6 Euclidean versus spherical metric

The unit sphere S(E) in a euclidean vector space E carries two natural metrics. One is
the metric dE obtained by simply restricting the metric ‖x − y‖ of E, and the other is the
metric dS(x, y) = arccos(〈x, y〉) that we introduced above. In this short subsection we briefly
discuss the difference between these two metrics. From Theorem 3.8 we know that both
metrics have the same isometry group O(E), and thus define the same geometry in the sense
of the Erlangen Program. Our main point is that both metrics lead to the same lengths of
curves and since geodesics exist for dS , this makes the metric dS preferable from the point
of view of metric spaces.

Lemma 3.16. For a rectifiable curve γ : [a, b]→ Sn, the length with respect to the metric dS
on Sn and the euclidean metric dE coincide.

Proof. For x, y ∈ Sn, the spherical distance

dS(x, y) = arccos(〈x, y〉)
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is larger than the euclidean distance

dE(x, y) = ‖x− y‖ =
√
‖x− y‖2 =

√
2(1− 〈x, y〉).

In fact, for 0 ≤ t ≤ 2, we have

1− t2

2
≤ cos t,

and for t :=
√

2(1− 〈x, y〉) = dE(x, y) this leads to 〈x, y〉 ≤ cos t, and further to dE(x, y) ≤
dS(x, y) (Exercise: Give a geometric reason for this fact!). This already shows that the length
LE(γ) with respect to the euclidean metric and the length LS(γ) with respect to the spherical
metric satisfy LE(γ) ≤ LS(γ).

Next we observe that the function

f(t) :=

∞∑
n=0

(−1)n
tn

(2n)!

is analytic on R with f(0) = 1 and f ′(0) = − 1
2 . From f(t2) = cos t it follows that, in a

neighborhood of 1, we have
arccos(s)2 = f−1(s),

and that this function is differentiable with derivative −2 in 1. For s = 〈x, y〉, we therefore
have

lim
dS(x,y)→0

dS(x, y)2

dE(x, y)2
= lim
s→1

arccos(s)2

2(1− s)
= lim
s→1

f−1(s)

2(1− s)
= − 1

2 (f−1)′(0) = 1. (20)

Hence we find, for any C > 1, a δC > 0 such that

dS(x, y) ≤ δC ⇒ dS(x, y) ≤ CdE(x, y).

Let ε > 0 and t = (t0, . . . , tN ) be a subdivision of [a, b] such that

N−1∑
j=0

dS(γ(tj), γ(tj+1)) = LS,t(γ) > LS(γ)− ε.

Since γ is uniformly continuous, we may further assume that dS(γ(tj), γ(tj+1)) ≤ δC for
every j. This leads to

LS(γ) ≤ ε+

N−1∑
j=0

dS(γ(tj), γ(tj+1)) ≤ ε+ C

N−1∑
j=0

dE(γ(tj), γ(tj+1)) ≤ ε+ CLE(γ).

Since ε > 0 and C > 1 are arbitrary, we obtain LS(γ) ≤ LE(γ).

An important consequence of the preceding lemma is that the metric on the sphere is the
“length metric” of Sn, considered as a subset of Rn+1. We only have to recall that, for the
geodesics on Sn defined by great circles, the euclidean length coincides with the spherical
length.

Proposition 3.17. For x, y ∈ Sn, we have

dS(x, y) = inf{LE(γ) : γ ∈ C1([0, 1],Sn), γ(0) = x, γ(1) = y}.
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Remark 3.18. The angle between two unit vectors x and y in E = Rn+1 can also be
expressed quite directly in terms of the metric:

cos(](x, y)) = 1− 1
2dE(x, y)2

because
dE(x, y)2 = ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉 = 2(1− 〈x, y〉).

If, more generally, γ, η : [0, 1]→ E are curves with

p := γ(0) = η(0) and γ′(0) = x, η′(0) = y, ‖x‖ = ‖y‖ = 1,

then

1

t2
‖γ(t)− η(t)‖2 =

1

t2
‖γ(t)− p‖2 +

1

t2
‖η(t)− p‖2 − 2

1

t2
〈γ(t)− p, η(t)− p〉

→ ‖x‖2 + ‖y‖2 − 〈x, y〉 = 2(1− cos](x, y)),

which leads to

cos(](x, y)) = 1− lim
t→0

dE(γ(t), η(t))2

2t2
.

If γ([0, 1]), η([0, 1]) ⊆ S(E), then (20) further leads to

cos(](x, y)) = 1− lim
t→0

dS(γ(t), η(t))2

2t2
. (21)

We shall use this relation in the following proof.

Theorem 3.19. There is no isometry f : ∆ABC → E from a spherical triangle with positive
area to a euclidean space.

Proof. Any such isometry f maps geodesics to geodesics. Therefore it maps the sides of
∆ABC into straight line segments (Corollary 2.33). Applying the same argument to geodesic
segments connecting C with points on the side from A to B, it follows that f(∆ABC) is
contained in an affine plane, so that it is the planar triangle with vertices f(A), f(B) and
f(C).

From (21) we derive that ∠A = ∠f(A) etc., which leads to

π = ∠f(A) + ∠f(B) + ∠f(C) = ∠A+ ∠B + ∠C = π + area(∆ABC).

This contradicts our assumption that the area of ∆ABC is positive.

Exercises for Section 3

Exercise 3.1. Let (X, d) be a complete metric space with the property that each pair of
points x1, x2 ∈ X has a midpoint. Show that there exists a continuous curve γ : [0, d(x1, x2)]→
X with γ(0) = x1, γ(d(x1, x2)) = x2 and

d(γ(t), x1) = t for all t ∈ [0, d(x1, x2)].

Such curves in a metric space are called geodesics because they are “shortest paths” from x1
to x2. Hint: Define γ first on dyadic subdivision points of [0, d(x1, x2)].
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4 Projective Geometry

The historical roots of Projective Geometry lie in Florence in the 15th century (Brunelleschi,
Alberti). With the invention of central perspective in paintings one had to deal with maps
from one plane to another where “points at infinity” had to be taken into account. The
mathematical development of this theory started much later in France in the 19th century
when the concepts of matrices, vector spaces and linear maps emerged.

Our approach to projective geometry is based on the definition of a projective space as
the set P(V ) of one-dimensional subspaces of a vector space V .

4.1 The projective space of a vector space

Definition 4.1. Let V be a vector space over the field K. Then the set P(V ) of all one-
dimensional subspaces of V is called the projective space of V .

For 0 6= v ∈ V , we write [v] := Kv for the one-dimensional subspace generated by v and
q : V \ {0} → P(V ), v 7→ Kv = [v] for the canonical projection.

Definition 4.2. (The projective group) (a) Let V and W be K-vector spaces. Then any
linear isomorphism φ : V →W induces a map

φ : P(V )→ P(W ), [v] 7→ φ([v]) = [φ(v)].

Then φ is called an isomorphism of projective spaces or a projectivity (Germ.: Projektivität).
(b) For V = W , the map φ permutes the one-dimensional subspaces of V . Clearly, the

elements of the form g = λ1, λ ∈ K× preserve all one-dimensional subspaces. If, conversely,
g ∈ GL(V ) preserves all one-dimensional subspaces, then g = λ1 for some λ ∈ K× (Exer-
cise 4.1). Therefore we obtain an action of the projective linear group

PGL(V ) := GL(V )/K×1

on P(V ). We write g = K×g for the image of g ∈ GL(V ) in PGL(V ), so that the group
structure is given by

gh = gh for g, h,∈ GL(V ).

The elements of PGL(V ), considered as maps P(V )→ P(V ), are called projectivities (Germ.:
Projektivitäten).

The preceding arguments show that the action of PGL(V ) on P(V ) is faithful (or effective)
in the sense that no element g 6= [1] acts as the identity on P(V ). In this sense PGL(V ) is
the group of projective automorphisms of P(V ).6

Remark 4.3. If g ∈ GL(V ), then g[v] = [v] in P(V ) is equivalent to v ∈ V being an
eigenvector of φ.

Examples 4.4. (a) If dimV = 0, then P(V ) = ∅, and if dimV = 1, then P(V ) is a single
point.

(b) For V = Kn+1, Pn(K) := P(Kn+1) is called the n-dimensional projective space over
K. For n = 1, it is called the projective line, and for n = 2 the projective plane. The
corresponding projective linear group is also denoted PGLn(K) := GLn(K)/K×1, where we
identify GLn(K) and GL(Kn) in the usual way.

6In projective geometry, there is a certain ambiguity in what the corresponding “projective maps” should
be. We refer to [Pa13] for some recent results and a discussion of this issue. Here we adopt the point of view
of the Erlangen Program, where we “define” projective geometry by defining what the corresponding group
is (Definition 4.2(b)).
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Definition 4.5. (Homogeneous coordinates) For V = Kn+1, there are natural ways to
introduce coordinates on the n-dimensional projective space Pn(K) = P(Kn+1). Its points
are represented in the form

[x0 : x1 : . . . : xn] := K(x0, . . . , xn), xj ∈ K, (x0, . . . , xn) 6= 0.

The tuple (x0, . . . , xn) is called the homogeneous coordinates of the corresponding line (=one-
dimensional subspace). This representation is not unique because

[λx0 : . . . : λxn] := [x0 : . . . : xn] for λ 6= 0.

Remark 4.6. If g = (gij) ∈ GLn(K) is an invertible matrix and x′ = gx for x = (x1, . . . , xn),
then

x′i =
n∑
j=1

gijxj

leads to

g[x1 : . . . : xn] = [x′1 : . . . : x′n] =
[ n∑
j=1

g1jxj : . . . :

n∑
j=1

gnjxj

]
.

For xn = 1, we obtain in particular

g[x1 : . . . : xn−1 : 1] =
[∑n−1

j=1 g1jxj + g1n∑n−1
j=1 gnjxj + gnn

: . . . :

∑n−1
j=1 gn−1,jxj + gn−1,n∑n−1

j=1 gnjxj + gnn
: 1
]
,

provided
∑n−1
j=1 gnjxj + gnn 6= 0. This is how projective maps can be expressed in terms of

homogeneous coordinates. They correspond to fractional linear functions in each coordinate.

4.2 The projective line

We take a closer look at the projective line P1(K) := P(K2) of all one-dimensional subspaces
of K2. In terms of homogeneous coordinates, its elements are represented by pairs [x0 : x1]
with (x0, x1) 6= (0, 0) and [λx0 : λx1] = [x0 : x1] for λ 6= 0.

If e0 := (1, 0) and e1 := (0, 1) are the canonical basis vectors of K2, then

[e0] = [1 : 0] and [e1] = [0 : 1].

If x1 6= 0, then [x0 : x1] =
[
x0

x1
: 1
]
, and if x1 = 0, then [x0 : 0] = [1 : 0]. Therefore the

elements of the projective line can be represented as

P1(K) = {[x : 1] : x ∈ K} ∪ {[1 : 0]}.

For the disjoint union K∞ := K∪̇{∞}, we therefore have a bijective map

η : K∞ → P1(K), η(x) :=

{
[x : 1] for x ∈ K
[1 : 0] for x =∞.

Therefore one can view P1(K) as the field K with an additional point∞. Here [1 : 0] is called
the “point at infinity”.
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For a projective linear transformation g, represented by the matrix

g =

(
a b
c d

)
∈ GL2(K),

we have

g[x : y] = [ax+ by : cx+ dy] =

{[
ax+by
cx+dy : 1

]
if cx+ dy 6= 0

[1 : 0] otherwise.

In view of (c, d) 6= (0, 0) (the matrix g is invertible), the equation cx+ dy = 0 determines a
unique element [x∞ : y∞] ∈ P1(K) for which

g[x∞ : y∞] = [1 : 0].

This also follows from the fact that g : P1(K)→ P1(K) is bijective.
In the η-coordinates, this corresponds to the fractional linear transformation

φ : K∞ → K∞, φ(x) =

{
ax+b
cx+d for cx+ d 6= 0

∞ for cx+ d = 0.

For K = C, these transformations are called Möbius transformations.

Example 4.7. To visualize the projective line for K = R and C, it is natural to use the
stereographic projection.

In Sn ⊆ Rn+1, we call the unit vector e0 := (1, 0, . . . , 0) the north pole. We then have the
stereographic projection map

φ : Sn \ {e0} → Rn, (y0,y) 7→ 1

1− y0
y.

This map is bijective with inverse

φ−1(x) =
(‖x‖22 − 1

‖x‖22 + 1
,

2x

‖x‖22 + 1

)
(Exercise).

As a point set, we can therefore consider Sn as the union of Rn and the north pole. For
n = 1, we thus obtain a bijection

ψ : R∞ ∼= P1(R)→ S1, ψ(x) =

{(
x2−1
x2+1 ,

2x
x2+1

)
for x ∈ R

e0 for x =∞.
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For n = 1 and K = C, we likewise obtain a bijection

ψ : C∞ ∼= P1(C)→ S2 ⊆ R3 = R× C, ψ(z) =

{(
|z|2−1
|z|2+1 ,

2z
1+|z|2

)
for z ∈ C

e0 for z =∞.

For this reason, the space P1(C) is also called the Riemann sphere (Germ.: Riemannsche
Zahlenkugel).

4.3 Affine subspaces of projective spaces

In this section we turn to the close connection between affine spaces and projective spaces.
We have already seen in Remark 1.6 that affine spaces embed naturally as hyperplanes in
vector spaces and we shall see below that this even leads to embeddings into projective
spaces. From this point of view, projective spaces appear as “completions” of affine spaces A

to which we add certain “points at infinity” which can be represented by elements of P(
−→
A ).

Geometrically elements [v] ∈ P(
−→
A ) correspond to families of parallel lines p+ [v], p ∈ A.
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Definition 4.8. (Affine subspaces) Let V be a vector space and A = a0 +H ⊆ V an affine
hyperplane not containing 0. Then we obtain a natural map

ηA := q|A : A→ P(V ), a 7→ [a].

This map is injective because [a] = [a′] implies that a′ = λa for some λ 6= 0. This is only
possible for λ = 1 because Ka ∩A = {a} follows from V = H ⊕Ka0.

Writing [A] := q(A) for the image of A in P(V ), we may therefore identify A with a subset
of P(V ). It contains all lines intersecting A. From A = a0 +H we derive that a line [v] = Kv
does not intersect A if and only if v ∈ H. This means that

P(V ) = [A]∪̇P(H) = [A]∪̇P(
−→
A ).

We call [A] an affine subspace of P(V ).

ac b

[a]
[c]

[b]

A

Example 4.9. For the affine hyperplanes Aj := {x ∈ Kn+1 : xj = 1}, j = 0, . . . , n, we obtain
the subsets

[Aj ] = {[x0 : . . . : xj−1 : 1 : xj+1 : . . . : xn] : xi ∈ K} ⊆ Pn(K).

Remark 4.10. If H ⊆ V is a linear hyperplane, then the complement P(V )\P(H) coincides
with the affine subspaces [A], where A is of the form A = a0 +H, a0 6∈ H.

Proposition 4.11. For two affine subspaces [A], [B] ⊆ P(V ), the following assertions hold:

(a) For every affine map φ : A→ B, there exists a unique linear map Φ: V → V extending φ.

(b) φ is an affine isomorphism if and only if Φ is a linear isomorphism. Then Φ[A] = [B].

(c) If Ψ ∈ PGL(V ) satisfies Ψ[A] = [B], then there exists a unique affine isomorphism
φ : A→ B whose unique linear extension Φ ∈ GL(V ) satisfies Ψ = Φ.

Proof. (a) Write A = a0 +H and B = b0 +H ′. Then V = H ⊕Ka0 and

Φ: V → V, Φ(h+ λa0) := φL(h) + λφ(a0)

is a linear map. It is uniquely determined by Φ|H = φL and Φ(a0) = φ(a0).
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(b) That φ is an affine isomorphism is equivalent to φL : H → H ′ being a linear iso-
morphism, and then Φ: V → V also is a linear isomorphism. If, conversely, Φ is a linear
isomorphism, then its restriction φL = Φ|H : H → H ′ also is a linear isomorphism and this
implies that φ is an affine isomorphism.

(c) Write Ψ = Φ for Φ ∈ GL(V ). Then [B] = Ψ([A]) = [Φ(A)] implies in particular that

P(Φ(H)) = Ψ(P(H)) = Ψ([A]c) = [Φ(A)]c = P(H ′),

so that Φ(H) = H ′. Therefore the affine subspace Φ(A) ⊆ V is parallel to B and does
not contain 0 (Remark 4.10). Pick λ ∈ K× with λΦ(a0) ∈ B. Then λΦ(A) = B and
λΦ|A : A→ B is an affine isomorphism. Now λΦ = Φ = Ψ completes the proof.

From the preceding proposition, we obtain in particular that projective isomorphisms
preserving an affine subspace act as affine maps on this subspace:

Corollary 4.12. If Ψ ∈ PGL(V ) preserves the affine subspace [A] ⊆ P(V ), then there exists
a unique affine automorphism φ ∈ Aut(A) with Ψ = Φ. This leads to an isomorphism of the
group Aut(A) of affine automorphisms of A with the stabilizer of [A] in PGL(V ):

Aut(A) ∼= PGL(V )[A] := {Ψ ∈ PGL(V ) : Ψ([A]) = [A]}.

Example 4.13. For the affine line A = {(x, 1) : x ∈ K} ⊆ K2 we have

[A] = {[x : 1] : x ∈ K} = P1(K) \ {[1 : 0]}.

That a projective automorphism g([x : 1]) = [ax+ b : cx+d] preserves the affine subspace
[A] is equivalent to g([1 : 0]) = [1 : 0]. In view of g([1 : 0]) = [a : c], this is equivalent
to c = 0, which implies that g([x : 1]) = [ax+bd : 1], i.e., g corresponds to the affine map
x 7→ d−1(ax+ b) on K.

Proposition 4.14. The projective group PGL2(K) of the projective line P1(K) ∼= K∞ is
generated by the affine maps ax+ b, a 6= 0, and the inversion x 7→ x−1.

Proof. If φ ∈ PGL2(K) fixes the point ∞ = [1 : 0], we have seen in Example 4.13 that
φ([x : 1]) = [ax+ b : 1] for a ∈ K× and b ∈ K, i.e., φ is affine.

If this is not the case, then φ(∞) 6=∞, i.e., φ(∞) ∈ K. Then there exists a translation τ
with τ ◦φ(∞) = 0, so that the inversion σ(x) = x−1 leads to the map α := σ◦τ ◦φ preserving
∞. We have already seen that this implies that α is affine, and now φ = τ−1 ◦ σ−1 ◦ α =
τ−1 ◦ σ ◦ α implies that PGL2(K) is generated by σ and affine maps.

Example 4.15. For the affine plane A = {(x1, x2, 1) : xj ∈ K} ⊆ K3, we have

P2(K) \ [A] = {[x1 : x2 : 0] : (x1, x2) 6= (0, 0)} ∼= P1(K),

so that P2(K) arises from [A] by adding a projective line at infinity.

Let φ ∈ GL(K3) be given by multiplication with the matrix

(
A b
c d

)
, where A ∈M2(K),

b, c> ∈ K2, and d ∈ K. That the projectivity

φ([x : x3]) = [Ax+ bx3 : cx+ dx3]

preserves the affine subspace [A] = [K2 : 1] is equivalent to φ([x : 0]) = [x′ : 0] for every
non-zero x ∈ K2 and some x′ ∈ K2. In view of φ([x : 0]) = [Ax : cx], this is equivalent to
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c = 0, which implies that φ([x : 1]) = [d−1(Ax+ b) : 1], i.e., φ corresponds to the affine map
x 7→ d−1(Ax+ b) on K2.

A general element φ ∈ PGL3(K) induces on the subset [K2 : 1] a map of the form

φ([x : 1]) = [(cx+ d)−1(Ax+ b) : 1] for cx+ d 6= 0.

The relation cx + d = 0 describes a line in the affine plane K2 which is mapped by φ “to
infinity”, here represented by P1(K). If cx+ d = 0, then

φ([x : 1]) = [Ax+ b : 0].

4.4 Projective maps between affine hyperplanes

We have already seen that any affine hyperplane A ⊆ V not containing 0 leads to a subset
[A] ⊆ P(V ). If we have two such hyperplanes A1 and A2, any projectivity Ψ ∈ PGL(V )
restricts to a map [A1] ∩ Ψ−1([A2]) → [A2]. Since the maps q|Aj

: Aj → [Aj ] are bijective,
this map can be transferred to a (not everywhere defined) map A1 → A2. We thus obtain the
concept of a projective map between affine hyperplanes. For the special case Ψ = idPGL(V )

we obtain in particular central projections which play a crucial role in perspective drawing.
Historically, these maps actually led to the development of projective geometry.

We now turn to the details. Let V be a vector space and Aj = aj + Hj ⊆ V , j = 1, 2,
be two affine hyperplanes not containing 0. We write λj ∈ V ∗ = Hom(V,R) for the uniquely
determined linear functionals on V satisfying Aj = λ−1j (1). With respect to the linear
isomorphism Hj ⊕ R → V, (h, t) 7→ h + taj , we have λj(h + taj) = t for h ∈ Hj . Note that
Hj = kerλj .

Definition 4.16. (Projective maps between affine subspaces) Let φ ∈ GL(V ). Then

φ̃ : A1 \ φ−1(H2)→ A2, x 7→ 1

λ2(φ(x))
φ(x)

is called a projective map from A1 to A2.

Remark 4.17. Clearly, the map φ̃ satisfies vor v ∈ A1 \ φ−1(H2) the relation

[φ̃(v)] = [φ(v)] = φ[v],

so that it is simply a description of the projectivity in terms of “coordinates” provided by
the affine subspaces [A1] and [A2] ⊆ P(V ).

Remark 4.18. (a) The projective map from A1 to A2 defined by φ ∈ GL(V ) is not defined
on the subset A1 \ φ−1(H2) because this is the set of all points x ∈ A1, where λ2(φ(x)) = 0.

On the level of the projective space, this is due to the fact that, for any x ∈ A1 with
λ2(φ(x)) = 0, we have φ(x) ∈ H2, i.e., φ(x) ∈ P(H2) = P(V ) \ [A2].

(b) That the exceptional subset φ−1(H2) ∩A1 is empty is equivalent to φ(A1) ∩H2 = ∅.
This means that the affine function λ2 : φ(A1)→ K has no zeros, and this happens only if it
is constant. This in turn means that φ(A1) = x+H2 for some x ∈ V \H2. We conclude that
the exceptional set is empty if and only if the two hyperplanes A2 and φ(A1) are parallel.
Clearly, this is equivalent to the two hyperplanes A1 and φ−1(A2) being parallel.

(c) If the exceptional set is non-empty, then it is the zero set of an affine function
λ2 ◦ φ : A1 → K, hence an affine hyperplane of A1 and therefore an affine subspace of codi-
mension 2 of V .

For dimV = 2 this leads to exceptional points and, for dimV = 3, to exceptional lines.
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Lemma 4.19. Suppose that V is finite-dimensional and |K| ≥ 4. Then the exceptional set

A1 ∩ φ−1(H2) is empty if and only if φ̃ extends to an affine map A1 → A2.

Proof. We have already seen in Remark 4.18(b) that A1∩φ−1(H2) = ∅ is equivalent to φ(A1)
and A2 being parallel, which means that φ(H1) = H2. In view of P(Hj) = P(V ) \ [Aj ], this
is equivalent to

φ([A1]) = [A2].

(a) If A1 ∩ φ−1(H2) = ∅, then the denominator λ2 ◦ φ : A1 → K is constant non-zero, so

that φ̃ is a multiple of φ|A1 and therefore affine.
(b) If A1 ∩ φ−1(H2) 6= ∅, then we pick x0 ∈ A1 ∩ φ−1(H2) and 0 6= v ∈ H1 \ φ−1(H2)

(the existence follows from codimA1
(φ−1(H1) ∩ A1) ≥ 1). Since V is assumed to be finite-

dimensional, we also find a linear functional µ ∈ V ∗ with µ(φ(x0)) 6= 0. Then, for t 6= 0,

µ(φ̃(x0 + tv)) =
µ(φ(x0 + tv))

λ2(φ(x0 + tv))
=
µ(φ(x0)) + µ(φ(v))t

tλ2(φ(v))
.

This function is of the form a+ bt−1 with b 6= 0. If it extends to an affine function a′t+ b′,
then a′ 6= 0 and at+ b = a′t2 + b′t for all t 6= 0. Since a′ 6= 0, this equation has at most two
solutions, so that |K| ≥ 4 implies a′ = 0. This leads to the contradiction that the function

a + bt−1 is constant. We conclude that φ̃ cannot be extended to an affine function if the
exceptional set is non-zero.

Example 4.20. We return to the situation of Remark 4.6, where g = (gij) ∈ GLn(K) is an
invertible matrix. We consider the affine hyperplane

A1 = A2 = A := {x ∈ Kn : xn = 1}.

Then λ(x) = xn and φ(x) = gx, so that

φ̃(x1, . . . , xn−1, 1) =
1∑n−1

j=1 gnjxj + gnn

( n−1∑
j=1

g1jxj + g1n, . . . ,

n−1∑
j=1

gn,jxj + gn,n

)
.

This map is affine if and only if the denominator is constant, which is equivalent to gnj = 0
for j = 1, . . . , n− 1. This is turn means that (gx)n = 0 for xn = 0, i.e., that g preserves the
subspace Kn−1 × {0} ⊆ Kn.

4.5 Central projections

In this subsection we turn to the special case of projective maps between hyperplanes that
are induced by the identity on the projective space. Geometrically, these maps correspond to
central projections of one affine hyperplane A1 to another hyperplane A2, where the center of
projection C is neither contained in A1 nor in A2. These maps are important to understand
the geometry of perspective drawings or projecting images (A1 is the object plane and A2 is
the screen).

Example 4.21. (Central projections) (a) We consider the special case where φ = id. Then

φ̃ : A1 \H2 → A2, φ̃(x) =
1

λ2(x)
x.

64



This map has the following geometric interpretation. Let C = 0 ∈ V be the origin. For a
point x ∈ A1, the condition that the line Kx intersects A2 is equivalent to x 6∈ H2 (otherwise
this line is parallel to A2). If Kx ∩ A2 6= ∅, then this intersection is a single point x′ = µx
with 1 = λ2(x′) = µλ2(x), i.e.,

x′ =
1

λ2(x)
x = φ̃(x).

Therefore the map φ̃ can be interpreted as a central projection of A1 \ H2 to the affine
hyperplane with respect to the origin 0 as center of projection.

(b) If, more generally, A is an affine space with two affine hyperplanes A1, A2 ⊆ A and
C ∈ A is a point not contained in A1 ∪A2, then we consider the vector space structure on A
obtained by defining 0 := C to be the origin. Then the central projection of A1 to A2 can
be described as under (a).

Example 4.22. We consider the real affine space A3 = R3. It contains the affine hyperplane

A1 := {x ∈ R3 : x3 = 0}.

We think of this hyperplane as an hyperplane that a painter whose eye is located in the point
C := (0, 0, 1) wants to draw on a (transparent) canvas which is represented by the affine
plane

A2 := {x ∈ R3 : x1 = 1}.

This means that a point x ∈ A1 corresponds to the point x′ ∈ A2 which is specified by the
condition that

(C + R(x− C)) ∩A2 = {x′}.

Choosing C as the origin of a new coordinate system, we write y = (y1, y2, y3) for the
new coordinates and find

y1 = x1, y2 = x2 and y3 := x3 − 1.

Accordingly
A1 = {y ∈ A3 : y3 = −1} and A2 = {y ∈ A3 : y1 = 1}.

Therefore the projection from A1 to A2 is given by

φ̃ : A1 \H2 → A2, φ̃(y) =
1

y1
(y1, y2,−1) =

(
1,
y2
y1
,− 1

y1

)
.

Transforming back to the old coordinates, we obtain

φ̃ : A1 \H2 → A2, φ̃(x) =
1

x1
(x1, x2, 0) + (0, 0, 1) =

(
1,
x2
x1
, 1− 1

x1

)
.

The exceptional set in A1 corresponds to the line x1 = 0. We also observe that

φ̃(A1 \H2) = {x ∈ A2 : x3 6= 1}.

Thinking of φ̃(A1 \H2) as a picture of the plane A1, then the line {x ∈ A2 : x3 = 1} is the
“horizon”, resp., the “line at infinity” of the plane A1 on the “screen” A2.
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4.6 Projective subspaces

We now turn to the discussion of projective geometric properties, resp., the transitivity
properties of the action of PGL(V ) on P(V ). We start with the action on the set of projective
subspaces.

Definition 4.23. A projective subspace of the projective space P(V ) is a subset of the form
P(W ), where W ⊆ V is a linear subspace.

In an affine plane, lines intersect if and only if they are not parallel. This becomes simpler
in projective planes:

Proposition 4.24. (a) In a projective plane, any two different projective lines Lj = P(Wj) ⊆
P(V ), j = 1, 2, intersect in a unique point [W1 ∩W2].

(b) In a 3-dimensional projective space, any two different projective planes Ej = P(Wj) ⊆
P(V ), j = 1, 2, intersect in a unique projective line [W1 ∩W2].

Proof. (a) By assumption dimV = 3, and W1,W2 are two different two-dimensional sub-
spaces. This implies that W1 + W2 = V . Therefore the Dimension Formula from Linear
Algebra leads to

dim(W1 ∩W2) = dimW1 + dimW2 − dim(W1 +W2) = 2 + 2− 3 = 1.

This means that [W1] ∩ [W2] = [W1 ∩W2] is a single point.
(b) By assumption dimV = 4, and W1,W2 are two different three-dimensional subspaces.

This implies that W1 + W2 = V . Therefore the Dimension Formula from Linear Algebra
leads to

dim(W1 ∩W2) = dimW1 + dimW2 − dim(W1 +W2) = 3 + 3− 4 = 2.

This means that [W1] ∩ [W2] = [W1 ∩W2] is a projective line.

Proposition 4.25. (Extension of projectivities) Let V be a finite-dimensional vector space
and P(V ) be its projective space. If W1,W2 ⊆ V are projective subspaces, then every projec-
tivity ψ : P(W1)→ P(W2) extends to an element φ ∈ PGL(V ).

Proof. Let ψ : W1 → W2 be a linear isomorphism. Let (a1, . . . , ak) be a linear basis of
W1 and enlarge it to a linear basis (a1, . . . , an) of V . We likewise enlarge the linear basis
(a′1, . . . , a

′
k) := (ψ(a1), . . . , ψ(ak)) of W2 to a linear basis (a′1, . . . , a

′
n) of V . Then there exists

a unique linear isomorphism φ ∈ GL(V ) with φ(aj) = a′j for j = 1, . . . , n. This implies that

φ extends ψ, and therefore φ extends ψ.

Corollary 4.26. The group PGL(V ) acts transitively on the set of all k-dimensional pro-
jective subspaces of P(V ).

4.7 Projective properties of tuples

In this subsection we finally turn to projective geometric properties of tuples, i.e., properties
which are invariant under the action of the projective group PGL(V ).

Definition 4.27. We call ([v1], . . . , [vn]) in P(V ) projectively independent if the corresponding
vectors v1, . . . , vn are linearly independent. If, in addition, they form a basis of V , we say
that ([v1], . . . , [vn]) is a projective basis.

66



From Linear Algebra we recall:

Lemma 4.28. Let V be an n-dimensional linear space. Then, for every k ≤ n, the group
GL(V ) acts transitively on the subset V kind of linearly independent k-tuples in V k.

For k = n, we thus obtain a sharply transitive action of the group GL(V ) on the set V nind
of all linear bases, i.e., for two linear bases (v1, . . . , vn) and (v′1, . . . , v

′
n), there exists a unique

φ ∈ GL(V ) with φ(vj) = v′j for j = 1, . . . , n.

Proof. (Sketch) For k = n, the assertion follows from the fact that, for two linear bases
(v1, . . . , vn) and (v′1, . . . , v

′
n), there exists a unique linear map φ : V → V with φ(vj) = v′j for

j = 1, . . . , n. Then φ is injective and surjective, hence an element of GL(V ).
The case k < n follows from the preceding argument because every linearly independent

k-tuple can be extended to a linear basis.

As an immediate consequence, we obtain:

Proposition 4.29. Let V be an n+1-dimensional linear space and P := P(V ) be its projective
space. Then, for every k ≤ n + 1, the group PGL(V ) acts transitively on the subset Pkind of
projectively independent k-tuples in Pk.

Since a pair (a, b) ∈ P2 is projectively independent if and only if a 6= b, we have

P2
× = {(p, q) ∈ P : p 6= q} = P2

ind.

For a projective line, this is the set of projective bases in P. The preceding proposition
implies:

Corollary 4.30. Let V be a finite-dimensional vector space. Then the action of PGL(V ) on
P(V ) is 2-transitive.

Remark 4.31. The preceding corollary means that pairs of distinct points have no projective
geometric property.

Definition 4.32. We call a subset E of the projective space P collinear if |E| ≤ 1 or E is
contained in a projective line.

Proposition 4.29 implies in particular that projectively independent tuples carry no pro-
jective geometric information. They are all conjugate under the projective group PGL(V ).
For pairs (a, b), being different is the same as being projectively independent, so that the
first non-trivial situation arises for triples (a0, a1, a2) that are collinear. Since we know al-
ready that PGL(V )-acts 2-transitively on P (Corollary 4.30), it suffices to consider triples
(a0, a1, a2) ∈ P(V )3× of mutually distinct points.

Theorem 4.33. (Fundamental Theorem of analytic projective geometry) Let V be a finite-
dimensional vector space. Then the action of PGL(V ) on the subset of mutually distinct
collinear triples (a1, a2, a3) is transitive.

Proof. First we show that the stabilizer group PGL(V )a1,a2 of a1 and a2 acts transitively on
the set of collinear triples (a1, a2, a) with a 6= a1, a2. Write aj = [vj ] and observe that v1
and v2 are linearly independent with v3 ∈W := Kv1 +Kv2. Further a3 6= a1, a2 implies that
v3 = λv1 + µv2 with 0 6= λ, µ. Let a4 = [λ′v1 + µ′v2] ∈ P(W ) be another element different
from a1 and a2.
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Then there exists a linear isomorphism ψ ∈ GL(W ) with ψ(v1) = λ′λ−1v1 and ψ(v2) =
µ′µ−1v2. Then ψ(v3) = λ′v1 + µ′v2, so that

ψ(a1) = a1, ψ(a2) = a2 and ψ(a3) = a4.

With Proposition 4.25 we now find φ ∈ PGL(V ) fixing a1 and a2 and satisfying φ(a3) = a4.
Therefore the stabilizer group PGL(V )a1,a2 acts transitively on the set of all collinear triples
(a1, a2, a3) with a3 6= a1, a2.

If (a′1, a
′
2, a
′
3) is a collinear mutually distinct triple, then Corollary 4.30 implies the exis-

tence of φ′ ∈ PGL(V ) with φ′(a′1) = a1 and φ′(a′2) = a2. Then a4 := φ′(a′3) is collinear with
a1 and a2, so that the preceding argument implies the existence of φ ∈ PGL(V )a1,a2 with
φ(a4) = a3. Then φ ◦ φ′ maps a′j to aj for j = 1, 2, 3.

Corollary 4.34. For a projective line P(V ), the action of PGL(V ) on P(V )3× is sharply
transitive. In particular, the group PGL2(K) acts sharply 3-transitively on the projective line
P1(K).

Proof. From Theorem 4.33 we know that PGL(V ) acts transitively on the set P(V )3× of
mutually different triples because all triples are collinear. To see that this action is sharply
transitive, let aj = [vj ], j = 1, 2, 3, be mutually distinct elements on P(V ). If φ ∈ PGL(V )
fixes these three lines, then v1, v2 and v3 are eigenvectors of φ, i.e., φ(vj) = λjvj for λj ∈ K×.
Writing v3 = αv1 + βv2, we obtain

λ3αv1 + λ3βv2 = λ3v3 = φ(v3) = αλ1v1 + βλ2v2,

which implies that λ1 = λ3 = λ2. Therefore φ = λ11, and thus φ = idP(V ).

Remark 4.35. With the insight of the preceding corollary, we return to the fractional linear
transformations

φ(x) =
ax+ b

cx+ d
, g =

(
a b
c d

)
∈ GL2(K) on K∞ ∼= P1(K).

We want to understand the fixed points of such maps. We have already observed in
Remark 4.3 that, for x = [v], v ∈ K2 \ {0}, the relation φ(x) = x is equivalent to v being an
eigenvector of the matrix g.

• If φ has 3 fixed points, then Corollary 4.34 implies that φ = idK∞ . One can also argue
directly that the fact that g has three linearly independent eigenvectors implies that it
is a multiple of the identity.

• That φ has exactly 2 fixed points is equivalent to g having two linearly independent
eigenvectors, i.e., that g is diagonalizable. Assuming w.l.o.g. that e1 and e2 are eigen-
vectors, we obtain g = diag(λ1, λ2) and φ(x) = λ1

λ2
x is linear. In terms of fractional

linear transformations, the 2-transitivity of PGL2(K) on P1(K) thus implies that φ has
two fixed points if and only if it is conjugate to a linear map.

• If φ has exactly 1 fixed point, then g has exactly one eigenvalue. Changing the basis, we
may assume that ge1 = λe1. Then c = 0 and the fact that there is only one eigenvalue

means that g =

(
λ b
0 λ

)
. Since λ−1g induces the same fractional linear map, we may

w.l.o.g. assume that λ = 1, i.e., g =

(
1 b
0 1

)
for some b ∈ K. Then φ(x) = x + b is a

translation and ∞ is the only fixed point.
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• The case where φ has no fixed point is the most complicated one and depends very
much on the field K. If K is algebraically closed, such as K = C, every matrix has an
eigenvalue, so that φ always has at least one fixed point.

However, for K = R, the matrix g =

(
0 −1
1 0

)
with g2 = −1 leads to the map

φ(x) = −x−1 which has no fixed point in R∞.

In general, the fixed point relation φ(x) = x is equivalent to the quadratic equation

ax+ b = cx2 + dx or cx2 + (d− a)x− b = 0

which need not have a solution in K.

4.8 The cross ratio

In this subsection we introduce the cross ratio as a projective invariant of collinear quadruples
in P(V ). The cross ratio has manifold applications, some of which we shall explore below. In
particular, it permits us to study quadruples of points in the complex projective line whose
cross ratio is real, and this leads to the beautiful projective similarity between circles and
lines in the Riemann sphere. Later, we shall see that the cross ratio can also be used to
obtain a formula for the metric in hyperbolic space in a suitable projective model.

Definition 4.36. (Cross ratio of 4 collinear points) The next step of complexity is rep-
resented by collinear quadruples (a1, a2, a3, a4) for which a1, a2, a3 are mutually distinct.
We write P(V )4r for the set of these quadruples. Then there exist vj ∈ V with aj = [vj ],
j = 1, . . . , 4, and v3 = v1 +v2. In addition, we may choose v4 in such a way that v4 = tv1 +v2
for some t ∈ K if a4 6= a1, and v4 = v1 otherwise.

We show that the number t is independent of the choice of the vectors vj . If wj ∈ V are
other elements such that aj = [wj ], j = 1, . . . , 4, w3 = w1 + w2 and w4 = sw1 + w2, then
there exist αj ∈ K× with wj = αjvj . From

α3(v1 + v2) = α3v3 = w3 = w1 + w2 = α1v1 + α2v2

we obtain α1 = α3 = α2, so that

α1(sv1 + v2) = sw1 + w2 = w4 = α4(tv1 + v2)

further leads to α4 = α1, and hence to t = s. Therefore

c(a0, a1, a2, a3) :=

{
t ∈ K for a1 6= a4

∞ ∈ K∞ for a1 = a4

does not depend on the choice of the representing vectors vj . It is called the cross ratio of
(a1, a2, a3, a4) (Germ.: Doppelverhältnis).

Remark 4.37. Let a1, a2, a3 ∈ P(V ) be mutually distinct and collinear and L = P(W ) be
the projective line generated by a1, a2 and a3 (it is actually generated by any two of them).
Then the definition of the cross ratio implies that the map

F : L = P(W )→ K∞ ∼= P1(K), F (a) = c(a1, a2, a3, a)
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is a projectivity whose restriction to the affine subspace [Kv1 + v2] is affine:

F ([av1 + bv2]) = F ([
a

b
v1 + v2]) =

a

b
∼= [a : b]

and which satisfies
F (a2) = 0, F (a3) = 1 and F (a1) =∞.

In view of Corollary 4.34, F is uniquely determined by this property.

Proposition 4.38. (The cross ratio as a projective geometric property) Two collinear
quadruples (a1, a2, a3, a4), (a′1, a

′
2, a
′
3, a
′
4) ∈ P(V )4r are contained in the same PGL(V )-orbit

if and only if they have the same cross ratio.

Proof. It follows immediately from the definition that

c(φ(a1), φ(a2), φ(a3), φ(a4)) = c(a1, a2, a3, a4) for φ ∈ GL(V ), (a1, a2, a3, a4) ∈ P(V )4r.

In fact, write aj = [wj ] with w3 = w1 + w2 and w4 = tw1 + w2. For w′j := φ(wj) we then

have φ(aj) = [φ(wj)] with

w′3 = w′1 + w′2 and w′4 = tw′1 + w′2.

Suppose, conversely, that (a1, a2, a3, a4), (a′1, a
′
2, a
′
3, a
′
4) ∈ P(V )4r have the same cross

ratio t ∈ K. The case t = ∞ is trivial. We first find a φ ∈ GL(V ) with φ(aj) = a′j for
j = 1, 2, 3 (Theorem 4.33). Choose vj ∈ V with aj = [vj ] and v3 = v1 + v2. Then the vectors
v′j := φ(vj) satisfy v′3 := v′1 + v′2. From v4 = tv1 + v2 we now derive that

a′4 = [tv′1 + v′2] = [φ(v4)] = φ(a4).

Corollary 4.39. Let L1 and L2 be two projective lines, a0, a1, a2, a3 ∈ L1 with the first three
mutually distinct and a′0, a

′
1, a
′
2, a
′
3 ∈ L2 with the first three mutually distinct. Then there

exists a projectivity ψ : L1 → L2 with ψ(aj) = a′j for j = 1, 2, 3, 4 if and only if

c(a0, a1, a2, a3) = c(a′0, a
′
1, a
′
2, a
′
3).

Proof. The necessity of the equality of the cross ratios follows as in the preceding proof imme-
diately from the definition. To see that it is sufficient, we fix a projectivity
φ : L1 → L2. With Proposition 4.38 we obtain a projectivity φ′ : L2 → L2 with φ′(φ(aj)) = a′j
for j = 1, 2, 3, 4. Now φ′ ◦ φ : L1 → L2 is the required projectivity.

Example 4.40. We now calculate the cross ratio of four points [zj : 1], j = 1, 2, 3, 4, in the
projective line P1(K). We assume that z1, z2 and z3 are pairwise different. Any representative
vj of [zj : 1] is of the form vj = (wjzj , wj) with wj 6= 0. Then v3 = v1 + v2 corresponds to
w3 = w1 + w2 and w3z3 = w1z1 + w2z2, i.e.,

z3 =
w1z1 + w2z2
w1 + w2

.

Note that w1 + w2 = w3 6= 0. Accordingly v4 = tv1 + v2 leads to w4 = tw1 + w2 and
w4z4 = tw1z1 + w2z2, i.e.,

z4 =
tw1z1 + w2z2
tw1 + w2

.
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This leads to
z4 − z2
z4 − z1

=
tw1z1−tw1z2
tw1+w2

−w2z1+w2z2
tw1+w2

= − tw1

w2
,

and for t = 1 we obtain in particular

z3 − z2
z3 − z1

= −w1

w2
.

This shows that

c([z1 : 1], [z2 : 1], [z3 : 1], [z4 : 1]) = t =
z4 − z2
z4 − z1

z3 − z1
z3 − z2

=
(z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2)
. (22)

For z4 = z1 this expression must be interpreted as ∞.
One may also define the function

C(z1, z2, z3, z4) :=
(z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2)
=

(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
∈ K∞

directly for z2 6= z3. The invariance of the cross ratio on P1(K)4r now implies the invari-
ance of the function C under the action of the matrix group GL2(K) by fractional linear

transformations z′ = az+b
cz+d for

(
a b
c d

)
∈ GL2(R), i.e.,

C(z′1, z
′
2, z
′
3, z
′
4) = C(z1, z2, z3, z4).

Note that the function

D(z1, z2, z3) :=
z3 − z1
z3 − z2

(the ratio of the collinear triple (z1, z2, z3)) is invariant under all affine transformations z′ =
az + b, a 6= 0. The cross ratio has the form

C(z1, z2, z3, z4) =
D(z1, z2, z3)

D(z1, z2, z4)
.

Remark 4.41. (Geometric interpretation of the cross ratio) Let E be the euclidean affine
plane, C ∈ E and Lj , j = 1, 2, two affine lines not containing C. We consider the central
projection

π : L1 \ (C +
−→
L2)→ L2.

Let Z1, Z2, Z3, Z4 ∈ L1 \ (C +
−→
L2) be 4 different points and Z ′j be their images under π.
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Z_1'

Z_2

Z_3'

Z_4'

Z_1

Z_2

Z_3

Z_4

L_1 L_2

Using 0 := C as the origin, we obtain a euclidean vector space E and P(E) is a projective
line. We consider the expression

C̃(Z1, Z2, Z3, Z4) :=
d(Z1, Z3)d(Z2, Z4)

d(Z2, Z3)d(Z1, Z4)
.

Introducing coordinates on L1, by an affine isomorphism α : R→ L1, we obtain a projectivity

α : P1(R)→ P(L1), [x : 1] 7→ [α(x)] for x ∈ R.

Therefore (22) implies

C̃(Z1, Z2, Z3, Z4) = |c([Z1], [Z2], [Z3], [Z4])|

is the absolute value of the cross ratio. The same argument shows that

C̃(Z ′1, Z
′
2, Z

′
3, Z

′
4) = |c([Z ′1], [Z ′2], [Z ′3], [Z ′4])|.

Now [Z ′j ] = [Zj ], j = 1, 2, 3, 4, leads to the relation

C̃(Z1, Z2, Z3, Z4) = C̃(Z ′1, Z
′
2, Z

′
3, Z

′
4),

which is a metric consequence of the invariance of the cross ratio under projective isomor-
phisms.

The following proposition is a converse to the invariance of the cross ratio under fractional
linear transformations.

Proposition 4.42. Every bijection φ : K∞ → K∞ preserving the cross ratio

C(z1, z2, z3, z4) :=
(z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2)
∈ K∞

is a fractional linear transformation.
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Proof. First we observe that

C(x, 1, 0,∞) =
−x
−1

= x.

This leads to
φ(x) = C(φ(x), 1, 0,∞) = C(x, φ−1(1), φ−1(0), φ−1(∞)).

For φ(a) = 1, φ(b) = 0 and φ(c) =∞, this leads to

φ(x) =
(c− a)(b− x)

(c− x)(b− a)
.

Remark 4.43. If z2, z3, z4 ∈ K∞ ∼= P1(K) are three different points, then there exists a
unique φ ∈ PGL2(K) with φ(z2) = 1, φ(z3) = 0 and φ(z4) =∞. Now the argument from the
preceding proof implies that

φ(z) = C(z, φ−1(1), φ−1(0), φ−1(∞)) = C(z, z2, z3, z4).

This formula provides an interpretation of the cross ratio, as a function of its first argument,
as a fractional linear transformation.

Definition 4.44. In the Riemann sphere P1(C) ∼= C∞, we call a subset C a generalized
circle if it either is the projective completion

[L] := L ∪ {∞}

of a real affine line L = z0 + Rw ⊆ C, w 6= 0, or a circle in C.

Remark 4.45. Generalized circles, considered as subsets of C (resp. C∞), are the solutions
of an equation

a|z|2 + cz + cz + d = 0 with a, d ∈ R, ad < |c|2. (23)

Here a = 0 corresponds to affine lines. For a 6= 0 we may divide by a, so that we may w.l.o.g.
assume that a = 1. In this case, we obtain for z = x+ iy and c = c1 + ic2 the equation

0 = x2 + y2 + 2(c1x− c2y) + d = (x+ c1)2 + (y − c2)2 + d− |c|2

of a circle in R2 with radius
√
|c|2 − d and center (−c1, c2). In particular, we obtain a proper

circle if and only if d < |c|2.

Proposition 4.46. (Generalized circles in the Riemann sphere) Then the following asser-
tions hold for generalized circles in C∞:

(a) If C is a generalized circle, then the same holds for g(C), g ∈ GL2(C).

(b) The generalized circles are precisely the sets of the form g(R∞), where g ∈ GL2(C).

(c) Four distinct points zj, j = 1, 2, 3, 4, in C∞ lie on a generalized circle if and only if their
cross ratio C(z1, z2, z3, z4) lies in R∞.

Proof. (a) In Proposition 4.14 we have seen that the group PGL2(C) is generated by affine
maps g(z) = az + b, a ∈ C×, and the inversion σ(z) = z−1. The affine maps g(z) = az + b
can also be written as g(z) = |a|eiθz + b for some θ ∈ R. These maps are linear and satisfy
|g(z)− g(w)| = L|z −w| for L = |a|. This shows that all these maps map generalized circles
to generalized circles.
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To see that σ maps generalized circles to generalized circles, we first recall that generalized
circles are solutions of some equation

a|z|2 + cz + cz + d = 0 for a, d ∈ R, ad < |c|2.

Replacing z by z−1 in the above equation leads to

a|z|−2 + cz−1 + cz−1 + d = 0,

and multiplying with |z|2 further leads to

a+ cz + cz + d|z|2 = 0.

Since this is the same type of equation, σ maps generalized circles to generalized circles.
(b) From (a) we derive that g(R∞) is a generalized circle for every g ∈ GL2(C). Suppose,

conversely, that C ⊆ C∞ is a generalized circle. Pick three different points z1, z2, z3 ∈ C.
Then there exists a g ∈ GL2(C) with g(z1) = −1, g(z2) = 0, g(z3) = 1. Then g(C) is a
generalized circle containing the points −1, 0, 1, which implies that g(C) = R∞. This shows
that C = g−1(R∞), which proves (b).

(c) If zj , j = 1, 2, 3, 4, lie in a generalized circle C and C = g(R∞) according to (a), then
the invariance of the cross ratio implies that C(z1, z2, z3, z4) ∈ R∞.

If, conversely, x := C(z1, z2, z3, z4) ∈ R∞, then x = C(x, 1, 0,∞) implies the existence of
some g ∈ PGL2(C) with g(z1) = x, g(z2) = 1, g(z3) = 0 and g(z4) = ∞ (Proposition 4.38).
Hence all the zj lies in the generalized circle g−1(R∞).

Examples 4.47. (a) (The Cayley transform) The map

Cay : C∞ → C∞, Cay(z) :=
z − i
z + i

is called the Cayley transform. Is corresponds to the matrix(
1 −i
1 i

)
.

For x ∈ R we clearly have |Cay(x)| = 1, so that the preceding proposition implies that

Cay(R∞) = S1 = {z ∈ C : |z| = 1}.

(b) For the affine line C := i+ R and σ(z) = z−1, we obtain

σ(i) = −i, σ(i+ 1) = (i+ 1)−1 = 1
2 (1− i), σ(i− 1) = (i− 1)−1 = − 1

2 (1 + i),

and since theese three points determine the circle

C ′ := {z ∈ C : |z + 1
2 i| =

1
2},

we obtain σ(C ∪ {∞}) = C ′.

Proposition 4.48. Every Möbuis transformation of the form φ(z) = (az + b)(cz + d)−1 for

g =

(
a b
c d

)
∈ SL2(R) satisfies

φ(R∞) = R∞ and φ(C+) = C+,

where C+ := {z ∈ C+ : Im z > 0} is the upper half plane. Conversely, all Möbius transfor-
mations preserving C+ are of this form.
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Proof. The first assertion follows from

2i Imφ(z) = φ(z)− φ(z) =
(az + b)(cz + d)− (az + b)(cz + d)

|cz + d|2

=
ac|z|2 + adz + bcz + bd− ac|z|2 − bcz − adz − bd

|cz + d|2

=
det(g)(z − z)
|cz + d|2

=
z − z
|cz + d|2

= 2i
Im z

|cz + d|2

implies that Im z and Imφ(z) have the same sign.
Suppose, conversely, that φ preserves the upper half plane C+. From φ(C+) = C+ it also

follows that φ preserves R∞. Since it is uniquely determined by the image of 0, 1, 2, we have

φ(z) = az+b
cz+d for some g =

(
a b
c d

)
∈ GL2(R). If det g < 0, then the preceding calculation

shows that g(C+) = −C+, so that we must have det g > 0.

Proposition 4.49. For the open unit disc D := {z ∈ C+ : |z| < 1}, we have

SU1,1(C) :=
{(

α β
β α

)
∈ GL2(C) : |α|2 − |β|2 = 1

}
= {g ∈ SL2(C) : g(D) = D}.

Proof. In the preceding proposition we have seen that

SL2(R) = {g ∈ SL2(C) : g(C+) = C+}.

We also know from Example 4.47 that the Cayley transform

Cay(z) := T (z) =
z − i
z + i

for T :=

(
1 −i
1 i

)
satisfies Cay(R∞) = S1. From Cay(i) = 0, we thus obtain Cay(C+) = D. Therefore

G := {g ∈ SL2(C) : g(D) = D} = {g ∈ SL2(C) : Cay−1 gCay(C+) = C+} = T SL2(R)T−1.

For g =

(
a b
c d

)
, the condition T−1gT ∈ SL2(R) is equivalent to

T−1gT = T−1gT = T
−1
gT , i.e., TT−1g(TT−1)−1 = g.

As

TT−1 =

(
1 i
1 −i

)
1

2i

(
i i
−1 1

)
=

1

2i

(
0 2i
2i 0

)
=

(
0 1
1 0

)
,

we obtain the condition(
a b

c d

)
= g =

(
0 1
1 0

)
g

(
0 1
1 0

)−1
=

(
d c
b a

)
,

which is equivalent to d = a and c = b. This shows that T SL2(R)T−1 = SU1,1(C).
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Remark 4.50. To understand why the group in the preceding proposition is called SU1,1(C),
we consider on C2 the hermitian form

h(z, w) := z1w1 − z2w2 = z>Dw for D :=

(
1 0
0 −1

)
.

The corresponding symmetry group is

U(C2, h) = {g ∈ GL2(C) : (∀z, w ∈ C2)h(gz, gw) = h(z, w)}
= {g ∈ GL2(C) : g>Dg = D}
= {g ∈ GL2(C) : g∗ = Dg−1D−1}.

For g =

(
α β
γ δ

)
∈ SL2(C), we have

g∗ =

(
α γ

β δ

)
and g−1 =

(
δ −β
−γ α

)
, so that Dg−1D−1 =

(
δ β
γ α

)
.

Therefore g ∈ U(C2, h) is equivalent to δ = α and γ = β. This leads to

SU1,1(C) =
{(

α β
β α

)
∈ GL2(C) : |α|2 − |β|2 = 1

}
= SU(C2, h) := SL2(C) ∩U(C2, h).

Remark 4.51. (More on cross ratio and generalized circles) For K = C, we consider the
cross ratio on the projective line C∞ ∼= P1(C):

C(z1, z2, z3, z4) =
(z4 − z2)(z3 − z1)

(z4 − z1)(z3 − z2)
.

For z1, z2, z3 ∈ C, there exists a uniquely determined generalized circle C containing all three
points (by elementary geometry). For a fourth point z ∈ C, the condition

C(z, z1, z2, z3) ∈ R∞

is equivalent to z, z1, z2, z3 lying in one generalized circle, so that it means that z ∈ C
(Proposition 4.46). We therefore obtain

C = {z ∈ C∞ : C(z, z1, z2, z3) ∈ R∞}.

4.9 A projective view on conic sections

In this subsection we briefly discuss conic section from the point of view of real projective
geometry. We start by explaining how the zero set of a polynomial can be defined as a subset
of projective space and then apply this to the equation x2 + y2 = 1 of the euclidean circle.
We shall then derive the projective equivalence of regular conic sections.

Definition 4.52. (Projective zero sets) A polynomial f ∈ K[x0, x1, . . . , xn] is called ho-
mogeneous of degree d if it is a linear combinations of monomials xm := xm0

0 · · ·xmn
n with

m = (m0, . . . ,mn) and |m| := m0 + m1 + . . . + mn = d. This implies that f(λx) = λdf(x)
for x ∈ Kn+1. Therefore we can define the projective zero set of f :

Z(f) := {[x] ∈ Pn(K) : f(x) = 0}.

This set is well-defined because the relation f(x) = 0 does not depend on the choice of a
representative x ∈ [x] = Kx.
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Examples 4.53. (a) If f(x) = a0x0 + · · ·+ anxn is linear, then its projective zero set

Z(f) :=
{

[x] ∈ Pn(K) :

n∑
j=0

ajxj = 0
}

is the projective space of the hyperplane ker f ⊆ Kn+1.
(b) If f(x) =

∑n
i,j=0 aijxixj with a symmetric matrix A = (aij) ∈ Symn+1(K), then

Z(f) := {[x] ∈ Pn(K) : f(x) = 0}

is called a projective quadric.
(c) For f(x0, x1) := x0x1, we have

Z(f) := {[x] ∈ P1(K) : x0x1 = 0} = {[1 : 0], [0 : 1]}.

Remark 4.54. (Homogeneous completion of a polynomial) Let f(x) =
∑
amx

m ∈ K[x1, . . . , xn]
be a not necessarily homogeneous polynomial. We can associate to f a homogeneous poly-
nomial as follows. Let

N := max{|m| : am 6= 0}.
Then

f̃(x) :=
∑

amx
N−|m|
0 xm ∈ K[x0, x1, . . . , xn]

is a homogeneous polynomial. It has the property that,

f̃(1, x1, . . . , xn) = f(x1, . . . , xn) for x ∈ Kn.

Therefore the projective zero set Z(f̃) ⊆ Pn(K) can be considered as a “projective comple-

tion” of the zero set of f in Kn. In fact, it corresponds to the intersection of Z(f̃) with the
affine subspace

Kn ∼= {[1 : x1 : · · · : xn] : x ∈ Kn} ⊆ Pn(K).

Example 4.55. (a) For the polynomial f(x) = x31 +x22−x3 +1, we obtain the homogeneous
polynomial

f̃(x) = x31 + x0x
2
2 − x20x3 + x30.

(b) For the polynomial f(x) = x51 − x23, we get

f̃(x) = x51 − x20x23.

We consider the homogeneous polynomial

f(x1, x2, x3) := x21 + x22 − x23.

The corresponding subset
C := {[x] ∈ P2(R) : f(x) = 0}

is called the standard conic and

C̃ := {x ∈ R3 : f(x) = 0}

is called the standard cone.
A conic section is a planar curve of the type S := C̃∩H, where H ⊆ R3 is an affine plane.

If H is a linear subspace, i.e., 0 ∈ H, then the conic is called singular and otherwise regular.
In the following we discuss regular conic sections. We write the hyperplane H as

H = {x ∈ R3 : 〈x,n〉 = c} for c ∈ R, 0 6= n ∈ R3.
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Lemma 4.56. We obtain the following types of conic sections S := C̃ ∩H:

(1) f(n) < 0, c = 0: S = {0}.

(2) f(n) < 0, c 6= 0: S is an ellipse. Typical case

n = e3, S = {(x1, x2, c) : x21 + x22 = c2}.

(3) f(n) = 0, c = 0: S = R(n1, n2,−n3) is a line.

(4) f(n) = 0, c 6= 0: S is a parabola. Typical case

n = e2 + e3, S = {(x1, x2, c− x2) : x21 + 2cx2 = c2}.

(5) f(n) > 0, c = 0: S = Rx∪Ry is a union of two lines, where x, y ∈ n⊥ are two linearly
independent elements in S.

(6) f(n) > 0, c 6= 0: S is a hyperbola. Typical case

n = e2, S = {(x1, c, x3) : x21 − x23 = −c2}.

Proof. Rotating around the x3-axis, which leaves C̃ invariant, we may w.l.o.g. assume that
n1 = 0.

(1), (2) From 0 > f(n) = n22 − n23 it follows that 0 ≤ |n2| < |n3|. We may w.l.o.g. assume
n3 = 1. We then obtain x3 = c− n2x2, which leads to

f(x) = x21 + x22 − (c− n2x2)2 = x21 + (1− n22)x22 + 2cn2x2 − c2.

As n22 < 1, this describes an ellipse which degenerates to a point if c = 0. That we obtain a
proper ellipse for c 6= 0 follows from f(0) = −c2 < 0 and lim|x|→∞ f(x) =∞.

(3), (4) From f(n) = 0 we derive |n2| = |n3|, so that we may assume n3 = 1 and
x3 = c− n2x2. Now

f(x) = x21 + x22 − (c− n2x2)2 = x21 + (1− n22)x22 + 2cn2x2 − c2 = x21 + 2cn2x2 − c2.

For c = 0, f(x) = 0 implies x1 = 0, so that S = R(0, 1,−n2), and for c 6= 0, S is a parabola.
(5), (6) From 0 < f(n) = n22 − n23 it follows that |n2| > |n3|. We may w.l.o.g. assume

n2 = 1. We then obtain x2 = c− n3x3, which leads to

f(x) = x21 + (c− n3x3)2 − x23 = x21 + (n23 − 1)x23 − 2cn3x3 + c2.

For c 6= 0, S is a hyperbola. For c = 0 it degenerates to a pair of lines: x1 = ±
√

1− n23·x3.

We now consider the subet [C] ⊆ P2(R) as a curve in projective space. For c 6= 0, the
affine hyperplane H = {x ∈ R3 : 〈x,n〉 = c} does not contain zero, so that we obtain the
affine subspace [H] ⊆ P2(R). We can now ask for the type of the curve [H] ∩ [C], which

corresponds under the embedding H ∼= [H] ⊆ P2(R) to the curve S := H ∩ C̃.
In the preceding lemma we have seen that S may be a parabola, a hyperbola or an ellipse,

depending on the position of the affine hyperplane H.
We now change our perspective and fix the hyperplane H. For g ∈ GL3(R) we then

obtain conic sections
[H] ∩ g[C] = g(g−1[H] ∩ [C]),
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corresponding to the curves H ∩ gC̃ which are of the same type as g−1H ∩ C̃. Since every
hyperplane H ′ ⊆ R3 not containing zero is of the form gH for some g ∈ GL3(R) (Exercise!),
we see that g[C] ∩ [H] can be of all three types: parabola, hyperbola or ellipse. This proves
the following theorem:

Theorem 4.57. (Projective equivalence of conic sections) Projective transformations of an
affine plane can turn every non-degenerate conic section, parabola, hyperbola or ellipse into
any of these forms.

Example 4.58. For H = {x ∈ R3 : x3 = 1} we obtain the circle

S = H ∩ C̃ = {(x1, x2, 1) : x21 + x22 = 1}.

For

g :=

1 0 1
0 1 0
1 0 −1

 ∈ GL3(R)

the corresponding projective transformation on the hyperplane H ∼= R2 is given by

g[x1 : x2 : 1] = [x1 + 1 : x2 : x1 − 1] =
[x1 + 1

x1 − 1
:

x2
x1 − 1

: 1
]
.

Put

φ(x1, x2) :=
(x1 + 1

x1 − 1
,

x2
x1 − 1

)
.

Then φ is singular in the line x1 = 1 that is tangent to the circle

S = {(x1, x2) : x21 + x22 = 1}.

Now

φ−1(S) = {(x1, x2) : (x1 + 1)2 + x22 = (x1 − 1)2, x1 6= 1} = {(x1, x2) : x22 = −4x1}

is a parabola.
For

h :=

0 0 1
0 1 0
1 0 0

 ∈ GL3(R)

the corresponding projective transformation on H ∼= R2 is given by

h[x1 : x2 : 1] = [1 : x2 : x1] =
[ 1

x1
:
x2
x1

: 1
]
.

Put

ψ(x1, x2) :=
( 1

x1
,
x2
x1

)
.

Then ψ is singular in the line x1 = 0 intersecting the circle S. Now

ψ−1(S) = {(x1, x2) : 1 + x22 = x21, x1 6= 0} = {(x1, x2) : x21 − x22 = 1}

is a hyperbola.
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Exercises for Section 4

Exercise 4.1. Let V be a vector space and φ : V → V be a linear map mapping every
one-dimensional subspace into itself. Show that there exists a λ ∈ K with φ = λ idV .

Exercise 4.2. (Transformation properties of the cross ratio) Let zj , j = 1, 2, 3, 4, be four
distinct points in K∞. Show that their cross ratio transforms as follows under permutation
of the entries:

C(z2, z1, z3, z4) = C(z1, z2, z3, z4)−1, C(z1, z3, z2, z4) = 1− C(z1, z2, z3, z4)

C(z1, z2, z4, z3) = C(z1, z2, z3, z4)−1.

Conclude from these relations that

C(z2, z3, z4, z1) =
C(z1, z2, z3, z4)

C(z1, z2, z3, z4)− 1
.

How many different elements of K∞ do we get at most by permuting the arguments of the
cross ratio?

Exercise 4.3. Recall the stereographic projection

φ : S2 \ {e0} → R2, (x0, x1, x2) 7→ 1

1− x0
(x1, x2)

(Example 4.7). Show that:

(a) φ is continuous with continuous inverse φ−1(x) =
(
‖x‖22−1
‖x‖22+1

, 2x
‖x‖22+1

)
.

(b) If C ⊆ S2 is a circle containing e0, then φ(C \ {e0}) is an affine line.

(c)∗ If C ⊆ S2 is a circle not containing e0, then φ(C) is a circle.

Exercise 4.4. Show that the natural map

q : SLn(K)→ PGLn(K), g 7→ K×g = g

is surjective if and only if, for every λ ∈ K×, there exists a µ ∈ K with µn = λ. Discuss the
cases K = R and K = C; for which n is this condition satisfied?
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