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Part 1
General Structure Theory

In this part we take a first look at the concept of a Lie algebra. Lie algebras arise naturally
in many areas of mathematics. Their important role in mathematics is due to the fact that
they are the infinitesimal counterparts, resp., “first order approximations” of Lie groups,
so that they can be used to describe symmetries in algebraic terms. Accordingly, the Lie
bracket of vector fields (the infinitesimal generators of flows) and the Poisson brackets from
classical mechanics provide important examples of Lie algebra structures. [

In this course we study Lie algebras as independent algebraic structures. By the com-
mutator bracket, every associative algebra inherits the structure of a Lie algebra and for
every (not necessarily associative algebra) the space of derivations is a Lie algebra.

We start this chapter with the analysis of the algebraic structure of Lie algebras and the
relevant concepts: What are the substructures? Under which condition does a substructure
lead to a quotient structure? What are the simple structures? Does one have composition
series? This leads to concepts like Lie subalgebras and ideals, nilpotent, solvable, and
semisimple Lie algebras. Key results in this context are Engel’s Theorems on nilpotent Lie
algebras, Lie’s Theorem for solvable Lie algebras and Cartan’s criteria for solvability and
semisimplicity. The latter are first instances in which one recognizes the usefulness of the
Cartan—Killing form, which is a specific structural element of Lie algebras.

Throughout K denotes an arbitrary field if not specified otherwise. All vector spaces
are vector spaces over K.

1 Basic Concepts

In this section we provide the basic definitions and concepts concerning Lie algebras. In
particular, we discuss ideals, quotients, homomorphisms and the elementary connections
between these concepts.

1.1 Definitions and Examples

We start with the definition of a Lie algebra. ][]

Definition 1.1. Let g be a vector space. A Lie bracketon g is a bilinear map [-,-]: gxg — g
satisfying

(L1) [z,2z] =0 for z,y € g (it is alternating), and
(L2) (5, [y, 2]) + [y, 5] + [2, [, 5] = 0 for 3,1, € g (Jacobi identity). []

If [-,] is a Lie bracket on g, then the pair (g, [-,-]) is called a Lie algebra.

n the context of dynamical systems, the Lie algebra would represent the differential equation x(t) =
F(t,x) encoding the evolution of a system and the Lie group the corresponding time evolution on the state
space ®;(x) = x(t), x(0) = x.

2Marius Sophus Lie (1842-1899), Norwegian mathematician in Kristiania (Oslo) and Leipzig. Founder
of the theory of transformation groups, which later lead to the modern concept of a Lie group.

3The term Lie algebra was introduced in the 1920s by Hermann Weyl, following a suggestion of N. Ja-
cobson. Lie himself was dealing mainly with Lie algebras of vector fields, which he called (infinitesimal)
transformation groups. The term Lie group was introduced by E. Cartan.

4Carl Gustav Jacob Jacobi (1804-1851), Mathematician in Berlin and Konigsberg (Kaliningrad). He
found the famous identity about 1830 in the context of Poisson brackets, occuring in Hamiltonian mechanics.



Remark 1.2. (a) From (L1) we immediately derive for x,y € g the relation

0=z +yz+yl=[z,s]+[y,2] + [v,y] + [y,y] = [y, 2] + [z,9],

hence

[l‘,y] = _[ya ill'],
which means that any Lie bracket is skew-symmetric. If, conversely, a bracket [, -] is skew-
symmetric, then we obtain for x = y the relation 2[z,x] = 0. Therefore (L1) follows,

provided char K # 2, i.e., 2=1+1 # 0 in the field K.

Example 1.3. A vector space A together with a bilinear map -: A x A — A is called an
(associative) algebra if

a-(b-c)=(a-b)-c for a,bceA

Then the commutator
la,b] :=a-b—b-a
defines a Lie bracket on A. In fact, (L1) is obvious. For the Jacobi identity, we first observe
that
[m, [y, z]] =ux(yz — zy) — (yz — 2y)r = xYz — T2Y — Y22 + 2y,
which leads tdf]

Z [x, ly, z]] = nyz — T2y — Yyzr + 2Yx
cyc. cyc.

= nyz—xzy—xyz—ka:zyz().

cyc.
We write A, := (A, [-,-]) for this Lie algebra.

Example 1.4. (a) Let V be a vector space and End(V) be the set of linear endomor-
phisms of V. Then End(V) is an associative algebra w.r.t. composition. We write gl(V') :=
End(V), for the corresponding Lie algebra with the bracket

[, ] == poth —¢og.

(b) The space M, (K) of (n x n)-matrices with entries in K is an associative algebra
with respect to matrix multiplication. We write gl,(K) := M, (K), for the corresponding
Lie algebra with the bracket

[A, B] := AB — BA.

Definition 1.5. (a) Let g and b be Lie algebras. A linear map a: g — b is called a
homomorphism (of Lie algebras) [ if

a[z,y]) = la(z),aly)]  for  zycg

An isomorphism of Lie algebras is a homomorphism « for which there exists a homomor-
phism 8: h — g with o f = idy and 8o o = idy. It is easy to see that this condition is
equivalent to « being bijective (Exercise). If an isomorphism ¢: g — b exists, we call the
Lie algebras g and b isomorphic.

SHere we use the notation chc_ for the sum over all expressions obtained from a cyclic permutation of
the variable.
5Based on the terminology of category theory, one also speaks of morphisms of Lie algebras.



(b) A representation of a Lie algebra g on the vector space V is a homomorphism
a:g— gl(V). We also write («, V') for a representation a of g on V.
(c) Let g be a Lie algebra and F, F' be subsets of g. We write

[E, F| :=span{[e, f]: e € E, f € F}

for the smallest subspace containing all brackets [e, f] with e € E and f € F.

(d) A linear subspace b of a Lie algebra g is called a Lie subalgebra if [h,h] C b.
Obviously, every Lie subalgebra b is a Lie algebra with respect to the restriction of the Lie
bracket to a map h x h — . We then write h < g.

If the stronger condition [g, h] C b is satisfied, then we call h an ideal of g and write

h<g.
(e) The Lie algebra g is called abelian if [g,g] = {0}, which means that all brackets
vanish.

Remark 1.6. From the definitions it is clear that the image of a homomorphism a:: g — go
of Lie algebras is a subalgebra of go. Moreover, a!(h) is an ideal in g; if h < go, and a1 (h)
is a subalgebra if h < go. In particular, the kernel ker o of a Lie algebra homomorphism «
is always an ideal.

Examples 1.7. (i) Let g be Lie algebra. Then the center

3(0) ={zegl|(vyeg)lry =0}
of g is an ideal in g.

(ii) For each Lie algebra g, the subspace [g,g] is an ideal (Exercise [1.11]), called the
commutator algebra of g.

(iii) Every one-dimensional subspace of a Lie algebra is a subalgebra since the Lie bracket
is alternating.

(iv) The set
50, (K) := {z € gl,,(K) | tr(z) = 0}

is an ideal in gl,(K), where tr(z) denotes the trace of X. It is called the special linear
Lie algebra. That sl,(K) is a Lie algebra follows from

tr([X,Y]) =tr(XY —YX) =tr(XY) —tr(YX)=0

for X, Y € M,(K). Since sl,(K) is a hyperplane in M, (K), we have dimsl[,(K) =
n? — 1.

Writing Ej, for the matrix with entry 1 in position (j, k) and zeros elsewhere, we
obtain the commutator brackets

[Ejka Eﬁm] = 5k:EEjm - 5ij€k- (1)

This easily implies that
[9L,,(K), g1, (K)] = sl,,(K)

(Exercise [1.9).



(v) The set
Un(K) = {l’ € g[n(K) ’ T = _xT}

is a subalgebra of gl,(K): For z,y € 0,(K), we have
]T

{x7y = [yT71:T] = [_y7 —ZL’] = [yvx] = —[l’,y].

This Lie algebra is called the orthogonal Lie algebra. We have

-1
dim o, (K) = n(n—1)
2
Note that
50, (K) := 0,(K) Nsl,(K) = 0,(K)
follows from the fact that traxz = 0 for 2" = —z.

(vi) The set
u,(C):={zxegl,(C) | x=—2"}

is a real subalgebra of the complex Lie algebra gl,,(C), the unitary Lie algebra. We
define the special unitary Lie algebra by

su, (C) :=u,(C) Nsl,(C).

(vii) Let J, := (_(1 10") € gl,,,(K) and note that J' = —J,. Then the set

sp,, (K) == {z € gl,,(K): 2" .J, + J,2 = 0}

is a Lie subalgebra of gl,, (K), called the symplectic Lie algebra (Exercise [1.10]). Writ-

ing elements of gl,, (K) as (2 x 2)-block matrices, one easily verifies that

A B
(C D)@p%(K) <~ B=B",C=C" A" =-D.

For the dimension we thus obtain

n(n+1)

=% +n.
5 n“+n

dim sp,, (K) = n* 4 2

(viii) The subspace
n={z = (z;) € gl,(K) [ (Vi > j) z;; = 0}

of strictly upper triangular matrices and the subspace
b ={z = (zy) € gl,(K) | (Vi > j)zi; =0}
of upper triangular matrices are Lie subalgebras of gl (K).
(ix) Let V be a subspace of a Lie algebra g. The normalizer
ng(V)={zegllz,V]CV}

of V in g is a subalgebra of g (Exercise).



Example 1.8. Let V' be a vector space. A tuple F = (Vg,...,V,) of subspaces with
{0p=Cwnc---CV,=V
is called a flag in V. Then
9(F) i=A{z € gl(V): (V) 2V; C Vj}

is a Lie subalgebra of gl(V') = End(V), (it is even closed under composition).

To visualize this Lie algebra, we shall describe linear maps by suitable block matrices. If
V' is a vector space which is a direct sum V = W, @ ... ® W, of subspaces W;, j =1,...,n,
then we write an endomorphism A € End(V') as an (n x n)-block matrix

All te Aln
A21 e AQn

A (Ajk)j k=1,...m — . ) . ;
Anl e Ann

where Aj;, € Hom(Wj, W;) is uniquely determined by the requirement that the image of
v=(vy,...,0,) €V is

e

Here we simply write Aw for A(w) to simplify notation.

Applying this kind of visualization to the Lie algebra g(F), we choose in V; a subspace
W; with V; = V;_; & W;. For each j, we then have V; = W, @ ... ® IW; and in particular
V=W d...&W,. Now the elements of g(F) are those endomorphisms of V' corresponding
to upper triangular matrices

All A12 T Aln
0 A22 e A2n
0 - 0 A

1.2 Derivations

Definition 1.9. Let (A,-) be an algebra (not necessarily associative), i.e., A x A —
A, (a,b) — a- b is a bilinear map. Then D € End(.A) is called a Derivation if

D(x-y)=D(z)-y+x-D(y) for =z,yeA
We write der(.A) for the subset of derivations in End(.A).

Examples 1.10. (a) If A = C*°(R) is the space of smooth real-valued functions f: R — R,
endowed with the pointwise multiplication, then

D:A— A [ f

is a derivation by the Product Rule. This is the paradigmatic example of a derivation.

(b) For a general field K, the polynomial ring A = K[X] in one indeterminate X is
an algebra and the linear map D: A — A specified by D(X") = nX""! for n > 1 and
D(1) =0 is a derivation.



The notion of a derivation plays a central role in Lie algebra theory.

Lemma 1.11. For every algebra (A,-), the subset der(A) is a Lie subalgebra of gl(A) =
End(A)L

Proof. Since der(.A) clearly is a linear subspace of gl(A), we have to show that it is closed
under the commutator bracket. For Dy, Dy € der(A) and z,y € A we have

[D1, Ds) (- y)
= D1Dy(x - y) — DaDy(x - y)
= Di(Ds(x) -y +a - Da(y)) — Da(Di(x) -y + - Di(y))
= (D1Dy(2)) -y + Do(x) - Di(y) + Di(2) - Do(y) + x - (D1Da(y))
— (D2Di(x)) -y = Di(x) - Daly) — Da(x) - Dily) — - (D2Di(y))
= [D1, Do](z) -y + x - [D1, Do](y).
Therefore [Dy, Do) € der(A). O

Specializing to Lie algebras, we obtain:
Definition 1.12. Let g be a Lie algebra. A linear map d: g — g is a derivation if
0z, y]) = [6(x),y] + [2,6(y)] for x,yeg.

The following lemma shows that the Jacobi identity is closely linked to Lie brackets
defining derivations:

Lemma 1.13. Let [-,-]: g X g — g be a bilinear map which is alternating, i.e., [x,z] = 0
for x € g. Then [-,-] is a Lie bracket if and only if, for every x € g, the map

adr:g—g, yr [z,y]
defines a derivation of (g, |-, ])-

Proof. Since [z, z] = 0 implies the skew-symmetry of the bracket, we have

adz([y, 2]) — ([ad 2(y), 2] + [y, ad 2(2)])
= [, [y, 2l] = ([[=. 9], 2] + [y, [2,2]])
= [z, [y, 2] + [y, [z, 2] + [z, [2, 9],
so that we can immediately read off the assertion of the lemma. O

Definition 1.14. Let g be a Lie algebra and x € g. We have seen above that the linear
map
adz:g—g, y— |z,

is a derivation. Derivations of this form are called inner derivations. The map ad: g — gl(g)
is called the adjoint representation. That it is a representation, i.e.,

adlz,y] = [adz,ady] for =x,yeg (2)
follows directly from the Jacobi identity (Exercise).
Proposition 1.15. (Range and kernel of adjoint representation) For any Lie algebra g,
(i) der(g) < gl(g) and ad(g) < der(g) is an ideal. In particular,
[D,adz| = ad(Dzx) for D €der(g),z € g. (3)

(i) ker(ad) = 3(g)
Proof. (i) The first part is a special case of Lemma and for the second one verifies
by direct calculation.
(i) is trivial. O



1.3 Representations and Modules

In this short subsection we introduce some terminology concerning representations of Lie
algebras and the corresponding concept of a Lie algebra module.

Definition 1.16. Let g be a Lie algebra and V' be a vector space. Suppose that
gxV =V, (z,v)—z-v
is a bilinear map. If
[z, yl - v=2-(y-v)—y-(z-v) for zyecguvelV,
then V' is called a g-module.

Definition 1.17. (a) Let g be a Lie algebra and V' a g-module. A subspace W C V is
called a g-submodule if g-W C W.

(b) A g-module V is called simple if it is nonzero and there are no submodules except
{0} and V. It is called semisimple, if V' is the direct sum of simple submodules.

(c) If Vand W are g-modules, then a linear map ¢: V' — W is called a homomorphism
(morphism) of g-modules if

olx-v)=x-p) for xzeguvel.

We write Homy(V, W) for the vector space of all g-module homomorphisms from V' to
W and note that the set Endg(V') := Homgy(V,V) of module endomorphisms of V' is an
associative subalgebra of End(V).

If » € Homgy(V, W) is bijective, then the inverse map ¢~ ': W — V is also a homomor-
phism of g-modules (Exercise). Therefore ¢ is called an isomorphism of g-modules. The
set of isomorphisms V' — V is the group Auty(V) := Endy(V)* of invertible elements in
the algebra Endy(V).

Example 1.18. (a) Any Lie algebra g carries a natural g-module structure defined by the
adjoint representation z -y := [z,y]. The g-submodules of g are precisely the ideals (cf.
Definition .

(b) If g = K is the one-dimensional Lie algebra and V' a K-vector space, then any
endomorphism D € End (V') determines a g-module structure on V' defined by t-v := tD(v).
Clearly, each g-module structure on V' is of this form for D(v) =1- v,

Remark 1.19. (Module structures versus representations)
(a) If m: g — gl(V) is a representation, then a g-module structure on V' is defined by

zr-v=mn(x)v.

Conversely, for every g-module V| the map 7: g — gl(V) defined by n(z)v = x-v is a
representation. Thus representations of g and g-modules are equivalent concepts.

(b) In the sense of (a), we call two representations equivalent if the corresponding mod-
ules are isomorphic.

Definition 1.20. A representation (m, V') of a Lie algebra g is called irreducible if V' is a
simple g-module. It is called completely reducible if V is a semisimple g-module.



1.4 Quotients and Semidirect Sums

We have already seen that the kernel of a homomorphism of Lie algebras is an ideal.
The following proposition implies in particular that each ideal is the kernel of a surjective
homomorphism of Lie algebras.

Proposition 1.21. Let g be a Lie algebra and n be an ideal in g. Then the quotient space
g/n={z+n:x € g} is a Lie algebra with respect to the bracket

[z +ny+n]:=[z,y]+n
The quotient map w: g — g/n is a surjective homomorphism of Lie algebras with kernel n.
Proof. Since n is an ideal, the bracket on g/n is well-defined because z, 2z’ € n implies
[z + 2,y + 2] — [z,y] €n.
The bracket on g/n is clearly bilinear and satisfies
[r(2), 7(y)] = 7([z,y]) for =zye€g. (4)

Since 7 is surjective, the validity of (L.1/2) in g implies (L1/2) for the bracket on g/n: We
have
(), m(2)] = m([z,2]) = 0

and
[ (), [7(y), 7(2)]] + [ (), [ (2), 7(@)]] + [7(2), [7(x), 7 (y)]]
=n([z, [y, 2]] + [y, [z, ]| + [z, [, 9]]) = 0.
In view of , 7 is a homomorphism of Lie algebras. n

Lemma 1.22. A linear subspace nw of a Lie algebra g is an ideal if and only if it is the
kernel of a homomorphism of Lie algebras.

Proof. Proposition implies that every ideal n of g is the kernel of a homomorphism. If,
conversely, ¢: g — b is a homomorphism of Lie algebras, then ¢([g, ker ¢]) C [p(g),{0}] =
{0} implies that its kernel is an ideal. O

Theorem 1.23. (Factorization Theorem) Let p: g1 — go be a homomorphism of Lien < g;
be an ideal and m: gy — g1/n the quotient homomorphism. Then there exists a uniquely
determined homomorphism @: g1/n — go salisfying @ o m = ¢ if and only if n C ker .

Proof. If P exists, then
ker p = ker(gom) D kerm = n.

If, conversely, n C ker ¢, then we obtain a well-defined linear map
P g1/n— g, ?(z +n) = p(2).

That © is a homomorphism of Lie algebras follows from

P([r(@), 7()]) =B (n([z,9]) = ¢([z,y]) = [o(x), o (y)]

[B(n(x)), (7 (y))].

That P is uniquely determined by the relation @ om = ¢ is due to the surjectivity of 7. [J

8



We leave the easy proof of the following proposition to the reader[]
Proposition 1.24. Let g and b be Lie algebras.
(i) If a: g — b is a homomorphism, then a(g) = g/ ker a.
(i) Ifi,j Qg are ideals with i Cj, then j/i < g/i, and (g/1)/(i/i) = g/j.
(iii) Ifi,j < g are two ideals, then i+ j and iNj are ideals of g, and
i/(inj) = (i+i)/i.

We have already seen that we obtain for each ideal n < g a quotient algebra g/n, so that
we may consider the two Lie algebras n and g/n as two pieces into which g is decomposed.
It is therefore a natural question how we may build a Lie algebra g from two Lie algebras
n and b in such a way that n < g and g/n = h. The following definition describes one such
construction.

Definition 1.25. (a) If g is a Lie algebra, n < g an ideal and h < g a subalgebra, so that
g is the direct vector space sum of n and h. Then g is called a semidirect sum of n and b.
Since the ideal n C g is a invariant under the adjoint representation,

d:h—der(n), z~— adz|,

defines a homomorphism of Lie algebras. In these terms, the bracket in g = n @ b is given
by
[(n, h), (0, B)] = ([n, ] + 6(h)n" — 6(h")n, [h, h]).

We therefore write g = n x5 h and call g the semidirect sum of n and b with respect to 9.
(b) If 6 = 0, then we write g = n @ bh and say that g is the direct sum of n and b.

Remark 1.26. A semidirect sum g = n X b is a direct sum if and only if the subalgebra
h= {0} x b is an ideal.

The following lemma shows that every triples (n,h,d) as in Definition actually
corresponds to a Lie algebra.

Lemma 1.27. Let n and b be Lie algebras and §: h — der(n) be a homomorphism of Lie
algebras. Then
[(n, 1), (', 1) = ([n, ] + 6(h)n” — 6(h")n, [h, 1))

defines on the vector space g :==n X b a Lie bracket such that n = n x {0} is an ideal and
h = {0} x b a subalgebra with g = n X b.

Proof. Clearly,
[(n, h), (n, h)] := ([n,n] + 6(h)n — 6(h)n, [h, h])) = (0,0),
so that (L1) is satisfied. To verify the Jacobi identity, we put
J(x,y,2) = [z, [y, 2] + [y, [z, 2]] + [2, 2, 9]
for x,y,z € g and observe that J(z,y,2) = J(y, z,x) = J(2,2,y). We further have

J(z,2,2) = [z,[z,2]] + [z, [2,2]] + [2, [z, 2]] =0,

"These three statements are Lie algebra versions of Emmy Noether’s Homomorphism Theorems for
modules over rings in [EN27, §4, p. 40]).



so that J is alternating, i.e.,
J(To(1); To2); To(3)) = sgn(0)J (21,72, 73)  for o € 93,75 € g.

Therefore the verification of the Jacobi identity J = 0 reduces to the following four special
cases:

(1) z,y,z € n: J(x,y,z) =0 follows from the Jacobi identity in n.

(2) zyyen, zeb: J(x,y,2) = —[z,0(2)y] — [0(2)z,y] + d(2) [z, y] = 0 follows from the fact
that (z) is a derivation of n.

B)zen y,zebh: J(x,y,2)=—0(y,2])r+(y)d(2)z—3(2)d(y)x = 0 follows from § being
a homomorphism.

(4) z,y,z € b: J(z,y,z) =0 is a consequence of the Jacobi identity in b. ]

Example 1.28. (a) If §: g — gl(V) is a representation of g and we consider V' as an abelian
Lie algebra, then der(V) = gl(V') and V' x5 g carries a Lie algebra structure given by

[(z,y), (', )] == (0(y)2" = 6(y), [y, ¥']).
(b) If V' is a vector space, then we write aff(V') for the space of affine maps
Lay: V=V, o—=Acv+v, Aegl(V),veV.
Note that aff(V') carries a Lie algebra structure defined by

(Law, Larw] = Lia,an,av—are-

Then aff(V) =V x5 gl(V) for 6(A)v = Av.
(c) In gl,,,;(K) we consider the Lie subalgebra

g:= {ZAJ} = (61 8) cAegl (K)ve K"} :

Then ZA,U o ZA’,v’ = ZAA/,A’U/ and therefore

[ZA,va ZA/,’U/] = Z[A,A/],Av’fA’v-
Hence g = aff(K") = K" % gl,(K).
Example 1.29. For a derivation D of the Lie algebra n, we obtain a homomorphism
§: K — der(n) by §(¢t) := tD, and this leads to the semidirect sum n xp K :=n x5 K with

the bracket
[(n,t), (n',t")] = ([n,n'] + tDn’ — t'Dn, 0)

(cf. Example [L.I§|(b)).

Example 1.30. Let h3(K) be the 3-dimensional vector space with the basis p, ¢, z equipped
with the alternating bracket determined by

p,ql =z [p,2] =g, 2] =0.

Then h3(K) is a Lie algebras called the three dimensional Heisenberg algebra. It is isomor-
phic to the algebra n in Example [1.7|(viii) for n = 3. The linear endomorphism of h3(K)
defined by

Dz=0, Dp=q and Dqg=—p

then is a derivation of Bh3(K), so that we obtain a Lie algebra
0s5¢(K) := b3(K) xp K, called the oscillator algebra. Writing h := (0,1) for the additional
basis element in o0s¢(K), the nonzero brackets of basis elements are

p.q) =2 [hpl=q and [hql=—p.
(cf. Exercise
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Example 1.31. If 7 = (V;,...,V,) is a flag in the vector space V (Example [1.8)), then we
know already the associated Lie algebra

g(F) = {z € gl(V): (vj) 2V; € Vj}.
It is easy to see that
gn(F) :i={z € gl(V): (Vi >0) 2V; C Vj4}

is an ideal of g(F). Here the n in g, (F) stands for “nilpotent”.
To find a subalgebra complementary to this ideal, we choose subspaces Wy, ..., W, _;
of Vwith V., 2V, & W, for j =0,...,n—1. Then

9s(F) = {X € gl(V): (Vj) XW; CW;} C g(F)

is a subalgebra with
0(F) 2 gu(F) ¥ go(F)  and g (F) = P al(W)).
j=1

The s in g4(F) stands for “semisimple”. Describing the elements of g(F) as in Example
by block matrices, the semidirect decomposition of the Lie algebra g(F) corresponds to the
decomposition of an upper triangular matrix as a sum of a strictly upper triangular matrix
and a diagonal matrix. For n = 3 we have in particular:

A A A An 0 0 0 A A
A= 0 Ay A23 = 0 Agy 0 +10 0 A23
0 0 Ass 0 0 As 0O 0 0
Eng ) Egnv(f )

1.5 Complexification and Real Forms

Up to now, the base field did not really play a role in our considerations. But we shall see
later on, that for some structure theoretic arguments, it is important for the operators ad x
to have eigenvalues. This is certainly the case if the groundfile K is algebraically closed.
Therefore, we also consider the complezification of a real Lie algebra. For this, we briefly
recall how to calculate with the complexification of a vector space.

Definition 1.32. Let V' be an R-vector space. The complezification Vi of V is the vector
space V @ V', endowed with the C-vector space structure defined by

(x 4+ iy) (v, w) = (zv — yw, zw + Yv).

Identifying V' with the subspace V' x {0} of V¢, we then have iV = {0} xV and Vg = V@iV
as real vector spaces. Accordingly, we write elements of V¢ as = + iy, 2,y € V]

The real linear map o: Ve — Ve, v 4+ 1w — v — qw, for v,w € V, is called complex
conjugation. Its real points consist of the subspace V' C V.

The proof of the following proposition is an elementary calculation.

Proposition 1.33. Let g be a real Lie algebra.

8For readers familiar with tensor products: For every real vector space, we may identify the complexi-
fication V¢ with C ®g V', endowed with the complex scalar multiplication by A(z ® v) = Az ® v.

11



(i) gc is a complex Lie algebra with respect to the complex bilinear Lie bracket, defined
by
[z +iy, 2’ +iy] = ([z,2'] = [y, ¢]) + i([z,y] + [y, 2]).

(ii) [gc, 8c] = 19, 8]c as complex Lie algebras.

(iii) The map o(x+iy) := x—iy for x,y € g defines an antilinear involutive automorphism
of gc whose fized point set (gc)” = {2z € gc: 0(z) = z} is the real Lie algebra g.

Definition 1.34. Let g be a complex Lie algebra. A real Lie algebra b, for which g = h+ib
is a direct sum of real vector spaces is called a real form of g. Note that this implies that

g = be.

We have seen that to every real Lie algebra, we can assign a natural complexification
(cf. Exercise . However, nonisomorphic real algebras can have isomorphic complexi-
fications, resp., complex Lie algebras can have nonisomorphic real forms, as the following
example shows.

Example 1.35. (Lie algebras with non-isomorphic real forms) In view of Exercise|l.15, we
have
5112(@)@ = 5[2(@) = E[Q(R)C,

so that suy(C) and sly(R) are both real forms of the complex Lie algebra sly(C). We now
show that sly(R) and suy(C) are not isomorphic. To this end, we show that sly(R) contains
a 2-dimensional Lie subalgebra and that sus(C) does not. Clearly,

o={( %) rrer)

is a 2-dimensional Lie subalgebra of sly(C) (cf. Example [L.7|(viii)). So it remains to see
that sus(C) contains no 2-dimensional subalgebra. This will be done by first showing that
suy(C) = s03(R). We consider the bases

_Lfi 0y 101 10 i
=350 =) "T3\=10) “T3\i o0

of suy(C), and

010 00 1 00 0
c=[-1 00|, y=( 000, z2=(00 -1
000 ~100 01 0

of so3(R). Then
[a,b] =¢, [b,c]=a, [c,a]=0b
and
[z, y] =2 [y.2] =2, [z2]=y.
Therefore the linear isomorphism sus(C) — so3(R) with a — z,b — y and ¢ — z is an
isomorphism of Lie algebras. The Lie algebra so3(R) has no two-dimensional subalgebra
because it is isomorphic to (R?, x), where x denotes the vector product (Exercise .

Here we use that the vector product x x y of two linearly independent vectors z,y € R? is
orthogonal to both, so that the plane Rx + Ry is not a subalgebra.
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Example 1.36. (A complex Lie algebra with no real form) On the abelian Lie algebra
V := C? we consider the linear operator D, defined by De; = 2e; and Dey = ies with
respect to the canonical basis. Then we form the three dimensional complex Lie algebra
g :=V xp C and note that V' = [g, g is a 2-dimensional ideal of g.

Suppose that g has a real form. Let o € Aut(g) be the corresponding complex conju-
gation, which is an involutive antilinear automorphism of g (Proposition [1.33(iii)). Then

o(V)=o0(lg g]) = o(g),0(9)] =[g,08] =V,

so that o induces an antilinear involution oy on V. Let ¢(0,1) = (vo, A) and note that
(V) =V implies that A # 0. Applying o again, we see that

(0,1) = 02(0,1) = oy (vg) + Aa(0,1) = (o (v0) + Avg, A - A).

We conclude that |[A\| = 1. Further, o 0o ad(0,1) o 0 = ad(¢(0,1)) = ad(vg, A) implies by
restricting to V' that
oyoDooy =AD.

If v € V is a D-eigenvector with Dv = awv, then
D(oyv) = oy (ADv) = daoy (v).

This means that oy (Vo(D)) = Vi(D)f] In particular, oy permutes the
D-eigenspaces. Now |A| = 1 and [i| # 2 show that oy preserves both eigenspaces. For
a = 2, this leads to A = 1, so that A = 1. For a = i we now arrive at the contradiction
—i=Xa=a=i.

This example is minimal because each complex Lie algebra of dimension 2 has a real
form (cf. Example [4.2)).

Exercises for Section [1

Exercise 1.1. Let A be an associative algebra and A; be the associated Lie algebra

(cf. Example [L.3).

(i) der(A) C der(Ayp), i.e., every derivation of the associative algebra A is a derivation
of the Lie algebra A, too.

(ii) [a,bc] = [a,b]c+ bla, c] for a,b,c € A.
(iii) In general der(A) # der(Ayg).
(iv) If A is commutative, then A - der(A) C der(.A).

Exercise 1.2. Let U be an open subset of R*" and g = C*(U,R) be the set of smooth
functions on U and write qq,...,¢qn, p1, - .., ps for the coordinates with respect to a basis.
Then g is a Lie algebra with respect to the Poisson bracket

= 9fdg 0f 9y
{f,g} o ; 0q; Op; Op; 5’%"

The functions p; and ¢ satisfy the canonical commutation relations (CCR):

iy =1, e} =0 and  {g;,pr} = G-

9We use the following notation for eigenspaces: Let V be a K-vector space and A € End(V). We
g g

write Vy(A) := ker(A — A1) for the eigenspace of A corresponding to the eigenvalue A and V*(A) =

Unen ker(A — A1) for the generalized eigenspace of A corresponding to .
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Exercise 1.3. Let U be an open subset of R" A = C*UR), and
g=C>*(U,R"). For f € Aand X € g, we define

Ny O
L‘Xf._Xf._;Xlax.

(i) The maps Lx are derivations of the algebra A.
(ii) If Lx =0, then X = 0.

(ili) The commutator of two such operators has the form [Lx,Ly] = Lixy], where the
bracket on g is defined by

[X,Y](p) :==dY(p)X(p) — dX(p)Y(p),

resp.,

“~ Y 0X;
(X, Y] = ZXja_xj - }/38_%

(iv) (g,],]) is a Lie algebra.

(v) To each A € gl,(R), we associate the linear vector field X 4(x) := Az. Show that, for
A, B € M,(R), we have X4 g = —[X4, X5].

Exercise 1.4. Show that every 2-dimensional nonabelian Lie algebra contains a basis x,y
with [z,y] = y. State the full classification of 2-dimensional Lie algebras. A natural matrix
realization of this Lie algebra is

aff, (K) — (H(f H§> with the basis = ((1) 8) y = (8 é)

Exercise 1.5. (a) Show that all derivations of the 2-dimensional non-abelian Lie algebra
n = aff, (K) are inner.

(b)* Conclude that, whenever a 3-dimensional Lie algebra g has an ideal isomorphic to n,
then g = n & K. Here n @& K denotes the direct sum of Lie algebras with the bracket

[(ZL’, t)a (xlv t/)] = ([[B, 33/], O)'

Exercise 1.6. Show that, every 3-dimensional Lie algebra g with a 2-dimensional ideal is
isomorphic to one of the following types:

(a) off,(K) @ K or
(b) K2 xp K, D € gly(K) with [(z, 1), («/,t')] = (tDz' — t'Dz,0)].
Hint: Use Exercise 1.5(b).

(c)* Can you determine when two Lie algebras K? xp K and K? xg K, D, E € gly(K), are
isomorphic? Find necessary and sufficient conditions.

Exercise 1.7. Let g be a Lie algebra, n < g an ideal and h < g a Lie subalgebra with
g=n+bhand nNh={0}. Then

d:h—dern, d(x):=adz|,
defines a homomorphism of Lie algebras and the map
P:nxsh—g, (r,y)—ax+y

is an isomorphism of Lie algebras.
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Exercise 1.8. (a) On K3 we define the vector product by

U1 w1 VW3 — V3W2
Vo X | Wy = | V3w — V1W3
U3 w3 V1w — VaWy

Show that (K3, x) is a Lie algebra and that the map
P: (K, x) = 503(K), ®(v)w:=vxw
is an isomorphism of Lie algebras.
(b) For (v,w) = Z?:l vjw; we have (v x w,v) =0 and (v x w,w) = 0.

(c)* When does the Lie algebra (K3, x) contain 2-dimensional subalgebras? Express this
as a condition on the field K. Do R, C satisfy this condition?

Exercise 1.9. (a) Show that [gl, (K), g, (K)] = s[,,(K) and 3(gl,(K)) = K1.
(b) For which fields is the intersection of these two ideals {0}7

Exercise 1.10. Show that:
(i) For every matrix B € M, (K), the subspace
gg = {z € gl,(K): "B + Bx = 0}

is a Lie subalgebra of gl, (K).
Here is a more conceptual argument:

(ii) By m(z)A :=xA+ Axz", we obtain a representation of gl,,(K) on M, (K).

(iii) If V is a g-module and v € V, then

g, ={re€eg: z-v=0}
is a subalgebra.

Exercise 1.11. Show that, for two ideals a and b of the Lie algebra g, the subspace [a, b]
also is an ideal.

Exercise 1.12. On the algebra A := C*(R, C), consider the operators

Pf(x):=if'(z), Qf(x):=zf(x) and Zf(z)=1if(x).

Then the Lie subalgebra of gl(.A) generated by P, @ and Z is isomorphic to the Heisenberg
algebra h3(R), i.e.,
[P,Ql=Z7Z and [P, Z]=1Q,Z]=0.

In Quantum mechanices, @ is the position operator and P the momentum operator. Adding
also the operator (the Hamiltonian of the harmonic oscillator)
1 d*f

()= 5 (= 5@ +a%f (@), H=

7

2 2
2(P +Q°),

we obtain a four-dimensional Lie subalgebra, isomorphic to the oscillator algebra (Exam-
ple 1.30).
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Exercise 1.13. Let (m,V) be a representation of the Lie algebra g on V and W C V a
g-invariant subspace, i.e., 7(g)W C W. Then

g —gl(V/W), T(z)v+W):=n(x)v+W
defines a representation of g on the quotient space V/W.

Exercise 1.14. For the following Lie algebras, find a faithful, i.e., injective, finite dimen-
sional representation: sly(KK), the Heisenberg algebra, the oscillator algebra, and the abelian
Lie algebra R™.

Exercise 1.15. (Complexifications) Show that, as complex Lie algebras,
gl,,(R)c 2 gl,(C), sl,(R)c =Zsl,(C), 0,(R)c = 0,(C), su,(C)c=sl,(C).

Exercise 1.16. Show that the complexification g¢ of a real Lie algebra g has the following
universal property. For every real linear homomorphism ¢: g — § of g to a complex Lie
algebra b, there exists a unique complex linear homomorphism ¢¢: gc — b with ¢cly = ¢.

2 Lie Algebras of Matrix Groups

Many concepts in the theory of Lie algebras correspond to the concepts in group theory:

(1) The adjoint representation ad: g — der(g) of a Lie algebra g corresponds to the
conjugation action ¢: G — Aut(G), c(g)(z) := grg~' of a group G on itself by inner
automorphisms. Accordingly, the automorphisms ¢, of G are called inner and the
derivations ad z, x € g, of a Lie algebra g are called inner.

(2) Ideals are subalgebras invariant under inner derivations. Likewise normal subgroups
are subgroup invariant under all inner automorphisms.

(3) The Lie bracket [x,y] in g corresponds to the commutator bracket (z,y) := xyz 'y~
for elements of a group. Groups are abelian if all commutators are trivial and abelian
Lie algebras are defined likewise.

(4) The commutator group (G, Q) of a group G is the subgroup generated by all commu-

tators zyz~ty~!, it is automatically normal. Likewise, the commutator algebra [g, g]

of a Lie algebra g is an ideal.
(5) For a group G, the center is
Z(G) =A{z € G: (Vy € G)ay = yx},
and the relation xy = yz can also be written as (z,y) = 1. Accordingly,

3(0) ={z € g: [z,9] = {0}}
for a Lie algebra g.

Later we shall also encounter the notion of a nilpotent and a solvable Lie algebra which are
analogous to the corresponding notions for groups.

The correspondence between Lie algebras and groups is particularly direct for groups
G C GL,(R) of real matrices. For such a group G, we write C1([0,1],G) for the set of
differentiable paths a: [0,1] — M, (R) with «([0,1]) € G and «(0) = 1 (the identity
matrix).
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Definition 2.1. Let G C GL,(R) be a subgroup. We define

L(G) = {zr € M,(R): (3a € CL([0,1],G))z = a/(0)}.
Proposition 2.2. For every subgroup G C GL,(R), the set L(G) is a Lie subalgebra of
gl (R).

Proof. (a) First we observe that, for o € C}([0,1],G), the pointwise inverse a~' is also
contained in C!([0,1],G) and that its derivative is given by

(a™'Y() = —a(t) "o/ (Walt) .

This follows from

lim %(a‘l(tnLh) —a7}t)) = lim o~ (t+h) (O‘(t) — Z(t + h>)of1(t) = —a ' (t)a' (H)a " (¢).

h—0 h—0

We also note that the Product Rule implies that, for a, 3 € C1([0, 1], G), the curve a - 3
is contained in C}([0,1], G). It satisfies

(@B)(t) = o/ (t)B(t) + (1) B'(2)-
(b) If a, B € CL([0, 1], G), then
(a3)'(0) = &/(0) + B'(0),  (a™1)'(0) = —a(0),

and, for 0 < A <1, the curve a,(t) := a(At) satisfies o} (0) = A/(0). Therefore L(G) is a
real linear subspace of gl,(R).

(c) For g € G and z = v/(0) € L(G), the curve defined by n(t) := gy(t)g~! is also
contained in C}([0, 1], G) and satisfies L(G) > n/(0) = gzg™'.

(d) For x,y € L(G) and x = ~/(0) we know from (c) that 8(t) := a(t)ya(t)~! defines a
curve in L(G) which is differentiable by (a). Therefore

L(G) 3 8'(0) = /' (0)ya(0) ™" — a(0)ya/(0) = 2y — yz = [2,y].
This completes the proof. O
Example 2.3. (a) Clearly, L(GL,(R)) = gl,,(R) because

GL,(R) = {g € M,(R): detg # —0}

is an open neighborhood of 1.
(b) To see that
L(SL,(R)) = sl,(R),

we observe that ddet(1) = tr (consider the linear terms in the Leibniz formula). For every
v € CL([0,1],SL,(R)), we therefore obtain

d
0= —|,_odet(v(t)) = tx(v/(0))
by the Chain Rule, and thus +/(0) € sl,(R). If, conversely, X € sl,,(R), then
det(et) = ™) =1 for every teR,

so that X = ~/(0) for the curve y(t) = ¥ in SL,(R).
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Lemma 2.4. Let V. and W be finite dimensional real wvector spaces and
B:VxV — W a bilinear map. For (z,y) € End(V') x End(W) the following are equivalent:

(i) e¥B(v,v") = (e v, e™v) for allt € R and all v,v' € V.

(i) yB(v,v") = B(xv,v") + B(v,zv") for all v,v" € V.
Proof. (i) = (ii): Taking the derivative in ¢ = 0, the relation (i) leads to
yB(v,v") = B(zv,v") + (v, x0),

where we use the Product and the Chain Rule (Exercise 2.1](c)).
(ii) = (i): From (ii) we obtain inductively

y"B(v,0') = i <Z> B(av, k).

k=0
For the absolutely convergent exponential series, this leads with the general Cauchy Product
Formula (Exercise to

[e.9]

B0) = 3 ) = 34 (3 ()t

o n 1 1 .
:ZZ&(kaU, (n—k)!x kv)

Since (ii) also holds for the pair (tx,ty) for all ¢ € R, this completes the proof. O]

Proposition 2.5. Let V and W be finite dimensional vector spaces and : V xV — W a
bilinear map. For the group

Aut(V, 8) = {g € GL(V): (Vo,v" € V) B(gv, gv") = B(v, ")},
we then have
aut(V, B) := L(Aut(V, 5))
={zegl(V): Vu,v' € V) B(zv,v") + B(v,zv") = 0}.

Proof. First we observe that e®X C Aut(V,[) is equivalent to the pair (X,0) satisfying
condition (i) in Lemma . This proves O. The converse is obtained by taking for v €
CL([0,1], Aut(V, 8)) the derivative of the relation

By(t)v,v(t)v') = B(v,v')
int=0. [l
Example 2.6. Let g be a finite dimensional K-Lie algebra (K = R, C) and

Aut(g) := {9 € GL(g): (Vz,y € g) g[z,y] = [9z, 9y]}.

To calculate the Lie algebra of Aut(g), first observe that, for
v € CL([0,1], Aut(g)), taking derivatives in ¢ = 0 of the relation

Y@)([z,y]) = (@) (=), v() ()],
we obtain for D := ~/(0) the relation:
D[z, y] = [Da,y] + [z, Dy,

i.e., D € der(g). If, conversely, D € der(g), then we use Lemma 2.4 with V = W = g and
B(z,y) = [z,y] to see that e®P C Aut(g). This shows that

aut(g) = L(Aut(g)) = der(g).

18



Exercises for Section

Exercise 2.1. Let Xi, ..., X, be finite dimensional normed spaces and g: X; x...x X,, —
Y an n-linear map.

(a) Show that there exists a constant C' > 0 with

18(x1, ..., z)|| S Cllay|| -+ - ||zn]]  for  z; € X,

(b) Show that /3 is continuous.

(c) Show that f is differentiable with

dﬁ([El, N ,In)(hl, Ce ,]’Ln) = Z,B(l’l, Ce 7[1/’]'_1, hj,$j+1, N ,l’n).
j=1

Exercise 2.2. [Cauchy Product Formula] Let X, Y, Z be Banach spaces and 5: X xY — Z
a continuous bilinear map. Suppose that z := )" °  x,, is absolutely convergent in X and
that y := > ", y, is absolutely convergent in Y. Then

5(‘%73/) = ZZB(xkyynfk)

n=0 k=0

Exercise 2.3. Let v € R" and G := {g € GL,(R): gv = v} be its stabilizer subgroup.
Show that
L(G,) ={X €gl,(R): Xv=0}.

Exercise 2.4. Show that:
(i) The Lie algebra of the orthogonal group O, (R) := {g € GL,(R): g" = g~'} is 0,(R).

(i) The Lie algebra of the symplectic group Spy,(R) := {g € GLy,(R): g"J,g = J,,} is
sp,, (R) (cf. Examples [L.7)(vii)).

Exercise 2.5. Let £ C R™ be a linear subspace and G := {g € GL,(R): gF = E} be its
stabilizer subgroup. Show that

L(Gp) = {X € gl,(R): XE C E}.

3 Nilpotent Lie Algebras

In the following, we shall encounter several important classes of Lie algebras that play a
central role in the structure theory of finite dimensional Lie algebras. The first of these two
classes, nilpotent Lie algebras, are those for which iterated brackets [z1, [z, [z3, [24, - - ]]]]
of sufficiently large order vanish. The most important result on nilpotent Lie algebras is
Engel’s Theorem which translates nilpotency of a Lie algebra into the elementwise condition
that all operators ad x are nilpotent. Typical examples of nilpotent Lie algebras are Lie
algebras of strictly upper triangular (block) matrices.

Definition 3.1. Let g be a Lie algebra. We define its descending (lower) central series
inductively by
C'(g):==g and C""(g) = [g,C"(9)].
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In particular, C*(g) = [g, g] is the commutator algebra. The Lie algebra g is called nilpotent,
if there is a d € Ny with C?**(g) = {0}. If d is minimal with this property, then it is called
the nilpotence degree of g. By induction, one immediately sees that each C"(g) is an ideal
of g, so that C"*!(g) C C™(g). Hence, for finite dimensional Lie algebras, the nilpotency
of g is equivalent to the vanishing of the ideal C*(g) := (,,cy C™(g)-

Example 3.2. (i) The Heisenberg algebra h3(K) (Example|1.30)) is nilpotent of degree 2
because C?%(h3(K)) = Kz is central.

(ii) A Lie algebra if nilpotent of degree 1 if and only if it is abelian.

(iii) If F = (Vy,...,Va) is a flag in the vector space V and we put V; := {0} for ¢ < 0, then
0, (F) (Example [1.31]) is a nilpotent Lie algebra. In fact, an easy induction leads to

and therefore to C%(g,(F)) = {0}.
Proposition 3.3. Let g be a Lie algebra.

(i) If g is nilpotent, then all subalgebras and all homomorphic images of g are nilpotent.

(iii) If g # {0} is nilpotent, then 3(g) # {0}.

(iv) If g is nilpotent, then there exists an n € N with ad(z)"” = 0 for all x € g, i.e., the
ad(z) are nilpotent as linear maps.

)

(i) If 3 < 3(g) and g/3 is nilpotent, then g is nilpotent.
)
)

(v) Ifi < g, then all the spaces C™(i) are ideals of g.
Proof. (i) Ifh < g, then [h, ] C [g, g] and C"(h) C C"(g) follows by induction. Therefore

each subalgebra of a nilpotent Lie algebra is nilpotent.

For a homomorphism «: g — b, we obtain inductively
C"(a(g)) = a(C"(g)) for each n € N. (5)
Thus, if C™(g) = {0}, then C"(im «) = {0}.

(ii) If g/3 is nilpotent, then there exists an n € N with C"(g/3) = {0}, so that (7)), applied
to the quotient homomorphism ¢: g — g/3, leads to C™(g) C 3 C 3(g) and thus to

C"(g) C [9,3(g)] = {0}

(iii) If g # {0} is nilpotent, for some d € Ny, we have C4t1(g) = {0} and C%(g) # {0}.
Then [g, C%(g)] = {0} implies that the non-zero ideal C%(g) is contained in the center.

(iv) If C4*'(g) = {0}, then (adz)’g € C**'(g) = {0}.
(v) In view of Exercise |1.11} this follows by induction. O

In Proposition [3.3] we have seen that for every nilpotent Lie algebra, all the endomor-
phisms ad(z), x € g, are nilpotent. Now our aim is to show that a finite dimensional Lie
algebra, for which every ad x is nilpotent, is nilpotent itself. We start with a simple lemma,
the proof of which we leave to the reader as an exercise (cf. Exercises and [1.13).

Lemma 3.4. (i) Let V be a finite dimensional vector space, g C gl(V') a Lie subalgebra
and x € g. If x € gl(V') is nilpotent, then ad(x): g — g is also nilpotent.
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(ii) Let g be a Lie algebra and b < g. Then

adgp: b — olg/b),  adgu(z)(y+b):=[z,9]+b
defines a representation of b on the vector space g/b.

Theorem 3.5. (Engel’'s Theorem on linear Lie algebras) Let V' # {0} be a finite dimen-
sional vector space and g C gl(V') a Lie subalgebra. If all x € g are nilpotent, i.e., x = 0
for some n € N, then there exists a nonzero v, € V with g(v,) = {0}.

Proof. We proceed by induction on dim g. For dimg = 0 the assertion holds trivially for
each nonzero v, € V.

Next we assume that dim g > 0 and pick a proper subalgebra fh < g of maximal dimen-
sion. According to Lemma , for each = € b the operators ady, () are nilpotent. Now our
induction hypothesis implies the existence of some z, € g\h with adg(h)(z, +b) = {0},
i.e., [h,x,] € Bh. This implies that Kz, + b is a subalgebra of g and, again by maximality
of b, it follows that Kz, + h = g. The induction hypothesis also implies that the space
Vo :={v e V:h(v) ={0}} is nonzero. Moreover,

yr(w) = zy(w) = [z,y](w) € zh(w) + h(w) = {0} for wzegyehwel,

implies that g(V,) C V,. Since z,|y, is also nilpotent, there exists a nonzero v, € V, with
Zo(v,) = 0. Putting all this together, we arrive at g(v,) = h(v,) + Kz, (v,) = {0}. O

Exercise discusses an interesting Lie algebra of nilpotent endomorphisms of an infi-
nite dimensional space, showing in particular that Engel’s Theorem does not generalize to
infinite dimensional spaces.

Definition 3.6. Let V' be an n-dimensional vector space. A complete flag in V is a flag
(Vo, ..., V) with dim V}, = k for each k.

Corollary 3.7. Let V' be a finite dimensional vector space and g < gl(V') such that all
elements of g are nilpotent. Then there exists a complete flag F in 'V with g C g,(F). In
particular, there exists a basis for V' with respect to which the elements of g correspond to
strictly upper triangular matrices. In particular, g is nilpotent.

Proof. In view of Theorem there exists a nonzero v; € V with g(vy) = {0}. We set
Vi := Kvy. Then

a:g — gl(V/Vy), alx)(v+V):=z(v)+W

is a representation of g on V/V; (Exercise [1.13)), and a(g) consists of nilpotent endomor-
phisms. We now proceed by induction on dim V', so that the induction hypothesis implies
that V/V] possesses a complete flag Fy = (Wh,..., W) with a(g) C g,(F1). Then {0},
together with the preimage of the flag F; in V' is a complete flag F in V with g C g,,(F).
Since g,,(F) is nilpotent (Example [3.2[iii)), the subalgebra g is also nilpotent. O

Now we are able to prove the announced criterion for the nilpotency of a Lie algebra.

Theorem 3.8. (Engel’s Characterization Theorem for nilpotent Lie algebras) Let g be a
finite dimensional Lie algebra. Then g is nilpotent if and only if for each x € g the operator
ad x is nilpotent.
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Proof. We have already seen in Proposition that for each x € g the operator ad x is

nilpotent. It remains to show the converse.
If adz is nilpotent for each x € g, then Corollary implies that the Lie algebra
9/3(g) = ad(g) C gl(g) is nilpotent. Now Proposition [3.3)(ii) shows that g is also nilpotent.
O

Lemma 3.9. If a and b are nilpotent ideals of the Lie algebra g, then so is their sum a+b.

Proof. We claim that
C*(a+b) CC™(a)+C™(b) for mecN, (6)

This implies the assertion because C™(a) = C™(b) = {0} holds if m is sufficiently large.
The space C?™(a + b) is spanned by elements of the form

y = [21, [v2, [23, - - - [Tam—1, Tam] - - - ]]]

with z; € aU b. If at least m of the z; are contained in a, then y € C"™(a). If this is not
the case, then m of the z; are contained in b, which leads to y € C"™(b). This proves our
claim and hence the lemma. O

Definition 3.10. The main consequence of Lemma [3.9is that every finite dimensional Lie
algebra g contains a largest nilpotent ideal. In fact, if n < g is a nilpotent ideal of maximal
dimension and m < g any other nilpotent ideal, then the nilpotency of n + m implies that
m C n. Therefore the ideal n contains all other nilpotent ideals.

The maximal nilpotent ideal is called the nilradical of g, and is denoted by nil(g).

Remark 3.11. One should be aware of the fact that some authors use the term “nilrad-
ical” in a different meaning, namely for the intersection of the kernels of all irreducible
finite dimensional representations. Since for an abelian Lie algebra g, the one-dimensional
representations separate the points, the intersection of the kernels of irreducible finite di-
mensional representations is {0}, but we have nil(g) = g. For more details on this ideal,

see Proposition [7.5]

Remark 3.12. If g is not finite dimensional, then the preceding lemma implies that for each
finite sequence ny, ..., n; < g of nilpotent ideals, their sum n; + - - - +ny is a nilpotent ideal.
Therefore the sum n of all nilpotent ideals of g coincides with the union of all nilpotent
ideals. However, this ideal need not be nilpotent because there may be nilpotent ideals of
an arbitrary high nilpotence degree.

Exercises for Section [3

Exercise 3.1. If X € End(V) is nilpotent, then ad X € End(End(V)) is also nilpotent.

Exercise 3.2. Let V be a finite dimensional complex vector space and = € End(V') diago-
nalizable with eigenvalues A1, ..., \,. Then ad x is diagonalizable with eigenvalues

/\7;—)\]', i,jzl,...,n.

Exercise 3.3. Let g be a Lie algebra, h a subalgebra and = € ng(h) \ h. Then h + Kz =
h X Kz for a(tz) = ad(tz)|y.

Exercise 3.4. Let g = h3(K) be the 3-dimensional Heisenberg algebra. Determine a basis
for g with respect to which ad g consists of upper triangular matrices.
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Exercise 3.5. Let g be a nilpotent Lie algebra and § be a finite dimensional nonzero ideal
in g. Show that the intersection of fh with the center of g is not trivial.

Exercise 3.6. Give an example of a Lie algebra g which contains a nilpotent ideal n for
which g/n is nilpotent and g is not nilpotent.

Exercise 3.7. For each Lie algebra g, we have
[C"(g),.C™(g)] € C""™(g) for n,m€EN.

Exercise 3.8. This exercise shows why Engel’s Theorem does not generalize to infinite
dimensional spaces. We consider the vector space V = K™ with the basis {¢;: i € N}. In
terms of the rank-one-operators E;; € End(V), defined by Ejjer, = djx€;, we consider the
Lie algebra
=span{E;;: i > j}

(strictly lower triangular matrices). Show that:

(a) C™(g) = span{L;;: i > j+n}, n € N. In particular, we have C*(g) = (,,c.y C"(9) =

{0}, i.e., g is residually nilpotent. (cf. Exercise [3.9).

(b) g consists of nilpotent endomorphisms of finite rank.

(c) 3(g) = {0}.
(d) V8={veV:g-v={0}} ={0} (compare with Engel’s Theorem).
Exercise 3.9. Show that, for a Lie algebra g, the following assertions hold:

(a) C=(g) =), C"(g) is the intersection of all kernels of homomorphisms ¢: g — n, n
nilpotent. Hint: Show that all quotients g/C™(g) are nilpotent.

(b) C*(g) = {0} is equivalent to g being residually nilpotent in the sense that all homo-
morphisms ¢: g — n, n nilpotent, separate the points of g, i.e., for every non-zero
x € g, there exists a homomorphism into a nilpotent Lie algebra with ¢(x) # 0.

Exercise 3.10. Let g be a Lie algebra and D € der(g). Show that the semidirect sum
g := g xp K is nilpotent if and only if g is nilpotent and D is nilpotent.

Exercise 3.11. Let g be a Lie algebra. We define its upper central series inductively by
Co(g) :={0} and  Chii(g) :={z € g: [z,0] € Cn(g)}, n € No.
Show that:
(i) Every C,(g) is an ideal of g.
(i) Cu(g) € Cnra(g)-
(iii) g is nilpotent if and only if there exists an N € N with Cn(g) = g.

4 Solvable Lie Algebras

In this section we turn to the class of solvable Lie algebras. They are defined in a similar
fashion as nilpotent ones and indeed every nilpotent Lie algebra is solvable. The central
results on solvable Lie algebras are Lie’s Theorem on representations of solvable Lie algebras
(they preserve complete flags) and Cartan’s Solvability Criterion in terms of vanishing of

tr(ad[z,yladz) for x,y,z € g.

As we shall see later on, similar techniques apply to semisimple Lie algebras.
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4.1 Basic Properties
Definition 4.1. Let g be a Lie algebra. The derived series of g is defined by

D%g):=g and D"(g):=[D"'(g),D" '(g)] for neN.

The Lie algebra g is said to be solvable, if there exists an n € N with D"(g) = {0}.

From D'(g) C g we inductively see that D"(g) € D" '(g). Further, an easy induction
shows that all D"(g) are ideals of g (Exercise [1.11)). The derived series is a descending
series of ideals.

Example 4.2. (i) The oscillator algebra osc(K) = h3(K) xp K from Example is
solvable, but not nilpotent:

D'(0s¢(K)) = h3(K), D?*(osc(K)) = D'(h3(K)) =Kz and D?*(0sc(K)) = {0}.
(i) Every nilpotent Lie algebra is solvable because D"(g) C C™*!(g) follows easily by

induction.

(iii) Consider R and C as abelian real Lie algebras and write I € Endg(C) for the mul-
tiplication with . Then the Lie algebra C x; R is solvable, but not nilpotent. It is
isomorphic to osc(K)/Kz.

(iv) Let g be a 2-dimensional nonabelian Lie algebra with basis x, y satisfying [z, y] = y
(Exercise [L.4). Then D'(g) = Ky and D?*(g) = {0}, so that g is solvable. On the
other hand C™(g) = Ky for each n > 1, so that g is not nilpotent.

Proposition 4.3. For a Lie algebra g, the following assertions hold:
(i) If g is solvable, then all subalgebras and homomorphic images of g are solvable.

(ii) Solvability is an extension property: Ifi is a solvable ideal of g and g/i is solvable,
then g s solvable.

(iii) Ifi and j are solvable ideals of g, then the ideal i +j is solvable.
(iv) Ifi < g is an ideal, then the D™(i) are ideals in g.

Proof. (i) If h C gis a subalgebra, then D" () C D"(g) follows by induction. If a«: g — b
is a homomorphism of Lie algebras, then we obtain

D"(a(g)) = (D" (g)) (7)
by induction. This implies (i).

(ii) Let m: g — g/i be the quotient map. We have already seen in (i) that 7(D"(g)) =
D"(w(g)) for each n. If g/i is solvable, then 7(D"(g)) vanishes for some n € N. Now
D"(g) C kerm = i, so that D"™*(g) C D*(i) for each k € N. If i is also solvable, we
immediately derive that g is solvable.

(iii) The ideal j of i+j is solvable and (i+4j)/j = i/(iNj) (Proposition [1.24iii)) is solvable
by (i). Hence (ii) implies that i + j is solvable.

(iv) We only have to observe that for each ideal i, its commutator algebra [i,i] also is an
ideal (Exercise [1.11)). Then (iv) follows by induction. O
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Example 4.4. If F = (V4,...,V,,) is a complete flag in the n-dimensional vector space V,
then g(F) is a solvable Lie algebra. In fact,

g(F) = ga(F) x gl (K)" = g, (F) x K"

(Example [1.31).

Since K" = g(F)/g,(F) is abelian and g,,(F) nilpotent (Example[3.2{iii)), the solvability
of g(F) follows from Proposition [4.3[(ii). Below we shall see that Lie’s Theorem provides a
converse for solvable subalgebras of gl(V'), provided the field K is algebraically closed and
of characteristic 0 (such as K = C); they are always contained in g(JF) for some complete
flag F.

Definition 4.5. Proposition (iii) shows that every finite dimensional Lie algebra g con-
tains a maximal solvable ideal containing all other solvable ideals. This ideal is called the
radical of g, and is denoted by rad(g).

Remark 4.6. Nilpotency is not an extension property, i.e., the analog of Proposition (ii)
is false for nilpotent Lie algebras: If g = Kx + Ky is the 2-dimensional Lie algebra with
[z, y] =y, then the ideal n := Ky and the one-dimensional quotitent algebra g/n are abelian,
hence nilpotent, but g is not (cf. Example [4.2[(iv)).

4.2 Lie’s Theorem

Now we turn to solvable Lie subalgebras g of gl(V'). In this context we do not want to make
any assumption on the elements of g, as in Corollary [3.7]

Theorem 4.7. Suppose that K is algebraically closed of characteristic zero. Let V be a
nonzero finite dimensional K-vector space and g be a solvable subalgebra of gl(V'). Then
there exists a nonzero common eigenvector v for g, i.e., g(v) C Kv.

Proof. We may w.l.o.g. assume that g # {0}. We proceed by induction on the dimension
of g. If g = Kz, then every eigenvector of z (and such an eigenvector always exists because
K is algebraically closed) satisfies the requirement of the theorem. So let dimg > 1 and
b be a hyperplane in g which contains [g, g] = D'(g). Here we use that D'(g) is a proper
subspace because g is solvable. In view of [g, g] C b, the subspace b is an ideal of g. Now
the induction hypothesis provides a nonzero common eigenvector v for b. If z(v) = A(z)v
for x € h, then X\: h — K is a linear functional and

veVi(h) ={weV | (Vreh)z(w) = Ax)w}.

Suppose that V) (h) is g-invariant and pick y € g\bh. Then there exists a nonzero eigenvector
vy € Vi(h) for y. Then v, is a common eigenvector for g = h+Ky and the proof is complete.
It remains to show that V)(h) is g-invariant. For this, we calculate as in the proof of

Theorem [3.5t

yr(w) = zy(w) = [z,y](w) = AMy)z(w) = Mz, y])(w) for weVir(h),zcg,yebh.

Hence it suffices to show that [g,h] C ker A\. For fixed w € V)(h), z € g and k € N, we
consider the space
Wk = Kw + Kz(w) + ... + Ka*(w).
Since
fw) (8)

ya* (w) = zy(z*w) — [z, y)(«*~

25



and y(w) = My)w for y € b, we see by induction on k that h(W*) C W* for each k € N:
It holds trivially for k = 0, and if k& > 0 and h(W* 1) C W*=1 then

h(z"(w)) C eh(WH) +H(WEH) CaW =t Wwht C W,
Now we choose k, € N maximal with respect to the property that

{w,z(w),...,z"(w)}
is a basis for Wk, Then Wket™ = W for all m € N, and
= ({0}, W', ..., W)

is a complete flag in W*e which is invariant under h. Thus, every y € b corresponds to an
upper triangular matrix (y;;) with respect to the above basis for W*. The diagonal entries
y;; of this matrix are all equal to A(y) since y(w) = A(y)w and (8) imply by induction that

yz*(w) € My)z"(w) + Wk,
In fact, for £ = 1 this is clear, and if the relation holds for £ — 1, then

(y—A(y)l)ﬂck(w)=:L“y(06’“‘1 ) = [z,y](z" 'w) — z(A(y)a" " (w))
=z((y = M) (@ w)) — [z, y](«"w) € W 2 4 H(WHE 1) C Wh L

Since x and y leave the space W*e invariant, we have

[z, Yllwro = [xlwro, ylwro]-

In particular, [z, y||yw is a commutator of two endomorphisms so that its trace vanishes.
Finally [z,y] € b leads to

0 = tr(fz, yllweo) = (ko + DA([2,9]),
so that A([z,y]) = 0 (here we use that char K = 0). O

For the proof of the preceding theorem, we used that the field K is algebraically closed
and of characteristic zero. The following example shows that both assumptions are crucial.

Example 4.8. (a) If A € End(V), then g = KA is a one-dimensional Lie algebra, hence in
particular solvable. The existence of an eigenvector of A is equivalent to the existence of a
root of the characteristic polynomial, whose existence can only be assured by the algebraic
closedness of K. In fact, if K C L is a proper finite algebraic field extension and = € L\ K,
then the multiplication operator Ay := xy has no eigenvectors: If xy = Ay for A € K and
y # 0, then (z — \)y = 0 leads to the contradiction = = A.

(b) If char K = 2, then g = sl5(K) is a nilpotent Lie algebra: The basis elements

() (08 () 0

[h,e] =2 =0, [h,fl=-2f=0 and [e f]=h, (10)

so that sly(K) = h3(K) (the 3-dimensional Heisenberg algebra). Nevertheless, sly(K) has
no common eigenvector. Therefore Theorem [4.7] fails.

satisfy
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Theorem 4.9. (Lie’s Theorem) Assume that K is algebraically closed of characteristic zero.
Let V' be a finite dimensional vector space and g be a solvable subalgebra of gl(V'). Then
there exists a complete g-invariant flag in V.

Proof. We may assume that V' is nonzero. By Theorem [4.7], there exists a nonzero common
g-eigenvector vy € V. Put V; := Kv;. Then

a:g— gl(V/V), a(@)(v+Vi):=z(v) + W

defines a representation of g on the quotient space V/V; (Exercise and a(g) is solvable.
Proceeding by induction on dimV, we may assume that there exists an «(g)-invariant
complete flag in V/V;, and the preimage in V', together with {0}, is a complete g-invariant
flag in V. O]

Remark 4.10. If we apply Lie’s Theorem to V = g and ad(g), where g is solvable, we
get a complete flag of ideals

{0} =go<o<...<gn=9
of g with dim g = k. Such a chain is called a Holder series for g.

Definition 4.11. We call a representation (7,V’) of the Lie algebra g, resp., the corre-
sponding g-module, nilpotent if there exists an n € N with p(g)” = {0}.

Corollary 4.12. Suppose that charK = 0. Let m: g — gl(V) be a finite dimensional
representation of the solvable Lie algebra g. Then the restriction to [g,g] is a nilpotent
representation.

Proof. We may w.l.o.g. assume that V' = K", so that n(g) C gl(V) = gl,,(K) consists of
(n x n)-matrices. Let K be an algebraically closed extension of K (such as K = C for
K = R). Then the relation 7([g, g])¥ = {0} will follow if we prove that the solvable K-Lie
algebra g := spang 7(g) C gl, (K) satisfies [g,g]" = {0} for some N € N. We may therefore
assume that K is algebraically closed, i.e., K = K.

Applying Lie’s Theorem to the solvable subalgebra m(g) of gl(V'), we obtain a complete

flag F with 7(g) C g(F). Then

m([g.9]) € [8(F), 8(F)] € ga(F)
(cf. Example implies the assertion. O

Corollary 4.13. A Lie algebra g over a field of characteristic zero is solvable if and only
if its commutator algebra [g, g] is nilpotent.

Proof. 1f [g, g is nilpotent, then g is solvable because g/[g, g] is abelian and solvability is
an extension property (Proposition [4.3(ii)).

If, conversely, g is solvable, then Corollary implies that the adjoint representation
of [g,g] on g, and hence on [g,g], is nilpotent. From that we derive in particular that
C™([g,g]) = {0} for some N € N, so that [g, g] is nilpotent. O

4.3 The Ideal [g,rad(g)]

In this subsection we assume that char K = 0 and g denotes a finite dimensional Lie algebra.
The following lemma will be useful for inductive arguments assertion that certain rep-
resentations of Lie algebras are nilpotent.
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Lemma 4.14. Let (p, V) a representation of g.
(a) Let a C g be a subspace for which there exists an n € N with p(a)” = {0}, and
(b) = € g with [x,a] C a such that p(x) is nilpotent.

Then there exists an N € N with p(a + Kz)™ = {0}.

Proof. Replacing g by p(g), we may w.l.o.g. assume that g C gl(V). Let m € N with
z™ = 0. We claim that (Kz 4 a)"™ = {0}.

Let u = uy -+ Uy, be a product of elements of {x} U a. We have to show that all such
products vanish. For a € a we have

ar = xa + [a,z] € xa + «a.

This leads to -
UL+ Upyn € Zazrat,
r=0

where t is the number of indices j with u; € a. Hence this product vanishes for ¢ > n.
If t < n, then there exists a j with w;i;---ujt., = 2™ = 0 because in this case at least
nm —t > n(m — 1) factors are not contained in a, so that we always find a consecutive
product of m such elements. We therefore have in all cases uq - - - Uy, = 0. ]

Proposition 4.15. For any finite dimensional representation (p,V') of the Lie algebra
g, the restriction to the ideal [g,rad(g)] is nilpotent, i.e., there exists an m € N with

p([g,rad(g)])™ = {0}.

Proof. Let v := rad(g) and a := [g,t]. According to Corollary [£.12] the representation
is nilpotent on the ideal [t,t]. Now let t C [g,t] be a subspace containing [t,t], which is
maximal with respect to the property that the representation of t on V' is nilpotent. Note
that t always is an ideal of t, hence in particular a subalgebra, because it contains the
commutator algebra.

Assume that t # [g,t]. Then there exists an x € g and y € v with [z,y] € t. The
subspace b := v+ Kz is a subalgebra of g, v is a solvable ideal of b, and b/t = K is abelian.
Therefore b is solvable (Proposition [4.3)).

We use Corollary to see that the representation is nilpotent on [b, b] and hence
that p([z,y]) is nilpotent. Since t C v and [z,y] € [g,¢] C t, we have [[z,y],4] C [t,{] C
t. Finally, the preceding Lemma shows that the representation is nilpotent on the
subspace K|z, y] + t. This contradicts the maximality of t. We conclude that t = [g, ], so
that the representation is nilpotent on [g, t]. O

Applying the preceding proposition to the adjoint representation and using Engel’s
Theorem [3.8 we get:

Corollary 4.16. The ideal [g,rad(g)] is nilpotent. In particular, ad x is nilpotent on g for
each x € [g,rad g].

Remark 4.17. Since the ideal [g, rad(g)] is nilpotent, it is contained in the nilradical nil(g).
That it may be strictly smaller follows from the case where g is abelian. Then nil(g) = g

and [g,rad(g)] = {0}.
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4.4 Cartan’s Solvability Criterion

This subsection is devoted to a characterization of solvable Lie algebras by properties of their
elements. The result will be that g is solvable if and only if tr(ad zady) = 0 for = € [g, g
and y € g (Cartan’s criterion). Thus, we have to study the linear maps ad(z): g — g.

In this subsection we assume that char K = 0.

Lemma 4.18. For two commuting endomorphisms M, N of a vector space V', the following
assertions hold:

(a) If M and N are diagonalizable, then M + N is diagonalizable.
(b) If M and N are nilpotent, then M + N is nilpotent.

Proof. (a) Since M and N commute, they are simultaneously diagonalizable, and this
implies in particular that M + N is diagonalizable (cf. Exercise [4.1j(a)-(c)).
(b) Suppose that M™ = N™ = 0. Then [M, N| = 0 implies that

(M+NkE=>" (f) MN7.

i+j=k

If K> n+m — 1, then either ¢ > m or j > n, so that all summands vanish. Hence
(M + N)* = 0. O

For the following proof we recall the Jordan decomposition of an endomorphism A &€
End(V) of a finite dimensional vector space V' which is split in the sense that f(A) = 0
for some f € K[X] which is a product of linear factors (cf. Theorem [A.2). The Jordan
decomposition is the uniquely determined additive decomposition A = A, + A,,, where A,
is diagonalizable, A,, is nilpotent and [A,, A,,] = 0.

Proposition 4.19. Let V' be finite dimensional and x € gl(V'). If x is nilpotent (diagona-
lizable), then so is ad x.

This proposition can be obtained by combining Lemma [3.4(i) with Exercise 3.2, We
give an alternative proof using the Jordan decomposition.

Proof. Put L,: gl(V) — gl(V),y — zy and R,: gl(V) — gl(V),y — yx. Then adx =
L, — R, and [L,, R;] = 0. In view of Lemma m, it suffices to see that L, and R, are
nilpotent, resp., diagonalizable whenever x has this property.

If 2" =0, then L} = L,» = 0 = R}. If x is diagonalizable, then we represent elements
of gl(V') as matrices with respect to a basis of eigenvectors of x. We may therefore assume
that © = diag(\1,...,\,). Then L, Ej; = \;Ej; and R, Ej, = A\, Ej), imply that L, and R,
are diagonalizable on gl,(K) = gl(V). O

Corollary 4.20. For each endomorphism x € gl(V') of the finite dimensional vector space
V' over the algebraically closed field K with Jordan decomposition x = x5 + x,,, the Jordan
decomposition of ad x is given by

adz = ad(z,) + ad(x,).

Proof. Proposition implies that ad(z) is diagonalizable. Further, ad(z,) is nilpotent,
and [ad(xs),ad(z,)] = ad|zs, x,] = 0, so that the assertion follows from the uniqueness of
the Jordan decomposition of ad x. O
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Lemma 4.21. Let V' be a finite dimensional vector space over the algebraically closed field
K of characteristic zero and E C F be subspaces of gl(V'). Further, let

veM:={yegl(V)|[y,F] CE}
If tr(xy) =0 for ally € M, then x is nilpotent.

Proof. Since K is algebraically closed, = has a Jordan decomposition =z = x4 + x,, (Theo-
rem [A.2)). Representing elements of gl(V') as matrices with respect to a basis of eigenvectors
of xs, we may w.l.o.g. assume that V' = K" and that

zs = diag(A, ..., \n).

Let @ be the Q-vector space in K which is spanned by the ;. We have to show that
) = {0}. To do this, we consider an f € Q* := Homg(Q,Q), the dual space (over Q) of
). We consider the diagonal matrix

y = diag(f(M), ..., f(An)).
As in the proof of Proposition .19} we see that
ad(zs)Eij = (A = \) By and - ad(y)Ei; = (F(\) — F(N)) Eij = f(u = X)) By
Now, choose a polynomial P € K[t] with
PO)=0 and PO\ —X) = fh — )
for all pairs (4, ) (Exercise [1.8). Then
P(ad(z,)) By = f(\ — Nj) By = ad(y) Eyj,

i.e., P(ad(zs)) = ad(y). Since ad(z,) is the diagonalizable part of ad(z) by Corollary ,
it follows from € M and Proposition [A.6[iii) that ad(z,)F C E. But then P(0) = 0
implies ad(y)F C FE, ie., y € M. Since xz,y = diag(Af(A),..., A\nf(An)) and z,y is
nilpotent because (z,y)Y = 2y = 0 for N sufficiently large, our assumption and y € M
leads to

Z Mef(Ag) = tr(zsy) = tr(zy) = 0,

k=1

‘;‘, FOn)? = f(i NI ) =0

Hence f(Ag) = 0 for all Ay which yields f = 0. Since f € Q* was arbitrary, it follows that
Q = {0}. O

Theorem 4.22. (Cartan’s Solvability Criterion-linear case) Let V' be a finite dimensional
vector space and g < gl(V'). Then the following are equivalent

and therefore

(i) g is solvable.

(ii) tr(zy) =0 for all x € [g,g] and y € g.
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Proof. We may w.l.o.g. assume that V = K" C V := K", where K is an algebraically closed
extension of K. Then g is solvable if and only if § := spang g is solvable and (ii) holds for g
over K if and only if it holds for g over K. To verify these claims, we only have to observe
that D’(g) = Di(g) for every j, which follows from an easy induction. We may therefore
assume that K is algebraically closed.

(i) = (ii): By Lie’s Theorem [4.9) there exists a basis for V' with respect to which all
x € g are upper triangular matrices. In particular, all elements of [g, g] are given by strictly
upper triangular matrices. Multiplying an upper triangular matrix with a strictly upper
triangular matrix yields a strictly upper triangular matrix which has zero trace.

(ii) = (i): By Corollary it suffices to show that [g, g] is nilpotent. But to show
that, by Corollary , we only have to prove that every element of [g, g] is nilpotent. We

want to apply Lemma with £ = [g,g] and F' = g, i.e., we set

M:={yegl(V)|ly,0 Clg0]} 20

Since the trace is linear, it is enough to show that tr([z,2']y) = 0 for 2,2’ € g and y € M.
But this follows from [z/,y] C [g, g] and (ii):

tr([z, 2'ly) = tr(z[2’,y]) € tr(glg, g]) = {0}
(cf. Exercise |4.7)). m

Corollary 4.23. (Cartan’s Solvability Criterion—general case) For a Lie algebra g over a
field of characteristic zero, the following statements are equivalent

(i) g is solvable.
(ii) tr(adxrady) =0 for all z € [g,g] and all y € g.

Proof. (i) = (ii): Proposition[t.3(i) shows that ad(g) is solvable, so that (ii) is an immediate
consequence of Theorem [4.22]

(ii) = (i): By the Cartan Criterion (Theorem [£.22)), ad(g) is solvable. Then it follows
from ad(g) = g/3(g) and Proposition [4.3)ii) that g is solvable. O

Exercises for Section 4

Exercise 4.1. Let V' be a K-vector space and A € End(V). We write V3 (A) := ker(A— A1)
for the eigenspace of A corresponding to the eigenvalue A and V*(A4) := | _ ker(A—\1)"
for the generalized eigenspace of A corresponding to .

neN

(a) If A, B € End(V) commute, then
BV*A) CV*A) and BV,(A) C Vi(A)
holds for each A € K.

(b) If A € End(V) is diagonalizable and W C V' is an A-invariant subspace, then Aly €
End(W) is diagonalizable.

(c) If A, B € End(V') commute and both are diagonalizable, then they are simultaneously
diagonalizable, i.e., there exists a basis for V' which consists of eigenvectors of A and B.

(d) If dimV < oo and A C End(V) is a commuting set of diagonalizable endomorphisms,
then A can be simultaneously diagonalized, i.e., V is a direct sum of simultaneous
eigenspaces of A.
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(e) For any function A\: A — V, we write VA\(A) = (,c4 Vae)(@) for the corresponding
simultaneous eigenspace. Show that the sum ), Vi(A) is direct.

(f) If A C End(V) is a finite commuting set of diagonalizable endomorphisms, then A4
can be simultaneously diagonalized.

(g)* Find a commuting set of diagonalizable endomorphisms of a vector space V' which
cannot be diagonalized simultaneously.

Exercise 4.2. Let g be a Lie algebra and a: g — gl(V) be a representation of g on V.
Then V' X, g is a Lie algebra which contains V' as an abelian ideal.

Exercise 4.3. (i) For a real Lie algebra g, we have

C"(gc) =C"(g)c and D"(gc) = D"(g)c.

(ii) A finite dimensional Lie algebra g is nilpotent (solvable) if and only if g¢ is nilpotent
(solvable).

Exercise 4.4. Show that for the Heisenberg algebra b3, the derivation algebra der(hs) is
isomorphic to K? x gl,(K), where ad(hs) = K? is an abelian ideal. Show that this Lie
algebra is neither nilpotent nor solvable.

Exercise 4.5. Show that a representation (7, V') of a Lie algebra g on a vector space V is
nilpotent if and only if there exists a flag F in V' with 7(g) C g.(F).

Exercise 4.6. Show that an ideal n < g of the Lie algebra g is nilpotent if and only if g is
a nilpotent n-module with respect to the adjoint representation of n on g.

Exercise 4.7. A symmetric bilinear form x: gxg — K on a Lie algebra g is called invariant
if

k(lz,y),2) = Kz, [y, 2]) for zy,z€eg
Show that:

(i) The form k(x,y) := tr(zy) on gl(V) is invariant for each finite dimensional vector
space V.

(ii) For each representation (m, V) of the Lie algebra g, the form k. (z,y) := tr(7(x)7(y))
1s Invariant.

(iii) For each Lie algebra g, the Cartan—Killing form r4(z,y) := tr(ad z ad y) is invariant.
(iv) For each invariant symmetric bilinear form x on g, its radical
rad(r) = {z € g: r(z,9) = {0}}
is an ideal.

(v) For any invariant symmetric bilinear form x on g, the trilinear map I'(x)(z,y, z) ==
k([x,y], 2) is alternating, i.e.,

D(8) o1y To(a): o(s) = 580()T () (01,2, 25)
for o € S5 and 1, x9, 23 € g.

(vi) g is solvable if and only if I'(k4) = 0.
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Exercise 4.8. (Interpolation polynomials) Let K be a field, x1,...,x, € K pairwise dif-
ferent, and A, ..., A, € K. Then there exists a polynomial f € K[t] with f(z;) = A; for

i=1,...,n. Hint: Consider the polynomials fi(t) := [, ;__m; of degree n — 1.
1T

Exercise 4.9. Show that the multiplication operator
A K[X] 5 K[X], f(X) o X(X)

has no eigenvector. Conclude in particular that Lie’s Theorem fails for infinite dimensional
spaces V.

Exercise 4.10. We consider the vector space V = K® with the basis {e;: i € N}. In
terms of the rank-one-operators E;; € End(V'), defined by Ejjer = djxe;, we consider the
Lie algebra

g :=span{E;;: i > j}
(lower triangular matrices). Show that:

(a) D"(g) = span{FE;;: i > j+ 2" '}, n € N. In particular, we have D>(g) :=
Nhen D7 (9) = {0}, i.e., g is residually solvable. (Exercise 4.11)).

(b) g =, 9, for an increasing sequence of finite dimensional solvable subalgebras g, (g
is locally solvable).

(c) g has no common eigenvector in V' (compare with Lie’s Theorem).
Exercise 4.11. Show that, for a Lie algebra g, the following are equivalent:
(a) D*(g) := nen D"(9) = {0}.

(b) g is residually solvable in the sense that all homomorphisms ¢: g — s, s solvable,
separate the points of g, i.e., for every non-zero x € g, there exists a homomorphism
into a solvable Lie algebra with ¢(x) # 0.

Hint: All quotients g/D"(g) are solvable.
Exercise 4.12. Show that:
(a) A finite dimensional Lie algebra g is solvable if and only if there exists a sequence
0}=gCouC...Can=9
of subalgebras with [g;,g:;] € g, fori =1,...,n.

(b) If g is solvable, then there exists a sequence as in (a), satisfying, in addition, dim g; = 1.
Conclude that

git1 = ¢; Xp, K for some D,;€der(g;), i=1,...,n—1
This means that
92 (- (K xp, K) xp, K) - xp,, K).
Exercise 4.13. (Is there a Cartan Criterion for nilpotent Lie algebras?)
(a) If g is nilpotent, then x; = 0.

(b) Consider the Lie algebra g = C*x pC, where C? is considered as an abelian Lie algebra
and D = diag(1,4). This Lie algebra is not nilpotent, but x, = 0. If we consider g as a
6-dimensional real Lie algebra, then its Cartan—Killing form also vanishes. Conclude
that it is NOT true that a Lie algebra is nilpotent if and only if its Cartan—Killing
form vanishes.
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5 Semisimple Lie Algebras

In this section we encounter a third class of Lie algebras. Semisimple Lie algebras are a
counterpart to the solvable and nilpotent Lie algebras because their ideal structure is quite
simple. They can be decomposed as a direct sum of simple ideals. On the other hand,
they have a rich geometric structure which even makes a complete classification of finite
dimensional semisimple Lie algebras over R or any algebraically closed field K is possible.
We later show that every finite dimensional Lie algebra is a semidirect sum of its solvable
radical and a semisimple subalgebra (cf. Levi’s Theorem [6.6).

Throughout, K will be a field of characteristic zero and all Lie algebras are finite di-
mensional.

Definition 5.1. Let g be a finite dimensional Lie algebra. Then g is called semisimple if
its radical is trivial, i.e., rad(g) = {0}. The Lie algebra g is called simple if {0} and g are
the only ideals of g and it is non-abelian (which excludes the one-dimensional algebras).

Lemma 5.2. Every simple Lie algebra is semisimple.

Proof. Let g be a simple Lie algebra. Since the commutator algebra [g, g is a nonzero ideal
of g, it coincides with g. Hence g is not solvable. Therefore rad(g) is a proper ideal and

therefore rad(g) = {0}. O
We shall see in Proposition that a Lie algebra is semisimple if and only if it is a

direct sum of simple ideals.

5.1 Cartan’s Semisimplicity Criterion

In this subsection we obtain the characterization of semisimple Lie algebras in terms of the
Cartan—Killing form which can be defined for any Lie algebra.

Definition 5.3. In connection with the Cartan criterion for solvable Lie algebras, we have
seen that the bilinear form

kg: g xg — K, ky(z,y) :=tr(adzady)

on a finite dimensional Lie algebra is of interest. It is called the Cartan—Killing form of g.
Its compatibility with the Lie algebra structure is expressed by its invariance

KE([x7y]7Z) :'%Q(xv [yaz]) for x,y,Z,Gg
(Exercise [.7). If g is clear from the context, we sometimes write  instead of r.

Definition 5.4. Let V' be a vector space and 5: V x V — K be a symmetric bilinear form.
For a subset W C V| we then write

WP .={veV|(VweW)p(v,w) =0}

for the the orthogonal subspace of W with respect to 8 by W4#. The set rad(3) := V1#
is called the radical of B. The form is called degenerate if rad(8) # {0}.

Using this notation, we can reformulate the Cartan Criterion as follows:

Remark 5.5. In terms of the Cartan—Killing form, Cartan’s Solvability Criterion asserts
that g is solvable if and only if [g, g] C rad(ky) (cf. Exercise [5.8| for the fact that rad(g) =
[g, g]* holds for every finite dimensional Lie algebra g).
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Example 5.6. (i) With respect to the basis (h, e, f) of sly(K) with
[h,e] =2, |h,fl=—2f and e, f]=h

from , an easy calculation leads to the following matrix for the Cartan—Killing form:

N
|
o o w
NN
o o

(ii) With respect to the basis (z,y, z) for so3(R) with

[zy] =2 [y,2] == [z3]=y
(Example [1.35)), the Cartan—Killing form has the matrix

-2 0 0
k=10 =2 0
0O 0 -2

(iii) With respect to the basis (h, p, g, z) for the oscillator algebra os¢(K) from Example[1.30)]
the Cartan—Killing form has the matrix

o O oo
o O OO
o O OO

Here we see explicitly that x(0sc(K), [os¢(K), 0s¢(K)]) = r(0sc(K), h3(K)) = {0} which also
follows from Cartan’s criterion for solvability (Corollary (4.23)).

In general, the Cartan—Killing form of a subalgebra h C g cannot be calculated in terms
of the Cartan—Killing form of g, but for ideals we have:

Lemma 5.7. For any ideal i < g, ki = Kglixi-

Proof. 1f the image of A € End(g) is contained in i, then we pick a basis for g which starts
with a basis for i. With respect to this basis, we can write A as a block matrix

_ (Al *
=(00)
and this shows tr(A) = tr(A};). We apply this to A = ad(z)ad(y) for z,y € i to obtain
< tr (ad(z) ad(y)) = tr (ad(z);ad(y)];) = ki(z,y). O

Remark 5.8. Let g be a finite dimensional real Lie algebra. Since a basis for g is also a
(complex) basis for g¢, one immediately sees that

Kg = Fgclaxg
(cf. Exercise |5.3]).
Lemma 5.9. For any ideal j of a Lie algebra g, the following assertions hold:
(i) Its orthogonal space i+ with respect to kg also is an ideal.

(ii) jNjt is a solvable ideal.

35



(iii) Ifj or g is semisimple, then g decomposes as a direct sum g =j @ j* of Lie algebras.

Proof. (i) For z € j*, y € g and z € j, we find k4([z,y], 2) = ry(z, [y, 2]) = 0, so that j*
is an ideal of g.

(ii) For i :=jNj*, the Cartan-Killing form r, vanishes on i x i. Hence rad(x;) = i by
Lemma 5.7} In particular, i is solvable by Remark [5.5]

(iii) If j is semisimple, then (ii) implies that j Njt C rad(j) = {0}. If g is semisimple,
we likewise obtain j N j*+ C rad(g) = {0}. Since j* is the kernel of the linear map
g — i*,x — Kg(,-), we have dimj* > dim g — dimj, which implies j +j* = g, so
that g is a direct sum of the vector subspaces j and j*. As both are ideals by (i),
[1,i1] €inNjt = {0}, and we obtain a direct sum of Lie algebras. ]

Proposition 5.10. For a semisimple Lie algebra g, the following assertions hold:
(i) g is perfect, i.e., g = [g, 9]
(ii) Each ideal n < g is semisimple and there exists a semisimple ideal ¢ with g =n & c.
(iii) All homomorphic images of g are semisimple.

Proof. (i) In view of Lemma [5.9[iii), g decomposes as g = [g,g] @ [g,g]*. Then the ideal
a:= [g, g|* satisfies [a,a] C an g, g] = {0}, so that a is an abelian ideal, hence trivial.

(i) Using Lemma 5.9[iii) again, we write g = n@c with ¢ := n*. Then rad(n) commutes
with n't, hence is a solvable ideal of g and therefore trivial. This shows that n is semisimple.
The same argument shows that ¢ is semisimple.

(iii) follows from (ii) because g = n @ ¢ implies g/n = c. O

We can also characterize semisimplicity in terms of the Cartan—Killing form.

Theorem 5.11. (Cartan’s Semisimplicity Criterion) A Lie algebra g is semisimple if and
only if kg is nondegenerate, i.e., rad(rg) = {0}.

Proof. With Lemma (ii), we see that g N g+ = rad(k,) is a solvable ideal, so that
rad(ky) C rad(g). In particular, x4 is nondegenerate if g is semisimple.

Suppose, conversely, that g is not semisimple and put v := rad(g) # {0}. Let n € Ny
be maximal with h := D"(r) # {0}. Then b is an abelian ideal of g. For z € h and
y € g, we then have (adzady)g C bh and therefore (adzady)? = 0. This implies that
kg(x,y) = tr(adrady) = 0. Since y € g was arbitrary, this means that = € rad(k,), i.e., k4
is degenerate. O]

Remark 5.12. In view of rad(g)c = rad(ge) (cf. Exercise [5.4]i)), a real Lie algebra g is
semisimple if and only if its complexification gc is semisimple.

For simplicity the situation is a litlle more complicated, as the following proposition
shows. [

Proposition 5.13. Let g be a simple real Lie algebra. Then either

(i) gc is simple, or

10Recall that, for a real vector space V, an endomorphism I € End(V) is called a complex structure if
I? = —1. Then (z +iy)v := xv + ylv defines on V the structure of a complex vector space, denoted (V, I).
The opposite complex vector space is (V,—I), where the scalar multiplication is defined by (z + iy)v :=
zv — ylv.
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(ii) g carries a complex structure I € End(g) turning it into a complex Lie algebra (g, 1).
In this case gc = (g, 1) ® (g, —1).

If, conversely, g is a real Lie algebra for which gc is simple, then g is simple.

Proof. Suppose that gc is not simple and let a < g¢ be a proper complex ideal. Let o
denote the complex conjugation on gc. We claim that gc = a @ o(a) is a direct sum of
Lie algebras. First we observe that o(a) is also a complex ideal, so that the two subspaces
ano(a) and a+o(a) are both o-invariant complex ideals of gc. For any o-invariant complex
subspace b C g¢, we obtain

b={zecb:o(x)=z}d{reb:o(x)=—x}=(gNb)c

from the eigenspace decomposition of o, (Exercise [A.1]ii)).

As ais a proper ideal, g Z a, and this implies that the ideal ang of g is {0}. Therefore
aNo(a) = {0}. Further, the ideal gN (a + o(a)) of g is non-zero, hence all of g, and thus
a+ o(a) = gc. This proves our claim. Note that the ideal property of a and o(a) implies
[a,0(a)] = {0}

It remains to show that a = g as real Lie algebras. To this end, we consider the real
linear map

pra—g, zrz+o0(2).

Then
[p(2), p(w)] = [z + 0(2), w + o(w)] = [z,w] + [0(2), 0 (w)] = [z, w] + o ([z, w]) = ¢([z, w])

shows that ¢ is a homomorphism of Lie algebras. As ker ¢ = anig = {0} and gc = a®o(a),
the map ¢ is bijective, hence an isomorphism of Lie algebras.

We finally assume that g is a real Lie algebra for which g¢ is simple. Remark
implies that g is semisimple. If a < g is a proper non-zero ideal, then there exists a proper
decomposition g = a @ b (Proposition [5.10{ii)) and then gc = ac @ be is not simple.
Therefore g must be simple. O]

Proposition 5.14. Let g be a semisimple Lie algebra. Then there exist simple ideals

g1, -5 9k Ofg with

Every ideali < g is semisimple and a direct sumi = €D, g; for some subset I C{1,...,k}.
Conversely, each direct sum of simple Lie algebras is semisimple.

Proof. Let g; < g be a minimal non-zero ideal and write g = g1 @ ¢; (Proposition [5.10[(ii)).
Then every ideal of g; is also an ideal of g, and therefore g; is a simple Lie algebra. As ¢;
is also semisimple by Proposition [5.10[ii), an easy induction on dim g now implies that g
decomposes as a direct sum

g=01D...Dg

of simple ideals.

Finally, let i # {0} be an ideal of g. Let m;: g — g; be the projections. Then we have
7;(1) # {0} for at least one j. But since 7; is surjective m;(i) is an ideal of g; and therefore
equal to g; by simplicity. Thus

g; = [9),9;] = lg;, (V)] = [g;,i] C i

because [g;, m(i)] = {0} for ¢ # j. The argument shows that every g; with m;(i) # {0} is
contained in i. But then i is the direct sum of these g;.
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The preceding argument shows in particular that every nonzero ideal t of a direct sum
g := @;g; of simple Lie algebras contains a simple ideal, hence cannot be solvable because
simple Lie algebras are not solvable (Lemma [5.2). We conclude that rad(g) = {0}, so that
g is semisimple. O]

Proposition 5.15. If g is a complex simple Lie algebra, then g is also simple as a real Lie
algebra.

Proof. Suppose that {0} # a < g is a minimal non-zero ideal of the underlying real Lie
algebra. As i[g,a] = [ig,a] = [g,a] C a, [g, a] is a complex subspace of a. As the center of
g is trivial, [g, a] # {0}, and thus the minimality of a leads to a = [g, a], showing that a is
a complex subspace of g. Finally the simplicity of g as a complex Lie algebra shows that

a=g. O

Example 5.16. (a) We claim that the Lie algebras sly(K), so3(K) and suy(C) are simple:
We have seen in Example that the Cartan—Killing forms of sly(K) and so3(K) are
nondegenerate, so that they are semisimple, hence simple because they are 3-dimensional
(Exercise [5.1)). Further, sus(C) is a real form of the complex simple Lie algebra sly(C),
hence simple by the second half of Proposition [5.13]

(b) We have just seen that sly(C) is a complex simple Lie algebra, so that Proposi-
tion implies that sly(C) is also simple as a real 6-dimensional Lie algebra.

Later we shall see how one can use root decomposition to verify the simplicity of larger
classes of matric Lie algebras.

In Example we have seen that the adjoint representation provides derivations on
the Lie algebra. In the case of semisimple Lie algebras, this representation in fact gives all
derivations.

Theorem 5.17. For a semisimple Lie algebra g all derivations are inner, i.e.,

ad(g) = der(g).

Proof. By Proposition [L.15(i), adg < der(g) is an ideal, and since 3(g) = {0}, the ideal
ad(g) = g is semisimple. Therefore der g decomposes as a direct sum j@ad g for the orthogo-
nal complement j of ad(g) with respect to the Cartan—Killing form of der(g) (Lemmal5.9(iii)).
For 0 € j and = € g we then have

0 =[6,adz](y) = d([z,y]) — [,6(y)] = [6(x), ] = ad (3(z)).

This means that 6(z) € 3(g) = {0}, i.e., § = 0. We conclude that j = {0}, so that
der(g) = ad g. O

5.2 Weyl’s Theorem on Complete Reducibility

We have already seen how Engel’s Theorem and Lie’s Theorem provide important infor-
mation on representations of nilpotent, resp., solvable Lie algebras. For semisimple Lie
algebras, Weyl’s Theorem, which asserts that each representation of a semisimple Lie alge-
bra is completely reducible, plays a similar role. The crucial tool needed for the proof of
Weyl’s Theorem is the Casimir element.

Definition 5.18. (cf. Exercise A symmetric bilinear form §: g x g — K on a Lie
algebra g is called invariant if

Bz, yl,z) = B, [y, 2]) for w,y,2z€g.
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Definition 5.19. Let § be a nondegenerate invariant symmetric bilinear form on the Lie
algebra g, T1,...,T a basis for g and z!,..., 2% the dual basis with respect to 3, i.e.,
B(xi, 27) = 0y (Kronecker delta). For any Lie algebra homomorphism p: g — A, A an
associative algebra, we define the Casimir element

k

QB,p) =Y pla)p(a).

i=1

The same argument that shows the independence of the trace of an operator (defined as
the sum of its diagonal matrix entries) of the choice of the basis, shows that Q(5, p) does
not depend on the choice of the basis x1, ...,z (cf. Exercise [5.10).

The Casimir element Q(3, p) is a useful tool for the study of representations since it
commutes with p(g):

Lemma 5.20. For each nondegenerate invariant symmetric bilinear form 8 on g and each
homomorphism p: g — Ap, the Casimir element Q(5, p) € A commutes with p(g).

Proof. Let z € g. Then we have
ad z(x;) Zaijk and  adz( a;J Za'”x

with two matrices (a;;) and (a”) in My(K). Then
Qrj = ﬂ([zamj]a xk) = _B(mjv [zawk]) = _ajk:

and with this relation we obtain

n

(), 920 = _lp(2), o Z p(a’) + pl;)[p(2), p(27)]

j=1

3 |

=D o(lzz)p(a?) + pla)p(lz, ']) = Z arip(zi)p(a’) + a* p(x;)p(a")

j=1 jk=1

ap(ei)p(a?) — ajip(;)p(a*) = 0. O

Il
uh.
R
T

Lemma 5.21. (Fitting decomposition) Let V' be a finite dimensional vector space and
T e End(V). If VI(T) := Npen T(V) and VO(T) = U, ker(T™), then
V=VUT)e VH(T).

The space VT (T) is called the Fitting one component of T. In this context the general-
ized eigenspace VO(T)) is called the Fitting null component of T'.

Proof. The sequence T"(V) is decreasing and dim V' < oo implies that there exists some n
with T"1(V) = T™(V), so that T"(V) = T(V). As

dim 7T"(V') + dimker(7") = dim V'
is independent of n, it follows ker(7") = ker(T"*') = VO(T). Then T|myy: T(V) —
T™(V) is surjective, hence bijective and on the intersection VO(T') N V*(T), the restriction
of T is nilpotent and bijective at the same time, which leads to V°(T) N V*(T) = {0}.

Finally
dim V' (T) + dim V)(T) = dim T™(V) + dim ker(7") = dim V/

implies that V*(T') + VO(T) = V, and this proves the lemma. O
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Proposition 5.22. Let g be a semisimple Lie algebra and (p,V') a finite dimensional rep-
resentation. Then V is the direct sum of the g-modules

Vo= ﬂ kerp(x) and Vg := Zp(x)(V)

xeg ST

Proof. Note that p(g)(V?®) = {0} and p(g)(Veg) C Veg, so that V® and Vg are indeed g-
invariant. We argue by induction on dimV. The case dimV = {0} is trivial. Since the
statement of the proposition is obvious for p = 0, we assume that p # 0.

Step 1: Let 8,(z,y) = tr (p(z)p(y)) denote the trace form on g and a := rad(8,) denote
the radical of §,, which is an ideal because (3, is invariant (Exercise . Let b < g bea
complementary ideal, so that g = a @ b is a direct sum of Lie algebras (Proposition .
In view of Cartan’s Solvability Criterion (Theorem [4.22)), the Lie algebra p(a) is a solvable
ideal of p(g) because the trace form vanishes on this Lie algebra. Since p(g) is semisimple,
p(a) C rad(p(g)) = {0}, so that a C kerp. Conversely, the ideal ker p is contained in
rad(f3,), which leads to a = ker p. It follows in particular that 8 := f,|sxs is nondegenerate
on the semisimple Lie algebra b.

Step 2: Let

§:=Q(B, ply) = Zﬂ(%’)p(ﬂﬁj) € End(V)

J

be the associated Casimir element (Definition [5.19). Then Lemma implies that
Q€ Endy(V) :={A € End(V): (Vz € b) Ap(z) = p(x)A}.

Since a = ker p, this implies
Q€ Endy(V) :={A € End(V): (Vz € g) Ap(x) = p(z)A}.

Finally we note that
w0 = 3 t(p(a)p(e?) = 3 Blaj,a?) = dimb.
J J

Step 3: If V is the direct sum of two nonzero g-invariant subspaces, then V¢ and Vg
decompose accordingly, and we can use our induction hypothesis. Let V = V(Q) @ VT (Q)
be the Fitting decomposition of V' with respect to €2 (Lemma. Since €2 commutes with
g, both summands are g-invariant, so that we may assume that one of these summands is
trivial.

Since we assume that b = p(g) # {0}, we have tr Q > 0, so that € is not nilpotent and
thus V() is nonzero. Hence V°(Q) = {0} and, consequently, V = V(). Then  is
invertible, so that V' = V*(Q) C Veg and V¢ C V°(Q) = {0}. This completes the proof. [J

For the following proposition recall Definitions and [1.20]

Proposition 5.23. (Characterization of semisimple modules) For a finite dimensional rep-
resentation (p, V') of the Lie algebra g, the following are equivalent:

(i) Each g-invariant subspace of V' possesses a g-invariant complement (each submodule
has a module complement).

(i) (p,V) is completely reducible (V is a semisimple g-module).

(iii) V' is a sum of simple submodules.
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Proof. (i) = (ii): For dimensional reasons, each V' contains a nonzero g-submodule V; of
minimal dimension. Then there exists a module complement W, so that V= V;&W. Then
W also satisfies (i): If W3 C W is a submodule and V' C V' is a module complement for
Wyin Vi ie, V=W, &V’ then W =W; & (V' NW). We can thereore argue by induction
on dim V' and apply the induction hypothesis to the representation of g on W.

(i) = (iii) is trivial.

(iii) = (ii): Let Vi,...,V,, be a maximal set of simple submodules whose sum W :=
> v Vi is direct. We claim that W = V, which implies (ii). If W is a proper subspace,
then (iii) implies the existence of a minimal nonzero submodule U not contained in W.
Then W NU = {0} follows from the minimality of U, so that the sum U + ), V; is direct,
contradicting the maximality of the set {V,...,V,}. This proves W = V.

(i) = (1): Let V. = @, Vi be a direct sum of simple submodules and W C V a

g-invariant subspace. Further, let J C {1,...,n} be maximal with
wn(>ovi) = o}
icJ
Then W' := 3", V; satisfies W NW’' = {0} and it remains to see that W + W' = V.

Pick i € I. If i € J, then V; C W' C W + W' If i € J, then the maximality of .J
implies that (W' + V;) N W # {0} and hence (W + W') NV, # {0}. Hence the simplicity
of V; implies that V; C W + W’ and this proves V =W + W', O

Proposition 5.24. If g is a real Lie algebra and V' a finite dimensional g-module, then the
following are equivalent:

(i) V' is semisimple.
(ii) Vi is a semisimple complex g-module.

Proof. (i) = (ii): If V is semisimple, then V' is a direct sum of simple submodules V;, then V¢
is the direct sum of the submodules (V;)c. Hence it suffices to show that the complexification
We of a simple real g-module W is semisimple. In fact, if W is not simple, then let U C W
be a nonzero minimal complex submodule. This implies in particular that U is simple. Let
o: We — We be the complex conjugation defined by o(z + iy) = = — iy for z,y € W.
Then o commutes with the action of g on W¢, and therefore o(U) also is a simple complex
submodule. Now U + o(U) is a complex o-invariant submodule of W¢, hence of the form
X¢ for X :=W N (U+0o(U)) (Exercise [A1fii)). Then X is a nonzero g-submodule of W,
so that the simplicity of W yields X = W and thus U + ¢(U) = W¢. Now Proposition m
shows that W¢ is semisimple because it is the sum of two simple submodules.

(ii) = (i): Let W C V be a submodule. We have to show that there exists a module
complement U (Proposition. Since V¢ is semisimple, there exists a module complement
X of W in Vg, i.e., a complex linear projection p: Ve — W commuting with g. Let
qw: We = W,z + iy — x (z,y € W), be the projection onto the “real part”. Then gy is
a real linear projection commuting with g. Hence

is a g-equivariant real linear map with P|y = idy. Therefore ker P is a submodule of V'
complementing W. [

Corollary 5.25. Let V' be a finite dimensional real vector space and g C gl(V') an abelian
subalgebra consisting of elements whose complex linear extension to V¢ is diagonalizable.
Then V' is a semisimple g-module.
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Proof. In view of Proposition [5.24], it suffices to show that V¢ is a semisimple complex
module of g, resp., gc. On Vg, each x € g is diagonalizable, and since g is abelian,
g is simultaneously diagonalizable (Exercise [1.1(d)), so that Vg is a direct sum of one-
dimensional submodules, hence semisimple. [

Theorem 5.26. (Weyl’s Theorem on Complete Reducibility) FEach finite dimensional
representation of a semisimple Lie algebra is completely reducible.

Proof. Let (p,V') be a finite dimensional representation of the semisimple Lie algebra g. In
view of Proposition [5.23] it suffices to show that each g-invariant subspace W C V possesses
a g-invariant complement U.
Step 1: Let W C V be a g-invariant subspace of codimension 1. Then the representation
(p, V/W), defined by p(z)(v + W) := p(x)v + W is one-dimensional. Since g = [g, g| is
perfect and gl; (K) = K is abelian, p = 0, so that p(g)V C W. In view of Proposition [5.22]
V = V9@ Vg, and since Vg is contained in W, there exists some v, € V8 \ W. Then Kuv,
is a g-invariant complement of W.
Step 2: Now let W C V be an arbitrary g-invariant subspace. We define a representation
of g on Hom(V, W) by

m(x)p = p(z)|lw o ¢ — pop(z)

(Show as an exercise that this is a representation). Then the subspace
U:={p € Hom(V,W): ¢|lw € Kidw }

is g-invariant because we have for ¢ € U the relation (7 (z)p)(W) = {0}: For |y = Aidw
and w € W we have

(m(2)p)(w) = plx)p(w) = o(p(r)w) = p(x)(Aw) = Ap(z)w = 0.

Therefore
Up:={p € U: p(W)={0}}

is a g-invariant subspace of U of codimension 1. Step 1 now implies the existence of a
g-invariant ¢y € U \ Up. The g-invariance of ¢y means that ¢y € Homy(V, W) and since
wolw € K*idy is invertible, ker ¢ is a g-invariant subspace complementing W. [

Exercises for Section [5l

Exercise 5.1. Show that the dimension of a simple Lie algebra is at least 3. Conclude that
every semisimple Lie algebra of dimension < 5 is simple.

Exercise 5.2. Let g be a finite dimensional Lie algebra and ¢ € Aut(g). Show that

(i) k(p(z), p(y)) = K(z,y) for z,y € g..

(i) If g is complex and ¢: g — g is an antilinear automorphism, then

k(p(z), 0(y)) = Kk(x,y) for x,y€g.

Hint: Use/verify the following LA fact: If V' is a finite dimensional complex vector
space, ¥ € End(V) and ¢: V' — V antilinear and bijective, then

tr(po o) = tr(y).
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Exercise 5.3. Let g be a real Lie algebra and gc¢ its complexification. Show that the
Cartan—Killing forms of g and g¢ are related by

kg(2,y) = Kge(z,y)  for x,y€g.

Hint: If A: V — V is a real linear endomorphism of the real vector space V and
Ac: Vg — V¢ its complex linear extension, then tr(Ac) = tr(A).

Exercise 5.4. For a real Lie algebra g, we have:

(i) rad(gc) = rad(g)c. Hint: Show that the radical of g¢ is invariant under complex
conjugation o: gc — gc-

(ii) rad(kg)c = rad(kg,).
(iii) g is semisimple if and only if g¢ is semisimple.

Exercise 5.5. Verify the computations of the Cartan—Killing forms of sly(K), so3(R) and
of the oscillator algebra in Example [5.6]

Exercise 5.6. (i) Let a: g — gl(V') be a representation of the Lie algebra g on V' and
n < g be an ideal. Then the space

Vo(n) :=={v e V| (Vx en) a(z)v =0}
is g-invariant.
(ii) Let
ap={0CaqyC...Ca,=9g
be a maximal chain of ideals of g and n < g a nilpotent ideal. Then [n, a;] C a;_; for
7> 0.

Exercise 5.7. Let g be a finite dimensional Lie algebra. Every nilpotent ideal n of g is
orthogonal to g with respect to the Cartan—Killing form.

Exercise 5.8. Show that [g, g]* = rad(g) for every finite dimensional Lie algebra g over a
field of characteristic zero. Here L refers to the Cartan—Killing form .
Hint: Use Exercise and Corollary [4.16] to show that (g, [rad(g),g]) = {0} and the

Cartan Criterion for the solvability of [g, g]*.

Exercise 5.9. Each one-dimensional representation (7, V') of a perfect Lie algebra is trivial.

Exercise 5.10. Let § be a nondegenerate invariant symmetric bilinear form on the Lie
algebra g, 1,...,7; a basis for g and z!,..., 2% the dual basis with respect to £, i.e.,
B(xi, 27) = d;;. For any Lie algebra homomorphism p: g — A, A an associative algebra,
we define the Casimir element

k

QB,p) = plxi)p(a).

i=1
Show that Q(5, p) does not depend on the choice of the basis z1, ..., .

Exercise 5.11. Let V' be a finite dimensional vector space and V* its dual space. Show
that:
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(a) The map v: V @ V* — End(V) specified by v(v ® a)(w) := a(w)v, is a linear
isomorphism.

(b) vy, ..., v, is abasis for V and vy, ..., vy, the dual basis for V*, defined by v} (v;) = i,
then v( Y1, v; @ vf) = idy.

(c¢) If B: V x V — K is a nondegenerate symmetric bilinear form, then
F: VeV = End(V), Fvew)(r):=p(x,w)v

is a linear isomorphism. If vy,. .., v, is a basis for V and v!,... v™ € V with 8(v%,-) =
vf,i=1,...,n, then YOI v; @ V") = idy.

Exercise 5.12. (i) Let g be a simple Lie algebra over C. Show that each invariant
bilinear form x on g is a scalar multiple of the Cartan-Killing form &g.
Hint: Show first that every bilinear form : g x g — C can be written as 3(z,y) =
kg(Az,y) for some A € End(g).

(ii) Show that the result (i) does not hold for all simple real Lie algebras.
Hint: Consider sl5(C) (cf. Exampl |5.16]).

Exercise 5.13. Show that semisimplicity is an extension property: If g is a finite dimen-
sional Lie algebra and n < g an ideal, then g is semisimple if and only if n and g/n are
semisimple.

Exercise 5.14. Let g be a real Lie algebra and I € End(g) be a complex structure. Show
that the complex vector space (V,I), endowed with the scalar multiplication (« + i)z :=
az + [z is a complex Lie algebra if and only if

[[,adz] =0 for every =z € g.
Exercise 5.15. Let V' and W be module of the Lie algebra g. Show that
(Xp)(v) == Xop(v) —p(Xv), veV,peHom(V,W),Xe€g

defines the structure of a g-module on Hom(V, W). Note that the submodule Hom(V, W)9
of invariant elements are precisely the module morphisms.

6 Levi’s Splitting Theorem

In the preceding sections we dealt in particular with solvable and semisimple Lie algebras

separately. Now we shall address the question how a finite dimensional Lie algebra g

decomposes into its maximal solvable ideal rad(g) and the semisimple quotient g/rad(g).

Levi’s Theorem is fundamental for the structure theory of finite dimensional Lie algebras.

It asserts the existence of a semisimple subalgebra s of g complementing the radical rad(g),

also called a Levi complement. As a consequence, g = rad(g) x s is a semidirect sum.
Throughout, K will be a field of characteristic zero.

Lemma 6.1. The quotient Lie algebra g/rad(g) is semisimple.

Proof. Let q: g — g/rad(g) be the quotient homomorphism and a < g/rad(g) a solvable
ideal. Then b := ¢ '(a) < g is an ideal containing rad(g), for which a = b/rad(g) is
solvable. Since solvability is an extension property, b is solvable, hence b C rad(g), and

thus a = {0}. This proves that rad(g/rad(g)) = {0}, i.e., g/ rad(g) is semisimple. O
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Proposition 6.2. Ifa: g — b is a surjective homomorphism of Lie algebras, then a(rad g) =
rad b.

Proof. Let v := radg. First we note that «(t) is a solvable ideal of b, hence contained
in rad(h). Here we use that images of ideals under surjective homomorphisms are ideals:

[0, a(v)] = [a(g), a(v)] = a((g, ¥]) S a(v).

Let m: h — bh/a(r) be the quotient homomorphism. The homomorphism «: g — b in-
duces a surjective homomorphism &: g/t — /(). Since g/t is semisimple (Lemma [6.1]),
the homomorphic image h/a(r) is also semisimple (Proposition[5.10). Consequently 7(rad b)
rad (h/a(r)) = {0}, i.e., radh C a(r). We thus obtain rad b = a(x). O

Definition 6.3. An ideal a < g is called characteristic if it is invariant under all derivations
of g.

Lemma 6.4. For the radical of the Lie algebra g, the following assertions hold:
(i) rad(g) is a characteristic ideal.
(ii) If a C g is an ideal, then rad(a) = rad(g) N a.

Proof. (i) First we note that [g, g] is a characteristic ideal of g because for each derivation
D € derg and z,y € g we have D([z,y]) = [Dx,y] + [z, Dy] € [g, g]. Next we note that the
Cartan-Killing form is invariant under der(g) (cf. Exercise :

kg(Dx,y) = tr (ad(Dx) ad y) = tr ([D, ad x] ad y)
= —tr (adz[D,ady]) = — tr (adz ad(Dy)) = —ry(x, Dy).

Therefore rad(g) = [g, g] =" (Exercise is also invariant under der(g).

(ii) Clearly, rad(g) Na is a solvable ideal of a, hence contained in rad(a). Since rad(a) is
a characteristic ideal of a, it is invariant under the adjoint representation of g on a, hence
a solvable ideal of g. This proves that rad(a) C rad(g). O

We will need the following technical lemma.
Lemma 6.5. Let (p, V) be a representation of g and n < g an ideal. Forv €V, let
35(v) :=={z € g: p(zx)v = 0}
be the stabilizer of v. If v € V satisfies
plg)v = pm)v  and  3q(v) N1 =3a(v) = {0},
then g = n X 34(v).

Proof. The linear map ¢: g — V,z +— p(x)v satisfies p(g) = ¢(n), hence g = n+ ker p =
n+ 34(v). Since 34(v) is a subalgebra, the assertion follows. O

Theorem 6.6. (Levi’s Splitting Theorem) If a: g — s is a surjective homomorphism
of Lie algebras and s is semisimple, then there exists a homomorphism [(5:s — g with

ao 8 =ids.
g
eIt}
/ lVa

—_—
5id55
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Proof. Let n := ker . We have to show the existence of a subalgebra s of g with g = n xs.
Then af;: § — s is an isomorphism and we may put 8 := (afz)~'. We argue by induction
on the dimension of n. For n = {0}, there is nothing to show. So we assume that n # {0}.
Case 1: The ideal n < g is not minimal, i.e., there exists a nonzero ideal n; of g which
is a proper subspace of n. Now « factors through a surjective homomorphism a;: g/ny — s
with
dim(ker o) = dimn — dimn; < dimn.

Therefore our induction hypothesis implies the existence of a homomorphism f;: s — g/ny
with ay o 81 = id,. Let ¢: g — g/n; be the quotient map and b := q_l(ﬁl (5)) Then b is a
subalgebra of g and the homomorphism

az :=qlp: b= fi(s) =s, z—r4+mnm

is surjective. In view of dim(ker ap) = dimn; < dimn, the induction hypothesis implies the
existence of a homomorphism fSy: f1(s) — b with ap oy = idg,(5). Now 3 := fr0f81:5 = g
is a homomorphism satisfying

aoff=ajoqofrofly =aioazo o =aof =ids.

Case 2: The ideal n is minimal. Since s is semisimple, the radical
v := rad(g) of g is contained in n (Proposition [6.2). If v = {0}, then g is semisimple,
and the assertion follows from Proposition because g contains an ideal 5 complement-
ing n. So let us assume that v # {0}. Then the minimality of n shows that n = v is
abelian.

The representation p: g — gl(n),z — adzx|, satisfies n C kerp (n is abelian), hence
factors through a representation p of s on n, determined by poa = p. Since n is a minimal
ideal of g, we thus obtain on n an irreducible representation of s. If p = 0, then n is central in
g, and the adjoint representation ad: g — der(g) factors through a representation of s on g.
According to Weyl’s Theorem, there exists an ideal of g complementing n (Proposition
and the proof is complete. We may therefore assume that p is nonzero.

We are now at the point where we can use Lemma [6.5] On V := End(g), we consider
the representation

n(z)p :=adzop—poadr =[adz, ¥

(cf. Exercise |5.15)). We consider the following three subspaces of V' = End(g):

Pr=adnCQ:={peV:p(g) Cn on) ={0}}
CR:={peV:pg Cn, ¢, € Kid,}.

Since ¢ C R is the kernel of the linear map x: R — K, defined by
©ln = x(¢) id,, we see that dim(R/Q) = 1.

We claim that P, @) and R are g-invariant. To this end, let y € g. For x € n we have
lady,ad ] = ad[y, x] € P, so that P is g-invariant. To see that R and @) are g-invariant,
we show that 7(g)R C Q. Solet x € g, p € R and ¢|, = Aid,. For n € n we then have

(m(z)p)(n) = [z, p(n)] — ([, n]) = [z, An] — Alz,n] = 0,
hence 7(z)p € Q. For y € n we get
lady,p] =adyop —poady = —Nady € P. (11)

This proves that m(n)R C P. The ideal n acts trivially on the quotient space R/P, which
therefore inherits a representation of s = g/n.
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According to Weyl’s Theorem , there exists an s-invariant subspace of R/P comple-
menting )/ P. This complement is one-dimensional, hence generated by the image @ of one
element p € R\ @, of which we may assume that ¢|, = id,. As the one-dimensional repre-
sentation of s on Ry is trivial because s is perfect (Exercise [5.9)), we see that m(g)e C P.
Next we verify the assumptions of Lemma [6.5]

For z € n, we have already seen in that w(x)p = [adz, ] = —adz. If 7(x)p =0,
then adz = 0, i.e., z € 3(g). Since n is a minimal ideal of g which is not central, we derive
that x = 0. This leads to 3,(¢) = {0} and w(n)p = adn = P O 7(g)e. Finally, we apply
Lemma [6.5] to complete the proof. ]

Definition 6.7. If g is a finite dimensional Lie algebra, then we call a subalgebra s < g
complementing the solvable radical rad(g) a Levi complement. Note that g = rad(g) x s
holds for any Levi complement.

Corollary 6.8. Each finite dimensional Lie algebra g contains a semisimple Levi comple-
ment.

Proof. Let s := g/rad(g) and a: g — s be the quotient map. According to Lemma [6.1] s
is semisimple. Hence Theorem provides a homomorphism g: s — g with o 8 = id,.
Then § is injective, so that 8(s) Nrad(g) = {0} as well as 3(s) + rad(g) = g. Thus [(s) is
a semisimple Levi complement. O]

Corollary 6.9. Ifs is a Levi complement in g, then

[9,0] = [g, rad(g)] x 5.
Ifrad(g) = 3(g), then [g,g] is a Levi complement.

Proof. The second assertion immediately follows from the first and the fact that rad(g) =

3(g) is equivalent to [g,rad(g)] = {0}.
For the first assertion, we note that [s,s] = s leads to

9, 9] = [g,rad(g)] + [g, 5] = [g,rad(g)] + [rad(g), 5] + [s, 5] = [g,rad(g)] + s. O

Corollary 6.10. (Lifting homomorphisms) If ¢: § — g is a surjective homomorphism of
finite dimensional Lie algebras, s is semisimple and a: s — g is a homomorphism, then
there exists a homomorphism a: s — g with go @ = a.

Proof. Apply Levi’s Theorem [6.6]to the surjective homomorphism g: ¢~ *(a(s)) — a(s) and
note that the homomorphic image a(s) of s is semisimple. O

Remark 6.11. If g is a solvable Lie algebra, then g is isomorphic to a nested semidirect
sum

(‘ s ((gl Moy 92) Hag 93) coe Ny gn)
of one-dimensional Lie algebras (cf. Exercise [4.12)).
Composing this with Levi’s Theorem and using Proposition [5.14] we obtain a similar

factorization for arbitrary finite dimensional Lie algebras g, the only difference is that the
g, are either one-dimensional or simple. In fact, we can start with a maximal chain

a = {0} CarC...Cap=g

of subalgebras of g for which a,;_; is an ideal in a;. Such a series is called a Jordan—
Holderseries of g. Then the quotient g; := a;/a,_; is either one-dimensional or simple so
that Levi’s Theorem implies that

a; = a1 X gj.
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Exercises for Section

Exercise 6.1. Show that, for every Jordan-Holder series
aOZ{O}gﬂlg...gak:g

of subalgebras of g (i.e., aj_; is an ideal in a; and the quotient a;/a;_; is either one-
dimensional or simple), the set of quotients {a;/a;_1: j =1,...,k} does not depend on the
Jordan-Holder series (cf. Remark [6.11]).

7 Reductive Lie Algebras

We conclude this chapter with a brief discussion of reductive Lie algebras. This class of
Lie algebras is only slightly larger than the class of semisimple Lie algebras and it contains
the abelian Lie algebras. Reductive Lie algebras often occur as stabilizer subalgebras in-
side semisimple Lie algebras. Thus they appear frequently in proofs by induction on the
dimension.

Definition 7.1. We call a finite dimensional Lie algebra g reductive if g is a semisimple
module with respect to the adjoint representation, i.e., for each ideal a < g, there exists an
ideal b I g withg=a®b.

Remark 7.2. By Lemma [5.9(iii), every semisimple Lie algebra is reductive. It is also clear
that every abelian Lie algebra is reductive.

Lemma 7.3. For a reductive Lie algebra g, the following assertions hold:

(i) If n Qg is an ideal, then n and g/n are reductive.

(ii) g =3(g) @ [g,0] and [g,g] is semisimple.
(iii) g is semisimple if and only if 3(g) = {0}.

Proof. (i) Since g is reductive, there exists an ideal b < g with g = n&@b. Then [b,n] = {0},
so that g is a direct sum of Lie algebras. As submodules of the semisimple g-module g, the
ideals n and b are semisimple g-modules, and since the complementary ideals do not act on
each other, it follows that n and b = g/n are reductive Lie algebras.

(ii) Let a C g be an ideal complement of [g,g]. Then g = a @ [g,g], and [g,a] C
anlg,g] = {0} implies that a is central. Further, (i) implies that [g, g is reductive. To see
that 3(g) is not larger than a, we choose an ideal b of [g, g] complementing 3(g) N [g, g] in
9. 9]. Then [g, g] = [b, b] € b yields 3(g) N [g, g] = {0}, and hence 3(g) = a.

Since [g, g] is reductive, it is a direct sum of simple modules g1, ..., g,, for the adjoint
representation. The preceding argument implies that none of these ideals is abelian, hence
they are simple Lie algebras and thus [g, g] is semisimple.

(iii) If 3(g) = {0}, then (ii) implies that g is semisimple. If, conversely, g is semisimple,
then 3(g) C rad(g) = {0}. O

Proposition 7.4. For a finite dimensional Lie algebra g, the following are equivalent:
(i) g is reductive.
(ii) [g, 9] is semisimple.

(iii) rad(g) is central in g, i.e., [g,rad(g)] = {0}.
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Proof. (i) = (ii) follows from Lemma [7.3|

(ii) = (iii): Let v:=rad(g) and g =t X s be a Levi decomposition. Then [g,g] = [g,t] X s
by Corollary [6.9] so that the semisimplicity of [g, g] implies that [g, t] = {0}.

(iii) = (i): If v is central in g, then any Levi decomposition g = t x s is a direct sum
g = t @ s, where t is a central ideal. Since 3(s) = {0}, we immediately get 3(g) = t, so
that g = 3(g) ®s. Thus g = K" @ s is a direct sum of simple submodules with respect to
the adjoint representation, hence a semisimple g-module (Proposition , and this means
that g is reductive. O

Proposition 7.5. The ideal [g,rad(g)] coincides with the intersection of the kernels of
finite dimensional irreducible representations.

Proof. If p: g — gl(V) is a finite dimensional irreducible representation and n := [g, rad(g)],
then each subspace Vj, := p(n)*(V) is g-invariant because

p(@)p(z1) - - plak)v

~ (o)) pla <)) + )l
= ep(n)

for each v € V. Since V is a nilpotent n-module by Proposition [£.15] there exists a minimal
m with V,, = {0}. Then V},_1 # {0}, so that the irreducibility of the representation implies
that V,,_; = V. Hence p(n)V = p(n)V,,_1 CV,,, = {0}, i.e., n C kerp.

Next we consider the quotient q := g/[g,rad(g)] and the quotient homomorphism
q: g — q. In view of Proposition [6.2, ¢(rad(g)) = rad(q), so that

[q,rad(q)] = [¢(g), ¢(rad(g))] = q([g,rad(g)]) = {0}

implies that rad(q) is central, so that q is reductive by Proposition

It remains to observe that, for each non-zero x € ¢, there exists an irreducible finite
dimensional representations p: q — gl(V') with p(z) # 0. Since pog: g — gl(V) then is an
irreducible representation of g, this implies the assertion.

We know that q = 3(q) @ [q,q] and that [q,q] is semisimple, hence a sum of simple
ideals q1,...,q,. If 2 & 3(q), then = projects to a non-zero element of some q;, and then
p(y) = adyly, defines an irreducible representation with p(x) # 0. If x € 3(g), then there
exists a linear functional A\: ¢ — K with [q,q] C ker A and A(z) # 0. Now p(y) := A(y)1
defines a one-dimensional representation of q with p(x) # 0. O

Example 7.6. Let V' be a finite dimensional vector space.

(a) Let g = gl(V'). Then the identical representation of g on V' is irreducible and faithful,
so that the preceding proposition implies that [g,rad(g)] = {0}, so that g is reductive by
Propostion [7.4, This implies that

rad(gl(V)) = 3(gl(V)) = K1

and that sl(V) = [g(V),gl(V)] is a Levi complement in gl(V') (Example [1.7). Note that
we use char K = 0 to see that tr1 # 0.
(b) Let V' be a finite dimensional vector space and F = (Vp,...,V,,) a flag in V. Then

vi={p € g(F): (Vi)(FN € K) (¢ = Mi1)(Vi) € Viea} = gn(F) x K"

is a solvable ideal of g(F) because [g,t] C g,(F). Choosing subspaces Wy,..., W, C V
with V; =W, & ... ® W;, we have

g(F) = g, (F) % @g[(Wi),
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(Example [1.31]), and this leads to
g(F) =t x @5[(W,~).
i=1

Since we know from (a) that the Lie algebras sl(WV;) are semisimple, it follows that v =
rad(g(F)) and that @;_, s{(W;) is a Levi complement.

Remark 7.7. Let g C gl(V) be a Lie subalgebra, where V' is finite dimensional. Let
F = (Vo,..., Vi) be a maximal flag of g-invariant subspaces. We fix a Levi decomposition
g = t x5, where v = rad(g). Then V is a semisimple s-module by Weyl’s Theorem, so that
there exist subspaces W; with V; =V,_1 & W,, i =1,..., k. We then have

gCg(F) and sC g (F)=al gl(W))

(cf. Example [1.31)). Since the g-modules V;/V;_; are simple, the ideal [g, t] acts trivially on
this quotient (Proposition [7.5)), and we further obtain

g,t] C gu(F).

This shows that
lg,0) = [g.t] X5 C gu(F) ¥ gs(F) = g(F)

is adapted to the semidirect decomposition g(F) = g, (F) X gs(F).

Assume, in addition, that K is algebraically closed. Then t/[g,t] is central in the
reductive quotient algebra g/[g, t] which acts on the simple g-modules U = V;/V;_;. Since
pu(t) has a simultaneous eigenvector by Lie’s Theorem and the corresponding eigenspace

U(v) ={ueU|(Vzer) py(z)u= Ax)u}

is g-invariant because [py(t), pr(g)] = {0}, the simplicity of U implies that py () C Cidy.
This means that

k
v C gu(F) @ @ Cidw, = rad(g(F)).
j=1
Further, the perfectness of the Levi complement s shows that py, (s) C sl(W;). This finally
shows that the Levi decomposition of g is fully adapted to the Levi decomposition

g(F) = rad(g(F)) x @5, sl(W)).

Notes on Part [I

The Jacobi identity was discovered around 1830 by Carl Gustav Jacob Jacobi (1804-1851)
as an identity for the Poisson bracket {-,-} on smooth functions on R?*" (Exercise .

The term Lie algebra was introduced in the 1920s by Hermann Weyl, following a sug-
gestion of Nathan Jacobson. Sophus Lie himself was dealing mainly with Lie algebras of
vector fields (Exercise [1.3)), which he called (infinitesimal) transformation groups. The term
“Lie group” was introduced later by Elie Cartan.

The Jordan decompositions and the Jordan normal form are due to Camille Jordan
(1838-1922). In the 1870s he wrote a text book on Galois theory of polynomial equations,
thus making the ideas of Evariste Galois’ (1811-1832), developped shortly before his un-
timely death, available to the mathematical world. This promoted group theoretical ideas
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considerably. In particular, it inspired Sophus Lie to work on a “Galois theory” for differ-
ential equations, using symmetries of differential equations to understand the structure of
their solutions.

In the original proof of his theorem, Weyl used the famous “unitary trick”. For K = C
one can derive Weyl’s theorem on complete reducibility from the representation theory of
compact groups (cf. [HiNel2, Ch. 15]). For g = s[,(R) this works roughly as follows. One
shows that the complex representations of g are in one-to-one correspondence with the
complex representations of sl,(C), resp., its real form su,(C), hence further with unitary
representations of the compact simply connected Lie group SU,(C). For unitary repre-
sentations complete reducibility is a simple consequence of the existence of an invariant
inner product. A purely algebraic proof was found later in the 1935 by Hendrik Brugt
Gerhard Casimir (1909-2000) and Bartel Leendert van der Waerden (1903-1996) [CW35],
after Casimir had dealt with the case sly(C) using the operator named after him. Another
algebraic proof was found in 1935 by Richard Dagobert Brauer (1911-1977) [Br36]. A com-
pletely different approach based on Lie algebra cohomology has been developed by John
Henry Constantine Whitehead (1904-1960).

The original proof of Levi’s Theorem for complex Lie algebras [Le05] was based on the
classification of simple Lie algebras. The classification free proof for real Lie algebras given
here goes back to Whitehead [Wh36]. The conjugacy of the Levi complements was shown
by Anatoly Ivanovich Malcev (1909-1967) in [Ma42].

For a detailed account of the early history of Lie theory up to 1926 we refer to the book
[Haw00] of Thomas Hawkins.
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Part II
Root Decomposition

Since a simple Lie algebra g has no other ideals than g and {0}, we cannot analyze its
structure by breaking it up into an ideal n and the corresponding quotient algebra g/n. We
therefore need refined tools to understand the internal structure of simple Lie algebras. It
turns out that toral Cartan subalgebras and the corresponding root decompositions provide
such a tool.

Roots and root spaces have remarkable properties some of which one turns into a system
of axioms for abstract root systems. We derive a number of additional properties from these
axioms. Moreover, we define certain objects associated with abstract roots systems like
Weyl groups and Weyl chambers. Using these structural elements one could proceed rather
easily to a complete classification of complex simple Lie algebras, but we refrain from doing
this since our emphasis is on structure rather than classification.

In this part of these lecture notes, we first develop the concept of a toral Cartan sub-
algebra and root decompositions for general Lie algebras. Then we turn to semisimple Lie
algebras and we finally discuss the geometry of the root system.

8 Weight and Root Space Decompositions

For a better understanding of the structure of a Lie algebra g, one decomposes it into
simultaneous eigenspaces of operator sets ad b for a subalgebra h. Subalgebras for which
this is possible are called toral.

8.1 Weights and Roots

Root decompositions are the simultaneous eigenspace decompositions of the type mentioned
above. They are special cases of weight decompositions.

Definition 8.1. (a) Let (m, V) be a representation of the Lie algebra f. For a function
A b — K, we define the corresponding weight space and the corresponding generalized
weight space by

Va(h) == (Vaw(m(z)) and  VA(h) := [V (x(x)).

x€h x€h

Any function \: h — K for which V*(h) # {0} is called a weight of the representation
(m, V). We write Py(V) for the set of weights of (7, V).

(b) A module V' of the Lie algebra b is called diagonalizable if V' is the sum of all weight
spaces V,(h). Recall from Exercise that the sum > p 1) Vi(b) of weight spaces is

direct, so that
V= V..
nePy(V)

If 7: 5 — gl(V) is the corresponding representation, then this means that the subset
7(h) C gl(V) is simultaneously diagonalizable. Note that this implies that 7(h) is abelian
(Exercise [8.1]).

(c) A subalgebra b of a Lie algebra g is called toral or splitting, if ad h is simultaneously
diagonalizable. Then the weights of the representation m = ad |, which are different from
zero are called roots of g with respect to h. The set of all roots is denoted A(g,h). The
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weight spaces g*(h) = ga(h) are called root spaces. Sometimes we write g* instead of g*(h).
If 0 # 1 € b* is not a root, we put g := {0}.
The decomposition

1=000 P 0o (12)

a€A(g,h)

is called the root decomposition of g w.r.t. b.
Lemma 8.2. Let h C g be a toral subalgebra. Then
(i) b is abelian.
(ii) b = go(bh) if and only if b is maximal abelian in g.

(iii) If'b = go(h), then 3(g) = {z € b: (Va € A)a(x) = 0}

Proof. (i) Let h C g be a toral subalgebra and x,y € h. Since adb is abelian, we have
ad[z,y] = [adz,ad y] = 0, hence [z, y] € 3(g). Therefore (ad z)?(y) = 0. Now the diagonal-
izability of ad z implies that ad z(y) = [z,y] = 0.

(ii) Since go = 34(h) is the centralizer of b in g, the subalgebra b is maximal abelian if
and only if h = go.

(iii) Clearly 3(g) € go(h) C h. An element x € b is central if and only if all roots vanish
on . [l

Definition 8.3. A toral subalgebra h C g which is maximal abelian in g is called a toral
Cartan subalgebra of g[1]

Remark 8.4. (a) Toral Cartan subalgebras do not always exist: If g is nilpotent, then
all operators ad x are nilpotent. Therefore the diagonalizability of ad x is equivalent to
ad x = 0. We conclude that 3(g) is maximal toral. But if g is not abelian, then 3(g) is not
maximal abelian.

(b) In the structure theory of finite dimensional Lie algebras, a subalgebra h C g is
called a Cartan subalgebra if b is nilpotent and self-normalizing, i.e.,

h=ng(h) :={z €g: [z,h] C b}

If b is toral, then b is abelian and therefore nilpotent. Further, ng(h) = 34(h) = go (Exer-
cise!). Hence a toral subalgebra is a Cartan subalgebra if b = gj.

8.2 Examples of Root Decompositions

Example 8.5. (a) (The Lie algebra sly(K)) We recall the basis (h, e, f) of g = sly(K) given

) o B (1 N

satisfying the commutator relations

[h,e] =2, [h,f]=—-2f and e, f]=h. (14)

1 Cartan subalgebras of complex simple Lie algebras were first used by W. Killing in his classification,
before E. Cartan used them about 10 years later. Conversely, the Cartan—Killing form (often called the
Killing form) was much more in the focus of Cartan’s work than in Killing’s. Note that Cartan’s criteria
for solvability and semisimplicity both refer to properties of this form.
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We conclude that b := Kh is a toral Cartan subalgebra. With «(h) = 2 we thus obtain
the root decomposition

g=b+g.+9.o with g,=Ke and g_,=Kf

(b) Let b be the 2-dimensional non-abelian Lie algebra with the basis (h, z) satisfying
[h, 2] = x (Exercise[1.4). Then b := Kh is a toral Cartan subalgebra and with a(h) =1 we
obtain the root decomposition

g=b+g., with g,=Ky.

In this case there exists only one root.
(¢) In g = s03(C), we consider a basis (z,y, z) with

[z yl =2 [yz]=2 |[z2]=y.
(Example . Then h = Cx is a toral Cartan subalgebra and
[x,y Fiz] = 2z +iy = +i(y F iz)
implies that we have a root decomposition

g= b D ga Dg-a with OZ<1') =1, O+a = (C(y F ’LZ)

Example 8.6. (The Lie algebra gl,(K)) In g := gl (K), we consider the basis (Ejj)1<;jx<n

J
defined by Ejie, = Opme; for the canonical basis (e;)1<j<, of K*. From Example we

recall the commutation relations
[Ejk7 Eém] = 5k€Ejm - 5ij€k- (15)

The subalgebra b := span{FE;; : j = 1,...,n} of diagonal matrices is abelian and
implies
[Em'rrm Ejk] = 6]mEmk - 5kmE]m = (6] - 6km)Ejk

Defining linear functionals ¢;: h — K by ;(Egx) = djx, it follows that Ej, € Oc;—e,- Lhis
leads to the root decomposition

J#k J#k

In particular, b is a toral Cartan subalgebra and
A={egj—cp:j#ke{l,...,n}}

is the corresponding set of roots.

Example 8.7. (The special linear Lie algebra) For g := s, (K) we obtain as in Example
that the subalgebra h = {diag(h): >_; h; = 0} of diagonal matrices in g is a toral Cartan
subalgebra, and with ¢;(diag(h)) := h;, we obtain a root decomposition g = b ® @ . da
with g., ., = KE};, and the root system

An_lzz{aj—skzlgj#krgn}.
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Example 8.8. (The orthogonal Lie algebras) (a) Let

b= (p ©1) & Man(K) 2 01, 8

and consider the Lie algebra
0nn(K) = {z € gy, (K): 2" I, , + I, ;o = 0}.

(cf. Exercise for the fact that this is indeed a Lie algebra). In terms of block matrices,
we then have

00 (K) = { (Z fl) & Ma(M,(K)): 0 = —a,d" = b7 = c}.
In this matrix presentation, it is quite inconvenient to describe a root decomposition of this

Lie algebra. It is much simpler to use an equivalent description, based on the following
observation. For

we find

I g_(l 1)(1 0)(1 %1)_(1 1)(1
nng — 1 1 1 - 1 1
i1 —21) 0 -1/ (1 -1 1 —21) (-1

Hence z € 0,,,(K) is equivalent to g 'xg being contained in

N[ DO | =
-

~_
I
VR
= O
O =
~
Il
n

g:=05,(K,8) :={z € gly,(K): 2" S+ Sz =0} = g '0,.(K)g

and ¢: 0,,(K) = 02,(K, S),z — g 'zg is an isomorphism of Lie algebras. From

(Z 2) 00K, S) & d=-a',b =—bc' =—c

we immediately derive that g has a root decomposition with respect to the maximal abelian
subalgebra

=span{E;; — E,ijnt+j:j=1,...,n} = {diag(h, —h): h € K"}.
The corresponding root system is
D, :={%ejxep:j,k=1,...,n,j #k},

where ¢;: h — K is the linear functional defined by ¢ (diag(h, —h)) := hy. Here the roots
in the subsystem A,,_; of D,, correspond to the root spaces in the image of the embedding

oL (K) = 09n(K, 5), (""5 0T> .

—X
Further, gsj+5k = K<E],n+k — Ek,n_;'_j) and g—fj—fk = K(En+k,j — En—l—j,k)'

(b) For the symmetric matrix



we also obtain a Lie algebra

09011 (K, T) := {z € gly, ., (K): ' T + Tx = 0}.

Then
a b x 0 b
c d yl €091 (KT) & (C d) €05(K,S), T=—-x2", 7=—-y",2=0
Yy T z

implies that this Lie algebra has a root decomposition with respect to the maximal abelian
subalgebra

h =span{Ej; — Enijns; - J=1,...,n} = {diag(h,—h,0): h € K"}.
The corresponding root system is
B, ={%ej,£e;xter: 5, k=1,....n,5 #k},

where ¢;: h — K is the linear functional defined by e (diag(h, —h,0)) := hy. Here the root
spaces corresponding to roots in the subsystem D,, of B,, correspond to root spaces in the
subalgebra 0y, (K, S) (corresponding to z = y = 0), and

9e, = K(Ejons1 — Banpiney)  and g, = K(Ejinani1 — Eangr)-

Example 8.9. (The symplectic Lie algebra) For the skew-symmetric matrix

0 1
J = (_1 0) < MQH(K),
we obtain the symplectic Lie algebra
sp,, (K) = {z € gl (K): 2" J + Jz = 0}.

Using
(i 2) cop,(K) & d=—a",b" =bc =c

(Example [L.7|(vii)) we see that g := sp,, (K) has a root decomposition with respect to the
maximal abelian subalgebra

h =span{E;; — Eytjntj:j=1,...,n} = {diag(h, —h): h € K"}.
The corresponding root system is
Cn:={%2e,xe; £, j,k=1,...,n,j #k},

where ¢;: h — K is the linear functional defined by e (diag(h, —h)) := hy. Again, the roots
in the subsystem A, _; of C, correspond to the root spaces in the image of the embedding

g[n(K) _>5p2n(K)7 T (x OT) :
0 —=x
Further,
gEj+€k = K(E]7n+k + Ek,n+j) and g—é‘j—é‘k = K(En—i-k,j + En—‘,—j,k)'
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8.3 General Facts on Weights and Roots

Having discussed a bunch of examples, we proceed with some general observations concern-
ing weight and root decompositions.

Lemma 8.10. Let b C g be a toral subalgebra and g = go + Y, ca 8o be the corresponding
root space decomposition. Then the following assertions hold:

(i) If V is a g-module, « € AU{0} and B € Py(h), then

00V C Varp. (16)

(ii) For a,p € AU{0}, we have [ga, 98] C Gats-

O is a subalgebra of g.

(iii) g
Proof. (i) For vg € V3, z € h and y € g,, we obtain
.(yvp) = y-(v.08) + [, Yl vg = Bla)y.vs + a(x)y.vs = (a + B)(2)y.vs.

(ii) follows from (i), applied to the adjoint module V' = g with x -y := [z, y]. Note that
the corresponding weight set is A U {0}.
(iii) is a direct consequence of (ii). O

Example 8.11. In the gl,(K)-module V' := K", every basis vector e;, j = 1,...,n, is an
h-weight vector of weight ;. The h-module V' is diagonalizable with weight set

PV = {81, . 75n}-
Then Ej, V., C 6r,Vz, is a special case of Lemma m(l)
The following observation will become useful later on.

Proposition 8.12. IfV is a diagonalizable module of the abelian Lie algebra y and W C V
a submodule, then W is adapted to the weight decomposition, i.e.,

W= wnv) = W
aEPy aEPyw

Proof. Clearly, Wy := @, cp, (W NV,) is an h-submodule of W. It therefore remains to
show that, if we write w € W as w = ) _ w, with w, € V,, then all components w,
are contained in W. We prove this assertion by induction on the number N of non-zero
summands w,. For N = 1, there is nothing to show. So we assume N > 1. Let w, # 0.

Then there exists 5 € Py \ {a} with wg # 0. We choose x € h with a(z) # S(z). Then

rw — B(x)w = Z(’y(m) — B(x))w,

Y706
is a sum of at most N —1 nonzero summands. Since a(z)—p(z) # 0, we obtain w, € W. O

Corollary 8.13. If h C g is a toral subalgebra and a C g an h-invariant subalgebra, i.e.,
[h,a] C a, then a is adapated to the root decomposition:

a:ao@@aa.

In particular, all ideals a < g are adapted to the root decomposition.
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Proof. We apply Proposition to the diagonalizable h-module g. O]

The following lemma is a useful tool to see that the examples discussed below are indeed
semisimple Lie algebras.

Lemma 8.14. Suppose that g = b + > A 8a 95 a Lie algebra and b a toral Cartan
subalgebra, such that

(i) g(a) := ga + 9-a + [gas 9-a] = s(K) for each root o, and
(i) 3(g) = {0}
Then g is semisimple.

Proof. Let v := rad(g) be the solvable radical of g. As an ideal, it is h-invariant, hence
adapted to the root space decomposition: t = tg + > to (Proposition [8.12). Since all
semisimple subalgebras s of g intersect v trivially (otherwise s Nt would be a nontrivial
solvable ideal of s), v, C g(a) Nt = {0}. Hence v C b, and, in view of [r, g,] C tNg, = {0},

we get v C (),ca kera = 3(g) = {0}.

Exercises for Section

Exercise 8.1. Show that, if h C gl(V) is a simultaneously diagonalizable Lie subalgebra,
then b is abelian.

Exercise 8.2. (a) Let h be an abelian Lie algebra and V' a diagonalizable h-module. Then
h is a toral subalgebra of g := V x b (Example [1.28). The root decomposition is given by

g=0+V%)+ Y Va

aePy\{0}

The subalgebra b is a Cartan subalgebra if and only if Vj = {0}.

(b) Let h be an abelian Lie algebra and A C h* \ {0} be a subset. Construct a Lie
algebra g containing h as a toral Cartan subalgebra such that A is the corresponding set
of roots of g with respect to b.

Exercise 8.3. For Q1,Qs € M, (K), we put
o(K, Q) = {z € gl,(K) : 2" Q; = —Qix}.
Show that: If Q; = STQ,S holds for some S € GL,(K), then the map
Pg: o(K, Q1) — o(K, Qy), Pg(x) := S a8
is an isomorphism of Lie algebras.

Exercise 8.4. Let Q = QT € GL,(K) and suppose that K is algebraically closed. Show
that:

(i) The corresponding symmetric bilinear form 8(z,y) := 2" Qy on K" is non-degenerate.

(ii) There exists a S-orthonormal basis. Conclude that there exists an S € GL, (K) with
STQS =1 and that 0,(K,Q) = {z € g[,(K): 2" Q + Qz = 0} ¥ 0,,(K).
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(iii) If n is even and k := n/2, then there exists a basis by, ..., b, of K" with

B(bi,bivk) = B(bizk,b;) =1 and 0 otherwise.

Conclude that there exists an S € GL,(K) with STQS = Q' := (1 0

02t (K, Q) = 024, (K, Q') (cf. Example [8.§]a)).

(iv) If nis odd and k := (n — 1)/2, then there exists a basis by, ..., byy1 of K" such that
B(b;, b;) is as under (iii) for 1 <14, j < 2k, 5(b,,b,) = 1 and S(b;,b,) = 0 for j < n.
Conclude that there exists an S € GL, (K) with

0 1) and that

STQS = Q' =

O = O
OO -
_ o O

and that 0941(K, Q) = 09541(K, Q") (cf. Example B.§(b)).

Exercise 8.5. Let g = Rh + Rp + Rq + Rz be the oscillator algebra with the bracket
relations

p.ql =2 [hpl=q and [hq =-p
(z is central). Determine a toral Cartan subalgebra of the complexification g¢ and the
corresponding root decomposition.

Exercise 8.6. Suppose that K is algebraically closed of characteristic zero and that b is a
nilpotent Lie algebra. We consider a finite dimensional h-module V' with the corresponding
representation p: h — gl(V'). Show that:

(i) p(h) commutes with all diagonalizable Jordan components p(x)s, © € b.
Hint: (ad p(x))s = ad(p(z)s) on gl(V).

(ii) [p(x)s, p(y)s] = 0 for x,y € h. Hint: p(z)s is a polynomial in p(x).

(iii) There exists a direct module decompositions V' = @;csV; such that p(z)|v, € K1 for
x €b.

(iv) Aj(x) := diniVj tr(p(x)|v,) defines a linear functional on b with V; € VY (h).

(v) The module V has a generalized weight space decomposition V = @7_ V% () and
the generalized weight spaces are submodules.

9 Finite Dimensional sl;(K)-Modules

As we shall see in Section below, the Lie algebra sly(K) is of particular importance
because semisimple Lie algebras with toral Cartan subalgebras contain many subalgebras
isomorphic to sly(K) and the collection of these subalgebras essentially determines the
structure of the whole Lie algebra. Therefore the representation theory of sl (K) plays a
key role in the structure theory of these Lie algebras.

In the following, we shall use the basis

Y R (X

of sl(K). It satisfies
[h,e] =2e, [h,f]=-2f and [e, f] =h. (18)
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9.1 A family of sls;-modules

We start with a discussion of a concrete family of representations of sly(K). It will turn
out later that the study of this family already provides all irreducible finite dimensional
representations of sly(K).

Example 9.1. Let A := K[Z, Z71] be the algebra of Laurent polynomials in Z. For any
f € A the operator D := f % is a derivation of A (Product Rule) and any derivation of
the algebra A is of this kind (Exercise [0.2)). The Lie bracket on der(A) satisfies

d d , , . d
— . 0—| = — —. 1
] = (g = Fo)— (19)
For A € K, we consider the operators
d d d
E=—, Fi=-2>—+4+)1, H:=\-27—.
az’ az +AZL, A dz
With we obtain
d d d
zn__ Zm_:| — - Zn+m71_
[ izl g = men) iz
and hence the commutator relations
[H,E] = —ZLZ%, L]l =24 = 2E,
[H Fl= —2[ZL -7*L + \Z1| = 222% —2)\Z1 = —2F,
(B, F] = 4 724+ \Z1)=-2Z2+)\1 = M

Since these are precisely the commutator relations of g := sly(KK), we obtain by
e—~FE f—F h—H

a representation py: sly(K) — End(A), resp., an sly(K)-module structure on .A.
To understand the structure of this module, we consider the action of the operators
H, E and F on the canonical basis:

H-Z' =(\—=2n)2Z", E-Z"=nZ"' F.Z"=(\-n)zZ" (20)

In particular, we see that H is diagonalizable with one-dimensional eigenspaces. With this
information, it is easy to determine all submodules. Any submodule is adapted to the
eigenspace decomposition of H (Proposition [8.12)). Hence each submodule is of the form

Aj:=span{Z":n € J} for some subset J C Z.

From (20, we see that A is a submodule if and only if J satisfies the following conditions:
(i) Ifne Jand n #0, thenn—1€ J.
(ii) f n € Jand A #n, thenn+1 € J.

If X\ € Z, then K[Z] = Ay, is the only nontrivial submodule of A. If A € Z, then there
are two possibilities. For A < 0, the only proper subsets of Z satisfying (i) and (ii) are

{..;0A=1,A}, Ny, and {...,A—1,A}UN,.
o o o] o o - o [ o o
For A > 0, the subsets of Z defining submodules are
No, {...,A=1,A}, {0,1,...,A—1A}.
o o o[ o o -+ o] o o
In this case we obtain in particular a finite dimensional submodule
L(\) :=span{l, Z,...,Z*}. (21)

Since L(A) contains no nontrivial proper submodule, it is simple.
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We have seen in the preceding example that, for each A € Ny, there exists a simple
sl5(K)-module of dimension A+1. Our next goal is to show that all simple finite dimensional
modules are isomorphic to some L(\).

9.2 The classification

The following lemma specializes for @ = 1 to an assertion on the Lie algebra sl (K).

Lemma 9.2. Let (e, h, f) be a triple of elements of an associative algebra A, satisfying the
commutator relations

[h,e] =2, [h,fl=-2f and e, f]=h.
Then the following assertions hold:
(i) [h,e™] = 2ne™ and [h, f"] = —2nf™ for n € Ny.

(i) Forn >0,
fre] = =ne" (bt (n = 1)) = =n(h = (0= 1))

and

le, ) =nf""(h—(n—1)) =n(h+(n—1)) "

Proof. (i) Since ad h(a) := ha —ah is a derivation of A and [h, e] = 2e commutes with e, we
obtain inductively [h, "] = n[h,ele®! = 2ne". The second part of (i) is obtained similarly.
(ii) We calculate

n—1 n—1
[f.e"] =D elfele" =) e(=h)e"
J=0 J=0
n—1 n—1 n—1
= — Z ellh,e" 1 — Z " th = —( 2(n—j—1)e" 1> ne" 'h
Jj=0 Jj=0 Jj=0
n—1
= —<Z 2je" 1) —ne" th=—n(n—1)e" ' —ne" 'h
=0

In view of (i), this equals
—n(n—1)e" " —nhe"t +nh,e" N =n(n —1)e" ! —nhe"

This is the first part of (ii). The second part is reduced to the first one by considering the
triple (f, —h,e), satisfying the same commutation relations as (e, h, f). ]

Proposition 9.3. Let V' be a finite dimensional sly(K)-module and vy € V' an element with
e-vg=0 and h-vy = \vg. Then

(i) A e Np.
(ii) vy generates a submodule isomorphic to L(\).

Proof. (i) Let V,, := V,(h) be the h-eigenspace corresponding to the eigenvalue o on V,
which is a weight space for the representation of the subalgebra h = Kh. From vy € V), and
[h, f] = —2f, we obtain with Lemma the relation h - (f™ - vo) = (A —2n)(f™ - vo).
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We further obtain with Lemma R0t
e (f" o) =le, " v+ fr(e-v) =nf" Y h—n+1)-vo=nA—n+1)f" v (22)
—0

This shows that the submodule W generated by v is
W = span{f" -vp: n € Ng}.

Since V' is finite dimensional, h has only finitely many eigenvalues on V. Hence there is a
minimal N € Ny with f¥*1. vy = 0. From e - (f¥*! - vy) = 0 we derive that A = N € Nj,.
(ii) To see that W = L(\), we consider the basis

fk'Uo

Vg = o1 Okt 1) kE=0,..., )\

for W (note that the denominator never vanishes.). For this basis, we have
h-vg=(A—=2k)vg, f-oe=(\—k)vgs, e-vg=0

and, for £ > 0 by ,

kO — Kk + 1)
MA—1)-A—k+1)

k
k-1 — k=1 :k L
=T ke T Ree

€V =

With respect to this basis, e, f and h are represented by the same matrices as on L(\)
((20)), and this shows that W = L(\). O

Lemma 9.4. IfV is a finite dimensional real vector space and a,b € gl(V') with |a,b] = b,
then b is nilpotent.

Proof. We apply Proposition to the solvable subalgebra Ka + Kb C gl(V). Then
la, b] = b implies that b is nilpotent. O

Theorem 9.5. (Classification of finite dimensional simple sly(K)-Modules) Each finite
dimensional simple sly(K)-module is isomorphic to some L(\), A € Ng. For each n € N,
there exists a simple sly(K)-module of dimension n which is unique up to isomorphism.

Proof. Let (p,V) be a simple sly(K)-module. We consider the solvable subalgebra b :=
span{e, h}. We apply Lemmaﬂ to a := 3p(h) and b := p(e), to see that p(e) is nilpotent.
Let d € N be minimal with p(e)* = 0. Then Lemma (ii) yields

0 = [p(f), ple)"] = —d(p(h) — (d — 1)1)p(e)" ",

so that each nonzero vy € p(e)¥~1(V) is an eigenvector of p(h). In view of the simplicity
of the module V, it is generated by vy, and Proposition shows that V' = L(A). The
remaining assertions are immediate from Example [9.1] [

Example 9.6. A particular interesting infinite dimensional representation of sly(R) is the
oscillator representation. Here we consider the space

P = (C[xl,...,xn]
of complex-valued polynomials on R™. Let A = )" i % be the Laplacian. We put f := %A
and e = —%mrz (multiplication operator with r? := Zj x?), and h := F + 1, where
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E=5%" i xj% is the Euler operator, for which a homogeneous polynomial of degree d is an
eigenvector of degree d.

It is easily verified that (h, e, f) € End(P) satisfies the commutation relations of sly(R)
((14), so that P is an sly(K)-module (Exercise . This module plays an important
role in quantum mechanics of systems on R™ with full rotational symmetry. An important
example is the spherical harmonic oscillator on R?, corresponding to the hydrogen atom
([St94]).

Note that the operator e is injective, and that this implies that P contains no non-zero
sl(R) submodules.

Proposition 9.7. For a finite dimensional sly(K)-representation (p, V'), the following as-
sertions hold:

(i) p(h) is diagonalizable and the set Py of all eigenvalues is contained in Z.
(ii) Py = =Py and and dim V,(p(h)) = dim V_,(p(h)) for every o € Py .

(ii) If a,a + 2k € Py for some k € Ny, then a+ 25 € Py for j = 0,1,... k (String
property).

Proof. In view of Weyl’s Theorem [5.26] V' is a direct sum of simple submodules Vi, ..., V,,,
and Theorem implies that V; = L()\;) for some \; € Np.

(i) and (ii) now follow immediately from the corresponding property of the modules
L()\) (Example 0.1)).

(iii) In view of (ii), we may w.l.o.g. assume that § := a + 2k satisfies || > |a|. Then
we pick some simple submodule V; = L(\;) of V such that J is an eigenvalue p(h)|y,. Then
Ai — B € 2Ny and all integers n € § + 2Z with |n| < |B| are eigenvalues of p(h)|y,. This
contains in particular the set of all integers of the form o + 2j, j = 0,1,..., k, between «
and . n

Exercises for Section

Exercise 9.1. We consider the 2-dimensional nonabelian complex Lie algebra b in which
we choose a basis (h, e) satisfying [h,e] = e. In the following V' denotes a b-module and
p: b — gl(V) the corresponding representation. Classify all finite-dimensional b-modules
V for which p(h) is diagonalizable. Hint: Proceed along the following steps:

(i) If V is generated by vy € V) (h), then there exists a basis (vg, ...,v,) of V with

if k
h-vy=A+kvy and e-v,= Uk _1 <n,.
0 iftk=n

We write V' (A, n) for the (n + 1)-dimensional b-module, defined by these relations.
(ii) If £ <n, then V(A + k,n — k) is a submodule of V' (A, n).

(iii) Each simple finite-dimensional b-module is isomorphic to some V/(A,0). Hint: Use
Lie’s Theorem.

(iv) For each finite-dimensional representation (p, V') of b, the operator p(e) is nilpotent
and for each n the subspaces ker (p(e)") and im (p(e)") are invariant under p(h),
hence b-submodules.
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(v)* Show that each finite-dimensional representation (p, V') for which p(h) is diagonaliz-
able is a direct sum of modules of the form V' (A, n). Hint: Derive a Jordan normal
form of p(e), adapted to the eigenspace decomposition of p(h).

Exercise 9.2. Let A = K[Z, Z7!] be the algebra of Laurent polynomials with coefficients
in the field K. Show that every derivation of A is of the form D := f % for some f € A.

Exercise 9.3. On the space V = C*°(R") we consider the operators
02 9
A=Y ad (Mf)E)= (D) fla),
J J J
and the Fuler operator

0
J

Verify the commutator relations
[E, M] =2M, [E,A] = —2A and [A,M]=4FE + 2nl.
Conclude that h:= E + 31, e := —M/2 and f := A/2 satisfy the sl-relations

hoe] =2, [hf]=-2f and e f]=h.

10 Root Decompositions of Semisimple Lie Algebras

The technique of root decompositions is particularly fruitful for semisimple Lie algebras
g because, for this class of Lie algebras, over an algebraically closed field, maximal toral
subalgebras turn out to be Cartan subalgebras. For complex Lie algebras we thus obtain
a root space decomposition diagonalizing adh. In the following we write K = k4 for the
Cartan—Killing form of g.

10.1 Existence of Toral Cartan Subalgebras

We start with the root decomposition with respect to an arbitrary toral subalgebra and
show later that, if K is algebrically closed, toral Cartan subagebras exist.

Proposition 10.1. Let g be a semisimple Lie algebra, b a toral subalgebra of g and m) :=
dim gx-

(1) £(h, ') = 3 senign) MAAR)A(R') for b, B’ € h.
(ii) If A+ p # 0, then gy and g, are orthogonal with respect to the Cartan-Killing form.

(iii) The Cartan—Killing form k induces a nondegenerate pairing of g and g_o, i.e., for
TE Gy andy € g g,

K(Z,8-0)={0} =2=0 and K(ga,y)={0}=y=0.
In particular, mq = m_q, and Klg g, 15 nondegenerate.

(iv) A(g.b) spans b*.
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Proof. (i) The product ad h ad b’ preserves each root space gy, and acts on this m,-dimensional
space by multiplication with A(h)A(R'). This implies (i).
(ii) From the invariance of x, we obtain for x € gy, y € g, and h € b the relation

Ah)k(z,y) = w((h, 2], y) = —k(z, [h,y]) = —p(h)r(z, y)

and therefore (A + p)(h)k(z,y) = 0. This implies (ii).

(iii) follows from (ii) because the Cartan—Killing form is nondegenerate.

(iv) As a consequence of the injectivity of the adjoint representation, A(g, h) C h* separates
the points of h, and this is equivalent to (iv). ]

Example 10.2. With Proposition [10.1{(i) we can calculate the Cartan—Killing form of the
Lie algebra g = sl,(C) with the root decomposition

g = h @ @g&‘j—&‘ka
i#k
where § consists of diagonal matrices with trace 0.

For diagonal matrices z = . 2;Fj; and y = >, y;E;; we obtain, taking >, z; =
>_;y; = 0 into account:

n

() =Y (25— x) (@ — ) = Y (5 — 2)(y; — i)

ik jok=1
n n n n

= E TiYj — E TiY, — E Try; + E TrYk
j,k=1 4,k=1 j,k=1 J,k=1

=2n Z z;y; = 2ntr(zy).

J
We likewise have k(E;;, Exe) = 0 for (k,¢) # (j,1) and
1
5B — Ejj, [Bij, Eji])
1
= §E(E“ - Ejj; i EJ) = ntl‘((E“ — Ej')2) =2n=2n tI'(EUEﬂ)

1
K(Eij, Eji) = 5%([En' — Ejj, By, Bji) =

In view of Proposition [10.1{i), we thus obtain
k(z,y) =2ntr(xy) for x,y € sl,(K).

Definition 10.3. (Jordan decomposition in semisimple Lie algebras) Suppose that K is
algebraically closed. Let g be asemisimple Lie algebra and x € g. According to Theo-
rem and the fact that kerad = 3(g) = {0}, ad: g — derg is an isomorphism of Lie
algebras. Proposition shows that for every derivation D € der(g) with Jordan decom-
position D = D, + D,,, its diagonalizable Jordan component D, and its nilpotent Jordan
components D,, are derivations of g. We can therefore define

zs = ad ! ((ad x)s) and z,:=ad™? ((ad x)n)

and call x = z, + z, the Jordan decomposition of v in g. An element x € g is called
semisimple/diagonalizable if x = x4 and nilpotent if v = x,,.

Lemma 10.4. Let ¢,v € End(V') be commuting endomorphisms of the finite dimensional
vector space V. If ¢ is nilpotent, then so is v and, in particular, tr(p) = 0.
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Proof. If @™ = 0, then (py)" = ™)™ = 0, so that v is nilpotent, and this implies that
tr(py) = 0. [ O

Proposition 10.5. (Existence of toral Cartan subalgebras) If b is a maximal toral subal-
gebra of the finite dimensional semisimple Lie algebra g over the algebraically closed field
K, then b = go. In particular § is a toral Cartan subalgebra.

Since maximal toral subalgebras exist for dimensional reasons, this result implies the
existence of toral Cartan subalgebras.

Proof. We divide the proof into several steps.

Step 1: If € gg, then so are the semisimple and nilpotent component =, and z,,.
The condition x € go means that ad x(h) = {0}. Since adz; = (ad z)s and ad z,, = (ad z),
are polynomials in ad z without constant term (Theorem[A.2), we also have ad z,(h) = {0},
ie., zs € go, and likewise z,, € go.

Step 2: If x € gy is semisimple, then x € h.

Since x is semisimple, ad x is diagonalizable and commutes with ad . Therefore ad b and
adx can be diagonalized simultaneously. This means that § + Kz is a toral subalgebra.
Now the maximality of b implies that x € b.

Step 3: go is nilpotent.

Let # € go. Then z, € go by Step 1 and z, € h by Step 2, so that ady, s = 0. Therefore
adg, * = adgy, z,, is nilpotent because it is a restriction of a nilpotent endomorphism of g.
Now Engel’s Theorem implies that gq is nilpotent.

Step 4: g, is abelian.

In view of Step 3 and Corollary [4.12] g is a nilpotent module of the Lie algebra [go, go),
so that x(go, (g0, 90]) = {0} follows from Exercise [10.1] Since & is non-degenerate on go
(Proposition [10.1{iii)), it follows that [go, go] = {0}

Step 5: go = b.

If this is not the case, then Steps 1 and 2 imply that go \ b contains a nilpotent element z.
In view of Step 4 and Lemma [10.4] we then have x(z, go) = {0} so that z = 0 follows from
Proposition [10.1(iii). O

Definition 10.6. Let h C g be a toral Cartan subalgebra of the semisimple Lie algebra
g. Since the Cartan—Killing form is nondegenerate on fj, we can assign to every root «a a
uniquely determined element ¢, € h via the equation

k(h,ta) = a(h). (23)
Further, we can introduce a bilinear form on h* via
(o, B) = Klta, 1g) = alts) = B(ta). (24)
Lemma 10.7. For a € A(g,h),
[v,y] = w(z,y)ta  for =€ ga, Y€ Ja (25)
Proof. Both sides of the equation are in h (Lemma [8.10[(ii)), hence follows from
k(h, [z,y]) = K([h, 2], y) = a(h)k(z,y) = &(h, to)k(2,y) = K(h, £(z,y)ta),

since the Cartan—Killing form is nondegenerate on § by Proposition [10.1} [

12The most direct way to argue that tr(¢) = 0 for a nilpotent endomorphism is that its characteristic
polynomial is of the form det(y — t1) = (—1)™t", so that the coefficient (—1)"~1tr(¢) of #"~! vanishes.
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10.2 sl-Triples in Semisimple Lie Algebras

The following theorem is the starting point of a complete classification of simple Lie alge-
bras. It emphasizes the special role of the Lie algebra sly(K).

Definition 10.8. Let g be a Lie algebra. A triple (h,e, f) of elements of g is called an
sly-triple if

[h,e] =2e, [h,f]=-2f and [e, f] =h.
Then h,e, f are eigenvectors of ad h for different eigenvalues, so that h,e, f are linearly
independent and span{h, e, f} = sl (K).

Theorem 10.9. (sl,-Theorem) Let g be a semisimple Lie algebra, b C g a toral Cartan
subalgebra and o € A(g, h).

(i) For every root o € A(g,bh), we have (o,) # 0 and there are elements e, € @a,
fa € 9—a and hy, € [ga, §_a] such that (hy, eq, fo) is an sly-triple.

(ii) m, = dimg, = dim([ga, §-0o)) =1 and Za N A = {xa}.
(iii) a(hy) = 2.
In the following we write

g(a) = Span{hom €a, fa} - b D ga D g0

for the sly-subalgebra defined by the triple (hy, €4, fo). In view of (ii), it does not depend
on the choice of e, € g, and f, € g_,.

Proof. (i),(iii) From k(ga, 8-a) # {0} and Lemma we obtain elements ey, € gi, with
[eas€_a] = to. To see that (a,a) = aft,) is nonzero, let us assume the contrary and
consider some 5 € A. Then the subspace

V= asika

kEZ

of g is invariant under ad(e4,), so that

0 =tr([ades|v,ade_o|v]) = tr(adt,]y) = Z(ﬁ + ka)(ta) - mpika = Bta) - ngﬂm.
keZ keZ

Since ) oz Matrka = Mg > 0, we get B(t,) = 0 for all roots 3. But since the roots span b*
(Proposition [10.1}(iv)), this contradicts ¢, # 0. We conclude that (o, a) = a(ts) # 0. The
element h, = 2af§a) satisfies (iii). From Proposition (iii) we get an element f, € g_,
with k(eq, fo) = %, so that Lemma [10.7] implies that [e, fo] = ha. Now (i) follow from
(i).

(ii) We consider the subspace

Vi=Kfa+b+ D
n=1

of g. One verifies easily that this subspace is invariant under ad (g(a)) because it is invariant
under ad b, [fa,h] = Kf,, and [eq, 95] C gpta- According to Lemma we therefore
have

dim V,,,(ad h,) = dim V_,,(ad hy)

for all m € Z. This leads to
dim g, = dim Va(ad hy) = dim V_y(ad hy) = 1

and dim g,,, = 0 for n > 1. Now (ii) follows from (i). O
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10.3 Coroots and Root Strings

In the following g is a semisimple Lie algebra and h C g is a toral Cartan subalgebra. Then
we obtain a root decomposition of g with respect to . For brevity we put A := A(g, b).

Definition 10.10. (Coroots) For a root o« € A, we have already seen that [g,,g_.] is a
one-dimensional subspace of h on which a does not vanish. Hence there is a unique element

& =hy € [gas8-a) with a(q) =2,
called the coroot corresponding to « (cf. Theorem [10.9)).
Lemma 10.11. (Root String Lemma) Let o, € A.

(i) For B € A\ {xa} the set {k € Z: + ka € A} is an interval in Z. If it is of the
form [—p,q| N 7Z with p,q € Z, then p — q = B(&). In particular, (&) € Z.

(ii) If B(a) <0, then f+ o € A and if f(&) > 0, then f —a € A.
(i) 1f [g0r 95] = {0}, then () > 0.
(iv) If a+ B #0, then [gmgﬁ] = Ha+8-

Proof. (i) We consider the subspace V' := ", _; gs4ka- Note that 3 # {£a} implies that 0
is not contained in 5 + Za (Theorem [10.9(ii)). From [g,, gs] € g1+, we derive that V is a
g(«)-submodule of g (cf. Theorem [10.9). The eigenvalues of & = h,, on V are given by

Py = {(B+ka)(d@): B+ka e A} = B(a) +2{k: §+ ka € A}.

Hence the string property of sly-modules (Proposition implies the string property of
the root system.

Next we note that § € A leads to p > 0. In view of Proposition[0.7], we have Py = —Py.
Therefore

B(a) —2p = (B —pa)(a) = —(B + qa)(d) = —B(q) — 2q.

(ii) If B(&) < 0, then (i) leads to ¢ > 0 and hence to 5+ a € A. The second assertion
follows similarly.

(iii) As all multiplicities of the eigenvalues of & on V are 1 (Theorem [10.9(ii)), the
sly(K)-module V' is simple and isomorphic to L(S(&) + 2¢) (apply Proposition to a
nonzero element of ggi,4,). This immediately shows that

[gom gﬁ-l—koa] = gﬁ+(k+1)a for k= —p,—P + 17 N 1. (26)

If [ga,05) = {0}, then V := >, 9s+ka is invariant under g(o) = sly(K) and (@) is
the maximal eigenvalue of ad(¢t) on V. Hence Proposition [9.7] shows that 3(&) > 0.

(iv) We may assume that § + a € A (otherwise g, = {0}), so that ¢ > 1. Then (iv)
follows from (26). O

Lemma 10.12. The subspace hg := spang{a: o € A} of b has the following properties:

(i) a(bg) € Q for every a € A.

(i) w restricts to a Q-valued positive definite form on bg.

(iii) spang b = b.
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(iv) The Q-valued symmetric bilinear form on by, specified by

(o, B) = K(ta,tg) = a(tp)
1s positive definite.

Proof. (i) This follows from (&) € Z for o, f € A, which is a consequence of the Root

String Lemma [10.11}
(ii) That x is Q-valued on hg follows from

k(@ B) =Y y(@y(B) €Z for a,B€A.
YEA
For h € hg, we have a(h) € Q for every a € A by (i). This implies that

k(h,h) =Y a(h)? > 0.

aEA

If k(h, h) =0, then a(h) = 0 for every a € A, and therefore h € 3(g) = {0} (Lemma [8.2).

(iii) The non-degenerate form x on h defines a linear isomorphism

r:yp—5", [(z):=ck(z,-).

It satisfies I'(¢,) = a. From & = (Ztg 7, we further derive that
4

k(@) = K(ta,ta) = a,a) =

.
(a, a)? (a, @)
which implies that (o, «) € Q. Therefore Q& = Qt,, and thus

['(hg) = spang A.

(@, a)

This further leads to
I"(spang hg) = spang A = bh*.
(Proposition , and since I' is a linear isomorphism bg spans b.
(iv) As k is Q-valued on hg, we also obtain a linear isomorphism

FQ: bQ — b&’ F(l’) - KJ(.I, )

with I'(,) = a. The natural scalar product (-,-) on bg is now defined in such a way that
(I'(x),T(y)) = k(x,y), so that (ii) implies that it is positive definite. O

Exercises for Section [10

Exercise 10.1. Let (p, V') be a finite dimensional representation of the Lie algebra g and
ko(x,y) == tr(p(z)p(y)) be the corresponding invariant symmetric bilinear form. Show that:
If n < g is an ideal and V' is a nilpotent n-module, then r,(n,g) = {0}. Hint: Consider a
maximal flag F of submodules and show that p(n) C g, (F).

11 Abstract Root Systems and their Weyl Groups

In the previous section we proved a number of results on the root systems A(g, ) associated
with a given toral Cartan subalgebra b of a semisimple Lie algebra h. In this section we
distill some of the properties of these root systems into the concept of an abstract (finite)
root system in a euclidean vector space and show how to derive further properties using
this abstract level.
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11.1 Abstract Root Systems

Definition 11.1. Let E be a euclidean space, i.e., a finite dimensional real vector space
with an inner product (-, -), i.e., a positive definite symmetric bilinear form. A reflection in
E is a linear map o for which there exists a non-zero vector o with o = o, where

(B.)

(@, a)

0a(f) = =2

for [ eE.

Note that
oo(a)=—a and o,(8)=pF for [ La,

i.e., o, is the orthogonal reflection in the hyperplane a*.

Definition 11.2. Let E be a euclidean space and A C E \ {0} be a finite subset which
spans E. Then A is called a reduced root system if it satisfies the following conditions

(R1) ANRa = {+£a} for all @ € A. In particular, A = —A.
(R2) 0,(A) C A for all a € A,

(R3) For a € A the coroot

2a
(@)
satisfies (8, &) € Z for all 5 € A. Note that the reflection o, can be expressed by the
coroot as
0o (B) =B — (B, d)a. (27)

It is called root system if it only satisfies (R2) and (R3). If A is a root system, then we
call the group W = W(A) generated by the reflections (04)aea, the Weyl group of the root
system.

Remark 11.3. If A is a (nonreduced) root system and «, ca € A for some ¢ > 1, then
c-(a,&) =2c€Z

implies that ¢ € 3Z. Further, (ca)”= 1 leads to (o, ¢ 'ct) = 2 € Z, so that ¢ = 2. We
therefore get
ANRa = {+a, £2a}.

In the root decomposition of Lie algebras, the root system is a finite subset of the dual
h* of a toral Cartan subalgebra, which is a vector space over K. To find a euclidean space
E containing A, we cannot simply take the R-span of A because R need not be a subfield
of K. However, the rational vector space by = Homg(hg,Q), which also contains A, is
contained in the real space Homg(hg, R) and we shall see below that this space carries a
natural inner product.

Proposition 11.4. (The root systems A(g, b)) Let g be a semisimple Lie algebra, h C g a
toral Cartan subalgebra and b := span A. Then the scalar product on spang A extends to
an inner product on

FE = HomQ(hQ, R)

defining the structure of a euclidean space on E. Then A(g,b) C E is a reduced root system.
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Proof. We identify A with a subspace of g (Lemma [10.12(i)). First we show that £ =
spang A. Let by, ..., b, € hg be a Q-basis. Then

O:E R, ®(y)=(y(b),...,v(b))

is a linear isomorphism and ®(hg) = Q. Since A spans by, (it separates the points of hg
by Lemma[8.2), it follows that ®(A) spans ®(E), i.e., A spans E.

If a real linear combination ) .. #o« vanishes, then Za,,@e A Tays(a, B) vanishes for
any other linear combintation ) | 5 Y8 B. This implies that

(S e S md) = 3 sammlend o
a B a,BEA

is a well-defined symmetric bilinear form £ x £ — R.
If B C Ais an R-basis of F, then it also is a Q-basis of b, then Lemma [10.12(ii)
implies that the matrix ((a, B)) is positive definite as a real matrix. As

o,BEB
(Zxaa,Zmﬂ) = Z xaya(aaﬁ)v
a€EB pseB a,fEA

it now follows that the scalar product on E is positive definite. We now verify (R1)-(R3).
(R3) For , 8 € A, Lemma [10.11] yields (8, &) = p — ¢ € Z, where p,q € Ny are such
that 8 — pa and 8 + qa are the ends of the a-string through 5.
(R2) The same lemma also implies  — (8, &@)a € A because —p < —(5,&) =q¢—p < q.
(R1) Since (R2) and (R3) are satisfies, Remark [L1.3] implies that it suffices to show that
ZaN A = {£a}, but this follows from the sl,-Theorem [10.9]
This shows that A is a reduced root system. [

Definition 11.5. (Weyl group) Let h be a toral Cartan subalgebra of the semisimple Lie
algebra g. In view of Proposition this data defines a Weyl group

W(g,h) == W(A(g, h))-

Examples 11.6. (Weyl groups of the classical root systems) We now discuss the four series
of root systems A, B,, C,, and D, in the euclidean space R", where (z,y) = >, x;y; is the
canonical inner product. We have already seen in Examples[8.7] and how these root
systems arise from Lie algebras. However, the normalization of the scalar product induced
from the Cartan—Killing form may be different, as we have seen in Example [10.2]

(a) Let us write (&;)1<j<n for the canonical basis of R". We consider in the euclidean
space £ :={z € R": ) . x; = 0} the root system

Ay i=A{ej —e: j # Kk} = Asl,(K), b)

(cf. Example [8.7). For the root oy, := €; — €, we then have &, = aji, so that

gp forl# 75,k
O'ajk(&fg) =&y — ((5@7]' — 5g7k)(€j — é?k) = 9 €k for ¢ :j
gj forl =k

13Note that the Hurwitz criterion for positive definiteness of a matrix in terms of its minors can be
applied to any subfield of R containing all entries of the matrix.

A more direct argument works as follows: If A is positive definite over Q, then the density of Q in R
implies T Az > 0 for every x € R"®. If 2" Az = 0, then 3" Az = 0 for every y € R by CauchySchwarz.
Now Az = 0, but detr(A) = detg(A) # 0 yields x = 0.
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Therefore 0, acts on the orthonormal basis (/)1<¢<n as the transposition (jk) € S,,. Since
these transpositions generate the symmetric group, it follows that

W(An_1) 2 S,.

It follows in particular that the action of this group preserves A,_j, so that (R1-3) are
satisfied, i.e., A, is a reduced root system in the sense of Definition [11.2]
(b) For the root system

B, :={%ej,te; e, 5, k=1,....,n,j#k} CR"
of the Lie algebras 0,41, (K) (Example B.8(b)), we obtain from &; = 2¢; the relation

er for 4

0¢; () = €0 = 200565 = {—54 for ¢ = j

and from (g; + ¢€;) = €; + &, further

) for £ # 5,k
Ocyte,(€0) = €0 — (0o + 00p)(ej + k) = —&p forl=j
—e; forl=k.
In particular, o ., = o.,0.,. We conclude that

W(B,) = {£1}" x S,

is the group of signed permutations.

Again, the description of the group generated by the reflections implies that (R1-3) are
satisfied for B,,.

(c) For the root system

Cni={%2ej,xe; £, :j,k=1,...,n,j #k} CR"

of the Lie algebras sp,,, (K) (Example , we obtain from (2¢;)"= ¢; the relation oy, = 0.
Therefore
W(C,) EW(B,) 2 {£1}" x S,

is also the group of signed permutations.
(d) For the root system

Dn = {Itggj:ekjak:177n7j7ék}an

of the Lie algebras 0, ,(K) (Example[8.8(a)), the calculations under (b) show that the Weyl
group contains all permutations and all signed permutations with an even number of sign
changes:

W(D,) ={(m,...,nn) € {£1}": {j : n; = —1}] € 2Ny} x S,,.
This is a subgroup of index 2 in W(B,,) = {£1}"x S,,. It is the kernel of the homomorphism

v:W(B,) = {1}, v((mjigjcn, o) = HUJ‘-
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Remark 11.7. The angle 6 € [0, 7] between « and (3 is defined by the identity

e[ 8] cos 0 = (v, B),
where ||a|| = v/ (o, @) is the norm of the euclidean space E. We have

cosf and (o, B)(B,d) = 4cos? .

Hence (8, &), (a, B) € Z leads to 4cos®> 6 € Z, and there are only the following possibilities
for [laf < [|8] and 5 & Ra:

(a, ) 0 [1]|—1|1][—-1]1]|-1
(B, &) 0 [1|-1|2]-2]3|-3

T s 27 s 3 s 5
0 s |55 |5/ 7|5 %
I Jarb. | 1) 12| 23] 3

Note that exchanging § by —f replaces § by 7 — @ and that (a, 8) > 0 is equivalent to
0<0<7.

Lemma 11.8. Let ® C E be a finite generating subset of the euclidean space E which
is tnvariant under all reflections (04)ace. If 0 € GL(E) fizes a hyperplane H pointwise,
o(a) = —a for some o € & and o(P) = D, then 0 = 0,.

Proof. Let 7 := 00,. Then 7(®) = ® because both factors have this property. Then
7(a) = o and the linear automorphism 7 € GL(E/Ra) induced by 7 coincides with the
linear automorphism ¢ € GL(E/Ra) induced by 0. As E = H + Ra, we have ¢ = id and
therefore 7 = id. We conclude that 7 — 1 is nilpotent, i.e., 7 is unipotent. The 7-invariance
of the finite set ® shows that there has to be a power 7% which keeps ® pointwise fixed. But
® spans E, so that 7% = id. As 7 is unipotent, it follows that 7 = id (Exercise . O

Proposition 11.9. Let A C E be a root system with Weyl group W. If T € GL(E) satisfies
T(A) = A, then

(i) ToaT 1 = 0,4 for all a € A.

(i) (8,@) = (7(B),7()) for all o, € A.

Proof. (i) First we note that o := 70,77! satisfies 0(A) = A because all factors have this
property. Further,o keeps the hyperplane 7(a't) pointwise fixed, and it maps Ta to —7a.
Hence Lemma [11.8 shows that 70,771 = 0,4.

(ii) In view of (i), this follows by comparison of the formulas

r(a)(T(B)) = 707 H(7(B)) = T(0a(B)) = 7(B — (B, a)a) = 7(B) — (B, d)7 ()

and

(o) (7(8)) = 7(8) = (7(8), 7(a)) 7(ev). O
Lemma 11.10. Let A be a root system, and suppose that o, 5 € A are not proportional.
e If(a,8) >0, then o — 5 € A.
e If(a,B) <0, then o+ B € A.
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Proof. Exchanging 8 by —/, we see that it suffices to verify the first assertion.

Since (a, ) is positive if and only if (a, f) is positive, Remark shows that we have
(o, B) =1 or (B,a) = 1. If (o, f) = 1, then a — B = o5(a) € A. Similarly, for (8,d) = 1,
we have f — a = 0,(f) € A, hence a — 5 € A. O

The following lemma asserts that in abstract root systems root strings are “unbroken”.

Lemma 11.11. (Root String Lemma) If o, 5 € A are not proportional, then there exist
p,q € Ny such that

B+Za)NA={f—jarj=—p,—p+1,....¢—1,q} and (B,a4)=p—q.
Proof. Let p,q € Ny be maximal with § + qa, 8 — pa € A. Since
oo(B+ja) =B+ ja— (B+ jo,d)a € B+ Za,
the a-string through £ is invariant under o,. We conclude that

O'a(ﬁ _p&) = ﬁ + qa,
and this leads to
(8,0) = 2p = (B —pa,&) = —q — p,
so that (8,a4) =p —q.
Suppose that there exists a j € Z with —p < j < gand v := f+ja € A. We may w.l.o.g.
assume that j is maximal with this property. Then o,(v) = 6 + ka &€ A implies k < j, so

that (v,&) > 0 and thus (y,a) > 0. The maximality of j further implies v+ « € A. As
(v + a,a) > (v,a) > 0, Lemma [11.10] leads to the contradiction v = (y + o) —a € A. O

11.2 Root Bases
Definition 11.12. Let A C E be a root system and II C A. We write
No[IT] := { Zkaa: ko € NO} C Z[II) = span, II C E.
a€ell
We call I a basis for A if IT is a basis for the vector space F, and if
A C No[IT] U No[-T1].

Then
A+ = NO [H]

is called the corresponding positive system. It satisfies
A=ATU—-AT.

The elements of IT are called simple roots or base roots. The height of the root = 3" kacx

is the number
ht(B) == ka.

a€cll

Lemma 11.13. Let A be a root system and 11 be a basis for A. Suppose that o, 5 € 11 with
a# f. Then (o, ) <0 and o — (B is not a root.

Proof. Since 1I is a basis for F, « and  cannot be proportional. If (a, ) > 0, then
Lemma [11.10|shows that a— 5 € A. But this contradicts the definition of a basis for A. [
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Lemma 11.14. (Criterion for linear independence) Let M C E be contained in an open
half space of E, i.e., there is a A € E with (\,«a) > 0 for all a € M, and («, B) <0 for all
a,B € M with o # 3. Then M s linearly independent.

Proof. Suppose that ) ., 7o = 0 with r, € R, and set

My :={a€e M| +r,>0}.

vi= Y ra= Y ()8

aEM BeM_

Then

and therefore

)= 3 ra(=r)a,f) <0

aEMy,peEM_

which leads to ¥ = 0. But we then have

0=(\v)= Z ral(A, a),

acEMy
which implies My = () since we otherwise arrive at a contradiction. O

Definition 11.15. (a) Let A C E be a root system and A € E. Then A is called regular if
A € ot holds for all @ € A. Otherwise, \ is called singular.
(b) For any regular element A € F, the set

AT\ ={aeA|(\a)>0}
is called the corresponding positive system. Note that
A=ATANU—-AT(N).

An element av € AT (\) is called decomposable if there are 31, fo € AT (N\) with o = 51 + [3a,
otherwise, it is called indecomposable.

Theorem 11.16. For each regular element A € E, the set 11 := II(\) of indecomposable
elements in AT(\) is a basis for A. Conversely, every basis of A is of this form.

Proof. Claim 1: II := II(\) is a basis for A.

First, we show that AT(\) C Ny[II]. For this, we suppose that &« € A*(\) cannot be
written in this form, and that (o, A) is minimal among all positive roots with this property.
Then there exist 8, Bs € AT(N\) with o = 51 + 2, and then 0 < (8, A) < (a, A) for j =1, 2.
Now the minimality of (a, \) yields ; € Ny[II], which leads to the contradiction o € Ny[II].

As a consequence, we see that A C Ny[IT]U —Ny[II]. Since A spans the space F, so does
I1. It therefore remains to show that I is linearly independent.

Next we show that (a, 8) < 0 for all v, § € Il with a # 3. If @« € Rf3, then Remark [11.3]
implies that o = 2 or = 2a, contradicting the definition of I[I. We may therefore assume
that f ¢ Ra. If (o, 5) > 0, then Lemma implies « — f € A = AT(\) U —=AT(N).
If o — 3 € AT(N), then @« = § + (o — ) which contradicts the assumption that « is
indecomposable. Similarly, 8 — a € A*()) gives a contradiction by 8 = a + (8 — ). Now
Claim 1 follows by Lemma [11.14] applied to M = II.

Claim 2: Every basis II for A is of the form II(\) for some regular element \ € E.
For v € II, define @ € E by (a,8) = d0ap for f € II, so that we obtain a dual

basis I = {&: a € II}. Let A = Y e @ Then (A, a) = 1 for every o € 1I, so that
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(A\,a) > 0 for all a € II. Since every 8 € A can be written as a linear combination of the
a € II with coefficients of the same sign, A is regular. Then the set A* of positive roots
defined by II satisfies AT C AT(X) which leads to AT = A*(\) because of AT U —AT =
A = AT(A) U —AT(A). From the definition of a basis for A, we see that II consists of
indecomposable elements of AT = A*()), and therefore it is contained in II(A). On the
other hand, the cardinalities of II and II(\) are both equal to n = dim E, since both sets
are bases for E. This proves that II = II()\). O

Examples 11.17. We describe bases of the root systems of types A-D. To this end we
consider the element A = (n,n—1,...,1) € R, which is regular for the root systems A,_1,
B,, C,, and D,,. The corresponding bases and positive systems can be described as follows:
(a) For
A, ={gj —ep: j#k} = A(sl,(K), b),

the corresponding positive system is
AT\ ={e; —er: j <k}

(strictly speaking, this is a positive system defined by the orthogonal projection X of A onto
span A,_1) and
H()\) = {gj_5j+1:j: 1,,?7,—1}

is the corresponding basis.
(b) In
B, ={te;,tej e j,k=1,...,n,j#k} CR"

the corresponding positive system is
AT(N) ={ej g5 e j <k}

and
AN ={ej—ejp:j=1,....,n—1} U{e,}

is the corresponding basis.
(c) In
Cp={%2¢j,xe;ter:5,k=1,...,n,j #k} CR"

the corresponding positive system is
AT(N) ={2¢j,ej L ep: j < k}

and
AN ={e; —ejm:j=1,....,n—1} U{2¢,}

is the corresponding basis.
(d) In
D, ={xe;ter:j,k=1,...,n,j #k} CR"

the corresponding positive system is
AT\ ={e; ter: j <k}

and
M\ ={e;—cj1:j=1,...,n—1}U{enq + &}

is the corresponding basis.
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11.3 Weyl Chambers

Definition 11.18. The connected components of the set

Erg = E\ | Ja*

a€A

of the regular elements are called Weyl chambers. The Weyl chamber which contains the
regular element A € E' is denoted by C(A). It coincides with the set

{peE: VaeA)(\a)>0= (ua) >0}
Remark 11.19. Let A C FE be a root system and A\, \' € E be regular elements.
i) CAN)=C(N) < AT\ =AT) < I\ =TI(N).

(ii) By (i) and Theorem [11.16] there is a bijection between the set of Weyl chambers and
the set of bases for A.

(iii) If IT = II(A), then we call C(II) := C(\) the fundamental chamber associated with the
basis II. It is given by

CIl)y={pe E|(B,a) >0 forall ac I}
={BeE|(B,a)>0foralaecA’}

Definition 11.20. Let II C A C E be a root basis. We define a partial order < on E by
a<pB <= [B-—acNJAT] = Ny[I].
Lemma 11.21. Let A C E be a root system and 11 be a basis for A.
(i) For a € AT\ 1, there exists a B € Il with o — § € AT.

(i) If a € 11, then o, permutes the set AT\ Za (which coincides with AT\ {a} is A is
reduced).

(iii) Let aq,...,a, € I and set o; == 04,. If 01+ 0p_10.(w.) € AT, then there is an
se{l,...,r— 1} such that

Ul"'ar:0-1"'0-8—10-5—&-1"'0-7"—1-

Proof. (i) Suppose for all g € II, we have (o, ) < 0. Writing IT = II(\) for some reg-
ular element A\ € E (Theorem [11.16)), the set I U {a} now satisfies the assumptions of
Lemma [I1.14] hence is linearly independent. Since II is a basis for F, this cannot be the
case, i.e., there is a 5 € Il with («, ) > 0.

Case 1: o and 3 are not proportional. Then Lemma shows that o — 3 is a root.
Since @ € AT\II, it is a linear combination of elements in II with at least two positive
(integral) coefficients. Subtracting [ leaves at least one positive coefficient, so a — £,
being a root, has to be positive.

Case 2: a and (8 are proportional. Then Remark shows that a = 208 since  is
indecomposable. But then o — 8 = [ is a root.
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(i) Let 8 € AT\ Za and B = 3y kyy with k, € Np. Then there is a v # a with
k, > 0. Since

0a(8) = B— (B, a)a = (ke — (B,a))a+ > ky,

yeM\{a}
0.(B) has a positive coefficient k., in its representation as a linear combination of simple
roots. Thus, all coefficients are nonnegative, and o,(8) € AT. By o,(a) = —a, we also

have 0,(08) # a, i.e., 0,(8) € AT\ {a}. Since the latter set is finite, the claim follows.
(iif) Set

O'i+1"'0'r,1(@r> fori:O,...,r—Z,
Bi = .
o fori=7r—1.

Then Sy ¢ AT and 8,_1 = o, € AT, so that there exists a minimal s € {1,...,r — 1} with
Bs € AT. For this s, we have o4(8;) = fs—1 &€ A'. In view of (ii), this shows f; =
because %ﬂs is not a root. By Proposition , for w := 0411 ---0,_1, we have

O0s = 08y, = Owa, = wo’rwil = (03+1 te O'rfl)a'r(o'rfl to O'3+1),

which shows that
Og**0p = Og41 """ 0p_1,

and this implies the claim. [
Corollary 11.22. Let A C E be a root system and Il be a basis for A.

(i) Every f € A" can be written in the form oy + ... + ., with o; € II such that
S ;€ AT for each k€ {1,...,m}.

J

(ii) Let o0 = 01---0,, where the 0; = 04, are reflections associated with the simple roots
a; € II, and where r is the minimal number of factors needed to represent o as such
a product. Then o(a,) € —A™T.

Proof. (i) follows by induction with Lemma [11.21)1).
(ii) If the assertion is not true, then o(a,) € A, so that Lemma [11.21{iii) contradicts
the minimality of the number r of factors. m

Theorem 11.23. Let A be a reduced root system, W be the corresponding Weyl group, and
IT a basis for A.

(i) For every regular element A € E, there is a 0 € W such that
(oA, a) >0 for «ell,

i.e., 0(C(N\)) = C(II). In particular, W acts transitively on the set of the Weyl cham-
bers.

(ii) Let IT" be another basis for A. Then there is a o € W with o(Il') =11, i.e., the Weyl
group also acts transitively on the set of the bases.

(iii) For every root a € A, there is a 0 € W with o(«a) € 1.
(iv) W is generated by the o, with o € 1.
(v) If o(IT) =11 for o € W, then o = 1.
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Proof. Let W' be the subgroup of W, generated by the o, with a € II. Suppose, (iii) holds
for W' instead of W. Then for o € A, we can find a w € W' with wa € II. Then by
Owa = wo,w™ ! (cf. Proposition [L1.9), we obtain that o, = w™lo,,w € W'. Since W is
generated by the o, with « € A we get W = W', which is (iv). Further (v) is an immediate
consequence of Corollary (ii) applied to w because it implies that the minimal number
of factors o,, a € II, in w must be zero. Therefore, we see that it suffices to show (i)-(iii)
for W instead of W.

(i) Let u € C(II) and choose w € W' such that the number (wA, p1) is maximal for the
given A. For a € II, we then obtain

(w)‘v M) > (an)\7 :u’) = (w)‘a O-Oé:u) = (w)‘v :u) o (U))\, (:ua d)OC) = (’LU)\,/L) o (w)‘7 Oé)(,LL, d)

This gives
(wA, a)(p, ) = 0,

and since (u, @) > 0 for every a € II, we obtain (wA, @) > 0 and (wA, a) > 0 by regularity.
Therefore wA € C(II) and thus wC(X\) = C(II).

(ii) By (i), this is an immediate consequence of Remark

(iii) Because of (ii), it suffices to show that « is an element of some basis. If § # +a is
a root, then o and 3 are not proportional since A is reduced. Thus, a* # 5+, and we can

find a
A€ at\ U B+
peA\{£a}
because we have to avoid finitely many hyperplanes in a*. Let ) := \ + e, where € > 0

is chosen such that
0<ela,a) =(N,a) <min{|(N,8)]: 8 € A\ {£a}}.
Then X is regular with o € II(\) (cf. Theorem [11.16]). O

Proposition 11.24. (The dual root system) If A C E is a root system, then
A:={a: acA}

also is a root system. It is reduced if and only if A is reduced. Moreover, if A1 is a positive
system of A, then
AT :={a: a e A"}

is a positive system of A, and if IL C A is a root basis, then
I:={da:aell,2a ¢ A}U{id: a €II,2a € A}
is a root basis of A.

The root system A is called the root system dual to A.

Proof. To verify (R1) for A (if A is reduced), we note that 3 € Ra implies § € Ra and
hence 8 = #a, which in turn leads to § = £d. If A is not reduced, then (2a) = 1¢ shows
that A is also not reduced.

Since o4 is the orthogonal reflection in a— = &, we have o, = g4. As 0, is an isometry,
it satisfies 0,(3) = 04(B), so that A satisfies (R2). Finally we note that for o, § € A, we
have

€ 1

(dv d/) = )

(o, q)

79



so that (&) = «. Therefore )
(d7 (ﬁ)v) = (ﬁ>d) € Z,
and we conclude that A also is a root system.

Now let
AT =AT(\) ={a € A: (\a) >0}

be a positive system of A. From the definition of the dual root system, it follows that A
and A define the same set of regular elements. Therefore

AT ={a e A: (\a) >0}

is a positive system of the dual root system A.

To see that II is a root basis, we argue that II is contained in the root basis IT' of
indecomposable elements of A*. Then |II| = |II| = dim E = |II| implies that II = II' is a
root basis. So let @ € II and assume that it is decompasable: & = (1 + 2 with B; € AT,
Write 3; = Z’yEH cgj)’y with cgj) > 0. As Bj is a positive multiple of §; and & € Rta, it
follows that all coefficients c(yj) vanish for v # a. Hence ; € Ra and thus §; = 2a. But
then the definition of II implies that & ¢ II. O

Examples 11.25. (a) In the root systems A, and D,,, all roots have the square-lenght 2,
so that they are self-dual: A, = A, and D,, = D,,.

(b) In the root sustem B,,, we have two different root lengths, the roots +¢; & ¢; have
square lenght 2, and the roots 4¢; have square lenght 1. This leads to €; = 2¢;. From that
we derive that B, = C,, and C,, = B,,. In this sense the root systems B,, and C,, are dual
to each other.

Exercises for Section

Exercise 11.1. Let V be a finite dimensional vector space over the field K and let U &€
GL(V) be unipotent, i.e., U — 1 is nilpotent. Show that

(a) If charK =0 and U is of finite order in GL(V'), then U = 1. Hint: Describe U by an
upper triangular matrix with respect to a suitable basis.

(b) Suppose that char K > 0. Find a non-trivial unipotent matrix of finite order. Which
orders can occur?

Exercise 11.2. (An irreducible non-reduced root system) Let n € N. Show that
BC, :=B,UC, ={+te;,*2¢j, £t : 5, k=1,....,n,5 #k}

is an irreducible, non-reduced root system in the euclidean space R", endowed with the
standard scalar product. Sketch the root system for n = 2. What is the corresponding
Weyl group?

Exercise 11.3. In the euclidean plane
E={ceR" > =0}
J
we consider the subset
G2 = AQ U { + (281 — &9 — 83), :]:(262 — &1 — 63),:|:(253 — &1 — 62)}.
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1. Show that G5 is a root system.

2. Determine a root basis.

3. Determine the number of Weyl chambers. Hint: They all have the same angle.
4. Draw a picture.

5. Determine its Weyl group.

Exercise 11.4. Let V' be a real vector space. A element o € GL(V) is called a reflection
if it is of the form

op(w) =w —v*(w)v with 0" € V* v*(v) = 2.

We call a set (0y,),es of reflections irreducible if, for v,w € S, there exist vg = v, vy,...,v, =
w € S with
vig(v;) #0 for j=1,...,n—1

We write W := (0,: v € S) C GL(V) for the subgroup generated by the reflections o,,
v € S. Show that:

(i) VW ={veV: (Yw e W)w(v) = v} = [,qker s*.

(i) Veg := span{w(v) —v: w € W,v € V'} is a Wh-invariant subspace containing S and
minimal with this property.

(iii) Assume that (0,).es is irreducible, that span .S = V and (),.q ker s* = {0}. Then the
representation of YW on V is irreducible.
Hint: Show that every non-zero W-invariant subspace V5 C V' contains S.

(iv) If ¢ € End(V) commutes with W, then ¢ € Ridy .

Exercise 11.5. (Uniqueness of scalar product for irreducible root systems) Let (£, (-, "))
be a euclidean space and A C F be an irreducible root system. Further, let (-,-) be a
second inner product on E for which A C (E, (-,-)) also is a root system. Show that there
exists a ¢ > 0 with (v,w) = ¢(v,w) for v,w € E. One may proceed along the following
steps:

(a) For a, 8 € A, we have
(8,0) _ (B,0)

(,0)  (a,0)

Hint: This can be derived from the Root String Lemma.

(b) The reflections o, a € A, are the same for both scalar products.

(c) For a € A, put ¢, := ézzg Show that

(1) cq = cp for (B, ) # 0.
(i) ¢:= ¢, is independet of a.

(iii) (B,a) = c(B,a) for a, f € A.
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12 The Classification of Simple Split Lie Algebras

In this section we eventually come to the classification of those simple finite dimensional Lie
algebras over a field K of characteristic zero which are split in the sense that they contain
a toral Cartan subalgebra h. We won’t go through the full proof of the classification but
we shall explain the strategy and the result. The main idea is to associate to a basis II
of the root system A(g,h) a (weighted directed) graph, called the Dynkin diagram. This
translates the classification of finite reduced root systems into the classification problem
for Dynkin diagrams, which can be carried out by elementary means (but we won’t go into
details of the proof of the classification).

12.1 Cartan Matrices
Definition 12.1. Let A be a roots system and II C A be a root basis. The matrix

CM(II) = (a(f))a,pen
is called the Cartan matriz of 11. The integers a(B) are called Cartan integers.

Lemma 12.2. The Cartan matrizc CM(II) has the following properties (for o, 5 € 11):
(CM1)
(CM2)
(CM3) «
(CM4)
(CM3)

CM5) a(f)p(a) € {0,1,2,3}.

Proof. (CM1) follows from Lemma [11.11]
(CM2) follows from the Definition of .
(CM3) follows from Lemma [11.10]
(CM4) follows from

_ 2a.f) _ (0,0) 2 f) _ (

8,8)  (B,8) (o) (B, 5)

(CM5) follows from Remark which asserts that a(3)5(c) = 4 cos?(#), where 6 is the
angle between « and f. O

o)

There is a subtlety involved in the definition of Cartan matrices that deserves to be
noticed because it is relevant for classification purposes. A Cartan matrix, as we defined
it, is a function II x I — Z and as such an “abstract matrix” (which could encode a linear
map with respect to a basis without reference to any enumeration). To write this as an
element of M,.(Z), r := |I1|, one first has to introduce a linear order on II:

II={ay,...,a}.

Once this enumeration is fixed, we can identify the Cartan matrix with a “concrete matrix”
A = (aij)1<ij<r € M, (Z), where a;; = c;(¢;). In this representation, the matrix A has the
following properties (for all 7, j):

14Elie Cartan used these matrices 1894 in his classification of the complex simple Lie algebras.

82



(CM1)" a;j € Z.
(CM2)" a; = 2.
(CM3)” a;; <0.
(CM4)" a;; <0=aj; <O0.
(CM5)" ajja;; € {0,1,2,3}.
The two concrete matrices Cartan matrices
2 -1 0 2 0 -1
Ci=1-1 2 -1 und Co=11 0 2 -1
0o -1 2 -1 -1 2

are two concretizations of the same abstract Cartan matrix of the root system Az. More
generally, for the ordered root basis a; = ¢; — ;41,2 = 1,...,n — 1, of the root system
A,_1, we obtain the concrete Cartan matrix

2 -1 0 0

-1 2 -1 0
C=10

-1 2 -1

0 0 -1 2

Proposition 12.3. A reduced root system A is completely determined by the Cartan matrix
CM(II) of a root basis I1.

Proof. We show by induction on the height n, that the set
At(n):={B € A" |f]=n}

is determined by the Cartan matrix. For n = 1, we have A*(1) = II. So let us assume
that n > 1. We assume inductively that A*(k), k < n, is determined by the Cartan matrix
CM(II). For every B € A*(n), there exists by Lemma [11.21](i) a simple root a € IT with
B —a€ A, and thus f — «a € AT(n —1). Therefore we only have to determine for which
roots v € AT (n — 1) and which a € IT the sum « + v is a root.

If v = «a, then v+ a = 2a € A. We may therefore assume that v # «, i.e., in the
representation of v with respect to the basis II at least one other simple root o' # «
occurs. Then all roots of the form v — ja, j € Z, are positive, because there o/-coefficient
is positive. Since we know already that the set (J, ., _; AT (j) is determined by CM(II), we
can determine the maximal p € Ny with v — pa € A. Then the Root String Lemma [11.11
implies that ¢ = p — v(&) is maximal with the property that v + gqo € A. Hence v + «
is equivalent to y(&) < p. Note that (&) can be calculated from the representation of
w.r.t. the basis II and the Cartan matrix. This completes the proof. O

The proof of Proposition [12.3| contains in particular an algorithm how to construct
the root system from its Cartan matrix by constructing inductively the layers A*(n) from
At(1) =1L

Example 12.4. We explain this procedure for the Cartan matrix

a=(205) = (e mian):
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We start with
II = A*(l) = {1, as}.

From ay — a; € A we find for the aq-string through s and the ap-string through a:
Qg,0p +aq; a1, 00 + Qg, 0 + 20, aq + 3o
(Root String Lemma . We successively obtain
AT2)={a;+ay} and AT(3)={a + 20z}

To v = a3 + 2as we may add s and obtain the root v + as. The a;-string through
contains no root of smaller height because 2ay is not a root. In view of y(d;) =2 -2 =0,
the ay-string through v is trivial. We thus obtain

AT (4) = {aq + 3az}.
Here we are not allowed to add ag, but since (o + 3az)(dy) =2 — 3 = —1, we get
A+<5) = {20&1 + 3&2}.

As the a;-string through a; 4+ 3ay ends in 2a; + 3as (because (ay + 3an)(d1) = —1), the
element 2aq + 25 is not a root, and (2a; + 3as)(de) = —6 + 6 = 0, we cannot add any
other root. We thus obtain 6 positive roots

AT ={ay, ag, a1 + ag, ap + 209, a1 + 3, 201 + 3}

The so constructed root system A = AT U —A" is called G3. One can show that
it belongs to a 14-dimensional simple Lie algebra g with a 2-dimensional toral Cartan
subalgebra. The dimension of g is obtained from the root decomposition by the formula

dimg = dimb + |A] = 2412 = 14.
Presently, we have not shown that a Lie algebra with this root system exists.

The next step to the classification is to classify all Cartan matrices of finite root systems.
This can be achieved by an analysis of the corresponding Dynkin diagram, introduced below.

12.2 Irreducibility and simplicity

First we reduce the classification of Cartan matrices to the case of irreducible root systems
which corresponds to the case of simple Lie algebras.

Definition 12.5. A subset F' C A is called indecomposable if it cannot be written as a
disjoint sum F' = F;UF; of two non-empty subsets with I, L F5. Note that the orthogonality

of F} and F, is equivalent to () = 0 for o € F} and § € Fs.

Theorem 12.6. (Generation Theorem) Let II C A be a root basis. Then g is generated by
the 3-dimensional subalgebras g(a), v € 11.

Proof. Let q C g be the subalgebra of g generated by g(«), a € II.

In view of Corollary m(i), every § € AT can be written in the form oy + ... + ap,
with o € II such that )7 | a; € A* for each k € {1,...,m}. Then Lemma |10.11} which
asserts that [ga, 8] = gasp if @, B, + 5 € A, implies that

g5 = [gOé'm? [gamfu [ I [gazvgoq] e H] Cq.
We likewise see that gg C q for 5 € —A™. Therefore q contains all root spaces and

span{h,: a € II} = span{t,: a € II} = h

(Lemma [T0.12((iii) ). 0
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Proposition 12.7. A semisimple Lie algebra g with toral Cartan subalgebra b and root
system A = A(g, h) is simple if and only if A has an indecomposable root basis.

Proof. Suppose first that g is not simple and let g = g; & g2, where g, and g, are proper
semisimple ideals. Let h; C g; be toral Cartan subalgebras. Then b := bh; @ b3 is a toral
Cartan subalgebra of g and the corresponding root system is given by

A =A1UAy,  where A;=A(gy,bh1) x {0} and Ay = {0} x A(ga, ba).
The corresponding root spaces are
g =gy x {0} and @ ={0} xg5.
If II; € Aj, j = 1,2, are root bases, then
I = (T x {0}) U ({0} x IIp)

is a partition of the root basis IT of A into subsets with (a, 0)((0,53)) = 0 for a € II; and
B € Ily. Therefore II is decomposable.

Now we assume that IT = II;UIl, with a(B) =0foracllyund 8 €1Il,. Let g; C g
denote the subagebras generated by the subalgebras g(«), a € 1I,. For a € Iy, § € II, we
then have o — 8 & A because both are base roots, so that a(f) = 0 also implies o + 5 & A

(Root String Lemma[11.11)). We conclude that [gia, g4+4] = {0} and thus [gia, 9(58)] = {0},
so that we further obtain [g(«),g(8)] = {0}. This in turn implies that [g(5),g:1] = {0}
because a € II; was arbitrary and the centralizer 34,(g(5)) of g(8) in g is a subalgebra.
With a similar argument we see that [g, g1] = {0}. From the Generation Theorem [12.6]
it now follows that g = g; + g0, so that g; < g is a proper ideal. In particular g is not
simple. O

From the preceding proof one can easily derive that, in general, the irreducible compo-
nents of Il correspond to the simple ideals of g.

12.3 Simplicity of the Classical Series

In this subsection we use the preceding results to verify that the Lie algebras sl,,(K), 0, ,(K)

(n #1,2), 0,,41(K) and sp,, (K) are simple. We have seen in Examples [8.7], and
that these Lie algebra contain a toral Cartan subalgebra for which the root systems are of

type
o A, for sl,(K),
e B, for 0,,.11(K),
e C, for sp,, (K), and
e D, for 0,,(K).

With the explicit description of the root spaces, it is easy to verify that all subalgebras
9() = go + 9-0a + [8a, 9—a] are isomorphic to sly(K), so that the semisimplicity criterion
from Lemma implies that these four Lie algebras are semisimple if we can show that
3(g) = {0}. If, in addition, IT is indecomposable, then it is simple by Proposition [12.7]
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Example 12.8. For g = s[,,(C) we have the roots a;; = ¢; — ¢;. Then g,,, = KEj; and
aii([Eij, Ejl) = (6 — ;) (B — Ej5) = 2,

so that &;; = E; — Ej;. A diagonal matrix h = diag(hs,...,h,) is central if and only if
h; — h; = a;;(h) = 0 for 1 < i < j < n. This is equivalent to hy = ... = h,, so that
>, hj = 0leads to h = 0. Therefore 3(sl,(K)) = {0}. Now Lemma implies the
semisimplicity of g. To verify the simplicity, we consider the root basis

H:{él—ﬁg,...,gn_l—ﬁn}

from Example [11.17] which satisfies ; ;41(q142) = —1 # 0. Therefore II is indecompos-
able and therefore g is simple. For o := ¢; — €41, the Cartan matrix is

2 -1 0 0
12 -1 0
(aj(r))i<jp<n— =] O
-1 2 -1
0 0o -1 2

Example 12.9. We consider the Lie algebra g = sp,,(K), whose root decomposition we
know from Example [8.9) We have seen that

b :=span{Ej; — Ejinjin: j=1,...,n} € g C gl (K)
is a toral Cartan subalgebra and that the root system is given by
A={£2;,£(c;£ex): j#k,Jk=1,....,n}=C,.

From this explicit description of the root system, we immediately derive that 3(g) =
Naca kera = {0}. For the coroots we obtain

(Ej - Ek)v = Ejj - Ekk - Ej+n,j+n + Ek+n,k+n
(éj + €k)v = Ejj + Ekk - Ej+n,j+n - Ek+n,k+nu J 7é k’
(28;) = Ejj = Ejinjn;

because
g€j+€k = K(Ej,n-i-k + Ek,TL-‘rj)J g—Ej—Ek == K<En+k,] + En+j,k)

and
[Ejkin + Erjin, Ejpnk + Eringl = (14 0) (Ejj — Ejyngan) + (14 651) (Brk — Ergnpin)

With this explicit information on the brackets, it is easy to see that all subalgebras g(a) =
at9_at|[8a, §_a] are isomorphic to sl (K), so that Lemma implies that g is semisimple.
The subset

AT :={2j,ejtep:j<k,jk=1,...,n}

is a positive system with the root basis

={e; —e9,...,6n1—€n,26,}
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(Example [11.17|c)). For oj :=¢; — €41, =1,...,n—1 and o, = 2¢,,, the Cartan matrix

1S

2 -1 0 0
-1 2 -1 0
. 0 :
(vj(a))r<imen = |
-1 2 -1 0
—1 2 —1
0 0 o -2 2

Since the root basis for A, _; is irreducible and ¢, is not orthogonal to e,_1 — €, we see
that II is irreducible and hence that sp,, (K) is simple.

Example 12.10. We consider the Lie algebra so,, ,11(K) C gl,,,;(K). In Example 8.8 we
have seen that
h:=span{E;; — Ejinjtn:j=1,...,n}

is a toral Cartan subalgebra and that
A={te;,x(ejxep):j#k,jk=1,...,n} =B,
is the corresponding root system. For the coroots we obtain

(8j — Ek)v = Ejj - Ekk - Ej+n,j+n + Ek+n,k+n
(5]- + Sk)v = Ejj + Ekk - Ej-i-n,j-i-n - Ekz—i—n,k-i—na ] 7& k.
The subset

At = (e ke j<kjk=1...n)

is a positive system with root basis

II = {81_827"'787171 —5n,gn}

(Example |11.17(b)). For oj :=¢; —€j41,5 =1,...,n — 1 and «a,, = &,, the Cartan matrix

1S

2 —1 0 0
—1 2 —1 0
. 0 :
(aj(aw))i<imen = |
—1 2 —1 0
—1 2 =2
0 0 0 —1 2

With the same argument as for C,,, we see that II is irreducible, so that o0, ,+1(K) is a
simple Lie algebra. For n = 1, we obtain

012(K) = g(e1) = slh(K).

If K is algebraically closed, then 09,,+1(K) = 0, ,41(K) (Exercise , so that we also
obtain the simplicity of the Lie algebra 09,,1(K) of skew-symmetric matrices of size 2n+ 1.

Example 12.11. Finally we consider the Lie algebra o, ,(K) (Example whose root
decomposition can be obtained from o0, ,,+1(K) by restriction. We have the root set

A=D, ={£(g;Ltex): j#k}
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and the coroots

(¢j—¢ew) =Ejj — Exie — Ejinjin + Ertngtn
(Sj + Ek)v = Ejj + Ekk - Ej+n,j+n - Ek+n,k+m ] 7é k.

The subset
At i={e;te:j<kjk=1,...,n}

is a positive system with the root basis
II={e1—¢€2,...,6n-1 —En,En—1 +6n}

(Example [11.17(d)). For aj :==¢; —€j41,5 =1,...,n—1 and o, = €,,_1 + &, the Cartan
matrix is

2 -1 0 0
-1 2 -1
0 . :
(aj(ar))i<jh<n = -1 2 =1 0 0
' -1 2 -1 -1
-1 2 0
0 -1 0 2

For n > 3, the root basis II is indecomposable, but for n = 2 this is not the case. It follows
that 0, ,(K) is simple for n > 3, but not for n = 2. For n =1 it is one-dimensional, hence
also not simple. From the root decomposition one can further see that, for n = 2 and

IT = {«, 8}, we have |[AT| =2 and
g = g(a) ®9(8) = sk(K)* = 01,(K)*

If K is algebraically closed, then 0y, (K) 2 0, (K) (Exercise[8.4)), so that we obtain the
simplicity of 02,(K) for n > 3.

We collect the results of this inspection in the following theorem:

Theorem 12.12. For every field K of characteristic zero, the Lie algebras
sl 1 (K),n>1, sp,(K),n>1, 0,,1(K),n>1, 0,,K)n>3
are simple and split. Moreover,

5]32(K) = 0172(K) = 5[2<K>, OQ’Q(K) = 5[2(K)2 and 01’1<K> = K.

12.4 The Classification of Cartan Matrices

In the preceding subsection, we have seen that the root bases of the simple Lie algebras with
a toral Cartan subalgebra b are precisely the indecomposable ones. If A = C'M(II) is the
Cartan matrix of the root basis II, then any orthogonal partition IT = IT;UIl, corresponds
to a description of A as a (2 x 2)-block matrix

. All 0
(b Y,
In this sense the irreducibility of II corresponds to the “irreducibility” of the corresponding

Cartan matrix in the sense that there is no reordering of the basis which turns A into a
(2 x 2)-block matrix. With respect to this order II; should come before I, or vice versa.
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Now let Il = {a,...,au} be a root basis and A = (a;(&;))ij=1
Cartan matrix. If o(f5)5(&) # 0, then

a(f) _ (@.0) _|lof?
B ~ (3.8 I8P

is the ratio of the square lengths (Remark [11.7). If a(3)3(ct) = 1, then

a(f) = -1 =p(a),

because a(f) < 0 and both roots have the same lenght (Remark [11.7). If () and B(c)
are different, then both roots have different lengths. In view of a(ﬁ)ﬂ(d) € {0,1,2,3}
(Remark , at least one of the two factors is —1. For 5(&) = —1, we obtain

[l

e €{1,2,3}. (29)
Definition 12.13. Now we associate a Dynkin diagram to the Cartan matrix. We consider
the elements of the root basis as vertices of the diagram and connect two vertices a and (8
by a(B8)B8(&) € {0,1,2,3} edges. If a and 8 are connected and not of the same length, then
we also add an arrow pointing from the longer to the shorter root. Recall that the ratio of
the root lengths is determined via by the number of connecting edges.

¢ the corresponding

~~~~~

—a(f) =

Here are some examples which, in view of Remark [I1.7], cover all the 2-vertex configu-

rations:
2 0
Al X A1 : (0 2) s O O

2 -3
Gy : (_1 2), o—=o

Remark 12.14. Conversely, we can reconstruct from every Dynkin diagram the corre-
sponding Cartan matrix:

(0) If o and 3 are not connected, then a(3) = B(c) = 0.
(1) If o and J are connected by a simple edge, then a(j3) = B(&) = —1.

(2) If o and S are connected by a double edge with an arrow from « to 3, then a(f) = —
and (&) = —1.

(3) If & and S are connected by a triple edge with an arrow from « to 3, then a(f) = —
and f(a) = —1.

Example 12.15. From the diagram
F, o o——)o o

we thus obtain the Cartan matrix

2 -1 0 0
-1 2 -2 0
A=14 1 o
0 0 -1 2



The root basis II is reducible if and only if the corresponding diagram is not connected.
Then the maximal irreducible subsets of II correspond to the connected components of
the diagram. Since we know already that irreducible root bases correspond to simple Lie
algebras (Proposition , we restrict our attention to connected Dynkin diagrams.

Theorem 12.16. If g is a finite dimensional simple Lie algebra and b C g a toral Cartan
subalgebra, then the Dynkin diagram with respect to any root basis 11 of A(g, h) is contained
in the following list:

Ay, n>1 ¢ o o O— - = o o
B,, n>2, : o o N o——o
Cn, n > 3, . O O Ommm + ¢ G(:D
D,, n>4, : o o Omm v+ = Om—0 o
o
E6 . o O
o
E7 . o O
o
Eg . o O
o
Fy o o—o o

Gy o—=o

The restriction of n for the different series are necessary to avoid overlaps. For instance,
By and (5 correspond to the same diagram. Likewise D3 and As correspond to the same
diagram and one could also put E5 := Ds.

Theorem 12.17. (Existence of root systems) Every Dynkin diagram corresponds to a root
system.

Proof. 1t suffices to verify the assertion for connected diagrams, for which the possibilities
are listed in Theorem [12.16, For the classical series A-D we have already seen how to
realize the corresponding root systems in some R", which leads to the root bases described

in Example [11.17}

A, H:{ei—5i+1:i:1,...,n}QR"H,

B, H:{@—@H:izl,...,n—l}u{en}gR”,

C, H:{gi—am:¢:1,...,n—1}u{2en}gR",

D, H:{51—5“1:izl,...,n—l}u{an_l—i-é‘n}QR".

This leaves only the diagrams of the expectional types E-G. Since Eg and E; are
subdiagrams of Eg, it suffices to find a realization of Eg, F; and GG5. This can be done by
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verifying that the following sets are root systems (in R™ with respect to the standard scalar
product):

8 8
By DsU{3Y (-1)ve;: Y my € 22} CR®

j=1 j=1
F, : ByU {%(iel +eg ezt 54)} C R* (signs independent)
Gg : AQU{:]:(261—82—53),:|:(2€2—€1—83),i(2€3—61—52)} QR?)

(see Exercise for G). Accordingly, we obtain the root bases:

Es {82—63,...,67—68,87+€8,%(81+€8—€2—83—...—87)}
F, {52 — €3,63 — €4, €4, 5(€1 —82—83—84)}
Gy {51 —52,—2€1+€2+€3}7
and it is easy to verify that they belong to the listed diagrams. O

To complete the classification, one still has to prove that:

e That every pair (g,h) of a simple Lie algebra g and a toral Cartan subalgebra h C g
determines a unique Dynkin diagram. To this end one first shows that for any other
pair (g,bh’), there exists an automorphism ¢ € Aut(g) with ¢(h) = b’ (Conjugacy
of toral Cartan subalgebras). Next one shows that every element of the Weyl group
W(g,b) is induced by the action of an automorphism of g preserving h on the set
of roots, and now the transitivity of the action of the Weyl group on the set of root
bases (Theorem shows that all root bases associated to a pair (g, h) lead to the
same Dynkin diagrams (up to enumeration of their vertices).

e That every Dynking diagram actually arises from some Lie algebra. This is clear for
the infinite series A-D, but not for types E-G. We have already seen above that all
Dynking diagrams arise from a root system, but this is much less information than
what is contained in the corresponding Lie algebra. There are two natural methods to
achieve this goal. The geometric method consists in realizing them as Lie algebras of
automorphism groups of suitable geometric structures. This is very interesting but has
the disadvantage that it proceeds very much by case-by-case analysis. There is another
approach to obtain the Lie algebras by defining them in terms of generators and
relations (the Serre relations) (cf. Proposition[14.1)). This approach has the advantage
of being universal and it even points to the more general class of Kac—Moody Lie
algebras which form an interesting class of infinite dimensional Lie algebras.

Notes on Part [

Cartan subalgebras actually occur first in the work of W. Killing who classified the finite
dimensional simple complex Lie algebras (cf. [Kil89]). Unfortunately, Killing’s work con-
tained some serious gaps, concerning the basic properties of Cartan subalgebras. These
were cleaned up later by Elie Cartan in his thesis [Ca94], and this is why they nowadays
carry his name.

Serre’s Theorem on the presentation of semisimple Lie algebras with a toral Cartan
subalgebra can be extended to a construction of a semisimple Lie algebra from an abstract
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root system A with a basis Il = {ay,...,a,}. Then we put a;; := «;(c;) and consider the
Lie algebra L(X, R) defined by the generators h;,e;, f;, i = 1,...,r and the relations

[hi,h;) =0, [hi, €] = aijej,  [hi, fi] = —aijf;, e, fi] = dijhi
and
(ade;)' ""ie; =0, (adf))' ™™ f; =0 for i#j.

In this context the main point is to show that L(X, R) is a semisimple Lie algebra with the
Cartan subalgebra h = span{hq,...,h,} and a root system isomorphic to A. In the 1960s
this description of the finite dimensional semisimple Lie algebras was the starting point for
the theory of Kac-Moody—Lie algebras, which are defined by the same set of generators
and relations for more general matrices (a;;) € M,(Z), called generalized Cartan matrices.
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Part III
Representation Theory of Lie
Algebras

In this final part of the lecture we address the classification of finite dimensional repre-
sentations of a split semisimple Lie algebra g of characteristic zero. We first introduce
the universal enveloping algebra U(g) of a Lie algebra gE] It has the universal property
that each representation of g defines a unique algebra representation of U(g), so that any
g-module becomes a U(g)-module. We may thus translate freely between g-modules and
U(g)-modules, which is often convenient. A key point is that, if a g-module V' is generated
by a vector v € V| then g-v # V in general, but then v is also a generator of the corre-
sponding U(g)-module, and this implies V' = U(g) - v, which can be used to obtained finer
information on V.

The Poincaré-Birkhoff-Witt (PBW) Theorem [13.7] that we discuss here provides crucial
information on linear generating subsets of U(g). We then proceed with the Highest Weight
Theorem (also called the Cartan—Weyl Theorem) which provides a classification of
irreducible finite dimensional representations of split semisimple Lie algebras. This is the
main result of the Cartan—Weyl Theory of simple modules of split semisimple Lie algebras.
In view of Weyl’s Theorem that any module of a Lie algebra is semisimple, the classification
of the simple modules provides a complete picture of the finite dimensional representations.

13 The Universal Enveloping Algebra

Representing a Lie algebra by linear maps leads to a mapping of the Lie algebra into an
associative algebra such that the Lie bracket turns into the commutator bracket. The main
point of the enveloping algebra U(g) of a Lie algebra g is that every representation of g on
V factors through a homomorphism U(g) — End(V') of associative algebras.

Definition 13.1. Let g be a Lie algebra. A pair (U(g), o), consisting of a unital associative
algebra U(g) and a homomorphism o: g — U(g), of Lie algebras, is called a (universal)
enveloping algebra of g if it has the following universal property. For each homomorphism
f:g — Ag of g into the Lie algebra Az, where A is a unital associative algebra, there
exists a unique homomorphism f: U(g) — A of unital associative algebras with foo = f.

QLA

U(g)

The universal property determines a universal enveloping algebra uniquely in the fol-
lowing sense:

Lemma 13.2. (Uniqueness of the enveloping algebra) If (U(g),o) and (U(g),c) are two
enveloping algebras of the Lie algebra g, then there exists an isomorphism f: U(g) — U(g)
of unital associative algebras satisfying f oo = 0.

15Tn categorical terms: The enveloping algebra defines a functor from the category of Lie algebras to the
category of unital associative algebras which is the adjoint of the forgetful functor A — Ap = (A4, [, ]).
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Proof. Since c: g — u (g)z is a homomorphism of Lie algebras, the universal property of
the pair (U(g), o) implies the existence of a unique algebra homomorphism

f:U(g) = U(g) with foo=7.

Similarly, the universal property of (ﬁ (g), o) implies the existence of an algebra homomor-
phism B
g:U(g) >U(g) with gocg=o0.

Then go f: U(g) — U(g) is an algebra homomorphism with (g o f) o 0 = o, so that the
uniqueness part of the universal property of (U(g), o) yields go f = idy(g). We likewise get
fog= ida( 0 showing that f is an isomorphism of unital algebras. O]

To prove the existence of an enveloping algebra, we recall some basic algebraic concepts.
Let A be an associative algebra. A subspace J of A is called an ideal if

AJUJAC J.

Let M be a subset of A. Since the intersection of a family of ideals is again an ideal, the
intersection .Jy, of all ideals of A containing M is the smallest ideal of A containing M. It
is called the ideal generated by M. If J is an ideal of A, then the factor algebra A/J is the
quotient vector space, endowed with the associative multiplication

(ay + J)(ag + J) :=ajas +J for aj,as € A

13.1 Existence

Proposition 13.3. (Existence of an enveloping algebra) Fach Lie algebra g has an en-
veloping algebra (U(g), o).

Proof. Let T (g) be the tensor algebra of g (Definition [B.7)) and consider the subset
M={z0y-yor—[r,y]eT(g): =,y € g}
Then
U(g) :=T(a)/Im
is a unital associative algebra and
o:g—U(g), oz)=z+ Jy,
is a linear map, satisfying
o(lz,y)) =z, y+ Iu=2@y—y@z+ Jy =0(x)o(y) —o(y)o(x),

so that ¢ is a homomorphism of Lie algebras g — U(g) ..

To verify the universal property for (U(g), o), let f: g — AL be a homomorphism of Lie
algebras, Where A is a unital associative algebra. In view of the universal property of T(g)
(Lemma , there exists an algebra homomorphism F:T(g) — A with f(z) = f(z) for
all z € g. Then M C ker f and since ker f is an ideal of T (g), we also have Jy; C kerf, SO
that ffactors through an algebra homomorphism

]?:Ll(g)—>44 with foo = f.

To see that f is unique, it suffices to note that o(g) and 1 generate U(g) as an associative
algebra because g and 1 generate T (g) as an associative algebra. O]
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Remark 13.4. The universal property of (U(g), o) implies that each representation (7, V)
of g defined a representation 7: U(g) — End(V'), which is uniquely determined by moo = 7.
From the construction of U(g) we also know that the algebra U(g) is generated by o(g).
This implies that, for each v € V', the subspace

Ug) v CV

is the smallest subspace containing v and invariant under g, i.e., the g-submodule of V'
generated by v. Hence the enveloping algebra provides a tool to understand g-submodules
of a g-module. But before we are able to use this tool effectively, we need some more
information on the structure of U(g).

13.2 The Poincaré—Birkhoff-Witt Theorem

Our next goal is a convenient description of a linearly generating subset of U(g). Here g
needs not be finite dimensional. Let (z;);c; be a linear basis of g and assume that the index
set I carries a total order <. For a k-tuple I = (iy,...,i;) C J*, we put & = &, &, .

We write
Up(g) =Y o(g)* =D span{¢: I € J'.

k<p k<p

These subspaces satisfy

Up(9)Uy(g) C Uprq(g) for  p,q € No.
Lemma 13.5. Let y1,...,y, € g and © be a permutation of {1,...,p}, then

o) o(yp) — 0(We1) - 0 (Wn(p) € Up-1(9).

Proof. Since every permutation is a composition of transpositions of neighboring elements,
it suffices to prove the claim for 7(j) = j for j & {i,i+ 1} and 7(i) = ¢ + 1. But then we
have

—

a(y) - oWp) = 0(Wr1) O (Yn()

o(y) - o(yi1) (U(yz‘)a(ym) - U<yi+1)0(yi))‘7(yi+2) 0 (Yp)
=o(y1) o (yi-1)o([Yi, Yir1])o(Yir2) - - - o (yp) € Up-1(g)- O

Lemma 13.6. The vector space U,(g) is spanned by the & with increasing sequences I of
length less than or equal to p. In particular, the elements of the form &; with arbitrary finite
increasing sequences I generate U(g).

Proof. 1t is clear that U,(g) is spanned by the elements & with I € J* k < p, ie., [
is an arbitrary sequences of length less than or equal to p. By induction on p, the claim
holds for U,_1(g). But since for an increasing rearrangement I’ of the sequence I, we have

& — & € Uy,—1(g) by Lemma [13.5] we also obtain the claim for U,(g). O
In the following we shall only need Lemma [13.6], but one can actually show much more:

Theorem 13.7. (Poincaré-Birkhoff-Witt Theorem (PBW)) Let g be a finite dimensional
Lie algebra and {xy,...,x,} be a basis for g. Then

{&" & eU(g) | e e NU{O} }

is a basis for U(g).
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Exercises for Section

Exercise 13.1. Let g be a finite dimensional Lie algebra and § be a nondegenerate sym-
metric bilinear form on g. Suppose that x1,...,, is a basis for g and let z!,..., 2" € g be
the dual basis w.r.t. 3, i.e., B(z;, 27) = d;;.

(i) Show that the Casimir element Q := """ | a'x; lies in the center of U(g). [
(ii) Let g =s0,(R). Show that:

(a) B(z,y) = —3tr(zy) = 5 tr(zy ") defines an invariant scalar product on so,,(R).
(b) For a S-orthonormal basis z1, ..., 2y, we have Q := SN 2?2 € Z(U(s0,(R))).

(¢) The matrices L;; := E;; — Ej;, i < j, form an orthonormal basis of so,,(R) w.r.t.

3.

(iii) Show that the operators of angular momentum

0 0

B = gy CN®) S CURY,ij=1m

generate a Lie algebra which is isomorphic to so0,(R). Hint: See Exercise 1.3(v) for
the Lie brackets of these operators.

(iv) The Laplace operator A = Y7, 83—;2 commutes with the angular momentum operators.

[

(v) Show that there is a nondegenerate symmetric invariant bilinear form on the oscillator
algebra. Hence such forms do not only exist on semisimple Lie algebras.

Exercise 13.2. A function f € C*°(R") is called harmonic if A(f) = 0 for the Laplace
operator A = Y"1 | aa_;z- Show that the subspace H C C*°(R") of the harmonic functions

is invariant under the angular momentum operators (cf. Exercise [13.1)).

14 Generators and Relations for Semisimple Lie Al-
gebras

In this section we shall use the root decomposition of a semisimple Lie algebra to find a
description by generators and relations.

14.1 A Generating Set for Semisimple Lie Algebras

Proposition 14.1. Let g be a semisimple Lie algebra and b C g a toral Cartan subalgebra.
Fiz a positive system AT C A and let I C A™ be the set of simple roots. For each o € 11,
we fix a corresponding sly-triple (hy, €q, fo). Then the following assertions hold:

(i) The subspace n:= ) s+ 8p is a nilpotent subalgebra generated by {e,: o € 11}

6Here we identify = with n(x), so that we consider g as a subset of U(g).
1"The Laplacian is NOT the Casimir operator of the Lie algebra generated by the angular momentum

operators; it is the Casimir operator of the abelian Lie algebra generated by the operators %.
J
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(ii) The Lie algebra g is generated by {ha,e€q, fa: o € 1I}. These elements satisfy the
relations

[has hgl =0, [ha,ep] = B(&)es, [ha, fg] = —B8(&) fs, [eas f5] = bagha  (30)

and we further have
(adey) P Wey =0, (adf)' P Yf3=0 for a#p in IL (31)

The relations and are called the Serre relations.

Proof. (i) If 5,7 € AT, then either 5+~ € AT or §+ v is not a root. Hence n is a
subalgebra of g. Pick zy € hg with AT = {f € A: B(x¢) > 0} and let

m :=min{f(zo): B € At (x9)} and M :=max{B(zo): B € A% (z0)},

For any N € N with Nm > M we then have C™(n) = {0}, showing that n is nilpotent.

In the proof of the Generation Theorem [12.6] we have already seen that n is generated
by the root spaces g, = Ke,, o € II, and that g is generated by the subalgebras g(a),
a e Il

(ii) It remains to verify the Serre relations. Since h, = @&, the first three relations are
trivial, and the fact that o — § ¢ A for a # 5 in II implies that [e,, f5] = {0} in this case.

If a # 3, then we consider the a-string through 3. Since § — a ¢ A, it is of the form
{f+ja:0 < j < q}, where ¢ = —fF(&). This implies that 5+ (1 — 5(&))a € A. As a

consequence, (ad ea)l_ﬁ(v) = (ad f,)'P@ f5 = 0.
The first relation in is obtained with similar arguments, applied to the sly-triple
(—ha, fa,€a) and the g(a)—submodule generated by eg. O

Example 14.2. We have seen in Example how to find a natural root decomposition
of the Lie algebra sl,,(K) with respect to the Cartan subalgebra h of diagonal matrices. In

the root system
A={e;—¢ep:1<j#k<n},

the subset
T={gj—e:1<j<k<n}

is a natural positive system with root basis Il = {e; —e9,...,6,_1 —&,}. Then
n= Z 0o = span{Ej;: j < k}
acA+

is the Lie algebra of strictly upper triangular matrices. It is generated by the root vectors

E;j+1,j=1,...,n—1. For each pair of indices j # k, we have

g(e; — ex) = span{Ejy, Eyj, Ejj — Epi} = slh(K),

and the subalgebras
gler —e2), ..., g(en_1—¢n)

sitting on the diagonal, generate s, (K) Moreover, s, (K) is also generated by the 2(n —1)
element: Ej i1, Fj1;,7=1,. — 1.
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15 Highest Weight Representations

We know already from Weyl’s Theorem on Complete Reducibility that any finite
dimensional module over a semisimple Lie algebra g is semisimple. This reduces the clas-
sification of finite dimensional modules to the classification of simple ones. In this section,
we address this problem for the class of those semisimple Lie algebras which are split, i.e.,
contain a toral Cartan subalgebra. Note that sl,(K) and in particular any semisimple Lie
algebra over an algebraically closed field is split.

Throughout this section, g denotes a semisimple Lie algebra and § C g a toral Cartan
subalgebra. For A € h* and a representation (m, V') of g, we write

Vi = Va(h) = {v e V: (Vh € ) 7(h)(v) = A(h)v}

for the corresponding weight space in V' and P(V) := {\ € h*: V), # {0}} for the set of
h-weights of V.. We simply write A := A(g, h) for the set of roots and g, := ga(h), @ € A,
for the root spaces.

Proposition 15.1. IfdimV < oo, then b acts by diagonalizable operators on'V and V is
the direct sum of its weight spaces. All weights take rational values on hg.

Proof. In view of Lemma [10.12] b is spanned by the coroots h, = &. Since b is abelian, it
therefore suffices to see that for each root @ € A, the element h, € b is diagonalizable on
V. Since the g-representation on V' restricts to a representation of

Q<O‘) =0at 0 otKhy = 5[2(K>

on V, it suffices to apply Proposition 0.7 Moreover, we see that all eigenvalues of h,, are
integral, which implies that each weight takes only rational values on the real subspace

hao- H
Definition 15.2. Let AT C A be a positive system of roots. (cf. Theorem [11.16]). Then

b:=Hh+n=hxn, n::Zgg

BeAT

is a solvable subalgebra of g because it is of the form b = n x b for a nilpotent Lie algebra n
(Proposition [14.1)). Subalgebras of this type are called standard Borel subalgebras with
respect to b.

15.1 Highest Weights

Definition 15.3. A g-module V is called a module with highest weight A\ € h* if there is a
b-invariant line Kv € V' with

h-v=Ah)v for heb,

and v generates the g-module V' (i.e., V is the smallest submodule containing v). Then A
is called the highest weight and the nonzero elements of the generating line Kv are called
highest weight vectors.

Remark 15.4. Since [b, b] = n, all one-dimensional representations of b vanish on n. This
implies that an element v € V)(h) is a b-eigenvector if and only if

(Va € AT) m(ga)v = g - v = {0}.
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Proposition 15.5. Let AT C A be a positive system. Then each finite dimensional simple
g-module is a highest weight module.

Proof. Let V be a simple g-module. In view of Proposition [I5.1} V is a direct sum of its
weight spaces V' = € ,cp(y) Va. Since V' is finite dimensional, the set P(V) of weights is
finite.
Pick zg € hg with
At = A+(x0) ={a e A: a(x) > 0}.

Then P(V)(zo) € Q (Proposition [15.1)) and we can pick a A € P(V) such that A\(xg) is
maximal. Let v € V) \ {0}. For each a € AT, we then have g, - v C V)., but the choice
of A implies that V), = {0}. Hence v is a b-eigenvector of weight A. Since V' is simple, it
is generated by v. ]

Remark 15.6. If K is algebraically closed, then we can also use Lie’s Theorem [£.9) to see
that a simple g-module V' contains an eigenvector for the solvable Lie algebra b, hence is a
highest weight module.

For B € AT ={f4,...,Bm}, we choose an sly-triple (hg, eg, f3) as in the sl,-Theorem m
As for abstract root systems (Definition [11.20]), we define a partial order < on h* by

A=p = p—XAeN AT = NoB.
BeAT

Let IT € A* be the corresponding set of simple roots (Theorem [11.16]).
The following theorem describes some properties of highest weight modules which are
not necessarily finite dimensional.

Theorem 15.7. Let V be a g-module with highest weight X and 0 # vy € V\ a highest
weight vector. Then

(i) V= span{fél1 e féz coy | 1 € No} for AT = {B1,...,Bn}. In particular, V is the
direct sum of its weight spaces.

(i

) P(V) € A= No[AT] = A — No[TI].
(iii) dimV}, < oo for all € P(V).
(iv) dimVj = 1.

)

(v) V contains exactly one maximal proper g-submodule Viax and V/Viax 1S the unique
simple quotient module of V.

(vi) Ewvery nonzero module quotient of V' is a module with highest weight \.
Proof. (i) Let Il = {av,..., .} and A* = {f4,...,Bm}. Then
fais- s [ Pags s Pany €852 €8,
is a basis for g, to which we apply Lemma [13.6] Then the claim follows from
hjc} o eﬁl . eg:”n ~vy CU(b)vy C Koy
and
V=Ug) va=UDUDb) -vy=UWm) vy for n= Z g

BeAT
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(cf. Remark [13.4)).

(i) In view of (i), V' is spanned by vectors of the form féll e fé’; - vy, which are weight
vectors of weight A—>")"; i, by Lemma[8.10] Assertion (ii) now follows, since the positive
roots can be written as sums of simple roots.

(iii) For u € b*, there are only finitely many vectors of the form féll e f,é’:Z - vy for
which A — 7% 4,0 equals p. In fact, if zy € bhg satisfies 3;(xg) > 0 for each j, then
== " i yields

Z iefe(z0) = (A = p)(x0),

and there are only finitely many solutions (i1, ...,%,) € N{' of this equation because
A\ —
o< Qo)
Be(xo)
(iv) The equality A = X — >}, @0, is only possible for iy = ... =14, = 0.

(v) By Proposition every submodule W C V' is adapted to the weight decomposi-
tion. Since V) is one-dimensional and generates V, it follows that every proper submodule
W C V is contained in Zu 2 V- Therefore the union of all proper submodules is still
proper, and hence, a maximal proper submodule V., exists. The quotient module V/V},ax
is simple, since for every nontrivial submodule W C V/Vj,.y, its inverse image W’ in V
would be a proper submodule of V| strictly containing V.. Conversely, every submodule
W of V, for which V/W is simple (and nonzero), is a maximal submodule, hence equal
t0 Viax-

(vi) This is obvious. O

Corollary 15.8. If V' is a simple highest weight module, then V contains only one b-
nvariant line.

Proof. Let Kuvy be a b-invariant line. Then v, is a weight vector for some weight u and vy
generates the simple module V' (each simple module is generated by each nonzero element).
Hence P(V) C p—No[AT]. If A is the highest weight of V', we also have P(V') C A—Ny[A*],
which leads to

A=< A

and hence to A = p. Finally, Theorem [15.7(iv) implies that V) is one-dimensional, which
completes the proof. O

Proposition 15.9. Two simple g-modules with the same highest weight X are isomorphic.

Proof. Let V and W be two such modules. We choose nonzero elements v, € V) and
wy € Wy. Set M .=V @ W and m = vy, + wy. Then Km is a b-invariant line and the
submodule M’ := U(g) - m of M generated by m is a module with highest weight A. Let
pry: M’ — V and pry,: M’ — W be the canonical projections with respect to the direct
sum V@W. Then both, pry, and pry,, are homomorphisms of g-modules. From pry,(m) = v,
and pry,(m) = wy we derive that pr,, and pry, are surjective. Therefore, we must have
ker pry, = M}, = ker pry, by Theorem [15.7|(v), and this implies V = M’/M} ~W. O

max ax

Definition 15.10. (Verma modules) Let g be a semisimple Lie algebra, h C g a toral
Cartan subalgebra, and b = b + Zﬁe A+ 9 the Borel subalgebra of g corresponding to a

positive system AT of A. For A € h*, we extend ) to a linear functional X on b vanishing
on all root spaces go, @ € AT. Then

[b,6] = > g5 C kerd
BeEAt
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implies that A\: b — K = gl,(K) is a homomorphism of Lie algebras, hence defines a one-
dimensional representation of b. The Lie algebra homomorphism A further extends to a
unital algebra homomorphism A: U(b) — K.

In the following we shall use the notation

AB :=span{ab: a € A,n € B}
for subsets A, B of an associative algebra. In this sense, we define
M(X) := M\, A") :=U(g)/Ly,

where

Ly :=U(g){b— A(b)1: b € b}

is the left ideal of U(g) generated by the elements of the form b — X(b)l, b € b. The module
M(\) is called the Verma module of highest weight A\. We write [D], D € U(g), for its
elements. Since M () is a quotient by a left ideal of U(g), it carries a natural ¢ (g)-module
structure, hence in particular a g-module structure.

To see that M (\) is non-zero, we use the Poincaré-Birkhoff-Witt Theorem to see
that, for n = ) A+ g—a, the multiplication map

is a linear bijection. Therefore Ly = U(n) -ker \ is a proper subspace of U(g) and this
means that M(\) # {0}.

The g-module M()) is indeed a highest weight module of highest weight A because
vy := [1] satisfies for b € b:

b-vx=0b-[1] = [b] = [A(b)1] = A(D)[1] = A(b)ua,

and
U(g) - [1] = [U(g)] = M ().

Using Theorem [15.7], we obtain a simple highest weight module with highest weight A
as
L(A\) := LOAT) = MO AT)/M(A, AT -

Combining Proposition with the preceding lemma, we obtain:

Proposition 15.11. Fiz a positive system AY of A. Then, for every A € h*, there ex-
ists a simple highest weight module L(\, AT) with highest weight A\ which is unique up to
1somorphism.

15.2 Classification of Finite Dimensional Simple Modules

We want to characterize the linear functionals on h which occur as highest weights of simple
g-modules.

Definition 15.12. A linear functional A € h* is said to be integral if
Ma)eZ for o€,
and it is called dominant with respect to the positive system A* if

AMa)>0 for aeA".
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We denote the set of all integral functionals on h by P (the weight lattice) , and the set of
all dominant integral functionals by PT.

Let II C At be the set of simple roots, which is a basis for h*. Since the set II =
{@: a € IT} is a basis for the dual root system A C by (Proposition ,

P={xebh": Vaell) Na) e Z} =Z"

and
Pt ={xebh*: (Vaell) \Na) € Ng} ®N;.

Remark 15.13. The Weyl group of the root system A can be identified with the subgroup
W C GL(b*) generated by the reflections

ga(A) = XA = Aa)q,

and this formula immediately implies that the weight lattice P is invariant under WW. The-
orem [11.23| implies that for each v € P, there exists a w € W with w(v) € P*, i.e.,

P = WP

Proposition 15.14. Let V be a finite dimensional g-module. Then Py C P and if X is a
highest weight of V' with respect to AT, then A € PT.

Proof. Let a € AT and g(a) = sly(K) be the corresponding 3-dimensional subalgebra
of g. If u € Py is a weight of V, then Proposition implies that u(a&) € Z, so that
p e P. If vy € Vi(h) is a highest weight vector, then g, - vy = {0} implies that A\(&) € Ny
(Proposition [9.3)). O

Lemma 15.15. Let V' be a g-module and VW = W(A) the Weyl group of A. If, for each
a € I, V is a locally finite g(a)-module, i.e., a union of finite dimensional submodules,
then each weight i of V' satisfies

dimV, =dim V) for weW.
In particular, WPy = Py.

Proof. Since W is generated by the reflections o, a € I1, it suffices to prove the assertion
for w = o0,. Let p: g — gl(V) denote the representation of g on V' and (hq,€q, fo) an
sla-triple corresponding to o € II. According to our hypothesis, each v € V is contained
in a finite dimensional g(a)-submodule, so that p(h,) is diagonalizable by Proposition [9.7]
Let b, := ker a C b, so that we have the direct sum decomposition h = b, @& Ka. Then the
weight space V), is contained in the subspace

W=V ()= > Vo= Vit

v—peht=Ka ceK

which is invariant under g(a)) because g(«) commutes with b, (cf. Exercise |4.1)). Next we
note that

oa(p) = p— p(@)a € p+ Ka,

so that V() € W. As Vjicq is the p(ha) 4 2c-eigenspace of p(ha) in W and (oap)(ha) =
—pu(ha), the assertion follows from Proposition [9.7(ii). Note that this proposition can be
used here because W is a union of finite dimensional g(a)-submodules. O

Lemma 15.16. If A € P, then the set {u € PT: u < A} is finite.
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Proof. We consider A as a root system realized in a euclidean vector space £ = Hom(hg, R)
(cf. Proposition [11.4). Then
P={pecE: Yaell)(ua) eZ}
OPT={pe E: Vaell)(u,&a) e Ng} C{ue E: (Va €II) (u,) > 0}.
For 1 < A\, we have A — p € Ny[II], so that we obtain
0< (At A= p) = A = |l

Therefore u is contained in the closed ball B of radius ||A||, which is compact. On the other
hand, P is a discrete subset of E, and therefore B NP is finite. O

Proposition 15.17. Let g be a semusimple Lie algebra and by be a toral Cartan subalgebra
of g. If X € b* is dominant integral with respect to A", then the simple highest weight
module L(\, AT) of highest weight \ is finite dimensional.

Proof. For each simple root « € II, using Theorem [10.9) we choose an sly-triple (hq, €q, fo),
so that g(a) = spanf{ha, €q, fo} = sla(K) and h, = &. Let vy € V := L(\, A1) be a highest
weight vector. For «, 8 € II, we put m, := A(h,) = AM(&) € Ny and observe that

e fma-l-l,u _ f(;naJrleﬁU)\ =0 if o 7é ﬁ,
Fla A fretleguy + (Mg + 1) fe (hg — mal)vy =0 if a = .

Here we use that [eg, fo] € g5—a = {0} for a # 3, and for a = /5 we use the formula
e, [ = (n+1)f"(h —nl)

from Lemma (ii) and eg - vy = 0. Since the e,, a € II, generate the subalgebra n =
ZBEA+ gs (Proposition , the vector f™e*ly, is a b-eigenvector, hence 0 because V is

simple (Corollary [15.8)). Therefore

span{vA, fav>n SRR f(;nav)\}
is a finite dimensional g(«)-module with highest weight A\(&t) = m,. Therefore the subspace
Vin of V' spanned by all finite dimensional g(«)-submodules is nonzero.

Let E C V be a finite dimensional g(«)-submodule. Then span(g-E) is finite dimensional
and g(a)-stable because we have for = € g(a), y € g and v € E the relation

z-(y-v)=lz,yl-v+y-(r-v)€span(g- E).
Therefore g- F C Vg,. This implies that Vj, is a g-submodule. Since V' is simple, we obtain
V' = Vhn, i.e., V is a locally finite g(a)-module.
Since all weights of V' are integral (Proposition and the weight set Py of V is
invariant under the Weyl group W (Lemma , Remark shows that

Py CW(Py NPH CW(H{pePt | u=<A}).

This set is finite because W is finite and the set {u € P | u < A} is finite by Lemma [15.16]
As all weight spaces V,, are finite dimensional by Theorem this concludes the proof. [

Theorem 15.18. (Highest Weight Theorem) Let g be a split semisimple Lie algebra, b
be a toral Cartan subalgebra of g and AT C A be a positive system. The assignment
A= L(A, AT) defines a bijection between the set Pt of dominant integral functionals and
the set of isomorphism classes of finite dimensional simple g-modules.

Proof. To see that the assignment is defined, we first use Proposition to see that, for
A € Pt the simple g-module L(A, AT) is finite dimensional.

Next we recall from Proposition that each finite dimensional simple g-module V' is
a highest weight module with some highest weight A. In view of Proposition A e P,
so that V' = L(\, A™"). Hence the assignment is surjective. That it is also injective follows
from the fact that, for A # X € PT, we have L(\, AT) 22 L(X, A™) by Proposition . ]
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15.3 The Eigenvalue of the Casimir Operator

In this section we construct a special element Cy in the center of the enveloping algebra of
g and calculate its (scalar) action in a highest weight module. In special cases this allows
to identify a given simple g-module.

Definition 15.19. (Universal Casimir element) Let g be a finite dimensional split semisim-
ple Lie algebra with Cartan—Killing form . As before, we choose for each § € A" an

sly-triple (hg, eg, f5) and e} € g_p, f5 € gp with
’%(eﬂaez’) =1= H(fﬁvfg)

We further choose a basis hy, ..., h, for b, and we write ht,... h" for the dual basis with
respect to the nondegenerate restriction of x to b x . Then

{hi,e/g,fgi i:17...,T;,6€A+}

is a basis for g and
{n’ eﬁ,fﬂz L Be At}

is the dual basis with respect to k. We therefore obtain a central element of ¢(g) by
Cy = Zh W+ Y egeh + fals (32)
BeA+
(Lemma [5.20)). It is called the universal Casimir element.

Lemma 15.20. For a positive system AT, we put p =13 i a. If (py,V) is a highest
weight module with highest weight X\, also considered as a U(g)-module, then

pv(Co) = (A A +2p)1 = ([IA+pll* = [loll*) 1.
If X is dominant and nonzero, then py(Cy) # 0.

Proof. We write the Casimir element Cy in the form as described in Definition [15.19}
We compute the action of Cj on V. Let vy be a highest Weight vector in V. Then eg - vy =

f5-va=0for each B € A™, and [eg, ej] = tg (cf. Lemma 7)) implies
epes - Un = [eg, €3] - un Fegeg - oa = Atg)un = (A, Bua,

so that D5 n+(eses + f5f3) - va = 2(A, p)ua. On the other hand, we calculate

k
3 A)A (Zm h) ):A(h;):(A,A).
=1
Putting these facts together yields

Cyvr = (A, A+ 2p)ua = (A +plI” = [loll*) va

Since Cy is central in U(g) (Exercise [13.1)), Cy acts by the same scalar on the entire U(g)-
module V' = U(g)uvy

Finally, we assume that A is dominant and nonzero. Then A(&) > 0 for all « 6 AT
implies that (A, a) > 0, and hence that (A, p) > 0. This leads to (A, A+2p) > (A, \) > O
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Exercises for Section

Exercise 15.1. A g-module V is said to be cyclic if it is generated by some element v € V.
If p: g — gl(V) is the module structure and p: U(g) — End(V) the canonical extension,
then the annihilator

I := Anny g (v) :={D € U(g): p(D)v =0}
of v is a left ideal. Show that:

(a) If I C U(g) is a left ideal, then the quotient U(g)/l carries a natural g-module
structure, defined by = - (D + I) := o(z)D + I, and this g-module is cyclic.

(b) Every cyclic g-module is isomorphic to one of the form U(g)/I, as in (a).
Exercise 15.2. Simple g-modules are particular examples of cyclic g-modules. Show that:

(a) If I C U(g) is a maximal (proper) left ideal, then the quotient U(g)/I is a simple
g-module.

(b) Every simple g-module is isomorphic to one of the form U(g)/I, where I is a maximal
left ideal in U(g).

Exercise 15.3. Let g be a reductive Lie algebra and h C g a toral Cartan subalgebra.
Let V' be a simple g-module on which b acts by diagonalizable operators (such modules
are called weight modules. ldentifying the root system of g with that of its semisimple
commutator algebra, the notion of a positive system makes also sense for g. Show that, in
this sense, for each positive system A1 of A, V is a highest weight module.

16 Applications to elementary particles

In this brief section we describe the bridge between the representation theory of Lie algebras
and its application in the theory of elementary particles.

The fundamental idea underlying this connection is that the state space of a quantum
mechanical system is the projective space

P(H) :={[v] =Cv: 0 #£v € H}

of one-dimensional subspaces of a complex Hilbert space H. In the discussion below we
assume that H is finite dimensional which is sufficiently general for the applications we
want to describe ([BH09]). States will always be represented by unit vectors: (v,v) = 1.

In the following we shall always assume that the scalar product (-|-) on # is linear in
the second and antilinear in the first argument. As we shall see below, this is natural in the
quantum mechanical context. In particular, it is consistent with Dirac’s bra-ket notation,
where vectors in the Hilbert space H are written |v) and elements in the dual space of
continuous linear functionals on ‘H as (v|. Applying the linear functional (v| to the vector
|w) results in the complex number (v|w). Applying operators A: H — H to vectors then
looks like Alv).

The observables of the quantum system correspond in this context to symmetric oper-
ators A = A* on H. The real number

Ha([v]) = (v|Alv) € R
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is interpreted as the expectation value of the observable A in the states [v]. Since A is
diagonalizable, we can always write v = ) _ v,, where v, is an A-eigenvector corresponding
to the eigenvalue o € R. Then

Ha([o]) = ) afjval* € conv(Spec(A))

«

is a convex combination of the eigenvalues o because 1 = [[v||> = " ||va||*. So the value
of the observable A in [v] is a superposition of the different eigenvalues and one says that
A has in [v] the “sharp value” « if v = v,, i.e., if the variance vanishes: (v|(A — al)?|v) =
| Av — av|* = 0.

In the theory of elementary particles, the finite dimensional space H represents a system
with dim H different particles, a so-called multiplet which corresponds to an orthonormal
basis of H. One further requires that the space H carries an irreducible unitary represen-
tation of a compact Lie group G. In terms of Lie algebras, this means that we have a
homomorphism of Lie algebras

prg—u(H) ={X € End(H): X" =—-X},

i.e., a unitary representation of g on H (Section . Then p extends to a complex linear
representation

pc: gc — End(H), pc(z +1iy) == p(z) +ip(y), =,y € g,
satisfying

pc(2)* = —pc(Z),  where = +iy=x —iy.
In particular, the operators pc(iz) = ip(x), x € g, are symmetric and correspond to
observables of the corresponding quantum system. We are thus lead to finite dimensional
simple modules of complex (semisimple) Lie algebras which can be classified in terms of
their highest weights.

In the theory of elementary particles one also considers composed particles. This is mod-
elled by tensor products of representations. Consider two unitary representations (p;, H;),
j = 1,2, corresponding to two families F; and F3 of particles. Then we can form the tensor
product representation

pr=p®p2 with p(2)(v@w) = pi(z)v @ W+ v pa(2)w.
It is unitary with respect to the natural scalar product on H; ® Hs, specified by
(01 ® wi|vy @ wy) = (v1]va) (w1 |wa).

The particles described by the representation (p; ® pa, H1 ®Hs) are interpreted as composed
from one particle in the family F; and one in F3. More generally, the representation
P @ pS™ on HY" @ HE™ describes particles composed from n particles in F; and m
particles in Fs.

For a unitary representation (p,H) one can also form the dual representation on the
dual space H* of continuous linear functionals a: H — C. Writing 8 € H* as 8 = (vg| for
some vg € H, we have

(@]8) = (vglva)-

The representation of the Lie algebra g on the dual space is given by

P (2)a = —aop(z).

In the context of elementary particles, the dual representation corresponds to antiparti-

cles[™]

8The map H — H*,v + (v| is an antilinear isometry. One can therefore identify H* with the space
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16.1 Nucleons and the isospin Lie algebra

To make this dictionary for the translation between representations and elementary particles
more concrete, we start with a very simple system. The underlying idea is to consider proton
and neutron (particles in an atomic nucleus) as two states of the same particle, the nucleon.
It goes back to the early days of quantum mechnics (Heisenberg; 1932) and is based on
the observation that both nucleons behave almost alike under strong interactions (nuclear
forces).

To distinguish the two types of nucleons, one introduces a (virtual) coordinate called
1sospin 7. Since this obervable has to take two values, it corresponds to an operator on the
2-dimensional Hilbert space C?, which carries the obvious irreducible unitary representation
of G = SUL(C), resp., gc = sla(C). Accordingly, sus(C) is called the isospin Lie algebra.

We define the three isospin operators by

) B30 ) Bk )
These symmetric operators satisfy the commutation relations
I, L) =ily, [I,Is] =ily, [Is,1)] = ily,
so that the corresponding elements zf] of suy(C) satisfy
(i, —ily) = —ily, |[—ils, —il3] = —ily, [—ils,—il}] = —ily

(cf. Example [1.35]).

From Theorem we know that the finite dimensional irreducible representations of
sly(C) are of the form (m,, V) with V,, = L(n), n € Ny, and dimV,, = n + 1. The number
I = % is called the total isospin of the particles described by V;,. Accordingly, we define an
operator T on Vo by 1.

The eigenvalues of the operators T and _/f;, (often called the third isospin component) clas-
sify the states in all finite dimensional irreducible representations of suy(C), resp., sly(C).
The first one determines the simple module as V5; and 103 determines the state within the
multiplet described by V5. In physics, this is expressed by Dirac’s bra-ket notation

NI =I|I;) and L3|IL5) = L|115).
If the total isosping [ is fixed, then
11, Ise{—I,—I+1,....1—1,I}

describes an orthonormal basis of j\g eigenvectors in Vay.
The doublet of nucleons, proton p and neutron n, consists of two particles with total
isospin % given by the vectors

111y (1 LIy (0 : ~ 2

These are the two states of a single nucleon corresponding to the values i% of the (third
component of) isospin I3. The terminology ‘isospin’ has been chosen because nuclei with

H, endowed with the new scalar multiplication A * v := Av. This complex vector space is denoted H.
Then the scalar product on H* corresponds to the hermitian scalar product (v|w). := (w|v) on H. This
picture has the advantage that the dual representation p* of g corresponds to the original representation

p: g —u(H) =u(H).
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the same number of nucleons (isotopes) can be distinguished by the eigenvalues of I;. A
nucleus with /V,, protons and /V,, neutrons contains N = N,+/N,, nucleons and has the isospin
5(N, — N,,), hence is determined by the pair (N, 3(N, — N,,)). The operator corresponding
to the charge of a nucleon is Q\ = 6(7—3 + %1), where —e is the charge of an electron. The
neutron has charge 0 and the proton has charge e.

Multiplets of particles composed from N nucleons correspond to irreducible subrepre-
sentation of the N-fold tensor product V", on which the charge operator takes the form
@ = e(fg + %1) We therefore need some information on the decomposition of tensor
products of representations of sly(C):

Proposition 16.1. For n,m € Ny, we have V,, ® V,, = @;n:i%("’m) Vitm—2q-

Since tensor products are distributive and every finite dimensional representation of
sl5(C) is a direct sum of irreducible ones, the preceding proposition can be used to deter-
mine for every tensor product of finite dimensional representations the decomposition into
irreducible ones. From

VieVi=S2 (V) e AW = al, (33)
we obtain in particular
VishheVizVie (el =Vieoh)e(Vieh) =VzeoVieVi=2VieVs (34)

In terms of nucleons, means that from 2 nucleons we obtain two multiplets: a triplet
V5 and a singlet V. One of these particles is the deuteron d, composed of one proton and
one neutron. Its charge is e and its isospin is 0:

Q|d) =e|d) and Is|d) = 0|d).

For the total isospin I, only the two values 0 and 2 are possible. The state with I = 0 is
called a ground state of the deuteron. It is represented in V;*? by the invariant unit vector

1
—(pon-n®p).

V2

From the triplet V5 = S%(V;) C V;*? only

[i(p@)n—l—n@p)

V2

corresponds to a deuteron. It represents an excited deuteron state of total isospin 2.

16.2 Up and down quarks and the isospin Lie algebra

If is one of the fundamental insights of nuclear physics that the nucleons are not elementary
particles in the sense that they should be considered as composed from more fundamental
particles called quarks.

The up- and down-quark u and d corresponds to a 2-dimensional representation of the
isospin algebra su,(C):

0B o) () w s
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With respect to the isosping algebra, this doublet behaves in the same way as the doublet
of nucleons. These two quarks are considered as two states of a quark particle of total
isospin % which are distinguished by the I5-value.

To particles composed from quarks we associate a baryon number B in an additive way
with B = % for quarks and B = —% for antiquarks. Particles composed from p quarks
and ¢ antiquarks (corresponding to subrepresentations of V,* @ (V*)®4 = V1®(p ™ have the

baryon number %(p— q). If B is the corresponding operator, then the Gell-Mann—Nishijima
formula

o o~ 1~
Q=13+ §B
describes the normalized charge of a particle in terms of multiples of e:

~ 2 ~ 1
Q) =Slu) and  Qld) = —|d).

In terms of the ]A3, @—eigenvalues, we obtain the following description of the quarks

12 1 1
|u>:‘§a§>7 |d) ‘—5,—§>

1 2 — 11
) \ 3 3>, ) \2,3>

Particles composed from a quark and an antiquark are called mesons; their baryon
number is B = 0. They correspond to states in

and their antiparticles:

Vi Vi 2V 2V, sV,

so they can form a triplet and a singulet. The triplet corresponds to the pions, or m-mesons

— 1 —
(L0 = med), 7= 0,0) = [Suentded)], = =|-10) = [dew. (3)
Particles composed from three quarks are called baryons. Their baryon number is B = 1.

The baryon representation is
Vi 22V, @ V.

On of the two doublets in this representation corresponds to the nucleons, as particles
composed from three quarks:

1 1
= —u®d®u—d®u®u] and n=|—=u®d®d-duxd)|. (36
p=[ 5 ) 75 )] (30)
This means that the proton is composed from two u-quarks and one d-quark and the neutron
from two d-quarks and one u-quark. It is easy to verify that the subspace generated by
these two states is actually invariant under the natural action of the isospin algebra on V3.

16.3 Strange quarks and the flavor Lie algebra

We now turn to the larger Lie algebra g = su3(C) with g¢ = sl3(C) that contains sus(C) in
the obvious way as a subalgebra. We shall see below how this Lie algebra is related to the
composition of particles by quarks. In this context it is called the flavor Lie algebra, which
refers to the different flavors of the quarks.
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The Cartan subalgebra h C gc is 2-dimensional, so that, in addition to the isospin
operator I3, we need a second operator Y called the hypercharge operator, to generate b:

{1 00 ~ 10 0
Li=z0 -1 0] and Y=5[01 0
0 0 0 00 —2

We know that the a positive system of roots for sl3(C) can be written as

A+:{@767O[+6}, 04281—52,6:62—53.

~

We have a(I3) = 1, B(I3) = —1, a(Y) = 0 and B(Y) = 1. This leads to

29

~ 1 5 1

Let V,, be the simple highest weight module with highest weight A determined by

A@) = p and A\(5) = ¢. Then

~ ~ 1
AT;) = g und - A(Y) = (v + 20).
The triplet Vi o = C? (with the identical representation) is spanned by the vectors u, d,
und s called up-, down-, and strange quark (u-, d-, and s-quark for short). The correspond
to the canonical basis vectors:

1 0
11 11
|u> ==,z — O , |d> —=, = = 1 5 and |S> -
23 0 23 0

=

|
[GCRN )
\/

Il
— (@)

where the labels are the corresponding eigenvalues of _/[;, and Y. The charge operator is

R S 2 0 0 )
Q=3V+I=50 -1 0 |==-(2a+5),
0 0 -1
so that ) ,
Q‘u> - §|u>7 Q|d> = —§|d>7 and Q|S> = ——|S>
Y
d u
& -1 1/3 &
[
: | 3
-1/2 12
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The dual representation is the triplet Vi*, = V4. The corresponding states are the

antiquarks
1 1 — 1 1 2
- == d)=|-,—- d [5)=10,=-).
sop) =33 wd = fod)

Every particule with suz(C)-symmetry composed from p quarks and ¢ antiquarks is
contained in a submultiplet of the tensor product V; ® V{!; which contains in particular
the simple submodule V}, ;. One can show that V; =V, . As in the preceding subsection
we define the baryon number B in an additive Way Wlth B 1 for quarks and B = —= for

antiquarks. If B is the corresponding operator, then S:=Y — B is called the stmngeness
operator. In the fundamental representation we have

0 ~ A~ o
0

S = . e, Sluy=0, Sld)=0, Ss)=—]s),

o O O
o O O

—1

so that the s-quark has strangeness —1. The charge of a particle can be computed with the
Gell-Mann—Nishijima formula:

~ ~ 1
Q=I5+

%§+@:E+?

Example 16.2. (a) Particles composed from 2 quarks are obtained by
Vio® Vig = S*(Vig) @ A*(Vig) X Voo @ Vo,

a sextet and a triplet.

(b) Likewise, particles composed from 2 antiquarks are obtained from Vp; ® Vo1 =
Vo2 @ Vi, a sextet and a triplet.

(c) Particles composed from one quark and one antiquark, mesons, are obtained from

Vip @ Voi = Vip® Vi = End(Vig) = sl(Vip) ® Cidy, , = Vi @ W,

an octet and a singlet. Together, these particles form the nonet of pseudoscalar mesons
([GMSE, p. 320]). Here Vi, is the 8-dimensional representation of suz(C) corresponding to
the adjoint representation of sl3(C). In the following diagram S =Y is the strangeness
operator and the two coordinates are charge and strangeness.

The nonet of pseudoscalar mesons:

S=+1

20 S=-1
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Since the [S,g(a)] = {0}, the cigenspaces of S are representations of the isospin Lie
algebra g(a) 2 sly(C) (the horizontal lines in the diagram). As [Q,a(8)] = {0}, the
eigenspaces of Cj are representations of the Lie algebra g(f) = sly(C) (the slanted lines
with negative slope).

The particles in this nonet are the pions (cf. (35)))
— 1 —
+_ 0_ —= - _ —
7 =ued], =« —[ﬁ(u®u+d®d)], T d ® 1]

(a 3-dimensional representation of the isospin algebra), the kaons

K'=[d®s, K'=[ues, K =[seu, K =[sod

(two 2-dimensional representations of the isospin algebra), and the particle

1 _
= ——u®ﬁ+d®d+s®§}
n \/3( )

which forms a singulet because it corresponds to a trivial subrepresentation of the flavor
algebra sl3(C).

(d) Another important octet are the baryons, composed of 3 quarks. It is obtained as a
summand of type V;; from the decomposition

Vl%s > S3(Vio) @A (Vig) @ Via ©Via = Vi @ Voo @ 2V 1.

Here V3 is a 10-dimensional space and Vj is one-dimensional.

The baryon octett:

= =0

Here we find the nucleons (proton and neutron) in the S = 0-eigenspace of a subrepre-
sentation of type Vi1 (see (36))).

For further reading we recommend the survey [BH09] on grand unified theories.
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A The Jordan Decomposition

In this appendix we develop a tool that will be of crucial importance throughout the struc-
ture theory of Lie algebras: the Jordan decomposition of an endomorphism of a finite
dimensional vector space. Although the existence of the Jordan decomposition can be de-
rived from the Jordan normal form, the proof of the Jordan decomposition is less involved
because it does not specify the structure of the nilpotent component. Since we need various
properties of the Jordan decomposition, we give a direct self-contained proof which does
not require more than some elementary properties of polynomials.

Definition A.1. Let V' be a vector space and M € End(V).
(a) For A € K, we define the eigenspace with respect to A as

VA(M) :=ker(M — A1)
and the generalized eigenspace as

VM) = | ker(M — A1)".

neN

Note that the ascending sequence ker(M — A1)" is eventually constant if V' is finite dimen-
sional. We call A an eigenvalue if V) (M) # {0}.

(b) We call M diagonalizable if V' = @, Va(M), ie., V is a direct sum of the
eigenspaces of M.

(¢) We call M nilpotent if there exists an n € N with M™ = 0. If M is nilpotent, then
V =VoM).

(d) We call M split if there is a nonzero polynomial f € K[X] with f(M) = 0 which
decomposes as a product of linear factors. This is always the case for K = C.

(e) For K = R, we call M semisimple if the endomorphism M¢ of V¢, defined by
Mec(v+ ') = MviMv' is diagonalizable (cf. Exercise [A.5).

Theorem A.2. (Jordan Decomposition Theorem) Let V' be a finite dimensional vector
space and M € End(V') a split endomorphism. Then there exists a diagonalizable endomor-
phism M and a nilpotent endomorphism M, such that

(i) M = M+ M,.
(i) VMM,) = Vi(M,) = VA(M) for each X € K.

(iii) There exist polynomials P,Q € K[X] with P(0) = Q(0) = 0 such that My = P(M)
and M, = Q(M).

(iv) If L € End(V') commutes with M, then it also commutes with My and M,.

(v) (Uniqueness of the Jordan decomposition) If S, N € End(V) commute, S is diago-
nalizable and N nilpotent with M = S + N, then S = My and N = M,,.

Proof. Let f € K[X] be the minimal polynomial of M, i.e., a generator of the ideal I, :=
{f € K[X]: f(M) = 0} with leading coefficient 1. By assumption, I, contains a nonzero
polynomial which is a product of linear factors, so that Exercise implies that f also has
this property. Hence there exist pairwise different A{,...,\,, € K and k; € N such that f
can be written as

F= (X = AR (X = Ag)f2 - (X = A)Fm,
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Put f; := f/(X — \;))*. Then the ideal
= (f)+.. 4 (fm) € K[X]

is generated by some element ¢ (K[X] is a principal ideal domain, a simple consequence of
Euclid’s Algorithm) which is the greatest common divisor of the polynomials f;. The fact
that the fi,..., fm have no nontrivial common divisor (cf. Exercise implies that g is
constant, so that I = K[X]. Hence 1 € I, so that there exist polynomials 7, ..., 7, € K[X]
with

l=rifi+...+7r0nfm

Put E; := (r;f;)(M) € End(V) and note that ), E; = idy. If i # j, then f divides r; fir; f;,
so that f(M) = 0 leads to F;E; = 0, and thus E? = EZ(Z’;l E;) = E;. Therefore
the E; are pairwise commuting projections onto subspaces V; with V' = ", Vi (since
Yo By =1). Now M, := """, \;E; is diagonalizable with V; =V, (M).

Since M commutes with each Fj, it preserves the subspaces V;, and therefore f;(M)

preserves V;. The relation
idy, = Eily, = ri(M) fy(M)lv,

shows that the restriction of f;(M) to V; is invertible. Therefore f(M) = 0 leads to

(M = X\1)* (V) = (M = \1)k f(M)(V;) = f(M)(V;) = {0},

ie., Vi CVN(M).

With M,, :== M — M, and kg := max{k;: ¢ = 1,...,m} we finally get M* = 0,
proving (i).

(i) We have to show that V; = V*(M). We know already that V; C V*(M). So
let v € V*(M) and write v as v = > v with v; € V;. Then the invariance of Vj
under M implies that v; € V*(M). If v; # 0, then there exists a nonzero eigenvector
v € Vi, (M) NV (put vf = (M — X\1)*v;, where k is maximal with the property that this
vector is nonzero). Then (M — \;1)"v} = (A — Aj)™v; = 0, hence \; = A;, i.e., j =i. This
implies that v = v; € V; and therefore VA (M) = V;.

(iii) By construction, M, = P;(M) and M, = Q1(M) for P, = >, \irif; and Q1 =
X — P;. It remains to be seen that these polynomials can be chosen with trivial constant
term. If one eigenvalue \; vanishes, then {0} # V{ := ker M C V; and M|y, = 0 implies
that P, has no constant term. Then @); = X — P; likewise has no constant term and (iii)
holds with P := P, and @) := Q.

If all eigenvalues \; are nonzero, then f(0) # 0 and (iii) holds with

Q1(0)
£(0)

Pi(0)
f(0)
(iv) is a direct consequence of (iii).

(v) Since N and S commute with M = N + S, (iii) shows that they both commute with
M, and M,,. Then Lemma [4.18| shows that

P::P1—

foand Q:=Q1—

f.

S—My=M,—N
is nilpotent as well as diagonalizable, which leads to 0 =S — My, = M,, — N. O

Definition A.3. The decomposition M = M, + M, is called the Jordan decomposition of
M, M, is called the semisimple Jordan component and M, the nilpotent Jordan component
of M.
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Example A.4. If M is a Jordan block (8 ;\), then the Jordan decomposition is
A0 0 1
=000 o)
—_——  ———
M, M,

The matrix M = <(1) :23) is diagonalizable and therefore M = M,. In this case

=0 8)=05) ()

is not the Jordan decomposition, even though the first summand is diagonalizable and the
second summand is nilpotent. These summands do not commute.

The preceding theorem does not apply to all endomorphisms of real vector spaces. We
now explain how this problem can be overcome, so that we also obtain a Jordan decompo-
sition for endomorphisms of real vector spaces.

Definition A.5. (Jordan decomposition in the real case) If V' is a finite dimensional real
vector space and M € End(V), then M¢ € End(V¢), defined by Mc¢ (v +iw) := Mv +iMw
has a Jordan decomposition

Mc = M(C,s + M(C,n-

Let o: Vo — Vc be the antilinear map defined by o(v + iw) := v — iw for v,w € V
and define for any complex linear A € End(V¢) the complex linear endomorphism A :=
ogoAoo € End(Vg). Then M¢ = M leads to

Mc = Mc = Mc s + Mcn,

where the summands on the right commute, the first is diagonalizable and the second is
nilpotent (Exercise). Hence the uniqueness of the Jordan decomposition yields

M(C,s = M(C,s and M(C,n = M(C,n'
In view of Exercise[A.1] this implies the existence of M, € End(V) and M, € End(V), with
(Ms)(C = M(C,s and (Mn)(C = M(C,n'

Then M = M, + M,, and this is called the Jordan decomposition of M. 1t is uniquely
characterized by the properties that [M,, M,| = 0, M, is semisimple and M, is nilpotent
(Exercise).

Proposition A.6. (Properties of the Jordan decomposition) Let V' be a finite dimensional
vector space and M € End(V).

(i) If M' € End(V") and f: V — V' satisfy fo M = M'o f, then
foMy=M.of and foM,=Mof.
(ii) If W CV is an M-invariant subspace, then
(M|w)s = Mglw  and  (M|w)n = My|w.

In particular, W is invariant under My and M,. If M denotes the induced endomor-
phism of V/W, then - o o
(M)s=M; and (M), = M,.
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(iii) If U C W are subspaces of V. with MW C U, then M;W C U and M,W CU.

Proof. (i) Let W :=V @V’ L:= M& M’, and consider the linear map ¢: W — W defined
by ¢(v,v") = (0, f(v)). Then po L = Loy and thus ¢L, = Lyp and ¢L, = L,¢. Further,
Ly =M;®M! and L,, = M,,® M), follows from the uniqueness of the Jordan decomposition
(Theorem [A.2(v)) and the semisimplicity of M, & M. This shows that

M.of=foMy, and M of=fobM,.

(ii) Apply (i) to the inclusion j: W — V and the quotient map p: V- — V/W.
(iii) For K = C, this follows from Theorem [A.2[iii) and the real case is obtained by
complexification. [

Proposition A.7. If A is a finite dimensional algebra and D € der(A), then the Jordan
components D, and D,, are also derivations of A.

Proof. First proof: Let m: A ® A — A denote the linear map defined by the algebra
multiplication. Then D € der(.A) is equivalent to the relation

Dom=mo(D®idyg+ids®D).
Next we observe that
D®idy+idy4®D = (Ds ® idg +idg ®Dy) + (D, ® idy4 +id4 ®D,,)
is the Jordan decomposition (Exercise!), so that Proposition implies that
Dsom=mo (Ds®idg+idg ®Dy),

which means that D, € der(A), and hence that D,, = D — D, € der(A) because der(A) is
a linear space.

Second proof: (for K = R, C) Since der(.A) is a vector space, it suffices to show that
Dy € der(A). Furthermore, D € der(A) is equivalent to D¢ € der(Ac), so that we may
assume that K = C.

For a,b € A and A\, u € K we have for all n € N the formula

(0= 1) @) =3 ()0 = 0¥ (0 - 1))

k=0

(Exercise [A.7). Tt follows that for a € A\(Ds) = AN D) and b € A, (Ds) = A*(D), we have
ab € A(D) = Ay;,.(Ds). Furthermore

Dy(a)b+ aDy(b) = Aab + pab = (A + p)ab = Dy(ab).
Since A = >, g Ax(Dy), it follows that D, € der(A). O

Exercises for Appendix [A]

Exercise A.1. Let V be a real vector space and
Ve=CerV=>01V)d(ixV)
its complexification. We identify V' with the real subspace 1 ® V', so that
Ve =2V eV

Show that:

116



(i) o(2 ®v) :=Z ® v defines an antilinear involution of Vi whose fixed point space is V.

(ii) A complex subspace E C V¢ is of the form W¢ for some real subspace W C V' if and
only if o(F) = E.

(iii) For each M € End(V'), the complexification M¢ € End(V¢), defined by Mc(z ®@v) =
2z ® Mv commutes with o.

(iv) For A € End(V¢) the following are equivalent

(a) A commutes with o.
(b) A preserves the real subspace V.
(¢c) A= Mc for some M € End(V).

Exercise A.2. Let V be a complex vector space and M € End(V). Show that M is
diagonalizable if and only if each M-invariant subspace W C V possesses an M-invariant
complement.

Exercise A.3. Let V be a real vector space, A € End(V) and z € V¢ an eigenvector of Ac
with respect to the eigenvalue A\. Show that if z = x 4+ iy with x,y € V and A = a + ib,
then

Ar=axr —by and Ay=ay+ bx.

In particular, the 2-dimensional subspace E := span{x,y} C V is invariant under A.

Exercise A.4. Let A € M,(R) with no real eigenvalue. Then there exists a basis z,y € R?
and a,b € R with
Ar=axr—by and Ay=ay+ bx.

Exercise A.5. Let V' be a real vector space and M € End(V). Show that M is semisimple
if and only if each M-invariant subspace W C V' possesses an M-invariant complement.

Exercise A.6. Let f € K[X] be a polynomial of the form
F= (X = M) (X = Xg)™ (X = At

and g € K[X] a divisor of f with leading coefficient 1. Show that there exist ¢; < k; with
g=(X =) (X = X)2 - (X = M)

Exercise A.7. Show that for each algebra A, a derivation D € der(A) and A\, u € K, we
have for a,b € A:

(0= 1) @) =3 (1) (0= M) (a) - (0 = 1))

k=0

Exercise A.8. Let V be a finite dimensional vector space over K and
A € End(V). Then the multiplicity of the root 0 of its characteristic polynomial

det(A — X1) € K[X]

coincides with dim V°(A).
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B Tensor Products and Tensor Algebra

In this appendix we provide some tools from multilinear algebra. Throughout, K is an
arbitrary field of characteristic zero.

Let V and W be vector spaces. A tensor product of V and W is a pair (V @ W, ®) of a
vector space V @ W and a bilinear map

R:VXW=VeW, (v,w)—vuw

with the following universal property. For each bilinear map #: V' x W — U into a vector
space U, there exists a unique linear map g: V ®@ W — U satisfying

flv@w)=Pv,w) for veV,weW.

Taking (U, 8) = (V ® W, ®), we conclude immediately that idy gy is the unique linear
endomorphism of V @ W fixing all elements of the form v ® w.

Before we turn to the existence of tensor products, we discuss their uniqueness. In
category theory, one gives a precise meaning to the statement that objects with a universal
property are determined up to isomorphism. The following lemma makes this precise for
tensor products.

Lemma B.1. (Uniqueness of tensor products) If (V@ W, ®) and (VRW,®) are two tensor
products of the vector spaces V. and W, then there exists a unique linear isomorphism

frVQW =S VeW  with fv@w)=vdw for veV,weW.

Proof. Since ® is bilinear, the universal property of (V ® W, ®) implies the existence of a
unique linear map

VW = VeW with fo@w)=v@w for veV,weW.
Similarly, the universal property of (V®W, ®) implies the existence of a linear map
g VeW = VoW with gew)=vew for veV,weW.

Then go f € End(V®W) is a linear map with (go f)(v®@w) =v@w forv € V and w € W,
so that the uniqueness part of the universal property of (V ® W, ®) yields go f = idygw.
We likewise get f o g = idy gy, showing that f is a linear isomorphism. O]

Now we turn to the existence of the tensor product.

Definition B.2. Let S be a set. We write F(S) := K for the free vector space on S. It
is the subspace of the cartesian product K°, the set of all functions f: S — K for which
the set {s € S: f(s) # 0} is finite.

For s € S, we define 4(t) := 04, which is 1 for s = ¢, and 0 otherwise. Then (ds)scs is
a basis for the vector space F'(S) and we have a map

5: 5= F(S), s 0.

Now the pair (F(5),6) has the wuniversal property that, for each map
f:S — V to a vector space V, there exists a unique linear map f: F(S) — V with

fod=Ff.

Proposition B.3. (Existence of tensor products) If V' and W are vector spaces, then there
ezists a tensor product (V @ W, ®).
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Proof. In the free vector space F'(V xW) over V xW  we consider the subspace N, generated
by elements of the form

5(v1+v2,w) - 5(v1,w) - 5(1}2,11))) 6(v,w1+w2) - 5(v,w1) - 5(1},1112)7

and
(5()\1),111) - 5(1},)\111)7 Aé(v,w) - (5()\71,10)7
for v,v1,v9 € V, w,wy,wy € W and X € K. We put

VoW :=FV xW)/N and v®w:=0@w) +N.
The bilinearity of ® follows from the definition of N. In particular, we have
(01 +v2) @ W = Sv,1vaw) + N = Ow1,w) T Owaw) + N =01 @w +v2 W

and
()\v) QW = 5(/\v,w) + N = )\5(U7w) + N = )\(U ® w).

The linearity in the second argument is verified similarly.

To show that (V ® W,®) has the required universal property, let
B:V x W — U be a bilinear map. We use the universal property of (F(V x W),?)
to obtain a linear map

v: F(VxW)=U with  v(dww) = B(v,w)

for v € V;w € W. The bilinearity of § now implies that N C ker~, so that v factors
through a unique linear map

B: VoW =FV xW)/N U with B(v®w)=7(0ww) =B, w).

That B is uniquely determined by this property follows from the fact that the elements of
the form v ® w generate V @ W linearly, which in turn follows from 6(V x W) being a linear
basis for F(V x W). O

Tensor products of finitely many factors are defined in a similar fashion as follows.

Definition B.4. Let Vi,...,Vi, be vector spaces. A tensor product of
Vi,..., Vi is a pair
Mol @ W)

of a vector space V} @ Vo ® --- ® V}, and a k-linear map
RVIX o x V= Vi@Ve® @V, (v1,...,06) =01 Q-+ Q uy,
with the following universal property. For each k-linear map
B:Vix--xV,—=U

into a vector space U, there exists a unique linear map E V1 ®--- @V, — U satistying

ﬂ(vl®...®vk):ﬂ(vl,...,’l)k> for viEVi.

For (U,5) = (V1 ® --- ® Vi, ®), we conclude immediately that idy,g..gv, is the unique
linear endomorphism of V} ® --- ® V}, fixing all elements of the form vy ® - -+ ® vy.

Again, the universal property determines k-fold tensor products.
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Lemma B.5. (Uniqueness of k-fold tensor products) If
Vi@ @V, ad Vi 0V,)

are two tensor products of the vector spaces Vi,..., Vi, then there exists a unique linear
1somorphism

fV@ @V, =Ve- Vi with [ - Qu)=0®: - Qu
forv; € V.

We omit the simple proof of the uniqueness. The existence is easily reduced to the
two-fold case:

Lemma B.6. If Vi,..., Vi are vector spaces and k > 2, then the iterated two-fold tensor

product

Vi - @aVi=WVe® Vi)V
and

VIR U= (U @ @ V1) ® U
1s a tensor product of Vi,..., V.

Proof. Since we know already that this is true for £ = 2, we argue by induction and assume
that the assertion holds for (k—1)-fold iterated tensor products. In this way we immediately
see that (v; ® -+ ® vp_1) ® vy is k-linear.

To verify the universal property, let 3: Vi X --- X V}, — U be a k-linear map. We first
use the induction hypothesis to obtain for each v € Vj, a unique linear map 3,,: V1 ®---®
Vk,1 — U with

ka(vl ®...Q0vk_1) = B(v1,...,06-1,05) for v;e€V,i<k-—1.
From the uniqueness of Evk we further derive that
gAvﬁX% = ABy, + /\lgu;
for \, N € K and vy, vj, € V. Hence the map
Vi@ @Vi) x Vi = U, (z,04) = B (2)

is bilinear. Now the universal property of the two-fold tensor product provides a unique
linear map

V1@ V)@V = U
with E((vl ® - QUg_1) QUg) = gvk(vl Q- Qug_1) = B(v1, ..., V1, Vk). O

Definition B.7. (The tensor algebra of a vector space) Let V' be a K-vector space and V"
the n-fold tensor product of V' with itself. For n = 0,1, we put V®° := K and V¢! := V.
We claim that, for n,m € N, there exists a bilinear map

L VET x VO™ — yenim)

with
,un,m((?h ®...0U,), (V1 ®...® vn+m)) =01 ® ... Vpm

for vy,...,Vp1m € V. In fact, for each x = (21,...,2,) € V", the map

p: V= VEOE () 2 @ @ 2, @ ) @ ® Wy
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is m-linear, hence determines a linear map

Tix: VE™ o VO™ with i (wy ® -+ @ W) = fisc(W1, . . ., Win).
Since ik is n-linear in x, we obtain a uniquely determined bilinear map

P VET x VO penim)
with
fn (V1 ® ... @ V), (Vg1 © - .. @ Vnpm) )
= L(018...00) (Un41 ® .. . QUnim) = V1 Q... @ VU ® V41 @ ... ® Upym-
We further define bilinear maps
fogn: VO X VO = K x VO 5 VO (N v) = Mo

and
fno: VE"@VE = VE x K — VE" (v,)) = .

Putting all maps i, %, n, k € Ny, together, we obtain a bilinear multiplication on the vector
space

TV):= é.OB yen,

It is now easy to show that this multiplication is associative and has an identity element
1 € V¥ (Exercise [B.5)). The algebra obtained in this way is called the tensor algebra of V.

Lemma B.8. (Universal property of the tensor algebra) Let V' be a vector space and
n: V. — T(V) the canonical embedding of V' as VE'.Then the pair (T(V),n) has the fol-
lowing property. For any linear map f: V — A into a unital associative K-algebra A, there
exists a unique homomorphism f: T (V) — A of unital associative algebras with fon = f.

Proof. For the uniqueness of fgve first note that the requirement of being a homomorphism
of unital algebras determines f on 1 via f(1) = 14. On n(V) = V®! it is determined by
fon=f,and on T(V) it is thus determined since the algebra 7(V) is generated by the
subspace K1 + V. B

For the existence of f, we note that, for each n € N, the map

Vn—>A7 (Ula"'avn)Hf(”l)"'f(“n)

is n-linear, so that there exists a unique linear map

far V" s A with [0y ® - ®@v,) = f(vr) -+ f(vn)
for v; € V. We now combine these linear maps ],C; to a linear map
FiTV) = A with  f,(1) =14, flyen = fu.

Then the construction implies that fo n = f. That fis an algebra homomorphism follows
from

f((U1®“‘®Un)‘(w1®"'®wm))

for) - fon) f(wr) - f(wm)

:f(v1®---®vn)f(w1®-”®wm)

for vi,...,v,, w1, ..., wy, € V. O
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Exercises for Section

Exercise B.1. Let U, V and W be finite dimensional vector spaces. Show that there are
isomorphisms:

() UsV=VaU.
(i) UeV)eW 2Uo (Ve W).

Exercise B.2. The aim of this exercise is to get a more concrete picture of the tensor
product of two vector spaces in terms of bases. Let V' and W be vector spaces. We consider

a basis By = {e;: i € I} for V and a basis By = {f;: j € J} for W. Show that:

(i) Each function f: By x By — K has a unique bilinear extension

F VW =K
(ii) The set By ® By ={e; ® f;: 1€ 1,j € J} is a basis for V@ W.

(iii) Each element € V® W has a unique representation as a finite sum z = )., e; ®w;

(iv) If Vi and V5 are vector spaces, then (V; @ Vo) @ W = (Vi@ W) & (Vo @ W).

Exercise B.3. Let V := K" and W := K™. Show that one can turn the space M, ,,(K) of
(n x m)-matrices with entries in K into a tensor product (K" ® K™, ®) satisfying

€; (029 Gj = Eij)

where ey, ..., e, denotes the canonical basis vectors in K" and Ej;; is the matrix which has
a single nonzero entry in the ¢-th row and the j-th column.

Exercise B.4. If V and W are finite dimensional, then the map
¢: V'@ W — Hom(V, W), P(a®@w)(v) == alv)w
is a linear isomorphism.

Exercise B.5. Let V be a vector space and T (V) = @,,c, V*". Show that the multipli-
cation on T (V') defined by Definition yields an associative K-algebra.

Exercise B.6. Let V; and W; be K-vector spaces (for i = 1,2) and A € Homg(V3, V5),
B € Homg (W7, Ws,). Show that there exists a unique K-linear map C: Vi @ Vo, — W) @ Wy
such that

C(v; ® v7) = A(v1) ® B(vs)

for all v; € V; and vy € V5. The map C' is usually denoted by A ® B.

Exercise B.7. Suppose that Vi,...,V} are vector spaces and that a group G acts linearly
on each of them. Show that

g- (M ®..Qu) =g 11Q...0g- v

for g € G and v; € V; defines a linear action on V; ® ... ® Vj.
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C Symmetric and Exterior Products

C.1 Symmetric and Exterior Powers

Definition C.1. Let V be a vector space and n > 2. We define
S™(V) = Ve /U,
where U is the subspace spanned by all elements of the form
V@ ... QU — V1) D ... Ug(n), O E Sp.

The space S™(V) is called the n-th symmetric power of V. We put

V-V, =0n®- ---®u, +U
and observe that this product is symmetric in the sense that

v Ve Vo, =Us1) VeV Us(n)
for each o € S, and vy, ...,v, € V. For n =1, we put S*(V) := V and also S°(V) := K.

If X and Y are sets, then a map f: X" — Y is said to be symmetric if, for each
permutation o € .5,,, we have

flar, ... 20) = f(@oq), . - Towy) for xe X"

Lemma C.2. (Universal property of symmetric powers) Let V and X be vector spaces
and f: V" — X be a symmetric n-linear map. Then there exists a unique linear map

f:8"(V) — X with

fr V-V, = f(vr,...,v,) for wv,...,v, €V.

Proof. From the universal property of the n-fold tensor product V", we obtain a unique
linear map fo: V®" — X with

forr ® - ®@uv,) = f(ug,...,v,) for wv,...,v, €V,

In view of the symmetry of f, the linear map f; vanishes on U, hence factors through a
linear map f: S™(V) — X with the desired property. ]

Definition C.3. Let V and W be K-vector spaces, n € N, and
sgn: S, — {1, -1}

be the signature homomorphism mapping all transpositions to —1. An n-linear map
f: V" — W is called alternating if

f(vla v >Un) = sgn(a)f(va(l), s 7U0(n))

holds for all o € S,, and vy,...,v, € V.

We write Alt"(V, W) for the set of alternating n-linear maps V" — W. Clearly, sums
and scalar multiples of alternating maps are alternating, so that Alt"(V, W) carries a natural
vector space structure. For n = 0, we shall follow the convention that Alt"(V, W) := W is
the set of constant maps, which are considered to be 0-linear.
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Example C.4. From linear algebra, we know the n-linear map

(K")" - K, det(vy,...,vx) := Z sgn(0)V1,0(1) " * * Vk,o (k) -

og€ESy,

Here we identify the space M, (K) of (n x n)-matrices with entries in K with the space
(K™)™ of n-tuples of (column) vectors ([La93l Sect. XIIL.4]).

Definition C.5. Let V be a vector space and n > 2. We define
A (V) 1= VW,
where W is the subspace spanned by the elements of the form
V1 Q- @V —8gN(0)Ve(1) ® - @ Vo), 0 € Sy
The space A™(V) is called the n-th exterior power of V.. We put
VA AU, =0 Q- -RQu, + W
and note that this product is alternating, i.e.,
VLA AV, = 8g0(0)Us1) A -0 A Ug(n)
for all o € S, and (vy,...,v,) € V™. For n = 2, this means that
v1 N\ Vg = —vy A V1.
We also put A*(V) :=V and A°(V) := K.

Lemma C.6. [Universal property of the exterior power| Let V and X be vector spaces and
f e Alt"™(V, X). Then there exists a unique linear map f: A"(V) — X with

for Ao Awy) = f(or,...,0,)  for  wvy,...,v, €V
We thus obtain a linear bijection
A"V, X) — Hom(A"(V), X), f+ f.

Proof. The proof is completely analogous to the symmetric case. [

C.2 Symmetric and Exterior Algebra

Definition C.7. Let V be a vector space and (7(V),n) the tensor algebra of V' (cf.
Lemma B.8)). We define the symmetric algebra S(V') over V' as the quotient 7 (V') /I, where
1 is the ideal generated by the elements

n(v) @ n(w) — n(w) @ n(v). We write
ns: V—=SV), venv)+ I

for the canonical map induced by 7. The product in S(V') is denoted by V.
Likewise, we define the exterior algebra A(V') over V as the quotient 7 (V')/1,, where I,
is the ideal generated by the elements

n(wv) @ n(w) +n(w) @n(v), v,weV.

We write
Na: V= AV), ve=n)+1,

for the canonical map induced by n. The product in A(V') is denoted by A.
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Lemma C.8. (Universal property of the symmetric algebra) Let V' be a vector space and
(S(V),ns) its symmetric algebra. Then S(V') is a commutative unital algebra and for any
linear map f: V — A into a unital commutative associative algebra A, there exists a unique
homomorphism f: S(V) — A of unital associative algebras with fons, = f.

Proof. Using the universal property of the tensor algebra 7 (V'), we see that there exists a
unique  unital  algebra  homomorphism o T(V) — A with

fon = f. Since A is commutative, for any v, w eV, the element 7(v) ®n(w) —n(w) @n(v)
is contained in ker f and therefore I, C ker f shows that f factors through an algebra
homomorphism f: 9 (V) — A with fon, = f. The uniqueness of f follows from the fact
that 7(V) is generated, as a unital algebra, by n(V), so that S(V) is generated by the
image of 7. Since the generators ns(v), v € V, of S(V) commute, the algebra S(V) is
commutative. [

Remark C.9. (a) The structure of the symmetric algebra can be made more concrete as
follows. Let T (V)i := V® and Uy C T(V), the subspace spanned by the commutators
[n(v),n(w)],v,w € V. Then the ideal I; is of the form

L=TWLTV)= Y T(V),®U:,T(V @an,
P,9€No
where [, =3 ., o T(V),®@Us®T(V),. This implies that the symmetric algebra S(V')

is a direct sum
=@ SV).,  where  S(V)y =T (V)u/Isn.

Let
M V”_>S(V)n, (Ula"'7vn) }—)7’]5(?}1)\/“'\/775(”71)

denote the n-fold multiplication map. Since S(V') is commutative, this map is symmetric,

hence induces a linear map
fn: S"(V) = S(V)n,

determined by
fin(vi VeV ovg) = ns(v1) V- V(o).

On the other hand, it is clear that the subspace I, of V" is contained in the kernel of the
quotient map V& — S™(V), so that there exists a linear map f,: S(V), — S™(V), with

fa(ms(v1) V- Vns(vp)) =01 V- Voo,

Then f, o fi, = idgn(y) and, similarly, s, o f, = idg(y),. This proves that /i, is a linear
isomorphism. In the following we therefore identify S™(V') with the subspace S(V),, of the
symmetric algebra and write 7,(v) simply as v.

Note that S"(V) v .S™(V) C S"*™(V), so that the direct sum

=P s v)

neN

defines the structure of a graded algebra on S(V') with S°(V) = K1 containing the identity
element.
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(b) A similar argument applies to the exterior algebra and shows that the ideal I, has
the form I, = @, , (I, N V"), so that

AV) = éA(V)n, where  A(V),, =T (V)n/lon.

Let pn: V' —  A(V)p, (v1,...,0n) = na(v1) A -+ A n4(v,) denote the
n-fold multiplication map. Then the relation 7,(v;)n.(v;) 4+ 1a(v;)n.(v;) = 0 and the fact
that S,, is generated by transpositions imply that pu, is alternating. Hence it induces a
linear map fi,,: A"(V) — A(V),, determined by

P (V1 A - Avp) = na(v1) A= Ang(vn).

On the other hand, it is clear that the subspace I, of V®" is contained in the kernel of
the quotient map V®" — A™(V), so that there is a linear map f,: A(V),, — A"(V) with

faMa(v) A-e - Ana(vn)) = vi Ao A vy,

As in the symmetric case, we now see that i, is a linear isomorphism. In the following
we therefore identify A™(V') with the subspace A(V),, of the symmetric algebra and write
Na(v) simply as v.

Each subspace A"(V') is spanned by elements of the form v; A - -+ A v, and this implies
that for « € A*(V') and g € A™(V') we have

aNp=(=1)""FAa. (37)

In this sense the graded algebra A(V) is graded commutative. The even part of this algebra

is the subspace
[o.¢]

Aeven(v) — @AQk(V)
k=0
which is a central subalgebra, and the odd part is

AOdd(V) — @A%—H(V).
k=0
For two elements «, 8 of this subspace we have a A = —( A «.

Lemma C.10. (Universal property of the exterior algebra) Let V' be a vector space and
(A(V),na) be its exterior algebra. Then A(V') is a graded commutative unital algebra and
for any linear map f:V — A into a unital associative algebra A, satisfying

f)f(w)=—=f(w)f(v) for wvweV,
there exists a unique homomorphism ]7: A(V) — A of unital associative algebras with fo
Na = f

Proof. Using the universal property of the tensor algebra 7 (V'), we see that there exists a
unique  unital  algebra  homomorphism  f: T(V) — A with

~

fon=f. Then we have for v,w € V
F(n(v) ® n(w) + n(w) @ n(v)) = f(0)f(w) + f(w)f(v) =0.

Therefore I, C ker fshows that fAfactors through a unital algebra homomorphism fv: AV) —
A with f on, = f. The uniqueness of f follows from the fact that 7(V) is generated, as a
unital algebra, by n(V'), so that A(V') is generated by the image of 7,. O
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C.3 Exterior Algebra and Alternating Maps

Below we shall see how general alternating maps can be expressed in terms of determinants.
Proposition C.11. For any w € Alt"(V, W) we have:
(i) Forby,..., by €V and linear combinations v; = Zle a;;b;, we have

w(v,...,v) =det(A)w(br,...,by), and A:= (a;;) € My(K).
(i) w(vr,...,v) =0 if vy,..., v are linearly dependent.
(iii) Forby,...,b, € V and linear combinations v; =Y " a;;b; we have

w(v, ..., ) = Zdet(AI)w(bil, oo b)),
I

where A = (a;;) € Mpx(K), I = {ir,...,i0} is a k-element subset of {1,...,n},
1<y <. < <n, and A[ = (aij)i€17j:17,,,7k € Mk(K)
Proof. (i) For the following calculation we note that if o: {1,...,k} — {1,...,k} is a map

which is not bijective, then the alternating property implies that w(ve(1), - - ., Vo)) = 0. We
therefore get

k k
w(vlv"'7vk):w( E ainbi, ..., E aikbi>
i=1 i=1

k
= Z ai11-~~aikk-w(bil,...,bik)
01 yeeeytp=1
= Z Ug(1)1 " Ao(k)k - W(bo(1), - - -, Do(r))
oSy,
= Z sgn(0)ao(1)1 - Go(y - Wb, ... by) = det(A) - w(by, ..., by).
€Sy,
(ii) follows immediately from (i) because the linear dependence of vy, ..., v implies that

det A = 0.
(iii) First we expand

W(Ul, Ce ,’Uk) = w(zn:aﬂbi, .. ,Xn:azkbz)

=1 =1
n
= E Qi1 Qg ke W(b“, 7bzk)
i1y =1

If [{1,...,ix}| < k, then the alternating property implies that w(b;,,...,b;, ) = 0 because
two entries coincide. If [{i1,...,ix}| = k, there exists a permutation o € Sy with ip1) <
... <lg(k). We therefore get

wvg, ..., v) = Z Z Qi1 """ Vi ok w(bia(l), . big(m)

1<ii<..<ix<n oESE

= Z Z Sgn(‘j)aio(l)l T Qi gk w(bila e >bik)

1<i1<..<ixg<n  0ES}

= Zdet(A1>w(bi17 e biy),
I

where the sum is to be extended over all k-element subsets I = {iy,...,ix} of {1,...,n},
where i1 < ... < . ]
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Corollary C.12. (i) IfdimV <k, then Alt*(V, W) = {0}.
(ii) Let dimV =n and by, ..., b, be a basis for V.. Then the map
o AV, W) - WE, (W) = Wby, .. b ))ine.<is
18 a linear isomorphism. We obtain in particular dim (Altk(V, K)) = (Z)
(iii) If dimV =k and by, ..., by is a basis for V', then the map
O: APV, W) =W, ®(w) =w(by,...,b)
18 a linear isomorphism.

Proof. (i) In Proposition [C.11i), we may choose by = 0.
(ii) First we show that ® is injective. So let w € Alt"(V, W) with ®(w) = 0. We now

write any & elements vy,...,v; € V with respect to the basis elements as v; = Z?:l a;jb;
and obtain with Proposition [C.11}
wlv,.o) = Y det(Apw(by,, ... b;,) = 0.

1<i1<..<ip<n
To see that @ is surjective, we pick for each k-element subset I = {iy,..., i} C
{1,...,n} with 1 < i3 < ... < i < n an element w; € W. Then the tuple (wy) is a

typical element of w ),
Expressing k£ elements vy,...,v; in terms of the basis elements by,...,b, via v; =

Yo, aijbi, we obtain an (n x k)-matrix A. We now define an alternating k-linear map

w € Alt*(V, W) by
w(vg, ..., vg) = Z det(Ap)wy.
I

The k-linearity of w follows directly from the k-linearity of the maps
(v1, ..., v) — det(Af).

For iy < ... < i we further have w(b;,,...,b; ) = wy because in this case A; € My (K) is
the identity matrix and all other matrices Ap have some vanishing columns. This implies
that ®(w) = (wy), and hence that ® is surjective.

(iii) is a special case of (ii). O

Definition C.13. (Alternator) Let V and W be vector spaces. For a k-linear map w: V* —
W, we define a new k-linear map by

1
Alt(w)(v1, ... vg) = 7 Z sgn(0)w(Vs(), - - - 5 Vo(k))-

€Sk
Writing
W (V1,5 V) = W(Ve1)s - - 5 Vo(k))
we then have

Alt(w) = % Z sgn(o)w?.

’ €Sy,

The map Alt(+) is called the alternator. We claim that it turns any k-linear map into an
alternating k-linear map. To see this, we first note that for o, 7w € Si, we have

(W)™ (v1, -y vk) = (W) (Vr(1)s - - - Vn(ie))

= W(Uro(1)s - - -+ Vo)) = W (V15 ..., V).
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This implies that

1 1 _
Alt(w =4 Z sgn(o =0 Z sgn(o)w™ = o Z sgn(mlo)w

O‘GSk ’ €Sy, ’ UGSk
= Z sgn(m) sgn(o)w’ = sgn(m) Alt(w = Z sgn(om 1w’
oESK oESK
1
=4 Z sgn(o)w? =0 Z sgn(o = Alt(w").
" oeSy €S}

In particular, we see that Alt(w) is alternating.

Remark C.14. (a) We observe that if w is alternating, then w’ = sgn(o)w for each
permutation o, and therefore

Alt(w =7 Z sgn(o) sgn(o =7 Z w=w.

oESK o€Sk
(b) For k = 2 we have Alt(w)(vy,v2) = 5(w(v1,v2) — w(va, v1)), and for k = 3:
1
Alt(w>(vla V2, U3) = é(w(vla V2, U3) - w(v% U1, 1)3) + w(v2> U3, Ul)

— w(vs3, Ve, v1) + w(vs, v1,v2) — w(vy, V3, Ug)).
Definition C.15. Let p,q € Ny. For two multilinear maps
wi:Vix...xV,—-K and we: Vo x...xV =K
we define the tensor product wy @ wy: Vi X -+ - x V1, — K by

(wl X CUQ)(’Ul, N ,Up+q) = (JJ1<U1, ce ,’Up)(JJg<Up+1, ce ,’lip+q>.

It is clear that w; ® ws is a (p + ¢)-linear map.
For A € K (the set of 0-linear maps), and a p-linear map w as above, we obtain in
particular
ARQW =w® A= .

For two alternating maps a € Alt?(V,K) and g € Alt?(V,K) we define their ezterior

product:
(p + q)

alp = Alt(a® B) = p'iq' Z sgn(o)(a® [)7. (38)

" 0€Sp+q

It follows from that o A B is alternating, so that we obtain a bilinear map
A AP(V,K) x AltY(V,K) — AtV K), (a,B) — a A B.

On the direct sum
AlL(V,K) == €P Alt"(V, K)
p€No
we now obtain a bilinear product by putting

<;@p> A (;@) :Zgap/\ﬁq.

As before, we identify Alt’(V,K) with K and obtain
Aa=ANa=aA)
for A € Alt°(V,K) =K and o € Alt?(V,K).

129



We take a closer look at the structure of the algebra (Alt(V,K), A).
Lemma C.16. For o € Alt?(V,K), 5 € AltY(V,K) and v € Alt"(V,K), we have

(@AB)Ay=aA(BAY).
In particular the algebra (Alt(V,K), A) is associative.

Proof. First we recall from Definition that for any n-linear map w: V" — W and
m € S, we have
Alt(w™) = sgn(m) Alt(w). (39)

We identify S,., in the natural way with the subgroup of S, ¢, fixing the numbers p +
q+1,...,p4+ q+r. We thus obtain

(@A B) Ay _%Au«aww
e 3 o) A((w o 87 1)
_ % J; sgn(o) Alt((a ® 8@ 7))
]%U; Alt(a ® 8 ®7)
_%Alt( RB®7) = %Ak( ®(B®7))
_ %q—++7§)Alt(a®(6Afy)) an(BA). O

From the associativity asserted in the preceding lemma, it follows that the multiplication
in Alt(V,K) is associative. We may therefore suppress brackets and define

Wi A Awp = (o ((w Awg) Aws) -+ Awy).

Remark C.17. (a) From the calculation in the preceding proof we know that for three
elements «; € Alt?(V,K), the triple product in the associative algebra Alt(V,K) satisfies

+ p2 +
ay A ag A as = (pl D2 p3)

Alt(&l ® (6] ® 063)

p1!pa!ps!
Inductively this leads for n elements «; € Alt? (V| K) to
AL Aap = (Pt & p)! Alt(a; ® - ® ay)
pl---py!

(Exercise [C.2)).
(b) For a; € Alt'(V,K) = V*, we in particular obtain

(g Ao ANag)(vg, .oy v,) =0l Alb (g @ -+ @ ) (v, .., vy)

= > sgn(0)an (Vo) - - O (Vo(m)) = det(ai(v))).

O'ESn

Proposition C.18. The exterior algebra is graded commutative, i.e., for a € AltP(V,K)
and B € AltY(V,K) we have
aNf=(-1)PBAa.
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Proof. Let o € S,., denote the permutation defined by

o(i) = i+p for1 <i<yq
' 1—q forg+1<i<p+gq

which moves the first ¢ elements to the last ¢ positions. Then we have

(B® )7 (01, ..., Upsg) = (B @ a)(Vo(1); - - -, Va(prq))

= B(Upt1, -y Uppg)a(vr, ..., vp) = (@ ® B) (V1. .., Vpiyg).
This leads to
| |
anf= (pqu?). Alt(a @ §) = (pqu?). Alt((8 ® )°)
(r+q)!

= sgn(o) o] Alt(B ® ) = sgn(o) (B A ).
On the other hand sgn(c) = (—1)%, where
F=[{@j) €{l,....p+q}:i<jo(j) <o(i)}|
={(,j) e{l.....p+a}:i<qj>al=pq
is the number of inversions of o. Putting everything together, the lemma follows. m
Corollary C.19. If o € AltP(V,K) and p is odd, then a A o« = 0.

Proof. In view of Proposition [C.18] we have a A o = (—1)”204 ANa = —a A o, which leads to
aNa=0. O

Corollary C.20. If ay,...,op € V* = AltY(V,K) and 8; = S| aja;, then
GiN.. APy =det(A)-an A... ANy, for A= (a;) € Mi(K).
Proof. The k-fold multiplication map
O (VH* = AP(V,K), (31, 9) = M A - Ak

is alternating by Proposition because Sy is generated by transpositions. Hence the
assertion follows from Proposition O

Corollary C.21. IfdimV =n, by, ..., b, is a basis for V, and b3, ..., b} the dual basis for
V*, then the products

b?izb;-kl/\.../\b:k, [:(il,...,ik), 1< <... < <n,
form a basis for Alt*(V,K).
Proof. For J = (j1,...,Jx) with 71 < ... < ji, we get with Remark |C.17[b)

N . 1 forlI=1J
B0 b3 = ety D) = ]

If follows in particular that the elements b; are linearly independent, and since dim Alt" (V,K) =

™) (Corollary |C.12|), the assertion follows. O
() ( v[c12),
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Remark C.22. (a) From Corollary it follows in particular that

& (dim V
dim Alt(V,K) = ) ( L ) — gdimV
k=0

if V' is finite dimensional.

(b) If V' is infinite dimensional, then it has an infinite basis (b;);c; (this requires Zorn’s
Lemma). In addition, the set I carries a linear order < (this requires the Well Ordering
Theorem), and for each k-element subset J = {j1,...,Jjx} C I with j; < ... < ji, we thus
obtain an element

by :==b; A AD .

Applying the b% to k-tuples of basis elements shows that they are linearly independent, so
that for each k > 0 the space Alt*(V,K) is infinite dimensional.

Definition C.23. Let ¢: V; — V5 be a linear map and W a vector space. For each p-linear
map «: V& — W we define its pull-back by o:

(P a)(vr,.. . vp) = alp(vr), ., p(vp))

for vq,...,v, € V1. It is clear that ¢*« is a p-linear map VI — W and that ¢*« is alternating
if a has this property.

Remark C.24. If p: V; — V, and ¢: Vo — Vj are linear maps and a: V¥ — W is p-linear,
then

(Y op)a=e (Yra).
Proposition C.25. Let p: Vi — V5 be a linear map. Then the pull-back map
o" Alt(Vo, K) — Alt(V, K)
1s a homomorphism of algebras with unit.

Proof. For av € Alt?(V5,K) and g € Alt?(V3, K) we have

. (r+q) . (r+q) .

O (aNpB) = o (Alt(a ® B)) = il Alt(p" (e ® f))
= (p—:-?) Alt(e"a® ¢"f) = " a A p*S. O

plg!

Remark C.26. The results in this section remain valid for alternating forms with values
in any commutative algebra A. Then

Alt(V, A) @AltpVA

pENg

also carries an associative, graded commutative algebra structure defined by

QA B = (p+q)

Alt(a @ B),

where
(a® B)(vy, ... avp+q) =a(vy,. .. 7Up) : 6(Up+la . avp+q)

for a € Alt?(V, A), p € AltY(V, A).
This applies in particular to the 2-dimensional real algebra A = C.
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Exercises for Section

Exercise C.1. Fix n € N. Show that:
(1) For each matrix A € M,(K), we obtain a bilinear map

Ba: K* x K" =K, Ba(z,y) = Y ayziy;.

ij=1

(2) A can be recovered from 4 via a;; = Ba(ei, e;).

(3) Each bilinear map f: K" x K" — K is of the form § = (4 for a unique matrix
A e M,(R).

(4) BAT (ZL’, y) = BA(:% fL’)
(5) Ba is skew-symmetric if and only if A is so.

Exercise C.2. Show that for o; € Alt?(V,K),i = 1,...,n, the exterior product satisfies

|
al/\.../\ozn:(pl+'”+pn)'Alt(a1®~--®0zn)

nlpl

Exercise C.3. Show that (Alt(V,K), A) is an exterior algebra over V*.

D Supplementary material

D.1 The nilradical is characteristic

We can now record the following interesting consequence of Corollary

Proposition D.1. Ifg is a finite dimensional Lie algebra and D € der(g), then D(rad(g)) C
nil(g). In particular, nil(g) and rad(g) are invariant under der(g), i.e., characteristic ideals.

Proof. For D € der(g), consider the Lie algebra g := g xp K for the Lie algebra with the
bracket
[(z,t), (2, )] := (tDa’ — t'Dx + [z, 2'],0)

and identify g with the subalgebra g x {0}. Then rad(g) is a solvable ideal of g because
rad(g) is a characteristic ideal of g (Lemmal6.4), hence contained in rad(g). We thus obtain

D(rad(g)) = [(0,1),rad(g)] € g N [g,rad(g)] € g Nnil(g) < nil(g). O
Corollary D.2. If a < g is an ideal, then nil(a) = a N nil(g).

Proof. Clearly, a N nil(g) is a nilpotent ideal of a, hence contained in nil(a). Conversely,
nil(a) is an ideal of g because it is invariant under all the derivations ad z|,, * € g. This
implies that nil(a) C nil(g) N a. O
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D.2 Malcev’s Theorem
Lemma D.3. If x € g is such that ad x is nilpotent, then

adx

=~

v=2_7%

k

00
=0

defines an automorphism of g.

Note that this series is actually finite and that it makes sense over every field of char-
acteristic zero.

Proof. This follows from the proof of (ii) = (i) in Lemma [2.4] applied with V =W = g
and B(z,y) = [z,y]. O

Theorem D.4. (Malcev’s Theorem) For two Levi complements s and §' in g, there exists
some x € [g,rad(g)] with e*%s’ = 5.

Proof. Let v :=rad(g). We first consider some special cases.

(a) If [g,t] = {0}, then g = v @ s is a direct sum of Lie algebras and v = 3(g) is abelian.
Therefore s = [s,s] = [g, 9] = [¢/,8'] =¢', and there is nothing to show.

(b) If [g, t] # {0} and t is a minimal nonzero ideal of g, then [g,t] = t, [t,t] = {0} (since
D'(x) #t), and 3(g) = {0} (because v € 3(g)). We define a map h: s — v by z + h(z) €5
for x € ¢/, i.e., —h is the projection of §' to s along t. Since s is a subalgebra and t is
abelian, we have

[z + h(x),y + h(y)] = [, y] + [, h(y)] + [A(2), y] € 5.

Therefore

h([z,y]) = [z, h(y)] + [h(z), y].
This implies that

m(x)(r,t) := ([z,r] + th(z),0)

defines a representation of §' on v x K. The subspace v = v x {0} is §'-invariant. According
to Weyl’s Theorem, there exists an s'-invariant complement K(v,1) of v in t @ K. As ¢’ is
semisimple, 7(s")(v, 1) = {0}, and hence h(z) 4 [x,v] = 0 for z € s'. Now we have

My =g+ [vr]=rv+hxr)cs for zcs

and thus e*¥(s') C 5. Equality follows from dims = dim g/t = dims’. This proves the
theorem if [g, t] is nonzero and a minimal ideal.

(c) Finally, we turn to the general case. We argue by induction on n := dimt. The
case n = 0 is trivial, so that we assume n > 0 and that the assertion holds for all Lie
algebras h with dimrad(h) < n. In view of (a), we may assume that [g,t] # {0}. As the
ideal [g, t] is nilpotent (Corollary [4.16), its center ¢ := 3([g,t]) is nonzero (Proposition [3.3).
Let m # {0} be a minimal ideal of g contained in ¢. If m = t, then we are in the
situation of (b). We therefore assume m # tv. Let m: g — g1 := g/m be the quotient
map. Then t; := 7(t) is the radical of g; (Proposition [6.2)), and 7(s) and 7 (s') are Levi
complements in g/m because both are semisimple (Proposition and complementing
7(t). Now our induction hypothesis provides an z; € [gy,t;] with e*®17(¢') = 7(s). Using
7([g,t]) = [g1,t1], we find an = € [g,t] with 7(z) = x1. Then 4% 7(s') = m(e?d%s') C 7(s),
ie.,



ad x

Now e*?®s" and s are two Levi complements in the Lie algebra h with

dimrad(h) = dimm < n = dim .

Hence the induction hypothesis provides a y € m with e*d¥e2d%¢’ C 5. Since m is central in

[g,t], we have [x,y] = 0 and therefore e*¥e*17s = e2d(@+v)g/ C g, ]
Malcev’s Theorem has interesting consequences:

Corollary D.5. Fach semisimple subalgebra of g is contained in a Levi complement. In
particular, the Levi complements are precisely the mazximal semisimple subalgebras of g.

Proof. Let v := rad(g) be the radical of g, h C g a semisimple subalgebra, and a := v+ b.
Then a is a subalgebra of g and v is a solvable ideal of a. Since the solvable ideal rad(a) Nh
of the semisimple Lie algebra § is trivial, we see that v = rad(a). The ideal h Nt of b is
solvable and semisimple, hence trivial. This proves that b is a Levi complement in a.

Let s be a Levi complement in g. Then a = v+ (aNs) is a semidirect sum and since
ans = a/t = b is semisimple, a N s is a Levi complement in a. According to Malcev’s
Theorem , there exists an z € [a,t] with e®%(aNs) = b, i.e., b is a contained in the
Levi complement €% (s) of g. O

Corollary D.6. If n < g is an ideal of g and g = v X s a Levi decomposition, i.e., s is a
Levi complement, then n = (nNt) x (nNs) is a Levi decomposition of n.

Proof. We have already seen in Lemma [6.4] that nN v = rad(n). If 5, is a Levi complement
in n, then Corollary implies that the semisimple Lie algebra s, is contained in a Levi
complement &' of g. For x € [g, t] with 1%s’ = 5 we now see that ¢*4%s, C nN s, because

e n Cn+[z,n] Cn

Since the ideal n N s of s is semisimple (Proposition [5.10) and s, is maximal semisimple in
n, we obtain e*%s, = nNs. This shows that n N s is a Levi complement in n. O

D.3 Reflections of sls-modules

For K = R, C, we have for every finite dimensional vector space V' the exponential function

o0

1
exp: gl(V) — GL(V), exp(X):= EXR
n=0

defined by the convergent exponential series.

Definition D.7. (Exponential function over fields of characteristic zero) If K is a genreal
field of characteristic zero and X € gl(V') a nilpotent element, then the exponential series

(e 9]

1
exp(X) = Z an

n=0
still makes sense because only finitely many summands are non-zero.

Lemma D.8. Let V be a finite dimensional K-vector space and x,y € gl(V'), where either
K € {R,C} or charK =0 and x,y are nilpotent.

(i) If xy = yx, then exp(z + y) = exprexpy.

135



(i) exp(z) € GL(V), exp(0) = 1, and (expx)~! = exp(—=x).
(iii) For g € GL(V'), we have the relation
gexp(z)g~" = exp(gag ™).

Proof. (i) Using the general form of the Cauchy Product Formula in the case K = R,C
(Exercise [2.2), we obtain

k=0 k=0 =0
L& gt & oy
_ggﬁ(k—z)!_<;ﬁ><;ﬁ)'

If both z and y are nilpotent, all these series are finite, so that the assertion follows likewise.
(ii) From (i) we derive in particular exp z exp(—z) = exp 0 = 1, which implies (ii).
(iii) is a consequence of gz"g~! = (grg~!)" and the continuity of the conjugation map
cy(x) == gzrg~™ on M,(K) for K =R, C. O

Lemma D.9. For z,y € gl(V) and K =R, C or for x nilpotent and char K = 0, we have
(expx)y(expr)~! = exp(ad z)y. (40)
Proof. We define the linear maps
Azt End(V) — End(V), y~— 2y, py: End(V) — End(V), vy~ yz.
Then \,p, = p A\, and adz = A\, — p,, so that Lemma (ii) leads to

1 A dx

T z—pzy — y.

expx)ylexpz) ! = eye ™ = eMe Pry = ¢
(exp )y (exp ) Y y

This proves .

If z is nilpotent and K is a general field of characteristic zero, then we recall from
Proposition that ad x is nilpotent, so that both sides make sense. Their equality
follows as above. O

We consider the element
6 = e*e 2/ cade ¢ Aut(sly(K))

(Example [.6) and
o = exp(e) exp(— f) exple) = (é D (_11 (1)) (é i) _ (_01 é) € SLy(K).

Then Lemma implies for z € sly(K) the relation §(z) = 0zo~!, hence in particular
O(h)=—h, 6(e)=—f and 0O(f)=—e.

Lemma D.10. Let (p,V) be a finite dimensional representation of sly(K) and oy :=
ePe=Perl€) ¢ GL(V). Then

ovp(2)oyt = ploza™)  for z € sly(K),

ov(Va(p(h))) =V_u(p(h))  for the eigenspaces of  p(h). (41)
Proof. For z € sl3(K), we obtain with Lemma the relation

ovp()oy! = plozo).
For v € V,(p(h)) we have
p(R)(ov(v)) = ov (07 p(h)ov) (v) = avp(~h)(v) = —aoy(v).
This implies that . [
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