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Notation

N := {1, 2, 3, ...} natural numbers
K× := {x ∈ K : x 6= 0}, K a field
A× := {x ∈ A : (∃y ∈ R)xy = yx = 1}, unit group of a unital algebra

For subsets A,B ⊆ G of a group:
A−1 := {a−1 : a ∈ A}
AB := {ab : a ∈ A, b ∈ B}
The identity element of a group G is usually denoted 1. If G is abelian and the product
is written as addition, we write 0 for the identity element.

For A = (aij)i,j=1,...,n ∈Mn(C): A> = (aji), A = (aij), A
∗ = A

>
= (aji).
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Chapter 1

Concrete Matrix Groups

In this chapter we mainly study the general linear group GLn(K) of invertible n× n-
matrices with entries in K = R or C and introduce some of its subgroups. In particular,
we discuss some of the connections between matrix groups and also introduce certain
symmetry groups of geometric structures like bilinear or sesquilinear forms.

1.1 The General Linear Group

We start with some notation. We write GLn(K) for the group of invertible matrices
in Mn(K) and note that

GLn(K) = {g ∈Mn(K) : (∃h ∈Mn(K))hg = gh = 1}.

Since the invertibility of a matrix can be tested with its determinant,

GLn(K) = {g ∈Mn(K) : det g 6= 0}.

This group is called the general linear group.
On the vector space Kn we consider the euclidian norm

‖x‖ :=
√
|x1|2 + . . .+ |xn|2, x ∈ Kn,

and on Mn(K) the corresponding operator norm

‖A‖ := sup{‖Ax‖ : x ∈ Kn, ‖x‖ ≤ 1}

which turns Mn(K) into a Banach space. On every subset S ⊆Mn(K) we shall always
consider the subspace topology inherited from Mn(K) (otherwise we shall say so). In
this sense GLn(K) and all its subgroups carry a natural topology.

Lemma 1.1.1. The group GLn(K) has the following properties:

(i) GLn(K) is open in Mn(K).
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2 CHAPTER 1. CONCRETE MATRIX GROUPS

(ii) The multiplication map m : GLn(K)×GLn(K)→ GLn(K) and the inversion map
η : GLn(K)→ GLn(K) are smooth and in particular continuous.

Proof. (i) Since the determinant function

det : Mn(K)→ K, det(aij) =
∑
σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n)

is continuous and K× := K \ {0} is open in K, the set GLn(K) = det−1(K×) is open
in Mn(K).

(ii) For g ∈ GLn(K) we define bij(g) := det(gmk)m 6=j,k 6=i. According to Cramer’s
Rule, the inverse of g is given by

(g−1)ij =
(−1)i+j

det g
bij(g).

The smoothness of the inversion therefore follows from the smoothness of the deter-
minant (which is a polynomial) and the polynomial functions bij defined on Mn(K).

For the smoothness of the multiplication map, it suffices to observe that

(ab)ik =

n∑
j=1

aijbjk

is the (ik)-entry in the product matrix. Since all these entries are quadratic polyno-
mials in the entries of a and b, the product is a smooth map.

Definition 1.1.2. A topological group G is a Hausdorff space G, endowed with a group
structure, such that the multiplication map mG : G × G → G and the inversion map
ιG : G→ G are continuous, when G×G is endowed with the product topology.

Lemma 1.1.1(ii) says in particular that GLn(K) is a topological group. It is clear
that the continuity of group multiplication and inversion is inherited by every subgroup
G ⊆ GLn(K), so that every subgroup G of GLn(K) also is a topological group.

We write a matrix A = (aij)i,j=1,...,n also as (aij) and define

A> := (aji), A := (aij), and A∗ := A
>

= (aji).

Note that A∗ = A> is equivalent to A = A, which means that all entries of A are real.
Now we can define the most important classes of matrix groups.

Definition 1.1.3. We introduce the following notation for some important subgroups
of GLn(K):

(1) The special linear group : SLn(K) := {g ∈ GLn(K) : det g = 1}.

(2) The orthogonal group : On(K) := {g ∈ GLn(K) : g> = g−1}.

(3) The special orthogonal group : SOn(K) := SLn(K) ∩On(K).
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(4) The unitary group : Un(K) := {g ∈ GLn(K) : g∗ = g−1}. Note that Un(R) =
On(R), but On(C) 6= Un(C).

(5) The special unitary group : SUn(K) := SLn(K) ∩Un(K).

One easily verifies that these are indeed subgroups. One simply has to use that
(ab)> = b>a>, ab = ab and that

det : GLn(K)→ (K×, ·)

is a group homomorphism.

Lemma 1.1.4. The groups

Un(C), SUn(C), On(R) and SOn(R)

are compact.

Proof. Since all these groups are subsets ofMn(C) ∼= Cn2

, by the Heine–Borel Theorem
we only have to show that they are closed and bounded.

Bounded: In view of

SOn(R) ⊆ On(R) ⊆ Un(C) and SUn(C) ⊆ Un(C),

it suffices to see that Un(C) is bounded. Let g1, . . . , gn denote the rows of the matrix
g ∈Mn(C). Then g∗ = g−1 is equivalent to gg∗ = 1, which means that g1, . . . , gn form
an orthonormal basis for Cn with respect to the scalar product 〈z, w〉 =

∑n
j=1 zjwj

which induces the norm ‖z‖ =
√
〈z, z〉. Therefore g ∈ Un(C) implies ‖gj‖ = 1 for

each j, so that Un(C) is bounded.
Closed: The functions

f, h : Mn(K)→Mn(K), f(A) := AA∗ − 1 and h(A) := AA> − 1

are continuous. Therefore the groups

Un(K) := f−1(0) and On(K) := h−1(0)

are closed. Likewise SLn(K) = det−1(1) is closed, and therefore the groups SUn(C)
and SOn(R) are also closed because they are intersections of closed subsets.

1.1.1 The Polar Decomposition

We write Hermn(K) := {A ∈ Mn(K) : A∗ = A} for the set of hermitian matrices.
For K = C this is not a vector subspace of Mn(K), but it is always a real subspace.
A matrix A ∈ Hermn(K) is called positive definite if for each 0 6= z ∈ Kn we have
〈Az, z〉 > 0, where

〈z, w〉 :=

n∑
j=1

zjwj

is the natural scalar product on Kn. We write Pdn(K) ⊆ Hermn(K) for the subset of
positive definite matrices.
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Proposition 1.1.5. (Polar decomposition) The multiplication map

m : Un(K)× Pdn(K)→ GLn(K), (u, p) 7→ up

is a homeomorphism. In particular, each invertible matrix g can be written in a unique
way as a product g = up of a unitary matrix u and a positive definite matrix p.

Proof. We know from linear algebra that for each hermitian matrix A there exists
an orthonormal basis v1, . . . , vn for Kn consisting of eigenvectors of A, and that all
the corresponding eigenvalues λ1, . . . , λn are real. From that it is obvious that A is
positive definite if and only if λj > 0 holds for each j. For a positive definite matrix
A, this has two important consequences:

(1) A is invertible, and A−1 satisfies A−1vj = λ−1
j vj .

(2) There exists a unique positive definite matrix B with B2 = A which will be
denoted

√
A: We define B with respect to the basis (v1, . . . , vn) by Bvj =

√
λjvj .

Then B2 = A is obvious and since all λj are real and the vj are orthonormal, B is
positive definite because〈

B
(∑

i

µivi

)
,
∑
j

µjvj

〉
=
∑
i,j

µiµj〈Bvi, vj〉 =

n∑
j=1

|µj |2
√
λj > 0

for
∑
j µjvj 6= 0. It remains to verify the uniqueness. So assume that C is positive

definite with C2 = A. Pick an orthonormal basis w1, . . . , wm of C-eigenvectors, so
that Cwj = µjwj with positive numbers µj > 0. Then Awj = C2wj = µ2

jwj show

that, for λj := µ2
j , the matrix C acts on the λj-eigenspace of A by multiplication with√

λj = µj . This implies B = C.
From (1) we derive that the image of the map m is contained in GLn(K).

m is surjective: Let g ∈ GLn(K). For 0 6= v ∈ Kn we then have

0 < 〈gv, gv〉 = 〈g∗gv, v〉,

showing that g∗g is positive definite. Let p :=
√
g∗g and define u := gp−1. Then

uu∗ = gp−1p−1g∗ = gp−2g∗ = g(g∗g)−1g∗ = gg−1(g∗)−1g∗ = 1

implies that u ∈ Un(K), and it is clear that m(u, p) = g.
m is injective: If m(u, p) = m(w, q) = g, then g = up = wq implies that

p2 = p∗p = (up)∗up = g∗g = (wq)∗wq = q2,

so that p and q are positive definite square roots of the same positive definite matrix
g∗g, hence coincide by (2) above. Now p = q, and therefore u = gp−1 = gq−1 = w.

It remains to show that m is a homeomorphism. Its continuity is obvious, so that
it remains to prove the continuity of the inverse map m−1. Let gj = ujpj → g = up.
We have to show that uj → u and pj → p. Since Un(K) is compact, the sequence
(uj) has a subsequence (ujk) converging to some w ∈ Un(K). Then pjk = u−1

jk
gjk →

w−1g =: q ∈ Hermn(K) and g = wq. For each v ∈ Kn we then have

0 ≤ 〈pjkv, v〉 → 〈qv, v〉,
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showing that all eigenvalues of q are ≥ 0. Moreover, q = w−1g is invertible, and
therefore q is positive definite. Now m(u, p) = m(w, q) yields u = w and p = q. Since
each convergent subsequence of (uj) converges to u, the sequence itself converges to u
(Exercise 1.1.9), and therefore pj = u−1

j gj → u−1g = p.

We shall see later that the set Pdn(K) is homeomorphic to a vector space (Propo-
sition 2.3.5), so that, topologically, the group GLn(K) is a product of the compact
group Un(K) and a vector space. Therefore the “interesting” part of the topology of
GLn(K) is contained in the compact group Un(K).

Remark 1.1.6. [Normal forms of unitary and orthogonal matrices] We recall some
facts from linear algebra:

(a) For each u ∈ Un(C), there exists an orthonormal basis v1, . . . , vn consisting of
eigenvectors of g. This means that the unitary matrix s whose columns are the vectors
v1, . . . , vn satisfies

s−1us = diag(λ1, . . . , λn),

where uvj = λjv and |λj | = 1.
The proof of this normal form is based on the existence of an eigenvector v1 of

u which in turn follows from the existence of a zero of the characteristic polynomial.
Since u is unitary, it preserves the hyperplane v⊥1 of dimension n − 1. Now one uses
induction to obtain an orthonormal basis v2, . . . , vn consisting of eigenvectors.

(b) For elements of On(R), the situation is more complicated because real matrices
do not always have real eigenvectors.

Let A ∈ Mn(R) and consider it as an element of Mn(C). We assume that A does
not have a real eigenvector. Then there exists an eigenvector z ∈ Cn corresponding to
some eigenvalue λ ∈ C. We write z = x+ iy and λ = a+ ib. Then

Az = Ax+ iAy = λz = (ax− by) + i(ay + bx).

Comparing real and imaginary part yields

Ax = ax− by and Ay = ay + bx.

Therefore the two-dimensional subspace generated by x and y in Rn is invariant un-
der A.

This can be applied to g ∈ On(R) as follows. The argument above implies that
there exists an invariant subspace W1 ⊆ Rn with dimW1 ∈ {1, 2}. Then

W⊥1 := {v ∈ Rn : 〈v,W1〉 = {0}}

is a subspace of dimension n − dimW1 which is also invariant (Exercise 1.1.14), and
we apply induction to see that Rn is a direct sum of g-invariant subspaces W1, . . . ,Wk

of dimension ≤ 2. Therefore the matrix g is conjugate by an orthogonal matrix s to a
block matrix of the form

d = diag(d1, . . . , dk),

where dj is the matrix of the restriction of the linear map corresponding to g to Wj .
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To understand the structure of the dj , we have to take a closer look at the case
n ≤ 2. For n = 1 the group O1(R) = {±1} consists of two elements, and for n = 2 an
element r ∈ O2(R) can be written as

r =

(
a ∓b
b ±a

)
with det r = ±(a2 + b2) = ±1,

because the second column contains a unit vector orthogonal to the first one. With
a = cosα and b = sinα we get

r =

(
cosα ∓ sinα
sinα ± cosα

)
.

For det r = −1, we obtain

r2 =

(
a b
b −a

)(
a b
b −a

)
= 1,

but this implies that r is an orthogonal reflection with the two eigenvalues ±1 (Exer-
cise 1.1.13), hence has two orthogonal eigenvectors.

In view of the preceding discussion, we may therefore assume that the first m of
the matrices dj are of the rotation form

dj =

(
cosαj − sinαj
sinαj cosαj

)
,

that dm+1, . . . , d` are −1, and that d`+1, . . . , dn are 1:



cosα1 − sinα1

sinα1 cosα1

. . .

cosαm − sinαm
sinαm cosαm

−1
. . .

−1
1

. . .

1



.

For n = 3 we obtain in particular the normal form

d =

cosα − sinα 0
sinα cosα 0

0 0 ±1

 .

From this normal form we immediately read off that det d = 1 is equivalent to d
describing a rotation around an axis consisting of fixed points (the axis is Re3 for the
normal form matrix).
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Proposition 1.1.7. (a) The group Un(C) is arcwise connected.

(b) The group On(R) has the two arc components

SOn(R) and On(R)− := {g ∈ On(R) : det g = −1}.

Proof. (a) First we consider Un(C). To see that this group is arcwise connected, let
u ∈ Un(C). Then there exists an orthonormal basis v1, . . . , vn of eigenvectors of u
(Remark 1.1.6(a)). Let λ1, . . . , λn denote the corresponding eigenvalues. Then the
unitarity of u implies that |λj | = 1, and we therefore find θj ∈ R with λj = eθji. Now
we define a continuous curve

γ : [0, 1]→ Un(C), γ(t)vj := etθjivj , j = 1, . . . , n.

We then have γ(0) = 1 and γ(1) = u. Moreover, each γ(t) is unitary because the basis
(v1, . . . , vn) is orthonormal.

(b) For g ∈ On(R) we have gg> = 1 and therefore 1 = det(gg>) = (det g)2. This
shows that

On(R) = SOn(R)∪̇On(R)−

and both sets are closed in On(R) because det is continuous. Therefore On(R) is not
connected and hence not arcwise connected. Suppose we knew that SOn(R) is arcwise
connected and x, y ∈ On(R)−. Then 1, x−1y ∈ SOn(R) can be connected by an arc
γ : [0, 1] → SOn(R), and then t 7→ xγ(t) defines an arc [0, 1] → On(R)− connecting x
to y. So it remains to show that SOn(R) is arcwise connected.

Let g ∈ SOn(R). In the normal form of g discussed in Remark 1.1.6, the determi-
nant of each two-dimensional block is 1, so that the determinant is the product of all
−1-eigenvalues. Hence their number is even, and we can write each consecutive pair
as a block (

−1 0
0 −1

)
=

(
cosπ − sinπ
sinπ cosπ

)
.

This shows that with respect to some orthonormal basis for Rn the linear map defined
by g has a matrix of the form

g =



cosα1 − sinα1

sinα1 cosα1

. . .

cosαm − sinαm
sinαm cosαm

1
. . .

1


.
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Now we obtain an arc γ : [0, 1]→ SOn(R) with γ(0) = 1 and γ(1) = g by

γ(t) :=



cos tα1 − sin tα1

sin tα1 cos tα1

. . .

cos tαm − sin tαm
sin tαm cos tαm

1
. . .

1


.

Corollary 1.1.8. The group GLn(C) is arcwise connected and the group GLn(R) has
two arc-components given by

GLn(R)± := {g ∈ GLn(R) : ± det g > 0}.

Proof. If X = A×B is a product space, then the arc-components of X are the sets of
the form C ×D, where C ⊆ A and D ⊆ B are arc-components (easy Exercise!). The
polar decomposition of GLn(K) yields a homeomorphism

GLn(K) ∼= Un(K)× Pdn(K).

Since Pdn(K) is an open convex set, it is arcwise connected (Exercise 1.1.6). Therefore
the arc-components of GLn(K) are in one-to-one correspondence with those of Un(K)
which have been determined in Proposition 1.1.7.

1.1.2 Normal Subgroups of GLn(K)

We shall frequently need some basic concepts from group theory which we recall in
the following definition.

Definition 1.1.9. Let G be a group with identity element e.
(a) A subgroup N ⊆ G is called normal if gN = Ng holds for all g ∈ G. We write

this as N E G. The normality implies that the quotient set G/N (the set of all cosets
of the subgroup N) inherits a natural group structure by

gN · hN := ghN

for which eN is the identity element and the quotient map q : G→ G/N is a surjective
group homomorphism with kernel N = ker q = q−1(eN).

On the other hand, all kernels of group homomorphisms are normal subgroups, so
that the normal subgroups are precisely those which are kernels of group homomor-
phisms.

It is clear that G and {e} are normal subgroups. We call G simple if G 6= {e} and
these are the only normal subgroups.
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(b) The subgroup Z(G) := {g ∈ G : (∀x ∈ G)gx = xg} is called the center of G. It
obviously is a normal subgroup of G. For x ∈ G the subgroup

ZG(x) := {g ∈ G : gx = xg}

is called its centralizer. Note that Z(G) =
⋂
x∈G ZG(x).

(c) If G1, . . . , Gn are groups, then the product set G := G1× . . .×Gn has a natural
group structure given by

(g1, . . . , gn)(g′1, . . . , g
′
n) := (g1g

′
1, . . . , gng

′
n).

The group G is called the direct product of the groups Gj , j = 1, . . . , n. We identify Gj
with a subgroup of G. Then all subgroups Gj are normal subgroups and G = G1 · · ·Gn.

In the following we write R×+ :=]0,∞[.

Proposition 1.1.10. (a) Z(GLn(K)) = K×1.
(b) The multiplication map

ϕ : (R×+, ·)× SLn(R)→ GLn(R)+, (λ, g) 7→ λg

is a homeomorphism and a group isomorphism, i.e., an isomorphism of topological
groups.

Proof. (a) It is clear that K×1 is contained in the center of GLn(K). To see that
each matrix g ∈ Z(GLn(K)) is a multiple of 1, we consider the elementary matrix
Eij := (δij) with the only nonzero entry 1 in position (i, j). For i 6= j we then have
E2
ij = 0, so that (1 +Eij)(1−Eij) = 1, which implies that Tij := 1 +Eij ∈ GLn(K).

From the relation gTij = Tijg we immediately get gEij = Eijg for i 6= j, so that for
k, ` ∈ {1, . . . , n} we get

gkiδj` = (gEij)k` = (Eijg)k` = δikgj`.

For k = i and ` = j we obtain gii = gjj and for k = j = `, we get gji = 0. Therefore
g = λ1 for some λ ∈ K.

(b) It is obvious that ϕ is a group homomorphism and that ϕ is continuous. More-
over, the map

ψ : GLn(R)+ → R×+ × SLn(R), g 7→ ((det g)
1
n , (det g)−

1
n g)

is continuous and satisfies ϕ◦ψ = id and ψ◦ϕ = id. Hence ϕ is a homeomorphism.

Remark 1.1.11. The subgroups

Z(GLn(K)) and SLn(K)

are normal subgroups of GLn(K). Moreover, for GLn(R) the subgroup GLn(R)+ is
a proper normal subgroup and the same holds for R×+1. One can show that these
examples exhaust all normal arcwise connected subgroups of GLn(K).
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Exercises for Section 1.1

Exercise 1.1.1. Let V be a K-vector space and A ∈ End(V ). We write Vλ(A) :=
ker(A− λ1) for the eigenspace of A corresponding to the eigenvalue λ and V λ(A) :=⋃
n∈N ker(A− λ1)n for the generalized eigenspace of A corresponding to λ.

(a) If A,B ∈ End(V ) commute, then

BV λ(A) ⊆ V λ(A) and BVλ(A) ⊆ Vλ(A)

holds for each λ ∈ K.
(b) If A ∈ End(V ) is diagonalizable and W ⊆ V is an A-invariant subspace, then

A|W ∈ End(W ) is diagonalizable.
(c) If A,B ∈ End(V ) commute and both are diagonalizable, then they are simul-

taneously diagonalizable, i.e., there exists a basis for V which consists of eigenvectors
of A and B.

(d) If dimV < ∞ and A ⊆ End(V ) is a commuting set of diagonalizable en-
domorphisms, then A can be simultaneously diagonalized, i.e., V is a direct sum of
simultaneous eigenspaces of A.

(e) For any function λ : A → V , we write Vλ(A) =
⋂
a∈A Vλ(a)(a) for the corre-

sponding simultaneous eigenspace. Show that the sum
∑
λ Vλ(A) is direct.

(f) If A ⊆ End(V ) is a finite commuting set of diagonalizable endomorphisms, then
A can be simultaneously diagonalized.

(g) Find a commuting set of diagonalizable endomorphisms of a vector space V
which cannot be diagonalized simultaneously.

Exercise 1.1.2. Let G be a topological group. Let G0 be the identity component,
i.e., the connected component of the identity in G. Show that G0 is a closed normal
subgroup of G.

Exercise 1.1.3. SOn(K) is a closed normal subgroup of On(K) of index 2 and, for
every g ∈ On(K) with det(g) = −1,

On(K) = SOn(K) ∪ g SOn(K)

is a disjoint decomposition.

Exercise 1.1.4. For each subset M ⊆Mn(K) the centralizer

ZGLn(K)(M) := {g ∈ GLn(K) : (∀m ∈M)gm = mg}

is a closed subgroup of GLn(K).

Exercise 1.1.5. We identify Cn with R2n by the map z = x + iy 7→ (x, y) and
write I(x, y) := (−y, x) for the real linear endomorphism of R2n corresponding to
multiplication with i. Then

GLn(C) ∼= ZGL2n(R)({I})

yields a realization of GLn(C) as a closed subgroup of GL2n(R).
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Exercise 1.1.6. A subset C of a real vector space V is called a convex cone if C is
convex and λC ⊆ C for each λ > 0.

Show that Pdn(K) is an open convex cone in Hermn(K).

Exercise 1.1.7. Show that

γ : (R,+)→ GL2(R), t 7→
(

cos t sin t
− sin t cos t

)

is a continuous group homomorphism with γ(π) =

(
−1 0
0 −1

)
and im γ = SO2(R).

Exercise 1.1.8. Show that the group On(C) is homeomorphic to the topological
product of the subgroup

On(R) ∼= Un(C) ∩On(C) and the set Pdn(C) ∩On(C).

Exercise 1.1.9. Let (X, d) be a compact metric space and (xn)n∈N a sequence in
X. Show that limn→∞ xn = x is equivalent to the condition that each convergent
subsequence (xnk)k∈N converges to x.

Exercise 1.1.10. If A ∈ Hermn(K) satisfies 〈Av, v〉 = 0 for each v ∈ Kn, then A = 0.

Exercise 1.1.11. Show that for a complex matrix A ∈ Mn(C) the following are
equivalent:

(1) A∗ = A.

(2) 〈Av, v〉 ∈ R for each v ∈ Cn.

Exercise 1.1.12. (a) Show that a matrix A ∈ Mn(K) is hermitian if and only if
there exists an orthonormal basis v1, . . . , vn for Kn and real numbers λ1, . . . , λn with
Avj = λjvj .

(b) Show that a complex matrix A ∈ Mn(C) is unitary if and only if there exists
an orthonormal basis v1, . . . , vn for Kn and λj ∈ C with |λj | = 1 and Avj = λjvj .

(c) Show that a complex matrix A ∈ Mn(C) is normal, i.e., satisfies A∗A = AA∗,
if and only if there exists an orthonormal basis v1, . . . , vn for Kn and λj ∈ C with
Avj = λjvj .

Exercise 1.1.13. (a) Let V be a vector space and 1 6= A ∈ End(V ) with A2 = 1 (A
is called an involution). Show that

V = ker(A− 1)⊕ ker(A+ 1).

(b) Let V be a vector space and A ∈ End(V ) with A3 = A. Show that

V = ker(A− 1)⊕ ker(A+ 1)⊕ kerA.

(c) Let V be a vector space and A ∈ End(V ) an endomorphism for which there
exists a polynomial p of degree n with n different zeros λ1, . . . , λn ∈ K and p(A) = 0.
Show that A is diagonalizable with eigenvalues λ1, . . . , λn.
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Exercise 1.1.14. Let β : V × V → K be a bilinear map and g : V → V with
β(gv, gw) = β(v, w) be a β-isometry. For a subspace E ⊆ V we write

E⊥ := {v ∈ V : (∀w ∈ E) β(v, w) = 0}

for its orthogonal space. Show that g(E) = E implies that g(E>) = E>.

Exercise 1.1.15. [Iwasawa decomposition of GLn(R)] Let

T+
n (R) ⊆ GLn(R)

denote the subgroup of upper triangular matrices with positive diagonal entries. Show
that the multiplication map

µ : On(R)× T+
n (R)→ GLn(R), (a, b) 7→ ab

is a homeomorphism.

Exercise 1.1.16. Let K be a field and n ∈ N. Show that

Z(Mn(K)) := {z ∈Mn(K) : (∀x ∈Mn(K)) zx = xz} = K1.

1.2 Groups and Geometry

In Definition 1.1.3 we have defined certain matrix groups by concrete conditions on the
matrices. Often it is better to think of matrices as linear maps described with respect
to a basis. To do that we have to adopt a more abstract point of view. Similarly,
one can study symmetry groups of bilinear forms on a vector space V without fixing a
certain basis a priori. Actually it is much more convenient to choose a basis for which
the structure of the bilinear form is as simple as possible.

1.2.1 Isometry Groups

Definition 1.2.1. [Groups and bilinear forms]
(a) (The abstract general linear group) Let V be a K-vector space. We write GL(V )

for the group of linear automorphisms of V . This is the group of invertible elements
in the ring End(V ) of all linear endomorphisms of V .

If V is an n-dimensional K-vector space and v1, . . . , vn is a basis for V , then the
map

Φ: Mn(K)→ End(V ), Φ(A)vk :=

n∑
j=1

ajkvj

is a linear isomorphism which describes the passage between linear maps and matrices.
In view of Φ(1) = idV and Φ(AB) = Φ(A)Φ(B), we obtain a group isomorphism

Φ|GLn(K) : GLn(K)→ GL(V ).

(b) Let V be an n-dimensional vector space with basis v1, . . . , vn and β : V ×V → K
a bilinear map. Then B = (bjk) := (β(vj , vk))j,k=1,...,n is an (n × n)-matrix, but this
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matrix should NOT be interpreted as the matrix of a linear map. It is the matrix of
a bilinear map to K, which is something different. It describes β in the sense that

β
(∑

j

xjvj ,
∑
k

ykvk

)
=

n∑
j,k=1

xjbjkyk = x>By,

where x>By with column vectors x, y ∈ Kn is viewed as a matrix product whose result
is a (1× 1)-matrix, i.e., an element of K.

We write

Aut(V, β) := {g ∈ GL(V ) : (∀v, w ∈ V )β(gv, gw) = β(v, w)}

for the isometry group of the bilinear form β. Then it is easy to see that

Φ−1(Aut(V, β)) = {g ∈ GLn(K) : g>Bg = B}.

If β is symmetric, we also write O(V, β) := Aut(V, β) and if β is skew-symmetric, we
write Sp(V, β) := Aut(V, β).

If v1, . . . , vn is an orthonormal basis for β, i.e., B = 1, then

Φ−1(Aut(V, β)) = On(K)

is the orthogonal group defined in Section 1.1. Note that orthonormal bases can only
exist for symmetric bilinear forms (Why?).

For V = K2n and the block (2× 2)-matrix

B :=

(
0 1n
−1n 0

)
we see that B> = −B, and the group

Sp2n(K) := {g ∈ GL2n(K) : g>Bg = B}

is called the symplectic group. The corresponding skew-symmetric bilinear form on
K2n is given by

β(x, y) = x>By =
n∑
i=1

xiyn+i − xn+iyi.

(c) A symmetric bilinear form β on V is called nondegenerate if β(v, V ) = {0}
implies v = 0. For K = C every nondegenerate symmetric bilinear form β possesses
an orthonormal basis (this builds on the existence of square roots of nonzero complex
numbers; see Exercise 1.2.1), so that for every such form β we get

O(V, β) ∼= On(C).

For K = R the situation is more complicated, since negative real numbers do
not have a square root in R. There might not be an orthonormal basis, but if β is
nondegenerate, there always exists an orthogonal basis v1, . . . , vn and p ∈ {1, . . . , n}
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such that β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = −1 for j = p + 1, . . . , n. Let
q := n− p and Ip,q denote the corresponding matrix

Ip,q =

(
1p 0
0 −1q

)
∈Mp+q(R).

Then O(V, β) is isomorphic to the group

Op,q(R) := {g ∈ GLn(R) : g>Ip,qg = Ip,q},

where On,0(R) = On(R).

(d) Let V be an n-dimensional complex vector space and β : V ×V → C a sesquilin-
ear form, i.e., β is linear in the first and antilinear in the second argument. Then we
also choose a basis v1, . . . , vn in V and define B = (bjk) := (β(vj , vk))j,k=1,...,n, but
now we obtain

β
(∑

j

xjvj ,
∑
k

ykvk

)
=

n∑
j,k=1

xjbjkyk = x>By.

We write

U(V, β) := {g ∈ GL(V ) : (∀v, w ∈ V )β(gv, gw) = β(v, w)}

for the corresponding unitary group and find

Φ−1(U(V, β)) = {g ∈ GLn(C) : g>Bg = B}.

If v1, . . . , vn is an orthonormal basis for β, i.e., B = 1, then

Φ−1(U(V, β)) = Un(C) = {g ∈ GLn(C) : g∗ = g−1}

is the unitary group over C. We call β hermitian if it is sesquilinear and satisfies
β(y, x) = β(x, y). In this case one has to face the same problems as for symmetric
forms on real vector spaces, but there always exists an orthogonal basis v1, . . . , vn and
p ∈ {1, . . . , n} with β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = −1 for j = p+1, . . . , n.
With q := n− p and

Ip,q :=

(
1p 0
0 −1q

)
∈Mn(C)

we then define the indefinite unitary groups by

Up,q(C) := {g ∈ GLn(C) : g>Ip,qg = Ip,q}.

Since Ip,q has real entries,

Up,q(C) = {g ∈ GLn(C) : g∗Ip,qg = Ip,q},

where Un,0(C) = Un(C).
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Exercises for Section 1.2

Exercise 1.2.1. (a) Let β be a symmetric bilinear form on a finite-dimensional com-
plex vector space V . Show that there exists an orthogonal basis v1, . . . , vn with
β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = 0 for j > p.

(b) Show that each invertible symmetric matrix B ∈ GLn(C) can be written as
B = AA> for some A ∈ GLn(C).

Exercise 1.2.2. Let β be a symmetric bilinear form on a finite-dimensional real vector
space V . Show that there exists an orthogonal basis v1, . . . , vp+q with β(vj , vj) = 1
for j = 1, . . . , p, β(vj , vj) = −1 for j = p+ 1, . . . , p+ q, and β(vj , vj) = 0 for j > p+ q.

Exercise 1.2.3. Let β be a skew-symmetric bilinear form on a finite-dimensional
vector space V which is nondegenerate in the sense that β(v, V ) = {0} implies v = 0.
Show that there exists a basis v1, . . . , vn, w1, . . . , wn of V with

β(vi, wj) = δij and β(vi, vj) = β(wi, wj) = 0.

Exercise 1.2.4. [Metric characterization of midpoints] Let (X, ‖ · ‖) be a normed
space and x, y ∈ X distinct points. Let

M0 := {z ∈ X : ‖z − x‖ = ‖z − y‖ = 1
2‖x− y‖} and m :=

x+ y

2
.

For a subset A ⊆ X we define its diameter

δ(A) := sup{‖a− b‖ : a, b ∈ A}.

Show that:

(1) If X is a pre-Hilbert space (i.e., a vector space with a hermitian scalar product),
then M0 = {m} is a one-element set.

(2) ‖z −m‖ ≤ 1
2δ(M0) ≤ 1

2‖x− y‖ for z ∈M0.

(3) For n ∈ N we define inductively:

Mn := {p ∈Mn−1 : (∀z ∈Mn−1) ‖z − p‖ ≤ 1
2δ(Mn−1)}.

Then, for each n ∈ N:

(a) Mn is a convex set.

(b) Mn is invariant under the point reflection sm(a) := 2m− a in m.

(c) m ∈Mn.

(d) δ(Mn) ≤ 1
2δ(Mn−1).

(4)
⋂
n∈NMn = {m}.

Exercise 1.2.5. [Isometries of normed spaces are affine maps] Let (X, ‖ · ‖) be a
normed space endowed with the metric d(x, y) := ‖x − y‖. Show that each isometry
ϕ : (X, d)→ (X, d) is an affine map by using the following steps:
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(1) It suffices to assume that ϕ(0) = 0 and to show that this implies that ϕ is a linear
map.

(2) ϕ(x+y
2 ) = 1

2 (ϕ(x) + ϕ(y)) for x, y ∈ X.

(3) ϕ is continuous.

(4) ϕ(λx) = λϕ(x) for λ ∈ 2Z ⊆ R.

(5) ϕ(x+ y) = ϕ(x) + ϕ(y) for x, y ∈ X.

(6) ϕ(λx) = λϕ(x) for λ ∈ R.

Exercise 1.2.6. Let β : V ×V → V be a symmetric bilinear form on the vector space
V and

q : V → V, v 7→ β(v, v)

the corresponding quadratic form. Then for ϕ ∈ End(V ) the following are equivalent:

(1) (∀v ∈ V ) q(ϕ(v)) = q(v).

(2) (∀v, w ∈ V ) β(ϕ(v), ϕ(w)) = β(v, w).

Exercise 1.2.7. We consider R4 = R3 × R, where the elements of R4 are considered
as space time events (q, t), q ∈ R3, t ∈ R. On R4 we have the linear (time) functional

∆: R4 → R, (x, t) 7→ t

and we endow ker ∆ ∼= R3 with the euclidian scalar product

β(x, y) := x1y1 + x2y2 + x3y3.

Show that

H := {g ∈ GL4(R) : g ker ∆ ⊆ ker ∆, g|ker ∆ ∈ O3(R)} ∼= R3 o (O3(R)× R×)

and
G := {g ∈ H : ∆ ◦ g = ∆} ∼= R3 o O3(R).

In this sense the linear part of the Galilei group (extended by the space reflection S)
is isomorphic to the symmetry group of the triple (R4, β,∆), where ∆ represents a
universal time function and β is the scalar product on ker ∆. In the relativistic picture
the time function is combined with the scalar product in the Lorentz form.

Exercise 1.2.8. On the four-dimensional real vector space V := Herm2(C) we con-
sider the symmetric bilinear form β given by

β(A,B) := tr(AB)− trA trB.

Show that:

(1) The corresponding quadratic form is given by q(A) := β(A,A) = −2 detA.



1.2. GROUPS AND GEOMETRY 17

(2) Show that (V, β) ∼= R3,1 by finding a basis E1, . . . , E4 of Herm2(C) with

q(a1E1 + . . .+ a4E4) = a2
1 + a2

2 + a2
3 − a2

4.

(3) For g ∈ GL2(C) and A ∈ Herm2(C) the matrix gAg∗ is hermitian and satisfies

q(gAg∗) = |det(g)|2q(A).

(4) For g ∈ SL2(C) we define a linear map ρ(g) ∈ GL(Herm2(C)) by
ρ(g)(A) := gAg∗. Then we obtain a homomorphism

ρ : SL2(C)→ O(V, β) ∼= O3,1(R).

(5) Show that ker ρ = {±1}.

Exercise 1.2.9. Let β : V × V → K be a bilinear form.
(1) Show that there exists a unique symmetric bilinear form β+ and a unique skew-
symmetric bilinear form β− with β = β+ + β−.
(2) Aut(V, β) = O(V, β+) ∩ Sp(V, β−).

Exercise 1.2.10. Let G be a group, N ⊆ G a normal subgroup and

q : G→ G/N, g 7→ gN

be the quotient homomorphism. Show that:

(1) If G ∼= N oδ H for a subgroup H, then H ∼= G/N .

(2) There exists a subgroup H ⊆ G with G ∼= N oδ H if and only if there exists a
group homomorphism σ : G/N → G with q ◦ σ = idG/N .

Exercise 1.2.11. Show that Op,q(C) ∼= Op+q(C) for p, q ∈ N0, p+ q > 0.

Exercise 1.2.12. Let (V, β) be a euclidian vector space, i.e., a real vector space
endowed with a positive definite symmetric bilinear form β. An element σ ∈ O(V, β)
is called an orthogonal reflection if σ2 = 1 and ker(σ − 1) is a hyperplane. Show that
for any finite-dimensional euclidian vector space (V, β), the orthogonal group O(V, β)
is generated by reflections.

Exercise 1.2.13. (i) Show that, if n is odd, each g ∈ SOn(R) has the eigenvalue 1.

(ii) Show that each g ∈ On(R)− has the eigenvalue −1.

Exercise 1.2.14. Let V be a K-vector space. An element ϕ ∈ GL(V ) is called a
transvection if dimK

(
im(ϕ− idV )

)
= 1 and im(ϕ− idV ) ⊆ ker(ϕ− idV ). Show that:

(i) For each transvection ϕ, there exist a vϕ ∈ V and a αϕ ∈ V ∗ such that ϕ(v) =
v − αϕ(v)vϕ and αϕ(vϕ) = 0.

(ii) For each transvection ϕ, there exist a vϕ ∈ V and a αϕ ∈ V ∗ such that ϕ(v) =
v − αϕ(v)vϕ and αϕ(vϕ) = 0.
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(ii) If dimV <∞, then det(ϕ) = 1 for each transvection ϕ.

(iii) If ψ ∈ GL(V ) commutes with all transvections, then every element of V is an
eigenvector of ψ, so that ψ ∈ K× idV .

(iv) Z(GL(V )) = K×1.

(v) If dimV <∞, then Z(SL(V )) = Γ1, where Γ := {z ∈ K× : zn = 1}.

Exercise 1.2.15. Let V be a finite-dimensional K-vector space for K = R or C and
β be a skew symmetric bilinear form on V . Show that:

(i) A transvection ϕ(v) = v − αϕ(v)vϕ preserves β if and only if

(∀v, w ∈ V ) : αϕ(v)β(vϕ, w) = αϕ(w)β(vϕ, v).

If, in addition, β is nondegenerate, we call ϕ a symplectic transvection.

(ii) If β is nondegenerate and ψ ∈ GL(V ) commutes with all symplectic transvec-
tions, then every vector in v is an eigenvector of ψ.

Exercise 1.2.16. Let V be a finite-dimensional K-vector space for K = R or C and
and β be a non-degenerate symmetric bilinear form on V . An involution ϕ ∈ O(V, β)
is called an orthogonal reflection if dimK

(
im(ϕ− idV )

)
= 1. Show that:

(i) For each orthogonal reflection ϕ, there exists a non-isotropic vϕ ∈ V such that

ϕ(v) = v − 2 β(v,vα)
β(vα,vα) .

(ii) If ψ ∈ GL(V ) commutes with all orthogonal reflections, then every non-isotropic
vector for β is an eigenvector of ψ, and this implies that ψ ∈ K× idV .

(iv) Z
(

O(V, β)
)

= {±1}.



Chapter 2

The Matrix Exponential
Function

In this chapter we study one of the central tools in Lie theory: the matrix exponential
function. This function has various applications in the structure theory of matrix
groups. First of all, it is naturally linked to the one-parameter subgroups, and it turns
out that the local group structure of GLn(K) in a neighborhood of the identity is
determined by its one-parameter subgroups.

In the first section of this chapter we provide some tools to show that matrix valued
functions defined by convergent power series are actually smooth. This is applied in
the subsequent sections to the exponential and the logarithm functions. Then we
discuss restrictions of the exponential function to certain subsets such as small 0-
neighborhoods, the set of nilpotent matrices and the set of hermitian matrices. Finally,
we derive the Baker–Campbell–Dynkin–Hausdorff formula expressing the product of
two exponentials near the identity in terms of the Hausdorff series which involves only
commutator brackets.

In the following chapter, we shall use the matrix exponential function to generalize
the polar decomposition given in Proposition 1.1.5 to a larger class of groups. This
will lead to topological information on various concrete matrix groups.

2.1 Smooth Functions Defined by Power Series

First we put the structure that we have on the space Mn(K) of (n× n)-matrices into
a slightly more general context.

Definition 2.1.1. (a) A vector space A together with a bilinear map
A × A → A, (x, y) 7→ x · y (called multiplication) is called an (associative) algebra
if the multiplication is associative in the sense that

(x · y) · z = x · (y · z) for x, y, z ∈ A.

We write xy := x · y for the product of x and y in A.

19



20 CHAPTER 2. THE MATRIX EXPONENTIAL FUNCTION

The algebra A is called unital if it contains an element 1 satisfying 1a = a1 = a
for each a ∈ A.

(b) A norm ‖ · ‖ on an algebra A is called submultiplicative if

‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A.

Then the pair (A, ‖ · ‖) is called a normed algebra. If, in addition, A is a complete
normed space, then it is said to be a Banach algebra.

Remark 2.1.2. Any finite-dimensional normed space is complete, so that each finite-
dimensional normed algebra is a Banach algebra.

Example 2.1.3. Endowing Mn(K) with the operator norm with respect to the eu-
clidian norm on Kn defines on Mn(K) the structure of a unital Banach algebra.

The following proposition shows in particular that inserting elements of a Banach
algebra into power series is compatible with composition.

In the following we write K[[z]] for the space of all formal power series

f(z) :=

∞∑
n=0

anz
n, an ∈ K

in the variable z. For r ∈ [0,∞[ we define

‖f‖r :=

∞∑
n=0

|an|rn ∈ [0,∞].

We write K[[z]]r for the subset of all power series with ‖f‖r < ∞. Note that this
implies that f converges uniformly to a function on the closed disc of radius r in K.

Proposition 2.1.4. Let A be a unital Banach algebra.

(1) If x ∈ A and f ∈ K[[z]]r for some r ≥ ‖x‖, then f(x) :=
∑∞
n=0 anx

n converges
absolutely with

‖f(x)‖ ≤ ‖f‖r.

For two power series f(z) =
∑
n anz

n and g(z) =
∑
n bnz

n with ‖f‖r, ‖g‖r <∞,
we also have the product formula

(f · g)(x) = f(x)g(x), where (f · g)(z) :=

∞∑
n=0

( n∑
k=0

akbn−k

)
zn (2.1)

is the power series defined by the Cauchy product of f and g.

(2) Suppose that f(z) =
∑∞
n=0 anz

n ∈ K[[z]]r and g(z) =
∑∞
n=1 bnz

n ∈ zK[[z]] satis-
fies ‖g‖s < r. We define the power series f ◦ g by formal composition:

(f ◦ g)(z) :=
∑
n

cnz
n, cn =

n∑
k=0

ak
∑

i1+···+ik=n

bi1 · · · bik .
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Then ‖f ◦ g‖s ≤ ‖f‖r, and for any x ∈ A with ‖x‖ ≤ s the element g(x) exists
with ‖g(x)‖ < r, and we have the Composition Formula:

f(g(x)) = (f ◦ g)(x). (2.2)

Proof. (1) The convergence of f(x) follows immediately from∑
n

‖anxn‖ ≤
∑
n

|an|‖x‖n ≤
∑
n

|an|rn = ‖f‖r

and the Domination Test for absolutely converging series in a Banach space. We also
obtain immediately the estimate ‖f(x)‖ ≤ ‖f‖r.

If ‖f‖r, ‖g‖r < ∞, then (2.1) follows from the Cauchy Product Formula (Exer-
cise 2.1.3) because the series f(x) and g(x) converge absolutely.

(2) To see that ‖f ◦ g‖s <∞, we calculate

∑
n

|cn|sn ≤
∑
n

n∑
k=0

|ak|
∑

i1+···+ik=n

|bi1 | · · · |bik |sn

≤
∞∑
k=0

|ak|
∑
n

∑
i1+···+ik=n

|bi1 | · · · |bik |sn =

∞∑
k=0

|ak|‖g‖ns

≤
∞∑
k=0

|ak|rn = ‖f‖r.

For ‖x‖ ≤ s we obtain from (1) the relation ‖g(x)‖ ≤ ‖g‖s, so that

f(g(x)) =

∞∑
n=0

ang(x)n

is defined. Applying the Product Formula to the powers of g, we further obtain
g(x)n = (gn)(x), so that the polynomials fN (z) :=

∑N
n=0 anz

n satisfy

fN (g(x)) =

N∑
n=0

ang(x)n = (fN ◦ g)(x).

Next we observe that

‖f ◦ g − fN ◦ g‖s = ‖(f − fN ) ◦ g‖s ≤ ‖f − fN‖r → 0,

so that

fN (g(x)) = (fN ◦ g)(x)→ (f ◦ g)(x).

Since we also have fN (g(x)) → f(g(x)) by definition, the Composition Formula is
proved.



22 CHAPTER 2. THE MATRIX EXPONENTIAL FUNCTION

Lemma 2.1.5. If A is a unital Banach algebra, then we endow the vector space
TA := A⊕A with the norm ‖(a, b)‖ := ‖a‖+ ‖b‖ and the multiplication

(a, b)(a′, b′) := (aa′, ab′ + ba′).

Then TA is a unital Banach algebra with identity (1, 0).
We put ε := (0, 1). Then each element of TA can be written in a unique fashion

as (a, b) = a+ bε and the multiplication satisfies

(a+ bε)(a′ + b′ε) = aa′ + (ab′ + ba′)ε.

In particular, ε2 = 0.

Proof. That TA is a unital algebra is a trivial verification. That the norm is submul-
tiplicative follows from

‖(a, b)(a′, b′)‖ = ‖aa′‖+ ‖ab′ + ba′‖ ≤ ‖a‖ · ‖a′‖+ ‖a‖ · ‖b′‖+ ‖b‖ · ‖a′‖
≤ (‖a‖+ ‖b‖)(‖a′‖+ ‖b′‖) = ‖(a, b)‖ · ‖(a′, b′)‖.

This proves that (TA, ‖ · ‖) is a unital normed algebra, the unit being
1 = (1, 0). The completeness of TA follows easily from the completeness of A (Exer-
cise).

Lemma 2.1.6. Let f =
∑∞
n=0 cnz

n ∈ K[[z]]r and A be a finite-dimensional unital
Banach algebra. Then

f : Br(0) := {x ∈ A : ‖x‖ < r} → A, x 7→
∞∑
n=0

cnx
n

defines a smooth function. Its derivative is given by

df(x) =

∞∑
n=0

cndpn(x),

where pn(x) = xn is the nth power map whose derivative is given by

dpn(x)y = xn−1y + xn−2yx+ . . .+ xyxn−2 + yxn−1.

For ‖x‖ < r and y ∈ A with xy = yx we obtain in particular

dpn(x)y = nxn−1y and df(x)y =

∞∑
n=1

cnnx
n−1y.

Proof. First we observe that the series defining f(x) converges for ‖x‖ < r by the
Comparison Test (for series in Banach spaces). We shall prove by induction over
k ∈ N that all such functions f are Ck-functions.
Step 1: First we show that f is a C1-function. We define αn : A → A by

αn(h) := xn−1h+ xn−2hx+ . . .+ xhxn−2 + hxn−1.
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Then αn is a continuous linear map with ‖αn‖ ≤ n‖x‖n−1. Furthermore

pn(x+ h) = (x+ h)n = xn + αn(h) + rn(h),

where

‖rn(h)‖ ≤
(
n

2

)
‖h‖2‖x‖n−2 +

(
n

3

)
‖h‖3‖x‖n−3 + . . .+ ‖h‖n

=
∑
k≥2

(
n

k

)
‖h‖k‖x‖n−k.

In particular limh→0
‖rn(h)‖
‖h‖ = 0, and therefore pn is differentiable in x with dpn(x) =

αn. The series

β :=

∞∑
n=0

cnαn =

∞∑
n=0

cndpn(x)

converges absolutely in End(A) by the Ratio Test since ‖x‖ < r:

∞∑
n=0

|cn|‖αn‖ ≤
∞∑
n=0

|cn| · n · ‖x‖n−1 <∞.

We thus obtain a linear map β(x) ∈ End(A) for each x with ‖x‖ < r.
Now let h satisfy ‖x‖+ ‖h‖ < r, i.e., ‖h‖ < r − ‖x‖. Then

f(x+ h) = f(x) + β(x)(h) + r(h), r(h) :=

∞∑
n=2

cnrn(h),

where

‖r(h)‖ ≤
∞∑
n=2

|cn|‖rn(h)‖ ≤
∞∑
n=2

|cn|
n∑
k=2

(
n

k

)
‖h‖k‖x‖n−k

≤
∞∑
k=2

( ∞∑
n=k

|cn|
(
n

k

)
‖x‖n−k

)
‖h‖k <∞

follows from ‖x‖+ ‖h‖ < r because∑
k

∑
n≥k

|cn|
(
n

k

)
‖x‖n−k‖h‖k =

∑
n

|cn|(‖x‖+ ‖h‖)n ≤
∑
n

|cn|rn <∞.

Therefore the continuity of real-valued functions represented by a power series yields

lim
h→0

‖r(h)‖
‖h‖

=

∞∑
k=2

( ∞∑
n=k

|cn|
(
n

k

)
‖x‖n−k

)
0k−1 = 0.

This proves that f is a C1-function with the required derivative.
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Step 2: To complete our proof by induction, we now show that if all functions f as
above are Ck, then they are also Ck+1. In view of Step 1, this implies that they are
smooth.

To set up the induction, we consider the Banach algebra TA from
Lemma 2.1.5 and apply Step 1 to this algebra to obtain a smooth function

F : {x+ εh ∈ TA : ‖x‖+ ‖h‖ = ‖x+ εh‖ < r} → TA

F (x+ εh) =

∞∑
n=0

cn · (x+ εh)n,

We further note that (x+ εh)n = xn + dpn(x)h · ε. This implies the formula

F (x+ εh) = f(x) + εdf(x)h,

i.e., that the extension F of f to TA describes the first order Taylor expansion of f in
each point x ∈ A. Our induction hypothesis implies that F is a Ck-function.

Let x0 ∈ A with ‖x0‖ < r and pick a basis h1, . . . , hd for A with
‖hi‖ < r − ‖x0‖. Then all functions x 7→ df(x)hi are defined and Ck on a neigh-
borhood of x0, and this implies that the function

Br(0)→ Hom(A,A), x 7→ df(x)

is Ck. This in turn implies that f is Ck+1.

Exercises for Section 2.1

Exercise 2.1.1. Let X1, . . . , Xn be finite-dimensional normed spaces and
β : X1 × . . .×Xn → Y an n-linear map.

(a) Show that there exists a constant C ≥ 0 with

‖β(x1, . . . , xn)‖ ≤ C‖x1‖ · · · ‖xn‖ for xi ∈ Xi.

(b) Show that β is continuous.

(c) Show that β is differentiable with

dβ(x1, . . . , xn)(h1, . . . , hn) =

n∑
j=1

β(x1, . . . , xj−1, hj , xj+1, . . . , xn).

Exercise 2.1.2. Let Y be a Banach space and an,m, n,m ∈ N, elements in Y with∑
n,m

‖an,m‖ := sup
N∈N

∑
n,m≤N

‖an,m‖ <∞.

(a) Show that

A :=

∞∑
n=1

∞∑
m=1

an,m =

∞∑
m=1

∞∑
n=1

an,m

and that both iterated sums exist.
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(b) Show that for each sequence (Sn)n∈N of finite subsets Sn ⊆ N× N, n ∈ N, with
Sn ⊆ Sn+1 and

⋃
n Sn = N× N we have

A = lim
n∈N

∑
(j,k)∈Sn

aj,k.

Exercise 2.1.3. [Cauchy Product Formula] Let X,Y, Z be Banach spaces and
β : X × Y → Z a continuous bilinear map. Suppose that x :=

∑∞
n=0 xn is absolutely

convergent in X and that y :=
∑∞
n=0 yn is absolutely convergent in Y . Then

β(x, y) =

∞∑
n=0

n∑
k=0

β(xk, yn−k).

2.2 Elementary Properties of the Exponential Func-
tion

After the preparations of the preceding section, it is now easy to see that the matrix
exponential function defines a smooth map on Mn(K). In this section we describe some
elementary properties of this function. As a group theoretic consequence for GLn(K),
we show that it has no small subgroups, i.e. has a neighborhood of 1 containing only
the trivial subgroup. Moreover, we show that all one-parameter groups are smooth
and given by the exponential function.

For x ∈Mn(K), we define

ex : =

∞∑
k=0

1

k!
xk. (2.3)

The absolute convergence of the series on the right follows directly from the estimate

∞∑
k=0

1

k!
‖xk‖ ≤

∞∑
k=0

1

k!
‖x‖k = e‖x‖

and the Comparison Test for absolute convergence of a series in a Banach space. We
define the exponential function of Mn(K) by

exp: Mn(K)→Mn(K), exp(x) := ex.

Proposition 2.2.1. The exponential function exp: Mn(K)→Mn(K) is smooth. For
xy = yx it satisfies

d exp(x)y = exp(x)y = y exp(x) (2.4)

and in particular
d exp(0) = idMn(K) .

Proof. To verify the formula for the differential, we note that for xy = yx, Lemma 2.1.6
implies that

d exp(x)y =

∞∑
k=1

1

k!
kxk−1y =

∞∑
k=0

1

k!
xky = exp(x)y.
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For x = 0, the relation exp(0) = 1 now implies in particular that
d exp(0)y = y.

Lemma 2.2.2. Let x, y ∈Mn(K).

(i) If xy = yx, then exp(x+ y) = expx exp y.

(ii) exp(Mn(K)) ⊆ GLn(K), exp(0) = 1, and (expx)−1 = exp(−x).

(iii) For g ∈ GLn(K) the relation g exp(x)g−1 = exp(gxg−1) holds.

Proof. (i) Using the general form of the Cauchy Product Formula (Exercise 2.1.3), we
obtain

exp(x+ y) =
∞∑
k=0

(x+ y)k

k!
=

∞∑
k=0

1

k!

k∑
`=0

(
k

`

)
x`yk−`

=

∞∑
k=0

k∑
`=0

x`

`!

yk−`

(k − `)!
=
( ∞∑
p=0

xp

p!

)( ∞∑
`=0

y`

`!

)
.

(ii) From (i) we derive in particular expx exp(−x) = exp 0 = 1, which implies (ii).
(iii) is a consequence of gxng−1 = (gxg−1)n and the continuity of the conjugation

map cg(x) := gxg−1 on Mn(K).

Remark 2.2.3. (a) For n = 1, the exponential function

exp: M1(R) ∼= R→ R× ∼= GL1(R), x 7→ ex

is injective, but this is not the case for n > 1. In fact,

exp

(
0 −2π

2π 0

)
= 1

follows from

exp

(
0 −t
t 0

)
=

(
cos t − sin t
sin t cos t

)
, t ∈ R.

This example is nothing but the real picture of the relation e2πi = 1.

Proposition 2.2.4. For each sufficiently small open neighborhood U of 0 in Mn(K),
the map

exp |U : U → GLn(K)

is a diffeomorphism onto an open neighborhood of 1 in GLn(K).

Proof. We have already seen that exp is a smooth map, and that d exp(0) = idMd(K).
Therefore the assertion follows from the Inverse Function Theorem.

If U is as in Proposition 2.2.4 and V = exp(U), we define

logV : = (exp |U )−1 : V → U ⊆Md(K).

We shall see below why this function deserves to be called a logarithm function.
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Theorem 2.2.5. (No Small Subgroup Theorem) There exists an open neighborhood
V of 1 in GLn(K) such that {1} is the only subgroup of GLn(K) contained in V .

Proof. Let U be as in Proposition 2.2.4 and assume further that U is convex and
bounded. We set U1 := 1

2U . Let G ⊆ V := expU1 be a subgroup of GLn(K) and
g ∈ G. Then we write g = expx with x ∈ U1 and assume that x 6= 0. Let k ∈ N be
maximal with kx ∈ U1 (the existence of k follows from the boundedness of U). Then

gk+1 = exp((k + 1)x) ∈ G ⊆ V

implies the existence of y ∈ U1 with exp(k + 1)x = exp y. Since (k + 1)x ∈ 2U1 = U
follows from k+1

2 x ∈ [0, k]x ⊆ U1, and exp |U is injective, we obtain (k+ 1)x = y ∈ U1,
contradicting the maximality of k. Therefore g = 1.

A one-parameter (sub)group of a group G is a group homomorphism γ : (R,+)→ G.
The following result describes the differentiable one-parameter subgroups of GLn(K).

Theorem 2.2.6. [One-parameter Group Theorem] For each x ∈Mn(K), the map

γ : (R,+)→ GLn(K), t 7→ exp(tx)

is a smooth group homomorphism solving the initial value problem

γ(0) = 1 and γ′(t) = γ(t)x for t ∈ R.

Conversely, every continuous one-parameter group γ : R→ GLn(K) is of this form.

Proof. In view of Lemma 2.2.2(i) and the differentiability of exp, we have

lim
h→0

1

h

(
γ(t+ h)− γ(t)

)
= lim
h→0

1

h

(
γ(t)γ(h)− γ(t)

)
= γ(t) lim

h→0

1

h

(
ehx − 1

)
= γ(t)x.

Hence γ is differentiable with γ′(t) = xγ(t) = γ(t)x. From that it immediately follows
that γ is smooth with γ(n)(t) = xnγ(t) for each n ∈ N.

Although we will not need it for the completeness of the proof, we first show that
each one-parameter group γ : R→ GLn(K) which is differentiable in 0 has the required
form. For x := γ′(0), the calculation

γ′(t) = lim
s→0

γ(t+ s)− γ(t)

s
= lim
s→0

γ(t)
γ(s)− γ(0)

s
= γ(t)γ′(0) = γ(t)x

implies that γ is differentiable and solves the initial value problem

γ′(t) = γ(t)x, γ(0) = 1.

Therefore the Uniqueness Theorem for Linear Differential Equations implies that
γ(t) = exp tx for all t ∈ R.

It remains to show that each continuous one-parameter group γ of GLn(K) is
differentiable in 0. As in the proof of Theorem 2.2.5, let U be a convex symmetric
(i.e., U = −U) 0-neighborhood in Mn(K) for which exp |U is a diffeomorphism onto
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an open subset (Proposition 2.2.4) and U1 := 1
2U . Since γ is continuous in 0, there

exists an ε > 0 such that γ([−ε, ε]) ⊆ exp(U1). Then α(t) := (exp |U )−1(γ(t)) defines
a continuous curve α : [−ε, ε] → U1 with exp(α(t)) = γ(t) for |t| ≤ ε. For any such t
we then have

exp
(
2α( t2 )

)
= exp(α( t2 )

)2
= γ( t2 )2 = γ(t) = exp(α(t)),

so that the injectivity of exp on U yields

α( t2 ) = 1
2α(t) for |t| ≤ ε.

Inductively we thus obtain

α( t
2k

) = 1
2k
α(t) for |t| ≤ ε, k ∈ N. (2.5)

In particular, we obtain

α(t) ∈ 1

2k
U1 for |t| ≤ ε

2k
.

For m ∈ Z with |m| ≤ 2k and |t| ≤ ε
2k

we now have |mt| ≤ ε, mα(t) ∈ m
2k
U1 ⊆ U1, and

exp(mα(t)) = γ(t)m = γ(mt) = exp(α(mt)).

Therefore the injectivity of exp on U1 yields

α(mt) = mα(t) for m ≤ 2k, |t| ≤ ε

2k
. (2.6)

Combining (2.5) and (2.6), leads to

α(m
2k
t) = m

2k
α(t) for |t| ≤ ε, k ∈ N, |m| ≤ 2k.

Since the set of all numbers mt
2k

, m ∈ Z, k ∈ N, |m| ≤ 2k, is dense in the interval [−t, t],
the continuity of α implies that

α(t) =
t

ε
α(ε) for |t| ≤ ε.

In particular, α is smooth and of the form α(t) = tx for some x ∈ Mn(K). Hence
γ(t) = exp(tx) for |t| ≤ ε, but then γ(mt) = exp(mtx) for m ∈ N leads to γ(t) =
exp(tx) for each t ∈ R.

Exercises for Section 2.2

Exercise 2.2.1. Let D ∈ Mn(K) be a diagonal matrix. Calculate its operator norm
with respect to the euclidean norm on Kn.

Exercise 2.2.2. If g ∈Mn(K) satisfies ‖g−1‖ < 1, then g ∈ GLn(K). Find a formula
for (1− g)−1 using a geometric series.
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Exercise 2.2.3. (a) Calculate etN for t ∈ K and the matrix

N =


0 1 0 . . . 0
· 0 1 0 ·
· · · ·
· · 1
0 . . . 0

 ∈Mn(K).

(b) If A is a block diagonal matrix diag(A1, . . . , Ak), then eA is the block diagonal
matrix diag(eA1 , . . . , eAk).
(c) Calculate etA for a matrix A ∈Mn(C) given in Jordan Normal Form.

Exercise 2.2.4. Recall that a matrix x is said to be nilpotent if xd = 0 for some d ∈ N
and y is called unipotent if y − 1 is nilpotent.

Let a, b ∈Mn(K) be commuting matrices.

(a) If a and b are nilpotent, then a+ b is nilpotent.

(b) If a and b are unipotent, then ab is unipotent.

Exercise 2.2.5. [Jordan decomposition]
(a) (Additive Jordan decomposition) Show that each complex matrix X ∈Mn(C) can
be written in a unique fashion as

X = Xs +Xn with [Xs, Xn] = 0,

where Xn is nilpotent and Xs diagonalizable.
(b) A ∈ Mn(C) commutes with a diagonalizable matrix D if and only if A preserves
all eigenspaces of D.
(c) A ∈Mn(C) commutes with X if and only if it commutes with Xs and Xn.

Exercise 2.2.6. [Multiplicative Jordan decomposition] (a) Show that each invertible
complex matrix g ∈ GLn(C) can be written in a unique fashion as

g = gsgu, with gsgu = gugs,

where gu is unipotent and gs diagonalizable.
(b) If X = Xs + Xn is the additive Jordan decomposition, then eX = eXseXn is the
multiplicative Jordan decomposition of eX .

Exercise 2.2.7. Let A ∈ Mn(C). Show that the set eRA = {etA : t ∈ R} is bounded
in Mn(C) if and only if A is diagonalizable with purely imaginary eigenvalues.

Exercise 2.2.8. Let U ∈ GLn(C). Then the set {Un : n ∈ Z} is bounded if and only
if U is diagonalizable and Spec(U) ⊆ {z ∈ C : |z| = 1}.

Exercise 2.2.9. Show that:
(a) exp(Mn(R)) is contained in the identity component GLn(R)+ of GLn(R). In
particular the exponential function of GLn(R) is not surjective because this group
is not connected.
(b) The exponential function exp : M2(R)→ GL2(R)+ is not surjective.
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Exercise 2.2.10. Let V ⊆ Mn(C) be a commutative subspace, i.e., an abelian Lie
subalgebra. Then A := eV is an abelian subgroup of GLn(C) and

exp : (V,+)→ (A, ·)

is a group homomorphism whose kernel consists of diagonalizable elements whose eigen-
values are contained in 2πiZ.

Exercise 2.2.11. For X,Y ∈Mn(C) the following are equivalent:

(1) eX = eY .

(2) Xn = Yn (the nilpotent Jordan components) and eXs = eYs .

Exercise 2.2.12. For A ∈ Mn(C) the relation eA = 1 holds if and only if A is
diagonalizable with all eigenvalues contained in 2πiZ.

2.3 The Logarithm Function

In this section we apply the tools from Section 2.1 to the logarithm series. Since its ra-
dius of convergence is 1, it defines a smooth function
GLn(K) ⊇ B1(1) → Mn(K), and we shall see that it thus provides a smooth inverse
of the exponential function.

Lemma 2.3.1. The series log(1 + x) :=
∑∞
k=1(−1)k+1 xk

k converges for
x ∈Mn(K) with ‖x‖ < 1 and defines a smooth function

log : B1(1)→Mn(K).

For ‖x‖ < 1 and y ∈Mn(K) with xy = yx,

(d log)(1 + x)y = (1 + x)−1y.

Proof. The convergence follows from

∞∑
k=1

rk

k
= − log(1− r) <∞

for 0 < r < 1, so that the smoothness follows from Lemma 2.1.6.
If x and y commute, then the formula for the derivative in Lemma 2.1.6 leads to

(d log)(1 + x)y =

∞∑
k=1

(−1)k+1xk−1y = (1 + x)−1y

(here we used the Neumann series; cf. Exercise 2.2.2).

Proposition 2.3.2. (a) For x ∈Mn(K) with ‖x‖ < log 2,

log(expx) = x.

(b) Every a ∈ GLn(K) with ‖a− 1‖ < 1 satisfies exp(log a) = a.
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Proof. (a) We apply Proposition 2.1.4(2) with g(z) = exp(z) − 1, s = ‖x‖ < log 2,
f(z) = log(1 + z) and r < 1. We thus obtain log(expx) = x.

(b) Next we apply Proposition 2.1.4(2) with f(z) = exp(z)−1 and g(z) = log(1+z)
to obtain exp(log(a) = a for a = 1 + x, ‖x‖ < 1.

2.3.1 The Exponential Function on Nilpotent Matrices

Proposition 2.3.3. Let

U := {g ∈ GLd(K) : (g − 1)d = 0}

be the set of unipotent matrices and

N := {x ∈Md(K) : xd = 0} = U − 1

the set of nilpotent matrices. Then expU := exp |N : N → U is a homeomorphism
whose inverse is given by

logU : g 7→
∞∑
k=1

(−1)k+1 (g − 1)k

k
=

d−1∑
k=1

(−1)k+1 (g − 1)k

k
.

Proof. First we observe that for x ∈ N we have

ex − 1 = xa with a :=

d∑
n=1

1

n!
xn−1.

In view of xa = ax, this leads to (ex − 1)d = xdad = 0. Therefore expU (N) ⊆ U .
Similarly we obtain for g ∈ U that

logU (g) = (g − 1)

d∑
k=1

(−1)k+1 (g − 1)k−1

k
∈ N.

For x ∈ N , the curve

F : R→Md(K), t 7→ logU expU (tx)

is a polynomial function and Proposition 2.3.2 implies that F (t) = tx for ‖tx‖ < log 2.
This implies that F (t) = tx for each t ∈ R and hence that logU expU (x) = F (1) = x.

Likewise we see that for g = 1 + x ∈ U the curve

G : R→Md(K), t 7→ expU logU (1 + tx)

is polynomial with G(t) = 1 + tx for ‖tx‖ < 1. Therefore expU logU (g) = F (1) =
1+x = g. This proves that the functions expU and logU are inverse to each other.

Corollary 2.3.4. Let X ∈ End(V ) be a nilpotent endomorphism of the K-vector space
V and v ∈ V . Then the following are equivalent:

(1) Xv = 0.

(2) eXv = v.

Proof. Clearly Xv = 0 implies eXv =
∑∞
n=0

1
n!X

nv = v. If, conversely,

eXv = v, then Xv = log(eX)v =
∑∞
k=1(−1)k+1 (eX−1)k

k v = 0.
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2.3.2 The Exponential Function on Hermitian Matrices

For the following proof, we recall that for a hermitian d× d-matrix A we have

‖A‖ = max{|λ| : det(A− λ1) = 0}

(Exercise 2.2.1).

Proposition 2.3.5. The restriction

expP := exp |Hermd(K) : Hermd(K)→ Pdd(K)

is a diffeomorphism onto the open subset Pdd(K) of Hermd(K).

Proof. We have (ex)∗ = ex
∗
, which implies that expx is hermitian if x is hermitian.

Moreover, if λ1, . . . , λd are the real eigenvalues of x, then eλ1 , . . . , eλd are the eigen-
values of ex. Therefore ex is positive definite for each hermitian matrix x.

If, conversely, g ∈ Pdd(K), then let v1, . . . , vd be an orthonormal basis of eigenvec-
tors for g with gvj = λjvj . Then λj > 0 for each j, and we define logH(g) ∈ Hermd(K)
by logH(g)vj := (log λj)vj , j = 1, . . . , d. From this construction of the logarithm
function it is clear that

logH ◦ expP = idHermd(K) and expP ◦ logH = idPdd(K) .

For two real numbers x, y > 0, we have log(xy) = log x+log y. From this we obtain
for λ > 0 the relation

logH(λg) = (log λ) 1 + logH(g) (2.7)

by following what happens on each eigenspace of g.
The relation

log(x) =

∞∑
k=1

(−1)k+1 (x− 1)k

k

for x ∈ R with |x− 1| < 1 implies that for ‖g − 1‖ < 1 we have

logH(g) =

∞∑
k=1

(−1)k+1 (g − 1)k

k
.

This proves that logH is smooth in B1(1) ∩Hermd(K), hence in a neighborhood of g0

if ‖g0 − 1‖ < 1 (Lemma 2.3.1). This condition means that for each eigenvalue µ of g0

we have |µ − 1| < 1 (Exercise 2.3.1). If it is not satisfied, then we choose λ > 0 such
that ‖λg‖ < 2. Then ‖λg − 1‖ < 1, and we obtain with (2.7) the formula

logH(g) = −(log λ)1 + logH(λg) = −(log λ)1 +

∞∑
k=1

(−1)k+1 (λg − 1)k

k
.

Therefore logH is smooth on the entire open cone Pdd(K), so that logH = exp−1
P

implies that expP is a diffeomorphism.
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With Proposition 1.1.5, we thus obtain:

Corollary 2.3.6. The group GLd(K) is homeomorphic to

Ud(K)× Rm with m := dimR(Hermd(K)) =

{
d(d+1)

2 for K = R
d2 for K = C.

Exercises for Section 2.3.

Exercise 2.3.1. Show that for a hermitian matrix A ∈ Hermn(K) and the euclidian
norm ‖ · ‖ on Kn we have

‖A‖ := sup{‖Ax‖ : ‖x‖ ≤ 1} = max{|λ| : ker(A− λ1) = 0}.

Exercise 2.3.2. The exponential function exp : Mn(C)→ GLn(C) is surjective.

2.4 The Baker–Campbell–Dynkin–Hausdorff Formula

In this section we derive a formula which expresses the product expx exp y of two
sufficiently small elements as the exponential image exp(x ∗ y) of an element x ∗ y
which can be described in terms of iterated commutator brackets. This implies in
particular that the group multiplication in a small 1-neighborhood of GLn(K) is com-
pletely determined by the commutator bracket. To obtain these results, we express
log(expx exp y) as a power series x ∗ y in two variables. The (local) multiplication ∗
is called the Baker–Campbell–Dynkin–Hausdorff Multiplication and the identity

log(expx exp y) = x ∗ y

the Baker–Campbell–Dynkin–Hausdorff Formula (BCDH). The derivation of this for-
mula requires some preparation. We start with the adjoint representation of GLn(K).
This is the group homomorphism

Ad: GLn(K)→ Aut(Mn(K)), Ad(g)x = gxg−1,

where Aut(Mn(K)) stands for the group of algebra automorphisms of Mn(K). For
x ∈Mn(K), we further define a linear map

ad(x) : Mn(K)→Mn(K), adx(y) := [x, y] = xy − yx.

Lemma 2.4.1. For each x ∈Mn(K),

Ad(expx) = exp(adx). (2.8)

Proof. We define the linear maps

λx : Mn(K)→Mn(K), y 7→ xy, ρx : Mn(K)→Mn(K), y 7→ yx.

Then λxρx = ρxλx and adx = λx − ρx, so that Lemma 2.2.2(ii) leads to

Ad(expx)y = exye−x = eλxe−ρxy = eλx−ρxy = ead xy.

This proves (2.8).
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Proposition 2.4.2. Let x ∈ Mn(K) and λexp x(y) := (expx)y the left multiplication
by expx. Then

d exp(x) = λexp x ◦
1− e− ad x

adx
: Mn(K)→Mn(K),

where the fraction on the right means Φ(adx) for the entire function

Φ(z) :=
1− e−z

z
=

∞∑
k=1

(−z)k−1

k!
=

∞∑
k=0

(−z)k

(k + 1)!
.

The series Φ(x) converges for each x ∈Mn(K).

Note that for xy = yx, we have (adx)ky = 0 for k > 0, and we obtain the known
formular d exp(x)y = y.

Proof. First let α : [0, 1]→Mn(K) be a smooth curve. Then

γ(t, s) := exp(−sα(t))
d

dt
exp(sα(t))

defines a map [0, 1]2 → Mn(K) which is C1 in each argument and satisfies γ(t, 0) = 0
for each t. We calculate

∂γ

∂s
(t, s) = exp(−sα(t)) · (−α(t))

d

dt
exp(sα(t))

+ exp(−sα(t)) · d
dt

(
α(t) exp(sα(t))

)
= exp(−sα(t)) · (−α(t))

d

dt
exp(sα(t))

+ exp(−sα(t)) ·
(
α′(t) exp(sα(t)) + α(t)

d

dt
exp(sα(t))

)
= Ad(exp(−sα(t)))α′(t) = e−s adα(t)α′(t).

Integration over [0, 1] with respect to s now leads to

γ(t, 1) = γ(t, 0) +

∫ 1

0

e−s adα(t)α′(t) ds =

∫ 1

0

e−s adα(t) ds · α′(t).

Next we note that, for x ∈Mn(K),∫ 1

0

e−s ad x ds =

∫ 1

0

∞∑
k=0

(− adx)k

k!
sk ds =

∞∑
k=0

(− adx)k
∫ 1

0

sk

k!
ds

=

∞∑
k=0

(− adx)k

(k + 1)!
= Φ(adx).

We thus obtain for α(t) = x+ ty with α(0) = x and α′(0) = y the relation

exp(−x)d exp(x)y = γ(0, 1) =

∫ 1

0

e−s ad xy ds = Φ(adx)y.
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Lemma 2.4.3. For

Φ(z) =
1− e−z

z
:=

∞∑
k=0

(−z)k

(k + 1)!
, z ∈ C

and

Ψ(z) =
z log z

z − 1
:= z

∞∑
k=0

(−1)k

k + 1
(z − 1)k for |z − 1| < 1

we have
Ψ(ez)Φ(z) = 1 for z ∈ C, |z| < log 2.

Proof. If 0 < |z| < log 2, then |ez − 1| < 1 and we obtain from log(ez) = z:

Ψ(ez)Φ(z) =
ezz

ez − 1

1− e−z

z
= 1.

In view of the Composition Formula (2.2) (Proposition 2.1.4), the same identity as
in Lemma 2.4.3 holds if we insert linear maps L ∈ End(Mn(K)) with ‖L‖ < log 2 into
the power series Φ and Ψ:

Ψ(expL)Φ(L) = (Ψ ◦ exp)(L)Φ(L) = ((Ψ ◦ exp) · Φ)(L) = idMn(K) . (2.9)

Here we use that ‖L‖ < log 2 implies that all expressions are defined and in particular
that ‖ expL− 1‖ < 1, as a consequence of the estimate

‖ expL− 1‖ ≤ e‖L‖ − 1 < 1. (2.10)

The derivation of the BCDH formula follows a similar scheme as the proof of
Proposition 2.4.2. Here we consider x, y ∈ Vo := B(0, log

√
2). For ‖x‖, ‖y‖ < r the

estimate (2.10) leads to

‖ expx exp y − 1‖ = ‖(expx− 1)(exp y − 1) + (exp y − 1) + (expx− 1)‖
≤ ‖ expx− 1‖ · ‖ exp y − 1‖+ ‖ exp y − 1‖+ ‖ expx− 1‖
< (er − 1)2 + 2(er − 1) = e2r − 1.

For r < log
√

2 = 1
2 log 2 and |t| ≤ 1 we obtain in particular

‖ expx exp ty − 1‖ < elog 2 − 1 = 1.

Therefore expx exp ty lies for |t| ≤ 1 in the domain of the logarithm function (Lemma 2.3.1).
We therefore define for t ∈ [−1, 1]:

F (t) = log(expx exp ty).

To estimate the norm of F (t), we note that for g := expx exp ty, |t| ≤ 1, and ‖x‖, ‖y‖ <
r we have

‖ log g‖ ≤
∞∑
k=1

‖g − 1‖k

k
= − log(1− ‖g − 1‖)

< − log(1− (e2r − 1)) = − log(2− e2r).
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For r := 1
2 log(2−

√
2

2 ) < log 2
2 = log

√
2 and ‖x‖, ‖y‖ < r this leads to

‖F (t)‖ < − log(2− e2r) = log( 2√
2
) = log(

√
2) =

1

2
log 2. (2.11)

Next we calculate F ′(t) with the goal to obtain the BCDH formula as F (1) =

F (0) +
∫ 1

0
F ′(t) dt. For the derivative of the curve t 7→ expF (t) we get

(d exp)
(
F (t)

)
F ′(t) =

d

dt
exp(F (t)) =

d

dt
expx exp ty

= (expx exp ty)y = (expF (t))y.

Using Proposition 2.4.2, we obtain

y =
(

expF (t)
)−1

(d exp)
(
F (t)

)
F ′(t)

=
1− e− adF (t)

adF (t)
F ′(t) = Φ(adF (t))F ′(t). (2.12)

We claim that ‖ ad(F (t))‖ < log 2. From ‖ab− ba‖ ≤ 2‖a‖ ‖b‖ we derive

‖ ad a‖ ≤ 2‖a‖ for a ∈Mn(K).

Therefore, by (2.11),

‖ adF (t)‖ ≤ 2‖F (t)‖ < 2 log(
√

2) = log 2,

so that (2.12) and (2.9) lead to

F ′(t) = Ψ
(

exp(adF (t))
)
y. (2.13)

Proposition 2.4.4. For ‖x‖, ‖y‖ < 1
2 log(2−

√
2

2 ) we have

log(expx exp y) = x+

∫ 1

0

Ψ
(

exp(adx) exp(t ad y)
)
y dt,

with Ψ as in Lemma 2.4.3.

Proof. With (2.13), Lemma 2.4.1 and the preceding remarks we get

F ′(t) = Ψ
(

exp(adF (t))
)
y

= Ψ
(

Ad(expF (t))
)
y = Ψ

(
Ad(expx exp ty)

)
y

= Ψ
(

Ad(expx) Ad(exp ty)
)
y = Ψ

(
exp(adx) exp(ad ty)

)
y.

Moreover, we have F (0) = log(expx) = x. By integration we therefore obtain

log(expx exp y) = x+

∫ 1

0

Ψ
(

exp(adx) exp(t ad y)
)
y dt.
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Proposition 2.4.5. For x, y ∈Mn(K) and ‖x‖, ‖y‖ < 1
2 log(2−

√
2

2 ),

x ∗ y := log(expx exp y)

= x+∑
k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . .+ qk + 1)

(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y.

Proof. We only have to rewrite the expression in Proposition 2.4.4:∫ 1

0

Ψ
(

exp(adx) exp(ad ty)
)
y dt

=

∫ 1

0

∞∑
k=0

(−1)k
(

exp(adx) exp(ad ty)− id
)k

(k + 1)

(
exp(adx) exp(ad ty)

)
y dt

=

∫ 1

0

∑
k≥0

pi+qi>0

(−1)k

(k + 1)

(adx)p1(ad ty)q1 . . . (adx)pk(ad ty)qk

p1!q1! . . . pk!qk!
exp(adx)y dt

=
∑
k,m≥0
pi+qi>0

(−1)k

(k + 1)

(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y

∫ 1

0

tq1+...+qk dt

=
∑
k,m≥0
pi+qi>0

(−1)k(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)my

(k + 1)(q1 + . . .+ qk + 1)p1!q1! . . . pk!qk!m!
.

The power series in Proposition 2.4.5 is called the Hausdorff Series. We observe
that it does not depend on n. For practical purposes it often suffices to know the first
terms of the Hausdorff Series:

Corollary 2.4.6. For x, y ∈Mn(K) and ‖x‖, ‖y‖ < 1
2 log(2−

√
2

2 ),

x ∗ y = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]] +

1

12
[y, [y, x]] + . . .

Proof. One has to collect the summands in Proposition 2.4.5 corresponding to
p1 + q1 + . . .+ pk + qk +m ≤ 2.

Product and Commutator Formula

We have seen in Proposition 2.2.1 that the exponential image of a sum x + y can be
computed easily if x and y commute. In this case we also have for the commutator
[x, y] := xy − yx = 0 the formula exp[x, y] = 1. The following proposition gives a
formula for exp(x+ y) and exp[x, y] in the general case.

If g, h are elements of a group G, then (g, h) := ghg−1h−1 is called their commu-
tator. On the other hand, we call for two matrices A,B ∈Mn(K) the expression

[A,B] := AB −BA

their commutator bracket.
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Proposition 2.4.7. For x, y ∈Mn(K) the following assertions hold:

(i) (Trotter Product Formula) limk→∞
(
e

1
kxe

1
k y
)k

= ex+y.

(ii) (Commutator Formula) limk→∞
(
e

1
kxe

1
k ye−

1
kxe−

1
k y
)k2

= exy−yx.

Proof. (i) From Corollary 2.4.6 we obtain that limk→∞ k ·
(
x
k ∗

y
k

)
= x+ y. Applying

the exponential function, we obtain (i).
(ii) We consider the function

γ(t) := tx ∗ ty ∗ (−tx) ∗ (−ty),

which is defined and smooth on some interval [−ε, ε] ⊆ R, ε > 0. In view of

exp(x ∗ y ∗ (−x)) = expx exp y exp(−x) = exp
(

Ad(expx)y) = exp(ead xy)

for x, y small enough (Lemma 2.4.1), we have

x ∗ y ∗ (−x) = ead xy, (2.14)

and therefore Taylor expansion with respect to t yields

γ(t) = tx ∗ ty ∗ (−tx) ∗ (−ty) = et ad xty ∗ (−ty)

= (ty + t2[x, y] +
t3

2
[x, [x, y]] + . . .) ∗ (−ty)

= ty + t2[x, y]− ty + [ty,−ty] + t2r(t) = t2[x, y] + t2r(t),

where limt→0 r(t) = 0. We now have

γ(0) = γ′(0) = 0 and
γ′′(0)

2
= [x, y].

This leads to

lim
k→∞

k2 ·
(1

k
x
)
∗
(1

k
y
)
∗
(
− 1

k
x
)
∗
(
− 1

k
y
)

=
γ′′(0)

2
= [x, y]. (2.15)

Applying exp leads to the Commutator Formula.

Here is an alternative proof of product and commutator formula, not using the
complicated BCDH formula. It is based on the following elementary lemma.

Lemma 2.4.8. Let ε > 0 and γ : [0, ε]→ GLn(K) be a continuous curve with γ(0) = 1.
If γ′(0) exists, then

lim
n→∞

γ
( 1

n

)n
= eγ

′(0).

If, in addition, γ′(0) = 0, γ is C1, and γ′′(0) exists, then

lim
n→∞

γ
( 1

n

)n2

= e
γ′′(0)

2 .
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Proof. Since exp maps a neighborhood of 0 diffeomorphically onto a neighborhood of 1
and d exp(0) = id, we can, after possibly shrinking ε, write γ(t) = eβ(t) with β(0) = 0
and β′(0) = γ′(0). Then

lim
n→∞

γ
( 1

n

)n
= lim
n→∞

enβ( 1
n ) → eγ

′(0)

follows from β( 1
n )n→ β′(0) and the continuity of exp.

If, in addition, γ′(0) = 0, γ is C1 and y := γ′′(0) exists, then we put δ(t) := γ(
√
t).

Then the Fundamental Theorem of Calculus implies that

δ(t) =

∫ √t
0

γ′(τ) dτ =

∫ t

0

1

2
√
s
γ′(
√
s) ds,

and since the continuous integrand converges to y/2 for s→ 0, we obtain for its mean
value limt→0 δ(t)/t = y/2. This shows that δ′(0) = y/2 exists. From above we now
obtain

lim
n→∞

γ
( 1

n

)n2

= lim
n→∞

δ
( 1

n2

)n2

= ey/2.

Example 2.4.9. Applying the preceding lemma to the smooth curve γ(t) := 1 + tx,
we obtain the well-known formula

lim
n→∞

(
1 +

x

n

)n
= ex

for the exponential function.

Proof. (of Proposition 2.4.7) To obtain the product formula, we consider the smooth
curve γ(t) := etxety with γ(0) = 1 and γ′(0) = x + y (Product Rule). The assertion
now follows from Lemma 2.4.8.

For the commutator formula, we consider the smooth curve γ(t) := etxetye−txe−ty.

Then etx = 1 + tx+ t2

2 x
2 +O(t3) leads to

γ(t) =
(
1 + tx+

t2

2
x2 +O(t3)

)(
1 + ty +

t2

2
y2 +O(t3)

)
·
(
1− tx+

t2

2
x2 +O(t3)

)(
1− ty +

t2

2
y2 +O(t3)

)
= 1 + t(x+ y − x− y) + t2(x2 + y2 + xy − x2 − xy − yx− y2 + xy) +O(t3)

= 1 + t2(xy − yx) +O(t3).

This implies that γ′(0) = 0 and γ′′(0) = 2(xy − yx). Therefore the Commutator
Formula follows from the second part of Lemma 2.4.8.
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Chapter 3

Linear Lie Groups

We call a closed subgroup G ⊆ GLn(K) a linear Lie group. In this section we shall use
the exponential function to assign to each linear Lie group G a vector space

L(G) := {x ∈Mn(K) : exp(Rx) ⊆ G},

called the Lie algebra of G. This subspace carries an additional algebraic structure
because, for x, y ∈ L(G), the commutator [x, y] = xy − yx is contained in L(G), so
that [·, ·] defines a skew-symmetric bilinear operation on L(G). As a first step, we shall
see how to calculate L(G) for concrete groups and to use it to generalize the polar
decomposition to a large class of linear Lie groups.

3.1 The Lie Algebra of a Linear Lie Group

We start with the introduction of the concept of a Lie algebra.

Definition 3.1.1. (a) Let k be a field and L a k-vector space. A bilinear map [·, ·] : L×
L→ L is called a Lie bracket if

(L1) [x, x] = 0 for x ∈ L and

(L2)
[
x, [y, z]

]
=
[
[x, y], z

]
+
[
y, [x, z]

]
for x, y, z ∈ L (Jacobi identity).1

A Lie algebra 2 (over k) is a k-vector space L, endowed with a Lie bracket. A
subspace E ⊆ L of a Lie algebra is called a subalgebra if [E,E] ⊆ E. A homomorphism
ϕ : L1 → L2 of Lie algebras is a linear map with ϕ([x, y]) = [ϕ(x), ϕ(y)] for x, y ∈ L1.
A Lie algebra is said to be abelian if [x, y] = 0 holds for all x, y ∈ L.

The following lemma shows that each associative algebra also carries a natural Lie
algebra structure.

1Carl Gustav Jacob Jacobi (1804–1851), mathematician in Berlin and Königsberg (Kaliningrad).
He found his famous identity about 1830 in the context of Poisson brackets, which are related to
Hamiltonian Mechanics and Symplectic Geometry.

2The notion of a Lie algebra was coined in the 1920s by Hermann Weyl.

41
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Lemma 3.1.2. Each associative algebra A is a Lie algebra AL with respect to the
commutator bracket

[a, b] := ab− ba.

Proof. (L1) is obvious. For (L2) we calculate

[a, bc] = abc− bca = (ab− ba)c+ b(ac− ca) = [a, b]c+ b[a, c],

and this implies

[a, [b, c]] = [a, b]c+ b[a, c]− [a, c]b− c[a, b] = [[a, b], c] + [b, [a, c]].

Definition 3.1.3. A closed subgroup G ⊆ GLn(K) is called a linear Lie group. For
each subgroup G ⊆ GLn(K) we define the set

L(G) := {x ∈Mn(K) : exp(Rx) ⊆ G}

and observe that RL(G) ⊆ L(G) follows immediately from the definition.
We could also define this notion in more abstract terms by considering a finite-

dimensional K-vector space V and call a closed subgroup G ⊆ GL(V ) a linear Lie
group. Then

L(G) = {x ∈ End(V ) : exp(Rx) ⊆ G}.

In the following we shall use both pictures.

From Lemma 3.1.2 we know that the associative algebra Mn(K) is a Lie algebra
with respect to the matrix commutator [x, y] := xy − yx. We denote this Lie algebra
by gln(K) := Mn(K)L. We likewise write gl(V ) := End(V )L for a vector space V .

The next proposition assigns a Lie algebra to each linear Lie group.

Proposition 3.1.4. If G ⊆ GL(V ) is a closed subgroup, then L(G) is a real Lie
subalgebra of gl(V ) and we obtain a map

expG : L(G)→ G, x 7→ ex.

We call L(G) the Lie algebra of G and

expG : L(G)→ G, x 7→ ex

the exponential function of G.
In particular,

L(GL(V )) = gl(V ) and L(GLn(K)) = gln(K).

Proof. Let x, y ∈ L(G). For k ∈ N and t ∈ R we then have exp t
kx, exp t

ky ∈ G and
with the Trotter Formula (Proposition 2.4.7), we get for all t ∈ R:

exp(t(x+ y)) = lim
k→∞

(
exp

tx

k
exp

ty

k

)k
∈ G
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because G is closed. Therefore x+ y ∈ L(G).
Similarly we use the Commutator Formula to get

exp t[x, y] = lim
k→∞

(
exp

tx

k
exp

y

k
exp− tx

k
exp−y

k

)k2
∈ G,

hence [x, y] ∈ L(G).

Lemma 3.1.5. Let G ⊆ GLn(K) be a subgroup. If Hom(R, G) denotes the set of all
continuous group homomorphisms (R,+)→ G, then the map

Γ: L(G)→ Hom(R, G), x 7→ γx, γx(t) = exp(tx)

is a bijection.

Proof. For each x ∈ L(G), the map γx is a continuous group homomorphism (The-
orem 2.2.6), and since x = γ′x(0), the map Γ is injective. To see that it is surjective, let
γ : R → G be a continuous group homomorphism and
ι : G → GLn(K) the natural embedding. Then ι ◦ γ : R → GLn(K) is a continuous
group homomorphism, so that there exists an x ∈ gln(K) with γ(t) = ι(γ(t)) = etx for
all t ∈ R (Theorem 2.2.6). This implies that x ∈ L(G), and therefore that γx = γ.

Remark 3.1.6. The preceding lemma implies in particular that for a linear Lie group
the set L(G) can also be defined in terms of the topological group structure on G as
L(G) := Hom(R, G), the set of continuous one-parameter groups. From the Trotter
Formula and the Commutator Formula we also know that the Lie algebra structure
on L(G) can be defined intrinsically by

(λγ)(t) := γ(λt),

(γ1 + γ2)(t) := lim
n→∞

(
γ1( tn )γ2( tn )

) 1
n

and

[γ1, γ2](t) := lim
n→∞

(
γ1( tn )γ2( 1

n )γ1(− t
n )γ2(− 1

n )
) 1
n2

.

This shows that the Lie algebra L(G) does not depend on the special realization of G
as a group of matrices.

Example 3.1.7. We consider the homomorphism

Φ: Kn → GLn+1(K), x 7→
(

1 x
0 1

)
and observe that Φ is an isomorphism of the topological group (Kn,+) onto a linear
Lie group.

The continuous one-parameter groups γ : R → Kn are easily determined because
γ(nt) = nγ(t) for all n ∈ Z, t ∈ R, implies further γ(q) = qγ(1) for all q ∈ Q and hence,



44 CHAPTER 3. LINEAR LIE GROUPS

by continuity, γ(t) = tγ(1) for all t ∈ R. Since (Kn,+) is abelian, the Lie bracket on
the Lie algebra L(Kn,+) vanishes, and we obtain

L(Kn,+) = (Kn, 0) ∼= L(Φ(Kn)) =
{(0 x

0 0

)
: x ∈ Kn

}
(Exercise).

3.1.1 Functorial Properties of the Lie Algebra

So far we have assigned to each linear Lie group G its Lie algebra L(G). We shall
also see that this assignment can be extended to continuous homomorphisms between
linear Lie groups in the sense that we assign to each such homomorphism ϕ : G1 → G2

a homomorphism L(ϕ) : L(G1)→ L(G2) of Lie algebras, and this assignment satisfies

L(idG) = idL(G) and L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1)

for a composition ϕ2 ◦ ϕ1 of two continuous homomorphisms ϕ1 : G1 → G2 and
ϕ2 : G2 → G3. In the language of category theory, this means that L defines a functor
from the category of linear Lie groups (where the morphisms are the continuous group
homomorphisms) to the category of real Lie algebras.

Proposition 3.1.8. Let ϕ : G1 → G2 be a continuous group homomorphism of linear
Lie groups. Then the derivative

L(ϕ)(x) :=
d

dt t=0
ϕ(expG1

(tx))

exists for each x ∈ L(G1) and defines a homomorphism of Lie algebras L(ϕ) : L(G1)→
L(G2) with

expG2
◦L(ϕ) = ϕ ◦ expG1

, (3.1)

i.e., the following diagram commutes

G1
ϕ−−−−−−−−−→ G2xexpG1

xexpG2

L(G1)
L(ϕ)−−−−−−−−−→ L(G2).

Furthermore, L(ϕ) is the uniquely determined linear map satisfying (3.1).

Proof. For x ∈ L(G1) we consider the homomorphism γx ∈ Hom(R, G1) given by
γx(t) = etx. According to Lemma 3.1.5, we have

ϕ ◦ γx(t) = expG2
(ty)

for some y ∈ L(G2), because ϕ ◦ γx : R → G2 is a continuous group homomorphism.
Then clearly y = (ϕ ◦ γx)′(0) = L(ϕ)x. For t = 1 we obtain in particular

expG2
(L(ϕ)x) = ϕ(expG1

(x),



3.1. THE LIE ALGEBRA OF A LINEAR LIE GROUP 45

which is (3.1).
For every linear map ψ : L(G1)→ L(G2) with

expG2
◦ ψ = ϕ ◦ expG1

satisfies
ϕ ◦ expG1

(tx) = expG2
(ψ(tx)) = expG2

(tψ(x)),

and therefore

L(ϕ)x =
d

dt t=0
expG2

(tψ(x)) = ψ(x).

Next we show that L(ϕ) is a homomorphism of Lie algebras. From the definition
of L(ϕ) we immediately get for x ∈ L(G1):

expG2
(sL(ϕ)(tx)) = ϕ(expG1

(stx)) = expG2
(tsL(ϕ)(x)), s, t ∈ R,

which leads to L(ϕ)(tx) = tL(ϕ)(x).
Since ϕ is continuous, the Trotter Formula implies that

expG2
(L(ϕ)(x+ y)) = ϕ

(
expG1

(x+ y)
)

= lim
k→∞

ϕ
(

expG1

1

k
x expG1

1

k
y
)k

= lim
k→∞

(
ϕ
(

expG1

1

k
x
)
ϕ
(

expG1

1

k
y
))k

= lim
k→∞

(
expG2

1

k
L(ϕ)(x) expG2

1

k
L(ϕ)(y)

)k
= expG2

(
L(ϕ)(x) + L(ϕ)(y)

)
for all x, y ∈ L(G1). Therefore L(ϕ)(x + y) = L(ϕ)(x) + L(ϕ)(y) because the same
formula holds with tx and ty instead of x and y. Hence L(ϕ) is additive and therefore
linear.

We likewise obtain with the Commutator Formula

ϕ(exp[x, y]) = exp[L(ϕ)(x),L(ϕ)(y)]

and thus L(ϕ)([x, y]) = [L(ϕ)(x),L(ϕ)(y)].

Corollary 3.1.9. If ϕ1 : G1 → G2 and ϕ2 : G2 → G3 are continuous homomorphisms
of linear Lie groups, then

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1).

Moreover, L(idG) = idL(G) .

Proof. We have the relations

ϕ1 ◦ expG1
= expG2

◦L(ϕ1) and ϕ2 ◦ expG2
= expG3

◦L(ϕ2),

which immediately lead to

(ϕ2 ◦ ϕ1) ◦ expG1
= ϕ2 ◦ expG2

◦L(ϕ1) = expG3
◦(L(ϕ2) ◦ L(ϕ1)),
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and the uniqueness assertion of Proposition 3.1.8 implies that

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1).

Clearly idL(G) is a linear map satisfying expG ◦ idL(G) = idG ◦ expG, so that the
uniqueness assertion of Proposition 3.1.8 implies L(idG) = idL(G).

Corollary 3.1.10. If ϕ : G1 → G2 is an isomorphism of linear Lie groups, then L(ϕ)
is an isomorphism of Lie algebras.

Proof. Since ϕ is an isomorphism of linear Lie groups, it is bijective and ψ := ϕ−1

also is a continuous homomorphism. We then obtain with Corollary 3.1.9 the relations
idL(G2) = L(idG2) = L(ϕ ◦ ψ) = L(ϕ) ◦ L(ψ) and likewise

idL(G1) = L(ψ) ◦ L(ϕ).

Hence L(ϕ) is an isomorphism with L(ϕ)−1 = L(ψ).

Definition 3.1.11. If V is a vector space and G a group, then a homomorphism
ϕ : G → GL(V ) is called a representation of G on V . If g is a Lie algebra, then a
homomorphism of Lie algebras ϕ : g→ gl(V ) is called a representation of g on V .

As a consequence of Proposition 3.1.8, we obtain

Corollary 3.1.12. If ϕ : G→ GL(V ) is a continuous representation of the linear Lie
group G, then L(ϕ) : L(G)→ gl(V ) is a representation of the Lie algebra L(G).

The representation L(ϕ) obtained in Corollary 3.1.12 from the group representation
ϕ is called the derived representation. This is motivated by the fact that for each
x ∈ L(G) we have

L(ϕ)x =
d

dt t=0
etL(ϕ)x =

d

dt t=0
ϕ(exp tx).

3.1.2 The Adjoint Representation

Let G ⊆ GL(V ) be a linear Lie group and L(G) ⊆ gl(V ) the corresponding Lie algebra.
For g ∈ G we define the conjugation automorphism cg ∈ Aut(G) by cg(x) := gxg−1.
Then

L(cg)(x) =
d

dt t=0
cg(exp tx) =

d

dt t=0
g(exp tx)g−1

=
d

dt t=0
exp(tgxg−1) = gxg−1

(Proposition 2.2.1), and therefore L(cg) = cg|L(G). We define the adjoint representa-
tion of G on L(G) by

Ad: G→ Aut(L(G)), Ad(g)(x) := L(cg)x = gxg−1.
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(That this is a representation follows immediately from the explicit formula).
For each x ∈ L(G), the map G→ L(G), g 7→ Ad(g)(x) = gxg−1 is continuous and

each Ad(g) is an automorphism of the Lie algebra L(G). Therefore Ad is a continuous
homomorphism from the linear Lie group G to the linear Lie group Aut(L(G)) ⊆
GL(L(G)). The derived representation

L(Ad): L(G)→ gl(L(G))

is a representation of L(G) on L(G). The following lemma gives a formula for this
representation. First we define for x ∈ L(G):

ad(x) : L(G)→ L(G), adx(y) := [x, y] = xy − yx.

Lemma 3.1.13. L(Ad) = ad.

Proof. In view of Proposition 3.1.8 this is an immediate consequence of the relation
Ad(expx) = ead x (Lemma 2.4.1).

Exercises for Section 3.1

Exercise 3.1.1. (a) If (Gj)j∈J is a family of linear Lie groups in GLn(K), then their
intersection G :=

⋂
j∈J Gj also is a linear Lie group.

(b) If (Gj)j∈J is a family of subgroups of GLn(K), then

L(
⋂
j∈J

Gj) =
⋂
j∈J

L(Gj).

Exercise 3.1.2. Let G := GLn(K) and V := Pk(Kn) the space of homogeneous
polynomials of degree k in x1, . . . , xn, considered as functions Kn → K. Show that:

(1) dimV =
(
k+n−1
n−1

)
.

(2) We obtain a continuous representation ρ : G→ GL(V ) ofG on V by (ρ(g)f)(x) :=
f(g−1x).

(3) The elementary matrix Eij with Eijek = δjkei satisfies

L(ρ)(Eij) = −xj
∂

∂xi
.

Exercise 3.1.3. If X ∈ End(V ) is nilpotent, then adX ∈ End(End(V )) is also nilpo-
tent.

Exercise 3.1.4. If X,Y ∈Mn(K) are nilpotent, then the following are equivalent:

(1) expX expY = expY expX.

(2) [X,Y ] = 0.

Exercise 3.1.5. If (V, ·) is an associative algebra, then Aut(V, ·) ⊆ Aut(V, [·, ·]).
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Exercise 3.1.6. Let V be a finite-dimensional vector space, F ⊆ V a subspace and
γ : [0, T ]→ V a continuous curve with γ([0, T ]) ⊆ F . Then for all t ∈ [0, T ]:

It :=

∫ t

0

γ(τ) dτ ∈ F.

Exercise 3.1.7. On each finite-dimensional Lie algebra g there exists a norm with

‖[x, y]‖ ≤ ‖x‖‖y‖ ∀x, y ∈ g,

i.e., ‖ adx‖ ≤ ‖x‖.

Exercise 3.1.8. Let g be a Lie algebra with a norm as in Exercise 3.1.7. Then for
‖x‖+ ‖y‖ < ln 2 the Hausdorff series

x ∗ y = x+∑
k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . .+ qk + 1)

(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y

converges absolutely.

Exercise 3.1.9. Let V and W be vector spaces and q : V ×V →W a skew-symmetric
bilinear map. Then

[(v, w), (v′, w′)] :=
(
0, q(v, v′)

)
is a Lie bracket on g := V ×W . For x, y, z ∈ g we have

[
x, [y, z]

]
= 0.

Exercise 3.1.10. Let g be a Lie algebra with
[
x, [y, z]

]
= 0 for x, y, z ∈ g. Then

x ∗ y := x+ y +
1

2
[x, y]

defines a group structure on g. An example for such a Lie algebra is the three-
dimensional Heisenberg algebra

g =


0 x y

0 0 z
0 0 0

 : x, y, z ∈ K

 .

3.2 Calculating Lie Algebras of Linear Lie Groups

In this section we shall see various techniques to determine the Lie algebra of a linear
Lie group.

Example 3.2.1. The group G := SLn(K) = det−1(1) = ker det |GLn(K) is a linear Lie
group. To determine its Lie algebra, we first claim that

det(ex) = eTr x (3.2)
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holds for x ∈Mn(K). To verify this claim, we consider

det : Mn(K) ∼= (Kn)n → K

as a multilinear map, where each matrix x is considered as an n-tuple of its column
vectors x1, . . . , xn. Then Exercise 2.1.1(c) implies that

(d det)(1)(x) = (d det)(e1, . . . , en)(x1, . . . , xn)

= det(x1, e2, . . . , en) + . . .+ det(e1, . . . , en−1, xn) = x11 + . . .+ xnn = Trx.

Now we consider the curve γ : R→ K× ∼= GL1(K), t 7→ det(etx). Then γ is a continuous
group homomorphism, hence of the form γ(t) = eat for a = γ′(0) (Theorem 2.2.6). On
the other hand the Chain Rule implies

a = γ′(0) = d det(1)
(
d exp(0)(x)

)
= Tr(x),

and this implies (3.2). We conclude that

sln(K) := L(SLn(K)) = {x ∈Mn(K) : (∀t ∈ R) 1 = det(etx) = etTr x}
= {x ∈Mn(K) : Trx = 0}.

Lemma 3.2.2. Let V and W be finite-dimensional vector spaces and
β : V × V → W a bilinear map. For (x, y) ∈ End(V ) × End(W ) the following are
equivalent:

(1) etyβ(v, v′) = β(etxv, etxv′) for all t ∈ R and all v, v′ ∈ V .

(2) yβ(v, v′) = β(xv, v′) + β(v, xv′) for all v, v′ ∈ V .

Proof. (1) ⇒ (2): Taking the derivative in t = 0, the relation (1) leads to

yβ(v, v′) = β(xv, v′) + β(v, xv′),

where we use the Product and the Chain Rule (Exercise 2.1.1(c)).
(2) ⇒ (1): If (2) holds, then we obtain inductively

yn.β(v, v′) =

n∑
k=0

(
n

k

)
β(xkv, xn−kv′).

For the exponential series this leads with the general Cauchy Product Formula (Exer-
cise 2.1.3) to

eyβ(v, v′) =

∞∑
n=0

1

n!
yn.β(v, v′) =

∞∑
n=0

1

n!

( n∑
k=0

(
n

k

)
β(xkv, xn−kv)

)
=

∞∑
n=0

n∑
k=0

β

(
1

k!
xkv,

1

(n− k)!
xn−kv′

)

= β

( ∞∑
k=0

1

k!
xkv,

∞∑
m=0

1

m!
xmv′

)
= β (exv, exv′) .

Since (2) also holds for the pair (tx, ty) for all t ∈ R, this completes the proof.
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Proposition 3.2.3. Let V and W be finite-dimensional vector spaces and β : V ×V →
W a bilinear map. For the group

Aut(V, β) = {g ∈ GL(V ) : (∀v, v′ ∈ V ) β(gv, gv′) = β(v, v′)},

we then have

aut(V, β) := L(Aut(V, β)) = {x ∈ gl(V ) : (∀v, v′ ∈ V ) β(xv, v′) + β(v, xv′) = 0}.

Proof. We only have to observe that X ∈ L(Aut(V, β)) is equivalent to the pair (X, 0)
satisfying condition (1) in Lemma 3.2.2.

Example 3.2.4. (a) Let B ∈Mn(K), β(v, w) = v>Bw, and

G := {g ∈ GLn(K) : g>Bg = B} ∼= Aut(Kn, β).

Then Proposition 3.2.3 implies that

L(G) = {x ∈ gln(K) : (∀v, v′ ∈ V ) β(xv, v′) + β(v, xv′) = 0}
= {x ∈ gln(K) : (∀v, v′ ∈ V ) v>x>Bv′ + v>Bxv′ = 0}
= {x ∈ gln(K) : x>B +Bx = 0}.

In particular, we obtain

on(K) := L(On(K)) = {x ∈ gln(K) : x> = −x} =: Skewn(K),

op,q(K) := L(Op,q(K)) = {x ∈ glp+q(K) : x>Ip,q + Ip,qx = 0},

and

symp2n(K) := L(Sp2n(K)) := {x ∈ gl2n(K) : x>B +Bx = 0},

where B =

(
0 −1n
1n 0

)
.

(b) Applying Proposition 3.2.3 with V = Cn and W = C, considered as real vector
spaces, we also obtain for a hermitian form β : Cn × Cn → C, (z, w) 7→ w∗Ip,qz:

up,q(C) := L(Up,q(C))

= {x ∈ gln(C) : (∀z, w ∈ Cn)w∗Ip,qxz + w∗x∗Ip,qz = 0}
= {x ∈ gln(C) : Ip,qx+ x∗Ip,q = 0}.

In particular, we get

un(C) := L(Un(C)) = {x ∈ gln(C) : x∗ = −x} =: Ahermn(C).

Example 3.2.5. Let g be a finite-dimensional K-Lie algebra and

Aut(g) := {g ∈ GL(g) : (∀x, y ∈ g) g[x, y] = [gx, gy]}.
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To calculate the Lie algebra of G, we use Lemma 3.2.2 with V = W = g and β(x, y) =
[x, y]. Then we see that D ∈ aut(g) := L(Aut(g)) is equivalent to (D,D) satisfying
the conditions in Lemma 3.2.2, and this leads to

aut(g) = L(Aut(g)) = {D ∈ gl(g) : (∀x, y ∈ g)D([x, y]) = [D(x), y] + [x,D(y)]}

The elements of this Lie algebra are called derivations of g, and aut(g) is also denoted
der(g). Note that the condition on an endomorphism of g to be a derivation resembles
the Leibniz Rule (Product Rule).

Remark 3.2.6. We call a linear Lie group G ⊆ GLn(C) a complex linear Lie group
if L(G) ⊆ gln(C) is a complex subspace, i.e., iL(G) ⊆ L(G). Since Proposition 3.1.4
only ensures that L(G) is a real subspace, this definition makes sense.

For example Un(C) is not a complex linear Lie group because

iun(C) = Hermn(C) 6⊆ un(C).

On the other hand On(C) is a complex linear Lie group because

on(C) = Skewn(C)

is a complex subspace of gln(C).

Exercises for Section 3.2

Exercise 3.2.1. (a) Ad : GLn(K)→ Aut
(
gln(K)

)
is a group homomorphism.

(b) For each Lie algebra g, the operators adx(y) := [x, y] are derivations and the
map ad: g→ gl(g) is a homomorphism of Lie algebras.

Exercise 3.2.2. Show that the following groups are linear Lie groups and determine
their Lie algebras.

(1) N := {g ∈ GLn(R) : (∀i > j) gij = 0, gii = 1}.

(2) B := {g ∈ GLn(R) : (∀i > j) gij = 0}.

(3) D := {g ∈ GLn(R) : (∀i 6= j) gij = 0}.
Note that B ∼= N oD is a semidirect product.

(4) A a finite-dimensional associative algebra and

G := Aut(A) := {g ∈ GL(A) : (∀a, b ∈ A) g(ab) = g(a)g(b)}.

Exercise 3.2.3. Realize the two groups Motn(R) and Affn(R) as linear Lie groups in
GLn+1(R).

(1) Determine their Lie algebras motn(R) and affn(R).

(2) Calculate the exponential function exp: affn(R) → Affn(R) in terms of the ex-
ponential function of Mn(R).
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Exercise 3.2.4. Let V be a finite-dimensional K-vector space and W ⊆ V a subspace.
Show that

GL(V )W := {g ∈ GL(V ) : gW = W}

is a closed subgroup of GL(V ) with

L(GL(V )W ) = gl(V )W := {X ∈ gl(V ) : X.W ⊆W}.

Exercise 3.2.5. Show that for n = p+ q we have

Op,q(K) ∩On(K) ∼= Op(K)×Oq(K).

3.3 Polar Decomposition of Certain Algebraic Lie
Groups

In this subsection we show that the polar decomposition of GLn(R) can be used to
obtain polar decompositions of many subgroups.

Let G ⊆ GLn(K) be a linear Lie group. If g = uex ∈ G (u unitary and x hermitian)
implies that u ∈ G and ex ∈ G, then g∗ = exu−1 ∈ G. Therefore a necessary condition
for G to be adapted to the polar decomposition of GLn(K) is that G is invariant under
the map g 7→ g∗. So we assume that this condition is satisfied. For x ∈ L(G), we
then obtain from (etx)∗ = etx

∗
that x∗ ∈ L(G). Hence each element x ∈ L(G) can be

written as

x =
1

2
(x− x∗) +

1

2
(x+ x∗),

where both summands are in L(G). This implies that

L(G) = k⊕ p, where k := L(G) ∩ un(k), p := L(G) ∩Hermn(K).

We also need a condition which ensures that ex ∈ G, x ∈ Hermn(K), implies
x ∈ L(G).

Definition 3.3.1. We call a subgroup G ⊆ GLn(R) algebraic if there exists a family
(pj)j∈J of real polynomials

pj(x) = pj(x11, x12, . . . , xnn) ∈ R[x11, . . . , xnn]

in the entries of the matrix x ∈Mn(R) such that

G = {x ∈ GLn(R) : (∀j ∈ J) pj(x) = 0}.

Lemma 3.3.2. Let G ⊆ GLn(R) be an algebraic subgroup, y ∈Mn(R) diagonalizable
and ey ∈ G. Then y ∈ L(G), i.e., eRy ⊆ G.

Proof. Suppose that A ∈ GLn(R) is such that AyA−1 is a diagonal matrix. Then
p̃j(x) = pj(A

−1xA), j ∈ J , is also a set of polynomials in the entries of x and ey ∈ G
is equivalent to

eAyA
−1

= AeyA−1 ∈ G̃ := AGA−1 = {g ∈ GLn(R) : (∀j) p̃j(g) = 0}.
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Therefore we may assume that y = diag(y1, . . . , yn) is a diagonal matrix. Now the
polynomial qj(t) := pj(e

ty) has the form

qj(t) =
∑

(k1,...,kn)∈Nn0

ak1,...,kn(ety1)k1 · · · (etyn)kn

=
∑

(k1,...,kn)∈Nn0

ak1,...,kne
t(k1y1+...+knyn)

(a finite sum). Therefore it can be written as qj(t) =
∑m
k=1 λke

tbk , with
b1 > . . . > bm, where each bk is a sum of the entries yl of y. If qj does not van-
ish identically on R, then we may assume that λ1 6= 0. This leads to

lim
t→∞

e−tb1qj(t) = λ1 6= 0,

which contradicts qj(Z) = {0}, which in turn follows from eZy ⊆ G. Therefore each
polynomial qj vanishes identically, and hence eRy ⊆ G.

Proposition 3.3.3. [Polar decomposition for real algebraic groups] Let G ⊆ GLn(R)
be an algebraic subgroup with G = G>. We define K := G ∩On(R) and p := L(G) ∩
Symn(R). Then the map

ϕ : K × p→ G, (k, x) 7→ kex

is a homeomorphism.

Proof. Let g ∈ G and write it as g = uex with u ∈ On(R) and x ∈ Symn(R) (Proposi-
tion 2.3.5 and the polar decomposition). Then

e2x = g>g ∈ G,

where x ∈ Symn(R) is diagonalizable. Therefore Lemma 3.3.2 implies that eRx ⊆ G, so
that x ∈ p. Hence u = ge−x ∈ G∩On(R) = K. We conclude that ϕ is a surjective map.
Furthermore Proposition 1.1.5 on the polar decomposition of GLn(R) implies that ϕ
is injective, hence bijective. The continuity of ϕ−1 also follows from the continuity of
the inversion in GLn(R) (cf. Proposition 1.1.5).

Example 3.3.4. Proposition 3.3.3 applies to the following groups:
(a) G = SLn(R) is p−1(0) for the polynomial p(x) = detx− 1, and we obtain

SLn(R) = K exp p ∼= K × p

with

K = SOn(R) and p = {x ∈ Symn(R) : Trx = 0}.

For SL2(R), we obtain in particular a homeomorphism

SL2(R) ∼= SO2(R)× R2 ∼= S1 × R2.
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(b) G = Op,q := Op,q(R) is defined by the condition g>Ip,qg = Ip,q. These are n2

polynomial equations, one for each entry of the matrix. Moreover, g ∈ Op,q implies

Ip,q = I−1
p,q = (g>Ip,qg)−1 = g−1Ip,q(g

>)−1

and hence gIp,qg
> = Ip,q, i.e., g> ∈ Op,q. Therefore O>p,q = Op,q, and all the assump-

tions of Proposition 3.3.3 are satisfied. In this case,

K = Op,q ∩On
∼= Op×Oq,

(Exercise 3.2.5) and topologically we obtain

Op,q
∼= Op×Oq ×(op,q ∩ Symn(R)).

In particular, we see that for p, q > 0 the group Op,q has four arc-components because
Op and Oq have two arc-components (Proposition 1.1.7).

For the subgroup SOp,q we have one additional polynomial equation, so that it is
also algebraic. Here we have

KS := K ∩ SOp,q
∼= {(a, b) ∈ Op×Oq : det(a) det(b) = 1}

∼=
(

SOp×SOq

)
∪̇
(

Op,−×Oq,−
)
,

so that SOp,q has two arc-components if p, q > 0 (cf. the discussion of the Lorentz
group in Example 1.2.7).

(c) We can also apply Proposition 3.3.3 to the subgroup GLn(C) ⊆ GL2n(R) which
is defined by the condition gI = Ig, where I : R2n → R2n corresponds to the compo-
nentwise multiplication with i on Cn. These are 4n2 = (2n)2 polynomial equations
defining GLn(C). In this case we obtain a new proof of the polar decomposition of
GLn(C) because

K = GLn(C) ∩O2n(R) = Un(C)

and

p = gln(C) ∩ Sym2n(R) = Hermn(C).

Example 3.3.5. Let X ∈ Symn(R) be a nonzero symmetric matrix and consider the
subgroup G := exp(ZX) ⊆ GLn(R). Since expX is symmetric, we then have G> = G.
Moreover, if λ1 ≤ . . . ≤ λk are the eigenvalues of X, then

‖ exp(nX)− 1‖ = max(|enλk − 1|, |enλ1 − 1|) ≥ max(|eλk − 1|, |eλ1 − 1|)

implies that G is a discrete subset of GLn(R), hence a closed subgroup, and therefore
a linear Lie group. On the other hand, the fact that G is discrete implies that L(G) =
{0}. This example shows that the assumption that G is algebraic is indispensable for
Proposition 3.3.3 because

G ∩On(R) = {1} and L(G) ∩ Symn(R) = {0}.
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Exercises for Section 3.3

Exercise 3.3.1. Show that the groups On(C), SOn(C) and Sp2n(R) have polar de-
compositions and describe their intersections with O2n(R).

Exercise 3.3.2. Let B ∈ Hermn(K) with B2 = 1 and consider the automorphism
τ(g) = Bg−>B−1 of GLn(K). Show that:
(1) Aut(Cn, B) = {g ∈ GLn(K) : τ(g) = g}.
(2) Aut(Cn, B) is adapted to the polar decomposition by showing that if g = uex is
the polar decomposition of g, then τ(g) = g is equivalent to τ(u) = u and τ(x) = x.
(3) Aut(Cn, B) is adapted to the polar decomposition by using that it is an algebraic
group.

3.4 Linear Lie groups as submanifolds

The goal of this section is the following theorem.

The Identity Neighborhood Theorem

Theorem 3.4.1. Let G ⊆ GLn(K) be a closed subgroup. Then there exists an open 0-
neighborhood V ⊆ L(G) such that exp |V : V →W := exp(V ) ⊆ G is a homeomorphism
onto an open subset of G.

Proof. First we use Proposition 2.2.4 to find an open 0-neighborhood Vo ⊆ gln(K)
such that

expVo : = exp |Vo : Vo →Wo := exp(Vo)

is a diffeomorphism between open sets. In the following we write logWo
:= (expVo)

−1

for the inverse function. Then the following assertions hold:

• Vo ∩ L(G) is a 0-neighborhood in L(G).

• Wo ∩G is a 1-neighborhood in G.

• exp(Vo ∩ L(G)) ⊆Wo ∩G
• exp |Vo∩L(G) is injective.
If G is not closed, then it need not be true that

exp(Vo ∩ L(G)) = Wo ∩G

because it might be the case that Wo ∩ G is much larger than exp(Vo ∩ L(G)) (see
“the dense wind” discussed below (cf. Lemma 3.4.8). We do not even know whether
exp(Vo∩L(G)) is open in G. Before we can complete the proof, we need three lemmas.

Lemma 3.4.2. Let (gk)k∈N be a sequence in G ∩Wo with gk 6= 1 for all k ∈ N and
gk → 1. We put yk := logWo

gk. Then every cluster point of the sequence{ yk
‖yk‖

: k ∈ N
}

is contained in L(G).
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Proof. Let x be such a cluster point. By replacing the original sequence by a subse-
quence, we may assume that

xk :=
yk
‖yk‖

→ x ∈ gln(K)

and note that this implies ‖x‖ = 1. Let t ∈ R and put pk := t
‖yk‖ . Then txk = pkyk,

yk → logWo
1 = 0,

exp tx = lim
k→∞

exp(txk) = lim
k→∞

exp(pkyk),

and
exp(pkyk) = exp(yk)[pk] exp

(
(pk − [pk])yk

)
,

where [pk] = max{l ∈ Z : l ≤ pk} is the Gauß function. We therefore have

‖(pk − [pk])yk‖ ≤ ‖yk‖ → 0

and eventually

exp tx = lim
k→∞

(exp yk)[pk] = lim
k→∞

g
[pk]
k ∈ G,

because G is closed. This implies x ∈ L(G).

Lemma 3.4.3. Let E ⊆ gln(K) be a real vector subspace complementing the real
subspace L(G). Then there exists a 0-neighborhood UE ⊆ E with

G ∩ expUE = {1}.

Proof. We argue by contradiction. If a neighborhood UE with the required properties
does not exist, then we find for each k ∈ N an element 0 6= yk ∈ E with ‖yk‖ ≤ 1

k and
gk := exp yk ∈ G. Note that yk → 0 implies that gk → 1. Now let x ∈ E be a cluster
point of the sequence yk

‖yk‖ which lies in the compact set SE := {z ∈ E : ‖z‖ = 1},
so that at least one cluster point exists. According to Lemma 3.4.2, we have x ∈
L(G)∩E = {0} because Lemma 3.4.2 applies since gk ∈ G∩Wo holds for k sufficiently
large. We arrive at a contradiction to ‖x‖ = 1. This proves the lemma.

Lemma 3.4.4. Let V1, V2 ⊆ gln(K) be vector subspaces with V1 ⊕ V2 = gln(K). Then
the map

Φ: V1 × V2 → GLn(K), (x1, x2) 7→ (expx1)(expx2)

restricts to a diffeomorphism of a neighborhood of (0, 0) to an open 1-neighborhood in
GLn(K).

Proof. Let µ : Mn(K)×Mn(K)→Mn(K) be the multiplication map

(x1, x2) 7→ x1x2.

This map is bilinear, so that its derivative is given by

dµ(x1, x2)(h1, hr) = h1x2 + x1h2.
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In particular we have

dµ(1,1)(h1, h2) = h1 + h2.

Now the Chain Rule and d exp(0) = id lead to

dΦ(0, 0)(h1, h2) = dµ(1,1)(d exp(0)h1, d exp(0)h2)

= dµ(1,1)(h1, h2) = h1 + h2.

Since this map is bijective, the Inverse Function Theorem implies that Φ restricts to a
diffeomorphism of a 0-neighborhood in V1×V2 onto a 1-neighborhood in GLn(K).

Now we are ready to complete the proof of Theorem 3.4.1. We choose E as above,
a vector space complement to L(G), and define

Φ: L(G)× E → GLn(K), (x, y) 7→ expx exp y.

According to Lemma 3.4.4, there exist open 0-neighborhoods UE ⊆ E and Uo ⊆ L(G)
such that

Φ|Uo×UE : Uo × UE → exp(Uo) exp(UE)

is a diffeomorphism onto an open 1-neighborhood in GLn(K). Moreover, in view of
Lemma 3.4.3, we may choose UE so small that exp(UE) ∩G = {1}.

Since exp(Uo) ⊆ G, the condition g = expx exp y ∈ G ∩ (exp(Uo) exp(UE)) implies
exp y = (expx)−1g ∈ G ∩ expUE = {1}. Therefore

exp(Uo) = G ∩ (exp(Uo) exp(UE))

is an open 1-neighborhood in G. This completes the proof of Theorem 3.4.1.

Linear Lie groups as submanifolds

The Identity Neighborhood Theorem has important consequences for the structure of
linear Lie groups. One of them is that they are submanifolds of the real vector space
Mn(K) ∼= K(n2).

Definition 3.4.5. Let V be a finite-dimensional real vector space. A subset M ⊆ V is
called a k-dimensional submanifold if for each x ∈M there exists an open neighborhood
Ux of x in V , a k-dimensional subspace F ⊆ V and a diffeomorphism ϕ : Ux → W
onto an open neighborhood W of 0 in V such that

ϕ(Ux ∩M) = W ∩ F.

Geometrically this means that a piece of M (such as Ux ∩M) looks like a piece of
a vector subspace F of V (such as W ∩ F ). In this sense ϕ “straightens” the curved
structure of M .

Proposition 3.4.6. Every closed subgroup G of GLn(K) is a submanifold of Mn(K)
of dimension dimR L(G).
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Proof. We recall the diffeomorphism

Φ: Uo × UE → exp(Uo) exp(UE)

from the proof of Theorem 3.4.1, where Uo ⊆ L(G) and UE ⊆ E are open 0-neighborhoods
and Mn(K) = L(G)⊕ E. We also recall that

Φ(Uo × UE) ∩G = exp(Uo) = Φ(Uo × {0}).

For g ∈ G we write λg : GLn(K)→ GLn(K) for the left multiplication λg(h) = gh
and observe that λg is a linear automorphism of Mn(K). Therefore Ug := λg(im(Φ)) =
g im(Φ) is an open neighborhood of g in Mn(K). Moreover, the map

ϕg : Ug → L(G)⊕ E = Mn(K), x 7→ Φ−1(g−1x)

is a diffeomorphism onto the open subset Uo × UE of Mn(K), and we have

ϕg(Ug ∩G) = ϕg(g im(Φ) ∩G) = ϕg(g(im(Φ) ∩G))

= ϕg(g exp(Uo)) = Uo × {0} = (Uo × UE) ∩ (L(G)× {0}).

Therefore the family (ϕg, Ug)g∈G satisfies the assumptions of Definition 3.4.5, so that
G is a submanifold of Mn(K) of dimension dimR L(G).

Remark 3.4.7. (a) Every submanifold M of a vector space V is locally closed in the
sense that for each x ∈ M there exists a neighborhood U of x in V for which U ∩M
is closed in U .

(b) We shall see later that each locally closed subgroup H of a topological group G
is closed. Therefore each subgroup G ⊆ GLn(K) which is a submanifold of Mn(K) is
automatically closed, hence a linear Lie group. This means that the linear Lie groups
are precisely those subgroups of GLn(K) which are submanifolds of GLn(K).

(c) For each submanifold M ⊆ V and each x ∈M we define the geometric tangent
space Tx(M) ⊆ V as the set of all v ∈ V for which there exists a differentiable curve
γ : ]−ε, ε[→M ⊆ V with γ(0) = x and γ′(0) = v. In terms of Definition 3.4.5, it is not
hard to see that Tx(M) = dϕ(x)−1(E). In particular TxM is a k-dimensional vector
subspace of V .

(d) If G is a linear Lie group, then

T1(G) = L(G).

In fact, γ(t) := exp tx ⊆ G for x ∈ g, t ∈ R imply that x = γ′(0) ∈ T1(G) and
hence L(G) ⊆ T1(G). Since the spaces L(G) and T1(G) have the same dimension
(Proposition 3.4.6, both are equal.

The dense wind

In this short subsection we discuss an important example of a subgroup of the 2-torus
T2 which is not closed. It is the simplest example of a non-closed, arcwise connected
subgroup.
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Let

A =
{(

eit
√

2 0
0 eit

)
: t ∈ R

}
⊆ T2 :=

{(eir 0
0 eis

)
: r , s ∈ R

}
,

where T2 is the two-dimensional torus. We endow T2 with the subspace topology
inherited from M2(C).

Lemma 3.4.8. A is a dense subgroup of the 2-torus T2.

Proof. We consider the map

Φ: R2 → T2, (r, s) 7→
(
e2πir 0

0 e2πis

)
which is a surjective continuous group homomorphism with kernel Z2. For L :=
R(
√

2, 1) and V = R(1, 0) we have R2 ∼= V ⊕ L. In view of

A = Φ(L) = Φ(L+ Z2),

it suffices to show that L+Z2 is dense in R2. From the direct decomposition R2 ∼= V ⊕L
and L ⊆ L+ Z2 we derive

L+ Z2 = L+ ((L+ Z2) ∩ V ),

and if p : R2 → V denote the projection map with kernel L, then

(L+ Z2) ∩ V = p(L+ Z2) = p(Z2).

It therefore suffices to show that p(Z2) is dense in V . From p(1, 0) = (1, 0) and
p(0, 1) = p((0, 1) − (

√
2, 1)) = −(

√
2, 0) we obtain p(Z2) = Z +

√
2Z, so that the

density of p(Z2) is a consequence of Lemma 3.4.10 below.

Example 3.4.9. We consider the topological group G = (R,+). Suppose that {0} 6=
Γ ⊆ R is a subgroup. Then two cases occur:

Case 1: inf(R×+ ∩ Γ) = 0, i.e., there exists a sequence 0 < xn ∈ Γ with xn → 0.
Then Zxn ⊆ Γ holds for each n. For each open interval ]a, b[⊆ R and xn < b − a we
then obtain

∅ 6= Zxn∩]a, b[⊆ Γ∩]a, b[,

so that Γ is dense, i.e., Γ = R.
Case 2: d := inf(R×+ ∩ Γ) > 0. Then ] − d, d[∩Γ = {0} implies that Γ is discrete

and therefore closed. If d 6∈ Γ, then there exists a d′ ∈]d, 2d[∩Γ and likewise a d′′ ∈
]d, d′[∩Γ. Then 0 < d′ − d′′ < d contradicts the definition of d. This implies that
d ∈ Γ, and hence that Zd ⊆ Γ. To see that we actually have equality, let γ ∈ Γ and
k := max{n ∈ Z : nd ≤ γ}. Then γ−nd ∈ [0, d[∩Γ = {0} implies γ = nd. We conclude
that Γ = Zd is a cyclic group.

In particular, we have shown that all non-trivial closed subgroups of R are cyclic
and isomorphic to Z.
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Lemma 3.4.10. Let θ ∈ R. Then Z + Zθ is dense in R if and only if θ is irrational.

Proof. Suppose first that Z+Zθ is not dense in R. Then it is discrete by Example 3.4.9,
hence of the form Zxo for some xo > 0. Then there exist k,m ∈ Z with

1 = kxo and θ = mxo.

We then obtain θ = m
k ∈ Q. If, conversely, θ = m

k ∈ Q, then Z+Zθ ⊆ 1
kZ is not dense

in R.



Chapter 4

Smooth Manifolds

Contrary to submanifolds of some vector space, a differentiable manifold is described
without specifying any surrounding space. In spite of the fact that one can show that
each finite dimensional smooth manifold can be realized as a closed submanifold of
some Rn (Whitney’s Embedding Theorem), these embeddings are not canonical, and
it is therefore much more natural to think of differentiable manifolds as spaces for
which no embedding is specified. The concept of a differentiable manifold permits us
to define a Lie group as a differentiable manifold for which the group operations are
smooth maps. We shall verify below that this approach is compatible with what we
have learned previously on linear Lie groups.

4.1 Manifolds and Smooth Maps

Before we turn to the concept of a smooth manifold, we recall the concept of a Hausdorff
space. We assume, however, some familiarity with basic topological constructions and
concepts, such as the quotient topology. A topological space (X, τ) is called a Hausdorff
space if for two different points x, y ∈ X there exist disjoint open subsets Ox, Oy with
x ∈ Ox and y ∈ Oy. Recall that each metric space (X, d) is Hausdorff.

Definition 4.1.1. Let M be a topological space.
(a) A pair (ϕ,U), consisting of an open subset U ⊆ M and a homeomorphism

ϕ : U → ϕ(U) ⊆ Rn of U onto an open subset of Rn is called an n-dimensional chart
of M .

(b) Two n-dimensional charts (ϕ,U) and (ψ, V ) of M are said to be Ck-compatible
(k ∈ N ∪ {∞}) if U ∩ V = ∅ or the map

ψ ◦ ϕ−1|ϕ(U∩V ) : ϕ(U ∩ V )→ ψ(U ∩ V )

is a Ck-diffeomorphism. Since ϕ : U → ϕ(U) is a homeomorphism onto an open subset
of Rn, ϕ(U ∩ V ) is an open subset of ϕ(U) and hence of Rn.

(c) An n-dimensional Ck-atlas of M is a family A := (ϕi, Ui)i∈I of n-dimensional
charts of M with the following properties:

61
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(A1)
⋃
i∈I Ui = M , i.e., (Ui)i∈I is an open covering of M .

(A2) All charts (ϕi, Ui), i ∈ I, are pairwise Ck-compatible. For Uij := Ui ∩ Uj , this
means that all maps

ϕji := ϕj ◦ ϕ−1
i |ϕi(Uij) : ϕi(Uij)→ ϕj(Uij)

are Ck-maps because ϕ−1
ji = ϕij .

(d) A chart (ϕ,U) is called compatible with a Ck-atlas (ϕi, Ui)i∈I if it is Ck-
compatible with all charts of the atlas A. A Ck-atlas A is called maximal if it contains
all charts compatible with it. A maximal Ck-atlas is also called a Ck-differentiable
structure on M . For k =∞ we also call it a smooth structure.

Remark 4.1.2. (a) In Definition 4.1.1(b) we required that the map

ψ ◦ ϕ−1|ϕ(U∩V ) : ϕ(U ∩ V )→ ψ(U ∩ V )

is a Ck-diffeomorphism. Since ϕ and ψ are homeomorphisms, this map always is a
homeomorphism between open subsets of Rn. The differentiability is an additional
requirement.

(b) For M = R the maps (M,ϕ) and (M,ψ) with ϕ(x) = x and ψ(x) = x3 are
1-dimensional charts. These charts are not C1-compatible: the map

ψ ◦ ϕ−1 : R→ R, x 7→ x3

is smooth, but not a diffeomorphism, since its inverse ϕ ◦ ψ−1 is not differentiable.

(c) Every atlas A is contained in a unique maximal atlas: We simply add all
charts compatible with A, and thus obtain a maximal atlas. This atlas is unique
(Exercise 4.1.2).

(d) A given topological space M may carry different differentiable structures. Ex-
amples are the exotic differentiable structures on R4 (the only Rn carrying exotic
differentiable structures) and the 7-sphere S7.

Definition 4.1.3. An n-dimensional Ck-manifold is a pair (M,A) of a Hausdorff
space M and a maximal n-dimensional Ck-atlas A for M . For k = ∞ we call it a
smooth manifold.

To specify a manifold structure, it suffices to specify a Ck-atlas A because this
atlas is contained in a unique maximal one (Exercise 4.1.2). In the following we shall
never describe a maximal atlas. We shall always try to keep the number of charts as
small as possible. For simplicity, we always assume in the following that k =∞.

Example 4.1.4. [Open subsets of Rn] Let U ⊆ Rn be an open subset. Then U is a
Hausdorff space with respect to the induced topology. The inclusion map ϕ : U → Rn
defines a chart (ϕ,U) which already defines a smooth atlas of U , turning U into an
n-dimensional smooth manifold.
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Example 4.1.5. [The n-dimensional sphere] We consider the unit sphere

Sn := {(x0, . . . , xn) ∈ Rn+1 : x2
0 + x2

1 + . . .+ x2
n = 1}

in Rn, endowed with the subspace topology, turning it into a compact space.
(a) To specify a smooth manifold structure on Sn, we consider the open subsets

Uεi := {x ∈ Sn : εxi > 0}, i = 0, . . . , n, ε ∈ {±1}.

These 2(n+ 1) subsets form a covering of Sn. We have homeomorphisms

ϕεi : Uεi → B := {x ∈ Rn : ‖x‖2 < 1}

onto the open unit ball in Rn, given by

ϕεi (x) = (x0, x1, . . . , xi−1, xi+1, . . . , xn)

and with continuous inverse map

(y1, . . . , yn) 7→
(
y1, . . . , yi, ε

√
1− ‖y‖22, yi+1, . . . , yn

)
.

This leads to charts (ϕεi , U
ε
i ) of Sn.

It is easy to see that these charts are pairwise compatible. We have
ϕεi ◦ (ϕε

′

i )−1 = idB , and for i < j, we have

ϕεi ◦ (ϕε
′

j )−1(y) =
(
y1, . . . , yi, yi+2, . . . , yj , ε

′
√

1− ‖y‖22, yj+1, . . . , yn

)
,

which is a smooth map

ϕε
′

j (Uεi ∩ Uε
′

j )→ ϕεi (U
ε
i ∩ Uε

′

j ).

(b) There is another atlas of Sn consisting only of two charts, where the maps are
slightly more complicated.

We call the unit vector e0 := (1, 0, . . . , 0) the north pole of the sphere and −e0 the
south pole. We then have the corresponding stereographic projection maps

ϕ+ : U+ := Sn \ {e0} → Rn, (y0, y) 7→ 1

1− y0
y

and

ϕ− : U− := Sn \ {−e0} → Rn, (y0, y) 7→ 1

1 + y0
y.

Both maps are bijective with inverse maps

ϕ−1
± (x) =

(
± ‖x‖

2
2 − 1

‖x‖22 + 1
,

2x

1 + ‖x‖22

)
(Exercise 4.1.4). This implies that (ϕ+, U+) and (ϕ−, U−) are charts of Sn. That both
are smoothly compatible, hence a smooth atlas, follows from

(ϕ+ ◦ ϕ−1
− )(x) = (ϕ− ◦ ϕ−1

+ )(x) =
x

‖x‖2
, x ∈ Rn \ {0},

which is the inversion at the unit sphere.
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Example 4.1.6. [Submanifolds of Rn] We claim that a d-dimensional submanifold
M ⊆ Rn carries a natural d-dimensional manifold structure when endowed with the
topology inherited from Rn, which obviously turns it into a Hausdorff space.

In fact, for each submanifold chart (ϕ,U) (cf. Definition 3.4.5) with ϕ(U ∩M) =
(Rd × {0}) ∩ ϕ(U), we obtain a d-dimensional chart

(ϕ|U∩M , U ∩M),

where we have identified Rd with Rd × {0}. For two such charts coming from (ϕ,U)
and (ψ, V ), we have

ψ ◦ ϕ−1|ϕ(U∩V ∩M) = (ψ|V ∩M ) ◦ (ϕ|U∩M )−1|ϕ(U∩V ∩M),

which is a smooth map onto an open subset of Rd. We thus obtain a smooth atlas
of M .

Example 4.1.7. Let E be an n-dimensional real vector space. We know from Linear
Algebra that E is isomorphic to Rn, and that for each ordered basis B := (b1, . . . , bn)
for E, the linear map

ϕB : Rn → E, x = (x1, . . . , xn) 7→
n∑
j=1

xjbj

is a linear isomorphism. Using such a linear isomorphism ϕB , we define a topology
on E in such a way that ϕB is a homeomorphism, i.e., O ⊆ E is open if and only if
ϕ−1
B (O) is open in Rn.

For any other choice of a basis C = (c1, . . . , cm) in E we recall from linear algebra
that m = n and that the map

ϕ−1
C ◦ ϕB : Rn → Rn

is a linear isomorphism, hence a homeomorphism. This implies that for a subset O ⊆ E
the condition that ϕ−1

B (O) is open is equivalent to ϕ−1
C (O)

= ϕ−1
C ◦ ϕB ◦ ϕ−1

B (O) being open. We conclude that the topology introduced on
E by ϕB does not depend on the choice of a basis.

We thus obtain on E a natural topology for which it is homeomorphic to Rn, hence
in particular a Hausdorff space. From each coordinate map κB := ϕ−1

B we obtain a
chart (κB , E) which already defines an atlas of E. We thus obtain on E the structure
of an n-dimensional smooth manifold. That all these charts are compatible follows
from the smoothness of the linear maps κC ◦ κ−1

B = ϕ−1
C ◦ ϕB : Rn → Rn.

New Manifolds from Old Ones

Definition 4.1.8. [Open subsets are manifolds] Let M be a smooth manifold and
N ⊆M an open subset. Then N carries a natural smooth manifold structure.

Let A = (ϕi, Ui)i∈I be an atlas of M . Then Vi := Ui ∩N and ψi := ϕi|Vi define a
smooth atlas B := (ψi, Vi)i∈I of N (Exercise).
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Definition 4.1.9. [Products of manifolds] Let M and N be smooth manifolds of
dimensions d, resp., k and

M ×N = {(m,n) : m ∈M,n ∈ N}

the product set, which we endow with the product topology.
We show that M × N carries a natural structure of a smooth

(d+k)-dimensional manifold. LetA = (ϕi, Ui)i∈I be an atlas of M and B = (ψj , Vj)j∈J
an atlas of N . Then the product sets Wij := Ui×Vj are open in M ×N and the maps

γij := ϕi × ψj : Ui × Vj → Rd × Rk ∼= Rd+k, (x, y) 7→ (ϕi(x), ψj(y))

are homeomorphisms onto open subsets of Rd+k. On γi′j′(Wij ∩Wi′j′) we have

γij ◦ γ−1
i′j′ = (ϕi ◦ ϕ−1

i′ )× (ψj ◦ ψ−1
j′ ),

which is a smooth map. Therefore (ϕij ,Wij)(i,j)∈I×J is a smooth atlas on M ×N .

Smooth maps

Definition 4.1.10. (a) Let M and N be differentiable manifolds. We call a continuous
map f : M → N smooth in p ∈M if, for some chart (ϕ,U) of M with p ∈ U and some
chart (ψ, V ) of N with f(p) ∈ V , the map

ψ ◦ f ◦ ϕ−1 : ϕ(f−1(V ))→ ψ(V ), ϕ(x) 7→ ψ(f(x)) (4.1)

between open subsets of a vector space is smooth in a neighborhood of ϕ(p). Note that
the assumption that f is continuous implies that f−1(U) is open in M , so that the set
ψ(f−1(U)) is open. We call a continuous map f : M → N smooth if it is smooth in
each point of M . We write C∞(M,N) for the set of smooth maps f : M → N .

(b) A smooth map f : M → N is called a smooth isomorphism or a diffeomorphism
if there exists a smooth map g : N →M with g ◦ f = idM and f ◦ g = idN . We write
Diff(M,N) for the set of diffeomorphisms of M to N and Diff(M) := Diff(M,M).

Remark 4.1.11. (a) If f : M → N and g : N → Q are continuous maps and p ∈ M
is such that f is smooth in p and g is smooth in f(p), then the composition g ◦ f is
smooth in p. In fact, for charts (ϕ,U), (ψ, V ), resp., (η,W ) of M , N , resp., Q, we
have

η ◦ (g ◦ f) ◦ ϕ−1 = (η ◦ g ◦ ψ−1) ◦ (ψ ◦ f ◦ ϕ−1),

on its natural domain, which contains a neighborhood of ϕ(p).

(b) From (a) it follows in particular that, if f : M → N is smooth in p and (ϕ̃, Ũ)

is any chart of M with p ∈ Ũ , then, for any chart (ψ̃, Ṽ ) of N with f(p) ∈ Ṽ , the map

ψ̃ ◦ f ◦ ϕ̃−1 : ϕ̃(f−1(Ṽ ))→ ψ̃(Ṽ )

is smooth.
(c) The map f : R → R, x 7→ x3 is smooth and invertible, but it is not a smooth

isomorphism because f−1(x) = x1/3 is not differentiable in 0.
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Remark 4.1.12. (a) If I ⊆ R is an open interval, then a smooth map
γ : I →M is called a smooth curve.

For a not necessarily open interval I ⊆ R, a map γ : I → Rn is called smooth if
all derivatives γ(k) exist in all points of I and define continuous functions I → Rn.
Based on this generalization of smoothness for curves, a curve γ : I →M is said to be
smooth, if for each chart (ϕ,U) of M the curves

ϕ ◦ γ : γ−1(U)→ Rn

are smooth.
A curve γ : [a, b] → M is called piecewise smooth if γ is continuous and there

exists a subdivision x0 = a < x1 < . . . , < xN = b such that γ|[xi,xi+1] is smooth for
i = 0, . . . N − 1.

(b) Smoothness of maps f : M → Rn can be checked more easily. Since the identity
is a chart of Rn, the smoothness condition simply means that for each chart (ϕ,U) of
M the map

f ◦ ϕ−1 : ϕ(f−1(V ) ∩ U)→ Rn

is smooth.
(c) If U is an open subset of Rn, then a map f : U →M to a smooth m-dimensional

manifold M is smooth if and only if for each chart (ϕ, V ) of M the map

ϕ ◦ f : f−1(V )→ Rn

is smooth.
(d) Any chart (ϕ,U) of a smooth n-dimensional manifold M defines a diffeomor-

phism U → ϕ(U) ⊆ Rn, when U is endowed with the canonical manifold structure as
an open subset of M .

In fact, by definition, we may use (ϕ,U) as an atlas of U . Then the smoothness of ϕ
is equivalent to the smoothness of the map ϕ◦ϕ−1 = idϕ(U), which is trivial. Likewise,
the smoothness of ϕ−1 : ϕ(U)→ U is equivalent to the smoothness of ϕ◦ϕ−1 = idϕ(U).

Remark 4.1.13. If M and N are differentiable manifolds, then the product manifold
M ×N has the following properties:

(a) The projection maps pM : M ×N →M and pN : M ×N → N are smooth.
(b) For x ∈M , the embedding

ix : N →M ×N, y 7→ (x, y)

is smooth and, for y ∈ N , the embedding

iy : M →M ×N, x 7→ (x, y)

is smooth.
(c) The diagonal embedding

∆M : M →M ×M, x 7→ (x, x)

is smooth.
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Exercises for Section 4.1

Exercise 4.1.1. Let M := R, endowed with its standard topology. Show that Ck-
compatibility of 1-dimensional charts is not an equivalence relation.

Exercise 4.1.2. Show that each n-dimensional Ck-atlas is contained in a unique
maximal one.

Exercise 4.1.3. Let If Mi, i = 1, . . . , n, be smooth manifolds of dimension di. Show
that the product space M := M1 × . . .×Mn carries the structure of a (d1 + . . .+ dn)-
dimensional manifold.

Exercise 4.1.4. (a) Verify the details in Example 4.1.5, where we describe an atlas
of Sn by stereographic projections.

(b) Show that the two atlasses of Sn constructed in Example 4.1.5 and the atlas
obtained from the realization of Sn as a quadric in Rn+1 define the same differentiable
structure.

Exercise 4.1.5. Show that the set A := C∞(M,R) of smooth real-valued functions
on M is a real algebra. If g ∈ A is nonzero and U := g−1(R×), then 1

g ∈ C
∞(U,R).

Exercise 4.1.6. Let f1 : M1 → N1 and f2 : M2 → N2 be smooth maps. Show that
the map

f1 × f2 : M1 ×M2 → N1 ×N2, (x, y) 7→ (f1(x), f2(y))

is smooth.

Exercise 4.1.7. Let f1 : M → N1 and f2 : M → N2 be smooth maps. Show that the
map

(f1, f2) : M → N1 ×N2, x 7→ (f1(x), f2(x))

is smooth.

Exercise 4.1.8. Let N be an open subset of the smooth manifold M . Show that
if A = (ϕi, Ui)i∈I is a smooth atlas of M , Vi := Ui ∩ N and ψi := ϕi|Vi , then
B := (ψi, Vi)i∈I is a smooth atlas of N .

Exercise 4.1.9. Let V1, . . . , Vk and V be finite-dimensional real vector space and

β : V1 × . . .× Vk → V

be a k-linear map. Show that β is smooth with

dβ(x1, . . . , xk)(h1, . . . , hk) =

k∑
j=1

β(x1, . . . , xj−1, hj , xj+1, . . . , xk).

Exercise 4.1.10. Let M be a compact smooth manifold containing at least two points.
Then each atlas of M contains at least two charts. In particular the atlas of Sn obtained
from stereographic projections is minimal.
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Exercise 4.1.11. Let X and Y be topological spaces and q : X → Y a quotient map,
i.e., q is surjective and O ⊆ Y is open if and only if q−1(O) is open in X. Show
that a map f : Y → Z (Z a topological space) is continuous if and only if the map
f ◦ q : X → Z is continuous.

Exercise 4.1.12. Show that a function f : R → R is a diffeomorphism if and only if
either

(1) f ′ > 0 and limx→±∞ f(x) = ±∞.

(2) f ′ < 0 and limx→±∞ f(x) = ∓∞.

4.2 The Tangent Bundle

The real strength of the theory of smooth manifolds is due to the fact that it per-
mits to analyze differentiable structures in terms of their derivatives. To model these
derivatives appropriately, we introduce the tangent bundle TM of a smooth manifold,
tangent maps of smooth maps and smooth vector fields.

We start with the definition of a tangent vector of a smooth manifold. The subtle
point of this definition is that tangent vectors and the vector space structure can only
be defined rather indirectly. The most straight forward way is to construct tangent
vectors as “tangents” to smooth curves.

4.2.1 Tangent Vectors and Tangent Maps

Definition 4.2.1. Let M be a smooth manifold, p ∈M and (ϕ,U) a chart of M with
p ∈ U . Let γ : I →M be a smooth curve, where I ⊆ R is an interval containing 0 and
γ(0) = p. We call two such curves γi : Ii →M , i = 1, 2, equivalent, denoted γ1 ∼ γ2, if

(ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0).

Clearly, this defines an equivalence relation. The equivalence classes are called tangent
vectors in p. We write Tp(M) for the set of all tangent vectors in p and [γ] ∈ Tp(M)
for the equivalence class of the curve γ. The disjoint union

T (M) :=
∐
p∈M

Tp(M)

is called the tangent bundle of M and we write πTM : TM → M for the projection,
mapping Tp(M) to {p}.

Remark 4.2.2. (a) The equivalence relation defining tangent vectors does not depend
on the chart (ϕ,U). If (ψ, V ) is a second chart with p ∈ V and γ : I → M a smooth
curve with γ(0) = p, then

(ψ ◦ γ)′(0) = d(ψ ◦ ϕ−1)(ϕ(p))(ϕ ◦ γ)′(0),

so that we obtain the same equivalence relation on curves through p.
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(b) If U ⊆ Rn is an open subset and p ∈ U , then each smooth curve
γ : I → U with γ(0) = p is equivalent to the curve ηv(t) := p + tv for v = γ′(0).
Hence each equivalence class contains exactly one curve ηv. We may therefore think
of a tangent vector in p ∈ U as a vector v ∈ Rn attached to the point p, and the map

Rn → Tp(U), v 7→ [ηv]

is a bijection. In this sense, we identify all tangent spaces Tp(U) with Rn, so that we
obtain a bijection

T (U) ∼= U × Rn.

As an open subset of the product space T (Rn) ∼= R2n, the tangent bundle T (U) inherits
a natural manifold structure.

(c) For each p ∈M and any chart (ϕ,U) with p ∈ U , the map

Tp(ϕ) : Tp(M)→ Rn, [γ] 7→ (ϕ ◦ γ)′(0)

is well-defined and injective by the definition of the equivalence relation. Moreover,
the curve

γ(t) := ϕ−1(ϕ(p) + tv),

which is smooth and defined on some neighborhood of 0, satisfies
(ϕ ◦ γ)′(0) = v. Hence Tp(ϕ) is a bijection.

Definition 4.2.3. Let M be an n-dimensional smooth manifold.
(a) Each tangent space Tp(M) carries the unique structure of an n-dimensional

vector space with the property that for each chart (ϕ,U) of M with p ∈ U , the map

Tp(ϕ) : Tp(M)→ Rn, [γ] 7→ (ϕ ◦ γ)′(0)

is a linear isomorphism.
In fact, since Tp(ϕ) is a bijection, we may define a vector space structure on Tp(M)

by
v + w := Tp(ϕ)−1(Tp(ϕ)v + Tp(ϕ)w) and λv := Tp(ϕ)−1(λTp(ϕ)v)

for λ ∈ R, v, w ∈ Tp(M). For any other chart (ψ, V ) with p ∈ V we then have

Tp(ψ) = d(ψ ◦ ϕ−1)(ϕ(p)) ◦ Tp(ϕ),

and since d(ψ ◦ϕ−1)(ϕ(p)) is a linear automorphism of Rn, the vector space structure
on Tp(M) does not depend on the chart we use for its definition.

(b) If f : M → N is a smooth map and p ∈M , then we obtain a linear map

Tp(f) : Tp(M)→ Tf(p)(N), [γ] 7→ [f ◦ γ].

In fact, we only have to observe that for any chart (ϕ,U) of N with f(p) ∈ U and any
chart (ψ, V ) of M with p ∈ V , we have

Tf(p)(ϕ)[f ◦ γ] = (ϕ ◦ f ◦ γ)′(0) = d(ϕ ◦ f ◦ ψ−1)(ψ(p))(ψ ◦ γ)′(0)

= d(ϕ ◦ f ◦ ψ−1)(ψ(p))Tp(ψ)[γ].
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This relation shows that Tp(f) is well-defined, and a linear map.
The collection of all these maps defines a map

T (f) : T (M)→ T (N) with Tp(f) = T (f)|Tp(M), p ∈M.

It is called the tangent map of f .
(c) If M ⊆ R is an open subset, then f : M → N is a smooth curve in N , and its

tangent vector is f ′(t) := Tt(f)(1), where 1 ∈ Tt(R) ∼= R is considered as a tangent
vector.

(d) If V is a vector space, then we identify T (V ) in a natural way with V × V .
Accordingly we have

Tp(f)(v) = (f(p), df(p)v),

for a map df : T (M)→ V with df(p) := df |Tp(M).

Remark 4.2.4. (a) For an open subset U ⊆ Rn and p ∈ U , the vector space structure
on Tp(U) = {p} × Rn is simply given by

(p, v) + (p, w) := (p, v + w) and λ(p, v) := (p, λv)

for v, w ∈ Rn and λ ∈ R.
(b) If f : U → V is a smooth map between open subsets U ⊆ Rn and V ⊆ Rm,

p ∈ U , and ηv(t) = p+ tv, then the tangent map satisfies

T (f)(p, v) = [f ◦ ηv] = (f ◦ ηv)′(0) = (f(p), df(p)η′v(0)) = (f(p), df(p)v).

The main difference to the map df is the book keeping; here we keep track of what
happens to the point p and the tangent vector v. We may also write

T (f) = (f ◦ πTU , df) : TU ∼= U × Rn → TV ∼= V × Rn,

where πTU : TU → U, (p, v) 7→ p, is the projection map.
(c) If (ϕ,U) is a chart of M and p ∈ U , then we identify T (ϕ(U)) with ϕ(U)×Rn

and obtain for [γ] ∈ Tp(M):

T (ϕ)([γ]) = (ϕ(p), [ϕ ◦ γ]) = (ϕ(p), (ϕ ◦ γ)′(0)),

which is consistent with our previously introduced notation Tp(ϕ) (Remark 4.2.2).

Lemma 4.2.5. [Chain Rule for Tangent Maps] For smooth maps f : M → N and
g : N → L, the tangent maps satisfy

T (g ◦ f) = T (g) ◦ T (f).

Proof. We recall from Remark 4.1.11 that g ◦ f : M → L is a smooth map, so that
T (g ◦ f) is defined. For p ∈M and [γ] ∈ Tp(M), we further have

Tp(g ◦ f)[γ] = [g ◦ f ◦ γ] = Tf(p)(g)[f ◦ γ] = Tf(p)(g)Tp(f)[γ].

Since p was arbitrary, this implies the lemma.
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So far we only considered the tangent bundle T (M) of a smooth manifold M as a
set, but this set also carries a natural topology and a smooth manifold structure.

Definition 4.2.6. [Manifold structure on T (M)] Let M be a smooth manifold. First
we introduce a topology on T (M).

For each chart (ϕ,U) of M , we have a tangent map

T (ϕ) : T (U)→ T (ϕ(U)) ∼= ϕ(U)× Rn,

where we consider T (U) =
⋃
p∈U Tp(M) as a subset of T (M). We define a topology on

T (M) by declaring a subset O ⊆ T (M) to be open if for each chart (ϕ,U) of M , the
set T (ϕ)(O ∩ T (U)) is an open subset of T (ϕ(U)). It is easy to see that this defines
indeed a Hausdorff topology on T (M) for which all the subsets T (U) are open and the
maps T (ϕ) are homeomorphisms onto open subsets of R2n (Exercise 4.2.1).

Since for two charts (ϕ,U), (ψ, V ) of M , the map

T (ϕ ◦ ψ−1) = T (ϕ) ◦ T (ψ)−1 : T (ψ(V ))→ T (ϕ(U))

is smooth, for each atlas A of M , the collection (T (ϕ), T (U))(ϕ,U)∈A is a smooth atlas
of T (M). We thus obtain on T (M) the structure of a smooth manifold.

Lemma 4.2.7. If f : M → N is a smooth map, then its tangent map T (f) is smooth.

Proof. Let p ∈M and choose charts (ϕ,U) and (ψ, V ) of M , resp., N with p ∈ U and
f(p) ∈ V . Then the map

T (ψ) ◦ T (f) ◦ T (ϕ)−1 = T (ψ ◦ f ◦ ϕ−1) : T (ϕ(f−1(V ) ∩ U))→ T (V )

is smooth, and this implies that T (f) is a smooth map.

Remark 4.2.8. For smooth manifolds M1, . . . ,Mn, the projection maps

πi : M1 × · · · ×Mn →Mi, (p1, . . . , pn) 7→ pi

induce a diffeomorphism

(T (π1), . . . , T (πn)) : T (M1 × · · · ×Mn)→ TM1 × · · · × TMn

(Exercise 4.2.2).

Exercises for Section 4.2

Exercise 4.2.1. Let M be a smooth manifold. We call a subset O ⊆ T (M) open
if for each chart (ϕ,U) of M , the set T (ϕ)(O ∩ T (U)) is an open subset of T (ϕ(U)).
Show that:

(1) This defines a topology on T (M).

(2) All subsets T (U) are open (Remark 4.2.4(b)).
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(3) The maps T (ϕ) : TU → T (ϕ(U)) ∼= ϕ(U) × Rn are homeomorphisms onto open
subsets of R2n ∼= T (Rn).

(4) The projection πTM : T (M)→M is continuous.

(5) T (M) is Hausdorff.

Exercise 4.2.2. For smooth manifolds M1, . . . ,Mn, the projection maps

πi : M1 × · · · ×Mn →Mi, (p1, . . . , pn) 7→ pi

induce a diffeomorphism

(T (π1), . . . , T (πn)) : T (M1 × · · · ×Mn)→ TM1 × · · · × TMn.

Exercise 4.2.3. Let N and M1, . . . ,Mn be a smooth manifolds. Show that a map

f : N →M1 × · · · ×Mn

is smooth if and only if all its component functions fi : N →Mi are smooth.

Exercise 4.2.4. Let f : M → N be a smooth map between manifolds,
πTM : TM → M the tangent bundle projection and σM : M → TM the zero section.
Show that for each smooth map f : M → N we have

πTN ◦ Tf = f ◦ πTM and σN ◦ f = Tf ◦ σM .

Exercise 4.2.5. [Inverse Function Theorem for manifolds] Let
f : M → N be a smooth map and p ∈ M such that Tp(f) : Tp(M) → Tf(p)(N) is
a linear isomorphism. Show that there exists an open neighborhood U of p in M such
that the restriction f |U : U → f(U) is a diffeomorphism onto an open subset of N .

Exercise 4.2.6. Let µ : E × F → W be a bilinear map and M a smooth manifold.
For f ∈ C∞(M,E), g ∈ C∞(M,F ) and p ∈M set h(p) := µ

(
f(p), g(p)

)
. Show that h

is smooth with

T (h)v = µ
(
T (f)v, g(p)

)
+ µ

(
f(p), T (g)v

)
for v ∈ Tp(M).

4.3 Vector Fields

Vector fields are maps which associate with each point in a manifold a tangent vector
at this point. They can be interpreted as a geometric way to formulate first order
differential equations on a manifold, a point of view we will elaborate below. First we
introduce the Lie algebra structure on the space of smooth vector fields.
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4.3.1 The Lie Algebra of Vector Fields

Definition 4.3.1. (a) Let πTM : TM →M denote the canonical projection mapping
Tp(M) to p. A (smooth) vector field X on M is a smooth section of the tangent bundle
TM , i.e., a smooth map X : M → TM with πTM ◦X = idM . We write V(M) for the
space of all vector fields on M .

(b) If f ∈ C∞(M,V ) is a smooth function on M with values in some finite-
dimensional vector space V and X ∈ V(M), then we obtain a smooth function on
M via

LXf := df ◦X : M → TM → V.

We thus obtain for each X ∈ V(M) a linear operator LX on C∞(M,V ). The function
LXf is also called the Lie derivative of f with respect to X.

Remark 4.3.2. (a) If U is an open subset of Rn, then TU = U ×Rn with the bundle
projection

πTU : U × Rn → U, (x, v) 7→ x.

Therefore each smooth vector field is of the form X(x) = (x, X̃(x)) for some smooth

function X̃ : U → Rn, and we may thus identify V(U) with the space C∞(U,Rn) of
smooth Rn-valued functions on U .

(b) The space V(M) carries a natural vector space structure given by

(X + Y )(p) := X(p) + Y (p), (λX)(p) := λX(p).

More generally, we can multiply vector fields with smooth functions

(fX)(p) := f(p)X(p), f ∈ C∞(M,R), X ∈ V(M).

Before we turn to the Lie bracket on the space V(M) of smooth vector fields on a
manifold M , we take a closer look at the local level.

Lemma 4.3.3. Let U ⊆ Rn be an open subset. Then we obtain a Lie bracket on the
space C∞(U,Rn) by

[X,Y ](p) := dY (p)X(p)− dX(p)Y (p) for p ∈ U.

With respect to this Lie bracket, the map

L : C∞(U,Rn)→ End(C∞(U,R)), X 7→ LX , LX(f)(p) := df(p)X(p)

is an injective homomorphism of Lie algebras, i.e., L[X,Y ] = [LX ,LY ].

Proof. (L1) is obvious from the definition. To verify the Jacobi identity, we first
observe that the map X 7→ LX is injective. In fact, if LX = 0, then we have for each
linear function f : Rn → R the relation 0 = (LXf)(p) = df(p)X(p) = f(X(p)), and
therefore X(p) = 0.

Next we observe that

LXLY (f)(p) = d(LY f)(p)X(p) = d(df ◦ Y )(p)X(p)

= (d2f)(p)(X(p), Y (p)) + df(p)dY (p)X(p),
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so that the Schwarz Lemma implies LXLY f −LY LXf = L[X,Y ]f. Clearly, the bracket
on V(U) is skew-symmetric. That it also satisfies the Jacobi identity follows from the
injectivity of L, the Jacobi identity in End(C∞(U,R)) (Lemma 3.1.2) and L[X,Y ] =
[LX ,LY ]:

L[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]] = [LX , [LY ,LZ ]] + [LY , [LZ ,LX ]] + [LZ , [LX ,LY ]].

Remark 4.3.4. For any open subset U ⊆ Rn, the map

V(U)→ C∞(U,Rn), X → X̃

with X(p) = (p, X̃(p)) is a linear isomorphism. We use this map to transfer the Lie
bracket on C∞(U,Rn), defined in Lemma 4.3.3, to a Lie bracket on V(U), determined
by

[X,Y ]̃ (p) := [X̃, Ỹ ](p) = dỸ (p)X̃(p)− dX̃(p)Ỹ (p).

Our goal is to use the Lie brackets on the space V(U) and local charts to define
a Lie bracket on V(M). The following lemma will be needed to ensure consistency in
this process.

First, we introduce the concept or related vector fields. If ϕ : M → N is a smooth
map, then we call two vector fields X ′ ∈ V(M) and X ∈ V(N) ϕ-related if

X ◦ ϕ = Tϕ ◦X ′ : M → TN. (4.2)

With respect to the pullback map

ϕ∗ : C∞(N,R)→ C∞(M,R), f 7→ f ◦ ϕ,

the ϕ-relatedness of X and X ′ implies that

LX′(ϕ∗f) = LX′(f ◦ ϕ) = d(f ◦ ϕ) ◦X ′ = df ◦ Tϕ ◦X ′ = df ◦X ◦ ϕ = ϕ∗(LXf),

i.e.,
LX′ ◦ ϕ∗ = ϕ∗ ◦ LX . (4.3)

Lemma 4.3.5. Let M ⊆ Rn and N ⊆ Rm be open subsets. Suppose that X ′, resp.,
Y ′ ∈ V(M) is ϕ-related to X, resp., Y ∈ V(N). Then [X ′, Y ′] is ϕ-related to [X,Y ].

Proof. In view of (4.3), we have

LX′ ◦ ϕ∗ = ϕ∗ ◦ LX and LY ′ ◦ ϕ∗ = ϕ∗ ◦ LY

as linear maps C∞(N,R)→ C∞(M,R). Therefore

[LX′ ,LY ′ ] ◦ ϕ∗ = LX′ ◦ LY ′ ◦ ϕ∗ − LY ′ ◦ LX′ ◦ ϕ∗

= ϕ∗ ◦ LX ◦ LY − ϕ∗ ◦ LY ◦ LX = ϕ∗ ◦ [LX ,LY ].

For any f ∈ C∞(N,R), we thus obtain

df ◦ Tϕ ◦ [X ′, Y ′] = L[X′,Y ′](f ◦ ϕ) = (L[X,Y ]f) ◦ ϕ = df ◦ [X,Y ] ◦ ϕ.

Since each linear functional on the space Tx(N) ∼= Rm is of the form df(x) for some
linear map f : Rm → R, the assertion follows.
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Proposition 4.3.6. For a vector field X ∈ V(M) and a chart (ϕ,U) of M , we write
Xϕ := Tϕ ◦X ◦ ϕ−1 for the corresponding vector field on the open subset ϕ(U) ⊆ Rn.

For X,Y ∈ V(M), there exists a vector field [X,Y ] ∈ V(M) which is uniquely
determined by the property that for each chart (ϕ,U) of M , the following equation
holds

[X,Y ]ϕ = [Xϕ, Yϕ]. (4.4)

Proof. If (ϕ,U) and (ψ, V ) are charts of M , the vector fields Xϕ on ϕ(U) and Xψ on
ψ(V ) are (ψ ◦ϕ−1)-related. Therefore Lemma 4.3.5 implies that [Xϕ, Yϕ] is (ψ ◦ϕ−1)-
related to [Xψ, Yψ]. This in turn is equivalent to

T (ϕ)−1 ◦ [Xϕ, Yϕ] ◦ ϕ = T (ψ)−1 ◦ [Xψ, Yψ] ◦ ψ,

which is an identity of vector fields on the open subset U ∩ V .
Hence there exists a unique vector field [X,Y ] ∈ V(M), satisfying

[X,Y ]|U = T (ϕ)−1 ◦ [Xϕ, Yϕ] ◦ ϕ

for each chart (ϕ,U), i.e., [X,Y ]ϕ = [Xϕ, Yϕ] on ϕ(U).

Lemma 4.3.7. For f ∈ C∞(M,R) and X,Y ∈ V(M), the following equation holds

L[X,Y ]f = LX(LY f)− LY (LXf).

Proof. It suffices to show that this relation holds on U for any chart (ϕ,U) of M . For
fϕ := f ◦ ϕ−1, we then obtain with (4.3)

L[X,Y ]f = df ◦ [X,Y ] = df ◦ T (ϕ−1) ◦ [X,Y ]ϕ ◦ ϕ
= dfϕ ◦ [Xϕ, Yϕ] ◦ ϕ = ϕ∗

(
L[Xϕ,Yϕ]fϕ

)
= ϕ∗

(
L(Xϕ)L(Yϕ)fϕ − L(Yϕ)L(Xϕ)fϕ

)
= LX(LY f)− LY (LXf),

because ϕ∗fϕ = f .

Proposition 4.3.8. (V(M), [·, ·]) is a Lie algebra.

Proof. Clearly (L1) is satisfied. To verify the Jacobi identity, let X,Y, Z ∈ V(M) and
(ϕ,U) be a chart of M . For the vector field J(X,Y, Z) :=

∑
cyc.[X, [Y,Z]] ∈ V(M) we

then obtain from the definition of the bracket, Remark 4.3.4 and Proposition 4.3.6:

J(X,Y, Z)ϕ = J(Xϕ, Yϕ, Zϕ) = 0

because [·, ·] is a Lie bracket on V(ϕ(U)). This means that J(X,Y, Z) vanishes on U ,
but since the chart (ϕ,U) was arbitrary, J(X,Y, Z) = 0.

We shall see later that the following lemma is an extremely important tool.

Lemma 4.3.9. [Related Vector Field Lemma] Let M and N be smooth manifolds,
ϕ : M → N a smooth map, X,Y ∈ V(N) and X ′, Y ′ ∈ V(M). If X ′ is ϕ-related to X
and Y ′ is ϕ-related to Y , then the Lie bracket [X ′, Y ′] is ϕ-related to [X,Y ].
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Proof. We have to show that for each p ∈M we have

[X,Y ](ϕ(p)) = Tp(ϕ)[X ′, Y ′](p).

Let (ρ, U) be a chart of M with p ∈ U and (ψ, V ) a chart of N with ϕ(p) ∈ V . Then
the vector fields X ′ρ and Xψ are ψ ◦ ϕ ◦ ρ−1-related on the domain ρ(ϕ−1(V ) ∩ U):

T (ψ ◦ ϕ ◦ ρ−1)X ′ρ = T (ψ ◦ ϕ ◦ ρ−1)(T (ρ) ◦X ′ ◦ ρ−1)

= T (ψ) ◦ T (ϕ) ◦X ′ ◦ ρ−1 = T (ψ) ◦X ◦ ϕ ◦ ρ−1 = Xψ ◦ (ψ ◦ ϕ ◦ ρ−1),

and the same holds for the vector fields Y ′ρ and Yψ, hence for their Lie brackets
(Lemma 4.3.5).

Now the definition of the Lie bracket on V(N) and V(M) implies that

T (ψ) ◦ T (ϕ) ◦ [X ′, Y ′] = T (ψ ◦ ϕ ◦ ρ−1) ◦ [X ′, Y ′]ρ ◦ ρ
= T (ψ ◦ ϕ ◦ ρ−1) ◦ [X ′ρ, Y

′
ρ ] ◦ ρ = [Xψ, Yψ] ◦ ψ ◦ ϕ ◦ ρ−1 ◦ ρ

= [Xψ, Yψ] ◦ ψ ◦ ϕ = [X,Y ]ψ ◦ ψ ◦ ϕ = T (ψ) ◦ [X,Y ] ◦ ϕ,

and since T (ψ) is injective, the assertion follows.

Example 4.3.10. Let (ϕ,U) be a chart of M and x1, . . . , xn : U → R the correspond-
ing coordinate functions. Then we obtain on U the vector fields Xj , j = 1, . . . , n,
defined by

Xj(p) := Tp(ϕ)−1ej :=
∂

∂xj
(p) :=

∂

∂xj

∣∣∣
p
,

where e1, . . . , en is the standard basis for Rn. We call these vector fields the ϕ-basic
vector fields on U . The expression basic vector field is doubly justified. On the one
hand,

(
X1(p), . . . , Xn(p)

)
is a basis for Tp(M) for every p ∈ U . On the other hand,

the definition shows that every X ∈ V(U) can be written as

X =

n∑
j=1

aj ·Xj for aj ∈ C∞(U).

Since basic vector fields are ϕ-related with the constant vector fields on Rn, they
commute (Related Vector Field Lemma 4.3.9), i.e., [Xj , Xk] = 0.

Exercises for Section 4.3

Exercise 4.3.1. Let M be a smooth manifold, X,Y ∈ V(M) and f, g ∈ C∞(M,R).
Show that

(1) LX(f · g) = LX(f) · g + f · LX(g), i.e., the map f 7→ LX(f) is a derivation.

(2) LfX(g) = f · LX(g).

Exercise 4.3.2. Let A be a K-algebra (not necessarily associative). Show that
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(i) der(A) := {D ∈ End(A) : (∀a, b ∈ A)D(ab) = Da · b + a ·Db} is a Lie subalgebra
of gl(A) = End(A)L.

(ii) If, in addition, A is commutative, then for D ∈ der(A) and a ∈ A, the map
aD : A → A, x 7→ aDx also is a derivation.

Exercise 4.3.3. Let U be an open subset of R2n and P = C∞(U,R) be the set of
smooth functions on U and write q1, . . . , qm, p1, . . . , pm for the coordinates with respect
to a basis. Then g is a Lie algebra with respect to the Poisson bracket

{f, g} :=

n∑
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

Exercise 4.3.4. To each A ∈ gln(R), we associate the linear vector field XA(x) := Ax
on Rn Show that, for A,B ∈Mn(R), we have X[A,B] = −[XA, XB ].

4.4 Integral Curves and Local Flows

In this section we turn to the geometric nature of vector fields as infinitesimal genera-
tors of local flows on manifolds. This provides a natural perspective on (autonomous)
ordinary differential equations.

4.4.1 Integral Curves

Throughout this subsection M denotes an n-dimensional smooth manifold.

Definition 4.4.1. Let X ∈ V(M) and I ⊆ R an open interval containing 0. A
differentiable map γ : I →M is called an integral curve of X if

γ′(t) = X(γ(t)) for each t ∈ I.

Note that the preceding equation implies that γ′ is continuous and further that if γ is
Ck, then γ′ is also Ck. Therefore integral curves are automatically smooth.

If J ⊇ I is an interval containing I, then an integral curve η : J → M is called an
extension of γ if η|I = γ. An integral curve γ is said to be maximal if it has no proper
extension.

Remark 4.4.2. (a) If U ⊆ Rn is an open subset of Rn, then we write a vector field
X ∈ V(U) as X(x) = (x, F (x)), where F : U → Rn is a smooth function. A curve
γ : I → U is an integral curve of X if and only if it satisfies the ordinary differential
equation

γ′(t) = F (γ(t)) for all t ∈ I.

(b) If (ϕ,U) is a chart of the manifold M and X ∈ V(M), then a curve γ : I →M
is an integral curve of X if and only if the curve η := ϕ ◦ γ is an integral curve of the
vector field Xϕ := T (ϕ) ◦X ◦ ϕ−1 ∈ V(ϕ(U)) because

Xϕ(η(t)) = Tγ(t)(ϕ)X(γ(t)) and η′(t) = Tγ(t)(ϕ)γ′(t).
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Remark 4.4.3. A curve γ : I →M is an integral curve ofX if and only if γ̃(t) := γ(−t)
is an integral curve of the vector field −X.

More generally, for a, b ∈ R, the curve η(t) := γ(at+ b) is an integral curve of the
vector field aX.

Definition 4.4.4. Let a < b ∈ [−∞,∞]. For a continuous curve γ : ]a, b[→M we say
that

lim
t→b

γ(t) =∞

if for each compact subset K ⊆ M there exists a c < b with γ(t) 6∈ K for t > c.
Similarly, we define

lim
t→a

γ(t) =∞.

Theorem 4.4.5. [Existence and Uniqueness of Integral Curves] Let X ∈ V(M) and
p ∈ M . Then there exists a unique maximal integral curve γp : Ip → M with γp(0) =
p. If a := inf Ip > −∞, then limt→a γp(t) = ∞ and if b := sup Ip < ∞, then
limt→b γp(t) =∞.

Proof. We have seen in Remark 4.4.2 that in local charts, integral curves are solutions
of an ordinary differential equation with a smooth right hand side. We now reduce the
proof to the Local Existence- and Uniqueness Theorem for ODE’s.

Uniqueness: Let γ, η : I →M be two integral curves of X with γ(0) = η(0) = p.
The continuity of the curves implies that

0 ∈ J := {t ∈ I : γ(t) = η(t)}

is a closed subset of I. In view of the Local Uniqueness Theorem for ODE’s, for
each t0 ∈ J there exists an ε > 0 with [t0, t0 + ε] ⊆ J , and likewise [t0 − ε, t0] ⊆ J
(Remark 4.4.3). Therefore J is also open. Now the connectedness of I implies I = J ,
so that γ = η.

Existence: The Local Existence Theorem implies the existence of some integral
curve γ : I → M on some open interval containing 0. For any other integral curve
η : J → M , the intersection I ∩ J is an interval containing 0, so that the uniqueness
assertion implies that η = γ on I ∩ J .

Let Ip ⊆ R be the union of all open intervals Ij containing 0 on which there exists
an integral curve γj : Ij → M of X with γj(0) = p. Then the preceding argument
shows that

γ(t) := γj(t) for t ∈ Ij
defines an integral curve of X on Ip, which is maximal by definition. The uniqueness
of the maximal integral curve also follows from its definition.

Limit condition: Suppose that b := sup Ip < ∞. If limt→b γ(t) = ∞ does not
hold, then there exists a compact subset K ⊆M and a sequence tm ∈ Ip with tm → b
and γ(tm) ∈ K. As K can be covered with finitely many closed subsets homeomorphic
to a closed subset of a ball in Rn, after passing to a suitable subsequence, we may
w.l.o.g. assume that K itself is homeomorphic to a compact subset of Rn. Then a
subsequence of (γ(tm))m∈N converges, and we may replace the original sequence by
this subsequence, hence assume that q := limm→∞ γ(tm) exists.
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The Local Existence Theorem for ODE’s implies the existence of a compact neigh-
borhood V ⊆M of q and ε > 0 such that the initial value problem

η(0) = x, η′ = X ◦ η

has a solution on [−ε, ε] for each x ∈ V . Pick m ∈ N with tm > b− ε and γ(tm) ∈ V .
Further let η : [−ε, ε]→M be an integral curve with η(0) = γ(tm). Then

γ(t) := η(t− tm) for t ∈ [tm − ε, tm + ε],

defines an extension of γ to the interval Ip∪ ]tm, tm+ε[ strictly containing ]a, b[, hence
contradicting the maximality of Ip. This proves that limt→b γ(t) = ∞. Replacing X
by −X, we also obtain limt→a γ(t) =∞.

If q = γp(t) is a point on the unique maximal integral curve of X through p ∈M ,
then Iq = Ip − t and

γq(s) := γp(t+ s)

is the unique maximal integral curve through q. Here Ip is the domain of definition of
the maximal integral curve through p and Iq is the domain of definition of the maximal
integral curve through q.

Example 4.4.6. (a) On M = R we consider the vector field X given by the function
F (s) = 1 + s2, i.e., X(s) = (s, 1 + s2). The corresponding ODE is

γ′(s) = X(γ(s)) = 1 + γ(s)2.

For
γ(0) = 0 the function γ(s) := tan(s) on I := ] − π

2 ,
π
2 [ is the unique maximal so-

lution because
lim
t→π

2

tan(t) =∞ and lim
t→−π2

tan(t) = −∞.

(b) Let M := ]−1, 1[ and X(s) = (s, 1), so that the corresponding ODE is γ′(s) = 1.
Then the unique maximal solution is

γ(s) = s, I = ]− 1, 1[.

Note that we also have in this case

lim
s→±1

γ(s) =∞

if we consider γ as a curve in the noncompact manifold M .
For M = R the same vector field has the maximal integral curve

γ(s) = s, I = R.

(c) For M = R and X(s) = (s,−s), the differential equation is γ′(t) = −γ(t), so
that we obtain the maximal integral curves γ(t) = γ0e

−t. For γ0 = 0 this curve is
constant, and for γ0 6= 0 we have limt→∞ γ(t) = 0, hence limt→∞ γ(t) 6= ∞. This
shows that maximal integral curves do not always leave every compact subset of M if
they are defined on an interval unbounded from above.
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The preceding example shows in particular that the global existence of integral
curves can also be destroyed by deleting parts of the manifold M , i.e., by considering
M ′ := M \K for some closed subset K ⊆M .

Definition 4.4.7. A vector field X ∈ V(M) is said to be complete if all its maximal
integral curves are defined on all of R.

Corollary 4.4.8. All vector fields on a compact manifold M are complete.

4.4.2 Local Flows

Definition 4.4.9. Let M be a smooth manifold. A local flow on M is a smooth map

Φ: U →M,

where U ⊆ R ×M is an open subset containing {0} ×M , such that for each x ∈ M
the intersection Ix := U ∩ (R× {x}) is an interval containing 0 and

Φ(0, x) = x and Φ
(
t,Φ(s, x)

)
= Φ(t+ s, x)

hold for all t, s, x for which both sides are defined. The maps

αx : Ix →M, t 7→ Φ(t, x)

are called the flow lines. The flow Φ is said to be global if U = R×M .

Lemma 4.4.10. If Φ: U →M is a local flow, then

XΦ(x) :=
d

dt t=0
Φ(t, x) = α′x(0)

defines a smooth vector field.

It is called the velocity field or the infinitesimal generator of the local flow Φ.

Lemma 4.4.11. If Φ: U → M is a local flow on M , then the flow lines are integral
curves of the vector field XΦ. In particular, the local flow Φ is uniquely determined by
the vector field XΦ.

Proof. Let αx : Ix →M be a flow line and s ∈ Ix. For sufficiently small t ∈ R we then
have

αx(s+ t) = Φ(s+ t, x) = Φ
(
t,Φ(s, x)

)
= Φ

(
t, αx(s)

)
,

so that taking derivatives in t = 0 leads to α′x(s) = XΦ(αx(s)).
That Φ is uniquely determined by the vector field XΦ follows from the uniqueness

of integral curves (Theorem 4.4.5).

Theorem 4.4.12. Each smooth vector field X is the velocity field of a unique local
flow defined by

DX :=
⋃
x∈M

Ix × {x} and Φ(t, x) := γx(t) for (t, x) ∈ DX ,

where γx : Ix →M is the unique maximal integral curve through x ∈M .
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Proof. If (s, x),
(
t,Φ(s, x)

)
and (s+ t, x) ∈ DX , the relation

Φ(s+ t, x) = Φ
(
t,Φ(s, x)

)
and IΦ(s,x) = Iγx(s) = Ix − s

follow from the fact that both curves

t 7→ Φ(t+ s, x) = γx(t+ s) and t 7→ Φ
(
t,Φ(s, x)

)
= γΦ(s,x)(t)

are integral curves of X with the initial value Φ(s, x), hence coincide.
We claim that all maps

Φt : Mt := {x ∈M : (t, x) ∈ DX} →M, x 7→ Φ(t, x)

are injective. In fact, if p := Φt(x) = Φt(y), then γx(t) = γy(t), and on [0, t] the curves
s 7→ γx(t− s), γy(t− s) are integral curves of −X, starting in p. Hence the Uniqueness
Theorem 4.4.5 implies that they coincide in s = t, which mans that x = γx(0) =
γy(0) = y. From this argument it further follows that Φt(Mt) = M−t and Φ−1

t = Φ−t.
It remains to show that DX is open and Φ smooth. The local Existence Theorem

provides for each x ∈M an open neighborhood Ux diffeomorphic to a cube and some
εx > 0, as well as a smooth map

ϕx : ]− εx, εx[×Ux →M, ϕx(t, y) = γy(t) = Φ(t, y).

Hence ]− εx, εx[×Ux ⊆ DX , and the restriction of Φ to this set is smooth. Therefore
Φ is smooth on a neighborhood of {0} ×M in DX .

Now let Jx be the set of all t ∈ [0,∞[, for which DX contains a neighborhood of
[0, t]×{x} on which Φ is smooth. The interval Jx is open in R+ := [0,∞[ by definition.
We claim that Jx = Ix∩R+. This entails that DX is open because the same argument
applies to Ix∩ ]−∞, 0].

We assume the contrary and find a minimal τ ∈ Ix ∩R+ \ Jx, because this interval
is closed. Put p := Φ(τ, x) and pick a product set I × W ⊆ DX , where W is an
open neighborhood of p and I = ] − 2ε, 2ε[ a 0-neighborhood, such that 2ε < τ and
Φ : I ×W → M is smooth. By assumption, there exists an open neighborhood V of
x such that Φ is smooth on [0, τ − ε]× V ⊆ DX . Then Φτ−ε is smooth on V and

V ′ := Φ−1
τ−ε
(
Φ−1
ε (W )

)
∩ V

is a neighborhood of x. Further,

V ′ = Φ−1
τ−ε
(
Φ−1
ε (W )

)
∩ V = Φ−1

τ (W ) ∩ V,

and Φ is smooth on ]τ − 2ε, τ + 2ε[×V ′, because it is a composition of smooth maps:

]τ − 2ε, τ + 2ε[×V ′ →M, (t, y) 7→ Φ
(
t− τ,Φ(ε,Φ(τ − ε, y))

)
.

We thus arrive at the contradiction τ ∈ Jx.
This completes the proof of the openness of DX and the smoothness of Φ. The

uniqueness of the flow follows from the uniqueness of the integral curves.
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Remark 4.4.13. Let X ∈ V(M) be a complete vector field. If

ΦX : R×M →M

is the corresponding global flow, then the maps ΦXt : x 7→ ΦX(t, x) satisfy

(A1) ΦX0 = idM .

(A2) ΦXt+s = ΦXt ◦ ΦXs for t, s ∈ R.

It follows in particular that ΦXt ∈ Diff(M) with (ΦXt )−1 = ΦX−t, so that we obtain
a group homomorphism

γX : R→ Diff(M), t 7→ ΦXt .

With respect to the terminology introduced below, (A1) and (A2) mean that ΦX

defines a smooth action of R on M . As ΦX is determined by the vector field X, we
call X the infinitesimal generator of this action. In this sense the smooth R-actions
on a manifold M are in one-to-one correspondence with the complete vector fields on
M .

Remark 4.4.14. Let ΦX : DX →M be the maximal local flow of a vector field X on
M . Let Mt = {x ∈ M : (t, x) ∈ DX}, and observe that this is an open subset of M .
We have already seen in the proof of Theorem 4.4.12 above, that all the smooth maps
ΦXt : Mt →M are injective with ΦXt (Mt) = M−t and (ΦXt )−1 = ΦX−t on the image. It
follows in particular, that ΦXt (Mt) = M−t is open, and that

ΦXt : Mt →M−t

is a diffeomorphism whose inverse is ΦX−t.

Proposition 4.4.15. (Smooth Dependence Theorem) Let M and Λ be smooth man-
ifolds and Ψ: Λ→ V(M) be a map for which the map

Λ×M → T (M), (λ, p) 7→ Ψλ(p)

is smooth (the vector field Ψλ depends smoothly on the parameter λ). Then the subset

D := {(t, λ, p) ∈ R× Λ×M : (t, p) ∈ DΦλ}

of R× Λ×M is open and the map D →M, (t, λ, p) 7→ ΦΨλ(t, p) is smooth.

Proof. The parameters do not cause any additional problems, as can be seen by the
following trick: On the product manifold Λ ×M we consider the smooth vector field
Y , given by

Y (λ, p) := (0λ,Ψλ(p)) ∈ Tλ(Λ)× Tp(M) ∼= T(λ,p)(Λ×M).

Then the integral curves of Y are of the form γ(t) = (λ, γp(t)), where γp is an integral
curve of the smooth vector field Ψλ on M . Therefore the assertion is an immediate
consequence on the smoothness of the flow of Y on Λ×M (Theorem 4.4.12).
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4.4.3 Lie Derivatives

We take a closer look at the interaction of local flows and vector fields. It will turn
out that this leads to a new concept of a directional derivative which works for general
tensor fields.

Let X ∈ V(M) and ΦX : DX → M its maximal local flow. For f ∈ C∞(M) and
t ∈ R we set

(ΦXt )∗f := f ◦ ΦXt ∈ C∞(Mt).

Then we find

lim
t→0

1

t
((ΦXt )∗f − f) = df(X) = LXf ∈ C∞(M).

For a second vector field Y ∈ V(M), we define a smooth vector field on the open subset
M−t ⊆M by

(ΦXt )∗Y := T (ΦXt ) ◦ Y ◦ ΦX−t = T (ΦXt ) ◦ Y ◦ (ΦXt )−1

(cf. Remark 4.4.14) and define the Lie derivative by

LXY := lim
t→0

1

t
((ΦX−t)∗Y − Y ) =

d

dt t=0
(ΦX−t)∗Y,

which is defined on all of M since for each p ∈ M the vector ((ΦXt )∗Y )(p) is defined
for sufficiently small t and depends smoothly on t.

Theorem 4.4.16. LXY = [X,Y ] for X,Y ∈ V(M).

Proof. Fix p ∈ M . It suffices to show that LXY and [X,Y ] coincide in p. We may
therefore work in a local chart, hence assume that M = U is an open subset of Rn.

Identifying vector fields with smooth Rn-valued functions, we then have

[X,Y ](x) = dY (x)X(x)− dX(x)Y (x), x ∈ U.

On the other hand,

((ΦX−t)∗Y )(x) = T (ΦX−t) ◦ Y ◦ ΦXt (x)

= d(ΦX−t)(Φ
X
t (x))Y (ΦXt (x)) =

(
d(ΦXt )(x)

)−1
Y (ΦXt (x)).

To calculate the derivative of this expression with respect to t, we first observe that it
does not matter if we first take derivatives with respect to t and then with respect to
x or vice versa. This leads to

d

dt t=0
d(ΦXt )(x) = d

( d
dt t=0

ΦXt

)
(x) = dX(x).

Next we note that for any smooth curve α : [−ε, ε]→ GLn(R) with α(0) = 1 we have

(α−1)′(t) = −α(t)−1α′(t)α(t)−1,

and in particular (α−1)′(0) = −α′(0). Combining all this, we obtain with the Product
Rule

LX(Y )(x) = −dX(x)Y (x) + dY (x)X(x) = [X,Y ](x).
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Corollary 4.4.17. If X,Y ∈ V(M) are complete vector fields, then their global flows
ΦX ,ΦY : R→ Diff(M) commute if and only if X and Y commute, i.e., [X,Y ] = 0.

Proof. (1) Suppose first that ΦX and ΦY commute, i.e.,

ΦX(t) ◦ ΦY (s) = ΦY (s) ◦ ΦX(t) for t, s ∈ R.

Let p ∈M and γp(s) := ΦYs (p) the Y -integral curve through p. We then have

γp(s) = ΦYs (p) = ΦXt ◦ ΦYs ◦ ΦX−t(p),

and passing to the derivative in s = 0 yields

Y (p) = γ′p(0) = T (ΦXt )Y (ΦX−t(p)) =
(
(ΦXt )∗Y

)
(p).

Passing now to the derivative in t = 0, we arrive at [X,Y ] = LX(Y ) = 0.
(2) Now we assume [X,Y ] = 0. First we show that (ΦXt )∗Y = Y holds for all

t ∈ R. For t, s ∈ R we have

(ΦXt+s)∗Y = (ΦXt )∗(Φ
X
s )∗Y,

so that
d

dt
(ΦXt )∗Y = −(ΦXt )∗LX(Y ) = 0

for each t ∈ R. Since for each p ∈M the curve

R→ Tp(M), t 7→
(
(ΦXt )∗Y

)
(p)

is smooth, and its derivative vanishes, it is constant Y (p). This shows that (ΦXt )∗Y =
Y for each t ∈ R.

For γ(s) := ΦXt ΦYs (p) we now have γ(0) = ΦXt (p) and

γ′(s) = T (ΦXt ) ◦ Y (ΦYs (p)) = Y (ΦXt ΦYs (p)) = Y (γ(s)),

so that γ is an integral curve of Y . We conclude that γ(s) = ΦYs (ΦXt (p)), and this
means that the flows of X and Y commute.

Remark 4.4.18. Let X,Y ∈ V(M) be two complete vector fields and ΦX , resp., ΦY

their global flows. We then consider the commutator map

F : R2 → Diff(M), (t, s) 7→ ΦXt ◦ ΦYs ◦ ΦX−t ◦ ΦY−s.

We know from Corollary 4.4.17 that it vanishes if and only if [X,Y ] = 0, but there is
also a more direct way from F to the Lie bracket. In fact, we first observe that

∂F

∂s
(t, 0) = (ΦXt )∗Y − Y,

and hence that
∂2F

∂t∂s
(0, 0) = [Y,X].

Here we use that for a smooth function of the form G(t, s) = H(t, s,−t,−s) we
have

∂

∂s
G(t, 0) =

∂

∂x2
H(t, 0,−t, 0)− ∂

∂x4
H(t, 0,−t, 0)

by the Chain Rule.
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Exercises for Section 4.4

Exercise 4.4.1. Let M := Rn. For a matrix A ∈ Mn(R), we consider the linear
vector field XA(x) := Ax. Determine the maximal flow ΦX of this vector field.

Exercise 4.4.2. Let M be a smooth manifold and Y ∈ V(M) a smooth vector field
on M . Suppose that Y generates a local flow ΦY : DY → M which is defined on an
entire box of the form [−ε, ε]×M ⊆ DY . Show that this implies the completeness of
Y .

Exercise 4.4.3. Let ϕ : M → N be a smooth map and X ∈ V(M), Y ∈ V(N) be
ϕ-related vector fields. Show that for any integral curve γ : I → M of X, the curve
ϕ ◦ γ : I → N is an integral curve of Y .

Exercise 4.4.4. Let X ∈ V(M) be a vector field and write XR ∈ V(R) for the vector
field on R, given by XR(t) = (t, 1). Show that, for an open interval I ⊆ R, a smooth
curve γ : I →M is an integral curve of X if and only if XR and X are γ-related.

Exercise 4.4.5. Let X ∈ V(M)c be a complete vector field and ϕ ∈ Diff(M). Then
ϕ∗X is also complete and

Φϕ∗Xt = ϕ ◦ ΦXt ◦ ϕ−1 for t ∈ R.

Exercise 4.4.6. Let M be a smooth manifold, ϕ ∈ Diff(M) and X ∈ V(M)c be a
complete vector field. Show that the following are equivalent:

(1) ϕ commutes with the flow maps ΦXt .

(2) For each integral curve γ : I → M of X, the curve ϕ ◦ γ also is an integral curve
of X.

(3) X = ϕ∗X = T (ϕ) ◦X ◦ ϕ−1, i.e., X is ϕ-invariant.

Exercise 4.4.7. Let X,Y ∈ V(M) be two commuting complete vector fields, i.e.,
[X,Y ] = 0. Show that the vector field X + Y is complete and that its flow is given by

ΦX+Y
t = ΦXt ◦ ΦYt for all t ∈ R.

Exercise 4.4.8. Let V be a finite-dimensional vector space and µt(v) := tv for t ∈ R×.
Show that:

(1) A vector field X ∈ V(V ) is linear if and only if (µt)∗X = X holds for all t ∈ R×.

(2) A diffeomorphism ϕ ∈ Diff(V ) is linear if and only if it commutes with all the
maps µt, t ∈ R×.
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Chapter 5

General Lie Groups

In the context of smooth manifolds, the natural class of groups are those endowed with
a manifold structure compatible with the group structure. Such groups will be called
Lie groups.

5.1 First Examples and the Tangent Group

Definition 5.1.1. A Lie group is a group G, endowed with the structure of a smooth
manifold, such that the group operations

mG : G×G→ G, (x, y) 7→ xy and ιG : G→ G, x 7→ x−1

are smooth.

Throughout this chapter, G denotes a Lie group with multiplication map
mG : G × G → G, (x, y) 7→ xy, inversion map ιG : G → G, x 7→ x−1, and neutral
element 1. For g ∈ G we write λg : G → G, x 7→ gx for the left multiplication map,
ρg : G → G, x 7→ xg for the right multiplication map, and cg : G → G, x 7→ gxg−1 for
the conjugation with g. A morphism of Lie groups is a smooth homomorphism of Lie
groups ϕ : G1 → G2.

Remark 5.1.2. All maps λg, ρg and cg are smooth. Moreover, they are bijective with
λg−1 = λ−1

g , ρg−1 = ρ−1
g and cg−1 = c−1

g , so that they are diffeomorphisms of G onto
itself.

In addition, the maps cg are automorphisms of G, so that we obtain a group
homomorphism

C : G→ Aut(G), g 7→ cg,

where Aut(G) stands for the group of automorphisms of the Lie group G, i.e., the
group automorphisms which are diffeomorphisms. The automorphisms of the form
cg are called inner automorphisms of G. The group of inner automorphisms of G is
denoted by Inn(G).

One can show that the requirement of ιG being smooth is redundant (Exercise 5.4.4).

87
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Example 5.1.3. We consider the additive group G := (Rn,+), endowed with the nat-
ural n-dimensional manifold structure. A corresponding chart is given by (idRn ,Rn),
which shows that the corresponding product manifold structure on Rn × Rn is given
by the chart (idRn × idRn ,Rn × Rn) = (idR2n ,R2n), hence coincides with the natural
manifold structure on R2n. Therefore the smoothness of addition and inversion follows
from the smoothness of the maps

R2n → Rn, (x, y) 7→ x+ y and Rn → Rn, x 7→ −x.

Example 5.1.4. Next we consider the group G := GLn(R) of invertible
(n × n)-matrices. As an open subset of Mn(R) it carries a natural manifold struc-
ture, and since its multiplication and inversion are smooth by Lemma 1.1.1, it is a Lie
group.

Example 5.1.5. (a) (The circle group) We have already seen how to endow the circle

S1 := {(x, y) ∈ R2 : x2 + y2 = 1}

with a manifold structure (Example 4.1.5). Identifying it with the unit circle

T := {z ∈ C : |z| = 1}

in C, it also inherits a group structure, given by

(x, y) · (x′, y′) := (xx′ − yy′, xy′ + x′y) and (x, y)−1 = (x,−y).

With these explicit formulas, it is easy to verify that T is a Lie group (Exercise 5.4.1).
(b) (The n-dimensional torus) In view of (a), we have a natural manifold structure

on the n-dimensional torus Tn := (S1)n. The corresponding direct product group
structure

(t1, . . . , tn)(s1, . . . , sn) := (t1s1, . . . , tnsn)

turns Tn into a Lie group (Exercise 5.4.2).

Lemma 5.1.6. (a) As usual, we identify T (G × G) with T (G) × T (G). Then the
tangent map

T (mG) : T (G×G) ∼= T (G)× T (G)→ T (G), (v, w) 7→ v · w := TmG(v, w)

defines a Lie group structure on T (G) with identity element 01 ∈ T1(G) and inversion
T (ιG). For v ∈ Tg(G) and w ∈ Th(G), we have

v · w = Tg(ρh)v + Th(λg)w = v · 0h + 0g · w. (5.1)

(b) The canonical projection πT (G) : T (G) → G is a morphism of Lie groups with
kernel (T1(G),+) and the zero section σ : G → T (G), g 7→ 0g ∈ Tg(G) is a homomor-
phism of Lie groups with πT (G) ◦ σ = idG.

(c) The map

Φ: G× T1(G)→ T (G), (g, x) 7→ g.x := 0g · x = T (λg)x

is a diffeomorphism.
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Proof. (a) Since the multiplication map mG : G × G → G is smooth, the same holds
for its tangent map

TmG : T (G×G) ∼= T (G)× T (G)→ T (G).

Let εG : G→ G, g 7→ 1 be the constant homomorphism. Then the group axioms for G
are encoded in the relations

(1) mG ◦ (mG × idG) = mG ◦ (idG×mG) (associativity),

(2) mG ◦ (ιG, idG) = mG ◦ (idG, ιG) = εG (inversion), and

(3) mG ◦ (εG, idG) = mG ◦ (idG, εG) = idG (unit element).

Using the functoriality (cf. Lemma 4.2.5) of T and its compatibility with products,
we see that these properties carry over to the corresponding maps on T (G):

(1) T (mG) ◦ T (mG × idG) = T (mG) ◦ (T (mG)× idT (G))
= T (mG) ◦ (idT (G)×T (mG)) (associativity),

(2) T (mG) ◦ (T (ιG), idT (G)) = T (mG) ◦ (idT (G), T (ιG)) = T (εG) (inversion), and

(3) T (mG) ◦ (T (εG), idT (G)) = T (mG) ◦ (idT (G), T (εG)) = idT (G) (unit element).

Here we only have to observe that the tangent map T (εG) maps each v ∈ T (G) to
01 ∈ T1(G), which is the neutral element of T (G). We conclude that T (G) is a Lie
group with multiplication T (mG), inversion T (ιG), and unit element 01 ∈ T1(G).

For v ∈ Tg(G) and w ∈ Th(G), the linearity of T(g,h)(mG) implies that

TmG(v, w) = T(g,h)(mG)(v, w) = T(g,h)(mG)(v, 0) + T(g,h)(mG)(0, w)

= Tg(ρh)v + Th(λg)w,

(b) The definition of the tangent map implies that the zero section
σ : G→ T (G) satisfies

TmG ◦ (σ × σ) = σ ◦mG and TmG(0g, 0h) = 0mG(g,h) = 0gh,

which means that it is a morphism of Lie groups. That πT (G) also is a morphism of
Lie groups follows likewise from the relation

πT (G) ◦ TmG = mG ◦ (πT (G) × πT (G)),

which also is an immediate consequence of the definition of the tangent map
TmG : it maps Tg(G)×Th(G) into Tgh(G) . From (5.1), we obtain in particular that the
multiplication on the normal subgroup kerπT (G) = T1(G) is simply given by addition.

(c) The smoothness of Φ follows from the smoothness of the multiplication of
T (G) and the smoothness of the zero section σ : G → T (G), g 7→ 0g. That Φ is a
diffeomorphism follows from the following explicit formula for its inverse: Φ−1(v) =
(πT (G)(v), πT (G)(v)−1v), so that its smoothness follows from the smoothness of πT (G)

(its first component), and the smoothness of the multiplication on T (G).
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Definition 5.1.7. In the following we shall mostly use the simplified notation

g.v := 0g · v for g ∈ G, v ∈ TG.

We likewise write
v.g := v · 0g for g ∈ G, v ∈ TG.

5.2 The Lie Functor

The Lie functor assigns a Lie algebra to each Lie group and a Lie algebra homo-
morphism to each morphism of Lie groups. It is the key tool to translate Lie group
problems into problems in linear algebra.

Definition 5.2.1. [The Lie algebra of G] A vector field X ∈ V(G) is called left
invariant if

X = (λg)∗X := T (λg) ◦X ◦ λ−1
g

holds for each g ∈ G, i.e., (λg)∗X = X. We write V(G)l for the set of left invariant
vector fields in V(G). Clearly V(G)l is a linear subspace of V(G).

Writing the left invariance as X = T (λg) ◦X ◦ λ−1
g , we see that it means that X

is λg-related to itself. Therefore the Related Vector Field Lemma 4.3.9 implies that
if X and Y are left-invariant, their Lie bracket [X,Y ] is also λg-related to itself for
each g ∈ G, hence left invariant. We conclude that the vector space V(G)l is a Lie
subalgebra of (V(G), [·, ·]).

Next we observe that the left invariance of a vector field X implies that for each
g ∈ G we have X(g) = g.X(1) (Lemma 5.1.6(b)), so that X is completely determined
by its value X(1) ∈ T1(G). Conversely, for each x ∈ T1(G), we obtain a left invariant
vector field xl ∈ V(G)l with xl(1) = x by xl(g) := g.x. That this vector field is indeed
left invariant follows from

xl ◦ λh(g) = xl(hg) = (hg).x = h.(g.x) = T (λh)xl(g)

for all h, g ∈ G. Hence
T1(G)→ V(G)l, x 7→ xl

is a linear bijection. We thus obtain a Lie bracket [·, ·] on T1(G) satisfying

[x, y]l = [xl, yl] for all x, y ∈ T1(G). (5.2)

The Lie algebra
L(G) := (T1(G), [·, ·]) ∼= V(G)l

is called the Lie algebra of G.

Proposition 5.2.2. (Functoriality of the Lie algebra) If ϕ : G → H is a morphism
of Lie groups, then the tangent map

L(ϕ) := T1(ϕ) : L(G)→ L(H)

is a homomorphism of Lie algebras.



5.3. SMOOTH ACTIONS OF LIE GROUPS 91

Proof. Let x, y ∈ L(G) and xl, yl be the corresponding left invariant vector fields.
Then ϕ ◦ λg = λϕ(g) ◦ ϕ for each g ∈ G implies that

T (ϕ) ◦ T (λg) = T (λϕ(g)) ◦ T (ϕ),

and applying this relation to x, y ∈ T1(G), we get

Tϕ ◦ xl =
(
L(ϕ)x

)
l
◦ ϕ and Tϕ ◦ yl =

(
L(ϕ)y

)
l
◦ ϕ, (5.3)

i.e., xl is ϕ-related to
(
L(ϕ)x

)
l

and yl is ϕ-related to
(
L(ϕ)y

)
l
. Therefore the Related

Vector Field Lemma implies that

Tϕ ◦ [xl, yl] = [
(
L(ϕ)x

)
l
,
(
L(ϕ)y

)
l
] ◦ ϕ.

Evaluating at 1, we obtain L(ϕ)[x, y] = [L(ϕ)(x),L(ϕ)(y)], showing that L(ϕ) is a
homomorphism of Lie algebras.

Remark 5.2.3. We obviously have L(idG) = idL(G), and for two morphisms ϕ1 : G1 →
G2 and ϕ2 : G2 → G3 of Lie groups, we obtain

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1),

from the Chain Rule:

T1(ϕ2 ◦ ϕ1) = Tϕ1(1)(ϕ2) ◦ T1(ϕ1) = T1(ϕ2) ◦ T1(ϕ1).

The preceding lemma implies that the assignments G 7→ L(G) and ϕ 7→ L(ϕ) define a
functor, called the Lie functor,

L : LieGrp→ LieAlg

from the category LieGrp of Lie groups to the category LieAlg of (finite-dimensional)
Lie algebras.

Corollary 5.2.4. For each isomorphism of Lie groups ϕ : G → H, the map L(ϕ) is
an isomorphism of Lie algebras, and for each x ∈ L(G), the following equation holds

ϕ∗xl := T (ϕ) ◦ xl ◦ ϕ−1 =
(
L(ϕ)x

)
l
. (5.4)

Proof. Let ψ : H → G be the inverse of ϕ. Then ϕ ◦ψ = idH and ψ ◦ϕ = idG leads to
L(ϕ) ◦ L(ψ) = idL(H) and L(ψ) ◦ L(ϕ) = idL(G) (Remark 5.2.3). Further (5.4) follows
from (5.3) in the proof of Proposition 5.2.2.

5.3 Smooth Actions of Lie Groups

We already encountered smooth flows on manifolds in Chapter 4. These can be viewed
as actions of the one-dimensional Lie group (R,+). In particular, we have seen that
these actions are in one-to-one correspondence with complete vector fields, which is
the corresponding Lie algebra picture. Now we describe the corresponding concept for
general Lie groups.
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Definition 5.3.1. Let M be a smooth manifold and G a Lie group. A (smooth) action
of G on M is a smooth map

σ : G×M →M, (g,m) 7→ g.m = σg(m)

with the following properties:

(A1) σ(1,m) = m for all m ∈M .

(A2) σ(g1, σ(g2,m)) = σ(g1g2,m) for g1, g2 ∈ G and m ∈M .

We also write

g.m := σ(g,m), σg(m) := σ(g,m), σm(g) := σ(g,m) = g.m.

The map σm is called the orbit map.

For each smooth action σ, the map

σ̂ : G→ Diff(M), g 7→ σg

is a group homomorphism and any homomorphism γ : G → Diff(M) for which the
map

σγ : G×M →M, (g,m) 7→ γ(g)(m)

is smooth defines a smooth action of G on M .

Remark 5.3.2. What we call an action is sometimes called a left action. Likewise
one defines a right action as a smooth map σR : M ×G→M with

σR(m,1) = m, σR(σR(m, g1), g2) = σR(m, g1g2).

For m.g := σR(m, g), this takes the form

m.(g1g2) = (m.g1).g2

of an associativity condition.

If σR is a smooth right action of G on M , then

σL(g,m) := σR(m, g−1)

defines a smooth left action of G on M . Conversely, if σL is a smooth left action, then

σR(m, g) := σL(g−1,m)

defines a smooth left action. This translation is one-to-one, so that we may freely pass
from one type of action to the other.
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Examples 5.3.3. (a) If X ∈ V(M) is a complete vector field (cf. Definition 4.4.7)
and Φ: R ×M → M its global flow, then Φ defines a smooth action of G = (R,+)
on M .
(b) If G is a Lie group, then the multiplication map σ := mG : G × G → G defines a
smooth left action of G on itself. In this case the (mG)g = λg are the left multiplica-
tions.

The multiplication map also defines a smooth right action of G on itself. The
corresponding left action is

σ : G×G→ G, (g, h) 7→ hg−1 with σg = ρ−1
g .

There is a third action of G on itself, the conjugation action:

σ : G×G→ G, (g, h) 7→ ghg−1 with σg = cg.

(c) We have a natural smooth action of the Lie group GLn(R) on Rn:

σ : GLn(R)× Rn → Rn, σ(g, x) := gx.

We further have an action of GLn(R) on Mn(R):

σ : GLn(R)×Mn(R)→Mn(R), σ(g,A) = gAg−1.

(d) On the set Mp,q(R) of (p× q)-matrices we have an action of the direct product Lie
group G := GLp(R)×GLq(R) by σ((g, h), A) := gAh−1.

The following proposition generalizes the passage from flows of vector fields to
actions of general Lie groups.

Proposition 5.3.4. (Derived action) Let G be a Lie group and σ : G ×M → M a
smooth action of G on M . Then the assignment

σ̇ : L(G)→ V(M), σ̇(x)m := −T1(σm)(x)

is a homomorphism of Lie algebras.

Proof. First we observe that for each x ∈ L(G) the map σ̇(x) defines a smooth map
M → T (M), and since σ̇(x)m ∈ Tσ(1,m)(M) = Tm(M), it is a smooth vector field on
M .

To see that σ̇ is a homomorphism of Lie algebras, we pick m ∈M and write

ϕm := σm ◦ ιG : G→M, g 7→ g−1.m

for the reversed orbit map. Then

ϕm(gh) = (gh)−1.m = h−1.(g−1.m) = ϕg
−1.m(h),

which can be written as
ϕm ◦ λg = ϕg

−1.m.
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Taking the differential in 1 ∈ G, we obtain for each x ∈ L(G) = T1(G):

Tg(ϕ
m)xl(g) = Tg(ϕ

m)T1(λg)x = T1(ϕm ◦ λg)x = T1(ϕg
−1.m)x

= T1(σg
−1.m)T1(ιG)x = −T1(σϕ

m(g))x = σ̇(x)ϕm(g).

This means that the left invariant vector field xl on G is ϕm-related to the vector
field σ̇(x) on M . Therefore the Related Vector Field Lemma 4.3.9 implies that for
x, y ∈ L(G) the vector field [xl, yl] is ϕm-related to [σ̇(x), σ̇(y)], which leads for each
m ∈M to

σ̇([x, y])m = T1(ϕm)[x, y]l(1) = T1(ϕm)[xl, yl](1)

= [σ̇(x), σ̇(y)]ϕm(1) = [σ̇(x), σ̇(y)]m.

5.4 Basic Topology of Lie Groups

In this section we collect some basic topological properties of Lie groups.

Proposition 5.4.1. The topology of a Lie group G has the following properties:

(i) G is a locally compact space, i.e., each neighborhood of an element of g contains a
compact one.

(ii) The identity component G0 of G is an open normal subgroup which coincides with
the arc-component of 1.

(iii) For a subgroup H of G the following are equivalent:

(a) H is a neighborhood of 1.

(b) H is open.

(c) H is open and closed.

(d) H contains G0.

(iv) If the set π0(G) := G/G0 of connected components of G is countable, then, in
addition, the following statements hold:

(a) G is countable at infinity, i.e., a countable union of compact subsets.

(b) For each 1-neighborhood U in G there exists a sequence (gn)n∈N in G with
G =

⋃
n∈N gnU .

(c) G is second countable, i.e., the topology of G has a countable basis.

(d) If (Ui)i∈I is a pairwise disjoint collection of open subsets of G, then I is
countable.

Proof. (i) This is true for any smooth n-dimensional manifold M . If m ∈ M , V is a
neighborhood of m and (ϕ,U) is a chart with m ∈M , then ϕ(U∩V ) is a neighborhood
of ϕ(m) in Rn. If B ⊆ ϕ(U ∩ V ) is a closed ball around ϕ(m), which is compact due
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to the Heine–Borel Theorem, its inverse image ϕ−1(B) is a compact neighborhood of
m, contained in V . Here we use that M is Hausdorff to see that ϕ−1(B) is compact.

(ii) Since G is a smooth manifold, each point has an open neighborhood U home-
omorphic to an open ball in some Rn. Then U is in particular arcwise connected.
This implies that the arc-components of G are open, hence that they coincide with
the connected components.

To see that the identity component G0 of G is a subgroup, we first note that
G0G0 is the image of the connected set G0 ×G0 under the multiplication map, hence
connected. Since it contains 1, we find G0G0 ⊆ G0. Similarly, we see that the inversion
preserves G0, i.e., G−1

0 ⊆ G0, showing that G0 is a subgroup of G. Each conjugation
cg(x) := gxg−1 fixes the identity element 1, hence maps the identity component G0

into itself. Thus G0 is normal.

(iii) (a) ⇒ (b): If H is a neighborhood of 1, then each coset gH is a neighborhood
of g because the left multiplication maps λg : G → G are homeomorphism. Hence all
left cosets of H are open. In particular, H is open.

(b)⇒ (c): If H is an open subgroup, then its complement is the union of all cosets
gH, g 6∈ H, hence also open. Therefore H is also closed.

(c) ⇒ (d): If H is open and closed, then the connectedness of G0 implies G0 ⊆ H.

(d) ⇒ (a) is trivial.

(iv) (a) In view of (i), there exists a compact identity neighborhood U in G. Re-
placing U by U ∩ U−1, we may w.l.o.g. assume that U = U−1. Then each set

Un := {u1 · · ·un : ui ∈ U}

is also compact, because it is the image of the compact topological product space U×n

under the n-fold multiplication map which is continuous.

Now H :=
⋃
n∈N U

n is a subgroup of G which is a 1-neighborhood, and (iii) implies
G0 ⊆ H. Hence the set of H-cosets is countable, and since each coset gH is a union
of the countably many compact subsets gUn, we see that G also is a countable union
of compact subsets.

(b) In view of (a), we have G =
⋃
n∈NKn, where each Kn is a compact subset.

For each n, the open sets kU◦, k ∈ Kn, cover the compact set Kn, so that there exist
finitely many kn,1, . . . , kn,mn with Kn ⊆

⋃mn
j=1 kn,jU. Then G ⊆

⋃
n∈N

⋃mn
j=1 kn,jU .

(c) Let (Un)n∈N be a countable basis of open 1-neighborhoods, we may take Un =
ϕ( 1

nB), where B ⊆ L(G) is an open ball with respect to some norm and ϕ : B → G
is a diffeomorphism onto an open subset of G with ϕ(0) = 1. In view of (b), there
exists for each n ∈ N a sequence (gn,k)k∈N in G with G =

⋃
k∈N gn,kUn. We claim

that {gn,kUn : n, k ∈ N} is a basis for the topology of G. In fact, if O ⊆ G is an open
subset and g ∈ O, then there exists some n with gUn ⊆ O. Next we pick m such that
U−1
m Um ⊆ Un and some k ∈ N with g ∈ gm,kUm. Then gm,kUm ⊆ gU−1

m Um ⊆ gUn ⊆
O, and this proves our claim.

(d) follows immediately from (c).
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Exercises for Chapter 5

Exercise 5.4.1. Show that the natural group structure on T ∼= S1 ⊆ C× turns it into
a Lie group.

Exercise 5.4.2. Let G1, . . . , Gn be Lie groups and G := G1× . . .×Gn, endowed with
the direct product group structure

(g1, . . . , gn)(g′1, . . . , g
′
n) := (g1g

′
1, . . . , gng

′
n)

and the product manifold structure. Show that G is a Lie group with

L(G) ∼= L(G1)× . . .× L(Gn).

Exercise 5.4.3. Let V and W be finite-dimensional real vector spaces and β : V ×V →
W a bilinear map. Show that G := W × V is a Lie group with respect to

(w, v)(w′, v′) := (w + w′ + β(v, v′), v + v′).

For (w, v) ∈ L(G) ∼= T(0,0)(G), find a formula for the corresponding left invariant
vector field (w, v)l, considered as a smooth function G→W × V .

Exercise 5.4.4. [Automatic smoothness of the inversion] Let G be an n-dimensional
smooth manifold, endowed with a group structure for which the multiplication map
mG is smooth. Show that the inversion is also smooth, so that G is a Lie group.
Proceed along the following steps:

(1) T(g,h)(mG)(v, w) = Tg(ρh)v + Th(λg)w for λg(x) = gx and ρh(x) = xh.

(2) T(1,1)(mG)(v, w) = v + w.

(3) The inverse map ιG : G→ G, g 7→ g−1 is smooth if it is smooth in a neighborhood
of 1. Hint: Left and right translations are smooth.

(4) The inverse map ιG is smooth. Hint: Apply the Inverse Function Theorem to the
map F : G×G→ G×G,F (g, h) = (g, gh).

Exercise 5.4.5. Let A be a finite-dimensional unital real algebra and A× its group
of units. We write λa(b) := ab for the left multiplication with a ∈ A. Show that:

(1) A× = {a ∈ A : det(λa) 6= 0}.

(2) A× is an open subset ofA and with respect to the corresponding manifold structure
it is a Lie group.

(3) Identifying vector fields on the open subset A× with smooth A-valued functions, a
vector field X ∈ V(A×) ∼= C∞(A×,A) is left invariant if and only if there exists
an element x ∈ A with X(a) = ax for a ∈ A×.

Exercise 5.4.6. Consider the three-dimensional Heisenberg group

G =


1 x y

0 1 z
0 0 1

 : x, y, z ∈ R


Determine the space of (left) invariant vector fields in the coordinates (x, y, z).



Chapter 6

The Exponential Function of a
Lie Group

In the preceding chapter we have introduced the Lie functor which assigns to a Lie
group G its Lie algebra L(G) and to a morphism ϕ of Lie groups its tangent morphism
L(ϕ) of Lie algebras. In this section, we introduce a key tool of Lie theory which will
allow us to also go in the opposite direction: the exponential function expG : L(G)→
G. It is a natural generalization of the matrix exponential map, which is obtained for
G = GLn(R) and its Lie algebra L(G) = gln(R).

6.1 Basic Properties of the Exponential Function

Proposition 6.1.1. Each left invariant vector field X on G is complete.

Proof. Let g ∈ G and γ : I → G be the unique maximal integral curve (cf. Theo-
rem 4.4.5) of X ∈ V(G)l with γ(0) = g.

For each h ∈ G we have (λh)∗X = X, which implies that η := λh ◦ γ also is an
integral curve of X (cf. Exercise 4.4.3). Put h = γ(s)g−1 for some s > 0. Then

η(0) = (λh ◦ γ)(0) = hγ(0) = hg = γ(s),

and the uniqueness of integral curves implies that γ(t) = η(t−s) for all t in the interval
I ∩ (I + s) which is nonempty because it contains s. We thus obtain an extension of
γ to the interval I ∪ (I + s), and the maximality of I thus leads to I + s ⊆ I, and
hence to I+ns ⊆ I for each n ∈ N. Therefore the interval I is unbounded from below.
Applying the same argument to some s < 0, we see that I is also unbounded from
above. Hence I = R, which means that X is complete.

Definition 6.1.2. We now define the exponential function

expG : L(G)→ G, expG(x) := γx(1),

97
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where γx : R→ G is the unique maximal integral curve of the left invariant vector field
xl, satisfying γx(0) = 1. This means that γx is the unique solution of the initial value
problem

γ(0) = 1, γ′(t) = xl(γ(t)) = γ(t).x for all t ∈ R.

Example 6.1.3. (a) Let G := (V,+) be the additive group of a finite-dimensional
vector space. The left invariant vector fields on V are given by

xl(w) :=
d

dt t=0
w + tx = x,

so that they are simply the constant vector fields. Hence (cf. Lemma 4.3.3)

[xl, yl](0) = dyl(xl(0))− dxl(yl(0)) = dyl(x)− dxl(y) = 0.

Therefore L(V ) is an abelian Lie algebra.
For each x ∈ V , the flow of xl is given by Φxl(t, v) = v + tx, so that

expV (x) = Φxl(1, 0) = x, i.e., expV = idV .

(b) Now let G := GLn(R) be the Lie group of invertible (n × n)-matrices, which
inherits its manifold structure from the embedding as an open subset of the vector
space Mn(R).

The left invariant vector field Al corresponding to a matrix A is given by

Al(g) = T1(λg)A = gA

because λg(h) = gh extends to a linear endomorphism of Mn(R). The unique solution
γA : R→ GLn(R) of the initial value problem

γ(0) = 1, γ′(t) = Al(γ(t)) = γ(t)A

is the curve describing the fundamental system of the linear differential equation de-
fined by the matrix A:

γA(t) = etA =

∞∑
k=0

1

k!
tkAk.

It follows that expG(A) = eA is the matrix exponential function.
The Lie algebra L(G) of G is determined from

[A,B] = [Al, Bl](1) = dBl(1)Al(1)− dAl(1)Bl(1)

= dBl(1)A− dAl(1)B = AB −BA.

Therefore the Lie bracket on L(G) = T1(G) ∼= Mn(R) is given by the commutator
bracket. This Lie algebra is denoted gln(R), to express that it is the Lie algebra of
GLn(R).

(c) If V is a finite-dimensional real vector space, then V ∼= Rn, so that we can
immediately use (b) to see that GL(V ) is a Lie group with Lie algebra gl(V ) :=
(End(V ), [·, ·]) and exponential function

expGL(V )(A) =

∞∑
k=0

Ak

k!
.
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Lemma 6.1.4. (a) For each x ∈ L(G), the curve γx : R → G is a smooth homomor-
phism of Lie groups with γ′x(0) = x.

(b) The global flow of the left invariant vector field xl is given by

Φxlt (g) = Φ(t, g) = gγx(t) = g expG(tx).

(c) If γ : R → G is a smooth homomorphism of Lie groups and x := γ′(0), then
γ = γx. In particular, the map

Hom(R, G)→ L(G), γ 7→ γ′(0)

is a bijection, where Hom(R, G) stands for the set of morphisms, i.e., smooth homo-
morphisms, of Lie groups R→ G.

Proof. (a), (b) Since γx is an integral curve of the smooth vector field xl, it is a smooth
curve. Hence the smoothness of the multiplication in G implies that Φ(t, g) := gγx(t)
defines a smooth map R × G → G. In view of the left invariance of xl, we have for
each g ∈ G and Φg(t) := Φ(t, g) the relation

(Φg)′(t) = T (λg)γ
′
x(t) = T (λg)xl(γx(t)) = xl(gγx(t)) = xl(Φ

g(t)).

Therefore Φg is an integral curve of xl with Φg(0) = g, and this proves that Φ is the
unique maximal flow of the complete vector field xl.

In particular, we obtain for t, s ∈ R:

γx(t+ s) = Φ(t+ s,1) = Φ(t,Φ(s,1)) = Φ(s,1)γx(t) = γx(s)γx(t). (6.1)

Hence γx is a group homomorphism (R,+)→ G.
(c) If γ : (R,+)→ G is a smooth group homomorphism, then

Φ(t, g) := gγ(t)

defines a global flow on G whose infinitesimal generator is the vector field given by

X(g) =
d

dt t=0
Φ(t, g) = T (λg)γ

′(0).

We conclude that X = xl for x = γ′(0), so that X is a left invariant vector field. Since
γ is its unique integral curve through 0, it follows that γ = γx. In view of (a), this
proves (c).

Proposition 6.1.5. For a Lie group G, the exponential function

expG : L(G)→ G

is smooth and satisfies T0(expG) = idL(G) . In particular, expG is a local diffeomor-
phism in 0 in the sense that it maps some 0-neighborhood in L(G) diffeomorphically
onto some 1-neighborhood in G.
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Proof. The map Ψ: L(G) → V(G), x 7→ xl satisfies the assumptions of Proposi-
tion 4.4.15 because the map

L(G)×G→ T (G), (x, g) 7→ xl(g) = g.x

is smooth (Lemma 5.1.6). In the terminology of Proposition 4.4.15, it now follows that
the map

Φ: R× L(G)×G→ G, (t, x, g) 7→ gγx(t) = g expG(tx)

is smooth, and this implies the smoothness of expG. Finally, we observe that

T0(expG)(x) =
d

dt t=0
expG(tx) = γ′x(0) = x,

so that T0(expG) = idL(G).

Lemma 6.1.6. (Canonical Coordinates) Let G be a Lie group and b1, . . . , bn be a basis
for its Lie algebra L(G). Then the following maps restrict to diffeomorphisms of some
0-neighborhood in Rn to some open 1-neighborhood in G:

(i) x 7→ expG(x1b1 + . . .+ xnbn) (Canonical coordinates of the first kind).

(ii) x 7→ expG(x1b1) · . . . · expG(xnbn) (Canonical coordinates of the second kind).

Proof. (i) This is immediate from Proposition 6.1.5.
(ii) In view of Proposition 6.1.5, T0(expG) = idL(G), and further

T1(mG)(x, y) = x+ y by Lemma 5.1.6. Therefore

Φ: Rn → G, x 7→ expG(x1b1) · . . . · expG(xnbn)

satisfies T0(Φ)(x) =
∑n
i=1 xibi. Hence the claim follows from the Inverse Function

Theorem.

Lemma 6.1.7. If σ : G×M → M is a smooth action and x ∈ L(G), then the global
flow of the vector field σ̇(x) is given by Φx(t,m) = expG(−tx).m. In particular,

σ̇(x)m =
d

dt t=0
expG(−tx).m = −T(1,m)(σ)(x, 0).

Proof. Clearly Φx defines a smooth global flow on M , and its infinitesimal generator
is given by

d

dt t=0
expG(−tx).m = −T(1,m)(σ)(x, 0) = σ̇(x)m.

This proves the lemma.

Lemma 6.1.8. If x, y ∈ L(G) commute, i.e., [x, y] = 0, then

expG(x+ y) = expG(x) expG(y).
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Proof. If x and y commute, then the corresponding left invariant vector fields commute,
and Corollary 4.4.17 implies that their flows commute. We conclude that for all t, s ∈ R
we have

expG(tx) expG(sy) = expG(sy) expG(tx). (6.2)

Therefore
γ(t) := expG(tx) expG(ty)

is a smooth group homomorphism. In view of

γ′(0) = T(1,1)(mG)(x, y) = x+ y

(Lemma 5.1.6), Lemma 6.1.4(c) leads to γ(t) = expG(t(x+y)), and for t = 1 we obtain
the lemma.

Lemma 6.1.9. The subgroup 〈expG(L(G))〉 of G generated by expG(L(G)) coincides
with the identity component G0 of G, i.e., the connected component containing 1.

Proof. Since expG is a local diffeomorphism in 0 (Proposition 6.1.5), the Inverse Func-
tion Theorem (see Exercise 4.2.5) implies that expG(L(G)) is a neighborhood of 1.
We conclude that the subgroup H := 〈expG(L(G))〉 generated by the exponential im-
age is a 1-neighborhood, hence contains G0 (Proposition 5.4.1(iii)(d)). On the other
hand, expG is continuous, so that it maps the connected space L(G) into the identity
component G0 of G, which leads to H ⊆ G0, and hence to equality.

6.2 Naturality of the Exponential Function

In this subsection we study how the exponential function is related to the Lie functor.

Proposition 6.2.1. Let ϕ : G1 → G2 be a morphism of Lie groups and L(ϕ) : L(G1)→
L(G2) its differential in 1. Then

expG2
◦L(ϕ) = ϕ ◦ expG1

, (6.3)

i.e., the following diagram commutes

G1
ϕ−−−−−−−−−→ G2xexpG1

xexpG2

L(G1)
L(ϕ)−−−−−−−−−→ L(G2).

Proof. For x ∈ L(G1) we consider the smooth homomorphism

γx ∈ Hom(R, G1), γx(t) = expG1
(tx).

According to Lemma 6.1.4, we have

ϕ ◦ γx(t) = expG2
(ty)

for y = (ϕ◦γx)′(0) = L(ϕ)x, because ϕ◦γx : R→ G2 is a smooth group homomorphism.
For t = 1 we obtain in particular

expG2
(L(ϕ)x) = ϕ(expG1

(x)),

which we had to show.
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Corollary 6.2.2. Let G1 and G2 be Lie groups and ϕ : G1 → G2 be a group homo-
morphism. Then the following are equivalent:

(a) ϕ is smooth in an identity neighborhood of G1.

(b) ϕ is smooth.

(c) There exists a linear map ψ : L(G1)→ L(G2) satisfying

expG2
◦ψ = ϕ ◦ expG1

. (6.4)

Proof. (a) ⇒ (b): Let U be an open 1-neighborhood of G1 such that ϕ|U is smooth.
Since each left translation λg is a diffeomorphism, λg(U) = gU is an open neighborhood
of g, and we have

ϕ(gx) = ϕ(g)ϕ(x), i.e., ϕ ◦ λg = λϕ(g) ◦ ϕ.

Hence the smoothness of ϕ on U implies the smoothness of ϕ on gU , and therefore
that ϕ is smooth.

(b) ⇒ (c): If ϕ is smooth, then ψ := L(ϕ) satisfies (6.4).
(c) ⇒ (a): If ψ is a linear map satisfying (6.4), then the fact that the exponential

functions expG1
and expG2

are local diffeomorphisms and the smoothness of the linear
map ψ implies (a).

Corollary 6.2.3. If ϕ1, ϕ2 : G1 → G2 are morphisms of Lie groups with L(ϕ1) =
L(ϕ2), then ϕ1 and ϕ2 coincide on the identity component of G1.

Proof. In view of Proposition 6.2.1, we have for x ∈ L(G1):

ϕ1(expG1
(x)) = expG2

(L(ϕ1)x) = expG2
(L(ϕ2)x) = ϕ2(expG1

(x)),

so that ϕ1 and ϕ2 coincide on the image of expG1
, hence on the subgroup generated

by this set. Now the assertion follows from Lemma 6.1.9.

Proposition 6.2.4. For a morphism ϕ : G1 → G2 of Lie groups, the following asser-
tions hold:

(1) ker L(ϕ) = {x ∈ L(G1) : expG1
(Rx) ⊆ kerϕ}.

(2) ϕ is an open map if and only if L(ϕ) is surjective.

(3) If L(ϕ) is a linear isomorphism and ϕ is bijective, then ϕ is an isomorphism of
Lie groups.

Proof. (1) The condition x ∈ ker L(ϕ) is equivalent to

{1} = expG2
(RL(ϕ)x) = ϕ(expG1

(Rx)).

(2) Suppose first that ϕ is an open map. Since expGi , i = 1, 2, are local diffeomor-
phisms,

expG2
◦L(ϕ) = ϕ ◦ expG1

(6.5)
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implies that there exists some 0-neighborhood in L(G1) on which L(ϕ) is an open map,
hence that L(ϕ) is surjective.

If, conversely, L(ϕ) is surjective, then L(ϕ) is an open map, so that the relation
(6.5) implies that there exists an open 1-neighborhood U1 in G1 such that ϕ|U1

is an
open map. We claim that this implies that ϕ is an open map. In fact, suppose that
O ⊆ G1 is open and g ∈ O. Then there exists an open 1-neighborhood U2 of G1 with
gU2 ⊆ O and U2 ⊆ U1. Then

ϕ(O) ⊇ ϕ(gU2) = ϕ(g)ϕ(U2),

and since ϕ(U2) is open in G2, we see that ϕ(O) is a neighborhood of ϕ(g), hence that
ϕ(O) is open because g ∈ O was arbitrary.

(3) From the relation expG2
◦L(ϕ) = ϕ ◦ expG1

and the bijectivity of ϕ we derive
that the group homomorphism ϕ−1 satisfies

ϕ−1 ◦ expG2
= expG1

◦L(ϕ)−1,

so that Corollary 6.2.2 implies that ϕ−1 is also smooth.

Theorem 6.2.5. (One-parameter Group Theorem) Let G be a Lie group. For each
x ∈ g := L(G), the map γx : (R,+) → G, t 7→ expG(tx) is a smooth group homo-
morphism. Conversely, every continuous one-parameter group γ : R → G is of this
form.

Proof. The first assertion is an immediate consequence of Lemma 6.1.4(c). It therefore
remains to show that each continuous one-parameter group γ of G is a γx for some x ∈
g. Let U = −U be a convex 0-neighborhood in g for which expG |U is a diffeomorphism
onto an open subset of G and put U1 := 1

2U . Since γ is continuous in 0, there exists
an ε > 0 such that γ([−ε, ε]) ⊆ expG(U1). Then α(t) := (expG |U )−1(γ(t)) defines a
continuous curve α : [−ε, ε] → U1 with exp(α(t)) = γ(t) for |t| ≤ ε. With the same
arguments as in the proof of Theorem 2.2.6, we see that α(t) = tx for some x ∈ g.
Hence γ(t) = expG(tx) for |t| ≤ ε, but then γ(nt) = expG(ntx) for n ∈ N leads to
γ(t) = expG(tx) for each t ∈ R.

Proposition 6.2.6. Let G be a Lie group with Lie algebra L(G). For x, y ∈ L(G) we
have the Product Formula

expG(x+ y) = lim
k→∞

(
expG( 1

kx) expG( 1
ky)
)k
.

Proof. To obtain the product formula, we consider the smooth curve

γ : R→ G, γ(t) := exp(tx) exp(ty) with γ(0) = 1, γ′(0) = x+ y

(cf. Lemma 5.1.6). The assertion now follows from the relation

exp(γ′(0)) = lim
n→∞

γ(1/n)n

which can be proved with the same argument as in the proof of Lemma 2.4.8.
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Theorem 6.2.7. (Automatic Smoothness Theorem) Each continuous homomorphism
ϕ : G→ H of Lie groups is smooth.

Proof. From Theorem 6.2.5 we know that the map

L(G)→ Homc(R, G), x 7→ γx, γx(t) := expG(tx)

is a bijection, where Homc(R, G) denotes the set of all continuous one-parameter groups
of G. For x ∈ L(G1) we consider the continuous homomorphism ϕ◦γx ∈ Homc(R, G2).
Since this one-parameter group is smooth (Theorem 6.2.5), it is of the form

ϕ ◦ γx(t) = expG2
(ty)

for y = (ϕ ◦ γx)′(0) ∈ L(G2). We define a map L(ϕ) : L(G1) → L(G2) by L(ϕ)x :=
(ϕ ◦ γx)′(0). For t = 1 we then obtain

expG2
◦L(ϕ) = ϕ ◦ expG1

: L(G1)→ G2. (6.6)

Next we show that L(ϕ) is a linear map. Our definition immediately shows that
L(ϕ)λx = λL(ϕ)x for each x ∈ L(G1). Further, the Product Formula (Proposi-
tion 6.2.6) yields

expG2
(L(ϕ)(x+ y)) = ϕ

(
expG1

(x+ y)
)

= lim
k→∞

ϕ
(

expG1

(
1
kx
)

expG1

(
1
ky
))k

= lim
k→∞

(
expG2

(
1
k L(ϕ)x

)
expG2

(
1
k L(ϕ)y

))k
= expG2

(
L(ϕ)x+ L(ϕ)y

)
.

This proves that L(ϕ)(x + y) = L(ϕ)x + L(ϕ)y, so that L(ϕ) is indeed a linear map.
Now the smoothness of ϕ follows from (6.6) and Corollary 6.2.2.

Corollary 6.2.8. A topological group G carries at most one Lie group structure.

Proof. If G1 and G2 are two Lie groups which are isomorphic as topological groups,
then the Automatic Smoothness Theorem applies to each topological isomorphism
ϕ : G1 → G2 and shows that ϕ is smooth. It likewise applies to ϕ−1, so that ϕ is an
isomorphism of Lie groups.

6.3 The Adjoint Representation

The Lie functor associates linear automorphisms of the Lie algebra with conjugations
on the Lie group. The resulting representation of the Lie group is called the adjoint
representation. Its interplay with the exponential function will be important in the
entire theory.
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Definition 6.3.1. We know that for each finite-dimensional vector space V , the group
GL(V ) carries a natural Lie group structure. For a Lie group G, a smooth homomor-
phism π : G→ GL(V ) is a called a representation of G on V (cf. Exercise 6.5.3).

Any representation defines a smooth action of G on V via

σ(g, v) := π(g)(v).

In this sense, representations are the same as linear actions, i.e., actions on vector
spaces for which the σg are linear.

As a consequence of Proposition 5.2.2, we obtain

Proposition 6.3.2. If ϕ : G→ GL(V ) is a representation of G, then L(ϕ) : L(G)→
gl(V ) is a representation of its Lie algebra L(G).

The representation L(ϕ) obtained in Proposition 6.3.2 from the group representa-
tion ϕ is called the derived representation. This is motivated by the fact that for each
x ∈ L(G) we have

L(ϕ)(x) =
d

dt t=0
etL(ϕ)x =

d

dt t=0
ϕ(expG tx).

Let G be a Lie group and L(G) its Lie algebra. For g ∈ G we recall the conjugation
automorphism cg ∈ Aut(G), cg(x) = gxg−1, and define

Ad(g) := L(cg) ∈ Aut(L(G)).

Then

Ad(g1g2) = L(cg1g2) = L(cg1) ◦ L(cg2) = Ad(g1) Ad(g2)

shows that Ad: G → Aut(L(G)) is a group homomorphism. It is called the adjoint
representation. To see that it is smooth, we observe that for each x ∈ L(G) we have

Ad(g)x = T1(cg)x = T1(λg ◦ ρg−1)x = Tg−1(λg)T1(ρg−1)x = 0g · x · 0g−1

in the Lie group T (G) (Lemma 5.1.6). Since the multiplication in T (G) is smooth,
the representation Ad of G on L(G) is smooth (cf. Exercise 6.5.3), and

L(Ad): L(G)→ gl(L(G))

is a representation of L(G) on L(G). The following lemma gives a formula for this
representation.

Lemma 6.3.3. L(Ad) = ad, i.e., L(Ad)(x)(y) = [x, y].

Proof. Let x, y ∈ L(G) and xl, yl be the corresponding left invariant vector fields.
Corollary 5.2.4 implies for g ∈ G the relation

(cg)∗yl =
(
L(cg)y)l =

(
Ad(g)y

)
l
.
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On the other hand, the left invariance of yl leads to

(cg)∗yl = (ρ−1
g ◦ λg)∗yl = (ρ−1

g )∗(λg)∗yl = (ρ−1
g )∗yl.

Next we observe that Φxlt = ρexpG(tx) is the flow of the vector field xl
(Lemma 6.1.4), so that Theorem 4.4.16 implies that

[xl, yl] = Lxlyl =
d

dt t=0
(Φxl−t)∗yl =

d

dt t=0
(cexpG(tx))∗yl

=
d

dt t=0

(
Ad(expG(tx))y

)
l
.

Evaluating in 1, we get

[x, y] = [xl, yl](1) =
d

dt t=0
Ad(expG(tx))y = L(Ad)(x)(y).

Combining Proposition 6.2.1 with Lemma 6.3.3, we obtain the important formula

Ad ◦ expG = expAut(L(G)) ◦ ad,

i.e.,
Ad(expG(x)) = ead x for x ∈ L(G). (6.7)

Lemma 6.3.4. For a Lie group G, the kernel of the adjoint representation
Ad: G→ Aut(L(G)), is given by

ZG(G0) := {g ∈ G : (∀x ∈ G0) gx = xg},

where G0 is the connected component of the identity in G. If, in addition, G is con-
nected, then

ker Ad = Z(G).

Proof. Since G0 is connected, the automorphism cg|G0
of G0 is trivial if and only if

L(cg) = Ad(g) is trivial. This implies the lemma.

As we shall see later, in many situations it is important to have some information
on the center of (simply) connected Lie groups. Below we shall use Lemma 6.3.4 to
determine the kernel of the adjoint representation for various Lie groups. For that we
have to know their center.

Example 6.3.5. (a) Let K ∈ {R,C}. First we recall from Proposition 1.1.10 that
Z(GLn(K)) = K×1 and from Exercise 1.2.14(v) that

Z(SLn(K)) = {z1 : z ∈ K×, zn = 1}.

In particular,
Z(SLn(C)) = {z1 : zn = 1} ∼= Cn

and

Z(SLn(R)) =

{
1 for n ∈ 2N0 + 1
{±1} for n ∈ 2N.

}
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(b) For g ∈ Z(SUn(C)) = ker Ad we likewise have gx = xg for all
x ∈ sun(C). From

gln(C) = un(C) + iun(C) = sun(C) + i sun(C) + C1,

we derive that g ∈ Z(GLn(C)) = C×1. From that we immediately get

Z(SUn(C)) = {z1 : zn = 1} ∼= Cn

and similarly we obtain

Z(Un(C)) = {z1 : |z| = 1} ∼= T.

(c) (cf. also Exercise 1.2.16) Next we show that

Z(On(R)) = {±1} and Z(SOn(R)) =

SO2(R) for n = 2
1 for n ∈ 2N + 1
{±1} for n ∈ 2N + 2.

If g ∈ Z
(

On(R)
)
, then g commutes with each orthogonal reflection

σv : Rn → Rn, w 7→ w − 2〈v, w〉v

in the hyperplane v⊥, where v is a unit vector. Since Rv is the −1-eigenspace of σv,
this space is invariant under g (Exercise 1.1.1). This implies that for each v ∈ Rn we
have gv ∈ Rv which by an elementary argument leads to g ∈ R×1. We conclude that

Z(On(R)) = On(R) ∩ R×1 = {±1}.

To determine the center of SOn(R), we consider for orthogonal unit vectors v1, v2

the map σv1,v2 := σv1σv2 ∈ SOn(R) (a reflection in the subspace
v>1 ∩ v>2 ). Since an element g ∈ Z(SOn(R)) commutes with σv1,v2 , it leaves the plane
Rv1 + Rv2 = ker(σv1,v2 + 1) invariant. If a linear map preserves all two-dimensional
planes and n ≥ 3, then it preserves all one-dimensional subspaces. As above, we get
g ∈ R×1, which in turn leads to

Z(SOn(R)) = SOn(R) ∩ R×1,

and the assertion follows.

6.4 Semidirect Products

The easiest way to construct a new Lie group from two given Lie groups G and H, is
to endow the product manifold G×H with the multiplication

(g1, h1)(g2, h2) := (g1g2, h1h2).

The resulting group is called the direct product of the Lie groups G and H. Here G
and H can be identified with normal subgroups of G×H for which the multiplication
map

(G× {1})× ({1} ×H)→ G×H, ((g,1), (1, h)) 7→ (g,1)(1, h) = (g, h)
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is a diffeomorphism. Relaxing this condition in the sense that only one factor is
assumed to be normal, leads to the concept of a semidirect product of Lie groups,
introduced below.

Definition 6.4.1. Let N and G be Lie groups and α : G → Aut(N) be a group
homomorphism defining a smooth action (g, n) 7→ αg(n) of G on N .

(a) Then the product manifold N ×G is a group with respect to the product

(n, g)(n′, g′) := (nαg(n
′), gg′)

and the inversion
(n, g)−1 = (αg−1(n−1), g−1).

Since multiplication and inversion are smooth, this group is a Lie group, called the
semidirect product of N and G with respect to α. It is denoted by N oα G.

(b) On the manifold G×N we also obtain a Lie group structure by

(g, n)(g′, n′) := (gg′, α−1
g′ (n)n′),

and this Lie group is denoted Gnα N. It is easy to verify that the map

Φ: N oα G→ Gnα N, (n, g) 7→ (g, α−1
g (n))

is an isomorphism of Lie groups.

Example 6.4.2. A typical example of a semidirect product is the group Aff(V ) of
affine automorphisms of the vector space V . It consists of maps of the form ψ(v) =
ϕ(v)+b, where ϕ ∈ GL(V ) is an invertible linear map. Writing the elements of Aff(V )
accordingly as pairs ψ = (b, ϕ), we see that composition of affine maps corresponds to
the composition formula

(b, ϕ)(b′, ϕ′) = (b+ ϕ(b′), ϕϕ′)

for pairs. With α : GL(V )→ Aut(V ), αϕ(v) = ϕ(v) we see that

Aff(V ) ∼= V oα GL(V )

is a semidirect product of the Lie groups GL(V ) and (V,+).

Remark 6.4.3. If Ĝ := N oα G is a semidirect product, then

π : Ĝ→ G, (n, g) 7→ g, σ : G→ Ĝ, g 7→ (1, g)

and ι : N → Ĝ, n 7→ (n,1) are morphisms of Lie groups with π ◦ σ = idG and ι is an

isomorphism of N onto the closed subgroup kerπ of Ĝ.

Example 6.4.4. Let G be a Lie group and T (G) its tangent Lie group (Lemma 5.1.6).
We have already seen that the map G × L(G) → TG, (g, x) 7→ g.x = 0g · x is a
diffeomorphism, and for similar reasons, the map L(G)×G→ TG, (x, g) 7→ x.g := x·0g
is a diffeomorphism. In these coordinates, the multiplication is given by

(x.g) · (x′.g′) = x · 0g · x′ · 0g′ = x ·Ad(g)x′ · 0g · 0g′ = (x+ Ad(g)x′).gg′.
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This shows that the tangent bundle is a semidirect product

TG ∼= L(G) oAd G.

Similarly, the calculation

(g.x) · (g′.x′) = 0gg′ ·Ad(g′)−1x · x′ = (gg′,Ad(g′)−1x+ x′)

shows that also
TG ∼= GnAd L(G).

Proposition 6.4.5. The Lie algebra of the semidirect product group N oα G is given
by

L(N oα G) ∼= L(N) oβ L(G),

where β : L(G) → der(L(N)) is the derived representation of L(G) on L(N) corre-
sponding to the representation of G on L(N) given by g.x := L(αg)x.

Proof. We identify L(N), resp., L(G), with a subspace of

T1(N)⊕ T1(G) = T(1,1)(N ×G) ∼= L(N oα G).

Since N and G are subgroups, the functoriality of L implies that L(G) and L(N) are
Lie subalgebras of L(N oαG). The normal subgroup N is the kernel of the projection
π : N oα G→ G, so that our identification shows that L(N) = ker L(π) is an ideal of
L(N oα G). This already implies

L(N oα G) ∼= L(N) oβ L(G)

for the homomorphism β : L(G)→ der(L(N)), given by

(β(x)(y), 0) = [(0, x), (y, 0)].

To determine β in terms of α, we note that the smooth action of G on N by
automorphisms induces a smooth action of G on the tangent bundle T (N), hence in
particular on T1(N) ∼= L(N). We thus obtain a representation π : G → Aut(L(N)).
In N oα G we have (1, g)(n,1)(1, g)−1 = (αg(n),1), so that

π(g)y = L(αg)y = Ad(1, g)(y, 0).

Now Lemma 6.3.3 immediately shows that L(π)x = ad(0, x) = β(x).

6.5 The Baker–Campbell–Dynkin–Hausdorff Formula

In this section we show that the formula

expG(x ∗ y) = expG x expG y,

where x ∗ y, for sufficiently small elements x, y ∈ g = L(G), is given by the Hausdorff
series (cf. Proposition 2.4.5), also holds for the exponential function of a general Lie
group G with Lie algebra g.
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Definition 6.5.1. For a smooth function f : M → G of a smooth manifold M with
values in the Lie group G, we define its (left) logarithmic derivative as the function

δ(f) : TM → g, δ(f)(v) := f(m)−1 · Tm(f)v for v ∈ Tm(M).

This map is a convenient way to describe the derivative of f in terms of a less
complex structure than the tangent map Tf : TM → TG.

Lemma 6.5.2. For two smooth maps f, h : M → G, the logarithmic derivative of the
pointwise products fh and fh−1 is given by the

(1) Product Rule: δ(fh) = δ(h) + Ad(h−1)δ(f), and the

(2) Quotient Rule: δ(fh−1) = Ad(h)(δ(f)− δ(h)).

Proof. Writing fg = mG ◦ (f, g), we obtain from

T(a,b)(mG)(v, w) = v · b+ a · w

for a, b ∈ G and v, w ∈ L(G) ⊆ TG (Lemma 5.1.6), the relation

T (fh) = T (mG) ◦ (T (f), T (h)) = T (f) · h+ f · T (h) : T (M)→ T (G),

where f · T (h), resp., T (f) · h refers to the pointwise product in the group T (G),
containing G as the zero section (Lemma 5.1.6). This immediately leads to the Product
Rule

δ(fh) = (fh)−1 · (T (f) · h+ f · T (h)) = h−1 · (δ(f) · h) + δ(h) = Ad(h)−1δ(f) + δ(h).

For h = f−1, we then obtain

0 = δ(ff−1) = Ad(f)δ(f) + δ(f−1),

hence δ(f−1) = −Ad(f)δ(f). This in turn leads to

δ(fh−1) = Ad(h)δ(f) + δ(h−1) = Ad(h)δ(f)−Ad(h)δ(h),

which is the Quotient Rule.

Remark 6.5.3. For any g ∈ G and a smooth function f : M → G, the function
g · f = λg ◦ f has the same logarithmic derivative as f because

δ(g · f) = δ(f) + Ad(f)−1δ(g) = δ(f)

is a consequence of the Product Rule and the fact that δ(g) = 0 for the constant map
with value g.

Proposition 6.5.4. The logarithmic derivative of expG is given by

δ(expG)(x) = Φ(adx) ∈ L(g), where Φ(z) :=
1− e−z

z
=

∞∑
k=1

(−z)k−1

k!
.

With respect to the group structure on TG, this can also be written as

Tx(expG)y = expG(x) · Φ(adx)y for x, y ∈ L(G).
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Proof. Fix t, s ∈ R. Then the smooth functions f, ft, fs : L(G)→ G, given by

f(x) := expG((t+ s)x), ft(x) := expG(tx) and fs(x) := expG(sx),

satisfy f = ftfs pointwise on L(G). The Product Rule (Lemma 6.5.2) therefore implies
that

δ(f) = δ(fs) + Ad(fs)
−1δ(ft).

For the smooth curve ψ : R→ L(G), ψ(t) := δ(expG)tx(ty), we now obtain

ψ(t+ s) = δ(f)x(y) = δ(fs)x(y) + Ad(fs)
−1δ(ft)x(y)

= ψ(s) + Ad(expG(−sx))ψ(t).

We have ψ(0) = 0 and

ψ′(0) = lim
t→0

δ(expG)tx(y) = δ(expG)0(y) = y,

so that taking derivatives with respect to t in 0, leads with (6.7) to

ψ′(s) = Ad(expG(−sx))y = e− ad(sx)y.

Now the assertion follows by integration from

δ(expG)x(y) = ψ(1) =

∫ 1

0

ψ′(s) ds

and
∫ 1

0
e−s ad x ds =

∑∞
k=0

(− ad x)k

(k+1)! = Φ(adx), which we saw already in the proof of

Proposition 2.4.2.

Let U ⊆ g be a convex 0-neighborhood for which expG |U is a diffeomorphism
onto an open subset of G and V ⊆ U a smaller convex open 0-neighborhood with
expG V expG V ⊆ expG U . Put logU := (expG |U )−1 and define

x ∗ y := logU (expG x expG y) for x, y ∈ V.

This defines a smooth map V × V → U . Fix x, y ∈ V . Then the smooth curve
F (t) := x ∗ ty ∈ U satisfies expG F (t) = expG(x) expG(ty), so that the logarithmic
derivative of this curve is

y = δ(expG)F (t)F
′(t) = Φ(adF (t))F ′(t).

We now choose U so small that the power series Ψ(z) = z log z
z−1 from Lemma 2.4.3

satisfies
Ψ(ead z)Φ(ad z) = idg for z ∈ U

(Lemma 2.4.3). For z = F (t), we then arrive with Proposition 6.5.4 at

F ′(t) = Ψ(eadF (t))y.

Now the same arguments as in Propositions 2.4.4 and 2.4.5 imply that

x ∗ y = F (1) = x+ y +
1

2
[x, y] + · · ·

is given by the convergent Hausdorff series:
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Proposition 6.5.5. If G is a Lie group, then there exists a convex 0-neighborhood
V ⊆ g such that for x, y ∈ V the Hausdorff series

x ∗ y := x+∑
k,m≥0
pi+qi>0

(−1)k

(k + 1)(q1 + . . .+ qk + 1)

(adx)p1(ad y)q1 . . . (adx)pk(ad y)qk(adx)m

p1!q1! . . . pk!qk!m!
y.

converges and satisfies

expG(x ∗ y) = expG(x) expG(y).

With the same proof as for Proposition 2.4.7, we obtain:

Proposition 6.5.6. Let G be a Lie group. For x, y ∈ L(G) we have the following
commutator formula holds:

lim
k→∞

(
exp

(1

k
x
)

exp
(1

k
y
)

exp
(
−1

k
x
)

exp
(
−1

k
y
))k2

= exp([x, y]).

Exercises for Chapter 6

Exercise 6.5.1. Let G be a connected Lie group and x ∈ g = L(G). Show that the
corresponding left invariant vector field xl ∈ V(G) is biinvariant, i.e., also invariant
under all right multiplications, if and only if x ∈ z(g).

Exercise 6.5.2. Let f1, f2 : G → H be two group homomorphisms. Show that the
pointwise product

f1f2 : G→ H, g 7→ f1(g)f2(g)

is a homomorphism if and only if f1(G) commutes with f2(G).

Exercise 6.5.3. Let M be a manifold and V a finite-dimensional vector space with
a basis (b1, . . . , bn). Let f : M → GL(V ) be a map. Show that the following are
equivalent:

(1) f is smooth.

(2) For each v ∈ V the map fv : M → V,m 7→ f(m)v is smooth.

(3) For each i, the map f : M → V,m 7→ f(m)bi is smooth.

Exercise 6.5.4. A vector field X on a Lie group G is called right invariant if for each
g ∈ G the vector field (ρg)∗X = T (ρg) ◦X ◦ ρ−1

g coincides with X. We write V(G)r

for the set of right invariant vector fields on G. Show that:

(1) The evaluation map ev1 : V(G)r → T1(G) is a linear isomorphism.

(2) If X is right invariant, then there exists a unique x ∈ T1(G) such that X(g) =
xr(g) := T1(ρg)x = x · 0g (w.r.t. multiplication in T (G)).
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(3) If X is right invariant, then X̃ := (ιG)∗X := T (ιG) ◦X ◦ ι−1
G is left invariant and

vice versa.

(4) Show that (ιG)∗xr = −xl and [xr, yr] = −[x, y]r for x, y ∈ T1(G).

(5) Show that each right invariant vector field is complete and determine its flow.

Exercise 6.5.5. Let G be a Lie group. Show that any map ϕ : G → G commuting
with all left multiplications λg, g ∈ G, is a right multiplication.

Exercise 6.5.6. (The exponential function of SU2(C)) Show that:

(a) U2(C) = TSU2(C) = Z(U2(C)) SU2(C).

(b) If x ∈ su2(C) with eigenvalues ±iλ, λ ≥ 0, we have ‖x‖ = λ.

(c) For x, y ∈ su2(C), there exists an element g ∈ SU2(C) with y = Ad(g)x if and only
if ‖x‖ = ‖y‖.

(d) No one-parameter group γ : R → SU2(C) is injective, in particular, the image of
γ(R) is always circle group.

Exercise 6.5.7. Verify the following semidirect decompositions:

(a) GLn(K) ∼= SLn(K) oδ K× for a suitable homomorphism δ : K× → Aut(SLn(K)),
where K is any field.

(b) Un(C) ∼= SUn(C) oδ T for a suitable homomorphism δ : T→ Aut(SUn(C)).

(c) B ∼= N oD for

N := {g ∈ GLn(R) : (∀i > j) gij = 0, gii = 1}
B := {g ∈ GLn(R) : (∀i > j) gij = 0}
D := {g ∈ GLn(R) : (∀i 6= j) gij = 0}.
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Chapter 7

From Local Data to Lie
Groups

In this chapter we first introduce a method to obtain the structure of a Lie group on
an abstract group G from local data (Section 7.1). We continue in Section 7.2 with a
study of closed subgroups of Lie groups. Here the main result is the Closed Subgroup
Theorem asserting that any closed subgroup of a Lie group is a submanifold and that it
carries a natural Lie group structure. Applying this to subgroups of GLn(R), it follows
in particular that all linear Lie groups are Lie groups. We conclude this chapter with
Section 7.3, where we show that every Lie subalgebra h of the Lie algebra L(G) of a
Lie group G “generates” a so-called integral subgroup, but this subgroup need not be
closed. The dense wind in the 2-torus is a typical example (cf. Lemma 3.4.8).

7.1 Constructing Lie Group Structures on Groups

In this section we describe some methods to construct Lie group structures on groups,
starting from a manifold structure on some “identity neighborhood” for which the
group operations are smooth close to 1.

7.1.1 Group Topologies from Local Data

We call a Hausdorff topology on a group G a group topology if it turns G into a
topological group, i.e., the group operations are continuous maps. The following lemma
tells us how to construct a group topology on a group G from a filter basis of subsets
which then becomes a filter basis of identity neighborhoods for the group topology.

Definition 7.1.1. Let X be a set. A set F ⊆ P(X) of subsets of X is called a filter
basis if the following conditions are satisfied:

(F1) F 6= ∅.

(F2) Each set F ∈ F is nonempty.

115
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(F3) A,B ∈ F ⇒ (∃C ∈ F) C ⊆ A ∩B.

Lemma 7.1.2. Let G be a group and F ⊆ P(G) a filter basis satisfying
⋂
F = {1}

and

(U1) (∀U ∈ F)(∃V ∈ F) V V ⊆ U.

(U2) (∀U ∈ F)(∃V ∈ F) V −1 ⊆ U.

(U3) (∀U ∈ F)(∀g ∈ G)(∃V ∈ F) gV g−1 ⊆ U.

Then there exists a unique group topology on G such that F is a basis of 1-neighborhoods
in G. This topology is given by

{U ⊆ G : (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.

Proof. Let
τ := {U ⊆ G : (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.

First we show that τ is a topology. Clearly ∅, G ∈ τ . Let (Uj)j∈J be a family of
elements of τ and U :=

⋃
j∈J Uj . For each g ∈ U , there exists a j0 ∈ J with g ∈ Uj0

and a V ∈ F with gV ⊆ Uj0 ⊆ U . Thus U ∈ τ and we see that τ is stable under
arbitrary unions.

If U1, U2 ∈ τ and g ∈ U1 ∩ U2, there exist V1, V2 ∈ F with gVi ⊆ Ui. Since F is
a filter basis, there exists V3 ∈ F with V3 ⊆ V1 ∩ V2, and then gV3 ⊆ U1 ∩ U2. We
conclude that U1 ∩ U2 ∈ τ , and hence that τ is a topology on G.

We claim that the interior U◦ of a subset U ⊆ G is given by

U1 := {u ∈ U : (∃V ∈ F) uV ⊆ U}.

In fact, if there exists a V ∈ F with uV ⊆ U , then we pick a W ∈ F with WW ⊆ V
and obtain uWW ⊆ U , so that uW ⊆ U1. Hence U1 ∈ τ , i.e., U1 is open, and it clearly
is the largest open subset contained in U , i.e., U1 = U◦. It follows in particular that
U is a neighborhood of g if and only if g ∈ U◦, and we see in particular that F is a
neighborhood basis at 1. The property

⋂
F = {1} implies that for x 6= y there exists

U ∈ F with y−1x 6∈ U . For V ∈ F with V V ⊆ U and W ∈ F with W−1 ⊆ V we then
obtain y−1x 6∈ VW−1, i.e., xW ∩ yV = ∅. Thus (G, τ) is a Hausdorff space.

To see that G is a topological group, we have to verify that the map

f : G×G→ G, (x, y) 7→ xy−1

is continuous. So let x, y ∈ G, U ∈ F and pick V ∈ F with yV y−1 ⊆ U and W ∈ F
with WW−1 ⊆ V . Then

f(xW, yW ) = xWW−1y−1 = xy−1y(WW−1)y−1 ⊆ xy−1yV y−1 ⊆ xy−1U

implies that f is continuous in (x, y).

Before we turn to Lie group structures, it is illuminating to first consider the
topological variant.
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Lemma 7.1.3. Let G be a group and U = U−1 a symmetric subset containing 1. We
further assume that U carries a Hausdorff topology for which

(T1) D := {(x, y) ∈ U × U : xy ∈ U} is an open subset of U × U and the group
multiplication mU : D → U, (x, y) 7→ xy is continuous,

(T2) the inversion map ιU : U → U, u 7→ u−1 is continuous, and

(T3) for each g ∈ G, there exists an open 1-neighborhood Ug in U with cg(Ug) ⊆ U ,
such that the conjugation map cg : Ug → U, x 7→ gxg−1 is continuous.

Then there exists a unique group topology on G for which the inclusion map U ↪→ G
is a homeomorphism onto an open subset of G.

If, in addition, U generates G, then (T1/2) imply (T3).

Proof. First we consider the filter basis F of 1-neighborhoods in U . Then (T1) implies
(U1), (T2) implies (U2), and (T3) implies (U3). Moreover, the assumption that U is
Hausdorff implies that

⋂
F = {1}. Therefore Lemma 7.1.2 implies that G carries

a unique structure of a (Hausdorff) topological group for which F is a basis of 1-
neighborhoods.

We claim that the inclusion map U → G is an open embedding. So let x ∈ U .
Then

Ux := U ∩ x−1U = {y ∈ U : (x, y) ∈ D} (7.1)

is open in U and λx restricts to a continuous map λUx : Ux → U with image Ux−1 .
Its inverse λUx−1 is also continuous. Hence λUx : Ux → Ux−1 is a homeomorphism. We
conclude that the sets of the form xV , where V a neighborhood of 1, form a basis of
neighborhoods of x ∈ U . Hence the inclusion map U ↪→ G is an open embedding.

Suppose, in addition, that G is generated by U . For each g ∈ U , there exists an
open 1-neighborhood Ug with gUg×{g−1} ⊆ D. Then cg(Ug) ⊆ U , and the continuity
of mU implies that cg|Ug : Ug → U is continuous.

Hence, for each g ∈ U , the conjugation cg is continuous in a neighborhood of 1.
Since the set of all these g is a submonoid of G containing U , it contains Un for each
n ∈ N, hence all of G because G is generated by U = U−1. Therefore (T3) follows
from (T1) and (T2).

7.1.2 Lie Group Structures from Local Data

The following theorem, the smooth version of the preceding lemma, is an important
tool to construct Lie group structures on groups.

Theorem 7.1.4. Let G be a group and U = U−1 be a symmetric subset containing 1.
We further assume that U is a smooth manifold and that

(L1) D := {(x, y) ∈ U × U : xy ∈ U} is an open subset and the multiplication
mU : D → U, (x, y) 7→ xy is smooth,

(L2) the inversion map ιU : U → U, u 7→ u−1 is smooth, and
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(L3) for each g ∈ G there exists an open 1-neighborhood Ug ⊆ U with cg(Ug) ⊆ U and
such that the conjugation map cg : Ug → U, x 7→ gxg−1 is smooth.

Then there exists a unique structure of a Lie group on G such that the inclusion map
U ↪→ G is a diffeomorphism onto an open subset of G.

If, in addition, U generates G, then (L1/2) imply (L3).

Proof. From the preceding Lemma 7.1.3, we immediately obtain a unique group topol-
ogy on G for which the inclusion map U ↪→ G is an open embedding.

Now we turn to the manifold structure. Let V = V −1 ⊆ U be an open 1-
neighborhood with V V × V V ⊆ D, for which there exists a chart (ϕ, V ) of U . For
g ∈ G we consider the maps

ϕg : gV → E, ϕg(x) = ϕ(g−1x)

which are homeomorphisms of gV onto ϕ(V ) ⊆ Rn. We claim that (ϕg, gV )g∈G is a
smooth atlas of G.

Let g1, g2 ∈ G and put W := g1V ∩ g2V . If W 6= ∅, then g−1
2 g1 ∈ V V −1 = V V .

The smoothness of the map

ψ := ϕg2 ◦ ϕ−1
g1 |ϕg1 (W ) : ϕg1(W )→ ϕg2(W )

given by
ψ(x) = ϕg2(ϕ−1

g1 (x)) = ϕg2(g1ϕ
−1(x)) = ϕ(g−1

2 g1ϕ
−1(x))

follows from the smoothness of the multiplication V V × V V → U . This proves that
the charts (ϕg, gU)g∈G form a smooth atlas of G. Moreover, the construction implies
that all left translations of G are smooth maps.

The construction also shows that, for each g ∈ G, the conjugation map cg : G→ G
is smooth in a neighborhood of 1. Since all left translations are smooth, and

cg ◦ λx = λcg(x) ◦ cg,

the smoothness of cg in a neighborhood of x ∈ G follows. Therefore all conjugations
and hence also all right multiplications are smooth. The smoothness of the inversion
follows from its smoothness on V and the fact that left and right multiplications are
smooth. Finally, the smoothness of the multiplication follows from the smoothness in
1× 1 because

g1xg2y = g1g2cg−1
2

(x)y.

Next we show that the inclusion U ↪→ G of U is a diffeomorphism. So let x ∈ U
and recall the open set Ux = U ∩ x−1U from (7.1). Then λx restricts to a smooth
map Ux → U with image Ux−1 . Its inverse is also smooth. Hence λUx : Ux → Ux−1

is a diffeomorphism. Since λx : G → G also is a diffeomorphism, it follows that the
inclusion λx ◦ λUx−1 : Ux−1 → G is a diffeomorphism. As x was arbitrary, the inclusion
of U in G is a diffeomorphic embedding.

The uniqueness of the Lie group structure is clear because each locally diffeo-
morphic bijective homomorphism between Lie groups is a diffeomorphism (Proposi-
tion 6.2.4(3)).



7.2. CLOSED SUBGROUPS OF LIE GROUPS 119

Finally, we assume that G is generated by U . We show that, in this case, (L3) is a
consequence of (L1) and (L2); the argument is similar to the topological case. Indeed,
for each g ∈ U , there exists an open 1-neighborhood Ug with gUg ×{g−1} ⊆ D. Then
cg(Ug) ⊆ U , and the smoothness of mU implies that cg|Ug : Ug → U is smooth. Hence,
for each g ∈ U , the conjugation cg is smooth in a neighborhood of 1. Since the set of
all these g is a submonoid of G containing U , it contains Un for each n ∈ N, hence all
of G because G is generated by U = U−1. Therefore (L3) is satisfied.

Corollary 7.1.5. Let G be a group and N E G a normal subgroup of G that carries
a Lie group structure. Then there exists a unique Lie group structure on G for which
N is an open subgroup if and only if for each g ∈ G the restriction cg|N is a smooth
automorphism of N .

Proof. If N is an open normal subgroup of the Lie group G, then clearly all inner
automorphisms of G restrict to smooth automorphisms of N .

Suppose, conversely, that N is a normal subgroup of the group G which is a Lie
group and that all inner automorphisms of G restrict to smooth automorphisms of N .
Then we can apply Theorem 7.1.4 with U = N and obtain a Lie group structure on G
for which the inclusion N → G is a diffeomorphism onto an open subgroup of G.

7.2 Closed Subgroups of Lie Groups and their Lie
Algebras

In this section, we show that closed subgroups of Lie groups are always submanifolds,
which in turn implies that they are Lie groups. For a closed subgroup H of G, its Lie
algebra can be computed by

L(H) ∼= {x ∈ L(G) : expG(Rx) ⊆ H}.

This makes it particularly easy to verify that certain groups are Lie groups and to
determine their Lie algebras.

7.2.1 Submanifolds

Definition 7.2.1. [Submanifolds] Let M be a smooth n-dimensional manifold. A
subset S ⊆ M is called a d-dimensional submanifold if for each p ∈ S there exists a
chart (ϕ,U) of M with p ∈ U asuch that

ϕ(U ∩ S) = ϕ(U) ∩ (Rd × {0}). (7.2)

A submanifold of codimension 1, i.e., dimS = n− 1, is called a smooth hypersurface.

Remark 7.2.2. (a) Any discrete subset S of M is a 0-dimensional submanifold.
(b) If n = dimM , any open subset S ⊆ M is an n-dimensional submanifold. If,

conversely, S ⊆ M is an n-dimensional submanifold, then the definition immediately
shows that S is open.
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Lemma 7.2.3. Any submanifold S of a manifold M has a natural manifold structure.
If iS : S → M denotes the inclusion map, then a map ϕ : N → S from a smooth
manifold N to S is smooth if and only if iS ◦ ϕ : N →M is smooth.

Proof. (a) We endow S with the subspace topology inherited from M , which turns
it into a Hausdorff space. For each chart (ϕ,U) satisfying (7.2), we obtain a d-
dimensional chart

(ϕ|U∩S , U ∩ S)

of S. For two such charts coming from (ϕ,U) and (ψ, V ), we have

ψ ◦ ϕ−1|ϕ(U∩V ∩S) = (ψ|V ∩S) ◦ (ϕ|U∩S)−1|ϕ(U∩V ∩S),

which is a smooth map onto an open subset of Rd. We thus obtain a smooth d-
dimensional atlas on S.

(b) To see that iS is smooth, let p ∈ S and (ϕ,U) be a chart satisfying (7.2). Then

ϕ ◦ iS ◦ (ϕ|S∩U )−1 : ϕ(U) ∩ (Rd × {0})→ ϕ(U) ⊆ Rn

is the inclusion map, hence smooth. This implies that iS is smooth.
(c) If f : N → S is smooth, then the composition iS ◦ f is smooth. Suppose,

conversely, that iS ◦ f : N →M is smooth. Let p ∈ N and choose a chart (ϕ,U) of M
satisfying (7.2) with f(p) ∈ U . Then the map

ϕ ◦ iS ◦ f |f−1(U) : f−1(U)→ ϕ(U) ⊆ Rn

is smooth, but its values lie in

ϕ(U ∩ S) = ϕ(U) ∩ (Rd × {0}).

Therefore ϕ ◦ iS ◦ f |f−1(U) is also smooth as a map into Rd, which means that

ϕ|U∩S ◦ f |f−1(U) : f−1(U)→ ϕ(U ∩ S) ⊆ Rd

is smooth, and hence that f is smooth as a map N → S.

7.2.2 The Lie Algebra of a Closed Subgroup

Definition 7.2.4. Let G be a Lie group and H ≤ G a closed subgroup. We set

Le(H) := {x ∈ L(G) : expG(Rx) ⊆ H}

and observe that RLe(H) ⊆ Le(H) follows immediately from the definition.

Note that, for each x ∈ L(G), the set

{t ∈ R : γx(t) = expG(tx) ∈ H} = γ−1
x (H)

is a closed subgroup of R, hence either discrete cyclic or equal to R (cf. Example 3.4.9).
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Example 7.2.5. We consider the Lie group G := R×T (the cylinder) with Lie algebra
L(G) ∼= R2 (Exercise 5.4.2) and the exponential function

expG(x, y) = (x, e2πiy).

For the closed subgroup H := R× {1}, we then see that (x, y) ∈ Le(H) is equivalent
to y = 0, but exp−1

G (H) = R× Z.

Proposition 7.2.6. If H ≤ G is a closed subgroup of the Lie group G, then Le(H) is
a real Lie subalgebra of L(G).

Proof. Let x, y ∈ Le(H). For k ∈ N we then have expG(x/k) expG(y/k) ∈ H, and
with the Product Formula (Proposition 6.2.6), we get

expG(x+ y) = lim
k→∞

(
expG

x

k
expG

y

k

)k
∈ H

because H is closed. Therefore expG(x+ y) ∈ H, and RLe(H) = Le(H) now implies
expG(R(x+ y)) ⊆ H, hence x+ y ∈ Le(H).

Similarly, we use the Commutator Formula (Proposition 6.5.6) to get

expG[x, y] = lim
k→∞

(
expG

x

k
expG

y

k
expG−

x

k
expG−

y

k

)k2
∈ H,

hence expG([x, y]) ∈ H, and RLe(H) = Le(H) yields [x, y] ∈ Le(H).

7.2.3 The Closed Subgroup Theorem and its Consequences

We now address more detailed information on closed subgroups of Lie groups. We
start with three key lemmas providing the main information for the proof of the Closed
Subgroup Theorem.

The following lemma follows from the same arguments as Lemma 3.4.2.

Lemma 7.2.7. Let W ⊆ L(G) be an open 0-neighborhood for which expG |W is a
diffeomorphism and logW : expG(W ) → W its inverse function. Further, let H ⊆ G
be a closed subgroup and (gk)k∈N be a sequence in H ∩ expG(W ) with gk 6= 1 for all
k ∈ N and gk → 1. We put yk := logW gk and fix a norm ‖ · ‖ on L(G). Then every
cluster point of the sequence

{
yk
‖yk‖ : k ∈ N

}
is contained in Le(H).

Proof. Let x be such a cluster point. Replacing the original sequence by a subsequence,
we may assume that

xk :=
yk
‖yk‖

→ x ∈ L(G).

Note that this implies ‖x‖ = 1. Let t ∈ R and put pk := t
‖yk‖ . Then txk = pkyk and

yk → logW 1 = 0, so that

expG(tx) = lim
k→∞

expG(txk) = lim
k→∞

expG(pkyk)

and
expG(pkyk) = expG(yk)[pk] expG

(
(pk − [pk])yk

)
,
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where [pk] = max{l ∈ Z : l ≤ pk} is the Gauß function. We then have

‖(pk − [pk])yk‖ ≤ ‖yk‖ → 0

and

expG(tx) = lim
k→∞

(expG yk)[pk] = lim
k→∞

g
[pk]
k ∈ H,

because H is closed. This implies x ∈ Le(H).

Lemma 7.2.8. Let H ⊆ G be a closed subgroup and E ⊆ L(G) be a vector subspace
complementing Le(H). Then there exists a 0-neighborhood UE ⊆ E with

H ∩ expG(UE) = {1}.

Proof. Let ‖ · ‖ be a norm on L(G). We argue by contradiction. If a neighborhood UE
with the required properties does not exist, then we find for each k ∈ N an element
0 6= yk ∈ E with ‖yk‖ ≤ 1

k and gk := exp yk ∈ H. Note that yk → 0 implies
that gk → 1. Now let x ∈ E be a cluster point of the sequence yk

‖yk‖ which lies in

the compact set SE := {z ∈ E : ‖z‖ = 1}, so that at least one cluster point exists.
According to Lemma 7.2.7, we have x ∈ L(H)∩E = {0} because Lemma 7.2.7 applies
since gk ∈ H ∩ expG(W ) holds for k sufficiently large. We arrive at a contradiction to
‖x‖ = 1. This proves the lemma.

Lemma 7.2.9. Let E,F ⊆ L(G) be vector subspaces with E ⊕ F = L(G). Then the
map

Φ: E × F → G, (x, y) 7→ expG(x) expG(y),

restricts to a diffeomorphism of a neighborhood of (0, 0) to an open 1-neighborhood
in G.

Proof. The Chain Rule implies that

T(0,0)(Φ)(x, y) = T(1,1)(mG) ◦ (T0(expG)|E , T0(expG)|F )(x, y)

= T(1,1)(mG)(x, y) = x+ y,

Since the addition map E × F → L(G) ∼= T1(G) is bijective, the Inverse Function
Theorem implies that Φ restricts to a diffeomorphism of an open neighborhood of
(0, 0) in E × F onto an open neighborhood of 1 in G.

Theorem 7.2.10. (von Neumann’s Closed Subgroup Theorem) Let H be a closed
subgroup of the Lie group G. Then the following assertions hold:

(i) Each 0-neighborhood in Le(H) contains an open 0-neighborhood V such that
expG |V : V → expG(V ) is a homeomorphism onto an open subset of H.

(ii) H is a submanifold of G and mH := mG|H×H induces a Lie group structure on H
such that the inclusion map jH : H → G is a morphism of Lie groups for which
L(jH) : L(H)→ L(G) is an isomorphism of L(H) onto Le(H).
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(iii) Let E ⊆ L(G) be a vector space complement of Le(H). Then there exists an open
0-neighborhood VE ⊆ E such that

ϕ : VE ×H → expG(VE)H, (x, h) 7→ expG(x)h

is a diffeomorphism onto an open subset of G.

In view of (ii) above, from now on, we identify L(H) with the subalgebra Le(H) if H
is a closed subgroup of G.

Proof. (i) Let E ⊆ L(G) be a vector space complement of the subspace Le(H) of L(G)
and define

Φ: E × Le(H)→ G, (x, y) 7→ expG x expG y.

According to Lemma 7.2.9, there exist open 0-neighborhoods UE ⊆ E and UH ⊆ Le(H)
such that

Φ1 := Φ|UE×UH : UE × UH → expG(UE) expG(UH)

is a diffeomorphism onto an open 1-neighborhood in G. In view of Lemma 7.2.8, we
may even choose UE so small that expG(UE) ∩H = {1}.

Since expG(UH) ⊆ H, the condition

g = expG x expG y ∈ H ∩ (expG(UE) expG(UH))

implies expG x = g(expG y)−1 ∈ H ∩ expG UE = {1}. Therefore

expG(UH) = H ∩ (expG(UE) expG(UH))

is an open 1-neighborhood in H. This proves (i).
(ii) Let Φ1, UE and UH be as in (i). For h ∈ H, the set Uh := λh(im(Φ1)) =

h im(Φ1) is an open neighborhood of h in G. Moreover, the map

ϕh : Uh → E ⊕ Le(H) = L(G), x 7→ Φ−1
1 (h−1x)

is a diffeomorphism onto the open subset UE × UH of L(G), and we have

ϕh(Uh ∩H) = ϕh(h im(Φ1) ∩H) = ϕh(h(im(Φ1) ∩H))

= ϕh(h expG(UH)) = {0} × UH = (UE × UH) ∩ ({0} × Le(H)).

Therefore the family (ϕh, Uh)h∈H provides a submanifold atlas for H in G. This defines
a manifold structure on H for which expG |UH is a local chart (cf. Lemma 7.2.3).

The map mH : H × H → H is a restriction of the multiplication map mG of G,
hence smooth as a map H × H → G, and Lemma 7.2.3 implies that mH is smooth.
With a similar argument we see that the inversion ιH of H is smooth. Therefore H
is a Lie group and the inclusion map jH : H → G a smooth homomorphism. The
corresponding morphism of Lie algebras L(jH) : L(H) → L(G) is injective, and from
expG ◦L(jH) = jH ◦ expH it follows that its image consists of the set Le(H) of all
elements x ∈ L(G) with expG(Rx) ⊆ H because each element of Le(H) defines a
smooth one-parameter group of H (cf. Lemma 7.2.3).
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(iii) Let E be as in the proof of (i) and consider the smooth map

Ψ: E ×H → G, (x, h) 7→ expG(x)h,

where H carries the submanifold structure from (ii). Since expH : Le(H)→ H is a lo-
cal diffeomorphism in 0, the proof of (i) implies the existence of a
0-neighborhood UE ⊆ E and a 1-neighborhood VH ⊆ H such that

Ψ1 := Ψ|UE×VH : UE × VH → expG(UE)VH

is a diffeomorphism onto an open subset of G. We further recall from
Lemma 7.2.8, that we may assume, in addition, that

expG(UE) ∩H = {1}. (7.3)

We now pick a small symmetric 0-neighborhood VE = −VE ⊆ UE such that
expG(VE) expG(VE) ⊆ expG(UE)VH . Its existence follows from the continuity of the
multiplication in G. We claim that the map

ϕ := Ψ|VE×H : VE ×H → expG(VE)H

is a diffeomorphism onto an open subset of G. To this end, we first observe that

ϕ ◦ (idVE ×ρh) = ρh ◦ ϕ for each h ∈ H,

i.e., ϕ(x, h′h) = ϕ(x, h′)h, so that

T(x,h)(ϕ) ◦ (idE ×T1(ρh)) = Tϕ(x,1)(ρh) ◦ T(x,1)(ϕ).

Since T(x,1)(ϕ) = T(x,1)(Ψ) is invertible for each x ∈ VE , T(x,h)(ϕ) is invertible for each
(x, h) ∈ VE × H. This implies that ϕ is a local diffeomorphism in each point (x, h).
To see that ϕ is injective, we observe that

expG(x)h = ϕ(x, h) = ϕ(x′, h′) = expG(x′)h′

implies that

expG(x)−1 expG(x′) = h(h′)−1 ∈ expG(VE)2 ∩H ⊆ (expG(UE)VH) ∩H = VH ,

where we have used (7.3). We thus obtain expG(x′) ∈ expG(x)VH , so that the injectiv-
ity of Ψ1 yields x = x′, which in turn leads to h = h′. This proves that ϕ is injective
and a local diffeomorphism, hence a diffeomorphism.

Example 7.2.11. Since linear Lie groups are closed subgroups G ⊆ GLn(R), the
Closed Subgroup Theorem implies that a linear Lie group carries a natural Lie group
structure with L(G) ∼= Le(G).
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Example 7.2.12. We take a closer look at closed subgroups of the Lie group (V,+),
where V is a finite-dimensional vector space. From Example 6.1.3 we know that
expV = idV . Let H ⊆ V be a closed subgroup. Then

L(H) = {x ∈ V : Rx ⊆ H} ⊆ H

is the largest vector subspace contained in H. Let E ⊆ V be a vector space complement
for L(H). Then V ∼= L(H)× E, and we derive from L(H) ⊆ H that

H ∼= L(H)× (E ∩H).

Lemma 7.2.8 implies the existence of some 0-neighborhood UE ⊆ E with UE∩H =
{0}, hence that H ∩ E is discrete because 0 is an isolated point of H ∩ E. Now
Exercise 7.3.4 implies the existence of linearly independent elements f1, . . . , fk ∈ E
with

E ∩H = Zf1 + . . .+ Zfk.
We conclude that

H ∼= L(H)× Zk ∼= Rd × Zk for d = dim L(H).

Note that L(H) coincides with the connected component H0 of 0 in H.

In view of Corollary 6.2.8, we may think of Lie groups as a special class of topolog-
ical groups. We may therefore ask, which subgroups of a Lie group G are Lie groups
with respect to the subspace topology:

Proposition 7.2.13. A subgroup of a Lie group is a Lie group with respect to the
induced topology if and only if it is closed.

Proof. If H is closed, then the Closed Subgroup Theorem 7.2.10 implies that H is a
submanifold of G which is a Lie group.

Suppose, conversely, that H is a Lie group. Then H possesses a compact identity
neighborhood K ⊆ H. As K is also compact as a subset of G, it is in particular closed.
Therefore H is locally closed, hence closed by Exercise 7.3.3.

Definition 7.2.14. Let G be a Lie group. A Lie subgroup of G is a closed subgroup
H together with its Lie group structure provided by Proposition 7.2.13.

7.2.4 Examples

Example 7.2.15. [Closed Subgroups of T] Let H ⊆ T ⊆ (C×, ·) be a closed proper
(=different from T) subgroup. Since dimT = 1, it follows that L(H) = {0}, so that
the Identity Neighborhood Theorem implies that H is discrete, hence finite because T
is compact.

If q : R → T is the covering projection, q−1(H) is a closed proper subgroup of R,
hence cyclic (this is a very simple case of Exercise 7.3.4), which implies that H =
q(q−1(H)) is also cyclic. Therefore H is one of the groups

Cn = {z ∈ T : zn = 1}

of n-th roots of unity.
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Example 7.2.16. [Subgroups of T2] (a) Let H ⊆ T2 be a closed proper subgroup.
Then L(H) 6= L(T2) implies dimH < dimT2 = 2. Further, H is compact, so that the
group π0(H) of connected components of H is finite.

If dimH = 0, then H is finite, and for n := |H| it is contained in a subgroup of the
form Cn×Cn, where Cn ⊆ T is the subgroup of n-th roots of unity (cf. Example 7.2.15).

If dimH = 1, then H0 is a compact connected 1-dimensional Lie group, hence
isomorphic to T (Exercise 7.3.5). Therefore H0 = expT2(Rx) for some x ∈ L(H) with
expT2(x) = (e2πix1 , e2πix2) = (1, 1), which is equivalent to x ∈ Z2. We conclude that
the Lie algebras of the closed subgroups are of the form L(H) = Rx for some x ∈ Z2.

(b) For each θ ∈ R \Q the image of the 1-parameter group

γ : R→ T2, t 7→ (eiθt, eit)

is not closed because γ is injective. Hence the closure of γ(R) is a closed subgroup of
dimension at least 2, which shows that γ(R) is dense in T2 (cf. Lemma 3.4.8).

7.3 Existence of a Lie Group for a given Lie Algebra

We have seen in the preceding section that a closed subgroup H of a Lie group G is a
Lie group and that its Lie algebra can be identified with a subalgebra of L(G). As the
dense wind in G = T2 shows, in general, not all Lie subalgebras h ⊆ L(G) correspond
to closed subgroups of G. The following theorem shows that we may nonetheless find
a Lie group structure on an arcwise connected subgroup H of G for which L(H) ∼= h.

Theorem 7.3.1. (Integral Subgroup Theorem) Let G be a Lie group with Lie algebra
g and h ⊆ g a Lie subalgebra. Then the subgroup H := 〈exp h〉 of G generated by expG h
carries a Lie group structure with the following properties:

(a) The inclusion jH : H → G is a smooth morphism of Lie groups and L(jH) : L(H)→
h an isomorphism of Lie algebras. These two properties determine the Lie group
structure on H uniquely.

(b) H is connected.

(c) H is closed in G if and only if jH is a topological embedding.

Proof. (a) Let V ⊆ g be an open convex symmetric 0-neighborhood for which the
Hausdorff series for x ∗ y converges for x, y ∈ V and satisfies

expG(x ∗ y) = expG(x) expG(y)

(Proposition 6.5.5). We further assume that expG |V is a diffeomorphism onto an open
subset of G.

Put W := V ∩ h. Then x ∗ y ∈ h for x, y ∈ W because each summand in the
Hausdorff series is an iterated Lie bracket. Further, x ∗ y defines a smooth function
W ×W → h because it is the restriction of a smooth function V ×V → g. We consider
the subset U := expG(W ) ⊆ H. From W = −W we derive U = U−1 and we note that
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ϕ := expG |W is injective. We may thus endow U ⊆ H with the manifold structure
turning ϕ into a diffeomorphism.

Then

D̃ = {(x, y) ∈W ×W : x ∗ y ∈W}

is an open subset of W × W on which the ∗-multiplication is smooth, so that the
multiplication D → U is also smooth. We further observe that

expG(−x) = expG(x)−1,

from which it follows that the inversion on U is smooth. Since U generates H, (L3)
follows from (L1) and (L2). Therefore U satisfies all assumptions of Theorem 7.1.4,
so that we obtain a Lie group structure on H for which ϕ, resp., exph induces a local
diffeomorphism in 0.

Since the map jH ◦ exph : h → G is smooth and exph is a local diffeomorphism in
0, the inclusion jH : H → G is smooth. Now

L(jH) : L(H)→ L(G)

is injective, and by construction, its image contains h because each element x ∈ h
generates a one-parameter group of H. As dim L(H) = dimH = dim h, we have
L(jH) L(H) = h.

If Ĥ denotes another Lie group structure on the subgroup H for which jĤ : Ĥ → G

is smooth and L(jĤ) : L(Ĥ)→ h ⊆ L(G) is an isomorphism of Lie algebras, then the
relation

jĤ ◦ expĤ = expG ◦L(jĤ) = exph ◦L(jĤ)

and (a) imply that the identical map

j := j−1
H ◦ jĤ : Ĥ → H

is a bijective morphism of connected Lie groups for which L(j) is an isomorphism,
hence an isomorphism (Proposition 6.2.4(3)).

(b) Since H is generated by expH(L(H)), this follows from Lemma 6.1.9.
(c) If H is closed, then the Closed Subgroup Theorem 7.2.10 shows that H is a Lie

group with respect to the subspace topology, so that the uniqueness part of (a) implies
that jH is a topological embedding.

If, conversely, jH is a topological embedding, then H is a Lie group with respect
to the subspace topology inherited from G. Therefore Proposition 7.2.13 implies that
H is closed.

Remark 7.3.2. Example 7.2.16, the dense wind in the 2-torus, shows that we cannot
expect that the group H = 〈expG h〉 is closed in G or that the inclusion map H → G
(which is a smooth homomorphism) is a topological embedding.

Definition 7.3.3. Let G be a Lie group. An integral subgroup H of G is a subgroup
that is generated by exp h for a subalgebra h of the Lie algebra g of G.
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The Integral Subgroup Theorem implies in particular that each Lie subalgebra h
of the Lie algebra L(G) of a Lie group G is integrable in the sense that it is the Lie
algebra of some Lie group H.

Combining this with Ado’s Theorem which asserts the existence of an injective
homomorphism g ↪→ gln(R) for any finite dimensional Lie algebra g, we obtain one of
the cornerstones of the theory of Lie groups:

Theorem 7.3.4. (Lie’s Third Theorem) Each finite-dimensional Lie algebra g is the
Lie algebra of a connected Lie group G.

Proof. Ado’s Theorem implies that g is isomorphic to a subalgebra of some gln(R), so
that the assertion follows directly from the Integral Subgroup Theorem.

Exercises for Chapter 7

Exercise 7.3.1. If (Hj)j∈J is a family of subgroups of the Lie group G, then

L
( ⋂
j∈J

Hj

)
=
⋂
j∈J

L(Hj).

Exercise 7.3.2. Let ϕ : G→ H be a morphism of Lie groups. Show that

L(kerϕ) = ker L(ϕ).

Exercise 7.3.3. Show that any locally closed subgroup H of a topological group G
is closed. Hint: Proceed as follows. Suppose that U is a 1-neighborhood of G for
which U ∩ H is closed in U and let g ∈ H. For any symmetric 1-neighborhood V
with V V ⊆ U there exists an h ∈ gV ∩H and then h−1g ∈ U has the property that
h−1gV ∩H 6= ∅. Conclude that h−1g ∈ H and hence that g ∈ H.

Exercise 7.3.4. (Structure of discrete subgroups of Rn) Let D ⊆ Rn be a discrete
subgroup. Then there exist linearly independent elements v1, . . . , vk ∈ Rn with D =∑k
i=1 Zvi. Hint: Use induction on dim spanD. If n > 1, and D spans Rn, then pick a

linear basis f1, . . . , fn ∈ D. Then apply induction on F ∩D for the hyperplane F :=
span{f1, . . . , fn−1}. Now show that there exists a d ∈ Rfn with D = Zd+F ∩D. This
can be done by considering the image of D under the linear projection p : Rn → Rfn
with kernel F and using the discreteness of p(D) to derive that it is cyclic.

Exercise 7.3.5. [Connected abelian Lie groups] Let A be a connected abelian Lie
group. Show that

(1) expA : (L(A),+)→ A is an open morphism of Lie groups.

(2) expA is surjective and open.

(3) ΓA := ker expA is a discrete subgroup of (L(A),+).

(4) L(A)/ΓA ∼= Rk × Tm for some k,m ≥ 0. In particular, it is a Lie group and the
quotient map qA : L(A) → L(A)/ΓA is a smooth map and a local diffeomor-
phism.
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(5) expA factors through a diffeomorphism ϕ : L(A)/ΓA → A.

(6) A ∼= Rk × Tm as Lie groups.

Exercise 7.3.6. [Divisible groups] An abelian group D is called divisible if for each
d ∈ D and n ∈ N there exists an a ∈ D with an = d. Show that:

(1)∗ If G is an abelian group, H a subgroup and f : H → D a homomorphism into an
abelian divisible group D, then there exists an extension of f to a homomorphism
f̃ : G→ D.

(2) If G is an abelian group and D a divisible subgroup, then G ∼= D × H for some
subgroup H of G.

Exercise 7.3.7. [Nonconnected abelian Lie groups] Let A be an abelian Lie group.
Show that:

(1) The identity component of A0 is isomorphic to Rk × Tm for some k,m ∈ N0.

(2) A0 is divisible.

(3) A ∼= A0 × π0(A), where π0(A) := A/A0.

(4) There exists a discrete abelian group D with A ∼= Rk × Tm ×D.

Exercise 7.3.8. If q : G → H is a surjective open morphism of topological groups,
then the induced map G/ ker q → H is an isomorphism of topological groups, where
G/ ker q is endowed with the quotient topology, i.e., a subset O ⊆ G/ ker q is open if
and only if q−1(O) is open in G.

Exercise 7.3.9. If G is a topological group and 1 ∈ U ⊆ G a connected subset. Then
all sets Un := U · · ·U are connected and so is their union

⋃
n U

n.

Exercise 7.3.10. Let G be a topological group. Then for each open subset O ⊆ G
and for each subset S ⊆ G the product sets

OS = {gh : g ∈ O, h ∈ S} and SO = {hg : g ∈ O, h ∈ S}

are open.

Exercise 7.3.11. (Refining Lemma 7.1.3) Show that the conclusion of
Lemma 7.1.3 is still valid if the assumption (T1) is weakened as follows: There exists
an open subset D ⊆ U×U with xy ∈ U for all (x, y) ∈ D, containing all pairs (x, x−1),
(x,1), (1, x) for x ∈ U , such that the group multiplication m : D → U is continuous.

Exercise 7.3.12. Let G be an abelian group and N ≤ G a subgroup carrying a Lie
group structure. Then there exists a unique Lie group structure on G for which N is
an open subgroup.

Exercise 7.3.13. Let G be a connected topological group and Γ E G a discrete
normal subgroup. Show that Γ is central.
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Exercise 7.3.14. Let X be a topological space and (Xi)i∈I connected subspaces of
X with X =

⋃
i∈I Xi. If

⋂
i∈I Xi 6= ∅, then X is connected.

Exercise 7.3.15. Let G be a group, endowed with a manifold structure. Show that
G is a Lie group if the following conditions are satisfied:

(i) The left multiplication maps λg : G→ G, x 7→ gx are smooth.

(ii) The right multiplication maps ρg : G→ G, x 7→ xg are smooth.

(iii) The inversion map ηG : G→ G is smooth in 1.

(iv) The multiplication mG : G×G→ G is smooth in a neighborhood of (1,1).



Chapter 8

Covering Theory for Lie
Groups

In this chapter we turn to applications of covering theory to Lie groups. Our goal
is to see to which extent the Lie algebra L(G) and the fundamental group π1(G)
determine a connected Lie group G. In the first section we show that each connected
Lie group G has a simply connected covering group G̃ which also carries a Lie group
structure. The kernel of the covering morphism qG : G̃→ G can be identified with the
fundamental group π1(G). Since L(qG) is an isomorphism of Lie algebras, we have

L(G) ∼= L(G̃). We further prove the Monodromy Principle which implies that any
Lie algebra morphism L(G) → L(H) can be integrated to a group homomorphism,
provided G is 1-connected, i.e., connected and simply connected. From that we shall
derive in particular that the Lie algebra L(G) determines the corresponding simply
connected group up to isomorphy.

8.1 Simply Connected Coverings of Lie Groups

In the preceding chapter we have seen how to construct Lie group structures on groups
from local data. This construction applies in particular to those quotient morphisms
q : G → G/N , where G is a Lie group and q is a local homeomorphism, i.e., maps
some open identity neighborhood homeomorphically to an open identity neighborhood
in N . This means that N is a discrete subgroup of G, such as Z in R. To deal properly
with such maps, we recall the concept of a covering map from Definition A.2.1. This
concept is particularly important in the theory of Lie groups because it can be used
to understand how different connected Lie groups with the same Lie algebra can be.

We start with another corollary of Theorem 7.1.4.

Corollary 8.1.1. Let ϕ : G → H be a covering of topological groups. If G or H is
a Lie group, then the other group has a unique Lie group structure for which ϕ is a
morphism of Lie groups which is a local diffeomorphism.

131
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Proof. Let UG ⊆ G be an open symmetric 1-neighborhood for which ϕ|UG is a home-
omorphism onto an open subset UH of H. Since kerϕ = ϕ−1(1) is discrete, we may
choose UG so small that U3

G ∩ kerϕ = {1}.
Suppose first that G is a Lie group. Then we apply Theorem 7.1.4 to UH , endowed

with the manifold structure for which ϕ|UG is a diffeomorphism. Then (L2) follows
from ϕ(x)−1 = ϕ(x−1). To verify the smoothness of the multiplication map

mUH : DH := {(a, b) ∈ UH × UH : ab ∈ UH} → UH ,

we first observe that, if x, y ∈ UG satisfy (ϕ(x), ϕ(y)) ∈ DH , i.e., ϕ(xy) ∈ UH , then
there exists a z ∈ UG with ϕ(xy) = ϕ(z), and xyz−1 ∈ UG

3 ∩ ker(ϕ) = {1} yields
xy = z ∈ UG. We thus have DH = (ϕ× ϕ)(DG) for

DG := {(x, y) ∈ UG × UG : xy ∈ UG}

and the smoothness of mH follows from the smoothness of the multiplication
mUG : DG → UG and

mUH ◦ (ϕ× ϕ) = ϕ ◦mUG .

To verify (L3), we note that the surjectivity of ϕ implies that for each h ∈ H there is
an element g ∈ G with ϕ(g) = h. Now we choose an open 1-neighborhood Ug ⊆ UG
with cg(Ug) ⊆ UG and put Uh := ϕ(Ug).

If, conversely, H is a Lie group, then we apply Theorem 7.1.4 to UG, endowed
with the manifold structure for which ϕ|UG is a diffeomorphism onto UH . Again, (L2)
follows right away, and (L1) follows from (ϕ× ϕ)(DG) ⊆ DH and the smoothness of

mUH ◦ (ϕ× ϕ) = ϕ ◦mUG .

For (L3), we choose Ug as any open 1-neighborhood in UG with cg(Ug) ⊆ U . Then the
smoothness of cg|Ug follows from the smoothness the maps of ϕ ◦ cg = cϕ(g) ◦ ϕ.

Proposition 8.1.2. If G is a connected Lie group and qG : G̃ → G its universal
covering space, then G̃ carries a unique Lie group structure for which qG is a smooth
covering map.

We call this Lie group the simply connected covering group of G.

Proof. We first have to construct a (topological) group structure on the universal

covering space G̃ (cf. Theorem A.2.12). Its existence follows from the fact that G is a
manifold, hence in particular locally simply connected. Pick an element 1̃ ∈ q−1

G (1).
Then the multiplication map mG : G × G → G lifts uniquely to a continuous map
m̃G : G̃ × G̃ → G̃ with m̃G(1̃, 1̃) = 1̃. To see that the multiplication map m̃G is
associative, we observe that

qG ◦ m̃G ◦ (idG̃×m̃G) = mG ◦ (qG × qG) ◦ (idG̃×m̃G)

= mG ◦ (idG×mG) ◦ (qG × qG × qG) = mG ◦ (mG × idG) ◦ (qG × qG × qG)

= qG ◦ m̃G ◦ (m̃G × idG̃),
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so that the two continuous maps

m̃G ◦ (idG̃×m̃G), m̃G ◦ (m̃G × idG̃) : G̃3 → G̃,

are lifts of the same map G̃3 → G and both map (1̃, 1̃, 1̃) to 1̃. Hence the uniqueness
of lifts (Theorem A.2.9) implies that m̃G is associative. We likewise obtain that the

unique lift ι̃G : G̃→ G̃ of the inversion map ιG : G→ G with ι̃G(1̃) = 1̃ satisfies

m̃G ◦ (ι̃G, idG̃) = 1̃ = m̃G ◦ (idG̃, ι̃G).

Finally λ1̃ lifts λ1 = idG, so that λ1̃(1̃) = 1̃ leads to λ1̃ = idG̃, and likewise one shows

that ρ1̃ = idG̃, so that 1̃ is a neutral element for the multiplication on G̃. Therefore

m̃G defines on G̃ a topological group structure such that qG : G̃ → G is a covering
morphism of topological groups. Now Corollary 8.1.1 applies.

Proposition 8.1.3. A surjective morphism ϕ : G→ H of Lie groups is a covering if
and only if L(ϕ) : L(G)→ L(H) is a linear isomorphism.

If H is connected, then ϕ is a covering if and only if L(ϕ) : L(G) → L(H) is a
linear isomorphism, i.e., the surjectivity of ϕ is not required.

Proof. If ϕ is a covering, then it is an open homomorphism with discrete kernel (Exer-
cise 8.5.5), so that L(kerϕ) = {0}, and Proposition 6.2.4 implies that L(ϕ) is bijective,
hence an isomorphism of Lie algebras.

If, conversely, L(ϕ) is bijective, then Proposition 6.2.4 implies that

L(kerϕ) = ker L(ϕ) = {0}.

Now the Closed Subgroup Theorem 7.2.10 shows that kerϕ is discrete. Since L(ϕ)
is surjective, Proposition 6.2.4 implies that ϕ is an open map. Finally Exercise 8.5.5
shows that ϕ is a covering.

If, in addition, H is connected, then H = 〈expH(L(H))〉 by Lemma 6.1.9. If L(ϕ)
is surjective, we thus obtain

H = 〈expH(L(H))〉 = 〈expH(L(ϕ) L(G))〉 = 〈ϕ(expG(L(G)))〉 ⊆ ϕ(G).

Proposition 8.1.4. For a covering q : G1 → G2 of connected Lie groups, the following
equalities hold

q
(
Z(G1)

)
= Z(G2) and Z(G1) = q−1(Z(G2)).

Proof. Since q is a covering, L(q) : L(G1)→ L(G2) is an isomorphism of Lie algebras
(Proposition 8.1.3), and the adjoint representations satisfy

cq(g) ◦ q = q ◦ cg ⇒ AdG2(q(g)) ◦ L(q) = L(q) ◦AdG1(g) for g ∈ G1.

Hence
Z(G1) = ker AdG1

= q−1 ker AdG2
= q−1(Z(G2)).

Now the claim follows from the surjectivity of q.
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Theorem 8.1.5. (Lifting Theorem for Groups) Let q : G → H be a covering mor-
phism of Lie groups. If f : L→ H is a morphism of Lie groups, where L is 1-connected,
then there exists a unique lift f̃ : L→ G which is a morphism of Lie groups.

Proof. Since Lie groups are locally arcwise connected, the Lifting Theorem A.2.9 im-
plies the existence of a unique lift f̃ with f̃(1L) = 1G. Then

mG ◦ (f̃ × f̃) : L× L→ G

is the unique lift of mH ◦ (f × f) : L× L→ H mapping (1L,1L) to 1G. We also have

q ◦ f̃ ◦mL = f ◦mL = mH ◦ (f × f),

so that f̃ ◦mL is another lift of mH ◦ (f × f) mapping (1L,1L) to 1G. Therefore

f̃ ◦mL = mG ◦ (f̃ × f̃),

which means that f̃ is a group homomorphism.
Since q is a local diffeomorphism and f̃ is a continuous lift of f , it is also smooth

in an identity neighborhood of L, hence smooth by Corollary 6.2.2.

Theorem 8.1.6. Let G be a connected Lie group and qG : G̃→ G a universal covering
homomorphism. Then

ker qG ∼= π1(G)

is a discrete central subgroup and

G ∼= G̃/ ker qG.

Moreover, for any discrete central subgroup Γ ⊆ G̃, the group G̃/Γ is a connected
Lie group with the same universal covering group as G. We thus obtain a bijection
from the set of all Aut(G̃)-orbits in the set of discrete central subgroups of G̃ onto
the set of isomorphy classes of connected Lie groups whose universal covering group is
isomorphic to G̃.

Proof. First we note that ker qG is a discrete normal subgroup of the connected Lie
group G̃, hence central by Exercise 7.3.13. Left multiplications by elements of ker qG
lead to deck transformations of the covering G̃→ G, and this group of deck transfor-
mations acts transitively on the fiber ker qG of 1. Proposition A.2.15 now shows that

π1(G) ∼= ker qG (8.1)

as groups. Since qG : G̃ → G is open and surjective, we have G ∼= G̃/ ker qG as
topological groups (Exercise 7.3.8), hence as Lie groups (Theorem 6.2.7).

If, conversely, Γ ⊆ G̃ is a discrete central subgroup, then the topological quotient
group G̃/Γ is a Lie group (Corollary 8.1.1) whose universal covering group is G̃. Two

such groups G̃/Γ1 and G̃/Γ2 are isomorphic if and only if there exists a Lie group auto-

morphism ϕ ∈ Aut(G̃) with ϕ(Γ1) = Γ2 (Theorem 8.1.5). Therefore the isomorphism
classes of Lie groups with the same universal covering group as G are parameterized
by the orbits of the group Aut(G̃) in the set of discrete central subgroups of G̃.



8.1. SIMPLY CONNECTED COVERINGS OF LIE GROUPS 135

Remark 8.1.7. (a) Since the normal subgroup Inn(G̃) := {cg : g ∈ G̃} of inner

automorphisms acts trivially on the center of G̃, the action of Aut(G̃) on the set

of all discrete normal subgroups factors through an action of the group Out(G̃) :=

Aut(G̃)/ Inn(G̃).
(b) Since each automorphism ϕ ∈ Aut(G) lifts to a unique automorphism ϕ̃ ∈

Aut(G̃) (Theorem 8.1.5), we have a natural embedding Aut(G) ↪→ Aut(G̃), and the

image of this homomorphism consists of the stabilizer of the subgroup ker qG ⊆ Z(G̃)

in Aut(G̃).

Example 8.1.8. [Connected abelian Lie groups] Let A be a connected abelian Lie
group and expA : L(A) → A its exponential function. Then expA is a morphism of
Lie groups with L(expA) = idL(A), hence a covering morphism. Since L(A) is simply

connected, we have (L(A),+) ∼= Ã and ker expA
∼= π1(A) is the fundamental group of

A (cf. Exercise 7.3.5).
As special cases we obtain in particular the finite-dimensional tori

Td ∼= Rd/Zd with π1(Tn) ∼= Zn.

If we want to classify all connected abelian Lie groups A of dimension n, we can now
proceed as follows. First we note that Ã ∼= L(A) ∼= (Rn,+) as abelian Lie groups. Then

Aut(Ã) ∼= GLn(R) follows from the Automatic Smoothness Theorem 6.2.7. Further,

Exercise 7.3.4 implies that the discrete subgroup π1(A) of Ã ∼= Rn can be mapped by
some ϕ ∈ GLn(R) onto

Zk ∼= Zk × {0} ⊆ Rk × Rn−k ∼= Rn.

Therefore
A ∼= Rn/Zk ∼= Tk × Rn−k,

and it is clear that the number k is an isomorphy invariant of the Lie group A, namely,
the rank of its fundamental subgroup. Therefore connected abelian Lie groups A are
determined up to isomorphism by the pair (n, k), where n = dimA and k = rankπ1(A).
The case where n = k gives the compact connected abelian Lie groups. The above
argument shows that such groups are always of the form A ∼= L(A)/Γ, where Γ is a
discrete subgroup of L(T ) generated by a basis for L(T ). Such discrete subgroups are
called lattices.

Examples 8.1.9. (a) The group T ∼= R/Z is homeomorphic to the one-dimensional
sphere S1, which is not simply connected.

The group

SU2(C) ∼=
{(

a −b
b a

)
∈ GL2(C) : |a|2 + |b|2 = 1

}
is homeomorphic to the 3-sphere

{(a, b) ∈ C2 : ‖(a, b)‖ = 1} ∼= S3
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which is simply connected (Exercise A.1.3). One can show that the sphere Sn carries
a Lie group structure if and only if n = 0, 1, 3.

(b) With some more advanced tools from homotopy theory, one can show that the
groups SUn(C) are always simply connected. However, this is never the case for the
groups Un(C).

To see this, consider the group homomorphism

γ : T→ Un(C), z 7→ diag(z, 1, . . . , 1)

and note that det ◦γ = idT. From that one easily derives that the multiplication map

µ : SUn(C)× T→ Un(C), (g, z) 7→ gγ(z)

is a homeomorphism, so that

π1(Un(C)) ∼= π(SUn(C))× π1(T) ∼= π1(T) ∼= Z.

We further derive that the universal covering group is given by

Ũn(C) ∼= SUn(C) oβ R where β(t)g := γ(eit)gγ(e−it).

Example 8.1.10. We show that

π1(SO3(R)) ∼= C2 = {±1}

by constructing a surjective homomorphism

ϕ : SU2(C)→ SO3(R)

with kerϕ = {±1}, so that

SO3(R) ∼= SU2(C)/{±1}.

Since SU2(C) is homeomorphic to S3, it is simply connected (Exercise A.1.3), so that
we obtain π1(SO3(R)) ∼= C2 (Theorem 8.1.6).

We consider

su2(C) = {x ∈ gl2(C) : x∗ = −x, trx = 0} =
{( ai b

−b −ai

)
: b ∈ C, a ∈ R

}
and observe that this is a three-dimensional real subspace of gl2(C). We obtain on
E := su2(C) the structure of a euclidean vector space by the scalar product

β(x, y) := − tr(xy) = tr(xy∗) =

2∑
j,k=1

xijyij .

Now we consider the adjoint representation

Ad: SU2(C)→ GL(E), Ad(g)(x) = gxg−1.
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Then we have for x, y ∈ E and g ∈ SU2(C) the relation

β
(

Ad(g)x,Ad(g)y
)

= tr(gxg−1(gyg−1)∗) = tr(gxg−1(g−1)∗y∗g∗)

= tr(gxg−1gy∗g−1) = tr(xy∗) = β(x, y).

This means that

Ad(SU2(C)) ⊆ O(E, β) ∼= O3(R).

Since SU2(C) is connected, we further obtain Ad(SU2(C)) ⊆ SO(E, β) ∼= SO3(R), the
identity component of O(E, β).

The derived representation is given by

L(Ad) = ad: su2(C)→ so(E, β) ∼= so3(R), ad(x)(y) = [x, y].

If adx = 0, then adx(i1) = 0 implies that adx(u2(C)) = {0}, so that adx(gl2(C)) =
{0} follows from gl2(C) = u2(C)+iu2(C). This implies that x ∈ C1 (Exercise 8.5.2), so
that trx = 0 leads to x = 0. Hence ad is injective, and we conclude with dim so(E, β) =
dim so3(R) = 3 that

ad(su2(C)) = so(E, β)

(cf. Exercise 8.5.1). Since SO3(R) is connected, Proposition 8.1.3 now implies that

ϕ : SU2(C)→ SO3(R)

is a covering. We further have

kerϕ = Z(SU2(C)) = SU2(C) ∩ C×1 = {±1}

(Exercise 7.3.8), so that

S̃O3(R) ∼= SU2(C) and π1(SO3(R)) ∼= C2.

8.2 The Monodromy Principle and its Applications

To round off the picture, we still have to provide the link between Lie algebras and
covering groups. The main point is that, in general, one cannot integrate morphisms
of Lie algebras L(G)→ L(H) to morphisms of the corresponding groups G→ H if G
is not simply connected.

Proposition 8.2.1. (Monodromy Principle) Let G be a connected simply connected
Lie group and H a group. Let V be an open symmetric connected identity neighborhood
in G and f : V → H a function with

f(xy) = f(x)f(y) for x, y, xy ∈ V.

Then there exists a unique group homomorphism extending f . If, in addition, H is a
Lie group and f is smooth, then its extension is also smooth.
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Proof. We consider the group G × H and the subgroup S ⊆ G × H generated by
the subset U := {(x, f(x)) : x ∈ V }. We endow U with the topology for which x 7→
(x, f(x)), V → U is a homeomorphism. Note that f(1)2 = f(12) = f(1) implies
f(1) = 1, which further leads to 1 = f(xx−1) = f(x)f(x−1), so that f(x−1) = f(x)−1.
Hence U = U−1.

We now apply Lemma 7.1.3 because S is generated by U , and (T1/2) directly
follow from the corresponding properties of V and (x, f(x))(y, f(y)) = (xy, f(xy))
for x, y, xy ∈ V . This leads to a group topology on S, for which S is a connected
topological group. Indeed, its connectedness follows from S =

⋃
n∈N U

n and the con-
nectedness of all sets Un (Exercise 7.3.14). The projection pG : G×H → G induces a
covering homomorphism q : S → G because its restriction to the open 1-neighborhood
U is a homeomorphism (Exercise A.2.2(c)), and the connectedness of S and the sim-
ple connectedness of G imply that q is a homeomorphism (Corollary A.2.8). Now
F := pH ◦ q−1 : G → H provides the required extension of f . In fact, for x ∈ U we
have q−1(x) = (x, f(x)), and therefore F (x) = f(x).

If, in addition, H is Lie and f is smooth, then the smoothness of the extension
follows directly from Corollary 6.2.2.

Theorem 8.2.2. (Integrability Theorem for Lie Algebra Homomorphisms) Let G be
a connected simply connected Lie group, H a Lie group and ψ : L(G) → L(H) a Lie
algebra morphism. Then there exists a unique morphism ϕ : G→ H with L(ϕ) = ψ.

Proof. Let U ⊆ L(G) be an open connected symmetric 0-neighborhood such that

• expG |U is a homeomorphism onto an open subset of G (cf. Proposition 6.1.5).

• the BCH-product is defined by the Hausdorff series on U × U and ψ(U)× ψ(U)

• expG(x∗y) = expG(x) expG(y) and expH(ψ(x)∗ψ(y)) = expH(ψ(x)) expH(ψ(y))
for x, y ∈ U .

The continuity of ψ and the fact that ψ is a Lie algebra homomorphism imply
that for x, y ∈ U the element ψ(x ∗ y) coincides with the convergent Hausdorff series
ψ(x) ∗ ψ(y). We define

f : expG(U)→ H, f(expG(x)) := expH(ψ(x)).

For x, y, x ∗ y ∈ U , we then obtain

f(expG(x) expG(y)) = f(expG(x ∗ y)) = expH(ψ(x ∗ y))

= expH(ψ(x) ∗ ψ(y)) = expH(ψ(x)) expH(ψ(y)) = f(expG(x))f(expG(y)).

Then f : exp(U) → H satisfies the assumptions of Proposition 8.2.1, and we see
that f extends uniquely to a group homomorphism ϕ : G → H. Since expG is a local
diffeomorphism, f is smooth in a 1-neighborhood, and therefore ϕ is smooth. We
finally observe that ϕ is uniquely determined by L(ϕ) = ψ because G is connected
(Corollary 6.2.3).

The following corollary can be viewed as an integrability condition for ψ.
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Corollary 8.2.3. If G is a connected Lie group and H is a Lie group, then for a
Lie algebra morphism ψ : L(G) → L(H), there exists a morphism ϕ : G → H with
L(ϕ) = ψ if and only if π1(G) ⊆ ker ϕ̃, where π1(G) is identified with the kernel of

the universal covering map qG : G̃ → G and ϕ̃ : G̃ → H is the unique morphism with
L(ϕ̃) = ψ ◦ L(qG).

Proof. If ϕ exists, then

(ϕ ◦ qG) ◦ expG̃ = ϕ ◦ expG ◦L(qG) = expH ◦ψ ◦ L(qG)

and the uniqueness of ϕ̃ imply that ϕ̃ = ϕ◦qG and hence that π1(G) = ker qG ⊆ ker ϕ̃.

If, conversely, ker qG ⊆ ker ϕ̃, then ϕ(qG(g)) := ϕ̃(g) defines a continuous morphism

G ∼= G̃/ ker qG → H with ϕ ◦ qG = ϕ̃ (Exercise 7.3.8) and

ϕ ◦ expG ◦L(qG) = ϕ ◦ qG ◦ expG̃ = ϕ̃ ◦ expG̃ = expH ◦ψ ◦ L(qG).

We recall that a Lie group G is called 1-connected if it is connected and simply
connected.

Corollary 8.2.4. If G is a 1-connected Lie group with Lie algebra g, then the map

L : Aut(G)→ Aut(g)

is an isomorphism of groups.

Proof. First, we recall from Corollary 5.2.4 that for each automorphism ϕ ∈ Aut(G)
the endomorphism L(ϕ) of g also is an automorphism. That L is injective follows from
the connectedness of G (Corollary 6.2.3) and that L is surjective from the Integrability
Theorem 8.2.2.

8.3 Classification of Lie Groups with given Lie Al-
gebra

Let G and H be linear Lie groups. If ϕ : G→ H is an isomorphism, then the functo-
riality of L directly implies that L(ϕ) : L(G) → L(H) is an isomorphism. In fact, if
ψ : H → G is a morphism with ϕ ◦ ψ = idH and ψ ◦ ϕ = idG, then

idL(H) = L(idH) = L(ϕ ◦ ψ) = L(ϕ) ◦ L(ψ)

and likewise L(ψ) ◦ L(ϕ) = idL(G).

In this subsection we ask to which extent a Lie group G is determined by its Lie
algebra L(G).

Theorem 8.3.1. Two connected Lie groups G and H have isomorphic Lie algebras if
and only if their universal covering groups G̃ and H̃ are isomorphic.
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Proof. If G̃ and H̃ are isomorphic, then we clearly have

L(G) ∼= L(G̃) ∼= L(H̃) ∼= L(H)

(cf. Proposition 8.1.3).

Conversely, let ψ : L(G) ∼= L(G̃) → L(H) ∼= L(H̃) be an isomorphism. Using

Theorem 8.2.2, we obtain a unique morphism ϕ : G̃ → H̃ with L(ϕ) = ψ and also

a unique morphism ϕ̂ : H̃ → G̃ with L(ϕ̂) = ψ−1. Then L(ϕ ◦ ϕ̂) = idL(G̃) implies

ϕ ◦ ϕ̂ = idG̃, and likewise ϕ̂ ◦ ϕ = idH̃ . Therefore G̃ and H̃ are isomorphic Lie
groups.

Combining the preceding theorem with Theorem 8.1.6, we obtain:

Corollary 8.3.2. Let G be a connected Lie group and qG : G̃ → G the universal
covering morphism of connected Lie groups. Then for each discrete central subgroup
Γ ⊆ G̃, the group G̃/Γ is a connected Lie group with L(G̃/Γ) ∼= L(G) and, conversely,

each Lie group with the same Lie algebra as G is isomorphic to some quotient G̃/Γ.

Example 8.3.3. We now describe a pair of nonisomorphic Lie groups with isomor-
phism Lie algebras and isomorphic fundamental groups.

Let
G̃ := SU2(C)× SU2(C)

whose center is C2 × C2 = {±1} × {±1},

G := G̃/(C2 × {1}) ∼= SO3(R)× SU2(C)

and
H := G̃/{(1,1), (−1,−1)} ∼= SO4(R),

where the latter isomorphy follows from Proposition 8.5.1 below. Then
π1(G) ∼= π1(H) ∼= C2, but there is no automorphism of G̃ mapping π1(G) to π1(H).

Indeed, one can show that the two direct factors are the only nontrivial connected
normal subgroups of G̃, so that each automorphism of G̃ either preserves both or
exchanges them. Since π1(H) is not contained in any of them, it cannot be mapped

to π1(G) by an automorphism of G̃.

Examples 8.3.4. Here are some examples of pairs of linear Lie groups with isomorphic
Lie algebras:

(1) G = SO3(R) and G̃ ∼= SU2(C) (Example 8.1.10).
(2) G = SO2,1(R)0 and H = SL2(R): In this case we actually have a covering

morphism ϕ : H → G coming from the adjoint representation

Ad: SL2(R)→ GL(L(H)) ∼= GL3(R).

On L(H) = sl2(R) we consider the symmetric bilinear form given by β(x, y) := 1
2 tr(xy)

and the basis

e1 :=

(
1 0
0 −1

)
, e2 :=

(
0 1
1 0

)
, e3 :=

(
0 1
−1 0

)
.
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Then the matrix B of β with respect to this basis is

B :=

1 0 0
0 1 0
0 0 −1

 .

One easily verifies that

Im Ad ⊆ O(L(H), β) ∼= O2,1(R),

and since ad: L(H) → o2,1(R) is injective between spaces of the same dimension 3
(Exercise), it is bijective. Therefore Proposition 8.1.3 implies that

Ad: SL2(R)→ SO2,1(R)0

is a covering morphism. Its kernel is given by Z(SL2(R)) = {±1}.
From the polar decomposition one derives that both groups are homeomorphic to

T×R2, and topologically the map Ad is like (z, x, y) 7→ (z2, x, y), a two-fold covering.
(3) G = SL2(C) and H = SO3,1(R)0:
Here we show that the universal covering group of the identity component H of the

Lorentz group SO3,1(R) is isomorphic to G. The construction follows a similar scheme
as the argument in (2) above.

On the real 4-dimensional vector space V := Herm2(C) we consider the represen-
tation

σ : G = SL2(C)→ GL(V ), σ(g)(x) := gxg∗.

We want to find a symmetric bilinear form β on V invariant under the action of G
and with O(V, β) ∼= O3,1(R). We consider the symmetric bilinear form

β : V × V → R, β(x, y) := tr(xy)− trx tr y.

It is obvious that this form is symmetric. An orthogonal basis with respect to β is
given by

e1 := 1, e2 :=

(
1 0
0 −1

)
, e3 :=

(
0 1
1 0

)
, e4 :=

(
0 i
−i 0

)
,

and we have

β(e1, e1) = −2, β(e2, e2) = β(e3, e3) = β(e4, e4) = 2.

Therefore O(V, β) ∼= O3,1(R).
To see that im(σ) ⊆ O(V, β), we observe that the quadratic form corresponding to

β is
β(x, x) = trx2 − (trx)2 = −2 detx.

Now the invariance of β under G follows from the Polarization Identity and

det(gxg∗) = det g detx det g∗ = detx, g ∈ SL2(C), x ∈ Herm2(C).
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We conclude that σ(G) ⊆ O(V, β), and since G is connected, we further obtain σ(G) ⊆
O(V, β)0

∼= SO3,1(R)0 (see also Exercise 1.2.8). We also write σ for the corresponding
homomorphism G→ H = SO3,1(R)0.

The derived representation is given by

L(σ) : sl2(C)→ so3,1(R), L(σ)(x)(y) = xy + yx∗.

If σ(g) = 1, then gxg∗ = x for all x ∈ Herm2(C), and this implies that g(ix)g∗ = ix,
which leads with M2(C) = Herm2(C) + iHerm2(C) to gxg∗ = x for all x ∈ M2(C).
For x = g∗ we obtain in particular g∗ = g−1. This in turn yields gxg−1 = x for all
x ∈ M2(C), so that g ∈ C×1, and thus g ∈ {±1}. We conclude that kerσ = {±1}
is discrete and therefore ker L(σ) ⊆ L(kerσ) = {0}. Hence L(σ) is injective. Next
dim sl2(C) = dim so3,1(R) = 6 shows that L(σ) is bijective. Therefore σ : G → H is
a covering morphism by Proposition 8.1.3. In view of π1(SL2(C)) ∼= π1(SU2(C)) ∼=
π1(S3) = {1}, it follows that

SL2(C) ∼= S̃O3,1(R)0.

Example 8.3.5. Let G = SL2(R) and H = SO2,1(R)0 and recall that G̃ ∼= H̃ follows
from sl2(R) ∼= so2,1(R) (cf. Example 8.3.4(2)).

We further have qG(Z(G̃)) ⊆ Z(G) = {±1} and π1(G) = ker qG ⊆ Z(G̃) (cf.

Proposition 8.1.4). Likewise qH(Z(G̃)) ⊆ Z(H) = {1} implies

Z(G̃) ∼= π1(H) ∼= π1(O2(R)×O1(R)) ∼= Z,

where the latter is a consequence of the polar decomposition. This implies that Z(G̃) ∼=
Z, where

π1(G) ∼= 2Z and π1(H) ∼= Z = Z(G̃).

Therefore G and H are not isomorphic, but they have isomorphic Lie algebras and
isomorphic fundamental groups.

8.4 Nonlinear Lie Groups

We have already seen how to describe all connected Lie groups with a given Lie algebra.
To determine all such groups which are, in addition, linear turns out to be a much
more subtle enterprise. If G̃ is a simply connected group with a given Lie algebra, it
means to determine which of the groups G̃/D are linear. As the following examples
show, the answer to this problem is not easy. In fact, a complete answer requires
detailed knowledge of the structure of finite-dimensional Lie algebras.

Example 8.4.1. We show that the universal covering group G := S̃L2(R) of SL2(R)
is not a linear Lie group. Moreover, we show that every continuous homomorphism
ϕ : G → GLn(R) satisfies D := π1(SL2(R)) ⊆ kerϕ, hence factors through G/D ∼=
SL2(R).

We consider the Lie algebra homomorphism L(ϕ) : sl2(R) → gln(R). Then it is
easy to see that

L(ϕ)C(x+ iy) := L(ϕ)x+ iL(ϕ)y
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defines an extension of L(ϕ) to a complex linear Lie algebra homomorphism

L(ϕ)C : sl2(C)→ gln(C).

Since the group SL2(C) is simply connected, there exists a unique group homomor-
phism ψ : SL2(C)→ GLn(C) with L(ψ) = L(ϕ)C.

Let α : G→ G/D ∼= SL2(R)→ SL2(C) be the canonical morphism. Then

L(ϕ) = L(ϕ)C ◦ L(α) = L(ψ) ◦ L(α) = L(ψ ◦ α)

implies ϕ = ψ ◦ α. We conclude that kerϕ ⊇ kerα = D. Therefore G has no faithful
linear representation.

Lemma 8.4.2. If A is a Banach algebra with unit 1 and p, q ∈ A with [p, q] = λ1,
then λ = 0.

Proof. By induction we obtain

[p, qn] = λnqn−1 for n ∈ N. (8.2)

In fact,

[p, qn+1] = [p, q]qn + q[p, qn] = λqn + λnqn = λ(n+ 1)qn.

Therefore

|λ|n‖qn−1‖ ≤ 2‖p‖‖qn‖ ≤ 2‖p‖‖q‖‖qn−1‖

for each n ∈ N, which leads to

(|λ|n− 2‖p‖‖q‖)‖qn−1‖ ≤ 0.

If λ 6= 0, then we obtain for sufficiently large n that qn−1 = 0. For n > 1 we derive
from (8.2) that qn−2 = 0. Inductively we arrive at the contradiction q = 0.

If A is a finite-dimensional algebra, we may w.l.o.g. assume that it is a subalgebra
of some matrix algebra Mn(K), and then [p, q] = λ1 implies

nλ = tr(λ1) = tr([p, q]) = 0

so that λ = 0.

Example 8.4.3. We consider the three-dimensional Heisenberg group

G =


1 x y

0 1 z
0 0 1

 : x, y, z ∈ R

 with L(G) =


0 x y

0 0 z
0 0 0

 : x, y, z ∈ R

 .

Note that expG : L(G)→ G is a diffeomorphism whose inverse is given by

log(g) = (g − 1)− 1

2
(g − 1)2
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(Proposition 2.3.3). Let

z :=

0 0 1
0 0 0
0 0 0

 , p :=

0 1 0
0 0 0
0 0 0

 and q :=

0 0 0
0 0 1
0 0 0

 .

Then [p, q] = z, [p, z] = [q, z] = 0, expRz = 1 + Rz ⊆ Z(G) and D := exp(Zz) is
a discrete central subgroup of G. We claim that the group G/D is not a linear Lie
group. This will be verified by showing that each homomorphism α : G → GLn(C)
with D ⊆ kerα satisfies exp(Rz) ⊆ kerα.

The map L(α) : L(G) → gln(C) is a Lie algebra homomorphism and we obtain
linear maps

P := L(α)(p), Q := L(α)(q) and Z := L(α)(z)

with [P,Q] = Z. Now expG z ∈ D = kerα implies that eZ = α(exp z) = 1 and hence
that Z is diagonalizable with all eigenvalues contained in 2πiZ (Exercise 2.2.12). Let
Vλ := ker(Z − λ1). Since z is central in L(G), the space Vλ is invariant under G
(Exercise 1.1.1), hence also under L(G) (Exercise 3.2.4). Therefore the restrictions
Pλ := P |Vλ and Qλ := Q|Vλ satisfy [Pλ, Qλ] = λ id in the Banach algebra End(Vλ).
In view of the preceding lemma, we have λ = 0. Therefore the diagonalizability of Z
entails that Z = 0 and hence that Rz ⊆ ker L(α). It follows in particular that the
group G/D has no faithful linear representation.

8.5 The Quaternions, SU2(C) and SO4(R)
In this subsection we shall use the quaternion algebra H to get some more information
on the structure of the group SO4(R). Here the idea is to identify R4 with H.

Proposition 8.5.1. There exists a covering homomorphism

ϕ : SU2(C)× SU2(C)→ SO4(R) ⊆ GL(H), ϕ(a, b)x = axb−1.

This homomorphism is a universal covering with kerϕ = {±(1,1)}.

Proof. Since |a| = |b| = 1, all the maps ϕ(a, b) : H→ H are orthogonal, so that ϕ is a
homomorphism

SU2(C)× SU2(C)→ O4(R).

Since SU2(C)× SU2(C) is connected, it further follows that im(ϕ) ⊆ SO4(R).

To determine the kernel of ϕ, suppose that ϕ(a, b) = idH. Then axb−1 = x for all
x ∈ H. For x = b we obtain in particular a = b. Hence ax = xa for all x ∈ H. With
x = I and x = J this leads to a ∈ R1, and hence to (a, b) ∈ {±(1,1)}. This proves
the assertion on kerϕ.

The derived representation is given by

L(ϕ) : su2(C)× su2(C)→ so4(R), L(ϕ)(x, y)(z) = xz − zy.
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Since kerϕ is discrete, it follows that ker L(ϕ) ⊆ L(kerϕ) = {0}. Hence L(ϕ) is
injective. Next dim so4(R) = 6 = 2 dim su2(C) shows that L(ϕ) is surjective, and we
conclude that

im(ϕ) = 〈exp im L(ϕ)〉 = SO4(R).

Therefore ϕ is a covering morphism (Proposition 8.1.3). Since SU2(C) is simply con-

nected, S̃O4(R) ∼= SU2(C)2.

Let G := SU2(C)2. We have just seen that this is the universal covering group of

SO4(R). On the other hand SU2(C) ∼= S̃O3(R). From Z(SU2(C)) = {±1} we derive
that

Z(G) = {(1,1), (1,−1), (−1,1), (−1,−1)} ∼= C2
2 .

We have
G/Z(G) ∼= SO3(R)× SO3(R),

and therefore
SO4(R)/{±1} ∼= G/Z(G) ∼= SO3(R)× SO3(R).

The group SO4(R) is a twofold covering group of SO3(R)2.

Exercises for Chapter 8

Exercise 8.5.1. Let (E, β) be an n-dimensional euclidean space, i.e., β is a positive
definite symmetric bilinear form on E. Show that there exists an isometric isomor-
phism Φ: Rn → E, and that

Ψ: On(R)→ O(E, β), g 7→ Φ ◦ g ◦ Φ−1

is an isomorphism of Lie groups.

Exercise 8.5.2. Show that the center of the Lie algebra gln(K) is

z(gln(K)) := {x ∈ gln(K) : (∀x ∈ gln(K)) [x, y] = 0} = K1.

Hint: Consider the elementary matrices Eij := (δikδjl)k,l and note that Tij := 1+Eij ∈
GLn(K).

Exercise 8.5.3. We consider the simply connected covering group G := S̃L2(R) with
L(G) = sl2(R) and we write q : G → SL2(R) for the covering homomorphism. The
map

α : R→ G, t 7→ expG(t2πu), u =:

(
0 1
−1 0

)
is injective.

Exercise 8.5.4. Show that a subgroup Γ of the topological group G is discrete (with
respect to the subspace topology) if and only if there exists a 1-neighborhood U ⊆ G
with U ∩ Γ = {1}.
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Exercise 8.5.5. Let ϕ : G→ H be a surjective morphism of topological groups. Show
that the following conditions are equivalent:

(1) ϕ is open with discrete kernel.

(2) ϕ is a covering, i.e., each h ∈ H has an open neighborhood U such that ϕ−1(U) =⋃
i∈I Ui is a disjoint union of open subsets Ui for which all restrictions ϕ|Ui : Ui →

U are homeomorphisms.

Hint: If Γ ⊆ G is a discrete subgroup, then there exists an open symmetric 1-
neighborhood U with UU ∩ Γ = {1} and then the sets γU , γ ∈ Γ, are pairwise
disjoint.

Exercise 8.5.6. Let G be a connected Lie group. Show that

L(Z(G)) = z(L(G)) := {x ∈ L(G) : (∀y ∈ L(G)) [x, y] = 0}.

Exercise 8.5.7. Let qG : G̃→ G be a simply connected covering of the connected Lie
group G.

(1) Show that each automorphism ϕ ∈ Aut(G) has a unique lift ϕ̃ ∈ Aut(G̃).

(2) Derive from (1) that Aut(G) ∼= {ϕ̃ ∈ Aut(G̃) : ϕ̃(π1(G)) = π1(G)}.

(3) Show that, in general, {ϕ̃ ∈ Aut(G̃) : ϕ̃(π1(G)) ⊆ π1(G)} is not a subgroup of

Aut(G̃).



Appendix A

Basic Covering Theory

In this appendix we provide the main results on coverings of topological spaces needed
to develop coverings of Lie groups and manifolds. In particular, this material is needed
to show that, for each finite-dimensional Lie algebra g, there exists a 1-connected Lie
group G with Lie algebra L(G) = g which is unique up to isomorphism.

A.1 The Fundamental Group

To define the notion of a simply connected space, we first have to define its fundamental
group. The elements of this group are homotopy classes of loops. The present section
develops this concept and provides some of its basic properties.

Definition A.1.1. Let X be a topological space, I := [0, 1], and x0, x1 ∈ X. We
write

P (X,x0) := {γ ∈ C(I,X) : γ(0) = x0}
and

P (X,x0, x1) := {γ ∈ P (X,x0) : γ(1) = x1}.
We call two paths α0, α1 ∈ P (X,x0, x1) homotopic, written α0 ∼ α1, if there exists a
continuous map

H : I × I → X with H0 = α0, H1 = α1

(for Ht(s) := H(t, s)) and

(∀t ∈ I) H(t, 0) = x0, H(t, 1) = x1.

It is easy to show that ∼ is an equivalence relation (Exercise A.1.2), called homotopy.
The homotopy class of α is denoted by [α].

We write Ω(X,x0) := P (X,x0, x0) for the set of loops based at x0. For
α ∈ P (X,x0, x1) and β ∈ P (X,x1, x2) we define a product α ∗ β in P (X,x0, x2)
as the concatenation

(α ∗ β)(t) :=

{
α(2t) for 0 ≤ t ≤ 1

2
β(2t− 1) for 1

2 ≤ t ≤ 1.

147
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Lemma A.1.2. If ϕ : [0, 1]→ [0, 1] is a continuous map with ϕ(0) = 0 and ϕ(1) = 1,
then for each α ∈ P (X,x0, x1) we have α ∼ α ◦ ϕ.

Proof. Use H(t, s) := α(ts+ (1− t)ϕ(s)).

Proposition A.1.3. The following assertions hold:

(1) α1 ∼ α2 and β1 ∼ β2 implies α1 ∗ β1 ∼ α2 ∗ β2, so that we obtain a well-defined
product

[α] ∗ [β] := [α ∗ β]

of homotopy classes.

(2) If x also denotes the constant map I → {x} ⊆ X, then

[x0] ∗ [α] = [α] = [α] ∗ [x1] for α ∈ P (X,x0, x1).

(3) (Associativity) [α ∗ β] ∗ [γ] = [α] ∗ [β ∗ γ] for α ∈ P (X,x0, x1),
β ∈ P (X,x1, x2) and γ ∈ P (X,x2, x3).

(4) (Inverse) For α ∈ P (X,x0, x1) and α(t) := α(1− t) we have

[α] ∗ [α] = [x0].

(5) (Functoriality) For any continuous map ϕ : X → Y with ϕ(x0) = y0 we have

(ϕ ◦ α) ∗ (ϕ ◦ β) = ϕ ◦ (α ∗ β)

and α ∼ β implies ϕ ◦ α ∼ ϕ ◦ β.

Proof. (1) If Hα is a homotopy from α1 to α2 and Hβ a homotopy from β1 to β2, then
we put

H(t, s) :=

{
Hα(t, 2s) for 0 ≤ s ≤ 1

2
Hβ(t, 2s− 1) for 1

2 ≤ s ≤ 1

(cf. Exercise A.1.1).
(2) For the first assertion we use Lemma A.1.2 and

x0 ∗ α = α ◦ ϕ for ϕ(t) :=

{
0 for 0 ≤ t ≤ 1

2
2t− 1 for 1

2 ≤ t ≤ 1.

For the second, we have

α ∗ x1 = α ◦ ϕ for ϕ(t) :=

{
2t for 0 ≤ t ≤ 1

2
1 for 1

2 ≤ t ≤ 1.

(3) We have (α ∗ β) ∗ γ = (α ∗ (β ∗ γ)) ◦ ϕ for

ϕ(t) :=


2t for 0 ≤ t ≤ 1

4
1
4 + t for 1

4 ≤ t ≤
1
2

t+1
2 for 1

2 ≤ t ≤ 1.
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(4)

H(t, s) :=


α(2s) for s ≤ 1−t

2

α(1− t) for 1−t
2 ≤ s ≤

1+t
2

α(2s− 1) for s ≥ 1+t
2 .

(5) is trivial.

Definition A.1.4. From the preceding definition, we derive in particular that the set

π1(X,x0) := Ω(X,x0)/ ∼

of homotopy classes of loops in x0 carries a natural group structure. This group is
called the fundamental group of X with respect to x0.

A space X is called simply connected if π1(X,x0) vanishes for all x0 ∈ X. If X is
pathwise connected it suffices to check this for a single x0 ∈ X (Exercise A.1.4).

Lemma A.1.5. (Functoriality of the Fundamental Group) If f : X → Y is a contin-
uous map with f(x0) = y0, then

π1(f) : π1(X,x0)→ π1(Y, y0), [γ] 7→ [f ◦ γ]

is a group homomorphism. Moreover, we have

π1(idX) = idπ1(X,x0) and π1(f ◦ g) = π1(f) ◦ π1(g).

Proof. This follows directly from Proposition A.1.3(5).

Remark A.1.6. The map

σ : π1(X,x0)×
(
P (X,x0)/ ∼

)
→ P (X,x0)/ ∼, ([α], [β]) 7→ [α ∗ β] = [α] ∗ [β]

defines an action of the group π1(X,x0) on the set P (X,x0)/ ∼ of homotopy classes
of paths starting in x0 (Proposition A.1.3).

Remark A.1.7. (a) Suppose that the topological space X is contractible, i.e., there
exists a continuous map H : I × X → X and x0 ∈ X with
H(0, x) = x and H(1, x) = x0 for x ∈ X. Then π1(X,x0) = {[x0]} is trivial (Ex-
ercise).

(b) π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0).
(c) π1(Rn, 0) = {0} because Rn is contractible.
More generally, if the open subset Ω ⊆ Rn is starlike with respect to x0, then

H(t, x) := x+ t(x− x0) yields a contraction to x0, and we conclude that π1(Ω, x0) =
{[x0]}.

(d) If G ⊆ GLn(R) is a linear Lie group with a polar decomposition, i.e., for
K := G ∩On(R) and p := L(G) ∩ Symn(R), the polar map

p : K × p→ G, (k, x) 7→ kex

is a homeomorphism, then the inclusion K → G induces an isomorphism

π1(K,1)→ π1(G,1)

because the vector space p is contractible.
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The following lemma implies in particular, that fundamental groups of topological
groups are always abelian.

Lemma A.1.8. Let G be a topological group and consider the identity element 1 as
a base point. Then the path space P (G,1) also carries a natural group structure given
by the pointwise product (α · β)(t) := α(t)β(t) and we have

(1) α ∼ α′, β ∼ β′ implies α · β ∼ α′ · β′, so that we obtain a well-defined product

[α][β] := [α] · [β] := [α · β]

of homotopy classes, defining a group structure on P (G,1)/ ∼.

(2) α ∼ β ⇐⇒ α · β−1 ∼ 1, the constant map.

(3) (Commutativity) [α] · [β] = [β] · [α] for α, β ∈ Ω(G,1).

(4) (Consistency) [α] · [β] = [α] ∗ [β] for α ∈ Ω(G,1), β ∈ P (G,1).

Proof. (1) follows by composing homotopies with the multiplication map mG.

(2) follows from (1).

(3)

[α][β] = [α ∗ 1][1 ∗ β] = [(α ∗ 1)(1 ∗ β)] = [(1 ∗ β)(α ∗ 1)] = [1 ∗ β][α ∗ 1] = [β][α].

(4) [α][β] = [(α ∗ 1)(1 ∗ β)] = [α ∗ β] = [α] ∗ [β].

As a consequence of (4), we can calculate the product of homotopy classes as a
pointwise product of representatives and obtain:

Proposition A.1.9. (Hilton’s Lemma) For each topological group G, the fundamental
group π1(G) := π1(G,1) is abelian.

Proof. We only have to combine (3) and (4) in Lemma A.1.8 for loops α, β ∈ Ω(G,1).

Exercises for Section A.1

Exercise A.1.1. If f : X → Y is a map between topological spaces and

X = X1 ∪ . . . ∪Xn

holds with closed subsets X1, . . . , Xn, then f is continuous if and only if all restrictions
f |Xi are continuous.

Exercise A.1.2. Show that the homotopy relation on P (X,x0, x1) is an equivalence
relation.
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Exercise A.1.3. Show that for n > 1 the sphere Sn is simply connected. For the
proof, proceed along the following steps:
(a) Let γ : [0, 1] → Sn be continuous. Then there exists an m ∈ N such that
‖γ(t)− γ(t′)‖ < 1

2 for |t− t′| < 1
m .

(b) Define α̃ : [0, 1] → Rn+1 as the piecewise affine curve with α̃( km ) = γ( km ) for
k = 0, . . . ,m. Then α(t) := 1

‖α̃(t)‖ α̃(t) defines a continuous curve α : [0, 1]→ Sn.

(c) α ∼ γ.
(d) α is not surjective. The image of α is the central projection of a polygonal arc on
the sphere.
(e) If β ∈ Ω(Sn, y0) is not surjective, then β ∼ y0 (it is homotopic to a constant map).
(f) π1(Sn, y0) = {[y0]} for n ≥ 2 and y0 ∈ Sn.

Exercise A.1.4. Let X be a topological space, x0, x1 ∈ X and α ∈ P (X,x0, x1) a
path from x0 to x1. Show that the map

C : π1(X,x1)→ π1(X,x0), [γ] 7→ [α ∗ γ ∗ α]

is an isomorphism of groups. In this sense the fundamental group does not depend on
the base point if X is arcwise connected.

Exercise A.1.5. Let σ : G×X → X be a continuous action of the topological group G
on the topological space X and x0 ∈ X. Then the orbit map σx0 : G→ X, g 7→ σ(g, x0)
defines a group homomorphism

π1(σx0) : π1(G)→ π1(X,x0).

Show that the image of this homomorphism is central, i.e., lies in the center of
π1(X,x0).

A.2 Coverings

In this section we discuss the concept of a covering map. Its main application in
Lie theory is that it provides, for each connected Lie group G, a simply connected
covering group qG : G̃ → G and hence also a tool to calculate its fundamental group
π1(G) ∼= ker qG. In the following chapter we shall investigate to which extent a Lie
group is determined by its Lie algebra and its fundamental group.

Definition A.2.1. Let X and Y be topological spaces. A continuous map q : X → Y
is called a covering if each y ∈ Y has an open neighborhood U such that q−1(U) is a
nonempty disjoint union of open subsets (Vi)i∈I , such that for each i ∈ I the restriction
q|Vi : Vi → U is a homeomorphism. We call any such U an elementary open subset
of X.

Note that this condition implies in particular that q is surjective and that the fibers
of q are discrete subsets of X.

Examples A.2.2. (a) The exponential function exp: C → C×, z 7→ ez is a covering
map.
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(b) The map q : R→ T, x 7→ eix is a covering.
(c) The power maps pk : C× → C×, z 7→ zk are coverings.
(d) If q : G→ H is a surjective open morphism of topological groups with discrete

kernel, then q is a covering (Exercise A.2.2). All the examples (a)-(c) are of this type.

Lemma A.2.3. (Lebesgue Number) Let (X, d) be a compact metric space and (Ui)i∈I
an open cover. Then there exists a positive number λ > 0, called a Lebesgue number
of the covering, such that any subset S ⊆ X with diameter ≤ λ is contained in some
Ui.

Proof. Let us assume that such a number λ does not exist. Then for each n ∈ N there
exists a subset Sn of diameter ≤ 1

n which is not contained in some Ui. Pick a point
sn ∈ Sn. The sequence (sn) has a subsequence converging to some s ∈ X and s is
contained in some Ui. Since Ui is open, there exists an ε > 0 with Uε(s) ⊆ Ui. If n ∈ N
is such that 1

n <
ε
2 and d(sn, s) <

ε
2 , we arrive at the contradiction Sn ⊆ Uε/2(sn) ⊆

Uε(s) ⊆ Ui.

Remark A.2.4. (1) If (Ui)i∈I is an open cover of the unit interval [0, 1], then there ex-
ists an n > 0 such that all subsets of the form

[
k
n ,

k+1
n

]
,

k = 0, . . . , n− 1, are contained in some Ui.
(2) If (Ui)i∈I is an open cover of the unit square [0, 1]2, then there exists an n > 0

such that all subsets of the form[k
n
,
k + 1

n

]
×
[ j
n
,
j + 1

n

]
, k, j = 0, . . . , n− 1,

are contained in some Ui.

Theorem A.2.5. (Path Lifting Theorem) Let q : X → Y be a covering map and
γ : [0, 1] → Y a path. Let x0 ∈ X be such that q(x0) = γ(0). Then there exists a
unique path γ̃ : [0, 1]→ X such that

q ◦ γ̃ = γ and γ̃(0) = x0.

Proof. Cover Y by elementary open sets Ui, i ∈ I. By Lemma A.2.3, there exists an
n ∈ N such that all sets γ(

[
k
n ,

k+1
n

]
), k = 0, . . . , n − 1, are contained in some Ui. We

now use induction to construct γ̃. Let V0 ⊆ q−1(U0) be an open subset containing x0

for which q|V0
is a homeomorphism onto U0 and define γ̃ on

[
0, 1

n

]
by

γ̃(t) := (q|V0
)−1 ◦ γ(t).

Assume that we have already constructed a continuous lift γ̃ of γ on the interval
[
0, kn

]
and that k < n. Then we pick an open subset Vk ⊆ X containing γ̃( kn ) for which q|Vk
is a homeomorphism onto some Ui and define γ̃ for t ∈

[
k
n ,

k+1
n

]
by

γ̃(t) := (q|Vk)−1 ◦ γ(t).

We thus obtain the required lift γ̃ of γ.
If γ̂ : [0, 1] → X is any continuous lift of γ with γ̂(0) = x0, then γ̂(

[
0, 1

n

]
) is a

connected subset of q−1(U0) containing x0, hence contained in V0. This shows that γ̃
coincides with γ̂ on

[
0, 1

n

]
. Applying the same argument at each step of the induction,

we obtain γ̂ = γ̃, so that the lift γ̃ is unique.
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Theorem A.2.6. (Covering Homotopy Theorem) Let I := [0, 1] and q : X → Y be a
covering map and H : I2 → Y be a homotopy with fixed endpoints of the paths γ := H0

and η := H1. For any lift γ̃ of γ there exists a unique lift G : I2 → X of H with
G0 = γ̃. Then η̃ := G1 is the unique lift of η starting in the same point as γ̃ and G is
a homotopy from γ̃ to η̃. In particular, lifts of homotopic curves in Y starting in the
same point are homotopic in X.

Proof. Using the Path Lifting Property (Theorem A.2.5), for each t ∈ I we find a
unique continuous lift I → X, s 7→ G(s, t), starting in γ̃(t) with q(G(s, t)) = H(s, t).
It remains to show that the map G : I2 → X obtained in this way is continuous.

So let s ∈ I. Using Lemma A.2.3, we find a natural number n such that for
each connected neighborhood Ws of s of diameter ≤ 1

n and each i = 0, . . . , n, the set

H
(
Ws ×

[
k
n ,

k+1
n

])
is contained in some elementary subset Uk of Y . Assuming that

G is continuous in Ws × { kn}, G maps this set into a connected subset of q−1(Uk),
hence into some open subset Vk for which q|Vk is a homeomorphism onto Uk. But
then the lift G on Ws ×

[
k
n ,

k+1
n

]
must be contained in Vk, so that it is of the form

(q|Vk)−1 ◦ H, hence continuous. This means that G is continuous on Us ×
[
k
n ,

k+1
n

]
.

Now an inductive argument shows that G is continuous on Us × I and hence on the
whole square I2.

Since the fibers of q are discrete and the curves s 7→ H(s, 0) and s 7→ H(s, 1) are
constant, the curves G(s, 0) and G(s, 1) are also constant. Therefore η̃ is the unique
lift of η starting in γ̃(0) = G(0, 0) = G(1, 0) and G is a homotopy with fixed endpoints
from γ̃ to η̃.

Corollary A.2.7. If q : X → Y is a covering with q(x0) = y0, then the corresponding
homomorphism

π1(q) : π1(X,x0)→ π1(Y, y0), [γ] 7→ [q ◦ γ]

is injective.

Proof. If γ, η are loops in x0 with [q ◦ γ] = [q ◦ η], then the Covering Homotopy
Theorem A.2.6 implies that γ and η are homotopic. Therefore [γ] = [η] shows that
π1(q) is injective.

Corollary A.2.8. If Y is simply connected and X is arcwise connected, then each
covering map q : X → Y is a homeomorphism.

Proof. Since q is an open continuous map, it remains to show that q is injective. So
pick x0 ∈ X and y0 ∈ Y with q(x0) = y0. If x ∈ X also satisfies q(x) = y0, then there
exists a path α ∈ P (X,x0, x) from x0 to x. Now q◦α is a loop in Y , hence contractible
because Y is simply connected. Now the Covering Homotopy Theorem implies that
the unique lift α of q ◦ α starting in x0 is a loop, and therefore that x0 = x. This
proves that q is injective.

The following theorem provides a powerful tool, from which the preceding corollary
easily follows. We recall that a topological space X is called locally arcwise connected
if each neighborhood U of a point x ∈ X contains an arcwise connected neighborhood.
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Theorem A.2.9. (Lifting Theorem) Assume that q : X → Y is a covering map
with q(x0) = y0, that W is arcwise connected and locally arcwise connected, and that
f : W → Y is a given map with f(w0) = y0. Then a continuous map g : W → X with

g(w0) = x0 and q ◦ g = f (A.1)

exists if and only if

π1(f)(π1(W,w0)) ⊆ π1(q)(π1(X,x0)), i.e., im(π1(f)) ⊆ im(π1(q)). (A.2)

If g exists, then it is uniquely determined by (A.1). Condition (A.2) is in particular
satisfied if W is simply connected.

Proof. If g exists, then f = q ◦g implies that the image of the homomorphism π1(f) =
π1(q) ◦ π1(g) is contained in the image of π1(q).

Let us, conversely, assume that this condition is satisfied. To define g, let w ∈ W
and αw : I → W be a path from w0 to w. Then f ◦ αw : I → Y is a path which has
a continuous lift βw : I → X starting in x0. We claim that βw(1) does not depend on
the choice of the path αw. Indeed, if α′w is another path from w0 to w, then αw ∗α′w is
a loop in w0, so that (f ◦αw)∗ (f ◦α′w) is a loop in y0. In view of (A.2), the homotopy
class of this loop is contained in the image of π1(q), so that it has a lift η : I → X
which is a loop in x0. Since the reverse of the second half η|[ 12 ,1] of η is a lift of f ◦α′w,

starting in x0, it is β′w, and we obtain

β′w(1) = η
(1

2

)
= βw(1).

We now put g(w) := βw(1), and it remains to see that g is continuous. This is
where we shall use the assumption that W is locally arcwise connected. Let w ∈ W
and put y := f(w). Further, let U ⊆ Y be an elementary neighborhood of y and V be
an arcwise connected neighborhood of w in W such that f(V ) ⊆ U . Fix a path αw
from w0 to w as before. For any point w′ ∈ V we choose a path γw′ from w to w′ in
V , so that αw ∗ γw′ is a path from w0 to w′. Let Ũ ⊆ X be an open subset of X for
which q|Ũ is a homeomorphism onto U and g(w) ∈ Ũ . Then the uniqueness of lifts
implies that

βw′ = βw ∗
(
(q|Ũ )−1 ◦ (f ◦ γw′)

)
.

We conclude that
g(w′) = (q|Ũ )−1(f(w′)) ∈ Ũ ,

hence that g|V is continuous.
Finally, we show that g is unique. In fact, if h : W → X is another lift of f satisfying

h(w0) = x0, then the set S := {w ∈ W : g(w) = h(w)} is nonempty and closed. We
claim that it is also open. In fact, let w1 ∈ S and U be a connected open elementary
neighborhood of f(w1) and V an arcwise connected neighborhood of w1 with f(V ) ⊆
U . If Ũ ⊆ q−1(U) is the open subset on which q is a homeomorphism containing

g(w1) = h(w1), then, since V is arcwise connected, we have that g(V ), h(V ) ⊆ Ũ ,
whence V ⊆ S. Therefore S is open, closed and nonempty. Since W is connected this
implies that S = W , i.e., g = h.
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Corollary A.2.10. [Uniqueness of Simply Connected Coverings] Suppose that Y is
locally arcwise connected. If q1 : X1 → Y and q2 : X2 → Y are two simply connected
arcwise connected coverings, then there exists a homeomorphism ϕ : X1 → X2 with
q2 ◦ ϕ = q1.

Proof. Since Y is locally arcwise connected, both covering spaces X1 and X2 also have
this property. Pick points x1 ∈ X1, x2 ∈ X2 with y := q1(x1) = q2(x2). According to
the Lifting Theorem A.2.9, there exists a unique lift
ϕ : X1 → X2 of q1 with ϕ(x1) = x2. We likewise obtain a unique lift
ψ : X2 → X1 of q2 with ψ(x2) = x1. Then ϕ ◦ ψ : X1 → X1 is a lift of idY fixing
x1, so that the uniqueness of lifts implies that ϕ ◦ ψ = idX1

. The same argument
yields ψ ◦ ϕ = idX2

, so that ϕ is a homeomorphism with the required properties.

Definition A.2.11. A topological space X is called semilocally simply connected if
each point x0 ∈ X has a neighborhood U such that each loop α ∈ Ω(U, x0) is homotopic
to [x0] in X, i.e., the natural homomorphism

π(iU ) : π1(U, x0)→ π1(X,x0), [γ] 7→ [iU ◦ γ]

induced by the inclusion map iU : U → X is trivial.

Theorem A.2.12. (Existence of simply connected coverings) Let Y be arcwise con-
nected and locally arcwise connected. Then Y has a simply connected covering space
if and only if Y is semilocally simply connected.

Proof. If q : X → Y is a simply connected covering space and U ⊆ Y is a pathwise
connected elementary open subset. Then each loop γ in U lifts to a loop γ̃ in X, and
since γ̃ is homotopic to a constant map in X, the same holds for the loop γ = q ◦ γ̃
in Y .

Conversely, let us assume that Y is semilocally simply connected. We choose a
base point y0 ∈ Y and let

Ỹ := P (Y, y0)/ ∼ :=
⋃
y1∈Y

P (Y, y0, y1)/ ∼

be the set of homotopy classes of paths starting in y0. We shall provide Ỹ with a
topology such that the map

q : Ỹ → Y, [γ] 7→ γ(1)

defines a simply connected covering of Y .
Let B denote the set of all arcwise connected open subsets U ⊆ Y for which each

loop in U is contractible in Y and note that our assumptions on Y imply that B is
a basis of the topology of Y , i.e., each open subset is a union of elements of B. If
γ ∈ P (Y, y0) satisfies γ(1) ∈ U ∈ B, let

U[γ] := {[η] ∈ q−1(U) : (∃β ∈ C(I, U)) η ∼ γ ∗ β}.

We shall now verify several properties of these definitions, culminating in the proof of
the theorem.
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(1) [η] ∈ U[γ] ⇒ U[η] = U[γ].
To prove this, let [ζ] ∈ U[η]. Then ζ ∼ η∗β for some path β in U . Further η ∼ γ∗β′

for some path β′ in U . Now ζ ∼ γ ∗β′ ∗β, and β′ ∗β is a path in U , so that [ζ] ∈ U[γ].

This proves U[η] ⊆ U[γ]. We also have γ ∼ η ∗ β′, so that [γ] ∈ U[η], and the first part
implies that U[γ] ⊆ U[η].

(2) q maps U[γ] injectively onto U .
That q(U[γ]) = U is clear since U and Y are arcwise connected. To show that it

is one-to-one, let [η], [η′] ∈ U[γ], which we know from (1) is the same as U[η]. Suppose
η(1) = η′(1). Since [η′] ∈ U[η], we have η′ ∼ η ∗ α for some loop α in U . But then α is
contractible in Y , so that η′ ∼ η, i.e., [η′] = [η].

(3) U, V ∈ B, γ(1) ∈ U ⊆ V , implies U[γ] ⊆ V[γ].
This is trivial.

(4) The sets U[γ] for U ∈ B and [γ] ∈ Ỹ form a basis of a topology on Ỹ .
Suppose [γ] ∈ U[η] ∩ V[η′]. Let W ⊆ U ∩ V be in B with γ(1) ∈ W . Then

[γ] ∈W[γ] ⊆ U[γ] ∩ V[γ] = U[η] ∩ V[η′].

(5) q is open and continuous.
We have already seen in (2) that q(U[γ]) = U , and these sets form a basis of the

topology on Ỹ , resp., Y . Therefore q is an open map. We also have for U ∈ B the
relation

q−1(U) =
⋃

γ(1)∈U

U[γ],

which is open. Hence q is continuous.

(6) q|U[γ]
is a homeomorphism.

This is because it is bijective, continuous and open.
At this point we have shown that q : Ỹ → Y is a covering map. It remains to see

that Ỹ is arcwise connected and simply connected.

(7) Let H : I × I → Y be a continuous map with H(t, 0) = y0. Then

ht(s) := H(t, s) defines a path in Y starting in y0. Let h̃(t) := [ht] ∈ Ỹ . Then h̃

is a path in Ỹ covering the path t 7→ ht(1) = H(t, 1) in Y . We claim that h̃ is con-
tinuous. Let t0 ∈ I. We shall prove continuity at t0. Let U ∈ B be a neighborhood
of ht0(1). Then there exists an interval I0 ⊆ I which is a neighborhood of t0 with
ht(1) ∈ U for t ∈ I0. Then α(s) := H(t0 + s(t − t0), 1) is a continuous curve in U
with α(0) = ht0(1) and α(1) = ht(1), so that ht0 ∗ α is curve with the same endpoint
as ht. Applying Exercise A.2.1 to the restriction of H to the interval between t0 and
t, we see that ht ∼ ht0 ∗ α, so that h̃(t) = [ht] ∈ U[ht0 ] for t ∈ I0. Since q|U[ht0

]
is a

homeomorphism, h̃ is continuous in t0.

(8) Ỹ is arcwise connected.

For [γ] ∈ Ỹ put ht(s) := γ(st). By (7), this yields a path γ̃(t) = [ht] in Ỹ from
ỹ0 := [y0] (the class of the constant path) to the point [γ].

(9) Ỹ is simply connected.

Let α̃ ∈ Ω(Ỹ , ỹ0) be a loop in Ỹ and α := q ◦ α̃ its image in Y . Let ht(s) := α(st).

Then we have the path h̃(t) = [ht] in Ỹ from (7). This path covers α since ht(1) = α(t).
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Further, h̃(0) = ỹ0 is the constant path. Also, by definition, h̃(1) = [α]. From the

uniqueness of lifts we derive that h̃ = α̃ is closed, so that [α] = [y0]. Therefore the
homomorphism

π1(q) : π1(Ỹ , ỹ0)→ π1(Y, y0)

vanishes. Since it is also injective (Corollary A.2.7), π1(Ỹ , ỹ0) is trivial, i.e., Ỹ is
simply connected.

Definition A.2.13. Let q : X → Y be a covering. A homeomorphism
ϕ : X → X is called a deck transformation of the covering if q ◦ ϕ = q. This means
that ϕ permutes the elements in the fibers of q. We write Deck(X, q) for the group of
deck transformations.

Example A.2.14. For the covering map exp: C → C×, the deck transformations
have the form

ϕ(z) = z + 2πin, n ∈ Z.

Proposition A.2.15. Suppose that Y is arcwise connected and locally arcwise con-
nected, that qY : Ỹ → Y is a simply connected covering of Y , and that ỹ0 ∈ Ỹ satisfies
qY (ỹ0) = y0. For each [γ] ∈ π1(Y, y0) we write ϕ[γ] ∈ Deck(Ỹ , qY ) for the unique lift
of idY mapping ỹ0 to the endpoint γ̃(1) of the unique lift γ̃ of γ starting in ỹ0. Then
the map

Φ: π1(Y, y0)→ Deck(Ỹ , q), Φ([γ]) = ϕ[γ]

is an isomorphism of groups.

Proof. For γ, η ∈ Ω(Y, y0), the composition ϕ[γ]◦ϕ[η] is a deck transformation mapping
ỹ0 to the endpoint of ϕ[γ] ◦ η̃ which coincides with the endpoint of the lift of η starting
in γ̃(1). Hence it also is the endpoint of the lift of the loop γ ∗ η. Therefore Φ is a
group homomorphism.

To see that Φ is injective, we note that ϕ[γ] = idỸ implies that γ̃(1) = ỹ0, so that
γ̃ is a loop, hence contractible, and therefore [γ] = [qY ◦ γ̃] = [y0].

For the surjectivity, let ϕ be a deck transformation and y := ϕ(ỹ0). If α is a path
from ỹ0 to y, then γ := qY ◦ α is a loop in y0 with α = γ̃, so that ϕ[γ](ỹ0) = y, and
the uniqueness of lifts implies that ϕ = ϕ[γ] = Φ([γ]).

Exercises for Section A.2

Exercise A.2.1. Let F : I2 → X be a continuous map with F (0, s) = x0 for s ∈ I
and define

γ(t) := F (t, 0), η(t) := F (t, 1), α(t) := F (1, t), t ∈ I.

Show that γ ∗ α ∼ η.

Exercise A.2.2. Let q : G → H be an morphism of topological groups with discrete
kernel Γ. Show that:

(1) If V ⊆ G is an open 1-neighborhood with (V −1V ) ∩ Γ = {1} and q is open, then
q|V : V → q(V ) is a homeomorphism.
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(2) If q is open and surjective, then q is a covering.

(3) If q is open and H is connected, then q is surjective, hence a covering.

Exercise A.2.3. A map f : X → Y between topological spaces is called a local home-
omorphism if each point x ∈ X has an open neighborhood U such that f |U : U → f(U)
is a homeomorphism onto an open subset of Y .

(1) Show that each covering map is a local homeomorphism.

(2) Find a surjective local homeomorphism which is not a covering. Can you also find
an example where X is connected?
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