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Part I

General Structure Theory
In this part we take a first look at the concept of a Lie algebra. Lie algebras arise naturally
in many areas of mathematics. Their important role in mathematics is due to the fact that
they are the infinitesimal counterparts, resp., “first order approximations” of Lie groups,
so that they can be used to describe symmetries in algebraic terms. Accordingly, the Lie
bracket of vector fields (the infinitesimal generators of flows) and the Poisson brackets from
classical mechanics provide important examples of Lie algebra structures. 1

In this course we study Lie algebras as independent algebraic structures. By the com-
mutator bracket, every associative algebra inherits the structure of a Lie algebra and for
every (not necessarily associative algebra) the space of derivations is a Lie algebra.

We start this chapter with the analysis of the algebraic structure of Lie algebras and the
relevant concepts: What are the substructures? Under which condition does a substructure
lead to a quotient structure? What are the simple structures? Does one have composition
series? This leads to concepts like Lie subalgebras and ideals, nilpotent, solvable, and
semisimple Lie algebras. Key results in this context are Engel’s Theorems on nilpotent Lie
algebras, Lie’s Theorem for solvable Lie algebras and Cartan’s criteria for solvability and
semisimplicity. The latter are first instances in which one recognizes the usefulness of the
Cartan–Killing form, which is a specific structural element of Lie algebras.

Throughout K denotes an arbitrary field if not specified otherwise. All vector spaces
are vector spaces over K.

1 Basic Concepts

In this section we provide the basic definitions and concepts concerning Lie algebras. In
particular, we discuss ideals, quotients, homomorphisms and the elementary connections
between these concepts.

1.1 Definitions and Examples

We start with the definition of a Lie algebra. 2 3

Definition 1.1. Let g be a vector space. A Lie bracket on g is a bilinear map [· , ·] : g×g→ g
satisfying

(L1) [x, x] = 0 for x, y ∈ g (it is alternating), and

(L2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for x, y, z ∈ g (Jacobi identity). 4

If [·, ·] is a Lie bracket on g, then the pair (g, [· , ·]) is called a Lie algebra.

1In the context of dynamical systems, the Lie algebra would represent the differential equation ẋ(t) =
F (t,x) encoding the evolution of a system and the Lie group the corresponding time evolution on the state
space Φt(x) = x(t), x(0) = x.

2Marius Sophus Lie (1842–1899), Norwegian mathematician in Kristiania (Oslo) and Leipzig. Founder
of the theory of transformation groups, which later lead to the modern concept of a Lie group.

3The term Lie algebra was introduced in the 1920s by Hermann Weyl, following a suggestion of N. Ja-
cobson. Lie himself was dealing mainly with Lie algebras of vector fields, which he called (infinitesimal)
transformation groups. The term Lie group was introduced by E. Cartan.

4Carl Gustav Jacob Jacobi (1804–1851), Mathematician in Berlin and Königsberg (Kaliningrad). He
found the famous identity about 1830 in the context of Poisson brackets, occuring in Hamiltonian mechanics.
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Remark 1.2. (a) From (L1) we immediately derive for x, y ∈ g the relation

0 = [x+ y, x+ y] = [x, x] + [y, x] + [x, y] + [y, y] = [y, x] + [x, y],

hence
[x, y] = −[y, x],

which means that any Lie bracket is skew-symmetric. If, conversely, a bracket [·, ·] is skew-
symmetric, then we obtain for x = y the relation 2[x, x] = 0. Therefore (L1) follows,
provided charK 6= 2, i.e., 2 = 1 + 1 6= 0 in the field K.

Example 1.3. A vector space A together with a bilinear map · : A×A → A is called an
(associative) algebra if

a · (b · c) = (a · b) · c for a, b, c ∈ A.

Then the commutator
[a, b] := a · b− b · a

defines a Lie bracket on A. In fact, (L1) is obvious. For the Jacobi identity, we first observe
that [

x, [y, z]
]

= x(yz − zy)− (yz − zy)x = xyz − xzy − yzx+ zyx,

which leads to5 ∑
cyc.

[
x, [y, z]

]
=
∑
cyc.

xyz − xzy − yzx+ zyx

=
∑
cyc.

xyz − xzy − xyz + xzy = 0.

We write AL := (A, [·, ·]) for this Lie algebra.

Example 1.4. (a) Let V be a vector space and End(V ) be the set of linear endomor-
phisms of V . Then End(V ) is an associative algebra w.r.t. composition. We write gl(V ) :=
End(V )L for the corresponding Lie algebra with the bracket

[ϕ, ψ] := ϕ ◦ ψ − ψ ◦ ϕ.

(b) The space Mn(K) of (n × n)-matrices with entries in K is an associative algebra
with respect to matrix multiplication. We write gln(K) := Mn(K)L for the corresponding
Lie algebra with the bracket

[A,B] := AB −BA.

Definition 1.5. (a) Let g and h be Lie algebras. A linear map α : g → h is called a
homomorphism (of Lie algebras) 6 if

α([x, y]) = [α(x), α(y)] for x, y ∈ g.

An isomorphism of Lie algebras is a homomorphism α for which there exists a homomor-
phism β : h → g with α ◦ β = idh and β ◦ α = idg. It is easy to see that this condition is
equivalent to α being bijective (Exercise). If an isomorphism ϕ : g → h exists, we call the
Lie algebras g and h isomorphic.

5Here we use the notation
∑

cyc. for the sum over all expressions obtained from a cyclic permutation of
the variable.

6Based on the terminology of category theory, one also speaks of morphisms of Lie algebras.
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(b) A representation of a Lie algebra g on the vector space V is a homomorphism
α : g→ gl(V ). We also write (α, V ) for a representation α of g on V .

(c) Let g be a Lie algebra and E,F be subsets of g. We write

[E,F ] := span{[e, f ] : e ∈ E, f ∈ F}

for the smallest subspace containing all brackets [e, f ] with e ∈ E and f ∈ F .
(d) A linear subspace h of a Lie algebra g is called a Lie subalgebra if [h, h] ⊆ h.

Obviously, every Lie subalgebra h is a Lie algebra with respect to the restriction of the Lie
bracket to a map h× h→ h. We then write h < g.

If the stronger condition [g, h] ⊆ h is satisfied, then we call h an ideal of g and write
h E g.

(e) The Lie algebra g is called abelian if [g, g] = {0}, which means that all brackets
vanish.

Remark 1.6. From the definitions it is clear that the image of a homomorphism α : g1 → g2

of Lie algebras is a subalgebra of g2. Moreover, α−1(h) is an ideal in g1 if h E g2, and α−1(h)
is a subalgebra if h < g2. In particular, the kernel kerα of a Lie algebra homomorphism α
is always an ideal.

Examples 1.7. (i) Let g be Lie algebra. Then the center

z(g) := {x ∈ g | (∀y ∈ g) [x, y] = 0}

of g is an ideal in g.

(ii) For each Lie algebra g, the subspace [g, g] is an ideal (Exercise 1.11), called the
commutator algebra of g.

(iii) Every one-dimensional subspace of a Lie algebra is a subalgebra since the Lie bracket
is alternating.

(iv) The set
sln(K) := {x ∈ gln(K) | tr(x) = 0}

is an ideal in gln(K), where tr(x) denotes the trace of X. It is called the special linear
Lie algebra. That sln(K) is a Lie algebra follows from

tr([X, Y ]) = tr(XY − Y X) = tr(XY )− tr(Y X) = 0

for X, Y ∈ Mn(K). Since sln(K) is a hyperplane in Mn(K), we have dim sln(K) =
n2 − 1.

Writing Ejk for the matrix with entry 1 in position (j, k) and zeros elsewhere, we
obtain the commutator brackets

[Ejk, E`m] = δk`Ejm − δjmE`k. (1)

This easily implies that
[gln(K), gln(K)] = sln(K)

(Exercise 1.9).
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(v) The set
on(K) := {x ∈ gln(K) | x = −x>}

is a subalgebra of gln(K): For x, y ∈ on(K), we have

[x, y]> = [y>, x>] = [−y,−x] = [y, x] = −[x, y].

This Lie algebra is called the orthogonal Lie algebra. We have

dim on(K) =
n(n− 1)

2
.

Note that
son(K) := on(K) ∩ sln(K) = on(K)

follows from the fact that tr x = 0 for x> = −x.

(vi) The set
un(C) := {x ∈ gln(C) | x = −x∗}

is a real subalgebra of the complex Lie algebra gln(C), the unitary Lie algebra. We
define the special unitary Lie algebra by

sun(C) := un(C) ∩ sln(C).

(vii) Let Jn :=

(
0 1n
−1n 0

)
∈ gl2n(K) and note that J>n = −Jn. Then the set

sp2n(K) := {x ∈ gl2n(K) : x>Jn + Jnx = 0}

is a Lie subalgebra of gl2n(K), called the symplectic Lie algebra (Exercise 1.10). Writ-
ing elements of gl2n(K) as (2× 2)-block matrices, one easily verifies that(

A B
C D

)
∈ sp2n(K) ⇐⇒ B = B>, C = C>, A> = −D.

For the dimension we thus obtain

dim sp2n(K) = n2 + 2
n(n+ 1)

2
= 2n2 + n.

(viii) The subspace
n = {x = (xij) ∈ gln(K) | (∀i ≥ j)xij = 0}

of strictly upper triangular matrices and the subspace

b = {x = (xij) ∈ gln(K) | (∀i > j)xij = 0}

of upper triangular matrices are Lie subalgebras of gln(K).

(ix) Let V be a subspace of a Lie algebra g. The normalizer

ng(V ) = {x ∈ g | [x, V ] ⊆ V }

of V in g is a subalgebra of g (Exercise).
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Example 1.8. Let V be a vector space. A tuple F = (V0, . . . , Vn) of subspaces with

{0} = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V

is called a flag in V . Then

g(F) := {x ∈ gl(V ) : (∀j) xVj ⊆ Vj}

is a Lie subalgebra of gl(V ) = End(V )L (it is even closed under composition).
To visualize this Lie algebra, we shall describe linear maps by suitable block matrices. If

V is a vector space which is a direct sum V = W1⊕ . . .⊕Wn of subspaces Wj, j = 1, . . . , n,
then we write an endomorphism A ∈ End(V ) as an (n× n)-block matrix

A = (Ajk)j,k=1,...,n =


A11 · · · A1n

A21 · · · A2n
...

. . .
...

An1 · · · Ann

 ,

where Ajk ∈ Hom(Wk,Wj) is uniquely determined by the requirement that the image of
v = (v1, . . . , vn) ∈ V is

Av =
( n∑
k=1

Ajkvk

)
j=1,...,n

.

Here we simply write Aw for A(w) to simplify notation.
Applying this kind of visualization to the Lie algebra g(F), we choose in Vj a subspace

Wj with Vj ∼= Vj−1 ⊕Wj. For each j, we then have Vj ∼= W1 ⊕ . . . ⊕Wj and in particular
V ∼= W1⊕. . .⊕Wn. Now the elements of g(F) are those endomorphisms of V corresponding
to upper triangular matrices

A =


A11 A12 · · · A1n

0 A22 · · · A2n
...

. . . . . .
...

0 · · · 0 Ann

 .

1.2 Derivations

Definition 1.9. Let (A, ·) be an algebra (not necessarily associative), i.e., A × A →
A, (a, b) 7→ a · b is a bilinear map. Then D ∈ End(A) is called a Derivation if

D(x · y) = D(x) · y + x ·D(y) for x, y ∈ A.

We write der(A) for the subset of derivations in End(A).

Examples 1.10. (a) If A = C∞(R) is the space of smooth real-valued functions f : R→ R,
endowed with the pointwise multiplication, then

D : A → A, f 7→ f ′

is a derivation by the Product Rule. This is the paradigmatic example of a derivation.
(b) For a general field K, the polynomial ring A = K[X] in one indeterminate X is

an algebra and the linear map D : A → A specified by D(Xn) = nXn−1 for n ≥ 1 and
D(1) = 0 is a derivation.
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The notion of a derivation plays a central role in Lie algebra theory.

Lemma 1.11. For every algebra (A, ·), the subset der(A) is a Lie subalgebra of gl(A) =
End(A)L.

Proof. Since der(A) clearly is a linear subspace of gl(A), we have to show that it is closed
under the commutator bracket. For D1, D2 ∈ der(A) and x, y ∈ A we have

[D1, D2](x · y)

= D1D2(x · y)−D2D1(x · y)

= D1

(
D2(x) · y + x ·D2(y)

)
−D2

(
D1(x) · y + x ·D1(y)

)
=
(
D1D2(x)

)
· y +D2(x) ·D1(y) +D1(x) ·D2(y) + x ·

(
D1D2(y)

)
−
(
D2D1(x)

)
· y −D1(x) ·D2(y)−D2(x) ·D1(y)− x ·

(
D2D1(y)

)
= [D1, D2](x) · y + x · [D1, D2](y).

Therefore [D1, D2] ∈ der(A).

Specializing to Lie algebras, we obtain:

Definition 1.12. Let g be a Lie algebra. A linear map δ : g→ g is a derivation if

δ([x, y]) = [δ(x), y] + [x, δ(y)] for x, y ∈ g.

The following lemma shows that the Jacobi identity is closely linked to Lie brackets
defining derivations:

Lemma 1.13. Let [·, ·] : g × g → g be a bilinear map which is alternating, i.e., [x, x] = 0
for x ∈ g. Then [·, ·] is a Lie bracket if and only if, for every x ∈ g, the map

adx : g→ g, y 7→ [x, y]

defines a derivation of (g, [·, ·]).

Proof. Since [x, x] = 0 implies the skew-symmetry of the bracket, we have

adx([y, z])− ([adx(y), z] + [y, adx(z)])

=
[
x, [y, z]

]
−
([

[x, y], z
]

+
[
y, [x, z]

])
=
[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
,

so that we can immediately read off the assertion of the lemma.

Definition 1.14. Let g be a Lie algebra and x ∈ g. We have seen above that the linear
map

adx : g→ g, y 7→ [x, y]

is a derivation. Derivations of this form are called inner derivations. The map ad: g→ gl(g)
is called the adjoint representation. That it is a representation, i.e.,

ad[x, y] = [ad x, ad y] for x, y ∈ g (2)

follows directly from the Jacobi identity (Exercise).

Proposition 1.15. (Range and kernel of adjoint representation) For any Lie algebra g,

(i) der(g) < gl(g) and ad(g) E der(g) is an ideal. In particular,

[D, adx] = ad(Dx) for D ∈ der(g), x ∈ g. (3)

(ii) ker(ad) = z(g)

Proof. (i) The first part is a special case of Lemma 1.11 and for the second one verifies (3)
by direct calculation.

(ii) is trivial.
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1.3 Representations and Modules

In this short subsection we introduce some terminology concerning representations of Lie
algebras and the corresponding concept of a Lie algebra module.

Definition 1.16. Let g be a Lie algebra and V be a vector space. Suppose that

g× V → V, (x, v) 7→ x · v

is a bilinear map. If

[x, y] · v = x · (y · v)− y · (x · v) for x, y ∈ g, v ∈ V,

then V is called a g-module.

Definition 1.17. (a) Let g be a Lie algebra and V a g-module. A subspace W ⊆ V is
called a g-submodule if g ·W ⊆ W .

(b) A g-module V is called simple if it is nonzero and there are no submodules except
{0} and V . It is called semisimple, if V is the direct sum of simple submodules.

(c) If V and W are g-modules, then a linear map ϕ : V → W is called a homomorphism
(morphism) of g-modules if

ϕ(x · v) = x · ϕ(v) for x ∈ g, v ∈ V.

We write Homg(V,W ) for the vector space of all g-module homomorphisms from V to
W and note that the set Endg(V ) := Homg(V, V ) of module endomorphisms of V is an
associative subalgebra of End(V ).

If ϕ ∈ Homg(V,W ) is bijective, then the inverse map ϕ−1 : W → V is also a homomor-
phism of g-modules (Exercise). Therefore ϕ is called an isomorphism of g-modules. The
set of isomorphisms V → V is the group Autg(V ) := Endg(V )× of invertible elements in
the algebra Endg(V ).

Example 1.18. (a) Any Lie algebra g carries a natural g-module structure defined by the
adjoint representation x · y := [x, y]. The g-submodules of g are precisely the ideals (cf.
Definition 1.14).

(b) If g = K is the one-dimensional Lie algebra and V a K-vector space, then any
endomorphism D ∈ End(V ) determines a g-module structure on V defined by t·v := tD(v).
Clearly, each g-module structure on V is of this form for D(v) = 1 · v.

Remark 1.19. (Module structures versus representations)
(a) If π : g→ gl(V ) is a representation, then a g-module structure on V is defined by

x · v = π(x)v.

Conversely, for every g-module V , the map π : g → gl(V ) defined by π(x)v = x · v is a
representation. Thus representations of g and g-modules are equivalent concepts.

(b) In the sense of (a), we call two representations equivalent if the corresponding mod-
ules are isomorphic.

Definition 1.20. A representation (π, V ) of a Lie algebra g is called irreducible if V is a
simple g-module. It is called completely reducible if V is a semisimple g-module.
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1.4 Quotients and Semidirect Sums

We have already seen that the kernel of a homomorphism of Lie algebras is an ideal.
The following proposition implies in particular that each ideal is the kernel of a surjective
homomorphism of Lie algebras.

Proposition 1.21. Let g be a Lie algebra and n be an ideal in g. Then the quotient space
g/n = {x+ n : x ∈ g} is a Lie algebra with respect to the bracket

[x+ n, y + n] := [x, y] + n.

The quotient map π : g→ g/n is a surjective homomorphism of Lie algebras with kernel n.

Proof. Since n is an ideal, the bracket on g/n is well-defined because z, z′ ∈ n implies

[x+ z, y + z′]− [x, y] ∈ n.

The bracket on g/n is clearly bilinear and satisfies

[π(x), π(y)] = π([x, y]) for x, y ∈ g. (4)

Since π is surjective, the validity of (L1/2) in g implies (L1/2) for the bracket on g/n: We
have

[π(x), π(x)] = π([x, x]) = 0

and

[π(x), [π(y), π(z)]] + [π(y), [π(z), π(x)]] + [π(z), [π(x), π(y)]]

= π([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) = 0.

In view of (4), π is a homomorphism of Lie algebras.

Lemma 1.22. A linear subspace n of a Lie algebra g is an ideal if and only if it is the
kernel of a homomorphism of Lie algebras.

Proof. Proposition 1.21 implies that every ideal n of g is the kernel of a homomorphism. If,
conversely, ϕ : g→ h is a homomorphism of Lie algebras, then ϕ([g, kerϕ]) ⊆ [ϕ(g), {0}] =
{0} implies that its kernel is an ideal.

Theorem 1.23. (Factorization Theorem) Let ϕ : g1 → g2 be a homomorphism of Lie n E g1

be an ideal and π : g1 → g1/n the quotient homomorphism. Then there exists a uniquely
determined homomorphism ϕ : g1/n→ g2 satisfying ϕ ◦ π = ϕ if and only if n ⊆ kerϕ.

Proof. If ϕ exists, then
kerϕ = ker(ϕ ◦ π) ⊇ kerπ = n.

If, conversely, n ⊆ kerϕ, then we obtain a well-defined linear map

ϕ : g1/n→ g2, ϕ(x+ n) := ϕ(x).

That ϕ is a homomorphism of Lie algebras follows from

ϕ
(
[π(x), π(y)]

)
= ϕ

(
π([x, y])

)
= ϕ([x, y]) = [ϕ(x), ϕ(y)]

= [ϕ
(
π(x)

)
, ϕ
(
π(y)

)
].

That ϕ is uniquely determined by the relation ϕ ◦ π = ϕ is due to the surjectivity of π.
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We leave the easy proof of the following proposition to the reader.7

Proposition 1.24. Let g and h be Lie algebras.

(i) If α : g→ h is a homomorphism, then α(g) ∼= g/ kerα.

(ii) If i, j E g are ideals with i ⊆ j, then j/i E g/i, and (g/i)/(j/i) ∼= g/j.

(iii) If i, j E g are two ideals, then i + j and i ∩ j are ideals of g, and

i/(i ∩ j) ∼= (i + j)/j.

We have already seen that we obtain for each ideal n E g a quotient algebra g/n, so that
we may consider the two Lie algebras n and g/n as two pieces into which g is decomposed.
It is therefore a natural question how we may build a Lie algebra g from two Lie algebras
n and h in such a way that n E g and g/n ∼= h. The following definition describes one such
construction.

Definition 1.25. (a) If g is a Lie algebra, n E g an ideal and h ≤ g a subalgebra, so that
g is the direct vector space sum of n and h. Then g is called a semidirect sum of n and h.

Since the ideal n ⊆ g is a invariant under the adjoint representation,

δ : h→ der(n), x 7→ adx|n

defines a homomorphism of Lie algebras. In these terms, the bracket in g ∼= n⊕ h is given
by

[(n, h), (n′, h′)] = ([n, n′] + δ(h)n′ − δ(h′)n, [h, h′]).
We therefore write g = noδ h and call g the semidirect sum of n and h with respect to δ.

(b) If δ = 0, then we write g = n⊕ h and say that g is the direct sum of n and h.

Remark 1.26. A semidirect sum g = noδ h is a direct sum if and only if the subalgebra
h ∼= {0} × h is an ideal.

The following lemma shows that every triples (n, h, δ) as in Definition 1.25 actually
corresponds to a Lie algebra.

Lemma 1.27. Let n and h be Lie algebras and δ : h → der(n) be a homomorphism of Lie
algebras. Then

[(n, h), (n′, h′)] = ([n, n′] + δ(h)n′ − δ(h′)n, [h, h′])
defines on the vector space g := n× h a Lie bracket such that n ∼= n× {0} is an ideal and
h ∼= {0} × h a subalgebra with g ∼= noδ h.

Proof. Clearly,

[(n, h), (n, h)] := ([n, n] + δ(h)n− δ(h)n, [h, h])) = (0, 0),

so that (L1) is satisfied. To verify the Jacobi identity, we put

J(x, y, z) :=
[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
for x, y, z ∈ g and observe that J(x, y, z) = J(y, z, x) = J(z, x, y). We further have

J(x, x, z) =
[
x, [x, z]

]
+
[
x, [z, x]

]
+
[
z, [x, x]

]
= 0,

7These three statements are Lie algebra versions of Emmy Noether’s Homomorphism Theorems for
modules over rings in [EN27, §4, p. 40]).
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so that J is alternating, i.e.,

J(xσ(1), xσ(2), xσ(3)) = sgn(σ)J(x1, x2, x3) for σ ∈ S3, xj ∈ g.

Therefore the verification of the Jacobi identity J = 0 reduces to the following four special
cases:
(1) x, y, z ∈ n: J(x, y, z) = 0 follows from the Jacobi identity in n.
(2) x, y ∈ n, z ∈ h: J(x, y, z) = −[x, δ(z)y]− [δ(z)x, y] + δ(z)[x, y] = 0 follows from the fact
that δ(z) is a derivation of n.
(3) x ∈ n, y, z ∈ h: J(x, y, z) = −δ([y, z])x+δ(y)δ(z)x−δ(z)δ(y)x = 0 follows from δ being
a homomorphism.
(4) x, y, z ∈ h: J(x, y, z) = 0 is a consequence of the Jacobi identity in h.

Example 1.28. (a) If δ : g→ gl(V ) is a representation of g and we consider V as an abelian
Lie algebra, then der(V ) = gl(V ) and V oδ g carries a Lie algebra structure given by

[(x, y), (x′, y′)] := (δ(y)x′ − δ(y′)x, [y, y′]).

(b) If V is a vector space, then we write aff(V ) for the space of affine maps

LA,v : V → V, x 7→ Ax+ v, A ∈ gl(V ), v ∈ V.

Note that aff(V ) carries a Lie algebra structure defined by

[LA,v, LA′,v′ ] = L[A,A′],Av′−A′v.

Then aff(V ) ∼= V oδ gl(V ) for δ(A)v = Av.
(c) In gln+1(K) we consider the Lie subalgebra

g :=

{
L̃A,v =

(
A v
0 0

)
: A ∈ gln(K), v ∈ Kn

}
.

Then L̃A,v ◦ L̃A′,v′ = L̃AA′,Av′ and therefore

[L̃A,v, L̃A′,v′ ] = L̃[A,A′],Av′−A′v.

Hence g ∼= aff(Kn) ∼= Kn o gln(K).

Example 1.29. For a derivation D of the Lie algebra n, we obtain a homomorphism
δ : K→ der(n) by δ(t) := tD, and this leads to the semidirect sum noD K := noδ K with
the bracket

[(n, t), (n′, t′)] = ([n, n′] + tDn′ − t′Dn, 0)

(cf. Example 1.18(b)).

Example 1.30. Let h3(K) be the 3-dimensional vector space with the basis p, q, z equipped
with the alternating bracket determined by

[p, q] = z, [p, z] = [q, z] = 0.

Then h3(K) is a Lie algebras called the three dimensional Heisenberg algebra. It is isomor-
phic to the algebra n in Example 1.7(viii) for n = 3. The linear endomorphism of h3(K)
defined by

Dz = 0, Dp = q and Dq = −p
then is a derivation of h3(K), so that we obtain a Lie algebra
osc(K) := h3(K) oD K, called the oscillator algebra. Writing h := (0, 1) for the additional
basis element in osc(K), the nonzero brackets of basis elements are

[p, q] = z, [h, p] = q and [h, q] = −p.

(cf. Exercise 1.12)
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Example 1.31. If F = (V0, . . . , Vn) is a flag in the vector space V (Example 1.8), then we
know already the associated Lie algebra

g(F) = {x ∈ gl(V ) : (∀j) xVj ⊆ Vj}.

It is easy to see that

gn(F) := {x ∈ gl(V ) : (∀j > 0) xVj ⊆ Vj−1}

is an ideal of g(F). Here the n in gn(F) stands for “nilpotent”.
To find a subalgebra complementary to this ideal, we choose subspaces W0, . . . ,Wn−1

of V with Vj+1
∼= Vj ⊕Wj for j = 0, . . . , n− 1. Then

gs(F) := {X ∈ gl(V ) : (∀j) XWj ⊆ Wj} ⊆ g(F)

is a subalgebra with

g(F) ∼= gn(F) o gs(F) and gs(F) ∼=
n⊕
j=1

gl(Wj).

The s in gs(F) stands for “semisimple”. Describing the elements of g(F) as in Example 1.8
by block matrices, the semidirect decomposition of the Lie algebra g(F) corresponds to the
decomposition of an upper triangular matrix as a sum of a strictly upper triangular matrix
and a diagonal matrix. For n = 3 we have in particular:

A =

A11 A12 A13

0 A22 A23

0 0 A33

 =

A11 0 0
0 A22 0
0 0 A33


︸ ︷︷ ︸

∈gs(F)

+

0 A12 A13

0 0 A23

0 0 0


︸ ︷︷ ︸

∈gn(F)

.

1.5 Complexification and Real Forms

Up to now, the base field did not really play a role in our considerations. But we shall see
later on, that for some structure theoretic arguments, it is important for the operators ad x
to have eigenvalues. This is certainly the case if the groundfile K is algebraically closed.
Therefore, we also consider the complexification of a real Lie algebra. For this, we briefly
recall how to calculate with the complexification of a vector space.

Definition 1.32. Let V be an R-vector space. The complexification VC of V is the vector
space V ⊕ V , endowed with the C-vector space structure defined by

(x+ iy)(v, w) := (xv − yw, xw + yv).

Identifying V with the subspace V ×{0} of VC, we then have iV = {0}×V and VC = V ⊕iV
as real vector spaces. Accordingly, we write elements of VC as x+ iy, x, y ∈ V .8

The real linear map σ : VC → VC, v + iw 7→ v − iw, for v, w ∈ V , is called complex
conjugation. Its real points consist of the subspace V ⊆ VC.

The proof of the following proposition is an elementary calculation.

Proposition 1.33. Let g be a real Lie algebra.

8For readers familiar with tensor products: For every real vector space, we may identify the complexi-
fication VC with C⊗R V , endowed with the complex scalar multiplication by λ(z ⊗ v) = λz ⊗ v.
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(i) gC is a complex Lie algebra with respect to the complex bilinear Lie bracket, defined
by

[x+ iy, x′ + iy′] := ([x, x′]− [y, y′]) + i([x, y′] + [y, x′]).

(ii) [gC, gC] ∼= [g, g]C as complex Lie algebras.

(iii) The map σ(x+iy) := x−iy for x, y ∈ g defines an antilinear involutive automorphism
of gC whose fixed point set (gC)σ = {z ∈ gC : σ(z) = z} is the real Lie algebra g.

Definition 1.34. Let g be a complex Lie algebra. A real Lie algebra h, for which g = h+ih
is a direct sum of real vector spaces is called a real form of g. Note that this implies that
g ∼= hC.

We have seen that to every real Lie algebra, we can assign a natural complexification
(cf. Exercise 1.16). However, nonisomorphic real algebras can have isomorphic complexi-
fications, resp., complex Lie algebras can have nonisomorphic real forms, as the following
example shows.

Example 1.35. (Lie algebras with non-isomorphic real forms) In view of Exercise 1.15, we
have

su2(C)C ∼= sl2(C) ∼= sl2(R)C,

so that su2(C) and sl2(R) are both real forms of the complex Lie algebra sl2(C). We now
show that sl2(R) and su2(C) are not isomorphic. To this end, we show that sl2(R) contains
a 2-dimensional Lie subalgebra and that su2(C) does not. Clearly,

b :=
{(x y

0 −x

)
: x, y ∈ R

}
is a 2-dimensional Lie subalgebra of sl2(C) (cf. Example 1.7(viii)). So it remains to see
that su2(C) contains no 2-dimensional subalgebra. This will be done by first showing that
su2(C) ∼= so3(R). We consider the bases

a =
1

2

(
i 0
0 −i

)
, b =

1

2

(
0 1
−1 0

)
, c =

1

2

(
0 i
i 0

)
of su2(C), and

x =

 0 1 0
−1 0 0

0 0 0

 , y =

 0 0 1
0 0 0
−1 0 0

 , z =

0 0 0
0 0 −1
0 1 0


of so3(R). Then

[a, b] = c, [b, c] = a, [c, a] = b

and
[x, y] = z, [y, z] = x, [z, x] = y.

Therefore the linear isomorphism su2(C) → so3(R) with a 7→ x, b 7→ y and c 7→ z is an
isomorphism of Lie algebras. The Lie algebra so3(R) has no two-dimensional subalgebra
because it is isomorphic to (R3,×), where × denotes the vector product (Exercise 1.8).
Here we use that the vector product x× y of two linearly independent vectors x, y ∈ R3 is
orthogonal to both, so that the plane Rx+ Ry is not a subalgebra.
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Example 1.36. (A complex Lie algebra with no real form) On the abelian Lie algebra
V := C2 we consider the linear operator D, defined by De1 = 2e1 and De2 = ie2 with
respect to the canonical basis. Then we form the three dimensional complex Lie algebra
g := V oD C and note that V = [g, g] is a 2-dimensional ideal of g.

Suppose that g has a real form. Let σ ∈ Aut(g) be the corresponding complex conju-
gation, which is an involutive antilinear automorphism of g (Proposition 1.33(iii)). Then

σ(V ) = σ([g, g]) = [σ(g), σ(g)] = [g, g] = V,

so that σ induces an antilinear involution σV on V . Let σ(0, 1) = (v0, λ) and note that
σ(V ) = V implies that λ 6= 0. Applying σ again, we see that

(0, 1) = σ2(0, 1) = σV (v0) + λσ(0, 1) = (σV (v0) + λv0, λ · λ).

We conclude that |λ| = 1. Further, σ ◦ ad(0, 1) ◦ σ = ad(σ(0, 1)) = ad(v0, λ) implies by
restricting to V that

σV ◦D ◦ σV = λD.

If v ∈ V is a D-eigenvector with Dv = αv, then

D(σV v) = σV (λDv) = λασV (v).

This means that σV (Vα(D)) = Vλα(D).9 In particular, σV permutes the
D-eigenspaces. Now |λ| = 1 and |i| 6= 2 show that σV preserves both eigenspaces. For
α = 2, this leads to λ = 1, so that λ = 1. For α = i we now arrive at the contradiction
−i = λα = α = i.

This example is minimal because each complex Lie algebra of dimension 2 has a real
form (cf. Example 4.2).

Exercises for Section 1

Exercise 1.1. Let A be an associative algebra and AL be the associated Lie algebra
(cf. Example 1.3).

(i) der(A) ⊆ der(AL), i.e., every derivation of the associative algebra A is a derivation
of the Lie algebra AL, too.

(ii) [a, bc] = [a, b]c+ b[a, c] for a, b, c ∈ A.

(iii) In general der(A) 6= der(AL).

(iv) If A is commutative, then A · der(A) ⊆ der(A).

Exercise 1.2. Let U be an open subset of R2n and g = C∞(U,R) be the set of smooth
functions on U and write q1, . . . , qn, p1, . . . , pn for the coordinates with respect to a basis.
Then g is a Lie algebra with respect to the Poisson bracket

{f, g} :=
n∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

The functions pj and qk satisfy the canonical commutation relations (CCR):

{pj, pk} = {qj, qk} = 0 and {qj, pk} = δjk.
9We use the following notation for eigenspaces: Let V be a K-vector space and A ∈ End(V ). We

write Vλ(A) := ker(A − λ1) for the eigenspace of A corresponding to the eigenvalue λ and V λ(A) :=⋃
n∈N ker(A− λ1)n for the generalized eigenspace of A corresponding to λ.
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Exercise 1.3. Let U be an open subset of Rn, A = C∞(U,R), and
g = C∞(U,Rn). For f ∈ A and X ∈ g, we define

LXf := Xf :=
n∑
i=1

Xi
∂f

∂xi
.

(i) The maps LX are derivations of the algebra A.

(ii) If LX = 0, then X = 0.

(iii) The commutator of two such operators has the form [LX ,LY ] = L[X,Y ], where the
bracket on g is defined by

[X, Y ](p) := dY (p)X(p)− dX(p)Y (p),

resp.,

[X, Y ]i =
n∑
j=1

Xj
∂Yi
∂xj
− Yj

∂Xi

∂xj
.

(iv) (g, [·, ·]) is a Lie algebra.

(v) To each A ∈ gln(R), we associate the linear vector field XA(x) := Ax. Show that, for
A,B ∈Mn(R), we have X[A,B] = −[XA, XB].

Exercise 1.4. Show that every 2-dimensional nonabelian Lie algebra contains a basis x, y
with [x, y] = y. State the full classification of 2-dimensional Lie algebras. A natural matrix
realization of this Lie algebra is

aff1(K) =

(
K K
0 0

)
with the basis x :=

(
1 0
0 0

)
, y :=

(
0 1
0 0

)
.

Exercise 1.5. (a) Show that all derivations of the 2-dimensional non-abelian Lie algebra
n = aff1(K) are inner.
(b)∗ Conclude that, whenever a 3-dimensional Lie algebra g has an ideal isomorphic to n,
then g ∼= n⊕K. Here n⊕K denotes the direct sum of Lie algebras with the bracket

[(x, t), (x′, t′)] = ([x, x′], 0).

Exercise 1.6. Show that, every 3-dimensional Lie algebra g with a 2-dimensional ideal is
isomorphic to one of the following types:

(a) aff1(K)⊕K or

(b) K2 oD K, D ∈ gl2(K) with [(x, t), (x′, t′)] = (tDx′ − t′Dx, 0)].

Hint: Use Exercise 1.5(b).

(c)∗ Can you determine when two Lie algebras K2 oDK and K2 oE K, D,E ∈ gl2(K), are
isomorphic? Find necessary and sufficient conditions.

Exercise 1.7. Let g be a Lie algebra, n E g an ideal and h < g a Lie subalgebra with
g = n + h and n ∩ h = {0}. Then

δ : h→ der n, δ(x) := ad x|n

defines a homomorphism of Lie algebras and the map

Φ: noδ h→ g, (x, y) 7→ x+ y

is an isomorphism of Lie algebras.
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Exercise 1.8. (a) On K3 we define the vector product byv1

v2

v3

×
w1

w2

w3

 :=

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 .

Show that (K3,×) is a Lie algebra and that the map

Φ: (K3,×)→ so3(K), Φ(v)w := v × w

is an isomorphism of Lie algebras.

(b) For (v,w) =
∑3

j=1 vjwj we have (v ×w,v) = 0 and (v ×w,w) = 0.

(c)∗ When does the Lie algebra (K3,×) contain 2-dimensional subalgebras? Express this
as a condition on the field K. Do R, C satisfy this condition?

Exercise 1.9. (a) Show that [gln(K), gln(K)] = sln(K) and z(gln(K)) = K1.
(b) For which fields is the intersection of these two ideals {0}?

Exercise 1.10. Show that:

(i) For every matrix B ∈Mn(K), the subspace

gB := {x ∈ gln(K) : x>B +Bx = 0}

is a Lie subalgebra of gln(K).
Here is a more conceptual argument:

(ii) By π(x)A := xA+ Ax>, we obtain a representation of gln(K) on Mn(K).

(iii) If V is a g-module and v ∈ V , then

gv := {x ∈ g : x · v = 0}

is a subalgebra.

Exercise 1.11. Show that, for two ideals a and b of the Lie algebra g, the subspace [a, b]
also is an ideal.

Exercise 1.12. On the algebra A := C∞(R,C), consider the operators

Pf(x) := if ′(x), Qf(x) := xf(x) and Zf(x) = if(x).

Then the Lie subalgebra of gl(A) generated by P,Q and Z is isomorphic to the Heisenberg
algebra h3(R), i.e.,

[P,Q] = Z and [P,Z] = [Q,Z] = 0.

In Quantum mechanices, Q is the position operator and P the momentum operator. Adding
also the operator (the Hamiltonian of the harmonic oscillator)

Hf(x) :=
i

2

(
− d2f

dx2
(x) + x2f(x)

)
, H =

i

2
(P 2 +Q2),

we obtain a four-dimensional Lie subalgebra, isomorphic to the oscillator algebra (Exam-
ple 1.30).
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Exercise 1.13. Let (π, V ) be a representation of the Lie algebra g on V and W ⊆ V a
g-invariant subspace, i.e., π(g)W ⊆ W . Then

π : g→ gl(V/W ), π(x)(v +W ) := π(x)v +W

defines a representation of g on the quotient space V/W .

Exercise 1.14. For the following Lie algebras, find a faithful, i.e., injective, finite dimen-
sional representation: sl2(K), the Heisenberg algebra, the oscillator algebra, and the abelian
Lie algebra Rn.

Exercise 1.15. (Complexifications) Show that, as complex Lie algebras,

gln(R)C ∼= gln(C), sln(R)C ∼= sln(C), on(R)C ∼= on(C), sun(C)C ∼= sln(C).

Exercise 1.16. Show that the complexification gC of a real Lie algebra g has the following
universal property. For every real linear homomorphism ϕ : g → h of g to a complex Lie
algebra h, there exists a unique complex linear homomorphism ϕC : gC → h with ϕC|g = ϕ.

2 Lie Algebras of Matrix Groups

Many concepts in the theory of Lie algebras correspond to the concepts in group theory:

(1) The adjoint representation ad: g → der(g) of a Lie algebra g corresponds to the
conjugation action c : G → Aut(G), c(g)(x) := gxg−1 of a group G on itself by inner
automorphisms. Accordingly, the automorphisms cg of G are called inner and the
derivations adx, x ∈ g, of a Lie algebra g are called inner.

(2) Ideals are subalgebras invariant under inner derivations. Likewise normal subgroups
are subgroup invariant under all inner automorphisms.

(3) The Lie bracket [x, y] in g corresponds to the commutator bracket (x, y) := xyx−1y−1

for elements of a group. Groups are abelian if all commutators are trivial and abelian
Lie algebras are defined likewise.

(4) The commutator group (G,G) of a group G is the subgroup generated by all commu-
tators xyx−1y−1, it is automatically normal. Likewise, the commutator algebra [g, g]
of a Lie algebra g is an ideal.

(5) For a group G, the center is

Z(G) := {x ∈ G : (∀y ∈ G)xy = yx},

and the relation xy = yx can also be written as (x, y) = 1. Accordingly,

z(g) = {x ∈ g : [x, g] = {0}}

for a Lie algebra g.

Later we shall also encounter the notion of a nilpotent and a solvable Lie algebra which are
analogous to the corresponding notions for groups.

The correspondence between Lie algebras and groups is particularly direct for groups
G ⊆ GLn(R) of real matrices. For such a group G, we write C1

∗([0, 1], G) for the set of
differentiable paths α : [0, 1] → Mn(R) with α([0, 1]) ⊆ G and α(0) = 1 (the identity
matrix).
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Definition 2.1. Let G ⊆ GLn(R) be a subgroup. We define

L(G) := {x ∈Mn(R) : (∃α ∈ C1
∗([0, 1], G))x = α′(0)}.

Proposition 2.2. For every subgroup G ⊆ GLn(R), the set L(G) is a Lie subalgebra of
gln(R).

Proof. (a) First we observe that, for α ∈ C1
∗([0, 1], G), the pointwise inverse α−1 is also

contained in C1
∗([0, 1], G) and that its derivative is given by

(α−1)′(t) = −α(t)−1α′(t)α(t)−1.

This follows from

lim
h→0

1

h
(α−1(t+h)−α−1(t)) = lim

h→0
α−1(t+h)

(α(t)− α(t+ h)

h

)
α−1(t) = −α−1(t)α′(t)α−1(t).

We also note that the Product Rule implies that, for α, β ∈ C1
∗([0, 1], G), the curve α ·β

is contained in C1
∗([0, 1], G). It satisfies

(αβ)′(t) = α′(t)β(t) + α(t)β′(t).

(b) If α, β ∈ C1
∗([0, 1], G), then

(αβ)′(0) = α′(0) + β′(0), (α−1)′(0) = −α(0),

and, for 0 ≤ λ ≤ 1, the curve αλ(t) := α(λt) satisfies α′λ(0) = λα′(0). Therefore L(G) is a
real linear subspace of gln(R).

(c) For g ∈ G and x = γ′(0) ∈ L(G), the curve defined by η(t) := gγ(t)g−1 is also
contained in C1

∗([0, 1], G) and satisfies L(G) 3 η′(0) = gxg−1.
(d) For x, y ∈ L(G) and x = γ′(0) we know from (c) that β(t) := α(t)yα(t)−1 defines a

curve in L(G) which is differentiable by (a). Therefore

L(G) 3 β′(0) = α′(0)yα(0)−1 − α(0)yα′(0) = xy − yx = [x, y].

This completes the proof.

Example 2.3. (a) Clearly, L(GLn(R)) = gln(R) because

GLn(R) = {g ∈Mn(R) : det g 6= −0}

is an open neighborhood of 1.
(b) To see that

L(SLn(R)) = sln(R),

we observe that d det(1) = tr (consider the linear terms in the Leibniz formula). For every
γ ∈ C1

∗([0, 1], SLn(R)), we therefore obtain

0 =
d

dt

∣∣
t=0

det(γ(t)) = tr(γ′(0))

by the Chain Rule, and thus γ′(0) ∈ sln(R). If, conversely, X ∈ sln(R), then

det(etX) = etr(tX) = 1 for every t ∈ R,

so that X = γ′(0) for the curve γ(t) = etX in SLn(R).
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Lemma 2.4. Let V and W be finite dimensional real vector spaces and
β : V ×V → W a bilinear map. For (x, y) ∈ End(V )×End(W ) the following are equivalent:

(i) etyβ(v, v′) = β(etxv, etxv′) for all t ∈ R and all v, v′ ∈ V .

(ii) yβ(v, v′) = β(xv, v′) + β(v, xv′) for all v, v′ ∈ V .

Proof. (i) ⇒ (ii): Taking the derivative in t = 0, the relation (i) leads to

yβ(v, v′) = β(xv, v′) + β(v, xv′),

where we use the Product and the Chain Rule (Exercise 2.1(c)).
(ii) ⇒ (i): From (ii) we obtain inductively

ynβ(v, v′) =
n∑
k=0

(
n

k

)
β(xkv, xn−kv′).

For the absolutely convergent exponential series, this leads with the general Cauchy Product
Formula (Exercise 2.2) to

eyβ(v, v′) =
∞∑
n=0

1

n!
ynβ(v, v′) =

∞∑
n=0

1

n!

( n∑
k=0

(
n

k

)
β(xkv, xn−kv)

)
=
∞∑
n=0

n∑
k=0

β

(
1

k!
xkv,

1

(n− k)!
xn−kv′

)

= β

(
∞∑
k=0

1

k!
xkv,

∞∑
m=0

1

m!
xmv′

)
= β (exv, exv′) .

Since (ii) also holds for the pair (tx, ty) for all t ∈ R, this completes the proof.

Proposition 2.5. Let V and W be finite dimensional vector spaces and β : V × V → W a
bilinear map. For the group

Aut(V, β) = {g ∈ GL(V ) : (∀v, v′ ∈ V ) β(gv, gv′) = β(v, v′)},
we then have

aut(V, β) := L(Aut(V, β))

= {x ∈ gl(V ) : (∀v, v′ ∈ V ) β(xv, v′) + β(v, xv′) = 0}.
Proof. First we observe that eRX ⊆ Aut(V, β) is equivalent to the pair (X, 0) satisfying
condition (i) in Lemma 2.4. This proves ⊇. The converse is obtained by taking for γ ∈
C1
∗([0, 1],Aut(V, β)) the derivative of the relation

β(γ(t)v, γ(t)v′) = β(v, v′)

in t = 0.

Example 2.6. Let g be a finite dimensional K-Lie algebra (K = R,C) and

Aut(g) := {g ∈ GL(g) : (∀x, y ∈ g) g[x, y] = [gx, gy]}.
To calculate the Lie algebra of Aut(g), first observe that, for
γ ∈ C1

∗([0, 1],Aut(g)), taking derivatives in t = 0 of the relation

γ(t)([x, y]) = [γ(t)(x), γ(t)(y)],

we obtain for D := γ′(0) the relation:

D[x, y] = [Dx, y] + [x,Dy],

i.e., D ∈ der(g). If, conversely, D ∈ der(g), then we use Lemma 2.4 with V = W = g and
β(x, y) = [x, y] to see that eRD ⊆ Aut(g). This shows that

aut(g) = L(Aut(g)) = der(g).
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Exercises for Section 2

Exercise 2.1. Let X1, . . . , Xn be finite dimensional normed spaces and β : X1× . . .×Xn →
Y an n-linear map.

(a) Show that there exists a constant C ≥ 0 with

‖β(x1, . . . , xn)‖ ≤ C‖x1‖ · · · ‖xn‖ for xi ∈ Xi.

(b) Show that β is continuous.

(c) Show that β is differentiable with

dβ(x1, . . . , xn)(h1, . . . , hn) =
n∑
j=1

β(x1, . . . , xj−1, hj, xj+1, . . . , xn).

Exercise 2.2. [Cauchy Product Formula] Let X, Y, Z be Banach spaces and β : X×Y → Z
a continuous bilinear map. Suppose that x :=

∑∞
n=0 xn is absolutely convergent in X and

that y :=
∑∞

n=0 yn is absolutely convergent in Y . Then

β(x, y) =
∞∑
n=0

n∑
k=0

β(xk, yn−k).

Exercise 2.3. Let v ∈ Rn and G := {g ∈ GLn(R) : gv = v} be its stabilizer subgroup.
Show that

L(Gv) = {X ∈ gln(R) : Xv = 0}.

Exercise 2.4. Show that:

(i) The Lie algebra of the orthogonal group On(R) := {g ∈ GLn(R) : g> = g−1} is on(R).

(ii) The Lie algebra of the symplectic group Sp2n(R) := {g ∈ GL2n(R) : g>Jng = Jn} is
sp2n(R) (cf. Examples 1.7(vii)).

Exercise 2.5. Let E ⊆ Rn be a linear subspace and G := {g ∈ GLn(R) : gE = E} be its
stabilizer subgroup. Show that

L(GE) = {X ∈ gln(R) : XE ⊆ E}.

3 Nilpotent Lie Algebras

In the following, we shall encounter several important classes of Lie algebras that play a
central role in the structure theory of finite dimensional Lie algebras. The first of these two
classes, nilpotent Lie algebras, are those for which iterated brackets [x1, [x2, [x3, [x4, · · · ]]]]
of sufficiently large order vanish. The most important result on nilpotent Lie algebras is
Engel’s Theorem which translates nilpotency of a Lie algebra into the elementwise condition
that all operators ad x are nilpotent. Typical examples of nilpotent Lie algebras are Lie
algebras of strictly upper triangular (block) matrices.

Definition 3.1. Let g be a Lie algebra. We define its descending (lower) central series
inductively by

C1(g) := g and Cn+1(g) := [g, Cn(g)].
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In particular, C2(g) = [g, g] is the commutator algebra. The Lie algebra g is called nilpotent,
if there is a d ∈ N0 with Cd+1(g) = {0}. If d is minimal with this property, then it is called
the nilpotence degree of g. By induction, one immediately sees that each Cn(g) is an ideal
of g, so that Cn+1(g) ⊆ Cn(g). Hence, for finite dimensional Lie algebras, the nilpotency
of g is equivalent to the vanishing of the ideal C∞(g) :=

⋂
n∈NC

n(g).

Example 3.2. (i) The Heisenberg algebra h3(K) (Example 1.30) is nilpotent of degree 2
because C2(h3(K)) = Kz is central.

(ii) A Lie algebra if nilpotent of degree 1 if and only if it is abelian.

(iii) If F = (V0, . . . , Vd) is a flag in the vector space V and we put Vi := {0} for i < 0, then
gn(F) (Example 1.31) is a nilpotent Lie algebra. In fact, an easy induction leads to

Cm
(
gn(F)

)
Vj ⊆ Vj−m

and therefore to Cd
(
gn(F)

)
= {0}.

Proposition 3.3. Let g be a Lie algebra.

(i) If g is nilpotent, then all subalgebras and all homomorphic images of g are nilpotent.

(ii) If z < z(g) and g/z is nilpotent, then g is nilpotent.

(iii) If g 6= {0} is nilpotent, then z(g) 6= {0}.

(iv) If g is nilpotent, then there exists an n ∈ N with ad(x)n = 0 for all x ∈ g, i.e., the
ad(x) are nilpotent as linear maps.

(v) If i E g, then all the spaces Cn(i) are ideals of g.

Proof. (i) If h < g, then [h, h] ⊆ [g, g] and Cn(h) ⊆ Cn(g) follows by induction. Therefore
each subalgebra of a nilpotent Lie algebra is nilpotent.

For a homomorphism α : g→ h, we obtain inductively

Cn(α(g)) = α(Cn(g)) for each n ∈ N. (5)

Thus, if Cn(g) = {0}, then Cn(imα) = {0}.

(ii) If g/z is nilpotent, then there exists an n ∈ N with Cn(g/z) = {0}, so that (5), applied
to the quotient homomorphism q : g → g/z, leads to Cn(g) ⊆ z ⊆ z(g) and thus to
Cn+1(g) ⊆ [g, z(g)] = {0}.

(iii) If g 6= {0} is nilpotent, for some d ∈ N0, we have Cd+1(g) = {0} and Cd(g) 6= {0}.
Then [g, Cd(g)] = {0} implies that the non-zero ideal Cd(g) is contained in the center.

(iv) If Cd+1(g) = {0}, then (adx)dg ⊆ Cd+1(g) = {0}.

(v) In view of Exercise 1.11, this follows by induction.

In Proposition 3.3, we have seen that for every nilpotent Lie algebra, all the endomor-
phisms ad(x), x ∈ g, are nilpotent. Now our aim is to show that a finite dimensional Lie
algebra, for which every adx is nilpotent, is nilpotent itself. We start with a simple lemma,
the proof of which we leave to the reader as an exercise (cf. Exercises 3.1 and 1.13).

Lemma 3.4. (i) Let V be a finite dimensional vector space, g ⊆ gl(V ) a Lie subalgebra
and x ∈ g. If x ∈ gl(V ) is nilpotent, then ad(x) : g→ g is also nilpotent.
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(ii) Let g be a Lie algebra and h < g. Then

adg/h : h→ gl(g/h), adg/h(x)(y + h) := [x, y] + h

defines a representation of h on the vector space g/h.

Theorem 3.5. (Engel’s Theorem on linear Lie algebras) Let V 6= {0} be a finite dimen-
sional vector space and g ⊆ gl(V ) a Lie subalgebra. If all x ∈ g are nilpotent, i.e., xn = 0
for some n ∈ N, then there exists a nonzero vo ∈ V with g(vo) = {0}.

Proof. We proceed by induction on dim g. For dim g = 0 the assertion holds trivially for
each nonzero vo ∈ V .

Next we assume that dim g > 0 and pick a proper subalgebra h < g of maximal dimen-
sion. According to Lemma 3.4, for each x ∈ h the operators adg/h(x) are nilpotent. Now our
induction hypothesis implies the existence of some xo ∈ g\h with adg/h(h)(xo + h) = {0},
i.e., [h, xo] ⊆ h. This implies that Kxo + h is a subalgebra of g and, again by maximality
of h, it follows that Kxo + h = g. The induction hypothesis also implies that the space
Vo := {v ∈ V : h(v) = {0}} is nonzero. Moreover,

yx(w) = xy(w)− [x, y](w) ∈ xh(w) + h(w) = {0} for x ∈ g, y ∈ h, w ∈ Vo,

implies that g(Vo) ⊆ Vo. Since xo|Vo is also nilpotent, there exists a nonzero vo ∈ Vo with
xo(vo) = 0. Putting all this together, we arrive at g(vo) = h(vo) + Kxo(vo) = {0}.

Exercise 3.8 discusses an interesting Lie algebra of nilpotent endomorphisms of an infi-
nite dimensional space, showing in particular that Engel’s Theorem does not generalize to
infinite dimensional spaces.

Definition 3.6. Let V be an n-dimensional vector space. A complete flag in V is a flag
(V0, . . . , Vn) with dimVk = k for each k.

Corollary 3.7. Let V be a finite dimensional vector space and g < gl(V ) such that all
elements of g are nilpotent. Then there exists a complete flag F in V with g ⊆ gn(F). In
particular, there exists a basis for V with respect to which the elements of g correspond to
strictly upper triangular matrices. In particular, g is nilpotent.

Proof. In view of Theorem 3.5, there exists a nonzero v1 ∈ V with g(v1) = {0}. We set
V1 := Kv1. Then

α : g → gl(V/V1), α(x)(v + V1) := x(v) + V1

is a representation of g on V/V1 (Exercise 1.13), and α(g) consists of nilpotent endomor-
phisms. We now proceed by induction on dimV , so that the induction hypothesis implies
that V/V1 possesses a complete flag F1 = (W1, . . . ,Wk) with α(g) ⊆ gn(F1). Then {0},
together with the preimage of the flag F1 in V is a complete flag F in V with g ⊆ gn(F).
Since gn(F) is nilpotent (Example 3.2(iii)), the subalgebra g is also nilpotent.

Now we are able to prove the announced criterion for the nilpotency of a Lie algebra.

Theorem 3.8. (Engel’s Characterization Theorem for nilpotent Lie algebras) Let g be a
finite dimensional Lie algebra. Then g is nilpotent if and only if for each x ∈ g the operator
adx is nilpotent.
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Proof. We have already seen in Proposition 3.3 that for each x ∈ g the operator adx is
nilpotent. It remains to show the converse.

If adx is nilpotent for each x ∈ g, then Corollary 3.7 implies that the Lie algebra
g/z(g) ∼= ad(g) ⊆ gl(g) is nilpotent. Now Proposition 3.3(ii) shows that g is also nilpotent.

Lemma 3.9. If a and b are nilpotent ideals of the Lie algebra g, then so is their sum a+b.

Proof. We claim that

C2m(a + b) ⊆ Cm(a) + Cm(b) for m ∈ N. (6)

This implies the assertion because Cm(a) = Cm(b) = {0} holds if m is sufficiently large.
The space C2m(a + b) is spanned by elements of the form

y := [x1, [x2, [x3, · · · [x2m−1, x2m] · · · ]]]

with xj ∈ a ∪ b. If at least m of the xj are contained in a, then y ∈ Cm(a). If this is not
the case, then m of the xj are contained in b, which leads to y ∈ Cm(b). This proves our
claim and hence the lemma.

Definition 3.10. The main consequence of Lemma 3.9 is that every finite dimensional Lie
algebra g contains a largest nilpotent ideal. In fact, if n E g is a nilpotent ideal of maximal
dimension and m E g any other nilpotent ideal, then the nilpotency of n + m implies that
m ⊆ n. Therefore the ideal n contains all other nilpotent ideals.

The maximal nilpotent ideal is called the nilradical of g, and is denoted by nil(g).

Remark 3.11. One should be aware of the fact that some authors use the term “nilrad-
ical” in a different meaning, namely for the intersection of the kernels of all irreducible
finite dimensional representations. Since for an abelian Lie algebra g, the one-dimensional
representations separate the points, the intersection of the kernels of irreducible finite di-
mensional representations is {0}, but we have nil(g) = g. For more details on this ideal,
see Proposition 7.5.

Remark 3.12. If g is not finite dimensional, then the preceding lemma implies that for each
finite sequence n1, . . . , nk E g of nilpotent ideals, their sum n1 + · · ·+nk is a nilpotent ideal.
Therefore the sum n of all nilpotent ideals of g coincides with the union of all nilpotent
ideals. However, this ideal need not be nilpotent because there may be nilpotent ideals of
an arbitrary high nilpotence degree.

Exercises for Section 3

Exercise 3.1. If X ∈ End(V ) is nilpotent, then adX ∈ End(End(V )) is also nilpotent.

Exercise 3.2. Let V be a finite dimensional complex vector space and x ∈ End(V ) diago-
nalizable with eigenvalues λ1, . . . , λn. Then ad x is diagonalizable with eigenvalues

λi − λj, i, j = 1, . . . , n.

Exercise 3.3. Let g be a Lie algebra, h a subalgebra and x ∈ ng(h) \ h. Then h + Kx ∼=
hoα Kx for α(tx) = ad(tx)|h.

Exercise 3.4. Let g = h3(K) be the 3-dimensional Heisenberg algebra. Determine a basis
for g with respect to which ad g consists of upper triangular matrices.
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Exercise 3.5. Let g be a nilpotent Lie algebra and h be a finite dimensional nonzero ideal
in g. Show that the intersection of h with the center of g is not trivial.

Exercise 3.6. Give an example of a Lie algebra g which contains a nilpotent ideal n for
which g/n is nilpotent and g is not nilpotent.

Exercise 3.7. For each Lie algebra g, we have

[Cn(g), Cm(g)] ⊆ Cn+m(g) for n,m ∈ N.

Exercise 3.8. This exercise shows why Engel’s Theorem does not generalize to infinite
dimensional spaces. We consider the vector space V = K(N) with the basis {ei : i ∈ N}. In
terms of the rank-one-operators Eij ∈ End(V ), defined by Eijek = δjkei, we consider the
Lie algebra

g := span{Eij : i > j}
(strictly lower triangular matrices). Show that:

(a) Cn(g) = span{Eij : i ≥ j + n}, n ∈ N. In particular, we have C∞(g) =
⋂
n∈NC

n(g) =
{0}, i.e., g is residually nilpotent. (cf. Exercise 3.9).

(b) g consists of nilpotent endomorphisms of finite rank.

(c) z(g) = {0}.

(d) V g = {v ∈ V : g · v = {0}} = {0} (compare with Engel’s Theorem).

Exercise 3.9. Show that, for a Lie algebra g, the following assertions hold:

(a) C∞(g) =
⋂
nC

n(g) is the intersection of all kernels of homomorphisms ϕ : g → n, n
nilpotent. Hint: Show that all quotients g/Cn(g) are nilpotent.

(b) C∞(g) = {0} is equivalent to g being residually nilpotent in the sense that all homo-
morphisms ϕ : g → n, n nilpotent, separate the points of g, i.e., for every non-zero
x ∈ g, there exists a homomorphism into a nilpotent Lie algebra with ϕ(x) 6= 0.

Exercise 3.10. Let g be a Lie algebra and D ∈ der(g). Show that the semidirect sum
ĝ := goD K is nilpotent if and only if g is nilpotent and D is nilpotent.

Exercise 3.11. Let g be a Lie algebra. We define its upper central series inductively by

C0(g) := {0} and Cn+1(g) := {x ∈ g : [x, g] ⊆ Cn(g)}, n ∈ N0.

Show that:

(i) Every Cn(g) is an ideal of g.

(ii) Cn(g) ⊆ Cn+1(g).

(iii) g is nilpotent if and only if there exists an N ∈ N with CN(g) = g.

4 Solvable Lie Algebras

In this section we turn to the class of solvable Lie algebras. They are defined in a similar
fashion as nilpotent ones and indeed every nilpotent Lie algebra is solvable. The central
results on solvable Lie algebras are Lie’s Theorem on representations of solvable Lie algebras
(they preserve complete flags) and Cartan’s Solvability Criterion in terms of vanishing of

tr(ad[x, y] ad z) for x, y, z ∈ g.

As we shall see later on, similar techniques apply to semisimple Lie algebras.
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4.1 Basic Properties

Definition 4.1. Let g be a Lie algebra. The derived series of g is defined by

D0(g) := g and Dn(g) := [Dn−1(g), Dn−1(g)] for n ∈ N.

The Lie algebra g is said to be solvable, if there exists an n ∈ N with Dn(g) = {0}.
From D1(g) ⊆ g we inductively see that Dn(g) ⊆ Dn−1(g). Further, an easy induction

shows that all Dn(g) are ideals of g (Exercise 1.11). The derived series is a descending
series of ideals.

Example 4.2. (i) The oscillator algebra osc(K) ∼= h3(K) oD K from Example 1.30 is
solvable, but not nilpotent:

D1(osc(K)) = h3(K), D2(osc(K)) = D1(h3(K)) = Kz and D3(osc(K)) = {0}.

(ii) Every nilpotent Lie algebra is solvable because Dn(g) ⊆ Cn+1(g) follows easily by
induction.

(iii) Consider R and C as abelian real Lie algebras and write I ∈ EndR(C) for the mul-
tiplication with i. Then the Lie algebra C oI R is solvable, but not nilpotent. It is
isomorphic to osc(K)/Kz.

(iv) Let g be a 2-dimensional nonabelian Lie algebra with basis x, y satisfying [x, y] = y
(Exercise 1.4). Then D1(g) = Ky and D2(g) = {0}, so that g is solvable. On the
other hand Cn(g) = Ky for each n > 1, so that g is not nilpotent.

Proposition 4.3. For a Lie algebra g, the following assertions hold:

(i) If g is solvable, then all subalgebras and homomorphic images of g are solvable.

(ii) Solvability is an extension property: If i is a solvable ideal of g and g/i is solvable,
then g is solvable.

(iii) If i and j are solvable ideals of g, then the ideal i + j is solvable.

(iv) If i E g is an ideal, then the Dn(i) are ideals in g.

Proof. (i) If h ⊆ g is a subalgebra, then Dn(h) ⊆ Dn(g) follows by induction. If α : g→ h
is a homomorphism of Lie algebras, then we obtain

Dn(α(g)) = α(Dn(g)) (7)

by induction. This implies (i).

(ii) Let π : g → g/i be the quotient map. We have already seen in (i) that π(Dn(g)) =
Dn(π(g)) for each n. If g/i is solvable, then π(Dn(g)) vanishes for some n ∈ N. Now
Dn(g) ⊆ kerπ = i, so that Dn+k(g) ⊆ Dk(i) for each k ∈ N. If i is also solvable, we
immediately derive that g is solvable.

(iii) The ideal j of i+ j is solvable and (i+ j)/j ∼= i/(i∩ j) (Proposition 1.24(iii)) is solvable
by (i). Hence (ii) implies that i + j is solvable.

(iv) We only have to observe that for each ideal i, its commutator algebra [i, i] also is an
ideal (Exercise 1.11). Then (iv) follows by induction.
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Example 4.4. If F = (V0, . . . , Vn) is a complete flag in the n-dimensional vector space V ,
then g(F) is a solvable Lie algebra. In fact,

g(F) ∼= gn(F) o gl1(K)n ∼= gn(F) oKn

(Example 1.31).
Since Kn ∼= g(F)/gn(F) is abelian and gn(F) nilpotent (Example 3.2(iii)), the solvability

of g(F) follows from Proposition 4.3(ii). Below we shall see that Lie’s Theorem provides a
converse for solvable subalgebras of gl(V ), provided the field K is algebraically closed and
of characteristic 0 (such as K = C); they are always contained in g(F) for some complete
flag F .

Definition 4.5. Proposition 4.3(iii) shows that every finite dimensional Lie algebra g con-
tains a maximal solvable ideal containing all other solvable ideals. This ideal is called the
radical of g, and is denoted by rad(g).

Remark 4.6. Nilpotency is not an extension property, i.e., the analog of Proposition 4.3(ii)
is false for nilpotent Lie algebras: If g = Kx + Ky is the 2-dimensional Lie algebra with
[x, y] = y, then the ideal n := Ky and the one-dimensional quotitent algebra g/n are abelian,
hence nilpotent, but g is not (cf. Example 4.2(iv)).

4.2 Lie’s Theorem

Now we turn to solvable Lie subalgebras g of gl(V ). In this context we do not want to make
any assumption on the elements of g, as in Corollary 3.7.

Theorem 4.7. Suppose that K is algebraically closed of characteristic zero. Let V be a
nonzero finite dimensional K-vector space and g be a solvable subalgebra of gl(V ). Then
there exists a nonzero common eigenvector v for g, i.e., g(v) ⊆ Kv.

Proof. We may w.l.o.g. assume that g 6= {0}. We proceed by induction on the dimension
of g. If g = Kx, then every eigenvector of x (and such an eigenvector always exists because
K is algebraically closed) satisfies the requirement of the theorem. So let dim g > 1 and
h be a hyperplane in g which contains [g, g] = D1(g). Here we use that D1(g) is a proper
subspace because g is solvable. In view of [g, g] ⊆ h, the subspace h is an ideal of g. Now
the induction hypothesis provides a nonzero common eigenvector v for h. If x(v) = λ(x)v
for x ∈ h, then λ : h→ K is a linear functional and

v ∈ Vλ(h) := {w ∈ V | (∀x ∈ h)x(w) = λ(x)w}.

Suppose that Vλ(h) is g-invariant and pick y ∈ g\h. Then there exists a nonzero eigenvector
vo ∈ Vλ(h) for y. Then vo is a common eigenvector for g = h+Ky and the proof is complete.

It remains to show that Vλ(h) is g-invariant. For this, we calculate as in the proof of
Theorem 3.5:

yx(w) = xy(w)− [x, y](w) = λ(y)x(w)− λ([x, y])(w) for w ∈ Vλ(h), x ∈ g, y ∈ h.

Hence it suffices to show that [g, h] ⊆ kerλ. For fixed w ∈ Vλ(h), x ∈ g and k ∈ N, we
consider the space

W k = Kw + Kx(w) + . . .+ Kxk(w).

Since
yxk(w) = xy(xk−1w)− [x, y](xk−1w) (8)
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and y(w) = λ(y)w for y ∈ h, we see by induction on k that h(W k) ⊆ W k for each k ∈ N:
It holds trivially for k = 0, and if k > 0 and h(W k−1) ⊆ W k−1, then

h(xk(w)) ⊆ xh(W k−1) + h(W k−1) ⊆ xW k−1 +W k−1 ⊆ W k.

Now we choose ko ∈ N maximal with respect to the property that

{w, x(w), . . . , xko(w)}

is a basis for W ko . Then W ko+m = W ko for all m ∈ N, and

F = ({0},W 1, . . . ,W ko)

is a complete flag in W ko which is invariant under h. Thus, every y ∈ h corresponds to an
upper triangular matrix (yij) with respect to the above basis for W ko . The diagonal entries
yii of this matrix are all equal to λ(y) since y(w) = λ(y)w and (8) imply by induction that

yxk(w) ∈ λ(y)xk(w) +W k−1.

In fact, for k = 1 this is clear, and if the relation holds for k − 1, then(
y − λ(y)1

)
xk(w) = xy(xk−1w)− [x, y](xk−1w)− x

(
λ(y)xk−1(w)

)
= x

(
(y − λ(y)1)(xk−1w)

)
− [x, y](xk−1w) ∈ xW k−2 + h(W k−1) ⊆ W k−1.

Since x and y leave the space W ko invariant, we have

[x, y]|Wko = [x|Wko , y|Wko ].

In particular, [x, y]|Wko is a commutator of two endomorphisms so that its trace vanishes.
Finally [x, y] ∈ h leads to

0 = tr([x, y]|Wko ) = (ko + 1)λ([x, y]),

so that λ([x, y]) = 0 (here we use that charK = 0).

For the proof of the preceding theorem, we used that the field K is algebraically closed
and of characteristic zero. The following example shows that both assumptions are crucial.

Example 4.8. (a) If A ∈ End(V ), then g = KA is a one-dimensional Lie algebra, hence in
particular solvable. The existence of an eigenvector of A is equivalent to the existence of a
root of the characteristic polynomial, whose existence can only be assured by the algebraic
closedness of K. In fact, if K ⊆ L is a proper finite algebraic field extension and x ∈ L \K,
then the multiplication operator Ay := xy has no eigenvectors: If xy = λy for λ ∈ K and
y 6= 0, then (x− λ)y = 0 leads to the contradiction x = λ.

(b) If charK = 2, then g = sl2(K) is a nilpotent Lie algebra: The basis elements

h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, (9)

satisfy
[h, e] = 2e = 0, [h, f ] = −2f = 0 and [e, f ] = h, (10)

so that sl2(K) ∼= h3(K) (the 3-dimensional Heisenberg algebra). Nevertheless, sl2(K) has
no common eigenvector. Therefore Theorem 4.7 fails.
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Theorem 4.9. (Lie’s Theorem) Assume that K is algebraically closed of characteristic zero.
Let V be a finite dimensional vector space and g be a solvable subalgebra of gl(V ). Then
there exists a complete g-invariant flag in V .

Proof. We may assume that V is nonzero. By Theorem 4.7, there exists a nonzero common
g-eigenvector v1 ∈ V . Put V1 := Kv1. Then

α : g→ gl(V/V1), α(x)(v + V1) := x(v) + V1

defines a representation of g on the quotient space V/V1 (Exercise 1.13) and α(g) is solvable.
Proceeding by induction on dimV , we may assume that there exists an α(g)-invariant
complete flag in V/V1, and the preimage in V , together with {0}, is a complete g-invariant
flag in V .

Remark 4.10. If we apply Lie’s Theorem 4.9 to V = g and ad(g), where g is solvable, we
get a complete flag of ideals

{0} = g0 < g1 < . . . < gn = g

of g with dim gk = k. Such a chain is called a Hölder series for g.

Definition 4.11. We call a representation (π, V ) of the Lie algebra g, resp., the corre-
sponding g-module, nilpotent if there exists an n ∈ N with ρ(g)n = {0}.

Corollary 4.12. Suppose that charK = 0. Let π : g → gl(V ) be a finite dimensional
representation of the solvable Lie algebra g. Then the restriction to [g, g] is a nilpotent
representation.

Proof. We may w.l.o.g. assume that V = Kn, so that π(g) ⊆ gl(V ) ∼= gln(K) consists of
(n × n)-matrices. Let K be an algebraically closed extension of K (such as K = C for
K = R). Then the relation π([g, g])N = {0} will follow if we prove that the solvable K-Lie
algebra g := spanK π(g) ⊆ gln(K) satisfies [g, g]N = {0} for some N ∈ N. We may therefore
assume that K is algebraically closed, i.e., K = K.

Applying Lie’s Theorem to the solvable subalgebra π(g) of gl(V ), we obtain a complete
flag F with π(g) ⊆ g(F). Then

π([g, g]) ⊆ [g(F), g(F)] ⊆ gn(F)

(cf. Example 1.31) implies the assertion.

Corollary 4.13. A Lie algebra g over a field of characteristic zero is solvable if and only
if its commutator algebra [g, g] is nilpotent.

Proof. If [g, g] is nilpotent, then g is solvable because g/[g, g] is abelian and solvability is
an extension property (Proposition 4.3(ii)).

If, conversely, g is solvable, then Corollary 4.12 implies that the adjoint representation
of [g, g] on g, and hence on [g, g], is nilpotent. From that we derive in particular that
CN([g, g]) = {0} for some N ∈ N, so that [g, g] is nilpotent.

4.3 The Ideal [g, rad(g)]

In this subsection we assume that charK = 0 and g denotes a finite dimensional Lie algebra.
The following lemma will be useful for inductive arguments assertion that certain rep-

resentations of Lie algebras are nilpotent.
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Lemma 4.14. Let (ρ, V ) a representation of g.

(a) Let a ⊆ g be a subspace for which there exists an n ∈ N with ρ(a)n = {0}, and

(b) x ∈ g with [x, a] ⊆ a such that ρ(x) is nilpotent.

Then there exists an N ∈ N with ρ(a + Kx)N = {0}.

Proof. Replacing g by ρ(g), we may w.l.o.g. assume that g ⊆ gl(V ). Let m ∈ N with
xm = 0. We claim that (Kx+ a)nm = {0}.

Let u = u1 · · ·unm be a product of elements of {x} ∪ a. We have to show that all such
products vanish. For a ∈ a we have

ax = xa+ [a, x] ∈ xa+ a.

This leads to

u1 · · ·unm ∈
nm∑
r=0

xrat,

where t is the number of indices j with uj ∈ a. Hence this product vanishes for t ≥ n.
If t < n, then there exists a j with uj+1 · · ·uj+m = xm = 0 because in this case at least
nm − t > n(m − 1) factors are not contained in a, so that we always find a consecutive
product of m such elements. We therefore have in all cases u1 · · ·unm = 0.

Proposition 4.15. For any finite dimensional representation (ρ, V ) of the Lie algebra
g, the restriction to the ideal [g, rad(g)] is nilpotent, i.e., there exists an m ∈ N with
ρ([g, rad(g)])m = {0}.

Proof. Let r := rad(g) and a := [g, r]. According to Corollary 4.12, the representation
is nilpotent on the ideal [r, r]. Now let t ⊆ [g, r] be a subspace containing [r, r], which is
maximal with respect to the property that the representation of t on V is nilpotent. Note
that t always is an ideal of r, hence in particular a subalgebra, because it contains the
commutator algebra.

Assume that t 6= [g, r]. Then there exists an x ∈ g and y ∈ r with [x, y] 6∈ t. The
subspace b := r+Kx is a subalgebra of g, r is a solvable ideal of b, and b/r ∼= K is abelian.
Therefore b is solvable (Proposition 4.3).

We use Corollary 4.12 to see that the representation is nilpotent on [b, b] and hence
that ρ([x, y]) is nilpotent. Since t ⊆ r and [x, y] ∈ [g, r] ⊆ r, we have

[
[x, y], t

]
⊆ [r, t] ⊆

t. Finally, the preceding Lemma 4.14 shows that the representation is nilpotent on the
subspace K[x, y] + t. This contradicts the maximality of t. We conclude that t = [g, r], so
that the representation is nilpotent on [g, r].

Applying the preceding proposition to the adjoint representation and using Engel’s
Theorem 3.8 we get:

Corollary 4.16. The ideal [g, rad(g)] is nilpotent. In particular, adx is nilpotent on g for
each x ∈ [g, rad g].

Remark 4.17. Since the ideal [g, rad(g)] is nilpotent, it is contained in the nilradical nil(g).
That it may be strictly smaller follows from the case where g is abelian. Then nil(g) = g
and [g, rad(g)] = {0}.

28



4.4 Cartan’s Solvability Criterion

This subsection is devoted to a characterization of solvable Lie algebras by properties of their
elements. The result will be that g is solvable if and only if tr(ad x ad y) = 0 for x ∈ [g, g]
and y ∈ g (Cartan’s criterion). Thus, we have to study the linear maps ad(x) : g→ g.

In this subsection we assume that charK = 0.

Lemma 4.18. For two commuting endomorphisms M,N of a vector space V , the following
assertions hold:

(a) If M and N are diagonalizable, then M +N is diagonalizable.

(b) If M and N are nilpotent, then M +N is nilpotent.

Proof. (a) Since M and N commute, they are simultaneously diagonalizable, and this
implies in particular that M +N is diagonalizable (cf. Exercise 4.1(a)-(c)).

(b) Suppose that Mm = Nn = 0. Then [M,N ] = 0 implies that

(M +N)k =
∑
i+j=k

(
k

i

)
M iN j.

If k ≥ n + m − 1, then either i ≥ m or j ≥ n, so that all summands vanish. Hence
(M +N)k = 0.

For the following proof we recall the Jordan decomposition of an endomorphism A ∈
End(V ) of a finite dimensional vector space V which is split in the sense that f(A) = 0
for some f ∈ K[X] which is a product of linear factors (cf. Theorem A.2). The Jordan
decomposition is the uniquely determined additive decomposition A = As + An, where As
is diagonalizable, An is nilpotent and [As, An] = 0.

Proposition 4.19. Let V be finite dimensional and x ∈ gl(V ). If x is nilpotent (diagona-
lizable), then so is adx.

This proposition can be obtained by combining Lemma 3.4(i) with Exercise 3.2. We
give an alternative proof using the Jordan decomposition.

Proof. Put Lx : gl(V ) → gl(V ), y 7→ xy and Rx : gl(V ) → gl(V ), y 7→ yx. Then ad x =
Lx − Rx and [Lx, Rx] = 0. In view of Lemma 4.18, it suffices to see that Lx and Rx are
nilpotent, resp., diagonalizable whenever x has this property.

If xn = 0, then Lnx = Lxn = 0 = Rn
x. If x is diagonalizable, then we represent elements

of gl(V ) as matrices with respect to a basis of eigenvectors of x. We may therefore assume
that x = diag(λ1, . . . , λn). Then LxEjk = λjEjk and RxEjk = λkEjk imply that Lx and Rx

are diagonalizable on gln(K) ∼= gl(V ).

Corollary 4.20. For each endomorphism x ∈ gl(V ) of the finite dimensional vector space
V over the algebraically closed field K with Jordan decomposition x = xs + xn, the Jordan
decomposition of adx is given by

adx = ad(xs) + ad(xn).

Proof. Proposition 4.19 implies that ad(xs) is diagonalizable. Further, ad(xn) is nilpotent,
and [ad(xs), ad(xn)] = ad[xs, xn] = 0, so that the assertion follows from the uniqueness of
the Jordan decomposition of adx.
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Lemma 4.21. Let V be a finite dimensional vector space over the algebraically closed field
K of characteristic zero and E ⊆ F be subspaces of gl(V ). Further, let

x ∈M := {y ∈ gl(V ) | [y, F ] ⊆ E}.

If tr(xy) = 0 for all y ∈M , then x is nilpotent.

Proof. Since K is algebraically closed, x has a Jordan decomposition x = xs + xn (Theo-
rem A.2). Representing elements of gl(V ) as matrices with respect to a basis of eigenvectors
of xs, we may w.l.o.g. assume that V = Kn and that

xs = diag(λ1, . . . , λn).

Let Q be the Q-vector space in K which is spanned by the λj. We have to show that
Q = {0}. To do this, we consider an f ∈ Q∗ := HomQ(Q,Q), the dual space (over Q) of
Q. We consider the diagonal matrix

y := diag(f(λ1), . . . , f(λn)).

As in the proof of Proposition 4.19, we see that

ad(xs)Eij = (λi − λj)Eij and ad(y)Eij =
(
f(λi)− f(λj)

)
Eij = f(λi − λj)Eij.

Now, choose a polynomial P ∈ K[t] with

P (0) = 0 and P (λi − λj) = f(λi − λj)

for all pairs (i, j) (Exercise 4.8). Then

P
(

ad(xs)
)
Eij = f(λi − λj)Eij = ad(y)Eij,

i.e., P
(

ad(xs)
)

= ad(y). Since ad(xs) is the diagonalizable part of ad(x) by Corollary 4.20,
it follows from x ∈ M and Proposition A.6(iii) that ad(xs)F ⊆ E. But then P (0) = 0
implies ad(y)F ⊆ E, i.e., y ∈ M . Since xsy = diag(λ1f(λ1), . . . , λnf(λn)) and xny is
nilpotent because (xny)N = xNn y

N = 0 for N sufficiently large, our assumption and y ∈ M
leads to

n∑
k=1

λkf(λk) = tr(xsy) = tr(xy) = 0,

and therefore
n∑
k=1

f(λk)
2 = f

( n∑
k=1

λkf(λk)
)

= 0.

Hence f(λk) = 0 for all λk which yields f = 0. Since f ∈ Q∗ was arbitrary, it follows that
Q = {0}.

Theorem 4.22. (Cartan’s Solvability Criterion–linear case) Let V be a finite dimensional
vector space and g < gl(V ). Then the following are equivalent

(i) g is solvable.

(ii) tr(xy) = 0 for all x ∈ [g, g] and y ∈ g.
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Proof. We may w.l.o.g. assume that V = Kn ⊆ V := Kn
, where K is an algebraically closed

extension of K. Then g is solvable if and only if g := spanK g is solvable and (ii) holds for g
over K if and only if it holds for g over K. To verify these claims, we only have to observe
that Dj(g) = Dj(g) for every j, which follows from an easy induction. We may therefore
assume that K is algebraically closed.

(i) ⇒ (ii): By Lie’s Theorem 4.9, there exists a basis for V with respect to which all
x ∈ g are upper triangular matrices. In particular, all elements of [g, g] are given by strictly
upper triangular matrices. Multiplying an upper triangular matrix with a strictly upper
triangular matrix yields a strictly upper triangular matrix which has zero trace.

(ii) ⇒ (i): By Corollary 4.13, it suffices to show that [g, g] is nilpotent. But to show
that, by Corollary 3.7, we only have to prove that every element of [g, g] is nilpotent. We
want to apply Lemma 4.21 with E = [g, g] and F = g, i.e., we set

M := {y ∈ gl(V ) | [y, g] ⊆ [g, g]} ⊇ g.

Since the trace is linear, it is enough to show that tr([x, x′]y) = 0 for x, x′ ∈ g and y ∈ M .
But this follows from [x′, y] ⊆ [g, g] and (ii):

tr([x, x′]y) = tr(x[x′, y]) ∈ tr(g[g, g]) = {0}

(cf. Exercise 4.7).

Corollary 4.23. (Cartan’s Solvability Criterion–general case) For a Lie algebra g over a
field of characteristic zero, the following statements are equivalent

(i) g is solvable.

(ii) tr(ad x ad y) = 0 for all x ∈ [g, g] and all y ∈ g.

Proof. (i)⇒ (ii): Proposition 4.3(i) shows that ad(g) is solvable, so that (ii) is an immediate
consequence of Theorem 4.22.

(ii) ⇒ (i): By the Cartan Criterion (Theorem 4.22), ad(g) is solvable. Then it follows
from ad(g) ∼= g/z(g) and Proposition 4.3(ii) that g is solvable.

Exercises for Section 4

Exercise 4.1. Let V be a K-vector space and A ∈ End(V ). We write Vλ(A) := ker(A−λ1)
for the eigenspace of A corresponding to the eigenvalue λ and V λ(A) :=

⋃
n∈N ker(A−λ1)n

for the generalized eigenspace of A corresponding to λ.

(a) If A,B ∈ End(V ) commute, then

BV λ(A) ⊆ V λ(A) and BVλ(A) ⊆ Vλ(A)

holds for each λ ∈ K.

(b) If A ∈ End(V ) is diagonalizable and W ⊆ V is an A-invariant subspace, then A|W ∈
End(W ) is diagonalizable.

(c) If A,B ∈ End(V ) commute and both are diagonalizable, then they are simultaneously
diagonalizable, i.e., there exists a basis for V which consists of eigenvectors of A and B.

(d) If dimV <∞ and A ⊆ End(V ) is a commuting set of diagonalizable endomorphisms,
then A can be simultaneously diagonalized, i.e., V is a direct sum of simultaneous
eigenspaces of A.
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(e) For any function λ : A → V , we write Vλ(A) =
⋂
a∈A Vλ(a)(a) for the corresponding

simultaneous eigenspace. Show that the sum
∑

λ Vλ(A) is direct.

(f) If A ⊆ End(V ) is a finite commuting set of diagonalizable endomorphisms, then A
can be simultaneously diagonalized.

(g)∗ Find a commuting set of diagonalizable endomorphisms of a vector space V which
cannot be diagonalized simultaneously.

Exercise 4.2. Let g be a Lie algebra and α : g → gl(V ) be a representation of g on V .
Then V oα g is a Lie algebra which contains V as an abelian ideal.

Exercise 4.3. (i) For a real Lie algebra g, we have

Cn(gC) = Cn(g)C and Dn(gC) = Dn(g)C.

(ii) A finite dimensional Lie algebra g is nilpotent (solvable) if and only if gC is nilpotent
(solvable).

Exercise 4.4. Show that for the Heisenberg algebra h3, the derivation algebra der(h3) is
isomorphic to K2 o gl2(K), where ad(h3) ∼= K2 is an abelian ideal. Show that this Lie
algebra is neither nilpotent nor solvable.

Exercise 4.5. Show that a representation (π, V ) of a Lie algebra g on a vector space V is
nilpotent if and only if there exists a flag F in V with π(g) ⊆ gn(F).

Exercise 4.6. Show that an ideal n E g of the Lie algebra g is nilpotent if and only if g is
a nilpotent n-module with respect to the adjoint representation of n on g.

Exercise 4.7. A symmetric bilinear form κ : g×g→ K on a Lie algebra g is called invariant
if

κ([x, y], z) = κ(x, [y, z]) for x, y, z ∈ g.

Show that:

(i) The form κ(x, y) := tr(xy) on gl(V ) is invariant for each finite dimensional vector
space V .

(ii) For each representation (π, V ) of the Lie algebra g, the form κπ(x, y) := tr(π(x)π(y))
is invariant.

(iii) For each Lie algebra g, the Cartan–Killing form κg(x, y) := tr(ad x ad y) is invariant.

(iv) For each invariant symmetric bilinear form κ on g, its radical

rad(κ) = {x ∈ g : κ(x, g) = {0}}

is an ideal.

(v) For any invariant symmetric bilinear form κ on g, the trilinear map Γ(κ)(x, y, z) :=
κ([x, y], z) is alternating, i.e.,

Γ(κ)(xσ(1), xσ(2), xσ(3)) = sgn(σ)Γ(κ)(x1, x2, x3)

for σ ∈ S3 and x1, x2, x3 ∈ g.

(vi) g is solvable if and only if Γ(κg) = 0.
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Exercise 4.8. (Interpolation polynomials) Let K be a field, x1, . . . , xn ∈ K pairwise dif-
ferent, and λ1, . . . , λn ∈ K. Then there exists a polynomial f ∈ K[t] with f(xi) = λi for
i = 1, . . . , n. Hint: Consider the polynomials fi(t) :=

∏
j 6=i

t−xj
xi−xj of degree n− 1.

Exercise 4.9. Show that the multiplication operator

λX : K[X]→ K[X], f(X) 7→ Xf(X)

has no eigenvector. Conclude in particular that Lie’s Theorem fails for infinite dimensional
spaces V .

Exercise 4.10. We consider the vector space V = K(N) with the basis {ei : i ∈ N}. In
terms of the rank-one-operators Eij ∈ End(V ), defined by Eijek = δjkei, we consider the
Lie algebra

g := span{Eij : i ≥ j}
(lower triangular matrices). Show that:

(a) Dn(g) = span{Eij : i ≥ j + 2n−1}, n ∈ N. In particular, we have D∞(g) :=⋂
n∈ND

n(g) = {0}, i.e., g is residually solvable. (Exercise 4.11).

(b) g =
⋃
n gn for an increasing sequence of finite dimensional solvable subalgebras gn (g

is locally solvable).

(c) g has no common eigenvector in V (compare with Lie’s Theorem).

Exercise 4.11. Show that, for a Lie algebra g, the following are equivalent:

(a) D∞(g) :=
⋂
n∈ND

n(g) = {0}.

(b) g is residually solvable in the sense that all homomorphisms ϕ : g → s, s solvable,
separate the points of g, i.e., for every non-zero x ∈ g, there exists a homomorphism
into a solvable Lie algebra with ϕ(x) 6= 0.

Hint: All quotients g/Dn(g) are solvable.

Exercise 4.12. Show that:

(a) A finite dimensional Lie algebra g is solvable if and only if there exists a sequence

{0} = g0 ⊆ g1 ⊆ . . . ⊆ gn = g

of subalgebras with [gi, gi] ⊆ gi−1 for i = 1, . . . , n.

(b) If g is solvable, then there exists a sequence as in (a), satisfying, in addition, dim gi = i.
Conclude that

gi+1
∼= gi oDi K for some Di ∈ der(gi), i = 1, . . . , n− 1.

This means that
g ∼=

(
· · · ((KoD1 K) oD2 K) · · ·oDn−1 K

)
.

Exercise 4.13. (Is there a Cartan Criterion for nilpotent Lie algebras?)

(a) If g is nilpotent, then κg = 0.

(b) Consider the Lie algebra g = C2oDC, where C2 is considered as an abelian Lie algebra
and D = diag(1, i). This Lie algebra is not nilpotent, but κg = 0. If we consider g as a
6-dimensional real Lie algebra, then its Cartan–Killing form also vanishes. Conclude
that it is NOT true that a Lie algebra is nilpotent if and only if its Cartan–Killing
form vanishes.
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5 Semisimple Lie Algebras

In this section we encounter a third class of Lie algebras. Semisimple Lie algebras are a
counterpart to the solvable and nilpotent Lie algebras because their ideal structure is quite
simple. They can be decomposed as a direct sum of simple ideals. On the other hand,
they have a rich geometric structure which even makes a complete classification of finite
dimensional semisimple Lie algebras over R or any algebraically closed field K is possible.
We later show that every finite dimensional Lie algebra is a semidirect sum of its solvable
radical and a semisimple subalgebra (cf. Levi’s Theorem 6.6).

Throughout, K will be a field of characteristic zero and all Lie algebras are finite di-
mensional.

Definition 5.1. Let g be a finite dimensional Lie algebra. Then g is called semisimple if
its radical is trivial, i.e., rad(g) = {0}. The Lie algebra g is called simple if {0} and g are
the only ideals of g and it is non-abelian (which excludes the one-dimensional algebras).

Lemma 5.2. Every simple Lie algebra is semisimple.

Proof. Let g be a simple Lie algebra. Since the commutator algebra [g, g] is a nonzero ideal
of g, it coincides with g. Hence g is not solvable. Therefore rad(g) is a proper ideal and
therefore rad(g) = {0}.

We shall see in Proposition 5.14 that a Lie algebra is semisimple if and only if it is a
direct sum of simple ideals.

5.1 Cartan’s Semisimplicity Criterion

In this subsection we obtain the characterization of semisimple Lie algebras in terms of the
Cartan–Killing form which can be defined for any Lie algebra.

Definition 5.3. In connection with the Cartan criterion for solvable Lie algebras, we have
seen that the bilinear form

κg : g× g → K, κg(x, y) := tr(ad x ad y)

on a finite dimensional Lie algebra is of interest. It is called the Cartan–Killing form of g.
Its compatibility with the Lie algebra structure is expressed by its invariance

κg([x, y], z) = κg(x, [y, z]) for x, y, z,∈ g

(Exercise 4.7). If g is clear from the context, we sometimes write κ instead of κg.

Definition 5.4. Let V be a vector space and β : V ×V → K be a symmetric bilinear form.
For a subset W ⊆ V , we then write

W⊥,β := {v ∈ V | (∀w ∈ W ) β(v, w) = 0}

for the the orthogonal subspace of W with respect to β by W⊥,β. The set rad(β) := V ⊥,β

is called the radical of β. The form is called degenerate if rad(β) 6= {0}.

Using this notation, we can reformulate the Cartan Criterion 4.22 as follows:

Remark 5.5. In terms of the Cartan–Killing form, Cartan’s Solvability Criterion asserts
that g is solvable if and only if [g, g] ⊆ rad(κg) (cf. Exercise 5.8 for the fact that rad(g) =
[g, g]⊥ holds for every finite dimensional Lie algebra g).
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Example 5.6. (i) With respect to the basis (h, e, f) of sl2(K) with

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h

from (10), an easy calculation leads to the following matrix for the Cartan–Killing form:

κ =

8 0 0
0 0 4
0 4 0

 .

(ii) With respect to the basis (x, y, z) for so3(R) with

[x, y] = z, [y, z] = x, [z, x] = y

(Example 1.35), the Cartan–Killing form has the matrix

κ =

−2 0 0
0 −2 0
0 0 −2

 .

(iii) With respect to the basis (h, p, q, z) for the oscillator algebra osc(K) from Example 1.30,
the Cartan–Killing form has the matrix

κ =


−2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

Here we see explicitly that κ(osc(K), [osc(K), osc(K)]) = κ(osc(K), h3(K)) = {0} which also
follows from Cartan’s criterion for solvability (Corollary 4.23).

In general, the Cartan–Killing form of a subalgebra h ⊆ g cannot be calculated in terms
of the Cartan–Killing form of g, but for ideals we have:

Lemma 5.7. For any ideal i E g, κi = κg|i×i.

Proof. If the image of A ∈ End(g) is contained in i, then we pick a basis for g which starts
with a basis for i. With respect to this basis, we can write A as a block matrix

A =

(
A|i ∗
0 0

)
,

and this shows tr(A) = tr(A|i). We apply this to A = ad(x) ad(y) for x, y ∈ i to obtain
< tr

(
ad(x) ad(y)

)
= tr

(
ad(x)|i ad(y)|i

)
= κi(x, y).

Remark 5.8. Let g be a finite dimensional real Lie algebra. Since a basis for g is also a
(complex) basis for gC, one immediately sees that

κg = κgC |g×g

(cf. Exercise 5.3).

Lemma 5.9. For any ideal j of a Lie algebra g, the following assertions hold:

(i) Its orthogonal space j⊥ with respect to κg also is an ideal.

(ii) j ∩ j⊥ is a solvable ideal.

35



(iii) If j or g is semisimple, then g decomposes as a direct sum g = j⊕ j⊥ of Lie algebras.

Proof. (i) For x ∈ j⊥, y ∈ g and z ∈ j, we find κg([x, y], z) = κg(x, [y, z]) = 0, so that j⊥

is an ideal of g.

(ii) For i := j ∩ j⊥, the Cartan–Killing form κg vanishes on i × i. Hence rad(κi) = i by
Lemma 5.7. In particular, i is solvable by Remark 5.5.

(iii) If j is semisimple, then (ii) implies that j ∩ j⊥ ⊆ rad(j) = {0}. If g is semisimple,
we likewise obtain j ∩ j⊥ ⊆ rad(g) = {0}. Since j⊥ is the kernel of the linear map
g → j∗, x 7→ κg(x, ·), we have dim j⊥ ≥ dim g − dim j, which implies j + j⊥ = g, so
that g is a direct sum of the vector subspaces j and j⊥. As both are ideals by (i),
[j, j⊥] ⊆ j ∩ j⊥ = {0}, and we obtain a direct sum of Lie algebras.

Proposition 5.10. For a semisimple Lie algebra g, the following assertions hold:

(i) g is perfect, i.e., g = [g, g].

(ii) Each ideal n E g is semisimple and there exists a semisimple ideal c with g = n⊕ c.

(iii) All homomorphic images of g are semisimple.

Proof. (i) In view of Lemma 5.9(iii), g decomposes as g = [g, g] ⊕ [g, g]⊥. Then the ideal
a := [g, g]⊥ satisfies [a, a] ⊆ a ∩ [g, g] = {0}, so that a is an abelian ideal, hence trivial.

(ii) Using Lemma 5.9(iii) again, we write g = n⊕c with c := n⊥. Then rad(n) commutes
with n⊥, hence is a solvable ideal of g and therefore trivial. This shows that n is semisimple.
The same argument shows that c is semisimple.

(iii) follows from (ii) because g = n⊕ c implies g/n ∼= c.

We can also characterize semisimplicity in terms of the Cartan–Killing form.

Theorem 5.11. (Cartan’s Semisimplicity Criterion) A Lie algebra g is semisimple if and
only if κg is nondegenerate, i.e., rad(κg) = {0}.

Proof. With Lemma 5.9(ii), we see that g ∩ g⊥ = rad(κg) is a solvable ideal, so that
rad(κg) ⊆ rad(g). In particular, κg is nondegenerate if g is semisimple.

Suppose, conversely, that g is not semisimple and put r := rad(g) 6= {0}. Let n ∈ N0

be maximal with h := Dn(r) 6= {0}. Then h is an abelian ideal of g. For x ∈ h and
y ∈ g, we then have (adx ad y)g ⊆ h and therefore (adx ad y)2 = 0. This implies that
κg(x, y) = tr(ad x ad y) = 0. Since y ∈ g was arbitrary, this means that x ∈ rad(κg), i.e., κg
is degenerate.

Remark 5.12. In view of rad(g)C = rad(gC) (cf. Exercise 5.4(i)), a real Lie algebra g is
semisimple if and only if its complexification gC is semisimple.

For simplicity the situation is a litlle more complicated, as the following proposition
shows. 10

Proposition 5.13. Let g be a simple real Lie algebra. Then either

(i) gC is simple, or

10Recall that, for a real vector space V , an endomorphism I ∈ End(V ) is called a complex structure if
I2 = −1. Then (x+ iy)v := xv+ yIv defines on V the structure of a complex vector space, denoted (V, I).
The opposite complex vector space is (V,−I), where the scalar multiplication is defined by (x + iy)v :=
xv − yIv.
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(ii) g carries a complex structure I ∈ End(g) turning it into a complex Lie algebra (g, I).
In this case gC ∼= (g, I)⊕ (g,−I).

If, conversely, g is a real Lie algebra for which gC is simple, then g is simple.

Proof. Suppose that gC is not simple and let a E gC be a proper complex ideal. Let σ
denote the complex conjugation on gC. We claim that gC ∼= a ⊕ σ(a) is a direct sum of
Lie algebras. First we observe that σ(a) is also a complex ideal, so that the two subspaces
a∩σ(a) and a+σ(a) are both σ-invariant complex ideals of gC. For any σ-invariant complex
subspace b ⊆ gC, we obtain

b = {x ∈ b : σ(x) = x} ⊕ {x ∈ b : σ(x) = −x} ∼= (g ∩ b)C

from the eigenspace decomposition of σ|b (Exercise A.1(ii)).
As a is a proper ideal, g 6⊆ a, and this implies that the ideal a∩ g of g is {0}. Therefore

a ∩ σ(a) = {0}. Further, the ideal g ∩ (a + σ(a)) of g is non-zero, hence all of g, and thus
a + σ(a) = gC. This proves our claim. Note that the ideal property of a and σ(a) implies
[a, σ(a)] = {0}.

It remains to show that a ∼= g as real Lie algebras. To this end, we consider the real
linear map

ϕ : a→ g, z 7→ z + σ(z).

Then

[ϕ(z), ϕ(w)] = [z + σ(z), w + σ(w)] = [z, w] + [σ(z), σ(w)] = [z, w] + σ([z, w]) = ϕ([z, w])

shows that ϕ is a homomorphism of Lie algebras. As kerϕ = a∩ig = {0} and gC = a⊕σ(a),
the map ϕ is bijective, hence an isomorphism of Lie algebras.

We finally assume that g is a real Lie algebra for which gC is simple. Remark 5.12
implies that g is semisimple. If a E g is a proper non-zero ideal, then there exists a proper
decomposition g = a ⊕ b (Proposition 5.10(ii)) and then gC ∼= aC ⊕ bC is not simple.
Therefore g must be simple.

Proposition 5.14. Let g be a semisimple Lie algebra. Then there exist simple ideals
g1, . . . , gk of g with

g = g1 ⊕ . . .⊕ gk.

Every ideal i E g is semisimple and a direct sum i =
⊕

j∈I gj for some subset I ⊆ {1, . . . , k}.
Conversely, each direct sum of simple Lie algebras is semisimple.

Proof. Let g1 E g be a minimal non-zero ideal and write g = g1⊕ c1 (Proposition 5.10(ii)).
Then every ideal of g1 is also an ideal of g, and therefore g1 is a simple Lie algebra. As c1

is also semisimple by Proposition 5.10(ii), an easy induction on dim g now implies that g
decomposes as a direct sum

g = g1 ⊕ . . .⊕ gk

of simple ideals.
Finally, let i 6= {0} be an ideal of g. Let πj : g → gj be the projections. Then we have

πj(i) 6= {0} for at least one j. But since πj is surjective πj(i) is an ideal of gj and therefore
equal to gj by simplicity. Thus

gj = [gj, gj] = [gj, πj(i)] = [gj, i] ⊆ i

because [gj, π`(i)] = {0} for ` 6= j. The argument shows that every gj with πj(i) 6= {0} is
contained in i. But then i is the direct sum of these gj.
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The preceding argument shows in particular that every nonzero ideal r of a direct sum
g := ⊕jgj of simple Lie algebras contains a simple ideal, hence cannot be solvable because
simple Lie algebras are not solvable (Lemma 5.2). We conclude that rad(g) = {0}, so that
g is semisimple.

Proposition 5.15. If g is a complex simple Lie algebra, then g is also simple as a real Lie
algebra.

Proof. Suppose that {0} 6= a E g is a minimal non-zero ideal of the underlying real Lie
algebra. As i[g, a] = [ig, a] = [g, a] ⊆ a, [g, a] is a complex subspace of a. As the center of
g is trivial, [g, a] 6= {0}, and thus the minimality of a leads to a = [g, a], showing that a is
a complex subspace of g. Finally the simplicity of g as a complex Lie algebra shows that
a = g.

Example 5.16. (a) We claim that the Lie algebras sl2(K), so3(K) and su2(C) are simple:
We have seen in Example 5.6 that the Cartan–Killing forms of sl2(K) and so3(K) are
nondegenerate, so that they are semisimple, hence simple because they are 3-dimensional
(Exercise 5.1). Further, su2(C) is a real form of the complex simple Lie algebra sl2(C),
hence simple by the second half of Proposition 5.13.

(b) We have just seen that sl2(C) is a complex simple Lie algebra, so that Proposi-
tion 5.15 implies that sl2(C) is also simple as a real 6-dimensional Lie algebra.

Later we shall see how one can use root decomposition to verify the simplicity of larger
classes of matric Lie algebras.

In Example 1.14, we have seen that the adjoint representation provides derivations on
the Lie algebra. In the case of semisimple Lie algebras, this representation in fact gives all
derivations.

Theorem 5.17. For a semisimple Lie algebra g all derivations are inner, i.e.,

ad(g) = der(g).

Proof. By Proposition 1.15(i), ad g E der(g) is an ideal, and since z(g) = {0}, the ideal
ad(g) ∼= g is semisimple. Therefore der g decomposes as a direct sum j⊕ad g for the orthogo-
nal complement j of ad(g) with respect to the Cartan–Killing form of der(g) (Lemma 5.9(iii)).
For δ ∈ j and x ∈ g we then have

0 = [δ, adx](y) = δ([x, y])− [x, δ(y)] = [δ(x), y] = ad
(
δ(x)

)
.

This means that δ(x) ∈ z(g) = {0}, i.e., δ = 0. We conclude that j = {0}, so that
der(g) = ad g.

5.2 Weyl’s Theorem on Complete Reducibility

We have already seen how Engel’s Theorem and Lie’s Theorem provide important infor-
mation on representations of nilpotent, resp., solvable Lie algebras. For semisimple Lie
algebras, Weyl’s Theorem, which asserts that each representation of a semisimple Lie alge-
bra is completely reducible, plays a similar role. The crucial tool needed for the proof of
Weyl’s Theorem is the Casimir element.

Definition 5.18. (cf. Exercise 4.7) A symmetric bilinear form β : g × g → K on a Lie
algebra g is called invariant if

β([x, y], z) = β(x, [y, z]) for x, y, z ∈ g.
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Definition 5.19. Let β be a nondegenerate invariant symmetric bilinear form on the Lie
algebra g, x1, . . . , xk a basis for g and x1, . . . , xk the dual basis with respect to β, i.e.,
β(xi, x

j) = δij (Kronecker delta). For any Lie algebra homomorphism ρ : g → AL, A an
associative algebra, we define the Casimir element

Ω(β, ρ) :=
k∑
i=1

ρ(xi)ρ(xi).

The same argument that shows the independence of the trace of an operator (defined as
the sum of its diagonal matrix entries) of the choice of the basis, shows that Ω(β, ρ) does
not depend on the choice of the basis x1, . . . , xk (cf. Exercise 5.10).

The Casimir element Ω(β, ρ) is a useful tool for the study of representations since it
commutes with ρ(g):

Lemma 5.20. For each nondegenerate invariant symmetric bilinear form β on g and each
homomorphism ρ : g→ AL, the Casimir element Ω(β, ρ) ∈ A commutes with ρ(g).

Proof. Let z ∈ g. Then we have

ad z(xj) =
n∑
k=1

akjxk and ad z(xj) =
n∑
k=1

akjxk

with two matrices (aij) and (aij) in Mk(K). Then

akj = β([z, xj], x
k) = −β(xj, [z, x

k]) = −ajk,

and with this relation we obtain

[ρ(z),Ω] =
n∑
j=1

[ρ(z), ρ(xj)ρ(xj)] =
n∑
j=1

[ρ(z), ρ(xj)]ρ(xj) + ρ(xj)[ρ(z), ρ(xj)]

=
n∑
j=1

ρ([z, xj])ρ(xj) + ρ(xj)ρ([z, xj]) =
n∑

j,k=1

akjρ(xk)ρ(xj) + akjρ(xj)ρ(xk)

=
n∑

j,k=1

akjρ(xk)ρ(xj)− ajkρ(xj)ρ(xk) = 0.

Lemma 5.21. (Fitting decomposition) Let V be a finite dimensional vector space and
T ∈ End(V ). If V +(T ) :=

⋂
n∈N T

n(V ) and V 0(T ) =
⋃
n ker(T n), then

V = V 0(T )⊕ V +(T ).

The space V +(T ) is called the Fitting one component of T . In this context the general-
ized eigenspace V 0(T ) is called the Fitting null component of T .

Proof. The sequence T n(V ) is decreasing and dimV <∞ implies that there exists some n
with T n+1(V ) = T n(V ), so that T n(V ) = T+(V ). As

dimT n(V ) + dim ker(T n) = dimV

is independent of n, it follows ker(T n) = ker(T n+1) = V 0(T ). Then T |Tn(V ) : T n(V ) →
T n(V ) is surjective, hence bijective and on the intersection V 0(T ) ∩ V +(T ), the restriction
of T is nilpotent and bijective at the same time, which leads to V 0(T ) ∩ V +(T ) = {0}.
Finally

dimV +(T ) + dimV 0(T ) = dimT n(V ) + dim ker(T n) = dimV

implies that V +(T ) + V 0(T ) = V , and this proves the lemma.
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Proposition 5.22. Let g be a semisimple Lie algebra and (ρ, V ) a finite dimensional rep-
resentation. Then V is the direct sum of the g-modules

V g :=
⋂
x∈g

ker ρ(x) and Veff :=
∑
x∈g

ρ(x)(V ).

Proof. Note that ρ(g)(V g) = {0} and ρ(g)(Veff) ⊆ Veff , so that V g and Veff are indeed g-
invariant. We argue by induction on dimV . The case dimV = {0} is trivial. Since the
statement of the proposition is obvious for ρ = 0, we assume that ρ 6= 0.
Step 1: Let βρ(x, y) = tr

(
ρ(x)ρ(y)) denote the trace form on g and a := rad(βρ) denote

the radical of βρ, which is an ideal because βρ is invariant (Exercise 4.7). Let b E g be a
complementary ideal, so that g = a⊕ b is a direct sum of Lie algebras (Proposition 5.14).
In view of Cartan’s Solvability Criterion (Theorem 4.22), the Lie algebra ρ(a) is a solvable
ideal of ρ(g) because the trace form vanishes on this Lie algebra. Since ρ(g) is semisimple,
ρ(a) ⊆ rad(ρ(g)) = {0}, so that a ⊆ ker ρ. Conversely, the ideal ker ρ is contained in
rad(βρ), which leads to a = ker ρ. It follows in particular that β := βρ|b×b is nondegenerate
on the semisimple Lie algebra b.
Step 2: Let

Ω := Ω(β, ρ|b) :=
∑
j

ρ(xj)ρ(xj) ∈ End(V )

be the associated Casimir element (Definition 5.19). Then Lemma 5.20 implies that

Ω ∈ Endb(V ) := {A ∈ End(V ) : (∀x ∈ b) Aρ(x) = ρ(x)A}.

Since a = ker ρ, this implies

Ω ∈ Endg(V ) := {A ∈ End(V ) : (∀x ∈ g) Aρ(x) = ρ(x)A}.

Finally we note that

tr Ω =
∑
j

tr(ρ(xj)ρ(xi)) =
∑
j

β(xj, x
j) = dim b.

Step 3: If V is the direct sum of two nonzero g-invariant subspaces, then V g and Veff

decompose accordingly, and we can use our induction hypothesis. Let V = V 0(Ω)⊕V +(Ω)
be the Fitting decomposition of V with respect to Ω (Lemma 5.21). Since Ω commutes with
g, both summands are g-invariant, so that we may assume that one of these summands is
trivial.

Since we assume that b ∼= ρ(g) 6= {0}, we have tr Ω > 0, so that Ω is not nilpotent and
thus V +(Ω) is nonzero. Hence V 0(Ω) = {0} and, consequently, V = V +(Ω). Then Ω is
invertible, so that V = V +(Ω) ⊆ Veff and V g ⊆ V 0(Ω) = {0}. This completes the proof.

For the following proposition recall Definitions 1.17 and 1.20.

Proposition 5.23. (Characterization of semisimple modules) For a finite dimensional rep-
resentation (ρ, V ) of the Lie algebra g, the following are equivalent:

(i) Each g-invariant subspace of V possesses a g-invariant complement (each submodule
has a module complement).

(ii) (ρ, V ) is completely reducible (V is a semisimple g-module).

(iii) V is a sum of simple submodules.
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Proof. (i) ⇒ (ii): For dimensional reasons, each V contains a nonzero g-submodule V1 of
minimal dimension. Then there exists a module complement W , so that V = V1⊕W . Then
W also satisfies (i): If W1 ⊆ W is a submodule and V ′ ⊆ V is a module complement for
W1 in V , i.e., V = W1⊕V ′, then W = W1⊕ (V ′∩W ). We can thereore argue by induction
on dimV and apply the induction hypothesis to the representation of g on W .

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (ii): Let V1, . . . , Vn be a maximal set of simple submodules whose sum W :=∑n
i=1 Vi is direct. We claim that W = V , which implies (ii). If W is a proper subspace,

then (iii) implies the existence of a minimal nonzero submodule U not contained in W .
Then W ∩ U = {0} follows from the minimality of U , so that the sum U +

∑
i Vi is direct,

contradicting the maximality of the set {V1, . . . , Vn}. This proves W = V .
(ii) ⇒ (i): Let V =

⊕n
i=1 Vi be a direct sum of simple submodules and W ⊆ V a

g-invariant subspace. Further, let J ⊆ {1, . . . , n} be maximal with

W ∩
(∑
i∈J

Vi

)
= {0}.

Then W ′ :=
∑

i∈J Vi satisfies W ∩W ′ = {0} and it remains to see that W +W ′ = V .
Pick i ∈ I. If i ∈ J , then Vi ⊆ W ′ ⊆ W + W ′. If i 6∈ J , then the maximality of J

implies that (W ′ + Vi) ∩W 6= {0} and hence (W + W ′) ∩ Vi 6= {0}. Hence the simplicity
of Vi implies that Vi ⊆ W +W ′, and this proves V = W +W ′.

Proposition 5.24. If g is a real Lie algebra and V a finite dimensional g-module, then the
following are equivalent:

(i) V is semisimple.

(ii) VC is a semisimple complex g-module.

Proof. (i)⇒ (ii): If V is semisimple, then V is a direct sum of simple submodules Vi, then VC
is the direct sum of the submodules (Vi)C. Hence it suffices to show that the complexification
WC of a simple real g-module W is semisimple. In fact, if WC is not simple, then let U ⊆ WC
be a nonzero minimal complex submodule. This implies in particular that U is simple. Let
σ : WC → WC be the complex conjugation defined by σ(x + iy) = x − iy for x, y ∈ W .
Then σ commutes with the action of g on WC, and therefore σ(U) also is a simple complex
submodule. Now U + σ(U) is a complex σ-invariant submodule of WC, hence of the form
XC for X := W ∩ (U + σ(U)) (Exercise A.1(ii)). Then X is a nonzero g-submodule of W ,
so that the simplicity of W yields X = W and thus U +σ(U) = WC. Now Proposition 5.23
shows that WC is semisimple because it is the sum of two simple submodules.

(ii) ⇒ (i): Let W ⊆ V be a submodule. We have to show that there exists a module
complement U (Proposition 5.23). Since VC is semisimple, there exists a module complement
X of WC in VC, i.e., a complex linear projection p : VC → WC commuting with g. Let
qW : WC → W,x + iy 7→ x (x, y ∈ W ), be the projection onto the “real part”. Then qW is
a real linear projection commuting with g. Hence

P := qW ◦ p|V : V → W

is a g-equivariant real linear map with P |W = idW . Therefore kerP is a submodule of V
complementing W .

Corollary 5.25. Let V be a finite dimensional real vector space and g ⊆ gl(V ) an abelian
subalgebra consisting of elements whose complex linear extension to VC is diagonalizable.
Then V is a semisimple g-module.

41



Proof. In view of Proposition 5.24, it suffices to show that VC is a semisimple complex
module of g, resp., gC. On VC, each x ∈ g is diagonalizable, and since g is abelian,
g is simultaneously diagonalizable (Exercise 4.1(d)), so that VC is a direct sum of one-
dimensional submodules, hence semisimple.

Theorem 5.26. (Weyl’s Theorem on Complete Reducibility) Each finite dimensional
representation of a semisimple Lie algebra is completely reducible.

Proof. Let (ρ, V ) be a finite dimensional representation of the semisimple Lie algebra g. In
view of Proposition 5.23, it suffices to show that each g-invariant subspace W ⊆ V possesses
a g-invariant complement U .
Step 1: Let W ⊆ V be a g-invariant subspace of codimension 1. Then the representation
(ρ, V/W ), defined by ρ(x)(v + W ) := ρ(x)v + W is one-dimensional. Since g = [g, g] is
perfect and gl1(K) ∼= K is abelian, ρ = 0, so that ρ(g)V ⊆ W . In view of Proposition 5.22,
V = V g ⊕ Veff , and since Veff is contained in W , there exists some vo ∈ V g \W . Then Kvo
is a g-invariant complement of W .
Step 2: Now let W ⊆ V be an arbitrary g-invariant subspace. We define a representation
of g on Hom(V,W ) by

π(x)ϕ := ρ(x)|W ◦ ϕ− ϕ ◦ ρ(x)

(Show as an exercise that this is a representation). Then the subspace

U := {ϕ ∈ Hom(V,W ) : ϕ|W ∈ K idW}

is g-invariant because we have for ϕ ∈ U the relation (π(x)ϕ)(W ) = {0}: For ϕ|W = λ idW
and w ∈ W we have

(π(x)ϕ)(w) = ρ(x)ϕ(w)− ϕ(ρ(x)w) = ρ(x)(λw)− λρ(x)w = 0.

Therefore
U0 := {ϕ ∈ U : ϕ(W ) = {0}}

is a g-invariant subspace of U of codimension 1. Step 1 now implies the existence of a
g-invariant ϕ0 ∈ U \ U0. The g-invariance of ϕ0 means that ϕ0 ∈ Homg(V,W ) and since
ϕ0|W ∈ K× idW is invertible, kerϕ0 is a g-invariant subspace complementing W .

Exercises for Section 5

Exercise 5.1. Show that the dimension of a simple Lie algebra is at least 3. Conclude that
every semisimple Lie algebra of dimension ≤ 5 is simple.

Exercise 5.2. Let g be a finite dimensional Lie algebra and ϕ ∈ Aut(g). Show that

(i) κ(ϕ(x), ϕ(y)) = κ(x, y) for x, y ∈ g..

(ii) If g is complex and ϕ : g→ g is an antilinear automorphism, then

κ(ϕ(x), ϕ(y)) = κ(x, y) for x, y ∈ g.

Hint: Use/verify the following LA fact: If V is a finite dimensional complex vector
space, ψ ∈ End(V ) and ϕ : V → V antilinear and bijective, then

tr(ϕ ◦ ψ ◦ ϕ−1) = tr(ψ).
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Exercise 5.3. Let g be a real Lie algebra and gC its complexification. Show that the
Cartan–Killing forms of g and gC are related by

κg(x, y) = κgC(x, y) for x, y ∈ g.

Hint: If A : V → V is a real linear endomorphism of the real vector space V and
AC : VC → VC its complex linear extension, then tr(AC) = tr(A).

Exercise 5.4. For a real Lie algebra g, we have:

(i) rad(gC) = rad(g)C. Hint: Show that the radical of gC is invariant under complex
conjugation σ : gC → gC.

(ii) rad(κg)C = rad(κgC).

(iii) g is semisimple if and only if gC is semisimple.

Exercise 5.5. Verify the computations of the Cartan–Killing forms of sl2(K), so3(R) and
of the oscillator algebra in Example 5.6.

Exercise 5.6. (i) Let α : g → gl(V ) be a representation of the Lie algebra g on V and
n E g be an ideal. Then the space

V0(n) := {v ∈ V | (∀x ∈ n) α(x)v = 0}

is g-invariant.

(ii) Let
a0 = {0} ⊆ a1 ⊆ . . . ⊆ an = g

be a maximal chain of ideals of g and n E g a nilpotent ideal. Then [n, aj] ⊆ aj−1 for
j > 0.

Exercise 5.7. Let g be a finite dimensional Lie algebra. Every nilpotent ideal n of g is
orthogonal to g with respect to the Cartan–Killing form.

Exercise 5.8. Show that [g, g]⊥ = rad(g) for every finite dimensional Lie algebra g over a
field of characteristic zero. Here ⊥ refers to the Cartan–Killing form κg.
Hint: Use Exercise 5.7 and Corollary 4.16 to show that κ(g, [rad(g), g]) = {0} and the
Cartan Criterion for the solvability of [g, g]⊥.

Exercise 5.9. Each one-dimensional representation (π, V ) of a perfect Lie algebra is trivial.

Exercise 5.10. Let β be a nondegenerate invariant symmetric bilinear form on the Lie
algebra g, x1, . . . , xk a basis for g and x1, . . . , xk the dual basis with respect to β, i.e.,
β(xi, x

j) = δij. For any Lie algebra homomorphism ρ : g → AL, A an associative algebra,
we define the Casimir element

Ω(β, ρ) :=
k∑
i=1

ρ(xi)ρ(xi).

Show that Ω(β, ρ) does not depend on the choice of the basis x1, . . . , xk.

Exercise 5.11. Let V be a finite dimensional vector space and V ∗ its dual space. Show
that:
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(a) The map γ : V ⊗ V ∗ → End(V ) specified by γ(v ⊗ α)(w) := α(w)v, is a linear
isomorphism.

(b) If v1, . . . , vn is a basis for V and v∗1, . . . , v
∗
n the dual basis for V ∗, defined by v∗j (vi) = δij,

then γ
(∑n

i=1 vi ⊗ v∗i
)

= idV .

(c) If β : V × V → K is a nondegenerate symmetric bilinear form, then

γ̃ : V ⊗ V → End(V ), γ̃(v ⊗ w)(x) := β(x,w)v

is a linear isomorphism. If v1, . . . , vn is a basis for V and v1, . . . , vn ∈ V with β(vi, ·) =
v∗i , i = 1, . . . , n, then γ̃(

∑n
i=1 vi ⊗ vi) = idV .

Exercise 5.12. (i) Let g be a simple Lie algebra over C. Show that each invariant
bilinear form κ on g is a scalar multiple of the Cartan–Killing form κg.
Hint: Show first that every bilinear form β : g × g → C can be written as β(x, y) =
κg(Ax, y) for some A ∈ End(g).

(ii) Show that the result (i) does not hold for all simple real Lie algebras.
Hint: Consider sl2(C) (cf. Exampl 5.16).

Exercise 5.13. Show that semisimplicity is an extension property: If g is a finite dimen-
sional Lie algebra and n E g an ideal, then g is semisimple if and only if n and g/n are
semisimple.

Exercise 5.14. Let g be a real Lie algebra and I ∈ End(g) be a complex structure. Show
that the complex vector space (V, I), endowed with the scalar multiplication (α + iβ)z :=
αz + βIz is a complex Lie algebra if and only if

[I, adx] = 0 for every x ∈ g.

Exercise 5.15. Let V and W be module of the Lie algebra g. Show that

(Xϕ)(v) := Xϕ(v)− ϕ(Xv), v ∈ V, ϕ ∈ Hom(V,W ), X ∈ g

defines the structure of a g-module on Hom(V,W ). Note that the submodule Hom(V,W )g

of invariant elements are precisely the module morphisms.

6 Levi’s Splitting Theorem

In the preceding sections we dealt in particular with solvable and semisimple Lie algebras
separately. Now we shall address the question how a finite dimensional Lie algebra g
decomposes into its maximal solvable ideal rad(g) and the semisimple quotient g/ rad(g).
Levi’s Theorem is fundamental for the structure theory of finite dimensional Lie algebras.
It asserts the existence of a semisimple subalgebra s of g complementing the radical rad(g),
also called a Levi complement. As a consequence, g ∼= rad(g) o s is a semidirect sum.

Throughout, K will be a field of characteristic zero.

Lemma 6.1. The quotient Lie algebra g/ rad(g) is semisimple.

Proof. Let q : g → g/ rad(g) be the quotient homomorphism and a E g/ rad(g) a solvable
ideal. Then b := q−1(a) E g is an ideal containing rad(g), for which a ∼= b/ rad(g) is
solvable. Since solvability is an extension property, b is solvable, hence b ⊆ rad(g), and
thus a = {0}. This proves that rad(g/ rad(g)) = {0}, i.e., g/ rad(g) is semisimple.
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Proposition 6.2. If α : g→ h is a surjective homomorphism of Lie algebras, then α(rad g) =
rad h.

Proof. Let r := rad g. First we note that α(r) is a solvable ideal of h, hence contained
in rad(h). Here we use that images of ideals under surjective homomorphisms are ideals:
[h, α(r)] = [α(g), α(r)] = α([g, r]) ⊆ α(r).

Let π : h → h/α(r) be the quotient homomorphism. The homomorphism α : g → h in-
duces a surjective homomorphism α̃ : g/r→ h/α(r). Since g/r is semisimple (Lemma 6.1),
the homomorphic image h/α(r) is also semisimple (Proposition 5.10). Consequently π(rad h) ⊆
rad
(
h/α(r)

)
= {0}, i.e., rad h ⊆ α(r). We thus obtain rad h = α(r).

Definition 6.3. An ideal a E g is called characteristic if it is invariant under all derivations
of g.

Lemma 6.4. For the radical of the Lie algebra g, the following assertions hold:

(i) rad(g) is a characteristic ideal.

(ii) If a ⊆ g is an ideal, then rad(a) = rad(g) ∩ a.

Proof. (i) First we note that [g, g] is a characteristic ideal of g because for each derivation
D ∈ der g and x, y ∈ g we have D([x, y]) = [Dx, y] + [x,Dy] ∈ [g, g]. Next we note that the
Cartan–Killing form is invariant under der(g) (cf. Exercise 4.7) :

κg(Dx, y) = tr
(

ad(Dx) ad y
)

= tr
(
[D, adx] ad y

)
= − tr

(
adx[D, ad y]

)
= − tr

(
adx ad(Dy)

)
= −κg(x,Dy).

Therefore rad(g) = [g, g]⊥,κg (Exercise 5.8) is also invariant under der(g).
(ii) Clearly, rad(g)∩ a is a solvable ideal of a, hence contained in rad(a). Since rad(a) is

a characteristic ideal of a, it is invariant under the adjoint representation of g on a, hence
a solvable ideal of g. This proves that rad(a) ⊆ rad(g).

We will need the following technical lemma.

Lemma 6.5. Let (ρ, V ) be a representation of g and n E g an ideal. For v ∈ V , let

zg(v) := {x ∈ g : ρ(x)v = 0}

be the stabilizer of v. If v ∈ V satisfies

ρ(g)v = ρ(n)v and zg(v) ∩ n = zn(v) = {0},

then g ∼= no zg(v).

Proof. The linear map ϕ : g → V, x 7→ ρ(x)v satisfies ϕ(g) = ϕ(n), hence g = n + kerϕ =
n + zg(v). Since zg(v) is a subalgebra, the assertion follows.

Theorem 6.6. (Levi’s Splitting Theorem) If α : g → s is a surjective homomorphism
of Lie algebras and s is semisimple, then there exists a homomorphism β : s → g with
α ◦ β = ids.

g

∀α
��

s

∃β
@@�������

ids

// s
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Proof. Let n := kerα. We have to show the existence of a subalgebra s̃ of g with g ∼= no s̃.
Then α|̃s : s̃ → s is an isomorphism and we may put β := (α|̃s)−1. We argue by induction
on the dimension of n. For n = {0}, there is nothing to show. So we assume that n 6= {0}.

Case 1: The ideal n E g is not minimal, i.e., there exists a nonzero ideal n1 of g which
is a proper subspace of n. Now α factors through a surjective homomorphism α1 : g/n1 → s
with

dim(kerα1) = dim n− dim n1 < dim n.

Therefore our induction hypothesis implies the existence of a homomorphism β1 : s→ g/n1

with α1 ◦ β1 = ids. Let q : g→ g/n1 be the quotient map and b := q−1
(
β1(s)

)
. Then b is a

subalgebra of g and the homomorphism

α2 := q|b : b→ β1(s) ∼= s, x 7→ x+ n1

is surjective. In view of dim(kerα2) = dim n1 < dim n, the induction hypothesis implies the
existence of a homomorphism β2 : β1(s)→ b with α2 ◦β2 = idβ1(s). Now β := β2 ◦β1 : s→ g
is a homomorphism satisfying

α ◦ β = α1 ◦ q ◦ β2 ◦ β1 = α1 ◦ α2 ◦ β2 ◦ β1 = α1 ◦ β1 = ids .

Case 2: The ideal n is minimal. Since s is semisimple, the radical
r := rad(g) of g is contained in n (Proposition 6.2). If r = {0}, then g is semisimple,
and the assertion follows from Proposition 5.14 because g contains an ideal s̃ complement-
ing n. So let us assume that r 6= {0}. Then the minimality of n shows that n = r is
abelian.

The representation ρ : g → gl(n), x 7→ adx|n satisfies n ⊆ ker ρ (n is abelian), hence
factors through a representation ρ of s on n, determined by ρ ◦α = ρ. Since n is a minimal
ideal of g, we thus obtain on n an irreducible representation of s. If ρ = 0, then n is central in
g, and the adjoint representation ad: g→ der(g) factors through a representation of s on g.
According to Weyl’s Theorem, there exists an ideal of g complementing n (Proposition 5.23)
and the proof is complete. We may therefore assume that ρ is nonzero.

We are now at the point where we can use Lemma 6.5. On V := End(g), we consider
the representation

π(x)ϕ := adx ◦ ϕ− ϕ ◦ adx = [adx, ϕ]

(cf. Exercise 5.15). We consider the following three subspaces of V = End(g):

P := ad n ⊆ Q := {ϕ ∈ V : ϕ(g) ⊆ n, ϕ(n) = {0}}
⊆ R := {ϕ ∈ V : ϕ(g) ⊆ n, ϕ|n ∈ K idn}.

Since Q ⊆ R is the kernel of the linear map χ : R → K, defined by
ϕ|n = χ(ϕ) idn, we see that dim(R/Q) = 1.

We claim that P , Q and R are g-invariant. To this end, let y ∈ g. For x ∈ n we have
[ad y, adx] = ad[y, x] ∈ P , so that P is g-invariant. To see that R and Q are g-invariant,
we show that π(g)R ⊆ Q. So let x ∈ g, ϕ ∈ R and ϕ|n = λ idn. For n ∈ n we then have

(π(x)ϕ)(n) = [x, ϕ(n)]− ϕ([x, n]) = [x, λn]− λ[x, n] = 0,

hence π(x)ϕ ∈ Q. For y ∈ n we get

[ad y, ϕ] = ad y ◦ ϕ− ϕ ◦ ad y = −λ ad y ∈ P. (11)

This proves that π(n)R ⊆ P . The ideal n acts trivially on the quotient space R/P , which
therefore inherits a representation of s ∼= g/n.
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According to Weyl’s Theorem 5.26, there exists an s-invariant subspace of R/P comple-
menting Q/P . This complement is one-dimensional, hence generated by the image ϕ of one
element ϕ ∈ R \Q, of which we may assume that ϕ|n = idn. As the one-dimensional repre-
sentation of s on Rϕ is trivial because s is perfect (Exercise 5.9), we see that π(g)ϕ ⊆ P .
Next we verify the assumptions of Lemma 6.5.

For x ∈ n, we have already seen in (11) that π(x)ϕ = [adx, ϕ] = − adx. If π(x)ϕ = 0,
then adx = 0, i.e., x ∈ z(g). Since n is a minimal ideal of g which is not central, we derive
that x = 0. This leads to zn(ϕ) = {0} and π(n)ϕ = ad n = P ⊇ π(g)ϕ. Finally, we apply
Lemma 6.5 to complete the proof.

Definition 6.7. If g is a finite dimensional Lie algebra, then we call a subalgebra s ≤ g
complementing the solvable radical rad(g) a Levi complement. Note that g ∼= rad(g) o s
holds for any Levi complement.

Corollary 6.8. Each finite dimensional Lie algebra g contains a semisimple Levi comple-
ment.

Proof. Let s := g/ rad(g) and α : g → s be the quotient map. According to Lemma 6.1, s
is semisimple. Hence Theorem 6.6 provides a homomorphism β : s → g with α ◦ β = ids.
Then β is injective, so that β(s) ∩ rad(g) = {0} as well as β(s) + rad(g) = g. Thus β(s) is
a semisimple Levi complement.

Corollary 6.9. If s is a Levi complement in g, then

[g, g] = [g, rad(g)] o s.

If rad(g) = z(g), then [g, g] is a Levi complement.

Proof. The second assertion immediately follows from the first and the fact that rad(g) =
z(g) is equivalent to [g, rad(g)] = {0}.

For the first assertion, we note that [s, s] = s leads to

[g, g] = [g, rad(g)] + [g, s] = [g, rad(g)] + [rad(g), s] + [s, s] = [g, rad(g)] + s.

Corollary 6.10. (Lifting homomorphisms) If q : ĝ → g is a surjective homomorphism of
finite dimensional Lie algebras, s is semisimple and α : s → g is a homomorphism, then
there exists a homomorphism α̂ : s→ ĝ with q ◦ α̂ = α.

Proof. Apply Levi’s Theorem 6.6 to the surjective homomorphism q : q−1(α(s))→ α(s) and
note that the homomorphic image α(s) of s is semisimple.

Remark 6.11. If g is a solvable Lie algebra, then g is isomorphic to a nested semidirect
sum (

. . .
(
(g1 oα1 g2) oα2 g3

)
. . .oαn−1 gn

)
of one-dimensional Lie algebras (cf. Exercise 4.12).

Composing this with Levi’s Theorem and using Proposition 5.14, we obtain a similar
factorization for arbitrary finite dimensional Lie algebras g, the only difference is that the
gj are either one-dimensional or simple. In fact, we can start with a maximal chain

a0 = {0} ⊆ a1 ⊆ . . . ⊆ ak = g

of subalgebras of g for which aj−1 is an ideal in aj. Such a series is called a Jordan–
Hölderseries of g. Then the quotient gj := aj/aj−1 is either one-dimensional or simple so
that Levi’s Theorem implies that

aj ∼= aj−1 o gj.
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Exercises for Section 6

Exercise 6.1. Show that, for every Jordan–Hölder series

a0 = {0} ⊆ a1 ⊆ . . . ⊆ ak = g

of subalgebras of g (i.e., aj−1 is an ideal in aj and the quotient aj/aj−1 is either one-
dimensional or simple), the set of quotients {aj/aj−1 : j = 1, . . . , k} does not depend on the
Jordan–Hölder series (cf. Remark 6.11).

7 Reductive Lie Algebras

We conclude this chapter with a brief discussion of reductive Lie algebras. This class of
Lie algebras is only slightly larger than the class of semisimple Lie algebras and it contains
the abelian Lie algebras. Reductive Lie algebras often occur as stabilizer subalgebras in-
side semisimple Lie algebras. Thus they appear frequently in proofs by induction on the
dimension.

Definition 7.1. We call a finite dimensional Lie algebra g reductive if g is a semisimple
module with respect to the adjoint representation, i.e., for each ideal a E g, there exists an
ideal b E g with g = a⊕ b.

Remark 7.2. By Lemma 5.9(iii), every semisimple Lie algebra is reductive. It is also clear
that every abelian Lie algebra is reductive.

Lemma 7.3. For a reductive Lie algebra g, the following assertions hold:

(i) If n E g is an ideal, then n and g/n are reductive.

(ii) g = z(g)⊕ [g, g] and [g, g] is semisimple.

(iii) g is semisimple if and only if z(g) = {0}.

Proof. (i) Since g is reductive, there exists an ideal b E g with g = n⊕b. Then [b, n] = {0},
so that g is a direct sum of Lie algebras. As submodules of the semisimple g-module g, the
ideals n and b are semisimple g-modules, and since the complementary ideals do not act on
each other, it follows that n and b ∼= g/n are reductive Lie algebras.

(ii) Let a ⊆ g be an ideal complement of [g, g]. Then g = a ⊕ [g, g], and [g, a] ⊆
a∩ [g, g] = {0} implies that a is central. Further, (i) implies that [g, g] is reductive. To see
that z(g) is not larger than a, we choose an ideal b of [g, g] complementing z(g) ∩ [g, g] in
[g, g]. Then [g, g] = [b, b] ⊆ b yields z(g) ∩ [g, g] = {0}, and hence z(g) = a.

Since [g, g] is reductive, it is a direct sum of simple modules g1, . . . , gm for the adjoint
representation. The preceding argument implies that none of these ideals is abelian, hence
they are simple Lie algebras and thus [g, g] is semisimple.

(iii) If z(g) = {0}, then (ii) implies that g is semisimple. If, conversely, g is semisimple,
then z(g) ⊆ rad(g) = {0}.

Proposition 7.4. For a finite dimensional Lie algebra g, the following are equivalent:

(i) g is reductive.

(ii) [g, g] is semisimple.

(iii) rad(g) is central in g, i.e., [g, rad(g)] = {0}.
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Proof. (i) ⇒ (ii) follows from Lemma 7.3.
(ii) ⇒ (iii): Let r := rad(g) and g = ro s be a Levi decomposition. Then [g, g] = [g, r] o s
by Corollary 6.9, so that the semisimplicity of [g, g] implies that [g, r] = {0}.
(iii) ⇒ (i): If r is central in g, then any Levi decomposition g = r o s is a direct sum
g = r ⊕ s, where r is a central ideal. Since z(s) = {0}, we immediately get z(g) = r, so
that g = z(g) ⊕ s. Thus g ∼= Kn ⊕ s is a direct sum of simple submodules with respect to
the adjoint representation, hence a semisimple g-module (Proposition 5.23), and this means
that g is reductive.

Proposition 7.5. The ideal [g, rad(g)] coincides with the intersection of the kernels of
finite dimensional irreducible representations.

Proof. If ρ : g→ gl(V ) is a finite dimensional irreducible representation and n := [g, rad(g)],
then each subspace Vk := ρ(n)k(V ) is g-invariant because

ρ(x)ρ(x1) · · · ρ(xk)v

=
( k∑
j=1

ρ(x1) · · · [ρ(x), ρ(xj)]︸ ︷︷ ︸
∈ρ(n)

· · · ρ(xk)v
)

+ ρ(x1) · · · ρ(xk)ρ(x)v

for each v ∈ V . Since V is a nilpotent n-module by Proposition 4.15, there exists a minimal
m with Vm = {0}. Then Vm−1 6= {0}, so that the irreducibility of the representation implies
that Vm−1 = V . Hence ρ(n)V = ρ(n)Vm−1 ⊆ Vm = {0}, i.e., n ⊆ ker ρ.

Next we consider the quotient q := g/[g, rad(g)] and the quotient homomorphism
q : g→ q. In view of Proposition 6.2, q(rad(g)) = rad(q), so that

[q, rad(q)] = [q(g), q(rad(g))] = q([g, rad(g)]) = {0}

implies that rad(q) is central, so that q is reductive by Proposition 7.4.
It remains to observe that, for each non-zero x ∈ q, there exists an irreducible finite

dimensional representations ρ : q→ gl(V ) with ρ(x) 6= 0. Since ρ ◦ q : g→ gl(V ) then is an
irreducible representation of g, this implies the assertion.

We know that q = z(q) ⊕ [q, q] and that [q, q] is semisimple, hence a sum of simple
ideals q1, . . . , qk. If x 6∈ z(q), then x projects to a non-zero element of some qj, and then
ρ(y) := ad y|qj defines an irreducible representation with ρ(x) 6= 0. If x ∈ z(g), then there
exists a linear functional λ : q → K with [q, q] ⊆ kerλ and λ(x) 6= 0. Now ρ(y) := λ(y)1
defines a one-dimensional representation of q with ρ(x) 6= 0.

Example 7.6. Let V be a finite dimensional vector space.
(a) Let g = gl(V ). Then the identical representation of g on V is irreducible and faithful,

so that the preceding proposition implies that [g, rad(g)] = {0}, so that g is reductive by
Propostion 7.4. This implies that

rad(gl(V )) = z(gl(V )) = K1

and that sl(V ) = [gl(V ), gl(V )] is a Levi complement in gl(V ) (Example 1.7). Note that
we use charK = 0 to see that tr 1 6= 0.
(b) Let V be a finite dimensional vector space and F = (V0, . . . , Vn) a flag in V . Then

r := {ϕ ∈ g(F) : (∀i)(∃λi ∈ K) (ϕ− λi1)(Vi) ⊆ Vi−1} ∼= gn(F) oKn

is a solvable ideal of g(F) because [g, r] ⊆ gn(F). Choosing subspaces W1, . . . ,Wn ⊆ V
with Vi = W1 ⊕ . . .⊕Wi, we have

g(F) ∼= gn(F) o
n⊕
i=1

gl(Wi),
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(Example 1.31), and this leads to

g(F) ∼= ro
n⊕
i=1

sl(Wi).

Since we know from (a) that the Lie algebras sl(Wi) are semisimple, it follows that r =
rad(g(F)) and that

⊕n
i=1 sl(Wi) is a Levi complement.

Remark 7.7. Let g ⊆ gl(V ) be a Lie subalgebra, where V is finite dimensional. Let
F = (V0, . . . , Vk) be a maximal flag of g-invariant subspaces. We fix a Levi decomposition
g = ro s, where r = rad(g). Then V is a semisimple s-module by Weyl’s Theorem, so that
there exist subspaces Wi with Vi = Vi−1 ⊕Wi, i = 1, . . . , k. We then have

g ⊆ g(F) and s ⊆ gs(F) ∼= ⊕kj=1 gl(Wj)

(cf. Example 1.31). Since the g-modules Vi/Vi−1 are simple, the ideal [g, r] acts trivially on
this quotient (Proposition 7.5), and we further obtain

[g, r] ⊆ gu(F).

This shows that
[g, g] = [g, r] o s ⊆ gu(F) o gs(F) = g(F)

is adapted to the semidirect decomposition g(F) ∼= gu(F) o gs(F).
Assume, in addition, that K is algebraically closed. Then r/[g, r] is central in the

reductive quotient algebra g/[g, r] which acts on the simple g-modules U = Vi/Vi−1. Since
ρU(r) has a simultaneous eigenvector by Lie’s Theorem and the corresponding eigenspace

Uλ(r) := {u ∈ U | (∀x ∈ r) ρU(x)u = λ(x)u}

is g-invariant because [ρU(r), ρU(g)] = {0}, the simplicity of U implies that ρU(r) ⊆ C idU .
This means that

r ⊆ gu(F)⊕
k⊕
j=1

C idWj
= rad(g(F)).

Further, the perfectness of the Levi complement s shows that ρWj
(s) ⊆ sl(Wj). This finally

shows that the Levi decomposition of g is fully adapted to the Levi decomposition

g(F) = rad(g(F)) o⊕kj=1 sl(Wj).

Notes on Part I

The Jacobi identity was discovered around 1830 by Carl Gustav Jacob Jacobi (1804–1851)
as an identity for the Poisson bracket {·, ·} on smooth functions on R2n (Exercise 1.2).

The term Lie algebra was introduced in the 1920s by Hermann Weyl, following a sug-
gestion of Nathan Jacobson. Sophus Lie himself was dealing mainly with Lie algebras of
vector fields (Exercise 1.3), which he called (infinitesimal) transformation groups. The term
“Lie group” was introduced later by Élie Cartan.

The Jordan decompositions and the Jordan normal form are due to Camille Jordan
(1838–1922). In the 1870s he wrote a text book on Galois theory of polynomial equations,
thus making the ideas of Évariste Galois’ (1811–1832), developped shortly before his un-
timely death, available to the mathematical world. This promoted group theoretical ideas
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considerably. In particular, it inspired Sophus Lie to work on a “Galois theory” for differ-
ential equations, using symmetries of differential equations to understand the structure of
their solutions.

In the original proof of his theorem, Weyl used the famous “unitary trick”. For K = C
one can derive Weyl’s theorem on complete reducibility from the representation theory of
compact groups (cf. [HiNe12, Ch. 15]). For g = sln(R) this works roughly as follows. One
shows that the complex representations of g are in one-to-one correspondence with the
complex representations of sln(C), resp., its real form sun(C), hence further with unitary
representations of the compact simply connected Lie group SUn(C). For unitary repre-
sentations complete reducibility is a simple consequence of the existence of an invariant
inner product. A purely algebraic proof was found later in the 1935 by Hendrik Brugt
Gerhard Casimir (1909–2000) and Bartel Leendert van der Waerden (1903–1996) [CW35],
after Casimir had dealt with the case sl2(C) using the operator named after him. Another
algebraic proof was found in 1935 by Richard Dagobert Brauer (1911–1977) [Br36]. A com-
pletely different approach based on Lie algebra cohomology has been developed by John
Henry Constantine Whitehead (1904–1960).

The original proof of Levi’s Theorem for complex Lie algebras [Le05] was based on the
classification of simple Lie algebras. The classification free proof for real Lie algebras given
here goes back to Whitehead [Wh36]. The conjugacy of the Levi complements was shown
by Anatoly Ivanovich Malcev (1909–1967) in [Ma42].

For a detailed account of the early history of Lie theory up to 1926 we refer to the book
[Haw00] of Thomas Hawkins.
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Part II

Root Decomposition
Since a simple Lie algebra g has no other ideals than g and {0}, we cannot analyze its
structure by breaking it up into an ideal n and the corresponding quotient algebra g/n. We
therefore need refined tools to understand the internal structure of simple Lie algebras. It
turns out that toral Cartan subalgebras and the corresponding root decompositions provide
such a tool.

Roots and root spaces have remarkable properties some of which one turns into a system
of axioms for abstract root systems. We derive a number of additional properties from these
axioms. Moreover, we define certain objects associated with abstract roots systems like
Weyl groups and Weyl chambers. Using these structural elements one could proceed rather
easily to a complete classification of complex simple Lie algebras, but we refrain from doing
this since our emphasis is on structure rather than classification.

In this part of these lecture notes, we first develop the concept of a toral Cartan sub-
algebra and root decompositions for general Lie algebras. Then we turn to semisimple Lie
algebras and we finally discuss the geometry of the root system.

8 Weight and Root Space Decompositions

For a better understanding of the structure of a Lie algebra g, one decomposes it into
simultaneous eigenspaces of operator sets ad h for a subalgebra h. Subalgebras for which
this is possible are called toral.

8.1 Weights and Roots

Root decompositions are the simultaneous eigenspace decompositions of the type mentioned
above. They are special cases of weight decompositions.

Definition 8.1. (a) Let (π, V ) be a representation of the Lie algebra h. For a function
λ : h → K, we define the corresponding weight space and the corresponding generalized
weight space by

Vλ(h) :=
⋂
x∈h

Vλ(x)(π(x)) and V λ(h) :=
⋂
x∈h

V λ(x)(π(x)).

Any function λ : h → K for which V λ(h) 6= {0} is called a weight of the representation
(π, V ). We write Ph(V ) for the set of weights of (π, V ).

(b) A module V of the Lie algebra h is called diagonalizable if V is the sum of all weight
spaces Vα(h). Recall from Exercise 4.1 that the sum

∑
µ∈Ph(V ) Vµ(h) of weight spaces is

direct, so that

V =
⊕

µ∈Ph(V )

Vµ(h).

If π : h → gl(V ) is the corresponding representation, then this means that the subset
π(h) ⊆ gl(V ) is simultaneously diagonalizable. Note that this implies that π(h) is abelian
(Exercise 8.1).

(c) A subalgebra h of a Lie algebra g is called toral or splitting, if ad h is simultaneously
diagonalizable. Then the weights of the representation π = ad |h which are different from
zero are called roots of g with respect to h. The set of all roots is denoted ∆(g, h). The
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weight spaces gλ(h) = gλ(h) are called root spaces. Sometimes we write gλ instead of gλ(h).
If 0 6= µ ∈ h∗ is not a root, we put gµ := {0}.

The decomposition

g = g0 ⊕
⊕

α∈∆(g,h)

gα (12)

is called the root decomposition of g w.r.t. h.

Lemma 8.2. Let h ⊆ g be a toral subalgebra. Then

(i) h is abelian.

(ii) h = g0(h) if and only if h is maximal abelian in g.

(iii) If h = g0(h), then z(g) = {x ∈ h : (∀α ∈ ∆)α(x) = 0}.

Proof. (i) Let h ⊆ g be a toral subalgebra and x, y ∈ h. Since ad h is abelian, we have
ad[x, y] = [adx, ad y] = 0, hence [x, y] ∈ z(g). Therefore (adx)2(y) = 0. Now the diagonal-
izability of ad x implies that adx(y) = [x, y] = 0.

(ii) Since g0 = zg(h) is the centralizer of h in g, the subalgebra h is maximal abelian if
and only if h = g0.

(iii) Clearly z(g) ⊆ g0(h) ⊆ h. An element x ∈ h is central if and only if all roots vanish
on x.

Definition 8.3. A toral subalgebra h ⊆ g which is maximal abelian in g is called a toral
Cartan subalgebra of g 11

Remark 8.4. (a) Toral Cartan subalgebras do not always exist: If g is nilpotent, then
all operators adx are nilpotent. Therefore the diagonalizability of adx is equivalent to
adx = 0. We conclude that z(g) is maximal toral. But if g is not abelian, then z(g) is not
maximal abelian.

(b) In the structure theory of finite dimensional Lie algebras, a subalgebra h ⊆ g is
called a Cartan subalgebra if h is nilpotent and self-normalizing, i.e.,

h = ng(h) := {x ∈ g : [x, h] ⊆ h}.

If h is toral, then h is abelian and therefore nilpotent. Further, ng(h) = zg(h) = g0 (Exer-
cise!). Hence a toral subalgebra is a Cartan subalgebra if h = g0.

8.2 Examples of Root Decompositions

Example 8.5. (a) (The Lie algebra sl2(K)) We recall the basis (h, e, f) of g = sl2(K) given
by

h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, (13)

satisfying the commutator relations

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h. (14)

11Cartan subalgebras of complex simple Lie algebras were first used by W. Killing in his classification,
before É. Cartan used them about 10 years later. Conversely, the Cartan–Killing form (often called the
Killing form) was much more in the focus of Cartan’s work than in Killing’s. Note that Cartan’s criteria
for solvability and semisimplicity both refer to properties of this form.
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We conclude that h := Kh is a toral Cartan subalgebra. With α(h) = 2 we thus obtain
the root decomposition

g = h + gα + g−α with gα = Ke and g−α = Kf.

(b) Let b be the 2-dimensional non-abelian Lie algebra with the basis (h, x) satisfying
[h, x] = x (Exercise 1.4). Then h := Kh is a toral Cartan subalgebra and with α(h) = 1 we
obtain the root decomposition

g = h + gα with gα = Ky.

In this case there exists only one root.
(c) In g = so3(C), we consider a basis (x, y, z) with

[x, y] = z, [y, z] = x, [z, x] = y.

(Example 1.35). Then h = Cx is a toral Cartan subalgebra and

[x, y ∓ iz] = z ± iy = ±i(y ∓ iz)

implies that we have a root decomposition

g = h⊕ gα ⊕ g−α with α(x) = i, g±α = C(y ∓ iz).

Example 8.6. (The Lie algebra gln(K)) In g := gln(K), we consider the basis (Ejk)1≤j,k≤n
defined by Ejkem = δkmej for the canonical basis (ej)1≤j≤n of Kn. From Example 1.7 we
recall the commutation relations

[Ejk, E`m] = δk`Ejm − δjmE`k. (15)

The subalgebra h := span{Ejj : j = 1, . . . , n} of diagonal matrices is abelian and (15)
implies

[Emm, Ejk] = δjmEmk − δkmEjm = (δjm − δkm)Ejk.

Defining linear functionals εj : h → K by εj(Ekk) = δjk, it follows that Ejk ∈ gεj−εk . This
leads to the root decomposition

h = g0 and g = h⊕
⊕
j 6=k

gεj−εk = h⊕
⊕
j 6=k

KEjk.

In particular, h is a toral Cartan subalgebra and

∆ = {εj − εk : j 6= k ∈ {1, . . . , n}}

is the corresponding set of roots.

Example 8.7. (The special linear Lie algebra) For g := sln(K) we obtain as in Example 8.6
that the subalgebra h = {diag(h) :

∑
j hj = 0} of diagonal matrices in g is a toral Cartan

subalgebra, and with εj(diag(h)) := hj, we obtain a root decomposition g = h⊕
⊕

α∈∆ gα
with gεj−εk = KEjk and the root system

An−1 := {εj − εk : 1 ≤ j 6= k ≤ n}.
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Example 8.8. (The orthogonal Lie algebras) (a) Let

In,n :=

(
1 0
0 −1

)
∈M2n(K) ∼= M2(Mn(K))

and consider the Lie algebra

on,n(K) = {x ∈ gl2n(K) : x>In,n + In,nx = 0}.

(cf. Exercise 1.10 for the fact that this is indeed a Lie algebra). In terms of block matrices,
we then have

on,n(K) =
{(a b

c d

)
∈M2(Mn(K)) : a> = −a, d> = −d, b> = c

}
.

In this matrix presentation, it is quite inconvenient to describe a root decomposition of this
Lie algebra. It is much simpler to use an equivalent description, based on the following
observation. For

g :=

(
1 1

2
1

1 −1
2
1

)
we find

g>In,ng =

(
1 1
1
2
1 −1

2
1

)(
1 0
0 −1

)(
1 1

2
1

1 −1
2
1

)
=

(
1 1
1
2
1 −1

2
1

)(
1 1

2
1

−1 1
2
1

)
=

(
0 1
1 0

)
=: S.

Hence x ∈ on,n(K) is equivalent to g−1xg being contained in

g := o2n(K, S) := {x ∈ gl2n(K) : x>S + Sx = 0} = g−1on,n(K)g

and ϕ : on,n(K)→ o2n(K, S), x 7→ g−1xg is an isomorphism of Lie algebras. From(
a b
c d

)
∈ o2n(K, S) ⇔ d = −a>, b> = −b, c> = −c,

we immediately derive that g has a root decomposition with respect to the maximal abelian
subalgebra

h = span{Ejj − En+j,n+j : j = 1, . . . , n} = {diag(h,−h) : h ∈ Kn}.

The corresponding root system is

Dn := {±εj ± εk : j, k = 1, . . . , n, j 6= k},

where εj : h → K is the linear functional defined by εk(diag(h,−h)) := hk. Here the roots
in the subsystem An−1 of Dn correspond to the root spaces in the image of the embedding

gln(K)→ o2n(K, S), x 7→
(
x 0
0 −x>

)
.

Further, gεj+εk = K(Ej,n+k − Ek,n+j) and g−εj−εk = K(En+k,j − En+j,k).

(b) For the symmetric matrix

T :=

0 1 0
1 0 0
0 0 1

 =

(
S 0
0 0

)
∈M2n+1(K),
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we also obtain a Lie algebra

o2n+1(K, T ) := {x ∈ gl2n+1(K) : x>T + Tx = 0}.

Thena b x
c d y
ỹ x̃ z

 ∈ o2n+1(K, T ) ⇔
(
a b
c d

)
∈ o2n(K, S), x̃ = −x>, ỹ = −y>, z = 0

implies that this Lie algebra has a root decomposition with respect to the maximal abelian
subalgebra

h = span{Ejj − En+j,n+j : j = 1, . . . , n} = {diag(h,−h, 0) : h ∈ Kn}.

The corresponding root system is

Bn := {±εj,±εj ± εk : j, k = 1, . . . , n, j 6= k},

where εj : h→ K is the linear functional defined by εk(diag(h,−h, 0)) := hk. Here the root
spaces corresponding to roots in the subsystem Dn of Bn correspond to root spaces in the
subalgebra o2n(K, S) (corresponding to x = y = 0), and

gεj = K(Ej,2n+1 − E2n+1,n+j) and g−εj = K(Ej+n,2n+1 − E2n+1,j).

Example 8.9. (The symplectic Lie algebra) For the skew-symmetric matrix

J :=

(
0 1
−1 0

)
∈M2n(K),

we obtain the symplectic Lie algebra

sp2n(K) = {x ∈ gl2n(K) : x>J + Jx = 0}.

Using (
a b
c d

)
∈ sp2n(K) ⇔ d = −a>, b> = b, c> = c,

(Example 1.7(vii)) we see that g := sp2n(K) has a root decomposition with respect to the
maximal abelian subalgebra

h = span{Ejj − En+j,n+j : j = 1, . . . , n} = {diag(h,−h) : h ∈ Kn}.

The corresponding root system is

Cn := {±2εj,±εj ± εk : j, k = 1, . . . , n, j 6= k},

where εj : h→ K is the linear functional defined by εk(diag(h,−h)) := hk. Again, the roots
in the subsystem An−1 of Cn correspond to the root spaces in the image of the embedding

gln(K)→ sp2n(K), x 7→
(
x 0
0 −x>

)
.

Further,

gεj+εk = K(Ej,n+k + Ek,n+j) and g−εj−εk = K(En+k,j + En+j,k).
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8.3 General Facts on Weights and Roots

Having discussed a bunch of examples, we proceed with some general observations concern-
ing weight and root decompositions.

Lemma 8.10. Let h ⊆ g be a toral subalgebra and g = g0 +
∑

α∈∆ gα be the corresponding
root space decomposition. Then the following assertions hold:

(i) If V is a g-module, α ∈ ∆ ∪ {0} and β ∈ PV (h), then

gα.Vβ ⊆ Vα+β. (16)

(ii) For α, β ∈ ∆ ∪ {0}, we have [gα, gβ] ⊆ gα+β.

(iii) g0 is a subalgebra of g.

Proof. (i) For vβ ∈ Vβ, x ∈ h and y ∈ gα, we obtain

x.(y.vβ) = y.(x.vβ) + [x, y].vβ = β(x)y.vβ + α(x)y.vβ = (α + β)(x)y.vβ.

(ii) follows from (i), applied to the adjoint module V = g with x · y := [x, y]. Note that
the corresponding weight set is ∆ ∪ {0}.

(iii) is a direct consequence of (ii).

Example 8.11. In the gln(K)-module V := Kn, every basis vector ej, j = 1, . . . , n, is an
h-weight vector of weight εj. The h-module V is diagonalizable with weight set

PV = {ε1, . . . , εn}.

Then EjkVε` ⊆ δk,`Vεj is a special case of Lemma 8.10(i).

The following observation will become useful later on.

Proposition 8.12. If V is a diagonalizable module of the abelian Lie algebra h and W ⊆ V
a submodule, then W is adapted to the weight decomposition, i.e.,

W =
⊕
α∈PV

(W ∩ Vα) =
⊕
α∈PW

Wα.

Proof. Clearly, W0 :=
⊕

α∈PV (W ∩ Vα) is an h-submodule of W . It therefore remains to
show that, if we write w ∈ W as w =

∑
αwα with wα ∈ Vα, then all components wα

are contained in W . We prove this assertion by induction on the number N of non-zero
summands wα. For N = 1, there is nothing to show. So we assume N > 1. Let wα 6= 0.
Then there exists β ∈ PV \ {α} with wβ 6= 0. We choose x ∈ h with α(x) 6= β(x). Then

x.w − β(x)w =
∑
γ 6=β

(γ(x)− β(x))wγ

is a sum of at most N−1 nonzero summands. Since α(x)−β(x) 6= 0, we obtain wα ∈ W .

Corollary 8.13. If h ⊆ g is a toral subalgebra and a ⊆ g an h-invariant subalgebra, i.e.,
[h, a] ⊆ a, then a is adapated to the root decomposition:

a = a0 ⊕
⊕
α∈∆

aα.

In particular, all ideals a E g are adapted to the root decomposition.
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Proof. We apply Proposition 8.12 to the diagonalizable h-module g.

The following lemma is a useful tool to see that the examples discussed below are indeed
semisimple Lie algebras.

Lemma 8.14. Suppose that g = h +
∑

α∈∆ gα is a Lie algebra and h a toral Cartan
subalgebra, such that

(i) g(α) := gα + g−α + [gα, g−α] ∼= sl2(K) for each root α, and

(ii) z(g) = {0}.

Then g is semisimple.

Proof. Let r := rad(g) be the solvable radical of g. As an ideal, it is h-invariant, hence
adapted to the root space decomposition: r = r0 +

∑
α rα (Proposition 8.12). Since all

semisimple subalgebras s of g intersect r trivially (otherwise s ∩ r would be a nontrivial
solvable ideal of s), rα ⊆ g(α)∩ r = {0}. Hence r ⊆ h, and, in view of [r, gα] ⊆ r∩gα = {0},
we get r ⊆

⋂
α∈∆ kerα = z(g) = {0}.

Exercises for Section 8

Exercise 8.1. Show that, if h ⊆ gl(V ) is a simultaneously diagonalizable Lie subalgebra,
then h is abelian.

Exercise 8.2. (a) Let h be an abelian Lie algebra and V a diagonalizable h-module. Then
h is a toral subalgebra of g := V o h (Example 1.28). The root decomposition is given by

g = (h + V0) +
∑

α∈PV \{0}

Vα.

The subalgebra h is a Cartan subalgebra if and only if V0 = {0}.
(b) Let h be an abelian Lie algebra and ∆ ⊆ h∗ \ {0} be a subset. Construct a Lie

algebra g containing h as a toral Cartan subalgebra such that ∆ is the corresponding set
of roots of g with respect to h.

Exercise 8.3. For Q1, Q2 ∈Mn(K), we put

o(K, Qi) := {x ∈ gln(K) : x>Qi = −Qix}.

Show that: If Q2 = S>Q1S holds for some S ∈ GLn(K), then the map

ΦS : o(K, Q1)→ o(K, Q2),ΦS(x) := S−1xS

is an isomorphism of Lie algebras.

Exercise 8.4. Let Q = Q> ∈ GLn(K) and suppose that K is algebraically closed. Show
that:

(i) The corresponding symmetric bilinear form β(x, y) := x>Qy on Kn is non-degenerate.

(ii) There exists a β-orthonormal basis. Conclude that there exists an S ∈ GLn(K) with
S>QS = 1 and that on(K, Q) = {x ∈ gln(K) : x>Q+Qx = 0} ∼= on(K).
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(iii) If n is even and k := n/2, then there exists a basis b1, . . . , bn of Kn with

β(bi, bi+k) = β(bi+k, bi) = 1 and 0 otherwise.

Conclude that there exists an S ∈ GLn(K) with S>QS = Q′ :=

(
0 1
1 0

)
and that

o2k(K, Q) ∼= o2k(K, Q′) (cf. Example 8.8(a)).

(iv) If n is odd and k := (n− 1)/2, then there exists a basis b1, . . . , b2k+1 of Kn such that
β(bi, bj) is as under (iii) for 1 ≤ i, j ≤ 2k, β(bn, bn) = 1 and β(bj, bn) = 0 for j < n.
Conclude that there exists an S ∈ GLn(K) with

S>QS = Q′ :=

0 1 0
1 0 0
0 0 1


and that o2k+1(K, Q) ∼= o2k+1(K, Q′) (cf. Example 8.8(b)).

Exercise 8.5. Let g = Rh + Rp + Rq + Rz be the oscillator algebra with the bracket
relations

[p, q] = z, [h, p] = q and [h, q] = −p
(z is central). Determine a toral Cartan subalgebra of the complexification gC and the
corresponding root decomposition.

Exercise 8.6. Suppose that K is algebraically closed of characteristic zero and that h is a
nilpotent Lie algebra. We consider a finite dimensional h-module V with the corresponding
representation ρ : h→ gl(V ). Show that:

(i) ρ(h) commutes with all diagonalizable Jordan components ρ(x)s, x ∈ h.
Hint: (ad ρ(x))s = ad(ρ(x)s) on gl(V ).

(ii) [ρ(x)s, ρ(y)s] = 0 for x, y ∈ h. Hint: ρ(x)s is a polynomial in ρ(x).

(iii) There exists a direct module decompositions V = ⊕j∈JVj such that ρ(x)s|Vj ∈ K1 for
x ∈ h.

(iv) λj(x) := 1
dimVj

tr(ρ(x)|Vj) defines a linear functional on h with Vj ⊆ V λj(h).

(v) The module V has a generalized weight space decomposition V = ⊕nj=1V
λj(h) and

the generalized weight spaces are submodules.

9 Finite Dimensional sl2(K)-Modules

As we shall see in Section 10 below, the Lie algebra sl2(K) is of particular importance
because semisimple Lie algebras with toral Cartan subalgebras contain many subalgebras
isomorphic to sl2(K) and the collection of these subalgebras essentially determines the
structure of the whole Lie algebra. Therefore the representation theory of sl2(K) plays a
key role in the structure theory of these Lie algebras.

In the following, we shall use the basis

h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
, (17)

of sl2(K). It satisfies

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h. (18)
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9.1 A family of sl2-modules

We start with a discussion of a concrete family of representations of sl2(K). It will turn
out later that the study of this family already provides all irreducible finite dimensional
representations of sl2(K).

Example 9.1. Let A := K[Z,Z−1] be the algebra of Laurent polynomials in Z. For any
f ∈ A the operator D := f d

dZ
is a derivation of A (Product Rule) and any derivation of

the algebra A is of this kind (Exercise 9.2). The Lie bracket on der(A) satisfies[
f
d

dZ
, g

d

dZ

]
= (fg′ − f ′g)

d

dZ
. (19)

For λ ∈ K, we consider the operators

E :=
d

dZ
, F := −Z2 d

dZ
+ λZ1, H := λ1− 2Z

d

dZ
.

With (19) we obtain [
Zn d

dZ
, Zm d

dZ

]
= (m− n)Zn+m−1 d

dZ
and hence the commutator relations

[H,E] = −2
[
Z d
dZ
, d
dZ

]
= 2 d

dZ
= 2E,

[H,F ] = −2
[
Z d
dZ
,−Z2 d

dZ
+ λZ1

]
= 2Z2 d

dZ
− 2λZ1 = −2F,

[E,F ] =
[
d
dZ
,−Z2 d

dZ
+ λZ1

]
= −2Z d

dZ
+ λ1 = H.

Since these are precisely the commutator relations of g := sl2(K), we obtain by

e 7→ E, f 7→ F, h 7→ H

a representation ρλ : sl2(K)→ End(A), resp., an sl2(K)-module structure on A.
To understand the structure of this module, we consider the action of the operators

H,E and F on the canonical basis:

H · Zn = (λ− 2n)Zn, E · Zn = nZn−1, F · Zn = (λ− n)Zn+1. (20)

In particular, we see that H is diagonalizable with one-dimensional eigenspaces. With this
information, it is easy to determine all submodules. Any submodule is adapted to the
eigenspace decomposition of H (Proposition 8.12). Hence each submodule is of the form

AJ := span{Zn : n ∈ J} for some subset J ⊆ Z.

From (20), we see that AJ is a submodule if and only if J satisfies the following conditions:
(i) If n ∈ J and n 6= 0, then n− 1 ∈ J .
(ii) If n ∈ J and λ 6= n, then n+ 1 ∈ J .

If λ 6∈ Z, then K[Z] = AN0 is the only nontrivial submodule of A. If λ ∈ Z, then there
are two possibilities. For λ < 0, the only proper subsets of Z satisfying (i) and (ii) are

{. . . , λ− 1, λ}, N0, and {. . . , λ− 1, λ} ∪ N0.

◦ ◦ ◦ ] ◦ ◦ · · · ◦ [ ◦ ◦ · · · .
For λ ≥ 0, the subsets of Z defining submodules are

N0, {. . . , λ− 1, λ}, {0, 1, . . . , λ− 1, λ}.

◦ ◦ ◦ [ ◦ ◦ · · · ◦ ] ◦ ◦ · · · .
In this case we obtain in particular a finite dimensional submodule

L(λ) := span{1, Z, . . . , Zλ}. (21)

Since L(λ) contains no nontrivial proper submodule, it is simple.
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We have seen in the preceding example that, for each λ ∈ N0, there exists a simple
sl2(K)-module of dimension λ+1. Our next goal is to show that all simple finite dimensional
modules are isomorphic to some L(λ).

9.2 The classification

The following lemma specializes for µ = 1 to an assertion on the Lie algebra sl2(K).

Lemma 9.2. Let (e, h, f) be a triple of elements of an associative algebra A, satisfying the
commutator relations

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

Then the following assertions hold:

(i) [h, en] = 2nen and [h, fn] = −2nfn for n ∈ N0.

(ii) For n > 0,
[f, en] = −nen−1

(
h+ (n− 1)

)
= −n

(
h− (n− 1)

)
en−1

and
[e, fn] = nfn−1

(
h− (n− 1)

)
= n

(
h+ (n− 1)

)
fn−1.

Proof. (i) Since adh(a) := ha−ah is a derivation of A and [h, e] = 2e commutes with e, we
obtain inductively [h, en] = n[h, e]en−1 = 2nen. The second part of (i) is obtained similarly.
(ii) We calculate

[f, en] =
n−1∑
j=0

ej[f, e]en−j−1 =
n−1∑
j=0

ej(−h)en−j−1

= −
n−1∑
j=0

ej[h, en−j−1]−
n−1∑
j=0

en−1h = −
( n−1∑
j=0

2(n− j − 1)en−1
)
− nen−1h

= −
( n−1∑
j=0

2jen−1
)
− nen−1h = −n(n− 1)en−1 − nen−1h.

In view of (i), this equals

−n(n− 1)en−1 − nhen−1 + n[h, en−1] = n(n− 1)en−1 − nhen−1.

This is the first part of (ii). The second part is reduced to the first one by considering the
triple (f,−h, e), satisfying the same commutation relations as (e, h, f).

Proposition 9.3. Let V be a finite dimensional sl2(K)-module and v0 ∈ V an element with
e · v0 = 0 and h · v0 = λv0. Then

(i) λ ∈ N0.

(ii) v0 generates a submodule isomorphic to L(λ).

Proof. (i) Let Vα := Vα(h) be the h-eigenspace corresponding to the eigenvalue α on V ,
which is a weight space for the representation of the subalgebra h = Kh. From v0 ∈ Vλ and
[h, f ] = −2f , we obtain with Lemma 8.10 the relation h · (fn · v0) = (λ− 2n)(fn · v0).
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We further obtain with Lemma 8.10:

e · (fn · v0) = [e, fn] · v0 + fn · (e · v0)︸ ︷︷ ︸
=0

= nfn−1(h− n+ 1) · v0 = n(λ− n+ 1)fn−1 · v0. (22)

This shows that the submodule W generated by v0 is

W = span{fn · v0 : n ∈ N0}.

Since V is finite dimensional, h has only finitely many eigenvalues on V . Hence there is a
minimal N ∈ N0 with fN+1 · v0 = 0. From e · (fN+1 · v0) = 0 we derive that λ = N ∈ N0.
(ii) To see that W ∼= L(λ), we consider the basis

vk :=
fk · v0

λ(λ− 1) · · · (λ− k + 1)
, k = 0, . . . , λ,

for W (note that the denominator never vanishes.). For this basis, we have

h · vk = (λ− 2k)vk, f · vk = (λ− k)vk+1, e · v0 = 0

and, for k > 0 by (22),

e · vk =
k(λ− k + 1)

λ(λ− 1) · · · (λ− k + 1)
fk−1 · v0 =

k

λ(λ− 1) · · · (λ− k + 2)
fk−1 · v0 = kvk−1.

With respect to this basis, e, f and h are represented by the same matrices as on L(λ)
((20)), and this shows that W ∼= L(λ).

Lemma 9.4. If V is a finite dimensional real vector space and a, b ∈ gl(V ) with [a, b] = b,
then b is nilpotent.

Proof. We apply Proposition 4.15 to the solvable subalgebra Ka + Kb ⊆ gl(V ). Then
[a, b] = b implies that b is nilpotent.

Theorem 9.5. (Classification of finite dimensional simple sl2(K)-Modules) Each finite
dimensional simple sl2(K)-module is isomorphic to some L(λ), λ ∈ N0. For each n ∈ N,
there exists a simple sl2(K)-module of dimension n which is unique up to isomorphism.

Proof. Let (ρ, V ) be a simple sl2(K)-module. We consider the solvable subalgebra b :=
span{e, h}. We apply Lemma 9.4 to a := 1

2
ρ(h) and b := ρ(e), to see that ρ(e) is nilpotent.

Let d ∈ N be minimal with ρ(e)d = 0. Then Lemma 9.2(ii) yields

0 = [ρ(f), ρ(e)d] = −d(ρ(h)− (d− 1)1)ρ(e)d−1,

so that each nonzero v0 ∈ ρ(e)d−1(V ) is an eigenvector of ρ(h). In view of the simplicity
of the module V , it is generated by v0, and Proposition 9.3 shows that V ∼= L(λ). The
remaining assertions are immediate from Example 9.1.

Example 9.6. A particular interesting infinite dimensional representation of sl2(R) is the
oscillator representation. Here we consider the space

P = C[x1, . . . , xn]

of complex-valued polynomials on Rn. Let ∆ =
∑

j
∂2

∂x2j
be the Laplacian. We put f := 1

2
∆

and e = −1
2
mr2 (multiplication operator with r2 :=

∑
j x

2
j), and h := E + n

2
1, where
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E =
∑

j xj
∂
∂xj

is the Euler operator, for which a homogeneous polynomial of degree d is an

eigenvector of degree d.
It is easily verified that (h, e, f) ∈ End(P) satisfies the commutation relations of sl2(R)

((14)), so that P is an sl2(K)-module (Exercise 9.3). This module plays an important
role in quantum mechanics of systems on Rn with full rotational symmetry. An important
example is the spherical harmonic oscillator on R3, corresponding to the hydrogen atom
([St94]).

Note that the operator e is injective, and that this implies that P contains no non-zero
sl2(R) submodules.

Proposition 9.7. For a finite dimensional sl2(K)-representation (ρ, V ), the following as-
sertions hold:

(i) ρ(h) is diagonalizable and the set PV of all eigenvalues is contained in Z.

(ii) PV = −PV and and dimVα(ρ(h)) = dimV−α(ρ(h)) for every α ∈ PV .

(iii) If α, α + 2k ∈ PV for some k ∈ N0, then α + 2j ∈ PV for j = 0, 1, . . . , k (String
property).

Proof. In view of Weyl’s Theorem 5.26, V is a direct sum of simple submodules V1, . . . , Vm,
and Theorem 9.5 implies that Vi ∼= L(λi) for some λi ∈ N0.

(i) and (ii) now follow immediately from the corresponding property of the modules
L(λ) (Example 9.1).

(iii) In view of (ii), we may w.l.o.g. assume that β := α + 2k satisfies |β| ≥ |α|. Then
we pick some simple submodule Vi ∼= L(λi) of V such that β is an eigenvalue ρ(h)|Vi . Then
λi − β ∈ 2N0 and all integers n ∈ β + 2Z with |n| ≤ |β| are eigenvalues of ρ(h)|Vi . This
contains in particular the set of all integers of the form α + 2j, j = 0, 1, . . . , k, between α
and β.

Exercises for Section 9

Exercise 9.1. We consider the 2-dimensional nonabelian complex Lie algebra b in which
we choose a basis (h, e) satisfying [h, e] = e. In the following V denotes a b-module and
ρ : b → gl(V ) the corresponding representation. Classify all finite-dimensional b-modules
V for which ρ(h) is diagonalizable. Hint: Proceed along the following steps:

(i) If V is generated by v0 ∈ Vλ(h), then there exists a basis (v0, . . . , vn) of V with

h · vk = (λ+ k)vk and e · vk =

{
vk+1 if k < n,

0 if k = n
.

We write V (λ, n) for the (n+ 1)-dimensional b-module, defined by these relations.

(ii) If k ≤ n, then V (λ+ k, n− k) is a submodule of V (λ, n).

(iii) Each simple finite-dimensional b-module is isomorphic to some V (λ, 0). Hint: Use
Lie’s Theorem.

(iv) For each finite-dimensional representation (ρ, V ) of b, the operator ρ(e) is nilpotent
and for each n the subspaces ker

(
ρ(e)n

)
and im

(
ρ(e)n

)
are invariant under ρ(h),

hence b-submodules.

63



(v)∗ Show that each finite-dimensional representation (ρ, V ) for which ρ(h) is diagonaliz-
able is a direct sum of modules of the form V (λ, n). Hint: Derive a Jordan normal
form of ρ(e), adapted to the eigenspace decomposition of ρ(h).

Exercise 9.2. Let A = K[Z,Z−1] be the algebra of Laurent polynomials with coefficients
in the field K. Show that every derivation of A is of the form D := f d

dZ
for some f ∈ A.

Exercise 9.3. On the space V = C∞(Rn) we consider the operators

∆ :=
∑
j

∂2

∂x2
j

, and (Mf)(x) :=
(∑

j

x2
j

)
f(x),

and the Euler operator

E :=
∑
j

xj
∂

∂xj
.

Verify the commutator relations

[E,M ] = 2M, [E,∆] = −2∆ and [∆,M ] = 4E + 2n1.

Conclude that h := E + n
2
1, e := −M/2 and f := ∆/2 satisfy the sl2-relations

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

10 Root Decompositions of Semisimple Lie Algebras

The technique of root decompositions is particularly fruitful for semisimple Lie algebras
g because, for this class of Lie algebras, over an algebraically closed field, maximal toral
subalgebras turn out to be Cartan subalgebras. For complex Lie algebras we thus obtain
a root space decomposition diagonalizing ad h. In the following we write κ = κg for the
Cartan–Killing form of g.

10.1 Existence of Toral Cartan Subalgebras

We start with the root decomposition with respect to an arbitrary toral subalgebra and
show later that, if K is algebrically closed, toral Cartan subagebras exist.

Proposition 10.1. Let g be a semisimple Lie algebra, h a toral subalgebra of g and mλ :=
dim gλ.

(i) κ(h, h′) =
∑

λ∈∆(g,h) mλλ(h)λ(h′) for h, h′ ∈ h.

(ii) If λ+ µ 6= 0, then gλ and gµ are orthogonal with respect to the Cartan–Killing form.

(iii) The Cartan–Killing form κ induces a nondegenerate pairing of gα and g−α, i.e., for
x ∈ gα and y ∈ g−α,

κ(x, g−α) = {0} ⇒ x = 0 and κ(gα, y) = {0} ⇒ y = 0.

In particular, mα = m−α and κ|g0×g0 is nondegenerate.

(iv) ∆(g, h) spans h∗.
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Proof. (i) The product adh adh′ preserves each root space gλ, and acts on thismλ-dimensional
space by multiplication with λ(h)λ(h′). This implies (i).
(ii) From the invariance of κ, we obtain for x ∈ gλ, y ∈ gµ and h ∈ h the relation

λ(h)κ(x, y) = κ([h, x], y) = −κ(x, [h, y]) = −µ(h)κ(x, y)

and therefore (λ+ µ)(h)κ(x, y) = 0. This implies (ii).
(iii) follows from (ii) because the Cartan–Killing form is nondegenerate.
(iv) As a consequence of the injectivity of the adjoint representation, ∆(g, h) ⊆ h∗ separates
the points of h, and this is equivalent to (iv).

Example 10.2. With Proposition 10.1(i) we can calculate the Cartan–Killing form of the
Lie algebra g = sln(C) with the root decomposition

g = h⊕
⊕
j 6=k

gεj−εk ,

where h consists of diagonal matrices with trace 0.
For diagonal matrices x =

∑
j xjEjj and y =

∑
j yjEjj we obtain, taking

∑
i xi =∑

j yj = 0 into account:

κ(x, y) =
∑
j 6=k

(xj − xk)(yj − yk) =
n∑

j,k=1

(xj − xk)(yj − yk)

=
n∑

j,k=1

xjyj −
n∑

j,k=1

xjyk −
n∑

j,k=1

xkyj +
n∑

j,k=1

xkyk

= 2n
n∑
j

xjyj = 2n tr(xy).

We likewise have κ(Eij, Ek`) = 0 for (k, `) 6= (j, i) and

κ(Eij, Eji) =
1

2
κ([Eii − Ejj, Eij], Eji) =

1

2
κ(Eii − Ejj, [Eij, Eji])

=
1

2
κ(Eii − Ejj, Eii − Ejj) = n tr((Eii − Ejj)2) = 2n = 2n tr(EijEji).

In view of Proposition 10.1(i), we thus obtain

κ(x, y) = 2n tr(xy) for x, y ∈ sln(K).

Definition 10.3. (Jordan decomposition in semisimple Lie algebras) Suppose that K is
algebraically closed. Let g be asemisimple Lie algebra and x ∈ g. According to Theo-
rem 5.17 and the fact that ker ad = z(g) = {0}, ad : g → der g is an isomorphism of Lie
algebras. Proposition A.7 shows that for every derivation D ∈ der(g) with Jordan decom-
position D = Ds + Dn, its diagonalizable Jordan component Ds and its nilpotent Jordan
components Dn are derivations of g. We can therefore define

xs := ad−1
(
(adx)s

)
and xn := ad−1

(
(adx)n

)
and call x = xs + xn the Jordan decomposition of x in g. An element x ∈ g is called
semisimple/diagonalizable if x = xs and nilpotent if x = xn.

Lemma 10.4. Let ϕ, ψ ∈ End(V ) be commuting endomorphisms of the finite dimensional
vector space V . If ϕ is nilpotent, then so is ϕψ and, in particular, tr(ϕψ) = 0.
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Proof. If ϕn = 0, then (ϕψ)n = ϕnψn = 0, so that ϕψ is nilpotent, and this implies that
tr(ϕψ) = 0. 12

Proposition 10.5. (Existence of toral Cartan subalgebras) If h is a maximal toral subal-
gebra of the finite dimensional semisimple Lie algebra g over the algebraically closed field
K, then h = g0. In particular h is a toral Cartan subalgebra.

Since maximal toral subalgebras exist for dimensional reasons, this result implies the
existence of toral Cartan subalgebras.

Proof. We divide the proof into several steps.
Step 1: If x ∈ g0, then so are the semisimple and nilpotent component xs and xn.

The condition x ∈ g0 means that ad x(h) = {0}. Since adxs = (ad x)s and adxn = (ad x)n
are polynomials in adx without constant term (Theorem A.2), we also have adxs(h) = {0},
i.e., xs ∈ g0, and likewise xn ∈ g0.

Step 2: If x ∈ g0 is semisimple, then x ∈ h.
Since x is semisimple, adx is diagonalizable and commutes with ad h. Therefore ad h and
adx can be diagonalized simultaneously. This means that h + Kx is a toral subalgebra.
Now the maximality of h implies that x ∈ h.

Step 3: g0 is nilpotent.
Let x ∈ g0. Then xs ∈ g0 by Step 1 and xs ∈ h by Step 2, so that adg0 xs = 0. Therefore
adg0 x = adg0 xn is nilpotent because it is a restriction of a nilpotent endomorphism of g.
Now Engel’s Theorem implies that g0 is nilpotent.

Step 4: g0 is abelian.
In view of Step 3 and Corollary 4.12, g is a nilpotent module of the Lie algebra [g0, g0],
so that κ(g0, [g0, g0]) = {0} follows from Exercise 10.1. Since κ is non-degenerate on g0

(Proposition 10.1(iii)), it follows that [g0, g0] = {0}.
Step 5: g0 = h.

If this is not the case, then Steps 1 and 2 imply that g0 \ h contains a nilpotent element x.
In view of Step 4 and Lemma 10.4, we then have κ(x, g0) = {0} so that x = 0 follows from
Proposition 10.1(iii).

Definition 10.6. Let h ⊆ g be a toral Cartan subalgebra of the semisimple Lie algebra
g. Since the Cartan–Killing form is nondegenerate on h, we can assign to every root α a
uniquely determined element tα ∈ h via the equation

κ(h, tα) = α(h). (23)

Further, we can introduce a bilinear form on h∗ via

(α, β) := κ(tα, tβ) = α(tβ) = β(tα). (24)

Lemma 10.7. For α ∈ ∆(g, h),

[x, y] = κ(x, y)tα for x ∈ gα, y ∈ g−α. (25)

Proof. Both sides of the equation are in h (Lemma 8.10(ii)), hence (25) follows from

κ(h, [x, y]) = κ([h, x], y) = α(h)κ(x, y) = κ(h, tα)κ(x, y) = κ(h, κ(x, y)tα),

since the Cartan–Killing form is nondegenerate on h by Proposition 10.1.

12The most direct way to argue that tr(ϕ) = 0 for a nilpotent endomorphism is that its characteristic
polynomial is of the form det(ϕ− t1) = (−1)ntn, so that the coefficient (−1)n−1 tr(ϕ) of tn−1 vanishes.
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10.2 sl2-Triples in Semisimple Lie Algebras

The following theorem is the starting point of a complete classification of simple Lie alge-
bras. It emphasizes the special role of the Lie algebra sl2(K).

Definition 10.8. Let g be a Lie algebra. A triple (h, e, f) of elements of g is called an
sl2-triple if

[h, e] = 2e, [h, f ] = −2f and [e, f ] = h.

Then h, e, f are eigenvectors of adh for different eigenvalues, so that h, e, f are linearly
independent and span{h, e, f} ∼= sl2(K).

Theorem 10.9. (sl2-Theorem) Let g be a semisimple Lie algebra, h ⊆ g a toral Cartan
subalgebra and α ∈ ∆(g, h).

(i) For every root α ∈ ∆(g, h), we have (α, α) 6= 0 and there are elements eα ∈ gα,
fα ∈ g−α and hα ∈ [gα, g−α] such that (hα, eα, fα) is an sl2-triple.

(ii) mα = dim gα = dim([gα, g−α]) = 1 and Zα ∩∆ = {±α}.

(iii) α(hα) = 2.

In the following we write

g(α) := span{hα, eα, fα} ⊆ h⊕ gα ⊕ g−α

for the sl2-subalgebra defined by the triple (hα, eα, fα). In view of (ii), it does not depend
on the choice of eα ∈ gα and fα ∈ g−α.

Proof. (i),(iii) From κ(gα, g−α) 6= {0} and Lemma 10.7 we obtain elements e±α ∈ g±α with
[eα, e−α] = tα. To see that (α, α) = α(tα) is nonzero, let us assume the contrary and
consider some β ∈ ∆. Then the subspace

V :=
⊕
k∈Z

gβ+kα

of g is invariant under ad(e±α), so that

0 = tr([ad eα|V , ad e−α|V ]) = tr(ad tα|V ) =
∑
k∈Z

(β + kα)(tα) ·mβ+kα = β(tα) ·
∑
k∈Z

mβ+kα.

Since
∑

k∈Zmβ+kα ≥ mβ > 0, we get β(tα) = 0 for all roots β. But since the roots span h∗

(Proposition 10.1(iv)), this contradicts tα 6= 0. We conclude that (α, α) = α(tα) 6= 0. The
element hα := 2 tα

α(tα)
satisfies (iii). From Proposition 10.1(iii) we get an element fα ∈ g−α

with κ(eα, fα) = 2
α(tα)

, so that Lemma 10.7 implies that [eα, fα] = hα. Now (i) follow from

(iii).
(ii) We consider the subspace

V := Kfα + h +
∞∑
n=1

gnα

of g. One verifies easily that this subspace is invariant under ad
(
g(α)

)
because it is invariant

under ad h, [fα, h] = Kfα, and [eα, gβ] ⊆ gβ+α. According to Lemma D.10, we therefore
have

dimVm(adhα) = dimV−m(adhα)

for all m ∈ Z. This leads to

dim gα = dimV2(adhα) = dimV−2(adhα) = 1

and dim gnα = 0 for n > 1. Now (ii) follows from (i).
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10.3 Coroots and Root Strings

In the following g is a semisimple Lie algebra and h ⊆ g is a toral Cartan subalgebra. Then
we obtain a root decomposition of g with respect to h. For brevity we put ∆ := ∆(g, h).

Definition 10.10. (Coroots) For a root α ∈ ∆, we have already seen that [gα, g−α] is a
one-dimensional subspace of h on which α does not vanish. Hence there is a unique element

α̌ = hα ∈ [gα, g−α] with α(α̌) = 2,

called the coroot corresponding to α (cf. Theorem 10.9).

Lemma 10.11. (Root String Lemma) Let α, β ∈ ∆.

(i) For β ∈ ∆ \ {±α} the set {k ∈ Z : β + kα ∈ ∆} is an interval in Z. If it is of the
form [−p, q] ∩ Z with p, q ∈ Z, then p− q = β(α̌). In particular, β(α̌) ∈ Z.

(ii) If β(α̌) < 0, then β + α ∈ ∆ and if β(α̌) > 0, then β − α ∈ ∆.

(iii) If [gα, gβ] = {0}, then β(α̌) ≥ 0.

(iv) If α + β 6= 0, then [gα, gβ] = gα+β.

Proof. (i) We consider the subspace V :=
∑

k∈Z gβ+kα. Note that β 6= {±α} implies that 0
is not contained in β + Zα (Theorem 10.9(ii)). From [gγ, gδ] ⊆ gγ+δ, we derive that V is a
g(α)-submodule of g (cf. Theorem 10.9). The eigenvalues of α̌ = hα on V are given by

PV := {(β + kα)(α̌) : β + kα ∈ ∆} = β(α̌) + 2{k : β + kα ∈ ∆}.

Hence the string property of sl2-modules (Proposition 9.7) implies the string property of
the root system.

Next we note that β ∈ ∆ leads to p ≥ 0. In view of Proposition 9.7, we have PV = −PV .
Therefore

β(α̌)− 2p = (β − pα)(α̌) = −(β + qα)(α̌) = −β(α̌)− 2q.

(ii) If β(α̌) < 0, then (i) leads to q > 0 and hence to β + α ∈ ∆. The second assertion
follows similarly.

(iii) As all multiplicities of the eigenvalues of α̌ on V are 1 (Theorem 10.9(ii)), the
sl2(K)-module V is simple and isomorphic to L(β(α̌) + 2q) (apply Proposition 9.3 to a
nonzero element of gβ+qα). This immediately shows that

[gα, gβ+kα] = gβ+(k+1)α for k = −p,−p+ 1, . . . , q − 1. (26)

If [gα, gβ] = {0}, then V :=
∑

k≤0 gβ+kα is invariant under g(α) ∼= sl2(K) and β(α̌) is
the maximal eigenvalue of ad(α̌) on V . Hence Proposition 9.7 shows that β(α̌) ≥ 0.

(iv) We may assume that β + α ∈ ∆ (otherwise gα+β = {0}), so that q ≥ 1. Then (iv)
follows from (26).

Lemma 10.12. The subspace hQ := spanQ{α̌ : α ∈ ∆} of h has the following properties:

(i) α(hQ) ⊆ Q for every α ∈ ∆.

(ii) κ restricts to a Q-valued positive definite form on hQ.

(iii) spanK hQ = h.
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(iv) The Q-valued symmetric bilinear form on h∗Q, specified by

(α, β) := κ(tα, tβ) = α(tβ)

is positive definite.

Proof. (i) This follows from β(α̌) ∈ Z for α, β ∈ ∆, which is a consequence of the Root
String Lemma 10.11.

(ii) That κ is Q-valued on hQ follows from

κ(α̌, β̌) =
∑
γ∈∆

γ(α̌)γ(β̌) ∈ Z for α, β ∈ ∆.

For h ∈ hQ, we have α(h) ∈ Q for every α ∈ ∆ by (i). This implies that

κ(h, h) =
∑
α∈∆

α(h)2 ≥ 0.

If κ(h, h) = 0, then α(h) = 0 for every α ∈ ∆, and therefore h ∈ z(g) = {0} (Lemma 8.2).
(iii) The non-degenerate form κ on h defines a linear isomorphism

Γ: h→ h∗, Γ(x) := κ(x, ·).

It satisfies Γ(tα) = α. From α̌ = 2tα
(α,α)

, we further derive that

κ(α̌, α̌) =
4

(α, α)2
κ(tα, tα) =

4

(α, α)2
(α, α) =

4

(α, α)
,

which implies that (α, α) ∈ Q. Therefore Qα̌ = Qtα, and thus

Γ(hQ) = spanQ ∆.

This further leads to
Γ(spanK hQ) = spanK ∆ = h∗.

(Proposition 10.1), and since Γ is a linear isomorphism hQ spans h.
(iv) As κ is Q-valued on hQ, we also obtain a linear isomorphism

ΓQ : hQ → h∗Q, Γ(x) = κ(x, ·)

with Γ(tα) = α. The natural scalar product (·, ·) on h∗Q is now defined in such a way that
(Γ(x),Γ(y)) = κ(x, y), so that (ii) implies that it is positive definite.

Exercises for Section 10

Exercise 10.1. Let (ρ, V ) be a finite dimensional representation of the Lie algebra g and
κρ(x, y) := tr(ρ(x)ρ(y)) be the corresponding invariant symmetric bilinear form. Show that:
If n E g is an ideal and V is a nilpotent n-module, then κρ(n, g) = {0}. Hint: Consider a
maximal flag F of submodules and show that ρ(n) ⊆ gn(F).

11 Abstract Root Systems and their Weyl Groups

In the previous section we proved a number of results on the root systems ∆(g, h) associated
with a given toral Cartan subalgebra h of a semisimple Lie algebra h. In this section we
distill some of the properties of these root systems into the concept of an abstract (finite)
root system in a euclidean vector space and show how to derive further properties using
this abstract level.
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11.1 Abstract Root Systems

Definition 11.1. Let E be a euclidean space, i.e., a finite dimensional real vector space
with an inner product (·, ·), i.e., a positive definite symmetric bilinear form. A reflection in
E is a linear map σ for which there exists a non-zero vector α with σ = σα, where

σα(β) = β − 2
(β, α)

(α, α)
α for β ∈ E.

Note that
σα(α) = −α and σα(β) = β for β ⊥ α,

i.e., σα is the orthogonal reflection in the hyperplane α⊥.

Definition 11.2. Let E be a euclidean space and ∆ ⊆ E \ {0} be a finite subset which
spans E. Then ∆ is called a reduced root system if it satisfies the following conditions

(R1) ∆ ∩ Rα = {±α} for all α ∈ ∆. In particular, ∆ = −∆.

(R2) σα(∆) ⊆ ∆ for all α ∈ ∆,

(R3) For α ∈ ∆ the coroot

α̌ :=
2α

(α, α)

satisfies (β, α̌) ∈ Z for all β ∈ ∆. Note that the reflection σα can be expressed by the
coroot as

σα(β) = β − (β, α̌)α. (27)

It is called root system if it only satisfies (R2) and (R3). If ∆ is a root system, then we
call the groupW =W(∆) generated by the reflections (σα)α∈∆, the Weyl group of the root
system.

Remark 11.3. If ∆ is a (nonreduced) root system and α, cα ∈ ∆ for some c > 1, then

c · (α, α̌) = 2c ∈ Z

implies that c ∈ 1
2
Z. Further, (cα)̌ = 1

c
α̌ leads to (α, c−1α̌) = 2

c
∈ Z, so that c = 2. We

therefore get
∆ ∩ Rα = {±α,±2α}.

In the root decomposition of Lie algebras, the root system is a finite subset of the dual
h∗ of a toral Cartan subalgebra, which is a vector space over K. To find a euclidean space
E containing ∆, we cannot simply take the R-span of ∆ because R need not be a subfield
of K. However, the rational vector space h∗Q = HomQ(hQ,Q), which also contains ∆, is
contained in the real space HomQ(hQ,R) and we shall see below that this space carries a
natural inner product.

Proposition 11.4. (The root systems ∆(g, h)) Let g be a semisimple Lie algebra, h ⊆ g a
toral Cartan subalgebra and hQ := span ∆̌. Then the scalar product on spanQ ∆ extends to
an inner product on

E := HomQ(hQ,R)

defining the structure of a euclidean space on E. Then ∆(g, h) ⊆ E is a reduced root system.
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Proof. We identify ∆ with a subspace of h∗Q (Lemma 10.12(i)). First we show that E =
spanR ∆. Let b1, . . . , br ∈ hQ be a Q-basis. Then

Φ: E → Rr, Φ(γ) = (γ(b1), . . . , γ(br))

is a linear isomorphism and Φ(h∗Q) = Qr. Since ∆ spans h∗Q (it separates the points of hQ
by Lemma 8.2), it follows that Φ(∆) spans Φ(E), i.e., ∆ spans E.

If a real linear combination
∑

α∈∆ xαα vanishes, then
∑

α,β∈∆ xαyβ(α, β) vanishes for
any other linear combintation

∑
β yββ. This implies that(∑

α

xαα,
∑
β

yββ
)

:=
∑
α,β∈∆

xαyα(α, β) (28)

is a well-defined symmetric bilinear form E × E → R.
If B ⊆ ∆ is an R-basis of E, then it also is a Q-basis of h∗Q, then Lemma 10.12(ii)

implies that the matrix
(
(α, β)

)
α,β∈B is positive definite as a real matrix. 13 As(∑

α∈B

xαα,
∑
β∈B

yββ
)

:=
∑
α,β∈∆

xαyα(α, β),

it now follows that the scalar product on E is positive definite. We now verify (R1)-(R3).
(R3) For α, β ∈ ∆, Lemma 10.11 yields (β, α̌) = p − q ∈ Z, where p, q ∈ N0 are such

that β − pα and β + qα are the ends of the α-string through β.
(R2) The same lemma also implies β − (β, α̌)α ∈ ∆ because −p ≤ −(β, α̌) = q− p ≤ q.
(R1) Since (R2) and (R3) are satisfies, Remark 11.3 implies that it suffices to show that

Zα ∩∆ = {±α}, but this follows from the sl2-Theorem 10.9.
This shows that ∆ is a reduced root system.

Definition 11.5. (Weyl group) Let h be a toral Cartan subalgebra of the semisimple Lie
algebra g. In view of Proposition 11.4, this data defines a Weyl group

W(g, h) :=W(∆(g, h)).

Examples 11.6. (Weyl groups of the classical root systems) We now discuss the four series
of root systems An, Bn, Cn and Dn in the euclidean space Rn, where (x, y) =

∑
j xjyj is the

canonical inner product. We have already seen in Examples 8.7, 8.8 and 8.9 how these root
systems arise from Lie algebras. However, the normalization of the scalar product induced
from the Cartan–Killing form may be different, as we have seen in Example 10.2.

(a) Let us write (εj)1≤j≤n for the canonical basis of Rn. We consider in the euclidean
space E := {x ∈ Rn :

∑
i xi = 0} the root system

An−1 := {εj − εk : j 6= k} = ∆(sln(K), h)

(cf. Example 8.7). For the root αjk := εj − εk, we then have α̌jk = αjk, so that

σαjk(ε`) = ε` − (δ`,j − δ`,k)(εj − εk) =


ε` for ` 6= j, k

εk for ` = j

εj for ` = k.

13Note that the Hurwitz criterion for positive definiteness of a matrix in terms of its minors can be
applied to any subfield of R containing all entries of the matrix.

A more direct argument works as follows: If A is positive definite over Q, then the density of Q in R
implies x>Ax ≥ 0 for every x ∈ Rn. If x>Ax = 0, then y>Ax = 0 for every y ∈ Rn by Cauchy–Schwarz.
Now Ax = 0, but detR(A) = detQ(A) 6= 0 yields x = 0.
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Therefore σαjk acts on the orthonormal basis (ε`)1≤`≤n as the transposition (jk) ∈ Sn. Since
these transpositions generate the symmetric group, it follows that

W(An−1) ∼= Sn.

It follows in particular that the action of this group preserves An−1, so that (R1-3) are
satisfied, i.e., An−1 is a reduced root system in the sense of Definition 11.2.

(b) For the root system

Bn := {±εj,±εj ± εk : j, k = 1, . . . , n, j 6= k} ⊆ Rn

of the Lie algebras on+1,n(K) (Example 8.8(b)), we obtain from ε̌j = 2εj the relation

σεj(ε`) = ε` − 2δ`,jεj =

{
ε` for ` 6= j

−ε` for ` = j.

and from (εj + εj )̌ = εj + εk further

σεj+εk(ε`) = ε` − (δ`,j + δ`,k)(εj + εk) =


ε` for ` 6= j, k

−εk for ` = j

−εj for ` = k.

In particular, σεj+εk = σεjσεk . We conclude that

W(Bn) ∼= {±1}n o Sn

is the group of signed permutations.
Again, the description of the group generated by the reflections implies that (R1-3) are

satisfied for Bn.
(c) For the root system

Cn := {±2εj,±εj ± εk : j, k = 1, . . . , n, j 6= k} ⊆ Rn

of the Lie algebras sp2n(K) (Example 8.9), we obtain from (2εj )̌ = εj the relation σ2εj = σεj .
Therefore

W(Cn) ∼=W(Bn) ∼= {±1}n o Sn

is also the group of signed permutations.
(d) For the root system

Dn := {±εj ± εk : j, k = 1, . . . , n, j 6= k} ⊆ Rn

of the Lie algebras on,n(K) (Example 8.8(a)), the calculations under (b) show that the Weyl
group contains all permutations and all signed permutations with an even number of sign
changes:

W(Dn) ∼= {(η1, . . . , ηn) ∈ {±1}n : |{j : ηj = −1}| ∈ 2N0}o Sn.

This is a subgroup of index 2 inW(Bn) ∼= {±1}noSn. It is the kernel of the homomorphism

γ : W(Bn)→ {±1}, γ((ηj)1≤j≤n, σ) :=
n∏
j=1

ηj.
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Remark 11.7. The angle θ ∈ [0, π] between α and β is defined by the identity

‖α‖ ‖β‖ cos θ = (α, β),

where ‖α‖ =
√

(α, α) is the norm of the euclidean space E. We have

(β, α̌) = 2
(β, α)

(α, α)
= 2
‖β‖
‖α‖

cos θ and (α, β̌)(β, α̌) = 4 cos2 θ.

Hence (β, α̌), (α, β̌) ∈ Z leads to 4 cos2 θ ∈ Z, and there are only the following possibilities
for ‖α‖ ≤ ‖β‖ and β 6∈ Rα:

(α, β̌) 0 1 −1 1 −1 1 −1

(β, α̌) 0 1 −1 2 −2 3 −3

θ π
2

π
3

2π
3

π
4

3π
4

π
6

5π
6

‖β‖2
‖α‖2 arb. 1 1 2 2 3 3

Note that exchanging β by −β replaces θ by π − θ and that (α, β̌) > 0 is equivalent to
0 < θ < π

2
.

Lemma 11.8. Let Φ ⊆ E be a finite generating subset of the euclidean space E which
is invariant under all reflections (σα)α∈Φ. If σ ∈ GL(E) fixes a hyperplane H pointwise,
σ(α) = −α for some α ∈ Φ and σ(Φ) = Φ, then σ = σα.

Proof. Let τ := σσα. Then τ(Φ) = Φ because both factors have this property. Then
τ(α) = α and the linear automorphism τ̃ ∈ GL(E/Rα) induced by τ coincides with the
linear automorphism σ̃ ∈ GL(E/Rα) induced by σ. As E = H + Rα, we have σ̃ = id and
therefore τ̃ = id. We conclude that τ −1 is nilpotent, i.e., τ is unipotent. The τ -invariance
of the finite set Φ shows that there has to be a power τ k which keeps Φ pointwise fixed. But
Φ spans E, so that τ k = id. As τ is unipotent, it follows that τ = id (Exercise 11.1).

Proposition 11.9. Let ∆ ⊆ E be a root system with Weyl groupW. If τ ∈ GL(E) satisfies
τ(∆) = ∆, then

(i) τσατ
−1 = στα for all α ∈ ∆.

(ii) (β, α̌) =
(
τ(β), τ(α)̌

)
for all α, β ∈ ∆.

Proof. (i) First we note that σ := τσατ
−1 satisfies σ(∆) = ∆ because all factors have this

property. Further,σ keeps the hyperplane τ(α⊥) pointwise fixed, and it maps τα to −τα.
Hence Lemma 11.8 shows that τσατ

−1 = στα.
(ii) In view of (i), this follows by comparison of the formulas

στ(α)(τ(β)) = τσατ
−1(τ(β)) = τ(σα(β)) = τ(β − (β, α̌)α) = τ(β)− (β, α̌)τ(α)

and
στ(α)(τ(β)) = τ(β)−

(
τ(β), τ(α)̌

)
τ(α).

Lemma 11.10. Let ∆ be a root system, and suppose that α, β ∈ ∆ are not proportional.

• If (α, β) > 0, then α− β ∈ ∆.

• If (α, β) < 0, then α + β ∈ ∆.
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Proof. Exchanging β by −β, we see that it suffices to verify the first assertion.
Since (α, β) is positive if and only if (α, β̌) is positive, Remark 11.7 shows that we have

(α, β̌) = 1 or (β, α̌) = 1. If (α, β̌) = 1, then α − β = σβ(α) ∈ ∆. Similarly, for (β, α̌) = 1,
we have β − α = σα(β) ∈ ∆, hence α− β ∈ ∆.

The following lemma asserts that in abstract root systems root strings are “unbroken”.

Lemma 11.11. (Root String Lemma) If α, β ∈ ∆ are not proportional, then there exist
p, q ∈ N0 such that

(β + Zα) ∩∆ = {β − jα : j = −p,−p+ 1, . . . , q − 1, q} and (β, α̌) = p− q.

Proof. Let p, q ∈ N0 be maximal with β + qα, β − pα ∈ ∆. Since

σα(β + jα) = β + jα− (β + jα, α̌)α ∈ β + Zα,

the α-string through β is invariant under σα. We conclude that

σα(β − pα) = β + qα,

and this leads to
(β, α̌)− 2p = (β − pα, α̌) = −q − p,

so that (β, α̌) = p− q.
Suppose that there exists a j ∈ Z with −p < j < q and γ := β+jα 6∈ ∆. We may w.l.o.g.

assume that j is maximal with this property. Then σα(γ) = β + kα 6∈ ∆ implies k ≤ j, so
that (γ, α̌) ≥ 0 and thus (γ, α) ≥ 0. The maximality of j further implies γ + α ∈ ∆. As
(γ + α, α) > (γ, α) ≥ 0, Lemma 11.10 leads to the contradiction γ = (γ + α)− α ∈ ∆.

11.2 Root Bases

Definition 11.12. Let ∆ ⊆ E be a root system and Π ⊆ ∆. We write

N0[Π] :=
{∑
α∈Π

kαα : kα ∈ N0

}
⊆ Z[Π] = spanZ Π ⊆ E.

We call Π a basis for ∆ if Π is a basis for the vector space E, and if

∆ ⊆ N0[Π] ∪ N0[−Π].

Then
∆+ := N0[Π]

is called the corresponding positive system. It satisfies

∆ = ∆+∪̇ −∆+.

The elements of Π are called simple roots or base roots. The height of the root β =
∑

α∈Π kαα
is the number

ht(β) :=
∑
α∈Π

kα.

Lemma 11.13. Let ∆ be a root system and Π be a basis for ∆. Suppose that α, β ∈ Π with
α 6= β. Then (α, β) ≤ 0 and α− β is not a root.

Proof. Since Π is a basis for E, α and β cannot be proportional. If (α, β) > 0, then
Lemma 11.10 shows that α−β ∈ ∆. But this contradicts the definition of a basis for ∆.
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Lemma 11.14. (Criterion for linear independence) Let M ⊆ E be contained in an open
half space of E, i.e., there is a λ ∈ E with (λ, α) > 0 for all α ∈M , and (α, β) ≤ 0 for all
α, β ∈M with α 6= β. Then M is linearly independent.

Proof. Suppose that
∑

α∈M rαα = 0 with rα ∈ R, and set

M± := {α ∈M | ±rα > 0}.

Then
ν :=

∑
α∈M+

rαα =
∑
β∈M−

(−rβ)β,

and therefore
(ν, ν) =

∑
α∈M+,β∈M−

rα(−rβ)(α, β) ≤ 0

which leads to ν = 0. But we then have

0 = (λ, ν) =
∑
α∈M±

|rα|(λ, α),

which implies M± = ∅ since we otherwise arrive at a contradiction.

Definition 11.15. (a) Let ∆ ⊆ E be a root system and λ ∈ E. Then λ is called regular if
λ 6∈ α⊥ holds for all α ∈ ∆. Otherwise, λ is called singular.

(b) For any regular element λ ∈ E, the set

∆+(λ) := {α ∈ ∆ | (λ, α) > 0}

is called the corresponding positive system. Note that

∆ = ∆+(λ)∪̇ −∆+(λ).

An element α ∈ ∆+(λ) is called decomposable if there are β1, β2 ∈ ∆+(λ) with α = β1 + β2,
otherwise, it is called indecomposable.

Theorem 11.16. For each regular element λ ∈ E, the set Π := Π(λ) of indecomposable
elements in ∆+(λ) is a basis for ∆. Conversely, every basis of ∆ is of this form.

Proof. Claim 1: Π := Π(λ) is a basis for ∆.

First, we show that ∆+(λ) ⊆ N0[Π]. For this, we suppose that α ∈ ∆+(λ) cannot be
written in this form, and that (α, λ) is minimal among all positive roots with this property.
Then there exist β1, β2 ∈ ∆+(λ) with α = β1 +β2, and then 0 < (βj, λ) < (α, λ) for j = 1, 2.
Now the minimality of (α, λ) yields βj ∈ N0[Π], which leads to the contradiction α ∈ N0[Π].

As a consequence, we see that ∆ ⊆ N0[Π]∪−N0[Π]. Since ∆ spans the space E, so does
Π. It therefore remains to show that Π is linearly independent.

Next we show that (α, β) ≤ 0 for all α, β ∈ Π with α 6= β. If α ∈ Rβ, then Remark 11.3
implies that α = 2β or β = 2α, contradicting the definition of Π. We may therefore assume
that β 6∈ Rα. If (α, β) > 0, then Lemma 11.10 implies α − β ∈ ∆ = ∆+(λ) ∪ −∆+(λ).
If α − β ∈ ∆+(λ), then α = β + (α − β) which contradicts the assumption that α is
indecomposable. Similarly, β − α ∈ ∆+(λ) gives a contradiction by β = α + (β − α). Now
Claim 1 follows by Lemma 11.14, applied to M = Π.

Claim 2: Every basis Π for ∆ is of the form Π(λ) for some regular element λ ∈ E.
For α ∈ Π, define α̃ ∈ E by (α̃, β) = δα,β for β ∈ Π, so that we obtain a dual

basis Π̃ = {α̃ : α ∈ Π}. Let λ :=
∑

α∈Π α̃. Then (λ, α) = 1 for every α ∈ Π, so that
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(λ, α) > 0 for all α ∈ Π. Since every β ∈ ∆ can be written as a linear combination of the
α ∈ Π with coefficients of the same sign, λ is regular. Then the set ∆+ of positive roots
defined by Π satisfies ∆+ ⊆ ∆+(λ) which leads to ∆+ = ∆+(λ) because of ∆+ ∪ −∆+ =
∆ = ∆+(λ) ∪ −∆+(λ). From the definition of a basis for ∆, we see that Π consists of
indecomposable elements of ∆+ = ∆+(λ), and therefore it is contained in Π(λ). On the
other hand, the cardinalities of Π and Π(λ) are both equal to n = dimE, since both sets
are bases for E. This proves that Π = Π(λ).

Examples 11.17. We describe bases of the root systems of types A-D. To this end we
consider the element λ = (n, n− 1, . . . , 1) ∈ Rn, which is regular for the root systems An−1,
Bn, Cn and Dn. The corresponding bases and positive systems can be described as follows:

(a) For
An−1 = {εj − εk : j 6= k} = ∆(sln(K), h),

the corresponding positive system is

∆+(λ) = {εj − εk : j < k}

(strictly speaking, this is a positive system defined by the orthogonal projection λ̃ of λ onto
spanAn−1) and

Π(λ) = {εj − εj+1 : j = 1, . . . , n− 1}

is the corresponding basis.
(b) In

Bn = {±εj,±εj ± εk : j, k = 1, . . . , n, j 6= k} ⊆ Rn

the corresponding positive system is

∆+(λ) = {εj, εj ± εk : j < k}

and
Π(λ) = {εj − εj+1 : j = 1, . . . , n− 1} ∪ {εn}

is the corresponding basis.
(c) In

Cn = {±2εj,±εj ± εk : j, k = 1, . . . , n, j 6= k} ⊆ Rn

the corresponding positive system is

∆+(λ) = {2εj, εj ± εk : j < k}

and
Π(λ) = {εj − εj+1 : j = 1, . . . , n− 1} ∪ {2εn}

is the corresponding basis.
(d) In

Dn = {±εj ± εk : j, k = 1, . . . , n, j 6= k} ⊆ Rn

the corresponding positive system is

∆+(λ) = {εj ± εk : j < k}

and
Π(λ) = {εj − εj+1 : j = 1, . . . , n− 1} ∪ {εn−1 + εn}

is the corresponding basis.
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11.3 Weyl Chambers

Definition 11.18. The connected components of the set

Ereg := E \
⋃
α∈∆

α⊥

of the regular elements are called Weyl chambers. The Weyl chamber which contains the
regular element λ ∈ E is denoted by C(λ). It coincides with the set

{µ ∈ E : (∀α ∈ ∆) (λ, α) > 0⇒ (µ, α) > 0}.

Remark 11.19. Let ∆ ⊆ E be a root system and λ, λ′ ∈ E be regular elements.

(i) C(λ) = C(λ′) ⇔ ∆+(λ) = ∆+(λ′) ⇔ Π(λ) = Π(λ′).

(ii) By (i) and Theorem 11.16, there is a bijection between the set of Weyl chambers and
the set of bases for ∆.

(iii) If Π = Π(λ), then we call C(Π) := C(λ) the fundamental chamber associated with the
basis Π. It is given by

C(Π) = {β ∈ E | (β, α) > 0 for all α ∈ Π}
= {β ∈ E | (β, α) > 0 for all α ∈ ∆+}.

Definition 11.20. Let Π ⊆ ∆ ⊆ E be a root basis. We define a partial order ≺ on E by

α ≺ β :⇐⇒ β − α ∈ N0[∆+] = N0[Π].

Lemma 11.21. Let ∆ ⊆ E be a root system and Π be a basis for ∆.

(i) For α ∈ ∆+ \ Π, there exists a β ∈ Π with α− β ∈ ∆+.

(ii) If α ∈ Π, then σα permutes the set ∆+ \ Zα (which coincides with ∆+ \ {α} is ∆ is
reduced).

(iii) Let α1, . . . , αr ∈ Π and set σi := σαi. If σ1 · · ·σr−1σr(αr) ∈ ∆+, then there is an
s ∈ {1, . . . , r − 1} such that

σ1 · · ·σr = σ1 · · ·σs−1σs+1 · · ·σr−1.

Proof. (i) Suppose for all β ∈ Π, we have (α, β) ≤ 0. Writing Π = Π(λ) for some reg-
ular element λ ∈ E (Theorem 11.16), the set Π ∪ {α} now satisfies the assumptions of
Lemma 11.14, hence is linearly independent. Since Π is a basis for E, this cannot be the
case, i.e., there is a β ∈ Π with (α, β) > 0.

Case 1: α and β are not proportional. Then Lemma 11.10 shows that α − β is a root.
Since α ∈ ∆+\Π, it is a linear combination of elements in Π with at least two positive
(integral) coefficients. Subtracting β leaves at least one positive coefficient, so α− β,
being a root, has to be positive.

Case 2: α and β are proportional. Then Remark 11.3 shows that α = 2β since β is
indecomposable. But then α− β = β is a root.
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(ii) Let β ∈ ∆+ \ Zα and β =
∑

γ∈Π kγγ with kγ ∈ N0. Then there is a γ 6= α with
kγ > 0. Since

σα(β) = β − (β, α̌)α = (kα − (β, α̌))α +
∑

γ∈Π\{α}

kγγ,

σα(β) has a positive coefficient kγ in its representation as a linear combination of simple
roots. Thus, all coefficients are nonnegative, and σα(β) ∈ ∆+. By σα(α) = −α, we also
have σα(β) 6= α, i.e., σα(β) ∈ ∆+ \ {α}. Since the latter set is finite, the claim follows.

(iii) Set

βi :=

{
σi+1 · · · σr−1(αr) for i = 0, . . . , r − 2,

αr for i = r − 1.

Then β0 6∈ ∆+ and βr−1 = αr ∈ ∆+, so that there exists a minimal s ∈ {1, . . . , r − 1} with
βs ∈ ∆+. For this s, we have σs(βs) = βs−1 6∈ ∆+. In view of (ii), this shows βs = αs
because 1

2
βs is not a root. By Proposition 11.9, for w := σs+1 · · ·σr−1, we have

σs = σβs = σwαr = wσrw
−1 = (σs+1 · · ·σr−1)σr(σr−1 · · · σs+1),

which shows that
σs · · ·σr = σs+1 · · ·σr−1,

and this implies the claim.

Corollary 11.22. Let ∆ ⊆ E be a root system and Π be a basis for ∆.

(i) Every β ∈ ∆+ can be written in the form α1 + . . . + αm with αj ∈ Π such that∑k
j=1 αj ∈ ∆+ for each k ∈ {1, . . . ,m}.

(ii) Let σ = σ1 · · ·σr, where the σj = σαj are reflections associated with the simple roots
αj ∈ Π, and where r is the minimal number of factors needed to represent σ as such
a product. Then σ(αr) ∈ −∆+.

Proof. (i) follows by induction with Lemma 11.21(i).
(ii) If the assertion is not true, then σ(αr) ∈ ∆+, so that Lemma 11.21(iii) contradicts

the minimality of the number r of factors.

Theorem 11.23. Let ∆ be a reduced root system, W be the corresponding Weyl group, and
Π a basis for ∆.

(i) For every regular element λ ∈ E, there is a σ ∈ W such that

(σλ, α) > 0 for α ∈ Π,

i.e., σ(C(λ)) = C(Π). In particular, W acts transitively on the set of the Weyl cham-
bers.

(ii) Let Π′ be another basis for ∆. Then there is a σ ∈ W with σ(Π′) = Π, i.e., the Weyl
group also acts transitively on the set of the bases.

(iii) For every root α ∈ ∆, there is a σ ∈ W with σ(α) ∈ Π.

(iv) W is generated by the σα with α ∈ Π.

(v) If σ(Π) = Π for σ ∈ W, then σ = 1.
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Proof. LetW ′ be the subgroup ofW , generated by the σα with α ∈ Π. Suppose, (iii) holds
for W ′ instead of W . Then for α ∈ ∆, we can find a w ∈ W ′ with wα ∈ Π. Then by
σwα = wσαw

−1 (cf. Proposition 11.9), we obtain that σα = w−1σwαw ∈ W ′. Since W is
generated by the σα with α ∈ ∆, we getW =W ′, which is (iv). Further (v) is an immediate
consequence of Corollary 11.22(ii) applied to w because it implies that the minimal number
of factors σα, α ∈ Π, in w must be zero. Therefore, we see that it suffices to show (i)-(iii)
for W ′ instead of W .

(i) Let µ ∈ C(Π) and choose w ∈ W ′ such that the number (wλ, µ) is maximal for the
given λ. For α ∈ Π, we then obtain

(wλ, µ) ≥ (σαwλ, µ) = (wλ, σαµ) = (wλ, µ)− (wλ, (µ, α̌)α) = (wλ, µ)− (wλ, α)(µ, α̌).

This gives
(wλ, α)(µ, α) ≥ 0,

and since (µ, α) > 0 for every α ∈ Π, we obtain (wλ, α) ≥ 0 and (wλ, α) > 0 by regularity.
Therefore wλ ∈ C(Π) and thus wC(λ) = C(Π).

(ii) By (i), this is an immediate consequence of Remark 11.19.
(iii) Because of (ii), it suffices to show that α is an element of some basis. If β 6= ±α is

a root, then α and β are not proportional since ∆ is reduced. Thus, α⊥ 6= β⊥, and we can
find a

λ ∈ α⊥ \
⋃

β∈∆\{±α}

β⊥

because we have to avoid finitely many hyperplanes in α⊥. Let λ′ := λ + εα, where ε > 0
is chosen such that

0 < ε(α, α) = (λ′, α) < min{|(λ′, β)| : β ∈ ∆ \ {±α}}.

Then λ′ is regular with α ∈ Π(λ′) (cf. Theorem 11.16).

Proposition 11.24. (The dual root system) If ∆ ⊆ E is a root system, then

∆̌ := {α̌ : α ∈ ∆}

also is a root system. It is reduced if and only if ∆ is reduced. Moreover, if ∆+ is a positive
system of ∆, then

∆̌+ := {α̌ : α ∈ ∆+}

is a positive system of ∆̌, and if Π ⊆ ∆+ is a root basis, then

Π̌ := {α̌ : α ∈ Π, 2α 6∈ ∆} ∪ {1
2
α̌ : α ∈ Π, 2α ∈ ∆}

is a root basis of ∆̌.

The root system ∆̌ is called the root system dual to ∆.

Proof. To verify (R1) for ∆̌ (if ∆ is reduced), we note that β̌ ∈ Rα̌ implies β ∈ Rα and
hence β = ±α, which in turn leads to β̌ = ±α̌. If ∆ is not reduced, then (2α)̌ = 1

2
α̌ shows

that ∆̌ is also not reduced.
Since σα̌ is the orthogonal reflection in α⊥ = α̌⊥, we have σα = σα̌. As σα is an isometry,

it satisfies σα(β̌) = σα(β)̌, so that ∆̌ satisfies (R2). Finally we note that for α, β ∈ ∆, we
have

(α̌, α̌) =
4

(α, α)
,
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so that (α̌)̌ = α. Therefore
(α̌, (β̌)̌) = (β, α̌) ∈ Z,

and we conclude that ∆̌ also is a root system.
Now let

∆+ = ∆+(λ) = {α ∈ ∆: (λ, α) > 0}

be a positive system of ∆. From the definition of the dual root system, it follows that ∆
and ∆̌ define the same set of regular elements. Therefore

∆̌+ = {α̌ ∈ ∆̌ : (λ, α̌) > 0}

is a positive system of the dual root system ∆̌.
To see that Π̌ is a root basis, we argue that Π̌ is contained in the root basis Π′ of

indecomposable elements of ∆̌+. Then |Π̌| = |Π| = dimE = |Π′| implies that Π̌ = Π′ is a
root basis. So let α̌ ∈ Π̌ and assume that it is decompasable: α̌ = β̌1 + β̌2 with βj ∈ ∆+.

Write βj =
∑

γ∈Π c
(j)
γ γ with c

(j)
γ ≥ 0. As β̌j is a positive multiple of βj and α̌ ∈ R+α, it

follows that all coefficients c
(j)
γ vanish for γ 6= α. Hence βj ∈ Rα and thus βj = 2α. But

then the definition of Π̌ implies that α̌ 6∈ Π̌.

Examples 11.25. (a) In the root systems An and Dn, all roots have the square-lenght 2,
so that they are self-dual: Ǎn = An and Ďn = Dn.

(b) In the root sustem Bn, we have two different root lengths, the roots ±εi ± εj have
square lenght 2, and the roots ±εj have square lenght 1. This leads to ε̌j = 2εj. From that
we derive that B̌n = Cn and Čn = Bn. In this sense the root systems Bn and Cn are dual
to each other.

Exercises for Section 11

Exercise 11.1. Let V be a finite dimensional vector space over the field K and let U ∈
GL(V ) be unipotent, i.e., U − 1 is nilpotent. Show that

(a) If charK = 0 and U is of finite order in GL(V ), then U = 1. Hint: Describe U by an
upper triangular matrix with respect to a suitable basis.

(b) Suppose that charK > 0. Find a non-trivial unipotent matrix of finite order. Which
orders can occur?

Exercise 11.2. (An irreducible non-reduced root system) Let n ∈ N. Show that

BCn := Bn ∪ Cn = {±εj,±2εj,±εj ± εk : j, k = 1, . . . , n, j 6= k}

is an irreducible, non-reduced root system in the euclidean space Rn, endowed with the
standard scalar product. Sketch the root system for n = 2. What is the corresponding
Weyl group?

Exercise 11.3. In the euclidean plane

E :=
{
x ∈ R3 :

∑
j

xj = 0
}

we consider the subset

G2 := A2 ∪
{
± (2ε1 − ε2 − ε3),±(2ε2 − ε1 − ε3),±(2ε3 − ε1 − ε2)

}
.
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1. Show that G2 is a root system.

2. Determine a root basis.

3. Determine the number of Weyl chambers. Hint: They all have the same angle.

4. Draw a picture.

5. Determine its Weyl group.

Exercise 11.4. Let V be a real vector space. A element σ ∈ GL(V ) is called a reflection
if it is of the form

σv(w) = w − v∗(w)v with v∗ ∈ V ∗, v∗(v) = 2.

We call a set (σv)v∈S of reflections irreducible if, for v, w ∈ S, there exist v0 = v, v1, . . . , vn =
w ∈ S with

v∗j+1(vj) 6= 0 for j = 1, . . . , n− 1.

We write W := 〈σv : v ∈ S〉 ⊆ GL(V ) for the subgroup generated by the reflections σv,
v ∈ S. Show that:

(i) V W := {v ∈ V : (∀w ∈ W)w(v) = v} =
⋂
s∈S ker s∗.

(ii) Veff := span{w(v) − v : w ∈ W , v ∈ V } is a W-invariant subspace containing S and
minimal with this property.

(iii) Assume that (σv)v∈S is irreducible, that spanS = V and
⋂
s∈S ker s∗ = {0}. Then the

representation of W on V is irreducible.
Hint: Show that every non-zero W-invariant subspace V0 ⊆ V contains S.

(iv) If ϕ ∈ End(V ) commutes with W , then ϕ ∈ R idV .

Exercise 11.5. (Uniqueness of scalar product for irreducible root systems) Let (E, (·, ·))
be a euclidean space and ∆ ⊆ E be an irreducible root system. Further, let 〈·, ·〉 be a
second inner product on E for which ∆ ⊆ (E, 〈·, ·〉) also is a root system. Show that there
exists a c > 0 with 〈v, w〉 = c(v, w) for v, w ∈ E. One may proceed along the following
steps:

(a) For α, β ∈ ∆, we have
〈β, α〉
〈α, α〉

=
(β, α)

(α, α)
.

Hint: This can be derived from the Root String Lemma.

(b) The reflections σα, α ∈ ∆, are the same for both scalar products.

(c) For α ∈ ∆, put cα := 〈α,α〉
(α,α)

. Show that

(i) cα = cβ for (β, α) 6= 0.

(ii) c := cα is independet of α.

(iii) 〈β, α〉 = c(β, α) for α, β ∈ ∆.
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12 The Classification of Simple Split Lie Algebras

In this section we eventually come to the classification of those simple finite dimensional Lie
algebras over a field K of characteristic zero which are split in the sense that they contain
a toral Cartan subalgebra h. We won’t go through the full proof of the classification but
we shall explain the strategy and the result. The main idea is to associate to a basis Π
of the root system ∆(g, h) a (weighted directed) graph, called the Dynkin diagram. This
translates the classification of finite reduced root systems into the classification problem
for Dynkin diagrams, which can be carried out by elementary means (but we won’t go into
details of the proof of the classification).

12.1 Cartan Matrices

Definition 12.1. Let ∆ be a roots system and Π ⊆ ∆ be a root basis. The matrix

CM(Π) = (α(β̌))α,β∈Π

is called the Cartan matrix of Π. 14 The integers α(β̌) are called Cartan integers.

Lemma 12.2. The Cartan matrix CM(Π) has the following properties (for α, β ∈ Π):

(CM1) α(β̌) ∈ Z.

(CM2) α(α̌) = 2.

(CM3) α(β̌) ≤ 0 for α 6= β.

(CM4) α(β̌) < 0⇒ β(α̌) < 0.

(CM5) α(β̌)β(α̌) ∈ {0, 1, 2, 3}.

Proof. (CM1) follows from Lemma 11.11.
(CM2) follows from the Definition of α̌.
(CM3) follows from Lemma 11.10.
(CM4) follows from

α(β̌) =
2(α, β)

(β, β)
=

(α, α)

(β, β)

2(α, β)

(α, α)
=

(α, α)

(β, β)
β(α̌).

(CM5) follows from Remark 11.7 which asserts that α(β̌)β(α̌) = 4 cos2(θ), where θ is the
angle between α and β.

There is a subtlety involved in the definition of Cartan matrices that deserves to be
noticed because it is relevant for classification purposes. A Cartan matrix, as we defined
it, is a function Π×Π→ Z and as such an “abstract matrix” (which could encode a linear
map with respect to a basis without reference to any enumeration). To write this as an
element of Mr(Z), r := |Π|, one first has to introduce a linear order on Π:

Π = {α1, . . . , α`}.

Once this enumeration is fixed, we can identify the Cartan matrix with a “concrete matrix”
A = (aij)1≤i,j≤r ∈Mr(Z), where aij = αi(α̌j). In this representation, the matrix A has the
following properties (for all i, j):

14Élie Cartan used these matrices 1894 in his classification of the complex simple Lie algebras.
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(CM1)’ aij ∈ Z.

(CM2)’ aii = 2.

(CM3)’ aij ≤ 0.

(CM4)’ aij < 0⇒ aji < 0.

(CM5)’ aijaji ∈ {0, 1, 2, 3}.

The two concrete matrices Cartan matrices

C1 =

 2 −1 0
−1 2 −1
0 −1 2

 und C2 =

 2 0 −1
0 2 −1
−1 −1 2


are two concretizations of the same abstract Cartan matrix of the root system A3. More
generally, for the ordered root basis αi = εi − εi+1, i = 1, . . . , n − 1, of the root system
An−1, we obtain the concrete Cartan matrix

C =


2 −1 0 · · · 0
−1 2 −1 · · · 0

0
. . .

...
... −1 2 −1
0 · · · 0 −1 2

 .

Proposition 12.3. A reduced root system ∆ is completely determined by the Cartan matrix
CM(Π) of a root basis Π.

Proof. We show by induction on the height n, that the set

∆+(n) := {β ∈ ∆+ : |β| = n}

is determined by the Cartan matrix. For n = 1, we have ∆+(1) = Π. So let us assume
that n > 1. We assume inductively that ∆+(k), k < n, is determined by the Cartan matrix
CM(Π). For every β ∈ ∆+(n), there exists by Lemma 11.21(i) a simple root α ∈ Π with
β − α ∈ ∆, and thus β − α ∈ ∆+(n − 1). Therefore we only have to determine for which
roots γ ∈ ∆+(n− 1) and which α ∈ Π the sum α + γ is a root.

If γ = α, then γ + α = 2α 6∈ ∆. We may therefore assume that γ 6= α, i.e., in the
representation of γ with respect to the basis Π at least one other simple root α′ 6= α
occurs. Then all roots of the form γ − jα, j ∈ Z, are positive, because there α′-coefficient
is positive. Since we know already that the set

⋃
j≤n−1 ∆+(j) is determined by CM(Π), we

can determine the maximal p ∈ N0 with γ − pα ∈ ∆. Then the Root String Lemma 11.11
implies that q = p − γ(α̌) is maximal with the property that γ + qα ∈ ∆. Hence γ + α
is equivalent to γ(α̌) < p. Note that γ(α̌) can be calculated from the representation of γ
w.r.t. the basis Π and the Cartan matrix. This completes the proof.

The proof of Proposition 12.3 contains in particular an algorithm how to construct
the root system from its Cartan matrix by constructing inductively the layers ∆+(n) from
∆+(1) = Π.

Example 12.4. We explain this procedure for the Cartan matrix

A =

(
2 −3
−1 2

)
=

(
α1(α̌1) α1(α̌2)
α2(α̌1) α2(α̌2)

)
.
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We start with
Π = ∆+(1) = {α1, α2}.

From α2 − α1 6∈ ∆ we find for the α1-string through α2 and the α2-string through α1:

α2, α2 + α1; α1, α1 + α2, α1 + 2α2, α1 + 3α2

(Root String Lemma 11.11). We successively obtain

∆+(2) = {α1 + α2} and ∆+(3) = {α1 + 2α2}.

To γ = α1 + 2α2 we may add α2 and obtain the root γ + α2. The α1-string through γ
contains no root of smaller height because 2α2 is not a root. In view of γ(α̌1) = 2− 2 = 0,
the α1-string through γ is trivial. We thus obtain

∆+(4) = {α1 + 3α2}.

Here we are not allowed to add α2, but since (α1 + 3α2)(α̌1) = 2− 3 = −1, we get

∆+(5) = {2α1 + 3α2}.

As the α1-string through α1 + 3α2 ends in 2α1 + 3α2 (because (α1 + 3α2)(α̌1) = −1), the
element 2α1 + 2α2 is not a root, and (2α1 + 3α2)(α̌2) = −6 + 6 = 0, we cannot add any
other root. We thus obtain 6 positive roots

∆+ = {α1, α2, α1 + α2, α1 + 2α2, α1 + 3α2, 2α1 + 3α2}.

The so constructed root system ∆ = ∆+ ∪ −∆+ is called G2. One can show that
it belongs to a 14-dimensional simple Lie algebra g with a 2-dimensional toral Cartan
subalgebra. The dimension of g is obtained from the root decomposition by the formula

dim g = dim h + |∆| = 2 + 12 = 14.

Presently, we have not shown that a Lie algebra with this root system exists.

The next step to the classification is to classify all Cartan matrices of finite root systems.
This can be achieved by an analysis of the corresponding Dynkin diagram, introduced below.

12.2 Irreducibility and simplicity

First we reduce the classification of Cartan matrices to the case of irreducible root systems
which corresponds to the case of simple Lie algebras.

Definition 12.5. A subset F ⊆ ∆ is called indecomposable if it cannot be written as a
disjoint sum F = F1∪̇F2 of two non-empty subsets with F1⊥F2. Note that the orthogonality
of F1 and F2 is equivalent to α(β̌) = 0 for α ∈ F1 and β ∈ F2.

Theorem 12.6. (Generation Theorem) Let Π ⊆ ∆ be a root basis. Then g is generated by
the 3-dimensional subalgebras g(α), α ∈ Π.

Proof. Let q ⊆ g be the subalgebra of g generated by g(α), α ∈ Π.
In view of Corollary 11.22(i), every β ∈ ∆+ can be written in the form α1 + . . . + αm

with αj ∈ Π such that
∑k

j=1 αj ∈ ∆+ for each k ∈ {1, . . . ,m}. Then Lemma 10.11, which
asserts that [gα, gβ] = gα+β if α, β, α + β ∈ ∆, implies that

gβ = [gαm , [gαm−1 , [· · · , [gα2 , gα1 ] · · · ]]] ⊆ q.

We likewise see that gβ ⊆ q for β ∈ −∆+. Therefore q contains all root spaces and

span{hα : α ∈ Π} = span{tα : α ∈ Π} = h

(Lemma 10.12(iii)).
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Proposition 12.7. A semisimple Lie algebra g with toral Cartan subalgebra h and root
system ∆ = ∆(g, h) is simple if and only if ∆ has an indecomposable root basis.

Proof. Suppose first that g is not simple and let g = g1 ⊕ g2, where g1 and g2 are proper
semisimple ideals. Let hj ⊆ gj be toral Cartan subalgebras. Then h := h1 ⊕ h2 is a toral
Cartan subalgebra of g and the corresponding root system is given by

∆ = ∆1∪̇∆2, where ∆1 = ∆(g1, h1)× {0} and ∆2 = {0} ×∆(g2, h2).

The corresponding root spaces are

g(α,0) = gα1 × {0} and g(0,β) = {0} × gβ2 .

If Πj ⊆ ∆j, j = 1, 2, are root bases, then

Π = (Π1 × {0}) ∪ ({0} × Π2)

is a partition of the root basis Π of ∆ into subsets with (α, 0)
(
(0, β̌)

)
= 0 for α ∈ Π1 and

β ∈ Π2. Therefore Π is decomposable.
Now we assume that Π = Π1∪̇Π2 with α(β̌) = 0 for α ∈ Π1 und β ∈ Π2. Let gj ⊆ g

denote the subagebras generated by the subalgebras g(α), α ∈ Πj. For α ∈ Π1, β ∈ Π2 we
then have α− β 6∈ ∆ because both are base roots, so that α(β̌) = 0 also implies α+ β 6∈ ∆
(Root String Lemma 11.11). We conclude that [g±α, g±β] = {0} and thus [g±α, g(β)] = {0},
so that we further obtain [g(α), g(β)] = {0}. This in turn implies that [g(β), g1] = {0}
because α ∈ Π1 was arbitrary and the centralizer zg(g(β)) of g(β) in g is a subalgebra.
With a similar argument we see that [g2, g1] = {0}. From the Generation Theorem 12.6,
it now follows that g = g1 + g2, so that g1 E g is a proper ideal. In particular g is not
simple.

From the preceding proof one can easily derive that, in general, the irreducible compo-
nents of Π correspond to the simple ideals of g.

12.3 Simplicity of the Classical Series

In this subsection we use the preceding results to verify that the Lie algebras sln(K), on,n(K)
(n 6= 1, 2), on,n+1(K) and sp2n(K) are simple. We have seen in Examples 8.7, 8.8 and 8.9
that these Lie algebra contain a toral Cartan subalgebra for which the root systems are of
type

• An−1 for sln(K),

• Bn for on,n+1(K),

• Cn for sp2n(K), and

• Dn for on,n(K).

With the explicit description of the root spaces, it is easy to verify that all subalgebras
g(α) = gα + g−α + [gα, g−α] are isomorphic to sl2(K), so that the semisimplicity criterion
from Lemma 8.14 implies that these four Lie algebras are semisimple if we can show that
z(g) = {0}. If, in addition, Π is indecomposable, then it is simple by Proposition 12.7.
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Example 12.8. For g = sln(C) we have the roots αij = εi − εj. Then gαij = KEij and

αij([Eij, Eji]) = (εi − εj)(Eii − Ejj) = 2,

so that α̌ij = Eii − Ejj. A diagonal matrix h = diag(h1, . . . , hn) is central if and only if
hi − hj = αij(h) = 0 for 1 ≤ i < j ≤ n. This is equivalent to h1 = . . . = hn, so that∑

j hj = 0 leads to h = 0. Therefore z(sln(K)) = {0}. Now Lemma 8.14 implies the
semisimplicity of g. To verify the simplicity, we consider the root basis

Π = {ε1 − ε2, . . . , εn−1 − εn}

from Example 11.17 which satisfies αi,i+1(α̌i+1,i+2) = −1 6= 0. Therefore Π is indecompos-
able and therefore g is simple. For αj := εj − εj+1, the Cartan matrix is

(αj(α̌k))1≤j,k≤n−1 =


2 −1 0 · · · 0
−1 2 −1 · · · 0

0
. . .

...
... −1 2 −1
0 · · · 0 −1 2

 .

Example 12.9. We consider the Lie algebra g = sp2n(K), whose root decomposition we
know from Example 8.9. We have seen that

h := span{Ejj − Ej+n,j+n : j = 1, . . . , n} ⊆ g ⊆ gl2n(K)

is a toral Cartan subalgebra and that the root system is given by

∆ = {±2εj,±(εj ± εk) : j 6= k, j, k = 1, . . . , n} = Cn.

From this explicit description of the root system, we immediately derive that z(g) =⋂
α∈∆ kerα = {0}. For the coroots we obtain

(εj − εk )̌ = Ejj − Ekk − Ej+n,j+n + Ek+n,k+n

(εj + εk )̌ = Ejj + Ekk − Ej+n,j+n − Ek+n,k+n, j 6= k,

(2εj )̌ = Ejj − Ej+n,j+n,

because
gεj+εk = K(Ej,n+k + Ek,n+j), g−εj−εk = K(En+k,j + En+j,k)

and

[Ej,k+n + Ek,j+n, Ej+n,k + Ek+n,j] = (1 + δjk)(Ejj − Ej+n,j+n) + (1 + δjk)(Ekk − Ek+n,k+n).

With this explicit information on the brackets, it is easy to see that all subalgebras g(α) =
gα+g−α+[gα, g−α] are isomorphic to sl2(K), so that Lemma 8.14 implies that g is semisimple.
The subset

∆+ := {2εj, εj ± εk : j < k, j, k = 1, . . . , n}

is a positive system with the root basis

Π = {ε1 − ε2, . . . , εn−1 − εn, 2εn}
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(Example 11.17(c)). For αj := εj − εj+1, j = 1, . . . , n− 1 and αn = 2εn, the Cartan matrix
is

(αj(α̌k))1≤j,k≤n =



2 −1 0 · · · 0
−1 2 −1 · · · 0

0
. . .

...
... −1 2 −1 0

−1 2 −1
0 · · · 0 0 −2 2


.

Since the root basis for An−1 is irreducible and εn is not orthogonal to εn−1 − εn, we see
that Π is irreducible and hence that sp2n(K) is simple.

Example 12.10. We consider the Lie algebra son,n+1(K) ⊆ gl2n+1(K). In Example 8.8 we
have seen that

h := span{Ejj − Ej+n,j+n : j = 1, . . . , n}

is a toral Cartan subalgebra and that

∆ = {±εj,±(εj ± εk) : j 6= k, j, k = 1, . . . , n} = Bn

is the corresponding root system. For the coroots we obtain

(εj − εk )̌ = Ejj − Ekk − Ej+n,j+n + Ek+n,k+n

(εj + εk )̌ = Ejj + Ekk − Ej+n,j+n − Ek+n,k+n, j 6= k.

The subset
∆+ := {εj, εj ± εk : j < k, j, k = 1, . . . , n}

is a positive system with root basis

Π = {ε1 − ε2, . . . , εn−1 − εn, εn}

(Example 11.17(b)). For αj := εj − εj+1, j = 1, . . . , n− 1 and αn = εn, the Cartan matrix
is

(αj(α̌k))1≤j,k≤n =



2 −1 0 · · · 0
−1 2 −1 · · · 0

0
. . .

...
... −1 2 −1 0

−1 2 −2
0 · · · 0 0 −1 2


.

With the same argument as for Cn, we see that Π is irreducible, so that on,n+1(K) is a
simple Lie algebra. For n = 1, we obtain

o1,2(K) = g(ε1) ∼= sl2(K).

If K is algebraically closed, then o2n+1(K) ∼= on,n+1(K) (Exercise 8.4), so that we also
obtain the simplicity of the Lie algebra o2n+1(K) of skew-symmetric matrices of size 2n+ 1.

Example 12.11. Finally we consider the Lie algebra on,n(K) (Example 8.8) whose root
decomposition can be obtained from on,n+1(K) by restriction. We have the root set

∆ = Dn = {±(εj ± εk) : j 6= k}
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and the coroots

(εj − εk )̌ = Ejj − Ekk − Ej+n,j+n + Ek+n,k+n

(εj + εk )̌ = Ejj + Ekk − Ej+n,j+n − Ek+n,k+n, j 6= k.

The subset
∆+ := {εj ± εk : j < k, j, k = 1, . . . , n}

is a positive system with the root basis

Π = {ε1 − ε2, . . . , εn−1 − εn, εn−1 + εn}

(Example 11.17(d)). For αj := εj − εj+1, j = 1, . . . , n − 1 and αn = εn−1 + εn, the Cartan
matrix is

(αj(α̌k))1≤j,k≤n =



2 −1 0 · · · 0
−1 2 −1 · · ·
0

. . .
...

−1 2 −1 0 0
... −1 2 −1 −1

−1 2 0
0 · · · −1 0 2


.

For n ≥ 3, the root basis Π is indecomposable, but for n = 2 this is not the case. It follows
that on,n(K) is simple for n ≥ 3, but not for n = 2. For n = 1 it is one-dimensional, hence
also not simple. From the root decomposition one can further see that, for n = 2 and
Π = {α, β}, we have |∆+| = 2 and

g ∼= g(α)⊕ g(β) ∼= sl2(K)2 ∼= o1,2(K)2.

If K is algebraically closed, then o2n(K) ∼= on,n(K) (Exercise 8.4), so that we obtain the
simplicity of o2n(K) for n ≥ 3.

We collect the results of this inspection in the following theorem:

Theorem 12.12. For every field K of characteristic zero, the Lie algebras

sln+1(K), n ≥ 1, sp2n(K), n ≥ 1, on,n+1(K), n ≥ 1, on,n(K), n ≥ 3

are simple and split. Moreover,

sp2(K) ∼= o1,2(K) ∼= sl2(K), o2,2(K) ∼= sl2(K)2 and o1,1(K) ∼= K.

12.4 The Classification of Cartan Matrices

In the preceding subsection, we have seen that the root bases of the simple Lie algebras with
a toral Cartan subalgebra h are precisely the indecomposable ones. If A = CM(Π) is the
Cartan matrix of the root basis Π, then any orthogonal partition Π = Π1∪̇Π2 corresponds
to a description of A as a (2× 2)-block matrix

A =

(
A11 0
0 A22

)
.

In this sense the irreducibility of Π corresponds to the “irreducibility” of the corresponding
Cartan matrix in the sense that there is no reordering of the basis which turns A into a
(2× 2)-block matrix. With respect to this order Π1 should come before Π2 or vice versa.
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Now let Π = {α1, . . . , α`} be a root basis and A = (αi(α̌j))i,j=1,...,` the corresponding
Cartan matrix. If α(β̌)β(α̌) 6= 0, then

α(β̌)

β(α̌)
=

(α, α)

(β, β)
=
‖α‖2

‖β‖2

is the ratio of the square lengths (Remark 11.7). If α(β̌)β(α̌) = 1, then

α(β̌) = −1 = β(α̌),

because α(β̌) < 0 and both roots have the same lenght (Remark 11.7). If α(β̌) and β(α̌)
are different, then both roots have different lengths. In view of α(β̌)β(α̌) ∈ {0, 1, 2, 3}
(Remark 11.7), at least one of the two factors is −1. For β(α̌) = −1, we obtain

− α(β̌) =
‖α‖2

‖β‖2
∈ {1, 2, 3}. (29)

Definition 12.13. Now we associate a Dynkin diagram to the Cartan matrix. We consider
the elements of the root basis as vertices of the diagram and connect two vertices α and β
by α(β̌)β(α̌) ∈ {0, 1, 2, 3} edges. If α and β are connected and not of the same length, then
we also add an arrow pointing from the longer to the shorter root. Recall that the ratio of
the root lengths is determined via (29) by the number of connecting edges.

Here are some examples which, in view of Remark 11.7, cover all the 2-vertex configu-
rations:

A1 × A1 :

(
2 0
0 2

)
, ◦ ◦

A2 :

(
2 −1
−1 2

)
, ◦ ◦

B2 :

(
2 −2
−1 2

)
, ◦ 〉◦

G2 :

(
2 −3
−1 2

)
, ◦ 〉◦

Remark 12.14. Conversely, we can reconstruct from every Dynkin diagram the corre-
sponding Cartan matrix:

(0) If α and β are not connected, then α(β̌) = β(α̌) = 0.

(1) If α and β are connected by a simple edge, then α(β̌) = β(α̌) = −1.

(2) If α and β are connected by a double edge with an arrow from α to β, then α(β̌) = −2
and β(α̌) = −1.

(3) If α and β are connected by a triple edge with an arrow from α to β, then α(β̌) = −3
and β(α̌) = −1.

Example 12.15. From the diagram

F4 ◦ ◦ 〉◦ ◦

we thus obtain the Cartan matrix

A =


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

 .
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The root basis Π is reducible if and only if the corresponding diagram is not connected.
Then the maximal irreducible subsets of Π correspond to the connected components of
the diagram. Since we know already that irreducible root bases correspond to simple Lie
algebras (Proposition 12.7), we restrict our attention to connected Dynkin diagrams.

Theorem 12.16. If g is a finite dimensional simple Lie algebra and h ⊆ g a toral Cartan
subalgebra, then the Dynkin diagram with respect to any root basis Π of ∆(g, h) is contained
in the following list:

An, n ≥ 1 : ◦ ◦ ◦ · · · ◦ ◦
Bn, n ≥ 2, : ◦ ◦ ◦ · · · ◦ 〉◦
Cn, n ≥ 3, : ◦ ◦ ◦ · · · ◦〈 ◦
Dn, n ≥ 4, : ◦ ◦ ◦ · · · ◦ ◦

◦

◦

E6 : ◦ ◦ ◦

◦

◦ ◦

E7 : ◦ ◦ ◦

◦

◦ ◦ ◦

E8 : ◦ ◦ ◦

◦

◦ ◦ ◦ ◦

F4 : ◦ ◦ 〉◦ ◦
G2 : ◦ 〉◦

The restriction of n for the different series are necessary to avoid overlaps. For instance,
B2 and C2 correspond to the same diagram. Likewise D3 and A3 correspond to the same
diagram and one could also put E5 := D5.

Theorem 12.17. (Existence of root systems) Every Dynkin diagram corresponds to a root
system.

Proof. It suffices to verify the assertion for connected diagrams, for which the possibilities
are listed in Theorem 12.16. For the classical series A-D we have already seen how to
realize the corresponding root systems in some Rn, which leads to the root bases described
in Example 11.17:

An : Π =
{
εi − εi+1 : i = 1, . . . , n

}
⊆ Rn+1,

Bn : Π =
{
εi − εi+1 : i = 1, . . . , n− 1

}
∪ {εn} ⊆ Rn,

Cn : Π =
{
εi − εi+1 : i = 1, . . . , n− 1

}
∪ {2εn} ⊆ Rn,

Dn : Π =
{
εi − εi+1 : i = 1, . . . , n− 1

}
∪
{
εn−1 + εn

}
⊆ Rn.

This leaves only the diagrams of the expectional types E-G. Since E6 and E7 are
subdiagrams of E8, it suffices to find a realization of E8, F4 and G2. This can be done by
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verifying that the following sets are root systems (in Rn with respect to the standard scalar
product):

E8 : D8 ∪
{

1
2

8∑
j=1

(−1)ηjεj :
8∑
j=1

ηj ∈ 2Z
}
⊆ R8

F4 : B4 ∪
{

1
2
(±ε1 ± ε2 ± ε3 ± ε4)

}
⊆ R4 (signs independent)

G2 : A2 ∪
{
± (2ε1 − ε2 − ε3),±(2ε2 − ε1 − ε3),±(2ε3 − ε1 − ε2)

}
⊆ R3

(see Exercise 11.3 for G2). Accordingly, we obtain the root bases:

E8 :
{
ε2 − ε3, . . . , ε7 − ε8, ε7 + ε8,

1
2
(ε1 + ε8 − ε2 − ε3 − . . .− ε7)

}
F4 :

{
ε2 − ε3, ε3 − ε4, ε4,

1
2
(ε1 − ε2 − ε3 − ε4)

}
G2 :

{
ε1 − ε2,−2ε1 + ε2 + ε3

}
,

and it is easy to verify that they belong to the listed diagrams.

To complete the classification, one still has to prove that:

• That every pair (g, h) of a simple Lie algebra g and a toral Cartan subalgebra h ⊆ g
determines a unique Dynkin diagram. To this end one first shows that for any other
pair (g, h′), there exists an automorphism ψ ∈ Aut(g) with ϕ(h) = h′ (Conjugacy
of toral Cartan subalgebras). Next one shows that every element of the Weyl group
W(g, h) is induced by the action of an automorphism of g preserving h on the set
of roots, and now the transitivity of the action of the Weyl group on the set of root
bases (Theorem 11.23) shows that all root bases associated to a pair (g, h) lead to the
same Dynkin diagrams (up to enumeration of their vertices).

• That every Dynking diagram actually arises from some Lie algebra. This is clear for
the infinite series A-D, but not for types E-G. We have already seen above that all
Dynking diagrams arise from a root system, but this is much less information than
what is contained in the corresponding Lie algebra. There are two natural methods to
achieve this goal. The geometric method consists in realizing them as Lie algebras of
automorphism groups of suitable geometric structures. This is very interesting but has
the disadvantage that it proceeds very much by case-by-case analysis. There is another
approach to obtain the Lie algebras by defining them in terms of generators and
relations (the Serre relations) (cf. Proposition 14.1). This approach has the advantage
of being universal and it even points to the more general class of Kac–Moody Lie
algebras which form an interesting class of infinite dimensional Lie algebras.

Notes on Part II

Cartan subalgebras actually occur first in the work of W. Killing who classified the finite
dimensional simple complex Lie algebras (cf. [Kil89]). Unfortunately, Killing’s work con-
tained some serious gaps, concerning the basic properties of Cartan subalgebras. These
were cleaned up later by Élie Cartan in his thesis [Ca94], and this is why they nowadays
carry his name.

Serre’s Theorem on the presentation of semisimple Lie algebras with a toral Cartan
subalgebra can be extended to a construction of a semisimple Lie algebra from an abstract
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root system ∆ with a basis Π = {α1, . . . , αr}. Then we put aij := αj(α̌i) and consider the
Lie algebra L(X,R) defined by the generators hi, ei, fi, i = 1, . . . , r and the relations

[hi, hj] = 0, [hi, ej] = aijej, [hi, fj] = −aijfj, [ei, fj] = δijhi

and
(ad ei)

1−aijej = 0, (ad fi)
1−aijfj = 0 for i 6= j.

In this context the main point is to show that L(X,R) is a semisimple Lie algebra with the
Cartan subalgebra h = span{h1, . . . , hr} and a root system isomorphic to ∆. In the 1960s
this description of the finite dimensional semisimple Lie algebras was the starting point for
the theory of Kac–Moody–Lie algebras, which are defined by the same set of generators
and relations for more general matrices (aij) ∈Mr(Z), called generalized Cartan matrices.
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Part III

Representation Theory of Lie
Algebras
In this final part of the lecture we address the classification of finite dimensional repre-
sentations of a split semisimple Lie algebra g of characteristic zero. We first introduce
the universal enveloping algebra U(g) of a Lie algebra g.15 It has the universal property
that each representation of g defines a unique algebra representation of U(g), so that any
g-module becomes a U(g)-module. We may thus translate freely between g-modules and
U(g)-modules, which is often convenient. A key point is that, if a g-module V is generated
by a vector v ∈ V , then g · v 6= V in general, but then v is also a generator of the corre-
sponding U(g)-module, and this implies V = U(g) · v, which can be used to obtained finer
information on V .

The Poincaré–Birkhoff–Witt (PBW) Theorem 13.7 that we discuss here provides crucial
information on linear generating subsets of U(g). We then proceed with the Highest Weight
Theorem 15.18 (also called the Cartan–Weyl Theorem) which provides a classification of
irreducible finite dimensional representations of split semisimple Lie algebras. This is the
main result of the Cartan–Weyl Theory of simple modules of split semisimple Lie algebras.
In view of Weyl’s Theorem that any module of a Lie algebra is semisimple, the classification
of the simple modules provides a complete picture of the finite dimensional representations.

13 The Universal Enveloping Algebra

Representing a Lie algebra by linear maps leads to a mapping of the Lie algebra into an
associative algebra such that the Lie bracket turns into the commutator bracket. The main
point of the enveloping algebra U(g) of a Lie algebra g is that every representation of g on
V factors through a homomorphism U(g)→ End(V ) of associative algebras.

Definition 13.1. Let g be a Lie algebra. A pair (U(g), σ), consisting of a unital associative
algebra U(g) and a homomorphism σ : g → U(g)L of Lie algebras, is called a (universal)
enveloping algebra of g if it has the following universal property. For each homomorphism
f : g → AL of g into the Lie algebra AL, where A is a unital associative algebra, there
exists a unique homomorphism f̃ : U(g)→ A of unital associative algebras with f̃ ◦ σ = f .

g
∀f //

σ
��

A

U(g)
∃f̃

=={{{{{{{{

The universal property determines a universal enveloping algebra uniquely in the fol-
lowing sense:

Lemma 13.2. (Uniqueness of the enveloping algebra) If (U(g), σ) and (Ũ(g), σ̃) are two

enveloping algebras of the Lie algebra g, then there exists an isomorphism f : U(g)→ Ũ(g)
of unital associative algebras satisfying f ◦ σ = σ̃.

15In categorical terms: The enveloping algebra defines a functor from the category of Lie algebras to the
category of unital associative algebras which is the adjoint of the forgetful functor A 7→ AL = (A, [·, ·]).

93



Proof. Since σ̃ : g → Ũ(g)L is a homomorphism of Lie algebras, the universal property of
the pair (U(g), σ) implies the existence of a unique algebra homomorphism

f : U(g)→ Ũ(g) with f ◦ σ = σ̃.

Similarly, the universal property of (Ũ(g), σ̃) implies the existence of an algebra homomor-
phism

g : Ũ(g)→ U(g) with g ◦ σ̃ = σ.

Then g ◦ f : U(g) → U(g) is an algebra homomorphism with (g ◦ f) ◦ σ = σ, so that the
uniqueness part of the universal property of (U(g), σ) yields g ◦ f = idU(g). We likewise get
f ◦ g = idŨ(g), showing that f is an isomorphism of unital algebras.

To prove the existence of an enveloping algebra, we recall some basic algebraic concepts.
Let A be an associative algebra. A subspace J of A is called an ideal if

AJ ∪ JA ⊆ J.

Let M be a subset of A. Since the intersection of a family of ideals is again an ideal, the
intersection JM of all ideals of A containing M is the smallest ideal of A containing M . It
is called the ideal generated by M . If J is an ideal of A, then the factor algebra A/J is the
quotient vector space, endowed with the associative multiplication

(a1 + J)(a2 + J) := a1a2 + J for a1, a2 ∈ A.

13.1 Existence

Proposition 13.3. (Existence of an enveloping algebra) Each Lie algebra g has an en-
veloping algebra (U(g), σ).

Proof. Let T (g) be the tensor algebra of g (Definition B.7) and consider the subset

M := {x⊗ y − y ⊗ x− [x, y] ∈ T (g) : x, y ∈ g}.

Then
U(g) := T (g)/JM

is a unital associative algebra and

σ : g→ U(g), σ(x) := x+ JM ,

is a linear map, satisfying

σ([x, y]) = [x, y] + JM = x⊗ y − y ⊗ x+ JM = σ(x)σ(y)− σ(y)σ(x),

so that σ is a homomorphism of Lie algebras g→ U(g)L.
To verify the universal property for (U(g), σ), let f : g→ AL be a homomorphism of Lie

algebras, where A is a unital associative algebra. In view of the universal property of T (g)

(Lemma B.8), there exists an algebra homomorphism f̂ : T (g) → A with f̂(x) = f(x) for

all x ∈ g. Then M ⊆ ker f̂ , and since ker f̂ is an ideal of T (g), we also have JM ⊆ ker f̂ , so

that f̂ factors through an algebra homomorphism

f̃ : U(g)→ A with f̃ ◦ σ = f.

To see that f̃ is unique, it suffices to note that σ(g) and 1 generate U(g) as an associative
algebra because g and 1 generate T (g) as an associative algebra.
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Remark 13.4. The universal property of (U(g), σ) implies that each representation (π, V )
of g defined a representation π̃ : U(g)→ End(V ), which is uniquely determined by π̃◦σ = π.
From the construction of U(g) we also know that the algebra U(g) is generated by σ(g).
This implies that, for each v ∈ V , the subspace

U(g) · v ⊆ V

is the smallest subspace containing v and invariant under g, i.e., the g-submodule of V
generated by v. Hence the enveloping algebra provides a tool to understand g-submodules
of a g-module. But before we are able to use this tool effectively, we need some more
information on the structure of U(g).

13.2 The Poincaré–Birkhoff–Witt Theorem

Our next goal is a convenient description of a linearly generating subset of U(g). Here g
needs not be finite dimensional. Let (xj)j∈J be a linear basis of g and assume that the index
set I carries a total order ≤. For a k-tuple I = (i1, . . . , ik) ⊆ Jk, we put ξI := ξi1 · · · ξik .
We write

Up(g) :=
∑
k≤p

σ(g)k =
∑
k≤p

span{ξI : I ∈ Jk}.

These subspaces satisfy

Up(g)Uq(g) ⊆ Up+q(g) for p, q ∈ N0.

Lemma 13.5. Let y1, . . . , yp ∈ g and π be a permutation of {1, . . . , p}, then

σ(y1) · · ·σ(yp)− σ(yπ(1)) · · · σ(yπ(p)) ∈ Up−1(g).

Proof. Since every permutation is a composition of transpositions of neighboring elements,
it suffices to prove the claim for π(j) = j for j 6∈ {i, i + 1} and π(i) = i + 1. But then we
have

σ(y1) · · ·σ(yp)− σ(yπ(1)) · · ·σ(yπ(p))

= σ(y1) · · · σ(yi−1)
(
σ(yi)σ(yi+1)− σ(yi+1)σ(yi)

)
σ(yi+2) · · ·σ(yp)

= σ(y1) · · · σ(yi−1)σ([yi, yi+1])σ(yi+2) · · ·σ(yp) ∈ Up−1(g).

Lemma 13.6. The vector space Up(g) is spanned by the ξI with increasing sequences I of
length less than or equal to p. In particular, the elements of the form ξI with arbitrary finite
increasing sequences I generate U(g).

Proof. It is clear that Up(g) is spanned by the elements ξI with I ∈ Jk, k ≤ p, i.e., I
is an arbitrary sequences of length less than or equal to p. By induction on p, the claim
holds for Up−1(g). But since for an increasing rearrangement I ′ of the sequence I, we have
ξI − ξI′ ∈ Up−1(g) by Lemma 13.5, we also obtain the claim for Up(g).

In the following we shall only need Lemma 13.6, but one can actually show much more:

Theorem 13.7. (Poincaré–Birkhoff–Witt Theorem (PBW)) Let g be a finite dimensional
Lie algebra and {x1, . . . , xn} be a basis for g. Then

{ξµ11 · · · ξµnn ∈ U(g) | µk ∈ N ∪ {0} }

is a basis for U(g).
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Exercises for Section 13

Exercise 13.1. Let g be a finite dimensional Lie algebra and β be a nondegenerate sym-
metric bilinear form on g. Suppose that x1, . . . , xn is a basis for g and let x1, . . . , xn ∈ g be
the dual basis w.r.t. β, i.e., β(xi, x

j) = δij.

(i) Show that the Casimir element Ω :=
∑n

i=1 x
ixi lies in the center of U(g). 16

(ii) Let g = son(R). Show that:

(a) β(x, y) = −1
2

tr(xy) = 1
2

tr(xy>) defines an invariant scalar product on son(R).

(b) For a β-orthonormal basis x1, . . . , xN , we have Ω :=
∑N

i=1 x
2
i ∈ Z

(
U(son(R)

))
.

(c) The matrices Lij := Eij −Eji, i < j, form an orthonormal basis of son(R) w.r.t.
β.

(iii) Show that the operators of angular momentum

xi
∂

∂xj
− xj

∂

∂xi
: C∞(Rn)→ C∞(Rn), i, j = 1, . . . , n,

generate a Lie algebra which is isomorphic to son(R). Hint: See Exercise 1.3(v) for
the Lie brackets of these operators.

(iv) The Laplace operator ∆ =
∑n

i=1
∂2

∂x2i
commutes with the angular momentum operators.

17

(v) Show that there is a nondegenerate symmetric invariant bilinear form on the oscillator
algebra. Hence such forms do not only exist on semisimple Lie algebras.

Exercise 13.2. A function f ∈ C∞(Rn) is called harmonic if ∆(f) = 0 for the Laplace
operator ∆ =

∑n
i=1

∂2

∂x2i
. Show that the subspace H ⊆ C∞(Rn) of the harmonic functions

is invariant under the angular momentum operators (cf. Exercise 13.1).

14 Generators and Relations for Semisimple Lie Al-

gebras

In this section we shall use the root decomposition of a semisimple Lie algebra to find a
description by generators and relations.

14.1 A Generating Set for Semisimple Lie Algebras

Proposition 14.1. Let g be a semisimple Lie algebra and h ⊆ g a toral Cartan subalgebra.
Fix a positive system ∆+ ⊆ ∆ and let Π ⊆ ∆+ be the set of simple roots. For each α ∈ Π,
we fix a corresponding sl2-triple (hα, eα, fα). Then the following assertions hold:

(i) The subspace n :=
∑

β∈∆+ gβ is a nilpotent subalgebra generated by {eα : α ∈ Π}.

16Here we identify x with η(x), so that we consider g as a subset of U(g).
17The Laplacian is NOT the Casimir operator of the Lie algebra generated by the angular momentum

operators; it is the Casimir operator of the abelian Lie algebra generated by the operators ∂
∂xj

.
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(ii) The Lie algebra g is generated by {hα, eα, fα : α ∈ Π}. These elements satisfy the
relations

[hα, hβ] = 0, [hα, eβ] = β(α̌)eβ, [hα, fβ] = −β(α̌)fβ, [eα, fβ] = δα,βhα (30)

and we further have

(ad eα)1−β(α̌)eβ = 0, (ad fα)1−β(α̌)fβ = 0 for α 6= β in Π. (31)

The relations (30) and (31) are called the Serre relations.

Proof. (i) If β, γ ∈ ∆+, then either β + γ ∈ ∆+ or β + γ is not a root. Hence n is a
subalgebra of g. Pick x0 ∈ hQ with ∆+ = {β ∈ ∆: β(x0) > 0} and let

m := min{β(x0) : β ∈ ∆+(x0)} and M := max{β(x0) : β ∈ ∆+(x0)},

For any N ∈ N with Nm > M we then have CN(n) = {0}, showing that n is nilpotent.
In the proof of the Generation Theorem 12.6, we have already seen that n is generated

by the root spaces gα = Keα, α ∈ Π, and that g is generated by the subalgebras g(α),
α ∈ Π.

(ii) It remains to verify the Serre relations. Since hα = α̌, the first three relations are
trivial, and the fact that α− β 6∈ ∆ for α 6= β in Π implies that [eα, fβ] = {0} in this case.

If α 6= β, then we consider the α-string through β. Since β − α 6∈ ∆, it is of the form
{β + jα : 0 ≤ j ≤ q}, where q = −β(α̌). This implies that β + (1 − β(α̌))α 6∈ ∆. As a
consequence, (ad eα)1−β(α̌)eβ = (ad fα)1−β(α̌)fβ = 0.

The first relation in (31) is obtained with similar arguments, applied to the sl2-triple
(−hα, fα, eα) and the g(α)-submodule generated by eβ.

Example 14.2. We have seen in Example 8.7 how to find a natural root decomposition
of the Lie algebra sln(K) with respect to the Cartan subalgebra h of diagonal matrices. In
the root system

∆ = {εj − εk : 1 ≤ j 6= k ≤ n},

the subset
∆+ = {εj − εk : 1 ≤ j < k ≤ n}

is a natural positive system with root basis Π = {ε1 − ε2, . . . , εn−1 − εn}. Then

n =
∑
α∈∆+

gα = span{Ejk : j < k}

is the Lie algebra of strictly upper triangular matrices. It is generated by the root vectors
Ej,j+1, j = 1, . . . , n− 1. For each pair of indices j 6= k, we have

g(εj − εk) = span{Ejk, Ekj, Ejj − Ekk} ∼= sl2(K),

and the subalgebras
g(ε1 − ε2), . . . , g(εn−1 − εn)

sitting on the diagonal, generate sln(K). Moreover, sln(K) is also generated by the 2(n−1)
element: Ej,j+1, Ej+1,j, j = 1, . . . , n− 1.
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15 Highest Weight Representations

We know already from Weyl’s Theorem 5.26 on Complete Reducibility that any finite
dimensional module over a semisimple Lie algebra g is semisimple. This reduces the clas-
sification of finite dimensional modules to the classification of simple ones. In this section,
we address this problem for the class of those semisimple Lie algebras which are split, i.e.,
contain a toral Cartan subalgebra. Note that sln(K) and in particular any semisimple Lie
algebra over an algebraically closed field is split.

Throughout this section, g denotes a semisimple Lie algebra and h ⊆ g a toral Cartan
subalgebra. For λ ∈ h∗ and a representation (π, V ) of g, we write

Vλ = Vλ(h) = {v ∈ V : (∀h ∈ h) π(h)(v) = λ(h)v}

for the corresponding weight space in V and P(V ) := {λ ∈ h∗ : Vλ 6= {0}} for the set of
h-weights of V . We simply write ∆ := ∆(g, h) for the set of roots and gα := gα(h), α ∈ ∆,
for the root spaces.

Proposition 15.1. If dimV <∞, then h acts by diagonalizable operators on V and V is
the direct sum of its weight spaces. All weights take rational values on hQ.

Proof. In view of Lemma 10.12, h is spanned by the coroots hα = α̌. Since h is abelian, it
therefore suffices to see that for each root α ∈ ∆, the element hα ∈ h is diagonalizable on
V . Since the g-representation on V restricts to a representation of

g(α) = gα + g−α + Khα ∼= sl2(K)

on V , it suffices to apply Proposition 9.7. Moreover, we see that all eigenvalues of hα are
integral, which implies that each weight takes only rational values on the real subspace
hQ.

Definition 15.2. Let ∆+ ⊆ ∆ be a positive system of roots. (cf. Theorem 11.16). Then

b := h + n ∼= hn n, n :=
∑
β∈∆+

gβ

is a solvable subalgebra of g because it is of the form b = noh for a nilpotent Lie algebra n
(Proposition 14.1). Subalgebras of this type are called standard Borel subalgebras with
respect to h.

15.1 Highest Weights

Definition 15.3. A g-module V is called a module with highest weight λ ∈ h∗ if there is a
b-invariant line Kv ∈ V with

h · v = λ(h)v for h ∈ h,

and v generates the g-module V (i.e., V is the smallest submodule containing v). Then λ
is called the highest weight and the nonzero elements of the generating line Kv are called
highest weight vectors.

Remark 15.4. Since [b, b] = n, all one-dimensional representations of b vanish on n. This
implies that an element v ∈ Vλ(h) is a b-eigenvector if and only if

(∀α ∈ ∆+) π(gα)v = gα · v = {0}.
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Proposition 15.5. Let ∆+ ⊆ ∆ be a positive system. Then each finite dimensional simple
g-module is a highest weight module.

Proof. Let V be a simple g-module. In view of Proposition 15.1, V is a direct sum of its
weight spaces V =

⊕
α∈P(V ) Vα. Since V is finite dimensional, the set P(V ) of weights is

finite.
Pick x0 ∈ hQ with

∆+ = ∆+(x0) = {α ∈ ∆: α(x0) > 0}.

Then P(V )(x0) ⊆ Q (Proposition 15.1) and we can pick a λ ∈ P(V ) such that λ(x0) is
maximal. Let v ∈ Vλ \ {0}. For each α ∈ ∆+, we then have gα · v ⊆ Vλ+α, but the choice
of λ implies that Vλ+α = {0}. Hence v is a b-eigenvector of weight λ. Since V is simple, it
is generated by v.

Remark 15.6. If K is algebraically closed, then we can also use Lie’s Theorem 4.9 to see
that a simple g-module V contains an eigenvector for the solvable Lie algebra b, hence is a
highest weight module.

For β ∈ ∆+ = {β1, . . . , βm}, we choose an sl2-triple (hβ, eβ, fβ) as in the sl2-Theorem 10.9.
As for abstract root systems (Definition 11.20), we define a partial order ≺ on h∗ by

λ ≺ µ :⇐⇒ µ− λ ∈ N0[∆+] :=
∑
β∈∆+

N0β.

Let Π ⊆ ∆+ be the corresponding set of simple roots (Theorem 11.16).
The following theorem describes some properties of highest weight modules which are

not necessarily finite dimensional.

Theorem 15.7. Let V be a g-module with highest weight λ and 0 6= vλ ∈ Vλ a highest
weight vector. Then

(i) V = span{f i1β1 · · · f
im
βm
· vλ | ij ∈ N0} for ∆+ = {β1, . . . , βm}. In particular, V is the

direct sum of its weight spaces.

(ii) P(V ) ⊆ λ− N0[∆+] = λ− N0[Π].

(iii) dimVµ <∞ for all µ ∈ P(V ).

(iv) dimVλ = 1.

(v) V contains exactly one maximal proper g-submodule Vmax and V/Vmax is the unique
simple quotient module of V .

(vi) Every nonzero module quotient of V is a module with highest weight λ.

Proof. (i) Let Π = {α1, . . . , αr} and ∆+ = {β1, . . . , βm}. Then

fβ1 , . . . , fβm , hα1 , . . . , hαr , eβ1 , . . . , eβm

is a basis for g, to which we apply Lemma 13.6. Then the claim follows from

hj1α1
· · ·hjrαre

`1
β1
· · · e`mβm · vλ ⊆ U(b)vλ ⊆ Kvλ

and
V = U(g) · vλ = U(n)U(b) · vλ = U(n) · vλ for n =

∑
β∈∆+

g−β
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(cf. Remark 13.4).
(ii) In view of (i), V is spanned by vectors of the form f i1β1 · · · f

im
βm
· vλ, which are weight

vectors of weight λ−
∑m

`=1 i`β` by Lemma 8.10. Assertion (ii) now follows, since the positive
roots can be written as sums of simple roots.

(iii) For µ ∈ h∗, there are only finitely many vectors of the form f i1β1 · · · f
im
βm
· vλ for

which λ −
∑m

`=1 i`β` equals µ. In fact, if x0 ∈ hQ satisfies βj(x0) > 0 for each j, then
µ = λ−

∑m
l=1 i`β` yields

m∑
`=1

i`β`(x0) = (λ− µ)(x0),

and there are only finitely many solutions (i1, . . . , im) ∈ Nm
0 of this equation because

i` ≤
(λ− µ)(x0)

β`(x0)
, ` = 1, . . . ,m.

(iv) The equality λ = λ−
∑m

`=1 i`β` is only possible for i1 = . . . = im = 0.
(v) By Proposition 8.12, every submodule W ⊆ V is adapted to the weight decomposi-

tion. Since Vλ is one-dimensional and generates V , it follows that every proper submodule
W ⊆ V is contained in

∑
µ 6=λ Vµ. Therefore the union of all proper submodules is still

proper, and hence, a maximal proper submodule Vmax exists. The quotient module V/Vmax

is simple, since for every nontrivial submodule W ⊆ V/Vmax, its inverse image W ′ in V
would be a proper submodule of V , strictly containing Vmax. Conversely, every submodule
W of V , for which V/W is simple (and nonzero), is a maximal submodule, hence equal
to Vmax.
(vi) This is obvious.

Corollary 15.8. If V is a simple highest weight module, then V contains only one b-
invariant line.

Proof. Let Kvλ be a b-invariant line. Then vλ is a weight vector for some weight µ and vλ
generates the simple module V (each simple module is generated by each nonzero element).
Hence P(V ) ⊆ µ−N0[∆+]. If λ is the highest weight of V , we also have P(V ) ⊆ λ−N0[∆+],
which leads to

λ ≺ µ ≺ λ,

and hence to λ = µ. Finally, Theorem 15.7(iv) implies that Vλ is one-dimensional, which
completes the proof.

Proposition 15.9. Two simple g-modules with the same highest weight λ are isomorphic.

Proof. Let V and W be two such modules. We choose nonzero elements vλ ∈ Vλ and
wλ ∈ Wλ. Set M := V ⊕W and m := vλ + wλ. Then Km is a b-invariant line and the
submodule M ′ := U(g) ·m of M generated by m is a module with highest weight λ. Let
prV : M ′ → V and prW : M ′ → W be the canonical projections with respect to the direct
sum V⊕W . Then both, prV and prW , are homomorphisms of g-modules. From prV (m) = vλ
and prW (m) = wλ we derive that prV and prW are surjective. Therefore, we must have
ker prV = M ′

max = ker prW by Theorem 15.7(v), and this implies V ∼= M ′/M ′
max
∼= W .

Definition 15.10. (Verma modules) Let g be a semisimple Lie algebra, h ⊆ g a toral
Cartan subalgebra, and b = h +

∑
β∈∆+ gβ the Borel subalgebra of g corresponding to a

positive system ∆+ of ∆. For λ ∈ h∗, we extend λ to a linear functional λ̂ on b vanishing
on all root spaces gα, α ∈ ∆+. Then

[b, b] =
∑
β∈∆+

gβ ⊆ ker λ̂
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implies that λ̂ : b → K ∼= gl1(K) is a homomorphism of Lie algebras, hence defines a one-
dimensional representation of b. The Lie algebra homomorphism λ further extends to a
unital algebra homomorphism λ̃ : U(b)→ K.

In the following we shall use the notation

AB := span{ab : a ∈ A, n ∈ B}

for subsets A,B of an associative algebra. In this sense, we define

M(λ) := M(λ,∆+) := U(g)/Lλ,

where
Lλ := U(g){b− λ̂(b)1 : b ∈ b}

is the left ideal of U(g) generated by the elements of the form b− λ̂(b)1, b ∈ b. The module
M(λ) is called the Verma module of highest weight λ. We write [D], D ∈ U(g), for its
elements. Since M(λ) is a quotient by a left ideal of U(g), it carries a natural U(g)-module
structure, hence in particular a g-module structure.

To see that M(λ) is non-zero, we use the Poincaré–Birkhoff–Witt Theorem 13.7 to see
that, for n =

∑
α∈∆+ g−α, the multiplication map

U(n)⊗ U(b)→ U(g), d1 ⊗ d2 7→ d1d2

is a linear bijection. Therefore Lλ = U(n) · ker λ̃ is a proper subspace of U(g) and this
means that M(λ) 6= {0}.

The g-module M(λ) is indeed a highest weight module of highest weight λ because
vλ := [1] satisfies for b ∈ b:

b · vλ = b · [1] = [b] = [λ(b)1] = λ(b)[1] = λ(b)vλ,

and
U(g) · [1] = [U(g)] = M(λ).

Using Theorem 15.7, we obtain a simple highest weight module with highest weight λ
as

L(λ) := L(λ,∆+) := M(λ,∆+)/M(λ,∆+)max.

Combining Proposition 15.9 with the preceding lemma, we obtain:

Proposition 15.11. Fix a positive system ∆+ of ∆. Then, for every λ ∈ h∗, there ex-
ists a simple highest weight module L(λ,∆+) with highest weight λ which is unique up to
isomorphism.

15.2 Classification of Finite Dimensional Simple Modules

We want to characterize the linear functionals on h which occur as highest weights of simple
g-modules.

Definition 15.12. A linear functional λ ∈ h∗ is said to be integral if

λ(α̌) ∈ Z for α ∈ ∆,

and it is called dominant with respect to the positive system ∆+ if

λ(α̌) ≥ 0 for α ∈ ∆+.
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We denote the set of all integral functionals on h by P (the weight lattice) , and the set of
all dominant integral functionals by P+.

Let Π ⊆ ∆+ be the set of simple roots, which is a basis for h∗. Since the set Π̌ =
{α̌ : α ∈ Π} is a basis for the dual root system ∆̌ ⊆ hR (Proposition 11.24),

P = {λ ∈ h∗ : (∀α ∈ Π) λ(α̌) ∈ Z} ∼= Zr

and
P+ = {λ ∈ h∗ : (∀α ∈ Π) λ(α̌) ∈ N0} ∼= Nr

0.

Remark 15.13. The Weyl group of the root system ∆ can be identified with the subgroup
W ⊆ GL(h∗) generated by the reflections

σα(λ) = λ− λ(α̌)α,

and this formula immediately implies that the weight lattice P is invariant under W . The-
orem 11.23 implies that for each ν ∈ P , there exists a w ∈ W with w(ν) ∈ P+, i.e.,

P =WP+.

Proposition 15.14. Let V be a finite dimensional g-module. Then PV ⊆ P and if λ is a
highest weight of V with respect to ∆+, then λ ∈ P+.

Proof. Let α ∈ ∆+ and g(α) ∼= sl2(K) be the corresponding 3-dimensional subalgebra
of g. If µ ∈ PV is a weight of V , then Proposition 9.7 implies that µ(α̌) ∈ Z, so that
µ ∈ P . If vλ ∈ Vλ(h) is a highest weight vector, then gα · vλ = {0} implies that λ(α̌) ∈ N0

(Proposition 9.3).

Lemma 15.15. Let V be a g-module and W = W(∆) the Weyl group of ∆. If, for each
α ∈ Π, V is a locally finite g(α)-module, i.e., a union of finite dimensional submodules,
then each weight µ of V satisfies

dimVµ = dimVw(µ) for w ∈ W .

In particular, WPV = PV .

Proof. Since W is generated by the reflections σα, α ∈ Π, it suffices to prove the assertion
for w = σα. Let ρ : g → gl(V ) denote the representation of g on V and (hα, eα, fα) an
sl2-triple corresponding to α ∈ Π. According to our hypothesis, each v ∈ V is contained
in a finite dimensional g(α)-submodule, so that ρ(hα) is diagonalizable by Proposition 9.7.
Let hα := kerα ⊆ h, so that we have the direct sum decomposition h = hα⊕Kα̌. Then the
weight space Vµ is contained in the subspace

W := Vµ|hα (hα) =
∑

ν−µ∈h⊥α=Kα

Vν =
∑
c∈K

Vµ+cα

which is invariant under g(α) because g(α) commutes with hα (cf. Exercise 4.1). Next we
note that

σα(µ) = µ− µ(α̌)α ∈ µ+ Kα,

so that Vσα(µ) ⊆ W . As Vµ+cα is the µ(hα) + 2c-eigenspace of ρ(hα) in W and (σαµ)(hα) =
−µ(hα), the assertion follows from Proposition 9.7(ii). Note that this proposition can be
used here because W is a union of finite dimensional g(α)-submodules.

Lemma 15.16. If λ ∈ P+, then the set {µ ∈ P+ : µ ≺ λ} is finite.
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Proof. We consider ∆ as a root system realized in a euclidean vector space E ∼= Hom(hQ,R)
(cf. Proposition 11.4). Then

P = {µ ∈ E : (∀α ∈ Π) (µ, α̌) ∈ Z}
⊇P+ = {µ ∈ E : (∀α ∈ Π) (µ, α̌) ∈ N0} ⊆ {µ ∈ E : (∀α ∈ Π) (µ, α) ≥ 0}.

For µ ≺ λ, we have λ− µ ∈ N0[Π], so that we obtain

0 ≤ (λ+ µ, λ− µ) = ‖λ‖2 − ‖µ‖2.

Therefore µ is contained in the closed ball B of radius ‖λ‖, which is compact. On the other
hand, P is a discrete subset of E, and therefore B ∩ P is finite.

Proposition 15.17. Let g be a semisimple Lie algebra and h be a toral Cartan subalgebra
of g. If λ ∈ h∗ is dominant integral with respect to ∆+, then the simple highest weight
module L(λ,∆+) of highest weight λ is finite dimensional.

Proof. For each simple root α ∈ Π, using Theorem 10.9, we choose an sl2-triple (hα, eα, fα),
so that g(α) = span{hα, eα, fα} ∼= sl2(K) and hα = α̌. Let vλ ∈ V := L(λ,∆+) be a highest
weight vector. For α, β ∈ Π, we put mα := λ(hα) = λ(α̌) ∈ N0 and observe that

eβf
mα+1
α vλ =

{
fmα+1
α eβvλ = 0 if α 6= β,

fmα+1
α eβvλ + (mα + 1)fmαα (hα −mα1)vλ = 0 if α = β.

Here we use that [eβ, fα] ∈ gβ−α = {0} for α 6= β, and for α = β we use the formula

[e, fn+1] = (n+ 1)fn(h− n1)

from Lemma 9.2(ii) and eβ · vλ = 0. Since the eα, α ∈ Π, generate the subalgebra n =∑
β∈∆+ gβ (Proposition 14.1), the vector fmα+1

α vλ is a b-eigenvector, hence 0 because V is
simple (Corollary 15.8). Therefore

span{vλ, fαvλ, . . . , fmαα vλ}
is a finite dimensional g(α)-module with highest weight λ(α̌) = mα. Therefore the subspace
Vfin of V spanned by all finite dimensional g(α)-submodules is nonzero.

Let E ⊆ V be a finite dimensional g(α)-submodule. Then span(g·E) is finite dimensional
and g(α)-stable because we have for x ∈ g(α), y ∈ g and v ∈ E the relation

x · (y · v) = [x, y] · v + y · (x · v) ∈ span(g · E).

Therefore g ·E ⊆ Vfin. This implies that Vfin is a g-submodule. Since V is simple, we obtain
V = Vfin, i.e., V is a locally finite g(α)-module.

Since all weights of V are integral (Proposition 15.14) and the weight set PV of V is
invariant under the Weyl group W (Lemma 15.15), Remark 15.13 shows that

PV ⊆ W(PV ∩ P+) ⊆ W
(
{µ ∈ P+ | µ ≺ λ}

)
.

This set is finite becauseW is finite and the set {µ ∈ P+ | µ ≺ λ} is finite by Lemma 15.16.
As all weight spaces Vµ are finite dimensional by Theorem 15.7, this concludes the proof.

Theorem 15.18. (Highest Weight Theorem) Let g be a split semisimple Lie algebra, h
be a toral Cartan subalgebra of g and ∆+ ⊆ ∆ be a positive system. The assignment
λ 7→ L(λ,∆+) defines a bijection between the set P+ of dominant integral functionals and
the set of isomorphism classes of finite dimensional simple g-modules.

Proof. To see that the assignment is defined, we first use Proposition 15.17 to see that, for
λ ∈ P+, the simple g-module L(λ,∆+) is finite dimensional.

Next we recall from Proposition 15.5 that each finite dimensional simple g-module V is
a highest weight module with some highest weight λ. In view of Proposition 15.14, λ ∈ P+,
so that V ∼= L(λ,∆+). Hence the assignment is surjective. That it is also injective follows
from the fact that, for λ 6= λ′ ∈ P+, we have L(λ,∆+) 6∼= L(λ′,∆+) by Proposition 15.9.
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15.3 The Eigenvalue of the Casimir Operator

In this section we construct a special element Cg in the center of the enveloping algebra of
g and calculate its (scalar) action in a highest weight module. In special cases this allows
to identify a given simple g-module.

Definition 15.19. (Universal Casimir element) Let g be a finite dimensional split semisim-
ple Lie algebra with Cartan–Killing form κ. As before, we choose for each β ∈ ∆+ an
sl2-triple (hβ, eβ, fβ) and e∗β ∈ g−β, f ∗β ∈ gβ with

κ(eβ, e
∗
β) = 1 = κ(fβ, f

∗
β).

We further choose a basis h1, . . . , hr for h, and we write h1, . . . , hr for the dual basis with
respect to the nondegenerate restriction of κ to h× h. Then

{hi, eβ, fβ : i = 1, . . . , r; β ∈ ∆+}

is a basis for g and
{hi, e∗β, f ∗β : i = 1, . . . , r; β ∈ ∆+}

is the dual basis with respect to κ. We therefore obtain a central element of U(g) by

Cg =
k∑
i=1

hih
i +

∑
β∈∆+

eβe
∗
β + fβf

∗
β (32)

(Lemma 5.20). It is called the universal Casimir element.

Lemma 15.20. For a positive system ∆+, we put ρ = 1
2

∑
α∈∆+ α. If (ρV , V ) is a highest

weight module with highest weight λ, also considered as a U(g)-module, then

ρV (Cg) = (λ, λ+ 2ρ)1 =
(
‖λ+ ρ‖2 − ‖ρ‖2

)
1.

If λ is dominant and nonzero, then ρV (Cg) 6= 0.

Proof. We write the Casimir element Cg in the form (32) as described in Definition 15.19.
We compute the action of Cg on V . Let vλ be a highest weight vector in V . Then eβ · vλ =
f ∗β · vλ = 0 for each β ∈ ∆+, and [eβ, e

∗
β] = tβ (cf. Lemma 10.7) implies

eβe
∗
β · vλ = [eβ, e

∗
β] · vλ + e∗βeβ · vλ = λ(tβ)vλ = (λ, β)vλ,

so that
∑

β∈∆+(eβe
∗
β + fβf

∗
β) · vλ = 2(λ, ρ)vλ. On the other hand, we calculate

k∑
i=1

λ(hi)λ(hi) = λ
( k∑
i=1

κ(h′λ, h
i)hi

)
= λ(h′λ) = (λ, λ).

Putting these facts together yields

Cgvλ = (λ, λ+ 2ρ)vλ =
(
‖λ+ ρ‖2 − ‖ρ‖2

)
vλ.

Since Cg is central in U(g) (Exercise 13.1), Cg acts by the same scalar on the entire U(g)-
module V = U(g)vλ.

Finally, we assume that λ is dominant and nonzero. Then λ(α̌) ≥ 0 for all α ∈ ∆+

implies that (λ, α) ≥ 0, and hence that (λ, ρ) ≥ 0. This leads to (λ, λ+2ρ) ≥ (λ, λ) > 0.
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Exercises for Section 15

Exercise 15.1. A g-module V is said to be cyclic if it is generated by some element v ∈ V .
If ρ : g → gl(V ) is the module structure and ρ̃ : U(g) → End(V ) the canonical extension,
then the annihilator

I := AnnU(g)(v) := {D ∈ U(g) : ρ̃(D)v = 0}

of v is a left ideal. Show that:

(a) If I ⊆ U(g) is a left ideal, then the quotient U(g)/I carries a natural g-module
structure, defined by x · (D + I) := σ(x)D + I, and this g-module is cyclic.

(b) Every cyclic g-module is isomorphic to one of the form U(g)/I, as in (a).

Exercise 15.2. Simple g-modules are particular examples of cyclic g-modules. Show that:

(a) If I ⊆ U(g) is a maximal (proper) left ideal, then the quotient U(g)/I is a simple
g-module.

(b) Every simple g-module is isomorphic to one of the form U(g)/I, where I is a maximal
left ideal in U(g).

Exercise 15.3. Let g be a reductive Lie algebra and h ⊆ g a toral Cartan subalgebra.
Let V be a simple g-module on which h acts by diagonalizable operators (such modules
are called weight modules. Identifying the root system of g with that of its semisimple
commutator algebra, the notion of a positive system makes also sense for g. Show that, in
this sense, for each positive system ∆+ of ∆, V is a highest weight module.

16 Applications to elementary particles

In this brief section we describe the bridge between the representation theory of Lie algebras
and its application in the theory of elementary particles.

The fundamental idea underlying this connection is that the state space of a quantum
mechanical system is the projective space

P(H) := {[v] = Cv : 0 6= v ∈ H}

of one-dimensional subspaces of a complex Hilbert space H. In the discussion below we
assume that H is finite dimensional which is sufficiently general for the applications we
want to describe ([BH09]). States will always be represented by unit vectors: 〈v, v〉 = 1.

In the following we shall always assume that the scalar product 〈·|·〉 on H is linear in
the second and antilinear in the first argument. As we shall see below, this is natural in the
quantum mechanical context. In particular, it is consistent with Dirac’s bra-ket notation,
where vectors in the Hilbert space H are written |v〉 and elements in the dual space of
continuous linear functionals on H as 〈v|. Applying the linear functional 〈v| to the vector
|w〉 results in the complex number 〈v|w〉. Applying operators A : H → H to vectors then
looks like A|v〉.

The observables of the quantum system correspond in this context to symmetric oper-
ators A = A∗ on H. The real number

HA([v]) = 〈v|A|v〉 ∈ R
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is interpreted as the expectation value of the observable A in the states [v]. Since A is
diagonalizable, we can always write v =

∑
α vα, where vα is an A-eigenvector corresponding

to the eigenvalue α ∈ R. Then

HA([v]) =
∑
α

α‖vα‖2 ∈ conv(Spec(A))

is a convex combination of the eigenvalues α because 1 = ‖v‖2 =
∑

α ‖vα‖2. So the value
of the observable A in [v] is a superposition of the different eigenvalues and one says that
A has in [v] the “sharp value” α if v = vα, i.e., if the variance vanishes: 〈v|(A− α1)2|v〉 =
‖Av − αv‖2 = 0.

In the theory of elementary particles, the finite dimensional space H represents a system
with dimH different particles, a so-called multiplet which corresponds to an orthonormal
basis of H. One further requires that the space H carries an irreducible unitary represen-
tation of a compact Lie group G. In terms of Lie algebras, this means that we have a
homomorphism of Lie algebras

ρ : g→ u(H) := {X ∈ End(H) : X∗ = −X},

i.e., a unitary representation of g on H (Section 2). Then ρ extends to a complex linear
representation

ρC : gC → End(H), ρC(x+ iy) := ρ(x) + iρ(y), x, y ∈ g,

satisfying
ρC(Z)∗ = −ρC(Z), where x+ iy = x− iy.

In particular, the operators ρC(ix) = iρ(x), x ∈ g, are symmetric and correspond to
observables of the corresponding quantum system. We are thus lead to finite dimensional
simple modules of complex (semisimple) Lie algebras which can be classified in terms of
their highest weights.

In the theory of elementary particles one also considers composed particles. This is mod-
elled by tensor products of representations. Consider two unitary representations (ρj,Hj),
j = 1, 2, corresponding to two families F1 and F2 of particles. Then we can form the tensor
product representation

ρ := ρ1 ⊗ ρ2 with ρ(z)(v ⊗ w) := ρ1(z)v ⊗ w + v ⊗ ρ2(z)w.

It is unitary with respect to the natural scalar product on H1 ⊗H2, specified by

〈v1 ⊗ w1|v2 ⊗ w2〉 := 〈v1|v2〉〈w1|w2〉.

The particles described by the representation (ρ1⊗ρ2,H1⊗H2) are interpreted as composed
from one particle in the family F1 and one in F2. More generally, the representation
ρ⊗n1 ⊗ ρ⊗m2 on H⊗n1 ⊗ H⊗m2 describes particles composed from n particles in F1 and m
particles in F2.

For a unitary representation (ρ,H) one can also form the dual representation on the
dual space H∗ of continuous linear functionals α : H → C. Writing β ∈ H∗ as β = 〈vβ| for
some vβ ∈ H, we have

〈α|β〉 := 〈vβ|vα〉.
The representation of the Lie algebra g on the dual space is given by

ρ∗(z)α := −α ◦ ρ(z).

In the context of elementary particles, the dual representation corresponds to antiparti-
cles.18

18The map H → H∗, v 7→ 〈v| is an antilinear isometry. One can therefore identify H∗ with the space
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16.1 Nucleons and the isospin Lie algebra

To make this dictionary for the translation between representations and elementary particles
more concrete, we start with a very simple system. The underlying idea is to consider proton
and neutron (particles in an atomic nucleus) as two states of the same particle, the nucleon.
It goes back to the early days of quantum mechnics (Heisenberg; 1932) and is based on
the observation that both nucleons behave almost alike under strong interactions (nuclear
forces).

To distinguish the two types of nucleons, one introduces a (virtual) coordinate called
isospin τ . Since this obervable has to take two values, it corresponds to an operator on the
2-dimensional Hilbert space C2, which carries the obvious irreducible unitary representation
of G = SU2(C), resp., gC = sl2(C). Accordingly, su2(C) is called the isospin Lie algebra.

We define the three isospin operators by

Î1 =
1

2

(
0 1
1 0

)
, Î2 =

1

2

(
0 −i
i 0

)
, Î3 =

1

2

(
1 0
0 −1

)
.

These symmetric operators satisfy the commutation relations

[Î1, Î2] = iÎ3, [Î2, Î3] = iÎ1, [Î3, Î1] = iÎ2,

so that the corresponding elements iÎj of su2(C) satisfy

[−iÎ1,−iÎ2] = −iÎ3, [−iÎ2,−iÎ3] = −iÎ1, [−iÎ3,−iÎ1] = −iÎ2

(cf. Example 1.35).
From Theorem 9.5 we know that the finite dimensional irreducible representations of

sl2(C) are of the form (πn, Vn) with Vn = L(n), n ∈ N0, and dimVn = n + 1. The number
I = n

2
is called the total isospin of the particles described by Vn. Accordingly, we define an

operator Î on Vn by n
2
1.

The eigenvalues of the operators Î and Î3 (often called the third isospin component) clas-
sify the states in all finite dimensional irreducible representations of su2(C), resp., sl2(C).

The first one determines the simple module as V2I and Î3 determines the state within the
multiplet described by V2I . In physics, this is expressed by Dirac’s bra-ket notation

Î|II3〉 = I|II3〉 and Î3|II3〉 = I3|II3〉.

If the total isosping I is fixed, then

|II3〉, I3 ∈ {−I,−I + 1, . . . , I − 1, I}

describes an orthonormal basis of Î3 eigenvectors in V2I .
The doublet of nucleons, proton p and neutron n, consists of two particles with total

isospin 1
2

given by the vectors

|p〉 =
∣∣∣1
2
,
1

2

〉
=

(
1
0

)
and |n〉 =

∣∣∣1
2
,−1

2

〉
=

(
0
1

)
in V1

∼= C2.

These are the two states of a single nucleon corresponding to the values ±1
2

of the (third

component of) isospin Î3. The terminology ‘isospin’ has been chosen because nuclei with

H, endowed with the new scalar multiplication λ ∗ v := λv. This complex vector space is denoted H.
Then the scalar product on H∗ corresponds to the hermitian scalar product 〈v|w〉∗ := 〈w|v〉 on H. This
picture has the advantage that the dual representation ρ∗ of g corresponds to the original representation
ρ : g→ u(H) = u(H).
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the same number of nucleons (isotopes) can be distinguished by the eigenvalues of Î3. A
nucleus withNp protons andNn neutrons containsN = Np+Nn nucleons and has the isospin
1
2
(Np−Nn), hence is determined by the pair (N, 1

2
(Np−Nn)). The operator corresponding

to the charge of a nucleon is Q̂ = e(Î3 + 1
2
1), where −e is the charge of an electron. The

neutron has charge 0 and the proton has charge e.
Multiplets of particles composed from N nucleons correspond to irreducible subrepre-

sentation of the N -fold tensor product V ⊗N1 , on which the charge operator takes the form

Q̂ = e(Î3 + N
2
1). We therefore need some information on the decomposition of tensor

products of representations of sl2(C):

Proposition 16.1. For n,m ∈ N0, we have Vn ⊗ Vm =
⊕min(n,m)

q=0 Vn+m−2q.

Since tensor products are distributive and every finite dimensional representation of
sl2(C) is a direct sum of irreducible ones, the preceding proposition can be used to deter-
mine for every tensor product of finite dimensional representations the decomposition into
irreducible ones. From

V1 ⊗ V1
∼= S2(V1)⊕ Λ2(V1) ∼= V2 ⊕ V0 (33)

we obtain in particular

V1 ⊗ V1 ⊗ V1
∼= V1 ⊗ (V2 ⊕ V0) ∼= (V1 ⊗ V2)⊕ (V1 ⊗ V0) ∼= V3 ⊕ V1 ⊕ V1 = 2V1 ⊕ V3. (34)

In terms of nucleons, (33) means that from 2 nucleons we obtain two multiplets: a triplet
V2 and a singlet V0. One of these particles is the deuteron d, composed of one proton and
one neutron. Its charge is e and its isospin is 0:

Q̂|d〉 = e|d〉 and I3|d〉 = 0|d〉.

For the total isospin I, only the two values 0 and 2 are possible. The state with I = 0 is
called a ground state of the deuteron. It is represented in V ⊗2

1 by the invariant unit vector

1√
2

(p⊗ n− n⊗ p).

From the triplet V2
∼= S2(V1) ⊆ V ⊗2

1 only[ 1√
2

(p⊗ n + n⊗ p)
]

corresponds to a deuteron. It represents an excited deuteron state of total isospin 2.

16.2 Up and down quarks and the isospin Lie algebra

If is one of the fundamental insights of nuclear physics that the nucleons are not elementary
particles in the sense that they should be considered as composed from more fundamental
particles called quarks.

The up- and down-quark u and d corresponds to a 2-dimensional representation of the
isospin algebra su2(C):

|u〉 =
∣∣∣1
2
,
1

2

〉
=

(
1
0

)
and |d〉 =

∣∣∣1
2
,−1

2

〉
=

(
0
1

)
in V1

∼= C2.
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With respect to the isosping algebra, this doublet behaves in the same way as the doublet
of nucleons. These two quarks are considered as two states of a quark particle of total
isospin 1

2
which are distinguished by the I3-value.

To particles composed from quarks we associate a baryon number B in an additive way
with B = 1

3
for quarks and B = −1

3
for antiquarks. Particles composed from p quarks

and q antiquarks (corresponding to subrepresentations of V ⊗p1 ⊗ (V ∗1 )⊗q ∼= V
⊗(p+q)

1 have the

baryon number 1
3
(p−q). If B̂ is the corresponding operator, then the Gell–Mann–Nishijima

formula

Q̂ = Î3 +
1

2
B̂

describes the normalized charge of a particle in terms of multiples of e:

Q̂|u〉 =
2

3
|u〉 and Q̂|d〉 = −1

3
|d〉.

In terms of the Î3, Q̂-eigenvalues, we obtain the following description of the quarks

|u〉 =

∣∣∣∣12 , 2

3

〉
, |d〉 =

∣∣∣∣−1

2
,−1

3

〉
and their antiparticles:

|u〉 =

∣∣∣∣−1

2
,−2

3

〉
, |d〉 =

∣∣∣∣12 , 1

3

〉
.

Particles composed from a quark and an antiquark are called mesons; their baryon
number is B = 0. They correspond to states in

V1 ⊗ V ∗1 ∼= V ⊗2
1
∼= V2 ⊕ V0,

so they can form a triplet and a singulet. The triplet corresponds to the pions, or π-mesons

π+ = |1, 0〉 = [u⊗d], π0 = |0, 0〉 =
[ 1√

2
(u⊗u+d⊕d)

]
, π− = |−1, 0〉 = [d⊗u]. (35)

Particles composed from three quarks are called baryons. Their baryon number is B = 1.
The baryon representation is

V ⊗3
1
∼= 2V1 ⊕ V3.

On of the two doublets in this representation corresponds to the nucleons, as particles
composed from three quarks:

p =
[ 1√

2
(u⊗ d⊗ u− d⊗ u⊗ u)

]
and n =

[ 1√
2

(u⊗ d⊗ d− d⊗ u⊗ d)
]
. (36)

This means that the proton is composed from two u-quarks and one d-quark and the neutron
from two d-quarks and one u-quark. It is easy to verify that the subspace generated by
these two states is actually invariant under the natural action of the isospin algebra on V ⊗3

1 .

16.3 Strange quarks and the flavor Lie algebra

We now turn to the larger Lie algebra g = su3(C) with gC ∼= sl3(C) that contains su2(C) in
the obvious way as a subalgebra. We shall see below how this Lie algebra is related to the
composition of particles by quarks. In this context it is called the flavor Lie algebra, which
refers to the different flavors of the quarks.
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The Cartan subalgebra h ⊆ gC is 2-dimensional, so that, in addition to the isospin
operator Î3, we need a second operator Ŷ called the hypercharge operator, to generate h:

Î3 =
1

2

1 0 0
0 −1 0
0 0 0

 and Ŷ =
1

3

1 0 0
0 1 0
0 0 −2

 .

We know that the a positive system of roots for sl3(C) can be written as

∆+ = {α, β, α + β}, α = ε1 − ε2, β = ε2 − ε3.

We have α(Î3) = 1, β(Î3) = −1
2
, α(Ŷ ) = 0 and β(Ŷ ) = 1. This leads to

Î3 =
1

2
α̌ und Ŷ =

1

3
(α̌ + 2β̌).

Let Vp,q be the simple highest weight module with highest weight λ determined by
λ(α̌) = p and λ(β̌) = q. Then

λ(Î3) =
p

2
und λ(Ŷ ) =

1

3
(p+ 2q).

The triplet V1,0
∼= C3 (with the identical representation) is spanned by the vectors u, d,

und s called up-, down-, and strange quark (u-, d-, and s-quark for short). The correspond
to the canonical basis vectors:

|u〉 =

∣∣∣∣12 , 1

3

〉
=

1
0
0

 , |d〉 =

∣∣∣∣−1

2
,
1

3

〉
=

0
1
0

 , and |s〉 =

∣∣∣∣0,−2

3

〉
=

0
0
1

 ,
where the labels are the corresponding eigenvalues of Î3 and Ŷ . The charge operator is

Q̂ = 1
2
Ŷ + Î3 =

1

3

2 0 0
0 −1 0
0 0 −1

 =
1

3
(2α̌ + β̌),

so that

Q̂|u〉 =
2

3
|u〉, Q̂|d〉 = −1

3
|d〉, and Q̂|s〉 = −1

3
|s〉.
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The dual representation is the triplet V ∗1,0
∼= V0,1. The corresponding states are the

antiquarks

|u〉 =

∣∣∣∣−1

2
,−1

3

〉
, |d〉 =

∣∣∣∣12 ,−1

3

〉
, and |s〉 =

∣∣∣∣0, 2

3

〉
.

Every particule with su3(C)-symmetry composed from p quarks and q antiquarks is
contained in a submultiplet of the tensor product V p

1,0 ⊗ V
q

0,1 which contains in particular
the simple submodule Vp,q. One can show that V ∗p,q

∼= Vq,p. As in the preceding subsection,
we define the baryon number B in an additive way with B = 1

3
for quarks and B = −1

3
for

antiquarks. If B̂ is the corresponding operator, then Ŝ := Ŷ − B̂ is called the strangeness
operator. In the fundamental representation we have

Ŝ =

0 0 0
0 0 0
0 0 −1

 , i.e., Ŝ|u〉 = 0, Ŝ|d〉 = 0, Ŝ|s〉 = −|s〉,

so that the s-quark has strangeness −1. The charge of a particle can be computed with the
Gell-Mann–Nishijima formula:

Q̂ = Î3 +
1

2
(B̂ + Ŝ) = Î3 + Ŷ .

Example 16.2. (a) Particles composed from 2 quarks are obtained by

V1,0 ⊗ V1,0
∼= S2(V1,0)⊕ Λ2(V1,0) ∼= V2,0 ⊕ V0,1,

a sextet and a triplet.
(b) Likewise, particles composed from 2 antiquarks are obtained from V0,1 ⊗ V0,1 =

V0,2 ⊕ V1,0, a sextet and a triplet.
(c) Particles composed from one quark and one antiquark, mesons, are obtained from

V1,0 ⊗ V0,1
∼= V1,0 ⊗ V ∗1,0 ∼= End(V1,0) ∼= sl(V1,0)⊕ C idV1,0

∼= V1,1 ⊕ V0,

an octet and a singlet. Together, these particles form the nonet of pseudoscalar mesons
([GM85, p. 320]). Here V1,1 is the 8-dimensional representation of su3(C) corresponding to

the adjoint representation of sl3(C). In the following diagram Ŝ = Ŷ is the strangeness
operator and the two coordinates are charge and strangeness.

The nonet of pseudoscalar mesons:
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Since the [Ŝ, g(α)] = {0}, the eigenspaces of Ŝ are representations of the isospin Lie

algebra g(α) ∼= sl2(C) (the horizontal lines in the diagram). As [Q̂, g(β)] = {0}, the

eigenspaces of Q̂ are representations of the Lie algebra g(β) ∼= sl2(C) (the slanted lines
with negative slope).

The particles in this nonet are the pions (cf. (35))

π+ = [u⊗ d], π0 =
[ 1√

2
(u⊗ u + d⊗ d)

]
, π− = [d⊗ u]

(a 3-dimensional representation of the isospin algebra), the kaons

K0 = [d⊗ s], K+ = [u⊗ s], K− = [s⊗ u], K
0

= [s⊗ d]

(two 2-dimensional representations of the isospin algebra), and the particle

η′ =
[ 1√

3
(u⊗ u + d⊗ d + s⊗ s)

]
,

which forms a singulet because it corresponds to a trivial subrepresentation of the flavor
algebra sl3(C).

(d) Another important octet are the baryons, composed of 3 quarks. It is obtained as a
summand of type V1,1 from the decomposition

V ⊗3
1,0
∼= S3(V1,0)⊕ Λ3(V1,0)⊕ V1,1 ⊕ V1,1

∼= V3,0 ⊕ V0,0 ⊕ 2V1,1.

Here V3,0 is a 10-dimensional space and V0,0 is one-dimensional.

The baryon octett:

Here we find the nucleons (proton and neutron) in the S = 0-eigenspace of a subrepre-
sentation of type V1,1 (see (36))).

For further reading we recommend the survey [BH09] on grand unified theories.
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A The Jordan Decomposition

In this appendix we develop a tool that will be of crucial importance throughout the struc-
ture theory of Lie algebras: the Jordan decomposition of an endomorphism of a finite
dimensional vector space. Although the existence of the Jordan decomposition can be de-
rived from the Jordan normal form, the proof of the Jordan decomposition is less involved
because it does not specify the structure of the nilpotent component. Since we need various
properties of the Jordan decomposition, we give a direct self-contained proof which does
not require more than some elementary properties of polynomials.

Definition A.1. Let V be a vector space and M ∈ End(V ).
(a) For λ ∈ K, we define the eigenspace with respect to λ as

Vλ(M) := ker(M − λ1)

and the generalized eigenspace as

V λ(M) :=
⋃
n∈N

ker(M − λ1)n.

Note that the ascending sequence ker(M − λ1)n is eventually constant if V is finite dimen-
sional. We call λ an eigenvalue if Vλ(M) 6= {0}.

(b) We call M diagonalizable if V =
⊕

λ∈K Vλ(M), i.e., V is a direct sum of the
eigenspaces of M .

(c) We call M nilpotent if there exists an n ∈ N with Mn = 0. If M is nilpotent, then
V = V 0(M).

(d) We call M split if there is a nonzero polynomial f ∈ K[X] with f(M) = 0 which
decomposes as a product of linear factors. This is always the case for K = C.

(e) For K = R, we call M semisimple if the endomorphism MC of VC, defined by
MC(v + iv′) = MviMv′ is diagonalizable (cf. Exercise A.5).

Theorem A.2. (Jordan Decomposition Theorem) Let V be a finite dimensional vector
space and M ∈ End(V ) a split endomorphism. Then there exists a diagonalizable endomor-
phism Ms and a nilpotent endomorphism Mn such that

(i) M = Ms +Mn.

(ii) V λ(Ms) = Vλ(Ms) = V λ(M) for each λ ∈ K.

(iii) There exist polynomials P,Q ∈ K[X] with P (0) = Q(0) = 0 such that Ms = P (M)
and Mn = Q(M).

(iv) If L ∈ End(V ) commutes with M , then it also commutes with Ms and Mn.

(v) (Uniqueness of the Jordan decomposition) If S,N ∈ End(V ) commute, S is diago-
nalizable and N nilpotent with M = S +N , then S = Ms and N = Mn.

Proof. Let f ∈ K[X] be the minimal polynomial of M , i.e., a generator of the ideal IM :=
{f ∈ K[X] : f(M) = 0} with leading coefficient 1. By assumption, IM contains a nonzero
polynomial which is a product of linear factors, so that Exercise A.6 implies that f also has
this property. Hence there exist pairwise different λ1, . . . , λm ∈ K and ki ∈ N such that f
can be written as

f = (X − λ1)k1(X − λ2)k2 · · · (X − λm)km .
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Put fi := f/(X − λi)ki . Then the ideal

I := (f1) + . . .+ (fm) ⊆ K[X]

is generated by some element g (K[X] is a principal ideal domain, a simple consequence of
Euclid’s Algorithm) which is the greatest common divisor of the polynomials fi. The fact
that the f1, . . . , fm have no nontrivial common divisor (cf. Exercise A.6) implies that g is
constant, so that I = K[X]. Hence 1 ∈ I, so that there exist polynomials r1, . . . , rm ∈ K[X]
with

1 = r1f1 + . . .+ rmfm.

Put Ei := (rifi)(M) ∈ End(V ) and note that
∑

iEi = idV . If i 6= j, then f divides rifirjfj,
so that f(M) = 0 leads to EiEj = 0, and thus E2

i = Ei
(∑m

j=1Ej
)

= Ei. Therefore
the Ei are pairwise commuting projections onto subspaces Vi with V =

⊕m
i=1 Vi (since∑m

i=1 Ei = 1). Now Ms :=
∑m

i=1 λiEi is diagonalizable with Vi = Vλi(Ms).
Since M commutes with each Ei, it preserves the subspaces Vi, and therefore fi(M)

preserves Vi. The relation
idVi = Ei|Vi = ri(M)fi(M)|Vi

shows that the restriction of fi(M) to Vi is invertible. Therefore f(M) = 0 leads to

(M − λi1)ki(Vi) = (M − λi1)kifi(M)(Vi) = f(M)(Vi) = {0},

i.e., Vi ⊆ V λi(M).
With Mn := M − Ms and k0 := max{ki : i = 1, . . . ,m} we finally get Mk0

n = 0,
proving (i).

(ii) We have to show that Vi = V λi(M). We know already that Vi ⊆ V λi(M). So
let v ∈ V λi(M) and write v as v =

∑m
j=1 vj with vj ∈ Vj. Then the invariance of Vj

under M implies that vj ∈ V λi(M). If vj 6= 0, then there exists a nonzero eigenvector
v′j ∈ Vλi(M) ∩ Vj (put v′j = (M − λi1)kvj, where k is maximal with the property that this
vector is nonzero). Then (M −λj1)njv′j = (λi−λj)njv′j = 0, hence λj = λi, i.e., j = i. This
implies that v = vi ∈ Vi and therefore V λi(M) = Vi.

(iii) By construction, Ms = P1(M) and Mn = Q1(M) for P1 =
∑

i λirifi and Q1 =
X − P1. It remains to be seen that these polynomials can be chosen with trivial constant
term. If one eigenvalue λj vanishes, then {0} 6= V0 := kerM ⊆ Vj and Ms|V0 = 0 implies
that P1 has no constant term. Then Q1 = X − P1 likewise has no constant term and (iii)
holds with P := P1 and Q := Q1.

If all eigenvalues λj are nonzero, then f(0) 6= 0 and (iii) holds with

P := P1 −
P1(0)

f(0)
f and Q := Q1 −

Q1(0)

f(0)
f.

(iv) is a direct consequence of (iii).
(v) Since N and S commute with M = N + S, (iii) shows that they both commute with
Ms and Mn. Then Lemma 4.18 shows that

S −Ms = Mn −N

is nilpotent as well as diagonalizable, which leads to 0 = S −Ms = Mn −N .

Definition A.3. The decomposition M = Ms +Mn is called the Jordan decomposition of
M , Ms is called the semisimple Jordan component and Mn the nilpotent Jordan component
of M .
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Example A.4. If M is a Jordan block

(
λ 1
0 λ

)
, then the Jordan decomposition is

M =

(
λ 0
0 λ

)
︸ ︷︷ ︸

Ms

+

(
0 1
0 0

)
︸ ︷︷ ︸

Mn

.

The matrix M =

(
1 2
0 3

)
is diagonalizable and therefore M = Ms. In this case

M =

(
1 2
0 3

)
=

(
1 0
0 3

)
+

(
0 2
0 0

)
is not the Jordan decomposition, even though the first summand is diagonalizable and the
second summand is nilpotent. These summands do not commute.

The preceding theorem does not apply to all endomorphisms of real vector spaces. We
now explain how this problem can be overcome, so that we also obtain a Jordan decompo-
sition for endomorphisms of real vector spaces.

Definition A.5. (Jordan decomposition in the real case) If V is a finite dimensional real
vector space and M ∈ End(V ), then MC ∈ End(VC), defined by MC(v+ iw) := Mv+ iMw
has a Jordan decomposition

MC = MC,s +MC,n.

Let σ : VC → VC be the antilinear map defined by σ(v + iw) := v − iw for v, w ∈ V
and define for any complex linear A ∈ End(VC) the complex linear endomorphism A :=
σ ◦ A ◦ σ ∈ End(VC). Then MC = MC leads to

MC = MC = MC,s +MC,n,

where the summands on the right commute, the first is diagonalizable and the second is
nilpotent (Exercise). Hence the uniqueness of the Jordan decomposition yields

MC,s = MC,s and MC,n = MC,n.

In view of Exercise A.1, this implies the existence of Ms ∈ End(V ) and Mn ∈ End(V ), with

(Ms)C = MC,s and (Mn)C = MC,n.

Then M = Ms + Mn, and this is called the Jordan decomposition of M . It is uniquely
characterized by the properties that [Ms,Mn] = 0, Ms is semisimple and Mn is nilpotent
(Exercise).

Proposition A.6. (Properties of the Jordan decomposition) Let V be a finite dimensional
vector space and M ∈ End(V ).

(i) If M ′ ∈ End(V ′) and f : V → V ′ satisfy f ◦M = M ′ ◦ f , then

f ◦Ms = M ′
s ◦ f and f ◦Mn = M ′

n ◦ f.

(ii) If W ⊆ V is an M-invariant subspace, then

(M |W )s = Ms|W and (M |W )n = Mn|W .

In particular, W is invariant under Ms and Mn. If M denotes the induced endomor-
phism of V/W , then

(M)s = Ms and (M)n = Mn.
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(iii) If U ⊆ W are subspaces of V with MW ⊆ U , then MsW ⊆ U and MnW ⊆ U .

Proof. (i) Let W := V ⊕V ′, L := M⊕M ′, and consider the linear map ϕ : W → W defined
by ϕ(v, v′) =

(
0, f(v)

)
. Then ϕ ◦L = L ◦ϕ and thus ϕLs = Lsϕ and ϕLn = Lnϕ. Further,

Ls = Ms⊕M ′
s and Ln = Mn⊕M ′

n follows from the uniqueness of the Jordan decomposition
(Theorem A.2(v)) and the semisimplicity of Ms ⊕M ′

s. This shows that

M ′
s ◦ f = f ◦Ms and M ′

n ◦ f = f ◦Mn.

(ii) Apply (i) to the inclusion j : W → V and the quotient map p : V → V/W .
(iii) For K = C, this follows from Theorem A.2(iii) and the real case is obtained by

complexification.

Proposition A.7. If A is a finite dimensional algebra and D ∈ der(A), then the Jordan
components Ds and Dn are also derivations of A.

Proof. First proof: Let m : A ⊗ A → A denote the linear map defined by the algebra
multiplication. Then D ∈ der(A) is equivalent to the relation

D ◦m = m ◦ (D ⊗ idA+ idA⊗D).

Next we observe that

D ⊗ idA+ idA⊗D = (Ds ⊗ idA+ idA⊗Ds) + (Dn ⊗ idA+ idA⊗Dn)

is the Jordan decomposition (Exercise!), so that Proposition A.6 implies that

Ds ◦m = m ◦ (Ds ⊗ idA+ idA⊗Ds),

which means that Ds ∈ der(A), and hence that Dn = D −Ds ∈ der(A) because der(A) is
a linear space.

Second proof: (for K = R,C) Since der(A) is a vector space, it suffices to show that
Ds ∈ der(A). Furthermore, D ∈ der(A) is equivalent to DC ∈ der(AC), so that we may
assume that K = C.

For a, b ∈ A and λ, µ ∈ K we have for all n ∈ N the formula

(
D − (λ+ µ)1

)n
(ab) =

n∑
k=0

(
n

k

)
(D − λ1)k(a) · (D − µ1)n−k(b)

(Exercise A.7). It follows that for a ∈ Aλ(Ds) = Aλ(D) and b ∈ Aµ(Ds) = Aµ(D), we have
ab ∈ Aλ+µ(D) = Aλ+µ(Ds). Furthermore

Ds(a)b+ aDs(b) = λab+ µab = (λ+ µ)ab = Ds(ab).

Since A =
∑

λ∈KAλ(Ds), it follows that Ds ∈ der(A).

Exercises for Appendix A

Exercise A.1. Let V be a real vector space and

VC = C⊗R V = (1⊗ V )⊕ (i⊗ V )

its complexification. We identify V with the real subspace 1⊗ V , so that

VC ∼= V ⊕ iV.

Show that:
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(i) σ(z ⊗ v) := z ⊗ v defines an antilinear involution of VC whose fixed point space is V .

(ii) A complex subspace E ⊆ VC is of the form WC for some real subspace W ⊆ V if and
only if σ(E) = E.

(iii) For each M ∈ End(V ), the complexification MC ∈ End(VC), defined by MC(z⊗ v) :=
z ⊗Mv commutes with σ.

(iv) For A ∈ End(VC) the following are equivalent

(a) A commutes with σ.

(b) A preserves the real subspace V .

(c) A = MC for some M ∈ End(V ).

Exercise A.2. Let V be a complex vector space and M ∈ End(V ). Show that M is
diagonalizable if and only if each M -invariant subspace W ⊆ V possesses an M -invariant
complement.

Exercise A.3. Let V be a real vector space, A ∈ End(V ) and z ∈ VC an eigenvector of AC
with respect to the eigenvalue λ. Show that if z = x + iy with x, y ∈ V and λ = a + ib,
then

Ax = ax− by and Ay = ay + bx.

In particular, the 2-dimensional subspace E := span{x, y} ⊆ V is invariant under A.

Exercise A.4. Let A ∈M2(R) with no real eigenvalue. Then there exists a basis x, y ∈ R2

and a, b ∈ R with
Ax = ax− by and Ay = ay + bx.

Exercise A.5. Let V be a real vector space and M ∈ End(V ). Show that M is semisimple
if and only if each M -invariant subspace W ⊆ V possesses an M -invariant complement.

Exercise A.6. Let f ∈ K[X] be a polynomial of the form

f = (X − λ1)k1(X − λ2)k2 · · · (X − λm)km

and g ∈ K[X] a divisor of f with leading coefficient 1. Show that there exist `i ≤ ki with

g = (X − λ1)`1(X − λ2)`2 · · · (X − λm)`m .

Exercise A.7. Show that for each algebra A, a derivation D ∈ der(A) and λ, µ ∈ K, we
have for a, b ∈ A:

(
D − (λ+ µ)1

)n
(ab) =

n∑
k=0

(
n

k

)
(D − λ1)k(a) · (D − µ1)n−k(b).

Exercise A.8. Let V be a finite dimensional vector space over K and
A ∈ End(V ). Then the multiplicity of the root 0 of its characteristic polynomial

det(A−X1) ∈ K[X]

coincides with dimV 0(A).
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B Tensor Products and Tensor Algebra

In this appendix we provide some tools from multilinear algebra. Throughout, K is an
arbitrary field of characteristic zero.

Let V and W be vector spaces. A tensor product of V and W is a pair (V ⊗W,⊗) of a
vector space V ⊗W and a bilinear map

⊗ : V ×W → V ⊗W, (v, w) 7→ v ⊗ w

with the following universal property. For each bilinear map β : V ×W → U into a vector
space U , there exists a unique linear map β̃ : V ⊗W → U satisfying

β̃(v ⊗ w) = β(v, w) for v ∈ V,w ∈ W.

Taking (U, β) = (V ⊗W,⊗), we conclude immediately that idV⊗W is the unique linear
endomorphism of V ⊗W fixing all elements of the form v ⊗ w.

Before we turn to the existence of tensor products, we discuss their uniqueness. In
category theory, one gives a precise meaning to the statement that objects with a universal
property are determined up to isomorphism. The following lemma makes this precise for
tensor products.

Lemma B.1. (Uniqueness of tensor products) If (V ⊗W,⊗) and (V ⊗̃W, ⊗̃) are two tensor
products of the vector spaces V and W , then there exists a unique linear isomorphism

f : V ⊗W → V ⊗̃W with f(v ⊗ w) = v⊗̃w for v ∈ V,w ∈ W.

Proof. Since ⊗̃ is bilinear, the universal property of (V ⊗W,⊗) implies the existence of a
unique linear map

f : V ⊗W → V ⊗̃W with f(v ⊗ w) = v⊗̃w for v ∈ V,w ∈ W.

Similarly, the universal property of (V ⊗̃W, ⊗̃) implies the existence of a linear map

g : V ⊗̃W → V ⊗W with g(v⊗̃w) = v ⊗ w for v ∈ V,w ∈ W.

Then g ◦f ∈ End(V ⊗W ) is a linear map with (g ◦f)(v⊗w) = v⊗w for v ∈ V and w ∈ W ,
so that the uniqueness part of the universal property of (V ⊗W,⊗) yields g ◦ f = idV⊗W .
We likewise get f ◦ g = idV ⊗̃W , showing that f is a linear isomorphism.

Now we turn to the existence of the tensor product.

Definition B.2. Let S be a set. We write F (S) := K(S) for the free vector space on S. It
is the subspace of the cartesian product KS, the set of all functions f : S → K for which
the set {s ∈ S : f(s) 6= 0} is finite.

For s ∈ S, we define δs(t) := δst, which is 1 for s = t, and 0 otherwise. Then (δs)s∈S is
a basis for the vector space F (S) and we have a map

δ : S → F (S), s 7→ δs.

Now the pair (F (S), δ) has the universal property that, for each map

f : S → V to a vector space V , there exists a unique linear map f̃ : F (S) → V with

f̃ ◦ δ = f .

Proposition B.3. (Existence of tensor products) If V and W are vector spaces, then there
exists a tensor product (V ⊗W,⊗).
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Proof. In the free vector space F (V×W ) over V×W , we consider the subspaceN , generated
by elements of the form

δ(v1+v2,w) − δ(v1,w) − δ(v2,w), δ(v,w1+w2) − δ(v,w1) − δ(v,w2),

and
δ(λv,w) − δ(v,λw), λδ(v,w) − δ(λv,w),

for v, v1, v2 ∈ V , w,w1, w2 ∈ W and λ ∈ K. We put

V ⊗W := F (V ×W )/N and v ⊗ w := δ(v,w) +N.

The bilinearity of ⊗ follows from the definition of N . In particular, we have

(v1 + v2)⊗ w = δ(v1+v2,w) +N = δ(v1,w) + δ(v2,w) +N = v1 ⊗ w + v2 ⊗ w

and
(λv)⊗ w = δ(λv,w) +N = λδ(v,w) +N = λ(v ⊗ w).

The linearity in the second argument is verified similarly.
To show that (V ⊗ W,⊗) has the required universal property, let

β : V × W → U be a bilinear map. We use the universal property of (F (V × W ), δ)
to obtain a linear map

γ : F (V ×W )→ U with γ(δ(v,w)) = β(v, w)

for v ∈ V,w ∈ W . The bilinearity of β now implies that N ⊆ ker γ, so that γ factors
through a unique linear map

β̃ : V ⊗W = F (V ×W )/N → U with β̃(v ⊗ w) = γ(δ(v,w)) = β(v, w).

That β̃ is uniquely determined by this property follows from the fact that the elements of
the form v⊗w generate V ⊗W linearly, which in turn follows from δ(V ×W ) being a linear
basis for F (V ×W ).

Tensor products of finitely many factors are defined in a similar fashion as follows.

Definition B.4. Let V1, . . . , Vk be vector spaces. A tensor product of
V1, . . . , Vk is a pair

(V1 ⊗ V2 ⊗ · · · ⊗ Vk,⊗)

of a vector space V1 ⊗ V2 ⊗ · · · ⊗ Vk and a k-linear map

⊗ : V1 × · · · × Vk → V1 ⊗ V2 ⊗ · · · ⊗ Vk, (v1, . . . , vk) 7→ v1 ⊗ · · · ⊗ vk,

with the following universal property. For each k-linear map

β : V1 × · · · × Vk → U

into a vector space U , there exists a unique linear map β̃ : V1 ⊗ · · · ⊗ Vk → U satisfying

β̃(v1 ⊗ · · · ⊗ vk) = β(v1, . . . , vk) for vi ∈ Vi.

For (U, β) = (V1 ⊗ · · · ⊗ Vk,⊗), we conclude immediately that idV1⊗···⊗Vk is the unique
linear endomorphism of V1 ⊗ · · · ⊗ Vk fixing all elements of the form v1 ⊗ · · · ⊗ vk.

Again, the universal property determines k-fold tensor products.
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Lemma B.5. (Uniqueness of k-fold tensor products) If

(V1 ⊗ · · · ⊗ Vk,⊗) and (V1⊗̃ · · · ⊗̃Vk, ⊗̃)

are two tensor products of the vector spaces V1, . . . , Vk, then there exists a unique linear
isomorphism

f : V1 ⊗ · · · ⊗ Vk → V1⊗̃ · · · ⊗̃Vk with f(v1 ⊗ · · · ⊗ vk) = v1⊗̃ · · · ⊗̃vk

for vi ∈ Vi.

We omit the simple proof of the uniqueness. The existence is easily reduced to the
two-fold case:

Lemma B.6. If V1, . . . , Vk are vector spaces and k ≥ 2, then the iterated two-fold tensor
product

V1 ⊗ · · · ⊗ Vk := (V1 ⊗ · · · ⊗ Vk−1)⊗ Vk
and

v1 ⊗ · · · ⊗ vk := (v1 ⊗ · · · ⊗ vk−1)⊗ vk
is a tensor product of V1, . . . , Vk.

Proof. Since we know already that this is true for k = 2, we argue by induction and assume
that the assertion holds for (k−1)-fold iterated tensor products. In this way we immediately
see that (v1 ⊗ · · · ⊗ vk−1)⊗ vk is k-linear.

To verify the universal property, let β : V1 × · · · × Vk → U be a k-linear map. We first
use the induction hypothesis to obtain for each vk ∈ Vk a unique linear map β̃vk : V1⊗ · · ·⊗
Vk−1 → U with

β̃vk(v1 ⊗ . . .⊗ vk−1) = β(v1, . . . , vk−1, vk) for vi ∈ Vi, i ≤ k − 1.

From the uniqueness of β̃vk we further derive that

β̃λvk+λ′v′k
= λβ̃vk + λ′β̃v′k

for λ, λ′ ∈ K and vk, v
′
k ∈ Vk. Hence the map

(V1 ⊗ · · · ⊗ Vk−1)× Vk → U, (x, vk) 7→ β̃vk(x)

is bilinear. Now the universal property of the two-fold tensor product provides a unique
linear map

β̃ : (V1 ⊗ · · · ⊗ Vk−1)⊗ Vk → U

with β̃((v1 ⊗ · · · ⊗ vk−1)⊗ vk) = β̃vk(v1 ⊗ · · · ⊗ vk−1) = β(v1, . . . , vk−1, vk).

Definition B.7. (The tensor algebra of a vector space) Let V be a K-vector space and V ⊗n

the n-fold tensor product of V with itself. For n = 0, 1, we put V ⊗0 := K and V ⊗1 := V .
We claim that, for n,m ∈ N, there exists a bilinear map

µn,m : V ⊗n × V ⊗m → V ⊗(n+m)

with
µn,m

(
(v1 ⊗ . . .⊗ vn), (vn+1 ⊗ . . .⊗ vn+m)

)
= v1 ⊗ . . .⊗ vn+m

for v1, . . . , vn+m ∈ V . In fact, for each x = (x1, . . . , xn) ∈ V n, the map

µx : V m → V ⊗(n+m), (w1, . . . , wm) 7→ x1 ⊗ · · · ⊗ xn ⊗ w1 ⊗ . . .⊗ wm
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is m-linear, hence determines a linear map

µ̃x : V ⊗m → V ⊗(n+m) with µ̃x(w1 ⊗ · · · ⊗ wm) = µx(w1, . . . , wm).

Since µx is n-linear in x, we obtain a uniquely determined bilinear map

µn,m : V ⊗n × V ⊗m → V ⊗(n+m)

with

µn,m
(
(v1 ⊗ . . .⊗ vn), (vn+1 ⊗ . . .⊗ vn+m)

)
= µ̃(v1⊗...⊗vn)(vn+1 ⊗ . . .⊗ vn+m) = v1 ⊗ . . .⊗ vn ⊗ vn+1 ⊗ . . .⊗ vn+m.

We further define bilinear maps

µ0,n : V ⊗0 × V ⊗n = K× V ⊗n → V ⊗n, (λ, v) 7→ λv

and
µn,0 : V ⊗n ⊗ V ⊗0 = V ⊗n ×K→ V ⊗n, (v, λ) 7→ λv.

Putting all maps µn,k, n, k ∈ N0, together, we obtain a bilinear multiplication on the vector
space

T (V ) :=
∞⊕
n=0

V ⊗n.

It is now easy to show that this multiplication is associative and has an identity element
1 ∈ V ⊗0 (Exercise B.5). The algebra obtained in this way is called the tensor algebra of V .

Lemma B.8. (Universal property of the tensor algebra) Let V be a vector space and
η : V → T (V ) the canonical embedding of V as V ⊗1.Then the pair (T (V ), η) has the fol-
lowing property. For any linear map f : V → A into a unital associative K-algebra A, there
exists a unique homomorphism f̃ : T (V )→ A of unital associative algebras with f̃ ◦ η = f .

Proof. For the uniqueness of f̃ we first note that the requirement of being a homomorphism
of unital algebras determines f̃ on 1 via f̃(1) = 1A. On η(V ) = V ⊗1 it is determined by

f̃ ◦ η = f , and on T (V ) it is thus determined since the algebra T (V ) is generated by the
subspace K1 + V .

For the existence of f̃ , we note that, for each n ∈ N, the map

V n → A, (v1, . . . , vn) 7→ f(v1) · · · f(vn)

is n-linear, so that there exists a unique linear map

f̃n : V ⊗n → A with f̃(v1 ⊗ · · · ⊗ vn) = f(v1) · · · f(vn)

for vi ∈ V . We now combine these linear maps f̃n to a linear map

f̃ : T (V )→ A with f̃n(1) = 1A, f̃ |V ⊗n = f̃n.

Then the construction implies that f̃ ◦ η = f . That f̃ is an algebra homomorphism follows
from

f̃
(
(v1 ⊗ · · · ⊗ vn) · (w1 ⊗ · · · ⊗ wm)

)
= f(v1) · · · f(vn)f(w1) · · · f(wm)

= f̃(v1 ⊗ · · · ⊗ vn)f̃(w1 ⊗ · · · ⊗ wm)

for v1, . . . , vn, w1, . . . , wm ∈ V .
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Exercises for Section B

Exercise B.1. Let U , V and W be finite dimensional vector spaces. Show that there are
isomorphisms:

(i) U ⊗ V ∼= V ⊗ U .

(ii) (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ).

Exercise B.2. The aim of this exercise is to get a more concrete picture of the tensor
product of two vector spaces in terms of bases. Let V and W be vector spaces. We consider
a basis BV = {ei : i ∈ I} for V and a basis BW = {fj : j ∈ J} for W . Show that:

(i) Each function f : BV × BW → K has a unique bilinear extension

f̃ : V ×W → K.

(ii) The set BV ⊗BW = {ei ⊗ fj : i ∈ I, j ∈ J} is a basis for V ⊗W .

(iii) Each element x ∈ V ⊗W has a unique representation as a finite sum x =
∑

i∈I ei⊗wi
with wi ∈ W .

(iv) If V1 and V2 are vector spaces, then (V1 ⊕ V2)⊗W ∼= (V1 ⊗W )⊕ (V2 ⊗W ).

Exercise B.3. Let V := Kn and W := Km. Show that one can turn the space Mn,m(K) of
(n×m)-matrices with entries in K into a tensor product (Kn ⊗Km,⊗) satisfying

ei ⊗ ej := Eij,

where e1, . . . , en denotes the canonical basis vectors in Kn and Eij is the matrix which has
a single nonzero entry in the i-th row and the j-th column.

Exercise B.4. If V and W are finite dimensional, then the map

Φ: V ∗ ⊗W → Hom(V,W ), Φ(α⊗ w)(v) := α(v)w

is a linear isomorphism.

Exercise B.5. Let V be a vector space and T (V ) =
⊕

n∈N0
V ⊗n. Show that the multipli-

cation on T (V ) defined by Definition B.7 yields an associative K-algebra.

Exercise B.6. Let Vi and Wi be K-vector spaces (for i = 1, 2) and A ∈ HomK(V1, V2),
B ∈ HomK(W1,W2). Show that there exists a unique K-linear map C : V1⊗V2 → W1⊗W2

such that
C(v1 ⊗ v2) = A(v1)⊗B(v2)

for all v1 ∈ V1 and v2 ∈ V2. The map C is usually denoted by A⊗B.

Exercise B.7. Suppose that V1, . . . , Vk are vector spaces and that a group G acts linearly
on each of them. Show that

g · (v1 ⊗ . . .⊗ vk) := g · v1 ⊗ . . .⊗ g · vk

for g ∈ G and vj ∈ Vj defines a linear action on V1 ⊗ . . .⊗ Vk.
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C Symmetric and Exterior Products

C.1 Symmetric and Exterior Powers

Definition C.1. Let V be a vector space and n ≥ 2. We define

Sn(V ) := V ⊗n/U,

where U is the subspace spanned by all elements of the form

v1 ⊗ . . .⊗ vn − vσ(1) ⊗ . . .⊗ vσ(n), σ ∈ Sn.

The space Sn(V ) is called the n-th symmetric power of V . We put

v1 ∨ · · · ∨ vn := v1 ⊗ · · · ⊗ vn + U

and observe that this product is symmetric in the sense that

v1 ∨ · · · ∨ vn = vσ(1) ∨ · · · ∨ vσ(n)

for each σ ∈ Sn and v1, . . . , vn ∈ V . For n = 1, we put S1(V ) := V and also S0(V ) := K.

If X and Y are sets, then a map f : Xn → Y is said to be symmetric if, for each
permutation σ ∈ Sn, we have

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for x ∈ Xn.

Lemma C.2. (Universal property of symmetric powers) Let V and X be vector spaces
and f : V n → X be a symmetric n-linear map. Then there exists a unique linear map
f̃ : Sn(V )→ X with

f̃(v1 ∨ · · · ∨ vn) = f(v1, . . . , vn) for v1, . . . , vn ∈ V.

Proof. From the universal property of the n-fold tensor product V ⊗n, we obtain a unique
linear map f0 : V ⊗n → X with

f0(v1 ⊗ · · · ⊗ vn) = f(v1, . . . , vn) for v1, . . . , vn ∈ V.

In view of the symmetry of f , the linear map f0 vanishes on U , hence factors through a
linear map f̃ : Sn(V )→ X with the desired property.

Definition C.3. Let V and W be K-vector spaces, n ∈ N, and

sgn: Sn → {1,−1}

be the signature homomorphism mapping all transpositions to −1. An n-linear map
f : V n → W is called alternating if

f(v1, . . . , vn) = sgn(σ)f(vσ(1), . . . , vσ(n))

holds for all σ ∈ Sn and v1, . . . , vn ∈ V .
We write Altn(V,W ) for the set of alternating n-linear maps V n → W . Clearly, sums

and scalar multiples of alternating maps are alternating, so that Altn(V,W ) carries a natural
vector space structure. For n = 0, we shall follow the convention that Alt0(V,W ) := W is
the set of constant maps, which are considered to be 0-linear.

123



Example C.4. From linear algebra, we know the n-linear map

(Kn)n → K, det(v1, . . . , vk) :=
∑
σ∈Sk

sgn(σ)v1,σ(1) · · · vk,σ(k).

Here we identify the space Mn(K) of (n × n)-matrices with entries in K with the space
(Kn)n of n-tuples of (column) vectors ([La93, Sect. XIII.4]).

Definition C.5. Let V be a vector space and n ≥ 2. We define

Λn(V ) := V ⊗n/W,

where W is the subspace spanned by the elements of the form

v1 ⊗ · · · ⊗ vn − sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n), σ ∈ Sn.

The space Λn(V ) is called the n-th exterior power of V . We put

v1 ∧ · · · ∧ vn := v1 ⊗ · · · ⊗ vn +W

and note that this product is alternating, i.e.,

v1 ∧ · · · ∧ vn = sgn(σ)vσ(1) ∧ · · · ∧ vσ(n)

for all σ ∈ Sn and (v1, . . . , vn) ∈ V n. For n = 2, this means that

v1 ∧ v2 = −v2 ∧ v1.

We also put Λ1(V ) := V and Λ0(V ) := K.

Lemma C.6. [Universal property of the exterior power] Let V and X be vector spaces and

f ∈ Altn(V,X). Then there exists a unique linear map f̃ : Λn(V )→ X with

f̃(v1 ∧ · · · ∧ vn) = f(v1, . . . , vn) for v1, . . . , vn ∈ V.

We thus obtain a linear bijection

Altn(V,X)→ Hom(Λn(V ), X), f 7→ f̃ .

Proof. The proof is completely analogous to the symmetric case.

C.2 Symmetric and Exterior Algebra

Definition C.7. Let V be a vector space and (T (V ), η) the tensor algebra of V (cf.
Lemma B.8). We define the symmetric algebra S(V ) over V as the quotient T (V )/Is, where
Is is the ideal generated by the elements
η(v)⊗ η(w)− η(w)⊗ η(v). We write

ηs : V → S(V ), v 7→ η(v) + Is

for the canonical map induced by η. The product in S(V ) is denoted by ∨.
Likewise, we define the exterior algebra Λ(V ) over V as the quotient T (V )/Ia, where Ia

is the ideal generated by the elements

η(v)⊗ η(w) + η(w)⊗ η(v), v, w ∈ V.

We write
ηa : V → Λ(V ), v 7→ η(v) + Ia

for the canonical map induced by η. The product in Λ(V ) is denoted by ∧.
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Lemma C.8. (Universal property of the symmetric algebra) Let V be a vector space and
(S(V ), ηs) its symmetric algebra. Then S(V ) is a commutative unital algebra and for any
linear map f : V → A into a unital commutative associative algebra A, there exists a unique
homomorphism f̃ : S(V )→ A of unital associative algebras with f̃ ◦ ηs = f .

Proof. Using the universal property of the tensor algebra T (V ), we see that there exists a

unique unital algebra homomorphism f̂ : T (V ) → A with

f̂ ◦η = f . Since A is commutative, for any v, w ∈ V , the element η(v)⊗η(w)−η(w)⊗η(v)

is contained in ker f̂ , and therefore Is ⊆ ker f̂ shows that f̂ factors through an algebra
homomorphism f̃ : S(V ) → A with f̃ ◦ ηs = f . The uniqueness of f̃ follows from the fact
that T (V ) is generated, as a unital algebra, by η(V ), so that S(V ) is generated by the
image of ηs. Since the generators ηs(v), v ∈ V , of S(V ) commute, the algebra S(V ) is
commutative.

Remark C.9. (a) The structure of the symmetric algebra can be made more concrete as
follows. Let T (V )k := V ⊗k and U2 ⊆ T (V )2 the subspace spanned by the commutators
[η(v), η(w)], v, w ∈ V . Then the ideal Is is of the form

Is = T (V )U2T (V ) =
∑
p,q∈N0

T (V )p ⊗ U2 ⊗ T (V )q =
∞⊕
n=2

Is,n,

where Is,n :=
∑

p+q=n−2 T (V )p⊗U2⊗T (V )q. This implies that the symmetric algebra S(V )
is a direct sum

S(V ) =
∞⊕
n=0

S(V )n, where S(V )n := T (V )n/Is,n.

Let
µn : V n → S(V )n, (v1, . . . , vn) 7→ ηs(v1) ∨ · · · ∨ ηs(vn)

denote the n-fold multiplication map. Since S(V ) is commutative, this map is symmetric,
hence induces a linear map

µ̃n : Sn(V )→ S(V )n,

determined by
µ̃n(v1 ∨ · · · ∨ vn) = ηs(v1) ∨ · · · ∨ ηs(vn).

On the other hand, it is clear that the subspace Is,n of V ⊗n is contained in the kernel of the
quotient map V ⊗n → Sn(V ), so that there exists a linear map fn : S(V )n → Sn(V ), with

fn(ηs(v1) ∨ · · · ∨ ηs(vn)) = v1 ∨ · · · ∨ vn.

Then fn ◦ µ̃n = idSn(V ) and, similarly, µ̃n ◦ fn = idS(V )n . This proves that µ̃n is a linear
isomorphism. In the following we therefore identify Sn(V ) with the subspace S(V )n of the
symmetric algebra and write ηs(v) simply as v.

Note that Sn(V ) ∨ Sm(V ) ⊆ Sn+m(V ), so that the direct sum

S(V ) =
⊕
n∈N

Sn(V )

defines the structure of a graded algebra on S(V ) with S0(V ) = K1 containing the identity
element.
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(b) A similar argument applies to the exterior algebra and shows that the ideal Ia has
the form Ia =

⊕∞
n=2(Ia ∩ V ⊗n), so that

Λ(V ) =
∞⊕
n=0

Λ(V )n, where Λ(V )n := T (V )n/Ia,n.

Let µn : V n → Λ(V )n, (v1, . . . , vn) 7→ ηa(v1) ∧ · · · ∧ ηa(vn) denote the
n-fold multiplication map. Then the relation ηa(vi)ηa(vj) + ηa(vj)ηa(vi) = 0 and the fact
that Sn is generated by transpositions imply that µn is alternating. Hence it induces a
linear map µ̃n : Λn(V )→ Λ(V )n, determined by

µ̃n(v1 ∧ · · · ∧ vn) = ηa(v1) ∧ · · · ∧ ηa(vn).

On the other hand, it is clear that the subspace Ia,n of V ⊗n is contained in the kernel of
the quotient map V ⊗n → Λn(V ), so that there is a linear map fn : Λ(V )n → Λn(V ) with

fn(ηa(v1) ∧ · · · ∧ ηa(vn)) = v1 ∧ · · · ∧ vn.

As in the symmetric case, we now see that µ̃n is a linear isomorphism. In the following
we therefore identify Λn(V ) with the subspace Λ(V )n of the symmetric algebra and write
ηa(v) simply as v.

Each subspace Λn(V ) is spanned by elements of the form v1 ∧ · · · ∧ vn, and this implies
that for α ∈ Λn(V ) and β ∈ Λm(V ) we have

α ∧ β = (−1)mnβ ∧ α. (37)

In this sense the graded algebra Λ(V ) is graded commutative. The even part of this algebra
is the subspace

Λeven(V ) :=
∞⊕
k=0

Λ2k(V )

which is a central subalgebra, and the odd part is

Λodd(V ) :=
∞⊕
k=0

Λ2k+1(V ).

For two elements α, β of this subspace we have α ∧ β = −β ∧ α.

Lemma C.10. (Universal property of the exterior algebra) Let V be a vector space and
(Λ(V ), ηa) be its exterior algebra. Then Λ(V ) is a graded commutative unital algebra and
for any linear map f : V → A into a unital associative algebra A, satisfying

f(v)f(w) = −f(w)f(v) for v, w ∈ V,

there exists a unique homomorphism f̃ : Λ(V ) → A of unital associative algebras with f̃ ◦
ηa = f .

Proof. Using the universal property of the tensor algebra T (V ), we see that there exists a

unique unital algebra homomorphism f̂ : T (V ) → A with

f̂ ◦ η = f . Then we have for v, w ∈ V

f̂
(
η(v)⊗ η(w) + η(w)⊗ η(v)

)
= f(v)f(w) + f(w)f(v) = 0.

Therefore Ia ⊆ ker f̂ shows that f̂ factors through a unital algebra homomorphism f̃ : Λ(V )→
A with f̃ ◦ ηa = f . The uniqueness of f̃ follows from the fact that T (V ) is generated, as a
unital algebra, by η(V ), so that Λ(V ) is generated by the image of ηa.
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C.3 Exterior Algebra and Alternating Maps

Below we shall see how general alternating maps can be expressed in terms of determinants.

Proposition C.11. For any ω ∈ Altk(V,W ) we have:

(i) For b1, . . . , bk ∈ V and linear combinations vj =
∑k

i=1 aijbi, we have

ω(v1, . . . , vk) = det(A)ω(b1, . . . , bk), and A := (aij) ∈Mk(K).

(ii) ω(v1, . . . , vk) = 0 if v1, . . . , vk are linearly dependent.

(iii) For b1, . . . , bn ∈ V and linear combinations vj =
∑n

i=1 aijbi we have

ω(v1, . . . , vk) =
∑
I

det(AI)ω(bi1 , . . . , bik),

where A := (aij) ∈ Mn,k(K), I = {i1, . . . , ik} is a k-element subset of {1, . . . , n},
1 ≤ i1 < . . . < ik ≤ n, and AI := (aij)i∈I,j=1,...,k ∈Mk(K).

Proof. (i) For the following calculation we note that if σ : {1, . . . , k} → {1, . . . , k} is a map
which is not bijective, then the alternating property implies that ω(vσ(1), . . . , vσ(k)) = 0. We
therefore get

ω(v1, . . . , vk) = ω
( k∑
i=1

ai1bi, . . . ,
k∑
i=1

aikbi

)
=

k∑
i1,...,ik=1

ai11 · · · aikk · ω(bi1 , . . . , bik)

=
∑
σ∈Sk

aσ(1)1 · · · aσ(k)k · ω(bσ(1), . . . , bσ(k))

=
∑
σ∈Sk

sgn(σ)aσ(1)1 · · · aσ(k)k · ω(b1, . . . , bk) = det(A) · ω(b1, . . . , bk).

(ii) follows immediately from (i) because the linear dependence of v1, . . . , vk implies that
detA = 0.
(iii) First we expand

ω(v1, . . . , vk) = ω
( n∑
i=1

ai1bi, . . . ,
n∑
i=1

aikbi

)
=

n∑
i1,...,ik=1

ai11 · · · aikk · ω(bi1 , . . . , bik).

If |{i1, . . . , ik}| < k, then the alternating property implies that ω(bi1 , . . . , bik) = 0 because
two entries coincide. If |{i1, . . . , ik}| = k, there exists a permutation σ ∈ Sk with iσ(1) <
. . . < iσ(k). We therefore get

ω(v1, . . . , vk) =
∑

1≤i1<...<ik≤n

∑
σ∈Sk

aiσ(1)1 · · · aiσ(k)k · ω(biσ(1) , . . . , biσ(k))

=
∑

1≤i1<...<ik≤n

∑
σ∈Sk

sgn(σ)aiσ(1)1 · · · aiσ(k)k · ω(bi1 , . . . , bik)

=
∑
I

det(AI)ω(bi1 , . . . , bik),

where the sum is to be extended over all k-element subsets I = {i1, . . . , ik} of {1, . . . , n},
where i1 < . . . < ik.
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Corollary C.12. (i) If dimV < k, then Altk(V,W ) = {0}.

(ii) Let dimV = n and b1, . . . , bn be a basis for V . Then the map

Φ: Altk(V,W )→ W (nk), Φ(ω) = (ω(bi1 , . . . , bik))i1<...<ik

is a linear isomorphism. We obtain in particular dim
(

Altk(V,K)
)

=
(
n
k

)
.

(iii) If dimV = k and b1, . . . , bk is a basis for V , then the map

Φ: Altk(V,W )→ W, Φ(ω) = ω(b1, . . . , bk)

is a linear isomorphism.

Proof. (i) In Proposition C.11(i), we may choose bk = 0.
(ii) First we show that Φ is injective. So let ω ∈ Altk(V,W ) with Φ(ω) = 0. We now

write any k elements v1, . . . , vk ∈ V with respect to the basis elements as vj =
∑n

i=1 aijbi
and obtain with Proposition C.11:

ω(v1, . . . , vk) =
∑

1≤i1<...<ik≤n

det(AI)ω(bi1 , . . . , bik) = 0.

To see that Φ is surjective, we pick for each k-element subset I = {i1, . . . , ik} ⊆
{1, . . . , n} with 1 ≤ i1 < . . . < ik ≤ n an element wI ∈ W . Then the tuple (wI) is a

typical element of W (nk).
Expressing k elements v1, . . . , vk in terms of the basis elements b1, . . . , bn via vj =∑n
i=1 aijbi, we obtain an (n × k)-matrix A. We now define an alternating k-linear map

ω ∈ Altk(V,W ) by

ω(v1, . . . , vk) :=
∑
I

det(AI)wI .

The k-linearity of ω follows directly from the k-linearity of the maps

(v1, . . . , vk) 7→ det(AI).

For i1 < . . . < ik we further have ω(bi1 , . . . , bik) = wI because in this case AI ∈ Mk(K) is
the identity matrix and all other matrices AI′ have some vanishing columns. This implies
that Φ(ω) = (wI), and hence that Φ is surjective.

(iii) is a special case of (ii).

Definition C.13. (Alternator) Let V and W be vector spaces. For a k-linear map ω : V k →
W , we define a new k-linear map by

Alt(ω)(v1, . . . , vk) :=
1

k!

∑
σ∈Sk

sgn(σ)ω(vσ(1), . . . , vσ(k)).

Writing
ωσ(v1, . . . , vk) := ω(vσ(1), . . . , vσ(k)),

we then have

Alt(ω) =
1

k!

∑
σ∈Sk

sgn(σ)ωσ.

The map Alt(·) is called the alternator. We claim that it turns any k-linear map into an
alternating k-linear map. To see this, we first note that for σ, π ∈ Sk, we have

(ωσ)π(v1, . . . , vk) = (ωσ)(vπ(1), . . . , vπ(k))

= ω(vπσ(1), . . . , vπσ(k)) = ωπσ(v1, . . . , vk).
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This implies that

Alt(ω)π =
1

k!

∑
σ∈Sk

sgn(σ)(ωσ)π =
1

k!

∑
σ∈Sk

sgn(σ)ωπσ =
1

k!

∑
σ∈Sk

sgn(π−1σ)ωσ

=
1

k!

∑
σ∈Sk

sgn(π) sgn(σ)ωσ = sgn(π) Alt(ω) =
1

k!

∑
σ∈Sk

sgn(σπ−1)ωσ

=
1

k!

∑
σ∈Sk

sgn(σ)ωσπ =
1

k!

∑
σ∈Sk

sgn(σ)(ωπ)σ = Alt(ωπ).

In particular, we see that Alt(ω) is alternating.

Remark C.14. (a) We observe that if ω is alternating, then ωσ = sgn(σ)ω for each
permutation σ, and therefore

Alt(ω) =
1

k!

∑
σ∈Sk

sgn(σ) sgn(σ)ω =
1

k!

∑
σ∈Sk

ω = ω.

(b) For k = 2 we have Alt(ω)(v1, v2) = 1
2
(ω(v1, v2)− ω(v2, v1)), and for k = 3:

Alt(ω)(v1, v2, v3) =
1

6
(ω(v1, v2, v3)− ω(v2, v1, v3) + ω(v2, v3, v1)

− ω(v3, v2, v1) + ω(v3, v1, v2)− ω(v1, v3, v2)
)
.

Definition C.15. Let p, q ∈ N0. For two multilinear maps

ω1 : V1 × . . .× Vp → K and ω2 : Vp+1 × . . .× Vp+q → K

we define the tensor product ω1 ⊗ ω2 : V1 × · · · × Vp+q → K by

(ω1 ⊗ ω2)(v1, . . . , vp+q) := ω1(v1, . . . , vp)ω2(vp+1, . . . , vp+q).

It is clear that ω1 ⊗ ω2 is a (p+ q)-linear map.
For λ ∈ K (the set of 0-linear maps), and a p-linear map ω as above, we obtain in

particular
λ⊗ ω := ω ⊗ λ := λω.

For two alternating maps α ∈ Altp(V,K) and β ∈ Altq(V,K) we define their exterior
product:

α ∧ β :=
(p+ q)!

p!q!
Alt(α⊗ β) =

1

p!q!

∑
σ∈Sp+q

sgn(σ)(α⊗ β)σ. (38)

It follows from (38) that α ∧ β is alternating, so that we obtain a bilinear map

∧ : Altp(V,K)× Altq(V,K)→ Altp+q(V,K), (α, β) 7→ α ∧ β.

On the direct sum
Alt(V,K) :=

⊕
p∈N0

Altp(V,K)

we now obtain a bilinear product by putting(∑
p

αp

)
∧
(∑

q

βq

)
:=
∑
p,q

αp ∧ βq.

As before, we identify Alt0(V,K) with K and obtain

λα = λ ∧ α = α ∧ λ

for λ ∈ Alt0(V,K) = K and α ∈ Altp(V,K).
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We take a closer look at the structure of the algebra (Alt(V,K), ∧ ).

Lemma C.16. For α ∈ Altp(V,K), β ∈ Altq(V,K) and γ ∈ Altr(V,K), we have

(α ∧ β) ∧ γ = α ∧ (β ∧ γ).

In particular the algebra (Alt(V,K), ∧ ) is associative.

Proof. First we recall from Definition C.13 that for any n-linear map ω : V n → W and
π ∈ Sn we have

Alt(ωπ) = sgn(π) Alt(ω). (39)

We identify Sp+q in the natural way with the subgroup of Sp+q+r fixing the numbers p +
q + 1, . . . , p+ q + r. We thus obtain

(α ∧ β) ∧ γ =
(p+ q + r)!

(p+ q)!r!
Alt((α ∧ β)⊗ γ)

=
(p+ q + r)!

p!q!(p+ q)!r!

∑
σ∈Sp+q

sgn(σ) Alt((α⊗ β)σ ⊗ γ)

=
(p+ q + r)!

p!q!(p+ q)!r!

∑
σ∈Sp+q

sgn(σ) Alt((α⊗ β ⊗ γ)σ)

(39)
=

(p+ q + r)!

p!q!(p+ q)!r!

∑
σ∈Sp+q

Alt(α⊗ β ⊗ γ)

=
(p+ q + r)!

p!q!r!
Alt(α⊗ β ⊗ γ) =

(p+ q + r)!

p!q!r!
Alt(α⊗ (β ⊗ γ))

= . . . =
(p+ q + r)!

p!(q + r)!
Alt(α⊗ (β ∧ γ)) = α ∧ (β ∧ γ).

From the associativity asserted in the preceding lemma, it follows that the multiplication
in Alt(V,K) is associative. We may therefore suppress brackets and define

ω1 ∧ . . . ∧ ωn := (. . . ((ω1 ∧ ω2) ∧ ω3) · · · ∧ ωn).

Remark C.17. (a) From the calculation in the preceding proof we know that for three
elements αi ∈ Altpi(V,K), the triple product in the associative algebra Alt(V,K) satisfies

α1 ∧ α2 ∧ α3 =
(p1 + p2 + p3)!

p1!p2!p3!
Alt(α1 ⊗ α2 ⊗ α3).

Inductively this leads for n elements αi ∈ Altpi(V,K) to

α1 ∧ . . . ∧ αn =
(p1 + . . .+ pn)!

p1! · · · pn!
Alt(α1 ⊗ · · · ⊗ αn)

(Exercise C.2).
(b) For αi ∈ Alt1(V,K) ∼= V ∗, we in particular obtain

(α1 ∧ . . . ∧ αn)(v1, . . . , vn) = n! Alt(α1 ⊗ · · · ⊗ αn)(v1, . . . , vn)

=
∑
σ∈Sn

sgn(σ)α1(vσ(1)) · · ·αn(vσ(n)) = det(αi(vj)).

Proposition C.18. The exterior algebra is graded commutative, i.e., for α ∈ Altp(V,K)
and β ∈ Altq(V,K) we have

α ∧ β = (−1)pqβ ∧ α.
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Proof. Let σ ∈ Sp+q denote the permutation defined by

σ(i) :=

{
i+ p for 1 ≤ i ≤ q
i− q for q + 1 ≤ i ≤ p+ q

which moves the first q elements to the last q positions. Then we have

(β ⊗ α)σ(v1, . . . , vp+q) = (β ⊗ α)(vσ(1), . . . , vσ(p+q))

= β(vp+1, . . . , vp+q)α(v1, . . . , vp) = (α⊗ β)(v1, . . . , vp+q).

This leads to

α ∧ β =
(p+ q)!

p!q!
Alt(α⊗ β) =

(p+ q)!

p!q!
Alt((β ⊗ α)σ)

= sgn(σ)
(p+ q)!

p!q!
Alt(β ⊗ α) = sgn(σ)(β ∧ α).

On the other hand sgn(σ) = (−1)F , where

F := |{(i, j) ∈ {1, . . . , p+ q} : i < j, σ(j) < σ(i)}|
= |{(i, j) ∈ {1, . . . , p+ q} : i ≤ q, j > q}| = pq

is the number of inversions of σ. Putting everything together, the lemma follows.

Corollary C.19. If α ∈ Altp(V,K) and p is odd, then α ∧ α = 0.

Proof. In view of Proposition C.18, we have α∧α = (−1)p
2
α∧α = −α∧α, which leads to

α ∧ α = 0.

Corollary C.20. If α1, . . . , αk ∈ V ∗ = Alt1(V,K) and βj =
∑k

i=1 aijαi, then

β1 ∧ . . . ∧ βk = det(A) · α1 ∧ . . . ∧ αk for A = (aij) ∈Mk(K).

Proof. The k-fold multiplication map

Φ: (V ∗)k → Altk(V,K), (γ1, . . . , γk) 7→ γ1 ∧ . . . ∧ γk

is alternating by Proposition C.18 because Sk is generated by transpositions. Hence the
assertion follows from Proposition C.11.

Corollary C.21. If dimV = n, b1, . . . , bn is a basis for V , and b∗1, . . . , b
∗
n the dual basis for

V ∗, then the products

b∗I := b∗i1 ∧ . . . ∧ b
∗
ik
, I = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ n,

form a basis for Altk(V,K).

Proof. For J = (j1, . . . , jk) with j1 < . . . < jk, we get with Remark C.17(b)

b∗I(bj1 , . . . , bjk) = det(b∗il(bjm)l,m=1,...,k) =

{
1 for I = J
0 for I 6= J.

If follows in particular that the elements bI are linearly independent, and since dim Altk(V,K) =(
n
k

)
(Corollary C.12), the assertion follows.
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Remark C.22. (a) From Corollary C.12 it follows in particular that

dim Alt(V,K) =
dimV∑
k=0

(
dimV

k

)
= 2dimV

if V is finite dimensional.
(b) If V is infinite dimensional, then it has an infinite basis (bi)i∈I (this requires Zorn’s

Lemma). In addition, the set I carries a linear order ≤ (this requires the Well Ordering
Theorem), and for each k-element subset J = {j1, . . . , jk} ⊆ I with j1 < . . . < jk, we thus
obtain an element

b∗J := b∗j1 ∧ . . . ∧ b
∗
jk
.

Applying the b∗J to k-tuples of basis elements shows that they are linearly independent, so
that for each k > 0 the space Altk(V,K) is infinite dimensional.

Definition C.23. Let ϕ : V1 → V2 be a linear map and W a vector space. For each p-linear
map α : V p

2 → W we define its pull-back by ϕ:

(ϕ∗α)(v1, . . . , vp) := α(ϕ(v1), . . . , ϕ(vp))

for v1, . . . , vp ∈ V1. It is clear that ϕ∗α is a p-linear map V p
1 → W and that ϕ∗α is alternating

if α has this property.

Remark C.24. If ϕ : V1 → V2 and ψ : V2 → V3 are linear maps and α : V p
3 → W is p-linear,

then
(ψ ◦ ϕ)∗α = ϕ∗(ψ∗α).

Proposition C.25. Let ϕ : V1 → V2 be a linear map. Then the pull-back map

ϕ∗ : Alt(V2,K)→ Alt(V1,K)

is a homomorphism of algebras with unit.

Proof. For α ∈ Altp(V2,K) and β ∈ Altq(V2,K) we have

ϕ∗(α ∧ β) =
(p+ q)!

p!q!
ϕ∗(Alt(α⊗ β)) =

(p+ q)!

p!q!
Alt(ϕ∗(α⊗ β))

=
(p+ q)!

p!q!
Alt(ϕ∗α⊗ ϕ∗β) = ϕ∗α ∧ ϕ∗β.

Remark C.26. The results in this section remain valid for alternating forms with values
in any commutative algebra A. Then

Alt(V,A) =
⊕
p∈N0

Altp(V,A)

also carries an associative, graded commutative algebra structure defined by

α ∧ β :=
(p+ q)!

p!q!
Alt(α⊗ β),

where
(α⊗ β)(v1, . . . , vp+q) := α(v1, . . . , vp) · β(vp+1, . . . , vp+q)

for α ∈ Altp(V,A), β ∈ Altq(V,A).
This applies in particular to the 2-dimensional real algebra A = C.
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Exercises for Section C

Exercise C.1. Fix n ∈ N. Show that:

(1) For each matrix A ∈Mn(K), we obtain a bilinear map

βA : Kn ×Kn → K, βA(x, y) :=
n∑

i,j=1

aijxiyj.

(2) A can be recovered from βA via aij = βA(ei, ej).

(3) Each bilinear map β : Kn × Kn → K is of the form β = βA for a unique matrix
A ∈Mn(R).

(4) βA>(x, y) = βA(y, x).

(5) βA is skew-symmetric if and only if A is so.

Exercise C.2. Show that for αi ∈ Altpi(V,K), i = 1, . . . , n, the exterior product satisfies

α1 ∧ . . . ∧ αn =
(p1 + . . .+ pn)!

p1! · · · pn!
Alt(α1 ⊗ · · · ⊗ αn)

Exercise C.3. Show that (Alt(V,K), ∧ ) is an exterior algebra over V ∗.

D Supplementary material

D.1 The nilradical is characteristic

We can now record the following interesting consequence of Corollary 4.16.

Proposition D.1. If g is a finite dimensional Lie algebra and D ∈ der(g), then D(rad(g)) ⊆
nil(g). In particular, nil(g) and rad(g) are invariant under der(g), i.e., characteristic ideals.

Proof. For D ∈ der(g), consider the Lie algebra g̃ := g oD K for the Lie algebra with the
bracket

[(x, t), (x′, t′)] := (tDx′ − t′Dx+ [x, x′], 0)

and identify g with the subalgebra g × {0}. Then rad(g) is a solvable ideal of g̃ because
rad(g) is a characteristic ideal of g (Lemma 6.4), hence contained in rad(g̃). We thus obtain

D(rad(g)) = [(0, 1), rad(g)] ⊆ g ∩ [g̃, rad(g̃)] ⊆ g ∩ nil(g̃) ⊆ nil(g).

Corollary D.2. If a E g is an ideal, then nil(a) = a ∩ nil(g).

Proof. Clearly, a ∩ nil(g) is a nilpotent ideal of a, hence contained in nil(a). Conversely,
nil(a) is an ideal of g because it is invariant under all the derivations ad x|a, x ∈ g. This
implies that nil(a) ⊆ nil(g) ∩ a.
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D.2 Malcev’s Theorem

Lemma D.3. If x ∈ g is such that adx is nilpotent, then

eadxy =
∞∑
k=0

1

k!
(adx)ky

defines an automorphism of g.

Note that this series is actually finite and that it makes sense over every field of char-
acteristic zero.

Proof. This follows from the proof of (ii) ⇒ (i) in Lemma 2.4, applied with V = W = g
and β(x, y) = [x, y].

Theorem D.4. (Malcev’s Theorem) For two Levi complements s and s′ in g, there exists
some x ∈ [g, rad(g)] with eadxs′ = s.

Proof. Let r := rad(g). We first consider some special cases.
(a) If [g, r] = {0}, then g = r⊕ s is a direct sum of Lie algebras and r = z(g) is abelian.

Therefore s = [s, s] = [g, g] = [s′, s′] = s′, and there is nothing to show.
(b) If [g, r] 6= {0} and r is a minimal nonzero ideal of g, then [g, r] = r, [r, r] = {0} (since

D1(r) 6= r), and z(g) = {0} (because r 6⊆ z(g)). We define a map h : s′ → r by x+ h(x) ∈ s
for x ∈ s′, i.e., −h is the projection of s′ to s along r. Since s is a subalgebra and r is
abelian, we have

[x+ h(x), y + h(y)] = [x, y] + [x, h(y)] + [h(x), y] ∈ s.

Therefore
h([x, y]) = [x, h(y)] + [h(x), y].

This implies that
π(x)(r, t) := ([x, r] + th(x), 0)

defines a representation of s′ on r×K. The subspace r ∼= r×{0} is s′-invariant. According
to Weyl’s Theorem, there exists an s′-invariant complement K(v, 1) of r in r⊕K. As s′ is
semisimple, π(s′)(v, 1) = {0}, and hence h(x) + [x, v] = 0 for x ∈ s′. Now we have

ead vx = x+ [v, x] = x+ h(x) ∈ s for x ∈ s′

and thus ead v(s′) ⊆ s. Equality follows from dim s = dim g/r = dim s′. This proves the
theorem if [g, r] is nonzero and a minimal ideal.

(c) Finally, we turn to the general case. We argue by induction on n := dim r. The
case n = 0 is trivial, so that we assume n > 0 and that the assertion holds for all Lie
algebras h with dim rad(h) < n. In view of (a), we may assume that [g, r] 6= {0}. As the
ideal [g, r] is nilpotent (Corollary 4.16), its center c := z([g, r]) is nonzero (Proposition 3.3).
Let m 6= {0} be a minimal ideal of g contained in c. If m = r, then we are in the
situation of (b). We therefore assume m 6= r. Let π : g → g1 := g/m be the quotient
map. Then r1 := π(r) is the radical of g1 (Proposition 6.2), and π(s) and π(s′) are Levi
complements in g/m because both are semisimple (Proposition 5.10) and complementing
π(r). Now our induction hypothesis provides an x1 ∈ [g1, r1] with eadx1π(s′) = π(s). Using
π([g, r]) = [g1, r1], we find an x ∈ [g, r] with π(x) = x1. Then eadx1π(s′) = π(eadxs′) ⊆ π(s),
i.e.,

eadxs′ ⊆ h := s + m.
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Now eadxs′ and s are two Levi complements in the Lie algebra h with

dim rad(h) = dimm < n = dim r.

Hence the induction hypothesis provides a y ∈ m with ead yeadxs′ ⊆ s. Since m is central in
[g, r], we have [x, y] = 0 and therefore ead yeadxs′ = ead(x+y)s′ ⊆ s.

Malcev’s Theorem has interesting consequences:

Corollary D.5. Each semisimple subalgebra of g is contained in a Levi complement. In
particular, the Levi complements are precisely the maximal semisimple subalgebras of g.

Proof. Let r := rad(g) be the radical of g, h ⊆ g a semisimple subalgebra, and a := r + h.
Then a is a subalgebra of g and r is a solvable ideal of a. Since the solvable ideal rad(a)∩ h
of the semisimple Lie algebra h is trivial, we see that r = rad(a). The ideal h ∩ r of h is
solvable and semisimple, hence trivial. This proves that h is a Levi complement in a.

Let s be a Levi complement in g. Then a = r + (a ∩ s) is a semidirect sum and since
a ∩ s ∼= a/r ∼= h is semisimple, a ∩ s is a Levi complement in a. According to Malcev’s
Theorem D.4, there exists an x ∈ [a, r] with eadx(a ∩ s) = h, i.e., h is a contained in the
Levi complement eadx(s) of g.

Corollary D.6. If n E g is an ideal of g and g = r o s a Levi decomposition, i.e., s is a
Levi complement, then n = (n ∩ r) o (n ∩ s) is a Levi decomposition of n.

Proof. We have already seen in Lemma 6.4 that n∩ r = rad(n). If sn is a Levi complement
in n, then Corollary D.5 implies that the semisimple Lie algebra sn is contained in a Levi
complement s′ of g. For x ∈ [g, r] with eadxs′ = s we now see that eadxsn ⊆ n ∩ s, because

eadxn ⊆ n + [x, n] ⊆ n.

Since the ideal n ∩ s of s is semisimple (Proposition 5.10) and sn is maximal semisimple in
n, we obtain eadxsn = n ∩ s. This shows that n ∩ s is a Levi complement in n.

D.3 Reflections of sl2-modules

For K = R,C, we have for every finite dimensional vector space V the exponential function

exp: gl(V )→ GL(V ), exp(X) :=
∞∑
n=0

1

n!
Xn

defined by the convergent exponential series.

Definition D.7. (Exponential function over fields of characteristic zero) If K is a genreal
field of characteristic zero and X ∈ gl(V ) a nilpotent element, then the exponential series

exp(X) :=
∞∑
n=0

1

n!
Xn

still makes sense because only finitely many summands are non-zero.

Lemma D.8. Let V be a finite dimensional K-vector space and x, y ∈ gl(V ), where either
K ∈ {R,C} or charK = 0 and x, y are nilpotent.

(i) If xy = yx, then exp(x+ y) = exp x exp y.
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(ii) exp(x) ∈ GL(V ), exp(0) = 1, and (expx)−1 = exp(−x).

(iii) For g ∈ GL(V ), we have the relation

g exp(x)g−1 = exp(gxg−1).

Proof. (i) Using the general form of the Cauchy Product Formula in the case K = R,C
(Exercise 2.2), we obtain

exp(x+ y) =
∞∑
k=0

(x+ y)k

k!
=
∞∑
k=0

1

k!

k∑
`=0

(
k

`

)
x`yk−`

=
∞∑
k=0

k∑
`=0

x`

`!

yk−`

(k − `)!
=
( ∞∑
p=0

xp

p!

)( ∞∑
`=0

y`

`!

)
.

If both x and y are nilpotent, all these series are finite, so that the assertion follows likewise.
(ii) From (i) we derive in particular expx exp(−x) = exp 0 = 1, which implies (ii).
(iii) is a consequence of gxng−1 = (gxg−1)n and the continuity of the conjugation map

cg(x) := gxg−1 on Mn(K) for K = R,C.

Lemma D.9. For x, y ∈ gl(V ) and K = R,C or for x nilpotent and charK = 0, we have

(expx)y(expx)−1 = exp(adx)y. (40)

Proof. We define the linear maps

λx : End(V )→ End(V ), y 7→ xy, ρx : End(V )→ End(V ), y 7→ yx.

Then λxρx = ρxλx and ad x = λx − ρx, so that Lemma D.8(ii) leads to

(expx)y(expx)−1 = exye−x = eλxe−ρxy = eλx−ρxy = eadxy.

This proves (40).
If x is nilpotent and K is a general field of characteristic zero, then we recall from

Proposition 4.19 that adx is nilpotent, so that both sides make sense. Their equality
follows as above.

We consider the element

θ := ead ee− ad fead e ∈ Aut(sl2(K))

(Example 2.6) and

σ := exp(e) exp(−f) exp(e) =

(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
=

(
0 1
−1 0

)
∈ SL2(K).

Then Lemma D.9 implies for z ∈ sl2(K) the relation θ(z) = σzσ−1, hence in particular

θ(h) = −h, θ(e) = −f and θ(f) = −e.
Lemma D.10. Let (ρ, V ) be a finite dimensional representation of sl2(K) and σV :=
eρ(e)e−ρ(f)eρ(e) ∈ GL(V ). Then

σV ρ(z)σ−1
V = ρ(σzσ−1) for z ∈ sl2(K),

σV (Vα(ρ(h))) = V−α(ρ(h)) for the eigenspaces of ρ(h). (41)

Proof. For z ∈ sl2(K), we obtain with Lemma D.9 the relation

σV ρ(z)σ−1
V = ρ(σzσ−1).

For v ∈ Vα(ρ(h)) we have

ρ(h)(σV (v)) = σV
(
σ−1
V ρ(h)σV

)
(v) = σV ρ(−h)(v) = −ασV (v).

This implies that (41).
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