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Introduction

Operator algebras are algebras of bounded operators on Hilbert spaces. John von Neumann
introduced the concept of an abstract Hilbert space and developed the spectral theory of
normal operators in [vN29], where he also invented “operator algebras”. With F. J. Murray
he introduced in the 1930s the concept of a “ring of operators”, nowadays called a von
Neumann algebra, and developed their structure theory [MvN36]. A key motivation for this
work was to put the physical theory of Quantum Mechanics, developed in the second half of
the 1920s by the physicists E. Schrödinger, W. Heisenberg and P. Dirac, on a solid axiomatic
foundation. Before these inventions, Hilbert spaces were mostly treated quite formally as
the concrete Hilbert space `2 of square-summable sequences and operators thereon were
considered as infinite matrices, or as an L2-space on which the operators were given by
kernels ([HvN28], [vN27]). Since then, the structure and representation theory of operator
algebras has been developed and many unexpected applications and connections to other
fields have been unveiled over the years. Some of these connected fields are the theory of
unitary group representations, non-commutative geometry, topology (invariants of knots such
as the Jones polynomial) and in particular Quantum Field Theory (QFT).

The state space of a quantum mechanical system is modeled by the set

P(H) := {[v] = Cv : 0 6= v ∈ H}

of one-dimensional subspaces of a complex Hilbert space H, its projective space. Observ-
ables OA are represented by bounded hermitian operators A = A∗ on H and evaluating an
observable OA in a state [v] yields the real number

OA([v]) :=
〈v,Av〉
〈v, v〉

∈ [−‖A‖.‖A‖].1

More precisely, the values OA([v]) lie in the closed convex hull of the spectrum σ(A), which
is a closed subset of the real interval [−‖A‖, ‖A‖]. Important classes of observables OP are
those corresponding to “yes-no questions”, a property that is linked to the spectral condition
σ(P ) ⊆ {0, 1}, and this means that P is an orthogonal projection onto a closed subspace PH
of H. In particular, the “vector states” [v] correspond to rank-1-projections

Pv(w) =
〈v, w〉
〈v, v〉

v and OA([v]) = tr(APv),

where tr is the trace of the rank-1-operator APv.
2 The expression tr(AS) makes sense

for a large class of operators S and any A ∈ B(H), namely for all trace class operators
3 (because the product AS is trace class). Typical trace class operators are the so-called
“density matrices”

S =

∞∑
n=1

λnPvn with ‖vn‖ = 1, λn ≥ 0,
∑
n

λn = 1.

1We refer to [Ha11] for a collection of interesting articles discussing mathematical structures related to
Quantum Mechanics and Quantum Field Theory. Other excellent sources are [Em72] and [BR02, BR96].

2On any vector space V , the trace of a finite rank operator A : V → V is defined by tr(A) =
∑
j∈J e

∗
j (Aej),

where (ej)j∈J is a linear basis of V .
3These are the compact operators S for which A 7→ tr(AS) defines a continuous linear functional on the

space K(H) of compact operators. Then, for any ONB (ej)j∈J , the trace is defined by tr(S) =
∑
j∈J 〈ej , Sej〉.
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These operators S are hermitian and positive (non-negative spectrum) with trS = 1. They
are called mixed states (or density matrices). They form a convex set whose extreme points
are precisely the rank-1-projections Pv. In this sense they are “superpositions” of pure
(vector) states.

For any such operator S, the linear functional

ωS : B(H)→ C, ωS(A) := tr(AS)

satisfies
ωS(1) = 1 and ωS(A∗A) ≥ 0. (1)

To a large extent the theory of operator algebras is concerned with unital ∗-invariant subal-
gebras A ⊆ B(H) and their states, i.e., functionals satisfying (1). 4

Typical examples that also play a central role in Analysis arise for the algebra A =
C(X,C) of complex-valued continuous functions on the compact space X and a probability
measure µ on X. Then

µ(f) :=

∫
X

f(x) dµ(x)

is a state of A. From this perspective, states on operator algebras are non-commutative
analogs of probability measures. A bridge between the two aspects of positive measures as
functionals (integrals) and measures on a σ-algebra is established by the Riesz Representation
Theorem. As we shall see, restricting states to abelian subalgebras thus provides a natural
link between operator algebras and measure theory. One can actually use these ideas to
develop a “functional calculus” which allows us to define f(A) for any bounded measurable
function and any normal operator A on H. This is also very natural from the perspective of
the interpretation of hermitian operators as observables.

We shall see that norm closed ∗-invariant subalgebras A ⊆ B(H) can be characterized
axiomatically as C∗-algebras, whose norm satisfies the relations

‖a∗a‖ = ‖a‖2 and ‖a∗‖ = ‖a‖ for every a ∈ A

(Gelfand–Naimark Theorem 3.12). As commutative unital C∗-algebras are of the form
C(X,C) for a uniquely determined compact space X (Gelfand Representation Theorem 2.2),
one may consider the theory of commutative C∗-algebras as another perspective on topology.
Accordingly, the theory of operator algebras is sometimes called non-commutative topology,
or, if one takes some additional structures, so-called spectral triples, into account, one speaks
of non-commutative geometry ([Co94]).

Notation and Conventions

• N := {1, 2, 3, . . .}

• R+ := {x ∈ R : x ≥ 0} = [0,∞).

• R× := R \ {0}, C× := C \ {0}, T := {z ∈ C : |z| = 1}.
4The main reason for studying ∗-invariant algebras A is that they leave a closed subspace K ⊆ H invariant

if and only if they leave its orthogonal complement K⊥ invariant, and this in turn means that A commutes
with the corresponding orthogonal projection PK.
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For two sets J and Y we write Y J for the set of maps f : J → Y . If J is a set and S
an abelian semigroup with zero element 0, then we also write S(J) ⊆ SJ for the subset of
finitely supported functions.

For a metric space (X, d), we write

Br(x) := {y ∈ X : d(x, y) < r}

for the open ball of radius r around x.
If H is a complex Hilbert space, then its scalar product is written 〈·, ·〉 or 〈·|·〉. It is

assumed to be antilinear in the first and linear in the second argument

λ〈v, w〉 = 〈λv,w〉 = 〈v, λw〉,

and ‖v‖ :=
√
〈v, v〉 is the corresponding norm. The linearity in the second argument is

customary in physics, where (following Dirac) one writes elements of a Hilbert space H as
|w〉 (so-called kets) and elements of the dual space (continuous linear functionals) as 〈v|
(so-called bras). Then evaluation of the linear functional 〈v| in the vector |w〉 yields the
“bra(c)ket” 〈v|w〉.

For a subset S of a Banach space X, we write

JSK := spanS

for the closed linear subspace generated by S.
For Banach spaces X and Y we write

B(X,Y ) := {A : X → Y : A linear, ‖A‖ <∞}

for the Banach space of bounded linear operators from X to Y . For X = Y we abbreviate
B(X) := B(X,X) and write GL(X) for the group of invertible elements in B(X). If H is a
complex Hilbert space, then we have an antilinear isometric map B(H) → B(H), A 7→ A∗,
determined uniquely by

〈Av,w〉 = 〈v,A∗w〉 for v, w ∈ H.

1 Banach algebras

In this first section we introduce Banach algebras, Banach-∗-algebras and in particular C∗-
algebras.

1.1 Basics definitions

Definition 1.1. A Banach algebra is a triple (A,mA, ‖ · ‖) of a Banach space (A, ‖ · ‖),
together with an associative bilinear multiplication

mA : A×A → A, (a, b) 7→ ab

for which the norm ‖ · ‖ is submultiplicative, i.e.,

‖ab‖ ≤ ‖a‖ · ‖b‖ for a, b ∈ A.

By abuse of notation, we call A a Banach algebra, if the norm and the multiplication are
clear from the context.
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A unital Banach algebra is a pair (A,1) of a Banach algebra A and an element 1 ∈ A
satisfying 1a = a1 = a for each a ∈ A and ‖1‖ = 1. The subset

A× := {a ∈ A : (∃b ∈ A) ab = ba = 1}

is called the unit group of A (cf. Exercise 1.4).

Example 1.2. (a) If (X, ‖ · ‖) is a Banach space, then the space B(X) of continuous linear
operators A : X → X is a unital Banach algebra with respect to the operator norm

‖A‖ := sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1}

and composition of maps. Note that the submultiplicativity of the operator norm, i.e.,

‖AB‖ ≤ ‖A‖ · ‖B‖,

is an immediate consequence of the estimate

‖ABx‖ ≤ ‖A‖ · ‖Bx‖ ≤ ‖A‖ · ‖B‖ · ‖x‖ for x ∈ X.

In this case the unit group is also denoted GL(X) := B(X)×.
(b) If X is a compact space and A a Banach algebra, then the space C(X,A) of A-valued

continuous functions on X is a Banach algebra with respect to pointwise multiplication
(fg)(x) := f(x)g(x) and the norm

‖f‖ := sup
x∈X
‖f(x)‖

(Exercise 1.3).

Example 1.3. For any norm ‖ · ‖ on Cn, the canonical basis e1, . . . , en of Cn yields an
isomorphism of algebras Mn(C) ∼= B(Cn), so that GLn(C) ∼= GL(Cn).

Remark 1.4. In a Banach algebra A, the multiplication is continuous because an → a and
bn → b implies ‖bn‖ → ‖b‖ and therefore

‖anbn − ab‖ = ‖anbn − abn + abn − ab‖ ≤ ‖an − a‖ · ‖bn‖+ ‖a‖ · ‖bn − b‖ → 0.

In particular, left and right multiplications

λa : A → A, x 7→ ax, and ρa : A → A, x 7→ xa,

are continuous with
‖λa‖ ≤ ‖a‖ and ‖ρa‖ ≤ ‖a‖. (2)

Proposition 1.5. The unit group A× of a unital Banach algebra is an open subset.

Proof. The proof is based on the convergence of the Neumann series
∑∞
n=0 x

n for ‖x‖ < 1.
For any such x we have

(1− x)

∞∑
n=0

xn =
( ∞∑
n=0

xn
)

(1− x) = 1,

so that 1− x ∈ A×. We conclude that the open unit ball B1(1) is contained in A×.
Next we note that left multiplications λg : A → A with elements g ∈ A× are continuous

(Remark 1.4), hence homeomorphisms because λ−1
g = λg−1 is also continuous. Therefore

gB1(1) = λgB1(1) ⊆ A× is an open subset, showing that g is an interior point of A×. Hence
A× is open.
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Definition 1.6. (a) An involutive algebra, or ∗-algebra A is a pair (A, ∗) of a complex algebra
A and a map A → A, a 7→ a∗, satisfying

(I1) (a∗)∗ = a (Involutivity)

(I2) (λa+ µb)∗ = λa∗ + µb∗ (Anti-linearity).

(I3) (ab)∗ = b∗a∗ (∗ is an antiautomorphism of A).

Then ∗ is called an involution on A.
(b) A Banach-∗-algebra is an involutive algebra (A, ∗), where A is a Banach algebra and

‖a∗‖ = ‖a‖ holds for each a ∈ A. If, in addition,

‖a∗a‖ = ‖a‖2 for all a ∈ A,

then (A, ∗) is called a C∗-algebra.

Example 1.7. (a) The algebra B(H) of bounded operators on a complex Hilbert space H
is a C∗-algebra. Here the main point is that, for each A ∈ B(H), we have

‖A‖ = sup{|〈v,Aw〉| : ‖v‖, ‖w‖ ≤ 1},

which immediately implies that ‖A∗‖ = ‖A‖. It also implies that

‖A∗A‖ = sup{|〈Av,Aw〉| : ‖v‖, ‖w‖ ≤ 1} ≥ sup{‖Av‖2 : ‖v‖ ≤ 1} = ‖A‖2,

and since ‖A∗A‖ ≤ ‖A∗‖ · ‖A‖ = ‖A‖2 by Example 1.2, we see that B(H) is a C∗-algebra.
(b) From (a) it immediately follows that every closed ∗-invariant subalgebra of A ⊆ B(H)

also is a C∗-algebra. 5

(c) If X is a compact space, then the Banach space C(X) := C(X,C), endowed with

‖f‖ := sup
x∈X
|f(x)|

is a C∗-algebra with respect to f∗(x) := f(x). In this case ‖f∗f‖ = ‖|f |2‖ = ‖f‖2 is trivial.
For the finite set X = n := {1, . . . , n}, we obtain in particular the C∗-algebra

C(n,C) = Cn ∼= Cn

with

(z1, . . . , zn)(w1, . . . , wn) = (z1w1, . . . , znwn), (z1, . . . , zn)∗ = (z1, . . . , zn)

and
‖(z1, . . . , zn)‖ = max{|zj | : j = 1, . . . , n}.

(d) If X is a locally compact space, then we say that a continuous function f : X → C
vanishes at infinity if, for each ε > 0, there exists a compact subset K ⊆ X with |f(x)| ≤ ε
for x 6∈ K. We write C0(X) := C0(X,C) for the set of all continuous functions vanishing at
infinity and endow it with the norm

‖f‖ := sup
x∈X
|f(x)|.

5We shall show later that every C∗-algebra can be realized as a closed ∗-subalgebra of some B(H) (Gelfand–
Naimark Theorem 3.12).
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(cf. Exercise 1.5). Then C0(X,C) is a C∗-algebra with respect the involution f∗(x) := f(x).6

(e) Let J be a set and `∞(J,C) be the Banach space of all bounded complex-valued
functions x : J → C, j 7→ xj , endowed with the norm

‖x‖∞ := sup{|xj | : j ∈ J}.

Then `∞(J,C) is a C∗-algebra with respect to pointwise multiplication and the involution
defined by (x∗)j := xj .

The following class of examples of Banach-∗-algebras is rarely C∗, but it provides impor-
tant constructions of C∗-algebras. In this example we use the Banach space

`1(S) := `1(S,C) :=
{
a : S → C :

∑
s∈S
|a(s)| <∞

}
which carries the norm

‖a‖1 :=
∑
s∈S
|a(s)| := sup

{∑
s∈F
|a(s)| : F ⊆ S finite

}
.

In measure theoretic terms this is the L1-space with respect to the counting measure on the
measurable space (S, 2S) defined by

µ(E) = |E| for E ⊆ S.

Note that, for every a ∈ `1(S), the set

{s ∈ S : a(s) 6= 0} =
⋃
N∈N

{
s ∈ S : |a(s)| ≥ 1

N

}
is a countable union of finite sets, hence countable or finite. If it is infinite, then any enu-
meration (sn)n∈N of this set leads to the same absolutely convergent series∑

s∈S
a(s) :=

∑
n∈N

a(sn) (3)

(the integral with respect to the counting measure). In this sense we shall always interpret
sums over arbitrary index sets.

Example 1.8. (a) Let (S, ∗) be an involutive semigroup, i.e., a semigroup, endowed with
an involution s 7→ s∗ satisfying (st)∗ = t∗s∗ for s, t ∈ S. We consider the complex Banach
space `1(S) which carries a natural Banach ∗-algebra structure given by the convolution
product

(a ∗ b)(s) :=
∑

s1s2=s

a(s1)b(s2) and a∗(s) := a(s∗) for s ∈ S, a, b ∈ `1(S).

Here the sum defining a ∗ b has to be understood as a sum over all pairs (s1, s2) ∈ S × S
satisfying s1s2 = s. It is absolutely convergent in the set of (3) because∑

s1s2=s

|a(s1)b(s2)| ≤
∑

(s1,s2)∈S×S

|a(s1)b(s2)| ≤
∑
s1∈S

|a(s1)| ·
∑
s2∈S

|b(s2)| = ‖a‖1‖b‖1

6We shall see later that every commutative C∗-algebra is isomorphic to some C0(X) (Gelfand Represen-
tation Theorem 2.2).
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holds for every s ∈ S. We even obtain

‖a ∗ b‖1 =
∑
s∈S

∑
s1s2=s

|a(s1)b(s2)| ≤
∑

(s1,s2)∈S×S

|a(s1)| · |b(s2)| = ‖a‖1‖b‖1.

The nature of these operations is best understood in terms of the “basis elements” (δs)s∈S ,
given by δs(t) = δs,t (Kronecker delta). Then

δs ∗ δt = δst and δ∗s = δs∗ ,

so that δ : S → `1(S), s 7→ δs is a homomorphism of involutive semigroups. Further, each
a ∈ `1(S) can be expressed as the norm convergent sum of the basis elements

a =
∑
s∈S

a(s)δs, a∗ =
∑
s∈S

a(s)δs∗ and a ∗ b =
∑
s,t∈S

a(s)b(t)δst.

(b) An important special case arises if G is a group and g∗ := g−1. Then `1(G) is called
the `1-group algebra of the (discrete) group G. It contains a “copy” of the group through the
basis elements (δg)g∈G, satisfying

δgδh = δgh and δ−1
g = δ∗g = δg−1 for g, h ∈ G.

1.2 Some spectral theory

We now take a closer look at C∗-algebras. We shall need some results from spectral theory,
in particular the concept of the spectrum of an element of a Banach algebra and some of its
properties. We shall continue our investigations in Section 2 with a complete description of
commutative C∗-algebras.

We recall some basic facts on spectra of operators. The most natural context for spectral
theory is a unital complex Banach algebra A but the definition of the spectrum and the
resolvent make sense in any unital algebra. For a ∈ A, its spectrum is defined as

σ(a) := {λ ∈ C : λ1− a 6∈ A×}

and
ρ(a) := {λ ∈ C : λ1− a ∈ A×} = C \ σ(a)

is called the resolvent set of a. Since the unit group A× is open (Proposition 1.5), σ(a) is a
closed subset of C. Further, λ > ‖a‖ implies that λ1− a = λ(1− a/λ) is invertible because∥∥λ−1a‖ < 1. Therefore σ(a) is also bounded, hence compact. The first non-trivial fact on
the spectrum is that it is always non-empty.7

If the algebra A is not unital, then we enlarge it to the Banach algebra A+ := A × C
with

(a, t)(a′, t′) := (aa′ + ta′ + t′a, tt′) and ‖(a, t)‖ := ‖a‖+ |t|,

(Exercise 1.4) and define, for a ∈ A the spectrum as

σ(a) := σ(a, 0) = {λ ∈ C : λ1− (a, 0) = (−a, λ) ∈ A×+}.
7The idea of the proof is quite simple. If σ(a) = ∅, then the resolvent R(λ) := (λ1−a)−1 defines an entire

function R : C → A. Easy estimates based on the Neumann series show that R is bounded, hence constant
by Liouville’s Theorem, and this leads to a contradiction.
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Then 0 ∈ σ(a) because elements of the form (a, 0) are contained in the ideal A× {0} E A+,
so that they are never invertible.

We shall also need that the spectral radius

r(a) := max{z ∈ C : z ∈ σ(a)}

and can be calculated by Gelfand’s Formula:

r(a) = lim
n→∞

‖an‖ 1
n = inf{‖an‖ 1

n : n ∈ N}. (4)

Example 1.9. (a) Let X be a compact space and A = C(X) the commutative C∗-algebra
of continuous functions f : X → C. Its unit group

A× = {f ∈ A : f(X) ⊆ C×}

consists of functions with no zeros because, for any such function, the pointwise inverse is
continuous (Exercise 1.3). This implies that λ1− f is invertible if and only if λ 6∈ f(X), and
thus the spectrum

σ(f) = f(X)

is the set of all values of a function.
(b) For A = Mn(C) ∼= B(Cn) and A ∈ A, we have

σ(A) = {λ ∈ C : det(λ1−A) = 0},

which is the set of eigenvalues of A.

Proposition 1.10. (Gelfand–Mazur)8 If A is a unital complex Banach algebra in which
every non-zero element is invertible, then A ∼= C.

Proof. Let a ∈ A. As σ(a) 6= ∅, there exist a λ ∈ C for which λ1 − a is not invertible, and
this implies a = λ1.

Lemma 1.11. Let ϕ : A → B a homomorphism of unital complex algebras. Then

σ
(
ϕ(a)

)
⊆ σ(a) for every a ∈ A.

Proof. We show that ρ(a) ⊆ ρ
(
ϕ(a)

)
. Let λ ∈ C with λ1 − a ∈ A× and b = (λ1 − a)−1.

Then
ϕ(λ1− a)ϕ(b) = ϕ((λ1− a)b) = ϕ(1) = 1

and likewise ϕ(b)ϕ(λ1− a) = 1. Therefore ϕ(λ1− a) is invertible in B, i.e., λ ∈ ρ
(
ϕ(a)

)
.

Definition 1.12. Let A be a ∗-algebra and a ∈ A. We say that a is

• hermitian if a = a∗. We write Ah ⊆ A of the real linear subspace of hermitian elements.

• skew-hermitian if a = −a∗.

• normal if aa∗ = a∗a.

8This result was announced without proof in 1938 by Mazur in a short note published in the
C. R. Acad. Sci. Paris. The first proof was given in 1941 in a paper by I. M. Gelfand in which he laid
the foundations for the theory of Banach algebras.
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• unitary if aa∗ = a∗a = 1 (if A is unital).

Lemma 1.13. Let A be a Banach algebra.

(i) Hermitian elements are normal.

(ii) For every a ∈ A, the element aa∗ is hermitian.

(iii) If a and b are hermitian, then ab is hermitian if and only if ab = ba.

(iv) A = Ah ⊕ iAh, every element a ∈ A has a unique decomposition a = b + ic with b, c
hermitian.

(v) If b, c are hermitian, then b+ ic is normal if and only if bc = cb.

(vi) If 1 ∈ A is a left identity, i.e., 1a = a for every a ∈ A, then it is an identity and

(a−1)∗ = (a∗)−1 for a ∈ A×.

Proof. (i)-(iv) are very elementary.
(v) follows from

(b+ ic)(b− ic) = b2 + c2 + i(cb− bc) and (b− ic)(b+ ic) = b2 + c2 + i(bc− cb).

(vi) If 1 is a left identity, then a1∗ = (1a∗)∗ = (a∗)∗ = a, implies that 1∗ is a right
identity. Hence 1∗ = 11∗ = 1 implies that 1 is an identity.

For a ∈ A×, the relation aa−1 = a−1a = 1 implies (a−1)∗a∗ = a∗(a−1)∗ = 1, and the
assertion follows.

Proposition 1.14. (Unitization of C∗-algebras) For a C∗-algebra A, the following assertions
hold:

(i) For the left multiplication La : x 7→ ax, we have ‖La‖ = ‖a‖. In particular, ‖1‖ = 1
whenever A has an identity.

(ii) If A has no identity, then the Banach algebra A+ = A×C is a C∗-algebra with respect
to (a, λ)∗ = (a∗, λ) and the norm ‖(a, λ)‖ := ‖L(a,λ)‖, where L(a,λ)x = ax + λx is the
corresponding multiplication operator on A.

Proof. (i) The submultiplicativity of the norm implies ‖La‖ ≤ ‖a‖. Further, the relation
‖aa∗‖ = ‖a‖2 = ‖a‖ · ‖a∗‖ implies that ‖La‖ ≥ ‖a‖. We thus obtain equality.

If 1 ∈ A is an identity, then L1 = idA implies ‖L1‖ = 1.
(ii) We consider the algebra homomorphism

L : A+ → B(A), (a, λ) 7→ L(a,λ) = La + λ idA .

First we show that L is injective. Suppose that L(a,λ) = 0. If λ = 0, then 0 = ‖L(a,0)‖ =
‖La‖ = ‖a‖ implies a = 0. If λ 6= 0, after replacing a by −λ−1a, we may w.l.o.g. assume that
λ = −1. Then ax− x = 0 for every x ∈ A, i.e., a is a left identity, hence also an identity by
Lemma 1.13(vi); this contradicts our assumption. Therefore L is injective and

‖(a, λ)‖ := ‖L(a,λ)‖ = sup{‖(ab+ λb)‖ : b ∈ A, ‖b‖ ≤ 1}
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defines a norm on A+. By (i), this norm extends the given norm on A. It is also clear that
this norm is submultiplicative (it is an operator norm).
A+ is complete: Since the inclusion A ↪→ A× {0}, a 7→ (a, 0) is isometric, its image is a

complete, hence closed, hyperplane in A+. Hence the linear functional

χ : A+ → C, χ(a, λ) := λ

has a closed kernel and therefore is continuous (Exercise 1.1). If (an, λn)n∈N is a Cauchy
sequence in A+, then the continuity of χ implies that (λn)n∈C is a Cauchy sequence in
C, hence convergent, and therefore (an, 0) = (an, λn) − (0, λn) is a Cauchy sequence in
A×{0} ∼= A by (i). Therefore it converges to a limit a ∈ A and now (an, λn)→ (a, λ). This
shows that A+ is complete, hence a Banach algebra.

Next we show that
‖x‖2 ≤ ‖x∗x‖ for x ∈ A+. (5)

To verify (5), let x ∈ A+. For every r < ‖x‖ = ‖Lx‖, there exists a y ∈ A with ‖y‖ ≤ 1 and
‖xy‖ ≥ r. As xy ∈ A, we obtain

‖x∗x‖ ≥ ‖y∗(x∗x)y‖ = ‖(xy)∗xy‖ = ‖xy‖2 ≥ r2,

and therefore ‖x∗x‖ ≥ ‖x‖2. From (5) we derive

‖x‖2 ≤ ‖x∗x‖ ≤ ‖x∗‖ · ‖x‖.

For x 6= 0 this implies ‖x‖ ≤ ‖x∗‖, and, replacing x by x∗, also ‖x∗‖ ≤ ‖x‖, so that
‖x‖ = ‖x∗‖. Now we also get the C∗-property from ‖x‖2 ≤ ‖x∗x‖ ≤ ‖x∗‖‖x‖ = ‖x‖2. This
completes the proof that A+ is a C∗-algebra.

Example 1.15. (One point compactification) Let X be a non-compact locally compact space
and A = C0(X) be the non-unital C∗-algebra of continuous functions vanishing at infinity.
For this algebra, the unitization A+ has a natural concrete realization as the algebra C(Xω),
where Xω = X∪̇{ω} is the one-point compactification (or Alexandrov compactification) of
X (Exercise A.1).

In fact, we have an open embedding η : X → Xω whose image is the complement of the
point ω. By Exercise 2.2, the map

η∗ : C∗(Xω) := {f ∈ C(Xω) : f(ω) = 0} → C0(X), f 7→ f ◦ η = f |X

is an isomorphism of C∗-algebras, so that we may identify A with C∗(Xω). Accordingly, the
natural map

Φ: A+ → C(Xω), (f, λ) 7→ f + λ1

is a bijective ∗-homomorphism. That it is isometric follows from the relation

‖f‖ = sup{‖fh‖ : h ∈ C∗(Xω) : ‖h‖ ≤ 1},

which can be derived from Urysohn’s Theorem A.16.

Example 1.16. If H is an infinite dimensional Hilbert space, then the algebra A := K(H)
of compact operators on H is a non-unital C∗-algebra.

We claim that, for every M ∈ B(H), we have

‖M‖ = sup{‖MA‖ : A ∈ K(H), ‖A‖ ≤ 1}. (6)
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In fact, for v ∈ H with ‖v‖ = 1, the orthogonal projection Pv(w) := 〈v, w〉v onto Cv is a
rank-one operator (hence compact), and ‖Pv‖ = 1. Further, APv(w) = 〈v, w〉Av satisfies
APv(v) = Av, so that ‖Av‖ = ‖APv‖, and thus ‖A‖ = sup‖v‖=1 ‖APv‖.

Comparing with the definition of the norm on A+ in Proposition 1.14, it follows that

K(H)+
∼= K(H) + C1 ⊆ B(H)

is realized as a C∗-subalgebra of B(H).

We now observe some specific spectral properties of C∗-algebras:

Lemma 1.17. Let A be a C∗-algebra and a ∈ A.

(i) σ(a∗) = σ(a) = {z : z ∈ σ(a)}.

(ii) If a is normal, then r(a) = ‖a‖.

(iii) ‖a‖ =
√
r(a∗a).

(iv) If a is hermitian, then σ(a) ⊆ R.

Proof. In view of Proposition 1.14, we may assume that A is unital.
(i) According to Lemma 1.13(vi), the element a−λ1 is invertible if and only if the element

(a− λ1)∗ = a∗ − λ1 is.
(ii) Since a is normal, we have

‖a2‖2 = ‖a2(a2)∗‖ = ‖aaa∗a∗‖ = ‖aa∗aa∗‖ = ‖(aa∗)(aa∗)∗‖ = ‖aa∗‖2 = ‖a‖4.

Therefore ‖a2‖ = ‖a‖2. Since all powers of a are normal as well, we inductively obtain

‖a2n‖ = ‖a‖2
n

for n ∈ N,

so that Gelfand’s formula (4) yields

r(a) = lim
n→∞

‖a2n‖ 1
2n = ‖a‖.

(iii) follows from ‖a‖ =
√
‖a∗a‖ =

√
r(a∗a), where the last equality holds by (ii).

(iv) Let α+ iβ ∈ σ(a). We claim that β = 0. For every λ ∈ R, we have

α+ i(β + λ) ∈ σ(a) + iλ = σ(a+ iλ1)

(Exercise 1.11), so that (ii) yields

|α+ i(β + λ)| ≤ ‖a+ iλ1‖ for all λ ∈ R.

Now we calculate

α2 + (β + λ)2 = |α+ i(β + λ)|2 ≤ ‖a+ iλ1‖2

= ‖(a+ iλ1)∗(a+ iλ1)‖ = ‖a2 + λ21‖ ≤ ‖a‖2 + λ2.

This implies α2 + β2 + 2βλ ≤ ‖a‖2 for every λ ∈ R, so that β = 0.
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Lemma 1.17(iii) is an important observation which shows that the norm of a C∗-algebra
is completely determined by the algebra structure. A particularly surprising consequence is
the following:

Proposition 1.18. Let A be a Banach-∗-algebra and B be a C∗-algebra. Then every homo-
morphism ϕ : A → B of ∗-algebras is continuous with ‖ϕ‖ ≤ 1.

Proof. First we observe that ϕ(a, λ) := (ϕ(a), λ) defines an extension to B+ → A+. Since B+

is a Banach-∗-algebra and A+ is a C∗-algebra by Proposition 1.14, we may w.l.o.g. assume
that B and A are unital. From Lemma 1.11 we know that, for a ∈ A, we have

σ(ϕ(a)∗ϕ(a))) = σ(ϕ(a∗a)) ⊆ σ(a∗a).

With Lemma 1.17 this leads to

‖ϕ(a)‖2 = r(ϕ(a)∗ϕ(a)) ≤ r(a∗a) ≤ ‖a∗a‖ ≤ ‖a‖2.

The following categorical construction in an interesting application of the preceding propo-
sition.9

Definition 1.19. (The enveloping C∗-algebra) [Sketch] Let A be a Banach-∗-algebra. In
Proposition 1.18 we have seen that, every homomorphism α : A → B into a C∗-algebra is a
contraction, i.e., ‖α‖ ≤ 1, and in particular continuous. Therefore

p(a) := sup{‖α(a)‖ : α : A → B a linear ∗-homo., B a C∗-alg.} ≤ ‖a‖

exists. Then p is a submultiplicative seminorm because all functions a 7→ ‖α(a)‖ are sub-
multiplicative seminorms on A. In addition,

p(a∗a) = sup
α
‖α(a∗a)‖ = sup

α
‖α(a)∗α(a)‖ = sup

α
‖α(a)‖2 = p(a)2.

The function p is called the maximal C∗-seminorm on A.
It defines a continuous function on A because

|p(a)− p(b)| ≤ p(a− b) ≤ ‖a− b‖ for a, b ∈ A.

Therefore the subspace I := p−1(0) =
⋂
α ker(α) is a closed ∗-ideal, so that A/I inherits the

structure of a Banach-∗-algebra through which all homomorphisms to C∗-algebras factorize
(Exercise 2.3). Further p defines a norm p′ on A/I. We write C∗(A) for the completion
of (A/I, p′). Extending the multiplication, the involution and the norm by continuity to
C∗(A), we see that the relation p′(a∗a) = p′(a)2 for a ∈ C∗(A) implies that C∗(A) actually
is a C∗-algebra (Exercise 1.9). Further,

η : A → C∗(A), a 7→ a+ I

is a morphism of Banach-∗-algebras through which all morphisms ϕ : A → B to a C∗-algebra
B factor because any such ϕ satisfies I ⊆ kerϕ.

Example 1.20. The following example shows that there are Banach-∗-algebras for which
the map η : A → C∗(A) into their enveloping C∗-algebra is not injective.

The most extreme cases arise if A is a Banach-∗-algebra with the zero multiplication
ab = 0 for all a, b ∈ A. Then every ∗-homomorphism α : A → B, B a C∗-algebra, vanishes
because of

‖α(a)‖2 = ‖α(a∗a)‖ = 0.

Hence C∗(A) = {0}.
9In the language of categories, it provides an adjoint to the forgetful functor from the category of C∗-

algebras to the category of Banach-∗-algebras.
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Exercises for Section 1

Exercise 1.1. Let X be a Banach space over K and α : X → K be a linear functional. Show that
α is continuous if and only if kerα is closed.
Hint: If 0 6= α has a closed kernel and α(x0) = 1, then there exists a ball BXr (x0) intersecting kerα
trivially; conclude that α(BXr (0)) ⊆ BK

1 (0) and further that ‖α‖ ≤ r−1.

Exercise 1.2. Consider the 3-element group G := Z/3Z. We consider G as an involutive semigroup
with g∗ = g−1. Show that the corresponding Banach-∗-algebra `1(G) from Example 1.8 is not a
C∗-algebra.
Hint: Consider the element a := δ0 − δ1 − δ2.

Exercise 1.3. Let X be a compact space and A be a Banach algebra. Show that:

(a) The space C(X,A) of A-valued continuous functions on X is a complex associative algebra
with respect to pointwise multiplication (fg)(x) := f(x)g(x).

(b) ‖f‖ := supx∈X ‖f(x)‖ is a submultiplicative norm on C(X,A) for which C(X,A) is complete,
hence a Banach algebra. Hint: Continuous functions on compact spaces are bounded and
uniform limits of sequences of continuous functions are continuous.

(c) C(X,A)× = C(X,A×).

(d) If A is a C∗-algebra, then C(X,A) is also a C∗-algebra with respect to the involution f∗(x) :=
f(x)∗, x ∈ X.

Exercise 1.4. Let A be a Banach algebra over K ∈ {R,C}. If A has no unit, we cannot directly
associate a “unit group” to A. However, there is a natural way to do that by considering on A the
multiplication

x ∗ y := x+ y + xy.

Show that:

(a) The space A+ := A×K is a unital Banach algebra with respect to the multiplication

(a, t)(a′, t′) := (aa′ + ta′ + t′a, tt′) and ‖(a, t)‖ = ‖a‖+ |t|.

(b) The map η : A → A+, x 7→ (x, 1) is injective and satisfies η(x ∗ y) = η(x)η(y). Conclude in
particular that (A, ∗, 0) is a monoid, i.e., a semigroup with neutral element 0.

(c) An element a ∈ A is said to be quasi-invertible if it is an invertible element in the monoid
(A, ∗, 0). Show that the set A× of quasi-invertible elements of A is an open subset and that
(A×, ∗, 0) is a group.

Exercise 1.5. Let X be a locally compact space. We say that a continuous function f : X → C
vanishes at infinity if, for each ε > 0, there exists a compact subset K ⊆ X with |f(x)| ≤ ε for
x 6∈ K. We write C0(X) for the set of all continuous C-valued functions vanishing at infinity. Show
that:

(a) The space C0(X) is a commutative complex ∗-algebra with respect to pointwise multiplication
(fg)(x) := f(x)g(x) and f∗(x) := f(x).

(b) ‖f‖ := supx∈X ‖f(x)‖ is a submultiplicative norm on C0(X) for which C0(X) is a C∗-algebra.

Exercise 1.6. Let A ⊆ B(H) be a ∗-invariant subspace and Ah := {a ∈ A : a∗ = a} the subspace
of hermitian elements in A. Show that

A = Ah ⊕ iAh.

In particular A = spanCAh.
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Exercise 1.7. Let V be a K-vector space and A ∈ End(V ). We write Vλ(A) := ker(A − λ1) for
the eigenspace of A corresponding to the eigenvalue λ and V λ(A) :=

⋃
n∈N ker(A − λ1)n for the

generalized eigenspace of A corresponding to λ. Show that, if A,B ∈ End(V ) commute, then

BV λ(A) ⊆ V λ(A) and BVλ(A) ⊆ Vλ(A)

holds for each λ ∈ K.

Exercise 1.8. Let V be a vector space which is the direct sum

V = V1 ⊕ · · · ⊕ Vn

of the subspaces Vi, i = 1, . . . , n. Accordingly, we write v ∈ V as a sum v = v1 + · · · + vn with
vi ∈ V . To each ϕ ∈ End(V ) we associate the map ϕij ∈ Hom(Vj , Vi), defined by ϕij(v) = ϕ(v)i for
v ∈ Vj . Show that

(a) ϕ(v)i =
∑n
j=1 ϕij(vj) for v =

∑n
j=1 vj ∈ V .

(b) The map

Γ:

n⊕
i,j=1

Hom(Vj , Vi)→ End(V ), Γ((ψij))(v) :=

n∑
i,j=1

ψij(vj)

is a linear isomorphism. In this sense we may identify endomorphisms of V with (n × n)-
matrices with entries in Hom(Vj , Vi) in position (i, j).

(c) If V is a Banach space and each Vi is a closed subspace, then the map

S : V1 × · · · × Vn → V, (v1, . . . , vn) 7→
n∑
i=1

vi

is a homeomorphism. Moreover, a linear endomorphism ϕ : V → V is continuous if and only if
each ϕij is continuous. Hint: For the first assertion use the Open Mapping Theorem. Conclude
that if ιi : Vi → V denotes the inclusion map and pj : V → Vj the projection map, then both
are continuous. Then use that ϕij = pi ◦ ϕ ◦ ηj .

Exercise 1.9. Let A be a Banach-∗-algebra. A norm q on A is called a C∗-norm if

q(ab) ≤ q(a)q(b), q(a∗) = q(a) and q(a∗a) = q(a)2 for a, b ∈ A.

Let Aq denote the completion of A with respect to the norm q and show that:

(i) The multiplication on A extends continuously to a bilinear associative multiplication on Aq.
(ii) The involution ∗ extends isometrically to an antilinear involution on Aq.
(iii) Aq is a C∗-algebra.

How do we have to modify the construction if q is only assumed to be a seminorm?

Exercise 1.10. (Consistency of the definition of the spectrum) Let A be a complex algebra and
A+ = A× C denote its unitization with the multiplication

(a, t)(a′, t′) = (aa′ + ta′ + t′a, tt′), a, a′ ∈ A, t, t′ ∈ C.

Suppose that A has a unit 1 and show that, in this case, for every element a ∈ A, we have

σA(a) ∩ C× = σA+(a, 0) ∩ C×.

Hint: Show that A+ = A ⊕ C(−1, 1) ∼= A ⊕ C is a direct sum of unital algebras in which the
multiplication of the elements [a, t] := (a, 0) + t(−1, 1) takes the form [a, t] ∗ [a′, t′] = [aa′, tt′].

Exercise 1.11. Let A be a unital complex algebra and a ∈ A. Show that

σ(a+ λ1) = σ(a) + λ for all λ ∈ C.
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2 C∗-algebras

In this section we take a closer look at C∗-algebras. First we describe the structure of commu-
tative C∗-algebras by showing that every commutative C∗-algebra A is isomorphic to C0(X)
for some locally compact space X which is compact if A has a unit (Gelfand Representation
Theorem) (Subsection 2.1). Since every normal element a in a non-commutative C∗-algebra
A generates a commutative subalgebra C∗(a), Gelfand’s theorem applies to this subalgebra,
and we actually show that C∗(a) ∼= C(σ(a)) (Subsection 2.2). From that we further derive
that the spectrum of a is the same in all C∗-subalgebras B ⊆ A containing a. This permits
us in Subsection 2.3 to say that a hermitian element a is positive (a ≥ 0) if σ(a) ⊆ [0,∞). By
Kaplansky’s Theorem, the positive elements of a C∗-algebra A. are precisely the products
b∗b, b ∈ A. This characterization further leads to the notion of a positive functional studied
in Subsections 2.4 and 2.5.

2.1 Commutative C∗-algebras

Let A be a commutative Banach algebra. We write Hom(A,C) for the set of all algebra
homomorphism χ : A → C, i.e., χ satisfies the following relations

χ(a+ b) = χ(a) + χ(b), χ(λa) = λχ(a) and χ(ab) = χ(a)χ(b) (7)

for all a, b ∈ A, λ ∈ C.
To obtain a suitable topology on Hom(A,C), we consider it as a subset of the space CA

of all functions A → C, which we endow with the coarsest topology for which all evaluation
maps

â : Hom(A,C)→ C, χ 7→ χ(a)

for a ∈ A, are continuous (Section A.1).10 It coincides with the subspace topology inherited
from the product topology of CA. As the functions â separate the points of Hom(A,C), it is
a Hausdorff space.

Since the set Hom(A,C) is defined by the equations (7), it coincides with

{χ ∈ CA : (∀a, b ∈ A, λ ∈ C) â(χ) + b̂(χ) = â+ b(χ), λ̂a(χ) = λâ(χ), â(χ)̂b(χ) = âb (χ)},

and this is a closed subset of CA because all the functions â are continuous on CA.
Further, ‖χ‖ ≤ 1 for any χ ∈ Hom(A,C) by Exercise 2.1, so that

Hom(A,C) ⊆
∏
a∈A
{z ∈ C : |z| ≤ ‖a‖} = {χ ∈ CA : (∀a ∈ A)|χ(a)| ≤ ‖a‖}.

This subset is compact by Tychonov’s Theorem. Therefore the topology of pointwise con-
vergence turns Hom(A,C) into a compact space.

Lemma 2.1. With respect to the topology of pointwise convergence, the set Hom(A,C) is
compact and the subset

Â := Hom(A,C) \ {0}

is locally compact.

10This topology is also called the topology of pointwise convergence.
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Since each function â : Hom(A,C)→ C is continuous and vanishes in the 0-functional,

â ∈ {f ∈ C(Hom(A,C)) : f(0) = 0} ∼= C0(Â)

(Exercise 2.2). Further,
|â(χ)| = |χ(a)| ≤ ‖χ‖‖a‖ ≤ ‖a‖ (8)

(Exercise 2.1). We thus obtain a map

G : A → C0(Â), a 7→ â,

called the Gelfand transform. For a, b ∈ A and χ ∈ Â, we have

G(ab)(χ) = χ(ab) = χ(a)χ(b) = G(a)(χ)G(b)(χ),

so that G is a morphism of Banach algebras, i.e., a continuous homomorphism compatible
with the involution. By (8), we have ‖G‖ ≤ 1 (cf. also Proposition 1.18 if A is a Banach-∗-
algebra).

The following theorem provides a concrete description of all commutative C∗-algebras. It
is a key tool for all deeper results on operator algebras.

Theorem 2.2. (Gelfand Representation Theorem) If A is a commutative C∗-algebra, then
the Gelfand transform

G : A → C0(Â)

is an isometric isomorphism. If A is unital, then Â is compact and A ∼= C(Â).

Proof. First we assume that A is unital.
For any χ ∈ Â we then have χ(1) = 1 (Exercise 2.1), so that

Â = {χ ∈ Hom(A,C) : χ(1) = 1} = 1̂−1(1)

is a closed subset of the compact set Hom(A,C) and therefore compact.
If χ : A → C is a non-zero homomorphism and χ(a) = λ, then λ ∈ σ(a) follows from

{λ} = σC(χ(a)) ⊆ σA(a) (Lemma 1.11). For a = a∗, Lemma 1.17(iv) implies σ(a) ⊆ R, so
that χ(a) ∈ R. For two hermitian elements b, c ∈ A, this leads to

χ((b+ ic)∗) = χ(b− ic) = χ(b)− iχ(c) = χ(b) + iχ(c) = χ(b+ ic).

Therefore every homomorphism χ : A → C is automatically compatible with the involution
and the Gelfand transform is a homomorphism of C∗-algebras.

Let a ∈ A. Since every element of A is normal, Lemma 1.17(ii) implies that r(a) = ‖a‖.
Next we show that

σ(a) = {χ(a) : χ ∈ Â}.

We have already seen that ⊇ holds, so it remains to verify the converse. If λ ∈ σ(a), then
λ1−a is not invertible, so that I := (λ1−a)A is a proper ideal. Let J ⊇ I be a maximal ideal
containing I. The existence of such ideals follows from Zorn’s Lemma because, for each chain
of ideals (Ij)j∈J , the union

⋃
j Ij is a an ideal which does not intersect A×, so it is proper.

As A× is open, the closure of J also is an ideal intersecting A× trivially; by maximality it
follows that J is closed. We thus obtain a quotient Banach algebra Q := A/J (Exercise 2.3).
Let q : A → Q denote the quotient homomorphism. Then the inverse image of every ideal
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in Q is an ideal in A. As J is maximal, the ideal {0} is maximal in Q, and therefore every
non-zero element is invertible. By the Gelfand–Mazur Theorem, there exists an isomorphism
ϕ : Q → C. Now χ := ϕ ◦ q : A → C is a homomorphism of unital Banach algebras with
λ1− a ∈ J = ker q ⊆ kerχ, hence χ(a) = λ. We conclude that σ(a) ⊆ {χ(a) : χ ∈ Â}, hence
that equality holds.

This proves that
‖a‖ = r(a) = ‖â‖∞,

and therefore G : A → C(Â) is isometric.
It remains to show that G is surjective. The image G(A) of the Gelfand transform is

a unital ∗-subalgebra of C(Â) separating the points of Â. Therefore the Stone–Weierstraß

Theorem (Corollary A.26) implies that G(A) is dense in C(Â). Since G is isometric, its range

is complete, hence closed, and this finally shows that G(A) = C(Â).

If A is not unital, then we embed A it into the commutative C∗-algebra A+ (Propo-
sition 1.14). By χ+(a, λ) := χ(a) + λ, every homomorphism A → C extends uniquely to a
unital homomorphism A+ → C. Now

Â+ = Hom(A+,C) \ {0} = Hom1(A+,C) := {χ ∈ Hom(A+,C) : χ(1) = 1},

and the embedding
Hom(A,C)→ Â+, χ 7→ χ+

is a homeomorphism (Exercise 2.15). From the unital case we know that GA+ : A+ → C(Â+)
is an isomorphism of C∗-algebras. It restricts to an isomorphism from A ∼= A×{0} = ker 0+

onto
C∗(Â+) = {f ∈ C(Â+) : f(0+) = 0},

which is isomorphic to C0(Â+ \ {0+}) ∼= C0(Â) (Exercise 2.2). Finally, the relation

GA+(a, 0)(χ+) = χ(a) = GA(a)(χ)

shows that this isomorphism is the Gelfand transform of A.

The following corollary will be the key to Schur’s Lemma (Theorem 3.13) in the repre-
sentation theory of ∗-algebras.

Corollary 2.3. If A is a unital C∗-algebra and dimA > 1, then there exist non-zero com-
muting elements a, b ∈ A with ab = 0.

Proof. Since A 6= C1, there exists an element x ∈ A \ C1. Writing x = y + iz with y∗ = y
and z∗ = z, it follows immediately that A contains a hermitian element a ∈ A \ C1. Let
C∗(a) ⊆ A be the closed unital subalgebra of A generated by a. Then C∗(a) is commutative
and larger than C1, hence isomorphic to C(X) for some compact space X (Theorem 2.2).
Then X contains at least two points x 6= y, and Urysohn’s Theorem A.16 implies the existence
of non-zero elements a, b ∈ C(X) ∼= C∗(a) with ab = 0.

By Gelfand’s Representation Theorem, commutative unital C∗-algebras A are of the form

C(X) for a compact space X. The following proposition shows that Ĉ(X) ∼= X, so that the
compact space in the Gelfand construction is unique.
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Proposition 2.4. If X is a compact space, then the map

Φ: X → Hom1(C(X),C), Φ(x) = δx, δx(f) = f(x)

is a homeomorphism. In particular, X ∼= Ĉ(X).

Proof. By definition of the topology on Hom(C(X),C), the map Φ is continuous because, for
every f ∈ C(X), the map

X → C, x 7→ Φ(x)(f) = δx(f) = f(x)

is continuous. Since the continuous functions on X separate the points by Urysohn’s Theo-
rem A.16, it is injective. As X is compact and Hom(C(X),C) is Hausdorff, Φ is a homeo-
morphism onto its image. It therefore remains to show that Φ is surjective.

So let χ : C(X) → C be a unital algebra homomorphism. Then its kernel N is a hyper-
plane and an algebra ideal and thus C(X) = N⊕C1. If there exists an x ∈ X withN ⊆ ker δx,
then the above direct sum decomposition implies that δx = χ because χ(1) = δx(1) = 1 and
δx(N ) = χ(N ) = {0}.

We now assume that no such x exists and derive a contradiction. For each x ∈ X, there
exists a function fx ∈ N with fx(x) 6= 0. Since X is compact, there exist finitely many
x1, . . . , xn ∈ X with

X ⊆
n⋃
j=1

{x ∈ X : fxj (x) 6= 0}.

Then

f :=

n∑
j=1

fxjfxj =

n∑
j=1

|fxj |2 ∈ N

satisfies f(x) > 0 for every x ∈ X and therefore f is invertible. This leads to the contradiction
that the proper ideal N = kerχ contains an invertible element.

Corollary 2.5. For a locally compact space X, the map

Φ: X → C0(X )̂ , Φ(x) = δx, δx(f) = f(x)

is a homeomorphism.

Proof. Let A := C0(X). We have seen in the last part of the proof of the Gelfand Representa-
tion Theorem that the map χ 7→ χ+ leads to a homeomorphism A+ → Hom1(A+,C) \ {0+}.
For x ∈ X, we have Φ(δx)+ = ΦXω (δx), and by Proposition 2.4, the map ΦXω is a

homeomorphism. Therefore the restriction to X yields the homeomorphism Φ onto Â ∼=
C(Xω )̂ \ {0+}.

2.2 Spectral calculus for normal elements

In this section we describe several applications of the Gelfand Representation Theorem to
not necessarily commutative unital C∗-algebras A. Here a key observation is that, for any
normal element a ∈ A, the closed subalgebra

C∗(a) := span{an(a∗)m : n,m ∈ N0} (9)
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is a commutative unital C∗-subalgebra of A. Gelfand’s Theorem asserts that it is isomorphic
to some C(X) and we now identify the compact space X with the spectrum σ(a) and draw
several important conclusion. One is that, for any unital C∗-subalgebra B ⊆ A containing
a, the spectrum σB(a) of a with respect to B coincides with σ(a). Another application is
that, we can define f(a) ∈ A for every continuous function f ∈ C(σ(a)). This is called the
continuous functional calculus.

Proposition 2.6. (Continuous spectral calculus for normal elements) Let a ∈ A be a nor-
mal element of the unital C∗-algebra A and let C∗(a) ⊆ A be the commutative unital C∗-
subalgebra generated by a. Then the exists a unique isomorphism of C∗-algebras

Φa : C(σ(a))→ C∗(a) with Φa(id) = a.

In particular, C∗(a) ∼= C(σ(a)) and Ĉ∗(a) ∼= σ(a).

In the following we write
f(a) := Φa(f).

Note that this notation is compatible with f(a) =
∑n
j=0 cja

j if f(x) =
∑n
j=0 cjx

j , resp.,

f =
∑n
j=0 cj idj is a polynomial.

Proof. From (9) and the continuity of the multiplication it follows that C∗(a) is a commuta-
tive C∗-algebra. Therefore Gelfand’s Representation Theorem 2.2 implies the existence of a
compact space X = Hom1(C∗(a),C) for which the Gelfand transform

G : C∗(a)→ C(X), b 7→ b̂

is an isomorphism of C∗-algebras. We claim that the function

â : X → â(X) ⊆ C

is a homeomorphism. Since C(X) separates the points of X and is generated by â, the
function â is injective. As X is compact, â : X → C is a topological embedding, so that we
may, from now on, identify X with a compact subset of C.

It remain to show that â(X) = σ(a). The inclusion σ(a) ⊆ σC∗(a)(a) = â(X) follows
from Lemma 1.11 and Example 1.9. For the converse inclusion, let λ ∈ X \ σ(a) and put
b := (a− λ1)−1 ∈ A. Let m > ‖b‖ and consider the continuous function

f : X → [0,m] ⊆ R, f(z) := mmax(0, 1−m|λ− z|).

Then f(λ) = m and f vanishes outside the circle of radius m−1 around λ, which leads to

|f(z)(z − λ)| ≤ 1 for z ∈ X.

With the function g := f · (λ− â) on X, we now obtain

m ≤ ‖f‖∞ = ‖G−1(f)‖ = ‖G−1(f)(λ1− a)b‖ = ‖G−1(g)b‖ ≤ ‖g‖∞ · ‖b‖ ≤ ‖b‖.

This contradicts the choice of m and shows that â(X) = σ(a).
Therefore the Gelfand transform defines an isomorphism G : C∗(a) → C(σ(a)) mapping

a onto idσ(a) and thus Φa := G−1 is an isomorphism of C∗-algebras mapping idσ(a) onto a.
That the latter relation determines this isomorphism uniquely follows from the fact that
idσ(a) = G(a) generated the C∗-algebra C(σ(a)) because a generates C∗(a).
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Corollary 2.7. If A is a unital C∗-algebra, B is a unital C∗-subalgebra of A and a ∈ B a
normal element, then σB(a) = σA(a).

Proof. With Lemma 1.11 and Proposition 2.6, we now obtain

σA(a) ⊆ σB(a) ⊆ σC∗(a)(a) = σA(a),

which proves equality.

Remark 2.8. (a) In the special case where A = C(X) for a compact space X, we have
σ(a) = a(X) and

Φa : C(a(X))→ A, Φa(f) = f(a) = f ◦ a.

This shows in particular that

σ(f(a)) = σ(f ◦ a) = f(a(X)). (10)

(b) More generally, we consider a normal element a ∈ A (A unital) and f ∈ C(σ(a)) and
the corresponding element f(a) = Φa(f) ∈ C∗(a). Then

σA(f(a)) = σC∗(a)(f(a)) = σC(σ(a))(f) = f(σ(a)).

This relation is also called the Spectral Mapping Theorem.

Theorem 2.9. (The Closed Range Theorem) Let ϕ : A → B be an injective ∗-homomorphism
of C∗-algebras. Then ϕ is isometric. In particular its range is closed and therefore a C∗-
subalgebra of B.

Proof. Extending ϕ to the ∗-homomorphism

ϕ+ : A+ → B+, (a, λ) 7→ (ϕ(a), λ)

of C∗-algebras (Proposition 1.14) which is obviously injective, we may w.l.o.g. assume that
A and B are unital.

In view of ‖a‖2 = ‖a∗a‖ for a ∈ A, it suffices to show that, for a = a∗ ∈ A, we have
‖ϕ(a)‖ = ‖a‖. Since ϕ maps C∗(a) into C∗(ϕ(a)), we may w.l.o.g. assume that A = C∗(a)
and B = C∗(ϕ(a)). Using the isomorphisms

Φa : C(σ(a))→ C∗(a) and Φϕ(a) : C(σ(ϕ(a)))→ C∗(ϕ(a))

(Proposition 2.6), we may further assume that ϕ is the unique homomorphism

ψ : C(σ(a))→ C(σ(ϕ(a))) with ψ(idσ(a)) = idσ(ϕ(a)) .

As σ(ϕ(a)) is a subset of σ(a) (Lemma 1.11), it follows that

ψ(f) = f |σ(ϕ(a)),

i.e., ψ is simply the restriction map (Exercise 2.20). If σ(ϕ(a)) is a proper subset of σ(a),
then there exists continuous functions on σ(a) vanishing on the closed subset σ(ϕ(a)). For
any z0 ∈ σ(a) \ σ(ϕ(a)), the distance function f(z) := dist(z, σ(ϕ(a))) is such a function
(Exercise!). Therefore the injectivity of ϕ implies that σ(a) = ϕ(σ(a)) and hence that
‖ϕ(a)‖ = r(ϕ(a)) = r(a) = ‖a‖.
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2.3 Positive elements in C∗ algebras

Definition 2.10. A hermitian element a of a C∗-algebra A is called positive if σ(a) ⊆ [0,∞).
We then write a ≥ 0. For two hermitian elements a, b ∈ A, we write

a ≤ b if b− a ≥ 0.

We denote the set of positive elements in A by A+ (not to be confused with the unitiza-
tion A+).

Example 2.11. (a) If A = C(X) for a compact space and f∗ = f , then f ∈ A is hermitian
if and only if f(X) ⊆ R. Since f(X) = σ(f) by Example 1.9, the function f is a positive
element of C(X) if and only if f(x) ≥ 0 for every x ∈ X.

(b) If A = B(H) and A ∈ B(H) is a hermitian operator, then A ≥ 0 means that
Spec(A) ⊆ [0,∞). We claim that that this is equivalent to

〈v,Av〉 ≥ 0 for all v ∈ H. (11)

If A ≥ 0, then Exercise 2.5 implies that

〈e−2tAv, v〉 = 〈e−tAv, e−tAv〉 = ‖e−tAv‖2 ≤ ‖v‖2 for t ≥ 0.

Since the derivative −2〈Av, v〉 in t0 = 0 exists, it must be ≤ 0, and therefore 〈Av, v〉 ≥ 0. If,
conversely, 〈Av, v〉 ≥ 0 for every v ∈ H, then the differentiable function

f(t) := ‖e−tAv‖2 = 〈e−tAv, e−tAv〉 = 〈e−2tAv, v〉 satisfies f(0) = ‖v‖2

and
f ′(t) = −2〈Ae−2tAv, v〉 = −2〈Ae−tAv, e−tAv〉 ≤ 0 for t ≥ 0.

Therefore f(t) ≤ ‖v‖2 for t ≥ 0, and this implies ‖e−tA‖ ≤ 1. Using Exercise 2.5 again, we
see that A ≥ 0.

For H = Cn and A = B(Cn) ∼= Mn(C), the equivalence of A ≥ 0 and (11) follows from
the well-known characterization of positive semidefinite matrices A by the property that all
its eigenvalues are non-negative.

One may expect that sums of positive elements are positive. This is true, but far from
obvious at this point. So we have to take a short detour to prove this fact.

Lemma 2.12. In every complex unital algebra A, we have

σ(xy) \ {0} = σ(yx) \ {0} for x, y ∈ A.

Proof. We have to show that, for λ 6= 0, the element λ1 − xy is invertible if and only if
λ1− yx invertible. To this end, we may w.l.o.g. assume that λ = 1.

Suppose that 1− xy is invertible. Then

(1 + y(1− xy)−1x)(1− yx) = 1− yx+ y(1− xy)−1(x− xyx)

= 1− yx+ y(1− xy)−1(1− xy)x = 1− yx+ yx = 1

and likewise

(1− yx)(1 + y(1− xy)−1x) = 1− yx+ y(1− xy)(1− xy)−1x = 1− yx+ yx = 1.

This proves the assertion.
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Lemma 2.13. In a unital C∗-algebra A, the following assertions hold:

(i) For every positive element a ∈ A+, there exists a unique b ∈ A+ with b2 = a.

(ii) For every hermitian element a ∈ A there exist uniquely determined positive elements
a+, a− ∈ A with a = a+ − a− and a+a− = a−a+ = 0.

(iii) If a ≥ 0 and 0 ≤ f ∈ C(σ(a)), then Φa(f) = f(a) ≥ 0.

(iv) A hermitian element a ∈ A is positive if and only if
∥∥‖a‖1− a∥∥ ≤ ‖a‖.

(v) a ≥ 0 and b ≥ 0 implies a+ b ≥ 0.

(vi) ±a ≥ 0 implies a = 0.

(vii) −aa∗ ≥ 0 implies a = 0.

Proof. (i) As σ(a) ⊆ [0,∞), the function S(x) :=
√
x is well-defined and non-negative on

σ(a). Therefore S(a) := Φa(S) ∈ C∗(a) is a positive square root of a.
For any other positive element b with b2 = a, the element b commutes with a, so that

the unital C∗-subalgebra C∗(a, b) generated by a and b is commutative, hence isomorphic to
some C(X). But any positive elements f ∈ C(X) has a unique positive square root given by
x 7→

√
f(x).

(ii) For any decomposition a = a+ − a− with a± ≥ 0 and a+a− = 0, both summands
commute with each other and hence also with a, so that a, a+ and a− are always contained
in a commutative C∗-subalgebra. We may therefore assume w.l.o.g. that A is commutative,
hence A ∼= C(X) by Gelfand’s Theorem.

If a ∈ C(X) is hermitian, i.e., real-valued, then

a = a+ − a− and a+a− = a−a+ = 0 holds for a± := max(±a, 0).

For the uniqueness of such a decomposition, write a = b+ − b− with b± ≥ 0 and b+b− =
b−b+ = 0. If ±a(p) > 0, then b±(p) > 0 implies b∓(p) = 0, so that b±(p) = ∓a(p) = a±(p).
If a(p) = 0, then b+(p) = b−(p) = 0 follows from b± ≥ 0. Therefore b± = a±.

(iii) Since a is hermitian, it is contained in a commutative subalgebra, so that we may
assume that A = C(X). Then σ(a) = a(X) and 0 ≤ f ∈ C(σ(a)) implies that the function
f(a) = f ◦ a is non-negative (cf. Remark 2.8).

(iv) Again, we may assume that A = C(X). Then (‖a‖1− a)(x) = ‖a‖ − a(x) ≥ 0, and
it is ≤ ‖a‖ if and only if a(x) ≥ 0. This proves (iv).

(v) The element c := a+ b is hermitian and thus σ(c) ⊆ R (Lemma 1.17). From (iv) we
derive ∥∥(‖a‖+ ‖b‖)1− c

∥∥ =
∥∥‖a‖1− a+ ‖b‖1− b

∥∥ ≤ ‖a‖+ ‖b‖. (12)

Further, λ ∈ σ(c) implies

‖a‖+ ‖b‖ − λ ∈ σ
(
(‖a‖+ ‖b‖)1− c

)
,

so that (12) entails ∣∣‖a‖+ ‖b‖ − λ
∣∣ ≤ ‖a‖+ ‖b‖

This implies λ ≥ 0.
(vi) follows immediately from the corresponding assertion in A = C(X).
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(vii) Lemma 2.12 implies σ(−a∗a) \ {0} = σ(−aa∗) \ {0} ⊆ R, so that also −a∗a ≥ 0.
Writing a = b+ ic with hermitian elements b, c ∈ A, we obtain with (v)

aa∗ + a∗a = (b+ ic)(b− ic) + (b− ic)(b+ ic) = 2(b2 + c2) ≥ 0,

because b2, c2 ≥ 0 follows from (iii). This leads with (v) to aa∗ = (aa∗ + a∗a)− a∗a ≥ 0, so
that aa∗ = 0 follows from (vi). Now ‖a‖2 = ‖a∗a‖ = 0 yields a = 0.

Theorem 2.14. (Kaplansky, 1953) An element a of a unital C∗-algebra A is positive if and
only if there exists an element b ∈ A with a = b∗b.

Proof. If a ≥ 0 and b is the positive square root of a, then a = b2 = bb∗ (Lemma 2.12(ii)).
For the converse, let b ∈ A. We have to show that a := b∗b ≥ 0. Let a = a+ − a− as in

Lemma 2.12(iii). Then it remains to verify that a− = 0. From a+a− = 0 we derive

(ba−)∗(ba−) = a∗−b
∗ba− = a−(a+ − a−)a− = −a3

− ≤ 0,

hence −(ba−)∗(ba−) is positive by Lemma 2.13(iii) and thus ba− = 0 by Lemma 2.13(vii).
This shows that a3

− = 0 and hence a− = 0, by a− ∈ C∗(a−) ∼= C(σ(a−)).

Kaplansky’s Theorem will turn out to be a key between positivity in a C∗-algebra and
its representation theory. The next step in the development of this connection is the concept
of a positive functional that we introduce in the next subsection.

Proposition 2.15. The set A+ = {a ∈ A : a ≥ 0} of positive elements of a C∗-algebras is a
closed convex cone.

Proof. Lemma 2.13(v) implies that A+ is closed under addition. For λ ≥ 0 and a ≥ 0 we
further have σ(λa) = λσ(a) ⊆ [0,∞), so that λa ≥ 0. This shows that A+ is a convex cone.

For the closedness we recall from Exercise 2.5 that

A+ = {a ∈ A : a∗ = a, (∀t ≥ 0) ‖e−ta‖ ≤ 1}.

For an ≥ 0 and an → a, we thus obtain for any t ≥ 0:

‖e−ta‖ = lim
n→∞

‖e−tan‖ ≤ 1

and therefore a ≥ 0.

2.4 Positive functionals

Definition 2.16. Let A be a ∗-algebra. For a linear functional ϕ : A → C we define ϕ∗(a) :=
ϕ(a∗) and note that this is again complex linear. We say that ϕ is hermitian if ϕ∗ = ϕ.

A linear functional ϕ is called positive if

ϕ(aa∗) ≥ 0 for every a ∈ A.

Remark 2.17. (a) If A is a C∗-algebra, then Kaplansky’s Theorem immediately implies
that a linear functional f : A → C is positive if and only if

a ≥ 0 ⇒ f(a) ≥ 0. (13)
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This implies in particular that f(a) ∈ R for a = a∗ (Lemma 2.13(ii)). For c = a + ib ∈ A,
a, b ∈ Ah, we then obtain

f(c) = f(a) + if(b) = f(a)− if(b) = f(a− ib) = f(c∗),

so that f is hermitian.
(b) The direct sum decomposition A = Ah ⊕ iAh of the real vector space A shows that

a complex linear function ϕ : A → C is hermitian if and only if ϕ(Ah) ⊆ R. Conversely,
every real linear functional ψ : Ah → R extends by ϕ(a+ ib) := ψ(a) + iψ(b) to a hermitian
complex linear functional ϕ : A → C.

Lemma 2.18. Let A be a C∗-algebra and f : A → C be a positive functional.

(i) |f(ab∗)|2 ≤ f(aa∗)f(bb∗).

(ii) f is continuous with
‖f‖ = sup{f(a) : a ∈ A+, ‖a‖ ≤ 1}. (14)

If A is unital, then ‖f‖ = f(1), and if A is not unital, then f extends to a positive
functional f+ on the unital C∗-algebra A+ with f+(1) = ‖f‖.

(iii) f(b∗a∗ab) ≤ f(b∗b)‖a‖2 for a, b ∈ A.

Proof. (i) Positivity means that the hermitian form f(ab∗) is positive semidefinite, and (ii)
simply is the Cauchy–Schwarz inequality for this form.

(ii) We consider the subset

M := {a ∈ A+ : ‖a‖ ≤ 1}.

We claim that f(M) is bounded. If this is not the case, then there exists a sequence xn ∈M
with f(xn) → ∞. For any non-negative sequence (λn)n∈N with

∑
n λn < ∞, we consider

the element x :=
∑∞
n=1 λnxn and observe that the sequence converges absolutely because∑

n ‖λnxn‖ ≤
∑
n λn < ∞. The positivity of x and all partial sums

∑
n>m λnxn follows

from Proposition 2.15. For every m ∈ N we therefore obtain with Lemma 2.13(v)

m∑
j=1

λjxj ≤ x and thus

m∑
j=1

λjf(xj) = f
( m∑
j=1

λjxj

)
≤ f(x).

As f(xj) ≥ 0 for each j, the convergence of the series
∑∞
j=1 λjf(xj) follows. Since the

sequence λ ∈ `1 was arbitrary positive, we obtain
(
f(xj)

)
j∈N ∈ `

∞ (Exercise), and therefore

a contradiction. We conclude that C := sup f(M) <∞.
IfA is unital and a ∈ A+ with ‖a‖ ≤ 1, then 0 ≤ a ≤ ‖a‖1 implies f(a) ≤ ‖a‖f(1) ≤ f(1),

so that C = f(1) in this case.
If A is not unital, we extend f to a linear functional

f+ : A+ → C by f+(a, λ) := f(a) + λC.

If (a, λ) ≥ 0 with λ 6= 0, then λ ∈ σ(a, λ) implies λ > 0 and σ(a) = σ(a, λ) − λ ⊆ [−λ,∞).
For a = a+ − a− this means that ‖a−‖ ≤ λ, so that

f+(a, λ) = f(a) + λC = f(a+)− f(a−) + λC ≥ f(a+)− λC + λC = f(a+) ≥ 0.

24



Therefore f+ is a positive functional on A+. With (i) we now obtain for every x ∈ A+:

|f+(x)|2 ≤ f+(xx∗)f+(1) ≤ ‖xx∗‖C · C = ‖x‖2C2.

Hence f+ is continuous with ‖f+‖ ≤ C ≤ ‖f‖, and this proves that ‖f‖ = ‖f+‖ = C.
(iii) First we note that the functional fb(a) := f(b∗ab) on A+ is positive because fb(a

∗a) =
f(b∗a∗ab) = f((ab)∗ab) ≥ 0. Now (ii) implies that fb is continuous with ‖fb‖ = fb(1) =
f(b∗b), and now

f(b∗a∗ab) = fb(a
∗a) ≤ ‖fb‖‖a∗a‖ = f(b∗b)‖a‖2

proves (iii).

Positive functionals on commutative algebras

Since we shall use is later on, we quote the Riesz Representation Theorem describing the
positive functionals on commutative C∗-algebras C0(X) in terms of Radon measures. For
the proof we refer to [Ru86, Thm. 2.14]. First we recall the concept of a Radon measure.

Definition 2.19. A Borel measure µ on a locally compact space X is called a Radon measure
if

(i) µ(K) <∞ for each compact subset K of X.

(ii) (Outer regularity) For each Borel subset E ⊆ X, we have

µ(E) = inf{µ(U) : E ⊆ U,Uopen}.

(iii) (Inner regularity) If E ⊆ X is open or E is a Borel set with µ(E) <∞, then

µ(E) = sup{µ(K) : K ⊆ E,K compact}.

The measure µ is called regular if (ii) and (iii) are satisfied. These two properties ensure that
µ is uniquely determined by the integral of compactly supported continuous functions.

Theorem 2.20. (Riesz Representation Theorem) Let X be a locally compact space. Then,
for every positive functional I : C0(X)→ C, there exists a uniquely determined finite regular
Radon measure µ on X with

I(f) =

∫
X

f(x) dµ(x) for f ∈ C0(X).

Proposition 2.21. If µ is a Radon measure on a locally compact space X, then Cc(X) is
dense in L2(X,µ).

Proof. Since the characteristic functions χE , µ(E) < ∞, span the dense subspace of step
functions, i.e., functions with finitely many values, it suffices to show that such function can
be approximated by elements of Cc(X) in the L2-norm. Since every such Borel set is inner
regular, we may w.l.o.g. assume that E is compact. Then the outer regularity implies for
each ε > 0 the existence of an open subset U ⊆ X with µ(U \E) < ε. Next we use Urysohn’s
Theorem A.16 to find a continuous function f ∈ Cc(X) with 0 ≤ f ≤ 1, f |E = 1, and
supp(f) ⊆ U . Then

‖f − χE‖22 =

∫
X

|f(x)− χE(x)|2 dµ(x) =

∫
U\E
|f(x)|2 dµ(x) ≤ µ(U \ E) < ε,

and this completes the proof.
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Remark 2.22. In many cases the regularity of a Borel measure µ on a locally compact space
X for which all compact subspaces have finite measure is automatic.

In [Ru86, Thm. 2.18] one finds the convenient criterion that this is the case whenever
every open subset O ⊆ X is a countable union of compact subsets.

This is in particular the case for Rn, because we can write

O =
⋃
n∈N

On with On :=
{
x ∈ O : dist(x,Oc) ≥ 1

n
, ‖x‖ ≤ n

}
.

2.5 States

In this subsection we introduce states of C∗-algebras. This terminology is an abstraction
that is due to the interpretation of states as states of quantum mechanical systems discussed
in the introduction.

Definition 2.23. A positive functional ϕ on a C∗-algebra is called a state if ‖ω‖ = 1. We
write S(A) for the set of all states of A.

Remark 2.24. Since every state ω ∈ S(A) on a non-unital C∗-algebra A extends in a
unique fashion to a state ω+ on A+ by ω+(1) = 1, we may identify the states of A and A+

(Lemma 2.18):
S(A) = S(A+).

Lemma 2.25. For a unital C∗-algebra A, we have

S(A) = {ω ∈ A′ : ω∗ = ω, ‖ω‖ = ω(1) = 1}.

This set is convex and compact in the weak-∗-topology, i.e., the topology of pointwise conver-
gence. 11

Proof. According to the Alaoglu–Bourbaki Theorem, the dual unit ball

B′ := {α ∈ A′ : ‖α‖ ≤ 1}

is convex and compact with respect to the weak-∗-topology. Since the subspace

(A′)h := {ω ∈ A′ : ω∗ = ω} = {ω ∈ A′ : (∀a ∈ A) ω(a) = ω(a∗)}

is specified by pointwise conditions, it is a weak-∗-closed subset of A′, so that B′ ∩ (A′)h is
also weak-∗-compact. As the linear functional

ev1 : B′ ∩ (A′)h → [−1, 1] ⊆ R, α 7→ α(1)

is continuous, the subset

S := {α ∈ A′ : α∗ = α, ‖α‖ ≤ 1, α(1) = 1} = {α ∈ A : α∗ = α, ‖α‖ = α(1) = 1}

is also weak-∗-compact and convex. Now S ⊇ S(A) by Lemma 2.18, and we next show the
converse. So let ω ∈ S. We have to show that ω is a positive functional. So let a ∈ A+.
Then

∥∥‖a‖1− a∥∥ ≤ ‖a‖ (Lemma 2.13(iv)) implies that

‖a‖ − ω(a) = ω(‖a‖1− a) ≤ ‖a‖,

and thus ω(a) ≥ 0.

11One can show that the condition ‖ω‖ = 1 = ω(1) already implies ω = ω∗, but this requires more elaborate
arguments.
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Example 2.26. (a) For the C∗-algebra A = C(X) of continuous functions on the compact
space X, Riesz’ Representation Theorem 2.20 identifies the positive functionals with Radon
measures µ on X. Among these, the states are the probability measures because

µ(X) =

∫
X

1 dµ(x).

Particular states are the Dirac measures corresponding to the evaluation functionals
δx : f 7→ f(x). According to Proposition 2.4, these are precisely the characters of C(X).
We shall see in Section 3 that these are precisely the pure states (Corollary 3.20).

(b) Consider A = B(H) for a complex Hilbert space H and Ω ∈ H with ‖Ω‖ = 1. Then

ω(A) := 〈Ω, AΩ〉

defines a state of B(H) because ω is a positive functional, ω(1) = 1 and ‖ω‖ ≤ 1 by the
Cauchy–Schwarz inequality. These states are called vector states.

Let (Ωn)n∈N be a sequence in H satisfying
∑
n∈N ‖Ωn‖2 = 1. Then

ω(A) :=

∞∑
n=1

〈Ωn, AΩn〉

also defines a state of B(H). These states are called mixed states. They are not pure, i.e.,
extreme points in S(B(H)) if the Ωn span a subspace of dimension at least 2 (Exercise 2.21).
We shall return to such states below when we discuss trace class operators.

Proposition 2.27. Let A be a unital C∗-algebra and x = x∗ ∈ A.

(i) For every λ ∈ σ(x), there exists a state ω with ω(x) = λ.

(ii) x is positive if and only if ω(x) ≥ 0 for all states ω ∈ S(A).

Proof. (i) Let λ ∈ σ(x) and consider the unital C∗-subalgebra C∗(x) generated by x.
Corollary 2.7 implies that σA(x) = σC∗(x)(x), and Proposition 2.6 further yields C∗(x) ∼=
C
(
σA(x)

)
, where x ∈ C∗(x) corresponds to the identity.

Let δλ : C∗(x) ∼= C(σ(x))→ C be the evaluation in λ ∈ σ(x). Then δλ ∈ S(C∗(x)). With
the Hahn–Banach Extension Theorem, we find an extension ν̃ ∈ A′h with ‖ν̃‖ = ‖δλ‖ = 1.
We put ν := (ν̃ + ν̃∗)/2. Then ν∗ = ν, ν(1) = 1 and ‖ν‖ ≤ 1 implies that ν is a state
(Lemma 2.25). Further, ν(x) = δλ(x) = x̂(λ) = λ.

(ii) Suppose that x is positive. By definition, all states take non-negative values on x.
The converse follows from (i).

Exercises for Section 2

Exercise 2.1. Let A be a Banach algebra and χ : A → C be an algebra homomorphism. Show that:

(a) χ extends to the unital Banach algebra A+ := A× C with the multiplication

(a, t)(a′, t′) := (aa′ + ta′ + t′a, tt′)

(cf. Exercise 1.4).

(b) If A is unital and χ 6= 0, then χ(1) = 1 and χ(A×) ⊆ C×. Conclude further that χ(B1(1)) ⊆
C× and derive that χ is continuous with ‖χ‖ ≤ 1.
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Exercise 2.2. Suppose that Y is a compact space y0 ∈ Y and X := Y \ {y0}. Show that the
restriction map yields an isometric isomorphism of C∗-algebras:

r : C∗(Y,C) := {f ∈ C(Y,C) : f(y0) = 0} → C0(X,C).

Exercise 2.3. Let A be a Banach algebra and I ⊆ A be a closed two-sided ideal. Show that
the quotient space A/I carries a natural Banach algebra structure for which the quotient map
q : A → A/I is a homomorphism.

If A is a Banach-∗-algebra and I is ∗-invariant, then A/I even inherits the structure of a Banach-
∗-algebra.

Exercise 2.4. Let A be a unital C∗-algebra and a = a∗ ∈ A with ‖a‖ < 1. Show that

u := a+ i
√

1− a2 ∈ U(A)

and conclude that A = span U(A).

Exercise 2.5. Let a be a hermitian element of the C∗-algebra A. Show that

a ≥ 0 ⇐⇒ (∀t ≥ 0) ‖e−ta‖ ≤ 1.

Hint: Consider first the case A = C(X); why does this imply the general case.

Exercise 2.6. (Enveloping C∗-algebra) Let A be a Banach-∗-algebra and ηA : A → C∗(A) be the
enveloping C∗-algebra. Show that:

(i) (Universal property implies uniqueness up to isomorphism) Suppose that ζ : A → B is a
∗-homomorphism to a C∗-algebra which also has the universal property that, for any homo-
morphism α : A → C, C a C∗-algebra, there exists a unique homomorphism α̃ : B → C with
α̃ ◦ ζ = α. Then there exists an isomorphism Φ: C∗(A)→ B with Φ ◦ ηA = ζ.

(ii) For every representations of A, i.e., every ∗-homomorphism ϕ : A → B(H), H a complex
Hilbert space, there exists a unique representation ϕ̃ : C∗(A)→ B(H) with ϕ̃ ◦ ηA = ϕ.

Exercise 2.7. Let G be a group and `1(G) denote the Banach-∗-algebra from Example 1.8(b), so
that we have a homomorphism η : G→ `1(G), η(g) = δg whose range generates a dense ∗-subalgebra
of `1(G). Show that:

(i) For every homomorphism U : G → U(A), where A is a unital C∗-algebra and U(A) =
{u ∈ A : uu∗ = u∗u = 1} denotes its unital group, there exists a unique ∗-homomorphism

Ũ : `1(G)→ A with Ũ ◦ η = U .

(ii) Consider the complex Hilbert space H := `2(G) with the ONB (eg)g∈G. Show that the
homomorphism U : G → U(`2(G)) defined by U(g)eh = egh, h ∈ G, leads to an injective

homomorphism Ũ : `1(G)→ B(`2(G)).

Exercise 2.8. Let G be a group. Show that there exists a C∗-algebra C∗(G) and a group homo-
morphism

ηG : G→ U(C∗(G)) := {u ∈ C∗(G) : uu∗ = u∗u = 1}
with the following universal property. For every unitary representation U : G → U(H), there exists

a unique ∗-homomorphism Ũ : C∗(G)→ B(H) of C∗-algebras with Ũ ◦ ηG = U .
Hint: Define C∗(G) as C∗(`1(G)), where `1(G) is the Banach-∗-algebra from Example 1.8(b), and
put ηG(g) = δg.

Exercise 2.9. Show that the homomorphism η`1(G) : `1(G)→ C∗(`1(G)) = C∗(G) is injective.
Hint: Exercise 2.7.
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Exercise 2.10. (Initial topology) Let X be a set and (fi)i∈I be a family of maps fi : X → Yi, where
the Yi are topological spaces. Let τ be the topology on X generated by the subsets f−1

i (O), O ⊆ Yi
open. Show that:

(i) τ is the coarsest (minimal) topology on X for which all maps fi are continuous.

(ii) A map g : Z → X, Z a topological space, is continuous if and only if all compositions fi ◦ g
are continuous.

Exercise 2.11. (Topology of pointwise convergence) Let A and B be topological spaces and BA be
the set of all maps f : A→ B. On BA we consider the coarsest topology for which all maps

eva : BA → B, f 7→ f(a)

are continuous. Show that a map F : X → BA, X a topological space, is continuous if and only if
all maps

Fa : X → B, Fa(x) := F (x)(a)

are continuous.

Exercise 2.12. (Gelfand isomorphism for group algebras) Let G be a commutative group and
ηG : G → C∗(G) = C∗(`1(G)) be the corresponding C∗-algebra from Exercise 3.5. It has the
universal property that, for every C∗-algebra A, the map

η∗G : Hom1(C∗(G),A)→ Homgrp(G,U(A)), ϕ 7→ ϕ ◦ ηG

is a bijection, where Hom1 denotes the set of C∗-homomorphisms preserving 1. Show that:

(a) C∗(G) is a commutative C∗-algebra. Hint: η(G) spans a dense subspace of C∗(G).

(b) η∗G : Ĉ∗(G)→ Ĝ := Homgrp(G,T) is a bijection.

(c) Ĝ is a group with respect to the pointwise multiplication of characters

(χ1χ2)(g) := χ1(g)χ2(g).

It is called the character group of G.

(d) Determine the character groups Ĝ for the abelian groups G = Z,Zn,Z/nZ.

(e)∗ Ĝ is a compact topological group with respect to the topology of pointwise convergence on
elements of G. Recall that a topological group is a group H with a topology for which the
map H ×H → H, (g, h) 7→ gh−1 is continuous.

Exercise 2.13. (Another exotic Banach-∗-algebra) Let A be a unital C∗-algebra and b ∈ A be a
unitary involution, i.e., b2 = 1 and b∗ = b. Show that:

(a) A is a Banach-∗-algebra with respect to the involution a] = ba∗b.

(b) b = b+−b− with hermitian elements b± satisfying b+b− = b−b+ = 0, b2± = b± and b++b− = 1.
Hint: (b+ + b−)2 = 1.

From now on we assume that A = M2(C) and b :=

(
1 0
0 −1

)
.

(c) The unitary group U(A, ]) is unbounded. Hint: Consider the elements ut =

(
cosh t sinh t
sinh t cosh t

)
.

(d) For the matrix Y :=

(
0 i
i 0

)
we have Y ] = Y and σ(Y ) = {±i}.

(e) Every ∗-homomorphism ϕ : (A, ]) → C into a C∗-algebra C vanishes. In particular, we have
C∗(A, ]) = {0}.
Hint: ϕ(1) = −ϕ(Y )2 ≤ 0.
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Exercise 2.14. Let χ : A → C be a homomorphism of a unital algebra to C and 1 ∈ A be a unit
element. Show that either χ = 0 or χ(1) = 1. This means that, for every unital algebra A,

Hom1(A,C) = {χ ∈ Hom(A,C) : χ(1) = 1} = Hom(A,C) \ {0} =: Â.

Exercise 2.15. Let A be a Banach algebra. For an algebra homomorphism
χ : A → C, let χ+ : A+ → C be the canonical unital extension defined by

χ+(a, t) = χ(a) + t1.

Show that the map ι : Hom(A,C) ↪→ Hom1(A+,C), χ 7→ χ+ is a homeomorphism with respect to the

topology of pointwise convergence on both spaces. Conclude that Â is homeomorphic to Â+ \ {ε},
where ε(a, t) = t for a ∈ A, t ∈ C.

Exercise 2.16. (Strange Banach-∗-algebras) We consider the two-dimensional commutative com-
plex Banach algebra A := C2 with the multiplication

(z1, z2)(w1, w2) := (z1w1, z2w2) and ‖(z1, z2)‖ = max{|z1|, |z2|}.

Show that:

(a) A is a C∗-algebra with respect to (z1, z2)∗ := (z1, z2). Determine Â.

(b) A is a Banach-∗-algebra with respect to the involution (z1, z2)] := (z2, z1).

(c) The Banach-∗-algebra (A, ]) has the following properties:

(i) No character χ ∈ Hom(A,C) is a ∗-homomorphism.

(ii) The Gelfand transform G : (A, ])→ C(Â) is an isomorphism of Banach algebras but not
a ∗-homomorphism.

(iii) Every ∗-homomorphism ϕ : A → C (C a C∗-algebra) is zero. In particular C∗(A, ]) = {0}.
Hint: (1, 0)](1, 0) = 0.

(iv) The unitary group U(A, ]) = {a ∈ A× : a] = a−1} is not a bounded subset.

Exercise 2.17. Let X be a set and `∞(X) be the vector space of all bounded functions f : X → C.
Show that `∞(X) is a commutative C∗-algebra with respect to

(fg)(x) := f(x)g(x), f∗(x) := f(x), ‖f‖∞ = sup{|f(x)| : x ∈ X}.

If (X,S) is a measurable space, resp., (X, τ) is a topological space, then the bounded measurable,
resp., bounded continuous functions are closed ∗-subalgebras, hence also C∗-algebras.

Exercise 2.18. (Stone–Čech compactification) Let X be a topological space. We consider the
commutative unital C∗-algebra Cb(X) of bounded continuous functions (Exercise 2.17). Its spectrum

is denoted β(X) := Ĉb(X) = Hom1(Cb(X),C). This is a compact space with C(β(X)) ∼= Cb(X).
Show that:

(a) The map ηX : X → β(X), ηX(x) = δx, δx(f) := f(x), is continuous and its range is dense.
The pair (β(X), ηX) is called the Stone–Čech compactification of X.

(b) ηX is a homeomorphism if and only if X is compact.

(c) For a sequence (xn)n∈N in X, the limit of the sequence (δxn)n∈N exists in β(X) if and only if,
for every bounded continuous function f ∈ Cb(X), the limit limn→∞ f(xn) exists.

(d) If X is discrete, then Cb(X) = `∞(X). Here the case X = N is particularly interesting:

(i) If the sequence δxn converges in β(N), then it is eventually constant, i.e., there exists an
n0 ∈ N with xn = xn0 for n ≥ n0. So ηN(N) is sequentially closed in β(N).
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(ii) ηN is not surjective (so that β(N) contains elements that cannot be reached by sequences
in N). Hint: The set Y :=

⋂
k∈N ηN({k, k + 1, . . .}) ⊆ β(X) is non-empty and vanishes

on the subalgebra c0(N) ⊆ `∞(N).

Exercise 2.19. (Spectral calculus for normal matrices) We consider the concrete unital C∗-algebra
A = Mn(C) ∼= B(Cn). Let a ∈ A be a normal element, so that there exists an ONB (v1, . . . , vn) of
eigenvectors for a: avj = λjvj . Show that:

(i) σ(a) = {λ1, . . . , λn}.
(ii) For every function f ∈ C(σ(a)) = C{λ1,...,λn}, the element f(a) ∈ A is diagonalizable with

f(a)vj = f(λj)vj , j = 1, . . . , n.

Exercise 2.20. (Uniqueness of Functional Calculus) Let X ⊆ C be a compact space and Y ⊆ X
be a closed subset. Show that the restriction map R : C(X) → C(Y ), R(f) = f |Y is the only
homomorphism of C∗-algebras mapping idX to idY .

Exercise 2.21. Let v := (vn)n∈N be a sequence in the Hilbert space H satisfying
∑
n ‖vn‖

2 = 1
and consider the corresponding state

ωv(A) :=
∑
n

〈vn, Avn〉

of B(H). Show that, if span{vn : n ∈ N}, is not one-dimensional, then ωv is not a pure state, i.e., it
can be write as ωv = λω1 + (1− λ)ω2 with states ωj 6= ωv and 0 < λ < 1.

Hint: Consider the state ω1(A) = 〈v1,Av1〉
‖v1‖2

.

Exercise 2.22. Let x = (xn)n∈N be a sequence of complex numbers. Show that x is bounded if and
only if, for all non-negative sequences λ = (λn)n∈N with

∑
n λn = 1, the series

∑
n xnλn converges

absolutely.

Exercise 2.23. Consider the C∗-algebra A = C0(X), where X is a locally compact space. Let S
denote the σ-algebra of Borel subsets of X, i.e., the smallest σ-algebra containing the open subsets.
We write L∞(X) for the C∗-algebra of all bounded measurable functions f : X → C with the norm

‖f‖∞ := sup{|f(x)| : x ∈ X}.

Show that every non-degenerate representation (π,H) of C0(X) has an extension to a representation
of the larger C∗-algebra L∞(X).
Hint: Decompose first into cyclic representations and recall that these are equivalent to multiplication
representations on spaces L2(X,µ), µ a finite positive Radon measure on X. 12

Exercise 2.24. (States of the algebra of compact operators) We consider the C∗-algebra A := K(H)
of compact operators on the Hilbert space H. Show that:

(i) The sesquilinear map

Γ: H×H → K(H), Γ(x, y) := |y〉〈x|, Γ(x, y)z := 〈x, z〉y

is continuous; more precisely ‖Γ(x, y)‖ ≤ ‖x‖‖y‖ for x, y ∈ H.

(ii) For every continuous linear functional ω ∈ A′, there exists a uniquely determined bounded
operator S ∈ B(H) with ω(Γ(x, y)) = 〈x, Sy〉 for x, y ∈ H. We then write ω = ωS .

(c) ω∗S = ωS∗ .

12We shall see later in the context of commutative von Neumann algebras how to specify this extension
uniquely in terms of continuity properties.
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(d) ωS ≥ 0 if and only if S ≥ 0.
Hint: A ≥ 0 if and only if A =

∑
n λnΓ(xn, xn) for an orthonormal sequence xn in H (Spectral

Theorem for compact hermitian operators).

(e) S is a compact operator.
Hint: Use Exercise 2.27(i)(b) to show that S is Hilbert–Schmidt, specifically,

∑
j ‖Sej‖

2 ≤
‖ωS‖2 for any orthonormal basis (ej)j∈J of H.

(f) If S ≥ 0, then there exists an orthogonal sequence (vn)n∈N in H and λn ≥ 0 with
∑
n λn <∞

such that S =
∑
n λnΓ(vn, vn) =

∑
n λn|vn〉〈vn| (S is a “trace class operator”).

Hint: Use the compactness and the Spectral Theorem for compact operators to diagonalize S,
so that S =

∑
n λnΓ(vn, vn). Then show that ‖ωS‖ =

∑
n |λn| (Exercise 2.26).

Exercise 2.25. We consider the Hilbert spaceH := Mn(C) with the Hilbert–Schmidt scalar product

〈A,B〉 := tr(A∗B) =

n∑
j=1

〈AejBej〉.

Show that π(A)B := AB defines a ∗-representation of the C∗-algebra A := Mn(C) on H for which
Ω := 1√

n
1 is a cyclic unit vector with

〈Ω, π(A)Ω〉 =
1

n
tr(A) and End(π,H) ∼= Mn(C).

Can you characterize the cyclic elements in H? How do the corresponding states look like?

Exercise 2.26. (Linear functionals on finite dimensional commutative algebras) We consider the
commutative C∗-algebra A := Cn ∼= C({1, 2, . . . , n}), endowed with pointwise multiplication and
conjugation. We consider the linear isomorphism

Φ: Cn → A′, Φ(s)(a) :=

n∑
j=1

sjaj

with ‖Φ(s)‖ =
∑n
j=1 |sj |. Show that the linear functional Φ(s) is

(a) hermitian, i.e., Φ(s)∗ = Φ(s), if and only if s ∈ Rn.

(b) positive if and only if s ≥ 0 componentwise.

(c) a state if and only if s ≥ 0 and
∑
j sj = 1.

(d) a extreme point in the state space S(A) if and only if sj = δjk for some k ∈ {1, . . . , n}.

Exercise 2.27. (Linear functionals on matrix algebras) We consider the C∗-algebra A := Mn(C)
of complex n× n-matrices. Show that:

(i) The map Φ: Mn(C)→ A′,Φ(S)(A) := tr(SA) is a linear isomorphism satisfying

(a) Φ(S)∗ = Φ(S∗).

(b) ‖Φ(S)‖ ≥ ‖S‖2 :=
√

tr(S∗S) =
√∑

j,k |sjk|2 (Hilbert–Schmidt norm).

Hint: ‖A‖2 :=
√

tr(A∗A) ≥ ‖A‖ and ‖S‖2 = sup{| tr(S∗A)| : ‖A‖2 ≤ 1}.

(ii) The linear functional Φ(S) is

(a) hermitian, i.e., Φ(S)∗ = Φ(S), if and only if S∗ = S.

(b) positive if and only if S ≥ 0.

(c) a state if and only if S ≥ 0 and tr(S) = 1.
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(d) an extreme point of the state space S(A) if and only if S is an orthogonal projection
onto a one-dimensional subspace.
Hint: The set S(A) is invariant under conjugation with unitary operators; Exercise 2.26.

Exercise 2.28. Let A be a unital C∗-algebra and B ⊆ A be a unital C∗-subalgebra. Show that,
for every state ω ∈ S(B) there exists a state ω̃ ∈ S(A) with ω̃|B = ω.

Exercise 2.29. Let A be a unital C∗-algebra and x ∈ A be a normal element. Show that

S(A)(x) = conv(σ(x)).

Hint: Use Exercise 2.28 to reduce to the case where A = C∗(x) ∼= C(σ(x)). Then note that
conv(σ(x)) is compact because σ(x) is compact and that

∫
σ(x)

x dµ(x) ∈ conv(σ(x)) for every prob-

ability measure µ on σ(x).

Exercise 2.30. ) Let A be a unital C∗-algebra and A ∈ A. Show that ‖A‖2 ∈ σ(A∗A).
Hint: For 0 ≤ f ∈ C(X), we have ‖f‖ = max{f(x) : x ∈ X}.

3 Representations of C∗-algebras

In this section we study representations of C∗-algebras. After introducing the relevant ter-
minology, we explain the Gelfand–Naimark–Segal (GNS) construction that relates states and
cyclic representations. As an application of the GNS construction, we obtain the Gelfand–
Naimark Theorem asserting that every C∗-algebra is isomorphic to a closed subalgebra of
some B(H). We conclude this section with some facts on irreducible representations, such
as their characterization in terms of pure states and their characterization in terms of their
endomorphism algebra (Schur’s Lemma, Theorem 3.13).

3.1 Basic terminology

Definition 3.1. Let A be a ∗-algebra. A representation (π,H) of A is a homomorphism
π : A → B(H) of ∗-algebras, i.e., π is linear, multiplicative and satisfies π(a∗) = π(a)∗ for
each a ∈ A.

A representation (π,H) is called

• irreducible if H 6= {0} and {0} and H are the only closed π(A)-invariant subspaces
of H.

• non-degenerate, if Jπ(A)HK = H, i.e., if π(A)H spans a dense subspace. Note that this
condition is trivially satisfied if 1 ∈ A and π(1) = 1.

• cyclic if there exists a unit vector Ω ∈ H for which π(A)Ω is dense in H. Then Ω is
called a cyclic vector. To specify the cyclic vector in the notation, we often write cyclic
representations as triples (π,H,Ω).

Definition 3.2. (a) If (π,H) is a representation of A and K ⊆ H a closed π(A)-invariant sub-
space, then ρ(a) := π(a)|KK defines a representation (ρ,K) which is called a subrepresentation
of (π,H).

(b) If (π,H) and (ρ,K) are representations of A, then a bounded operator T : K → H
satisfying

T ◦ ρ(a) = π(a) ◦ T for all a ∈ A
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is called an intertwining operator. We write

Hom((ρ,K), (π,H))

for the set of all intertwining operators. It is a closed subspace of the Banach space B(K,H)
(Exercise 3.7). We also put

End(π,H) := Hom((π,H), (π,H)).

(c) Two representations (π,H) and (ρ,K) of A are said to be equivalent, written π '
ρ if there exists a unitary intertwining operator T : K → H. It is easy to see that this
defines indeed an equivalence relation on the class of all representations. We write [π] for the
equivalence class of the representation (π,H).

Two cyclic representation (π,H,Ω) and (π′,H′,Ω′) are said to be equivalent if there exists
a unitary intertwining operator U : H → H′ with UΩ = Ω′.

(d) We write

• ρ ≤ π if ρ is equivalent to a subrepresentation of π.

• π⊥ρ if no subrepresentation of (π,H) is equivalent to a subrepresentation of (ρ,K).
Then π and ρ are then called disjoint.

• ρ ≺ π if no subrepresentation of ρ is disjoint from π.

• π ∼ ρ if π ≺ ρ and ρ ≺ π (π and ρ are quasi-equivalent).

3.2 Non-degenerate and cyclic representations

We start with an easy observation on invariant subspaces:

Lemma 3.3. Let K ⊆ H be a closed subspace, P ∈ B(H) be the orthogonal projection on K
and S ⊆ B(H) be a ∗-invariant subset. Then the following are equivalent

(i) K is S-invariant.

(ii) K⊥ is S-invariant.

(iii) P commutes with S.

Proof. (i) ⇒ (ii): If w ∈ K⊥ and v ∈ K, we have for any S ∈ S the relation 〈Sw, v〉 =
〈w, S∗v〉 = 0 because S∗v ∈ SK ⊆ K.

(ii) ⇒ (iii): The same argument as above implies that the invariance of K⊥ entails the
invariance of K = (K⊥)⊥.

We write v = v0 + v1, according to the decomposition H = K ⊕ K⊥. Then we have for
any S ∈ S:

SPv = Sv0 = PSv0 = P (Sv0 + Sv1) = PSv,

so that P commutes with S.
(iii)⇒ (i) follows from the fact that K = ker(P −1) is an eigenspace of P , hence invariant

under every operator commuting with P .

Lemma 3.4. (Characterization of non-degenerate representations) For a representation
(π,H) of a ∗-subalgebra A, the following are equivalent:
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(i) (π,H) is non-degenerate.

(ii) π(A)v = {0} implies v = 0.

(iii) For every v ∈ H, we have v ∈ π(A)v.

Proof. (i) ⇒ (ii): Let v ∈ H with π(A)v = {0}. As π(A) is ∗-invariant, it follows that
〈v, π(A)H〉 = 〈π(A)v,H〉 = {0}, so that v ∈ Jπ(A)HK⊥ = {0}.

(ii)⇒ (iii): We write v = v0 +v1 with v0 ∈
(
π(A)v

)⊥
and v1 ∈ Jπ(A)vK, according to the

orthogonal decomposition H = Jπ(A)vK ⊕ (π(A)v)⊥. Then the invariance of Jπ(A)vK under
π(A) implies that π(A)v1 ⊆ Jπ(A)vK and therefore

π(A)v0 = π(A)(v − v1) ⊆ π(A)v + π(A)v1 ⊆ Jπ(A)vK.

By Lemma 3.3, the subspace (π(A)v)⊥ is also π(A)-invariant, hence π(A)v0 ⊆ (π(A)v)⊥.
This shows that

π(A)v0 ⊆ (π(A)v)⊥ ∩ Jπ(A)vK = {0}.
Hence (ii) implies v0 = 0 and thus v = v1 ∈ Jπ(A)vK.

(iii) ⇒ (i) is trivial.

To understand the decomposition of representations into smaller pieces, we also need in-
finite “direct sums” of representations, hence the concept of a direct sum of Hilbert spaces
which in turn requires the somewhat subtle concept of summability in Banach spaces (Sub-
section A.5).

Definition 3.5. For a family of (Hj)j∈J of Hilbert spaces, we define⊕̂
j∈J
Hj :=

{
(xj)j∈J ∈

∏
j∈J
Hj :

∑
j∈J
‖xj‖2 <∞

}
with the scalar product

〈x, y〉 =
∑
j∈J
〈xj , yj〉 and ‖x‖2 =

∑
j∈J
‖xj‖2

(Lemma A.29). We call this space the Hilbert space direct sum of the spaces (Hj)j∈J . This
space is larger than the direct vector space sum of the Hj , which is a dense subspace of⊕̂

j∈JHj (Exercise 3.5). In the following we always identify Hi with the subspace

Hi ∼= {(xj)j∈J : (∀j 6= i) xj = 0}.

Note that the requirement that (‖xj‖2)j∈J is summable implies in particular that, for
each x ∈ H, only countably many xj are non-zero, even if J is uncountable (Example 1.8).

Example 3.6. (a) If Hj = C for each j ∈ J , we also write

`2(J,C) :=
⊕̂

j∈J
C =

{
(xj)j∈J ∈ CJ :

∑
j∈J
|xj |2 <∞

}
.

On this space we have

〈x, y〉 =
∑
j∈J

xjyj and ‖x‖2 =
∑
j∈J
|xj |2.
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For n = {1, . . . , n}, we obtain in particular the Hilbert space Cn ∼= `2(n,C).
(b) If all Hilbert spaces Hj = K are equal, we put

`2(J,K) :=
⊕̂

j∈J
K =

{
(xj)j∈J ∈ KJ :

∑
j∈J
‖xj‖2 <∞

}
.

Proposition 3.7. (Existence of direct sums of representations) (a) Let (πj ,Hj)j∈J be a
family of representation of the ∗-algebra A, for which

sup
j∈J
‖πj(a)‖ <∞ for every a ∈ A.

Then
π(a)(vj)j∈J :=

(
πj(a)vj)j∈J

defines on H :=
⊕̂

j∈JHj a representation of A. The representation (π,H) is called the direct
sum of the representations (πj)j∈J . It is also denoted π =

∑
j∈J πj.

(b) Let (π,H) be a representation of the ∗-algebra A and (Hj)j∈J be a mutually orthogonal
family of π(A)-invariant closed subspaces of H. Then (π,H) is equivalent to the direct sum
of the representations (πj ,Hj)j∈J .

Proof. (a) For any v = (vj)j∈J ∈ H, we have∑
j∈J
‖πj(a)vj‖2 ≤

∑
j∈J
‖πj(a)‖2‖vj‖2 ≤

(
sup
j∈J
‖πj(a)‖2

)∑
j∈J
‖vj‖2 <∞.

Therefore each π(a) defines a bounded operator on H and we thus obtain a representation
(π,H) of A.

(b) follows directly from Exercise 3.5 which ensures that the summation map⊕
j∈J
Hj → H, (xj)j∈J 7→

∑
j

xj

extends to an isometry

Φ:
⊕̂

j∈J
Hj → H, Φ(x) :=

∑
j∈J

xj .

Since its range is dense and complete, it is also surjective. Moreover, π(a)Φ((xj)) = Φ((πj(a)xj))
implies that Φ is an equivalence of representations.

Proposition 3.8. (Non-degenerate and cyclic representations) A representation (π,H) of
an involutive algebra A is non-degenerate if and only if it is a direct sum of cyclic subrepre-
sentations (πj ,Hj)j∈J .

Proof. First we observe that every direct sum⊕j∈J(πj ,Hj) of cyclic representations (πj ,Hj , vj)
is non-degenerate because the subspace

∑
j∈J πj(A)vj is dense in the Hilbert space direct

sum ⊕̂j∈JHj .
We now show the converse. So let (π,H) be a non-degenerate representation. The proof

is a typical application of Zorn’s Lemma. We order the set M of all sets {Hj : j ∈ J} of
mutually orthogonal closed π(A)-invariant subspaces on which the representation is cyclic
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by set inclusion. Each chain K in this ordered space has an upper bound given by the union⋃
K ∈M. Now Zorn’s Lemma yields a maximal element Z := {Hj : j ∈ J} in M.

Let K :=
∑
j∈J Hj . Since each Hj is A-invariant and each π(a) is continuous, K is also

A-invariant. In view of Lemma 3.3, the orthogonal complement K⊥ is also A-invariant and
H = K ⊕ K⊥. If K⊥ is non-zero, we pick 0 6= v ∈ K⊥. Then C := Jπ(A)vK is a closed
A-invariant subspace containing v (Lemma 3.4). Hence the representation on C is cyclic.
Therefore {C} ∪ Z ∈ M. This contradicts the maximality of Z. We thus obtain K⊥ = {0},
which proves that K = H. Now the assertion follows from Proposition 3.7(b).

3.3 The Gelfand–Naimark–Segal construction

Let A be a unital C∗-algebra and (π,H) be a representation of A on H. For every unit vector
Ω ∈ H we thus obtain a state by

ωΩ(a) := 〈Ω, π(a)Ω〉

because ωΩ(1) = ‖Ω‖2 = 1 and ωΩ(a∗a) = ‖π(a)Ω‖2 ≥ 0 (cf. Lemma 2.25 and Example 2.26).
In this section we introduce the so-called Gelfand–Naimark–Segal (GNS) construction,

which provides, conversely, for every state ω of a C∗-algebra A, a cyclic representation
(πω,Hω,Ωω), which is unique up to unitary equivalence. This provides a representation
without relying on a concrete model of the Hilbert space or the scalar product. The corre-
spondence between cyclic representations and states is one of the cornerstones of the repre-
sentation theory of C∗-algebras and has numerous applications in other fields of mathematics,
such as harmonic analysis. Its power stems from the fact that it connects two fields of mathe-
matics: the representation theory of A and the convex geometry of the compact convex state
space S(A). This permits us to translate problems in representation theory into convex
geometry.

We now turn to the GNS construction.

Theorem 3.9. (Gelfand–Naimark–Segal (GNS) Theorem)For every state ω ∈ S(A), there
exists a cyclic representation (πω,Hω,Ωω) of A with

ω(a) = 〈Ωω, πω(a)Ωω〉 for a ∈ A.

If, conversely, (π,H,Ω) is a cyclic representation with

ω(a) = 〈Ω, π(a)Ω〉 for every a ∈ A, (15)

then there exists a unique unitary intertwining operator U : H → Hω with UΩ = Ωω, i.e., an
equivalence of cyclic representations (π,H,Ω)→ (πω,Hω,Ωω).

Proof. Existence: For ϕ ∈ A′ and a ∈ A, we define the right translates Raϕ ∈ A′ by
(Raϕ)(b) := ϕ(ba). We consider the subspace

D := RAω = {Raω : a ∈ A} ⊆ A′.

On A we consider the positive semidefinite hermitian form

β(a, b) := ω(a∗b)
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and observe that β(a, a) = 0 if and only if ω(a∗a) = 0, which, by the Cauchy–Schwarz
inequality (cf. Lemma 2.18(i)), is equivalent to ω(b∗a) = 0 for all b ∈ A, i.e., to Raω = 0.
Therefore we obtain on D a well-defined positive definite hermitian inner product

〈Raω,Rbω〉 := ω(a∗b) = (Rbω)(a∗). (16)

Therefore (D, 〈·, ·〉) is a pre-Hilbert space.
Since RaRb = Rab on A′, we obtain by restriction linear maps Ra : D → D. Then

‖RaRbω‖2 = ‖Rabω‖2 = ω(b∗a∗ab) ≤ ω(b∗b)‖a‖2 = ‖Rbω‖2‖a‖2

by Lemma 2.18(iii). Therefore the linear operator Ra : D → D extends to a bounded linear
operator πω(a) on Hω with ‖πω(a)‖ ≤ ‖a‖. For a, b, c ∈ A, we then have

〈Rbω, πω(a)Rcω〉 = 〈Rbω,Racω〉 = ω(b∗ac) = 〈Ra∗bω,Rcω〉 = 〈πω(a∗)Rbω,Rcω〉.

We conclude that πω(a∗) = πω(a)∗. Further,

πω(a)πω(b)Rcω = Rabcω = πω(ab)Rcω

yields πω(a)πω(b) = πω(ab). We thus obtain a cyclic representation (πω,Hω, ω) of A because
the element ω is cyclic by construction. Finally, we note that

〈ω, πω(a)ω〉 = 〈ω,Raω〉 = ω(a) for a ∈ A.

Uniqueness: Now let (π,H,Ω) be any cyclic representation satisfying (15). Then

〈π(b)Ω, π(a)Ω〉 = 〈Ω, π(b∗a)Ω〉 = ω(b∗a) = 〈πω(b)Ωω, πω(a)Ωω〉

implies the existence of complex linear isometry

U0 : π(A)Ω→ πω(A)Ωω with U0(π(a)Ω) = πω(a)Ωω.

As π(A)Ω is dense in H and πω(A)Ωω is dense in Hω, we obtain by continuous extension
of U0 a unitary operator U : H → Hω. By construction, we then have UΩ = Ωω and
U ◦ π(a) = πω(a) ◦ U for every a ∈ A. These two conditions determine U uniquely.

Remark 3.10. Sometimes it is convenient to have a more concrete picture of the space Hω.
As D is dense in Hω, we have an injective linear map

Φ: Hω → A′, Φ(ξ)(b) := 〈ω, π(b)ξ〉 = 〈Rb∗ω, ξ〉

(cf. Exercise 3.13). This map satisfies

Φ(Raω)(b) = 〈ω,RbRaω〉 = 〈ω,Rbaω〉 = ω(ba) = (Raω)(b),

so that
Φ(Raω) = Raω.

We may therefore identify Hω with a linear subspace of the dual space A′.
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Example 3.11. It is instructive to consider some examples.
(a) We first consider the commutative case A = C(X), where X is a compact space. For

ω ∈ S(C(X)), let µω denote the corresponding Radon probability measure on X (Theo-
rem 2.20, Example 2.26). On L2(X,µω) we then have a representation π of C(X), defined
by the multiplication operators.

π(f)h := Mfh := fh

(Exercise 3.8). As C(X) is dense in L2(X,µω) (Proposition 2.21), the constant function
Ω = 1 is a cyclic vector and

〈Ω,MfΩ〉 =

∫
X

f dµω = ω(f).

We further note that

End(π, L2(X,µω)) = {Mf : f ∈ L∞(X,µω)} ∼= L∞(X,µω)

(b) Let H be a Hilbert space and Ω ∈ H be a unit vector. Then the representation of
A = B(H) on H is cyclic and ω(A) := 〈Ω, AΩ〉 is a corresponding state.

(c) Let A = B(Cn) and ω(A) = 1
n trA. Then ω is a state of A. The corresponding Hilbert

space is H := B(Cn) with the Hilbert–Schmidt scalar product

〈A,B〉 = tr(A∗B) and π(A)B = AB.

The cyclic unit vector is Ω = 1√
n
1 because

〈Ω, π(A)Ω〉 =
1

n
〈1, A〉 =

1

n
trA = ω(A).

(Exercise 2.25).

Combing the preceding theorem with Example 1.7(b), it follows that C∗-algebras are
precisely the closed ∗-subalgebras of B(H) (with respect to the norm topology).

Theorem 3.12. (Gelfand–Naimark Theorem) Every C∗-algebra A is isomorphic to a closed
subalgebra of some B(H).

Proof. In view of Proposition 1.14, we may w.l.o.g. assume that A is unital. For every state
ω ∈ S(A), we have the cyclic GNS representation (πω,Hω) from Theorem 3.9. We now
consider the direct sum representation

π :=
⊕̂

ω∈S(A)
πω on

⊕̂
ω∈S(A)

Hω

(Proposition 3.7). This representation exists because

sup{‖πω(A)‖ : ω ∈ S(A)} ≤ ‖A‖ for A ∈ A

(Proposition 1.18). Pick A ∈ A. It remains to show that ‖π(A)‖ = ‖A‖ for every A ∈ A.
Since ‖A‖2 = ‖A∗A‖ ∈ σ(A∗A) (Exercise 2.30), Proposition 2.27 implies the existence of a
state ω ∈ S(A) with ω(A∗A) = ‖A∗A‖ = ‖A‖2. Then

‖πω(A)‖2 ≥ ‖πω(A)Ωω‖2 = ω(A∗A) = ‖A‖2

implies that ‖π(A)‖ ≥ ‖πω(A)‖ ≥ ‖A‖ ≥ ‖π(A)‖. This shows that π is isometric. Hence
im(π) is complete and therefore closed.
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3.4 Irreducible representations and Schur’s Lemma

A key result in this context is Schur’s Lemma, asserting that End(π,H) = C1 if and only if
(π,H) is irreducible.

Theorem 3.13. (Schur’s Lemma) A representation (π,H) of an involutive algebra A is
irreducible if and only if End(π,H) = C1.

Proof. If (π,H) is not irreducible and K ⊆ H is a proper closed invariant subspace, then the
orthogonal projection P onto K commutes with π(A) (Lemma 3.3) and P 6∈ C1. Therefore
End(π,H) 6= C1 if π is not irreducible.

Suppose, conversely, that End(π,H) 6= C1. Then Corollary 2.3 applies to the C∗-algebra
End(π,H) (Exercise 3.7), so that there exist non-zero commuting A,B ∈ End(π,H) with
AB = 0. Then K := A(H) is a non-zero closed subspace invariant under π(A) and satisfying
BK = {0}. Therefore (π,H) is not irreducible.

Corollary 3.14. Every irreducible representation (π,H) of a commutative involutive algebra
A is one-dimensional.

Proof. If A is commutative, then π(A) ⊆ End(π,H). If (π,H) is irreducible, then

End(π,H) = C1

by Schur’s Lemma, and therefore π(A) ⊆ C1, so that the irreducibility further implies
dimH = 1.

Corollary 3.15. Suppose that (π,H) is an irreducible representation of the involutive algebra
A and (ρ,K) any representation of A.

(a) If Hom((π,H), (ρ,K)) 6= {0}, then (π,H) is equivalent to a subrepresentation of (ρ,K).

(b) Hom((π,H), (ρ,K)) = {0} if (ρ,K) is also irreducible and not equivalent to (π,H).

Proof. (a) Let A ∈ Hom((π,H), (ρ,K)) be a non-zero intertwining operator. Then A∗A ∈
End(π,H) = C1 by Schur’s Lemma. Further

〈v,A∗Av〉 = ‖Av‖2 ≥ 0 for v ∈ H

implies that A∗A = λ1 for some λ > 0 (because A 6= 0). Then B := λ−1/2A is another
intertwining operator with B∗B = 1. Hence B : H → K is an isometric embedding. In
particular, its image K0 is a closed non-zero invariant subspace on which the representation
induced by ρ is equivalent to (π,H).

(b) If (ρ,K) is also irreducible and A 6= 0, the preceding argument shows that ρ ∼= π.

Corollary 3.16. If (π,H) is a representation of an involutive algebra A and (πj ,Hj)j=1,2

are non-equivalent irreducible subrepresentations, then H1⊥H2.

Proof. Let P : H → H1 denote the orthogonal projection onto H1. Since H1 is invariant
under π(A), Lemma 3.3 implies that P ∈ Hom((π,H), (π1,H1)). Hence

P |H2
∈ Hom((π2,H2), (π1,H1)) = {0}

by Corollary 3.15. This means that H1⊥H2.
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3.5 Pure states

We have already seen that the GNS construction provides a natural correspondence between
states and cyclic representations. As the state space S(A) is a convex set, it is natural to
ask which representation theoretic property corresponds to a state being an extreme point,
i.e., a so-called pure state. In this subsection we show that the pure states correspond to
irreducible representations.

Definition 3.17. Let C be a convex subset of the real vector space V . We call x ∈ C an
extreme point if

x = λy + (1− λ)z, x, z ∈ C, 0 < λ < 1 implies y = z = x.

This means that x does not lie in the interior of a proper line segment generated by two
different points of C. It is also equivalent to the convexity of the complement C \ {x}. We
write Ext(C) for the set of extreme points of C.

Definition 3.18. A state ω ∈ S(A) of a C∗-algebra A is called pure if ω is an extreme point
of the convex set S(A) of all states. We write

Sp(A) = Ext(S(A))

for the set of pure states of A.

Theorem 3.19. (Pure State Theorem) Let A be a unital C∗-algebra. A cyclic representation
(π,H,Ω) of A is irreducible if and only if the state defined by ω(a) := 〈Ω, π(a)Ω〉 is pure.

Proof. Suppose first that (π,H,Ω) is not irreducible. Then there exists a non-trivial orthog-
onal π(A)-invariant decomposition

H = H1 ⊕H2

(Lemma 3.3). Since Ω is cyclic in H, it is contained neither in H1 nor in H2. Accordingly,
Ω = Ω1 + Ω2 with non-zero vectors Ωj ∈ Hj , and we write

ωj(a) :=
1

‖Ωj‖2
〈Ωj , π(a)Ωj〉 = 〈Ω̃j , π(a)Ω̃j〉 for Ω̃j :=

1

‖Ωj‖
Ωj

for the corresponding states. Then

ω(a) = 〈Ω, π(a)Ω〉 = 〈Ω1, π(a)Ω1〉+ 〈Ω2, π(a)Ω2〉 = ‖Ω1‖2ω1(a) + ‖Ω2‖2ω2(a)

shows that

ω = ‖Ω1‖2ω1 + ‖Ω2‖2ω2 with 1 = ‖Ω‖2 = ‖Ω1‖2 + ‖Ω2‖2.

To verify that ω is not extreme, it remains to show that we do not have ω1 = ω2 = ω. So let
us assume that this is the case. Then the GNS Theorem implies that (πj ,Hj , Ω̃j) ∼= (π,H,Ω)
for j = 1, 2 and it follows that in the direct sum representation

(π⊕2,H⊕2) ∼= (π1,H1)⊕ (π2,H2) ∼= (π,H),

the vector (‖Ω1‖2Ω, ‖Ω2‖2Ω) is cyclic. This contradicts the fact that it is contained in the
closed invariant diagonal subspace K := {(‖Ω1‖2v, ‖Ω2‖2v) : v ∈ H}.
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Now we assume that (π,H,Ω) is irreducible. Let 0 < λj < 1 with λ1 + λ2 = 1 and
ω1, ω2 ∈ S(A) with

ω = λ1ω1 + λ2ω2.

We consider the cyclic representations (πj ,Hj ,Ωj) corresponding to the states ωj , j = 1, 2.
In the direct sum of these two representations, we consider the unit vector

Ω0 := (
√
λ1Ω1,

√
λ2Ω2) ∈ H1 ⊕H2

and observe that, for a ∈ A, we have

〈Ω0, (π1 ⊕ π2)(a)Ω0〉 = 〈
√
λ1Ω1,

√
λ1π1(a)Ω1〉+ 〈

√
λ2Ω2,

√
λ2π2(a)Ω21〉

= λ1ω1(a) + λ2ω2(a) = ω(a).

Therefore the GNS Theorem implies that the cyclic subrepresentation (π0,H0,Ω0) ofH1⊕H2

generated by Ω0 is equivalent to (π,H,Ω), hence irreducible. By construction, the projection

Ψ: H0 → H1, (ξ1, ξ2) 7→ 1√
λ1

ξ1

is a bounded A-intertwining operator with Ψ(Ω0) = Ω1. Schur’s Lemma (Theorem 3.13)
implies that the intertwining operator Ψ∗Ψ ∈ End(π0,H0) = C1 is a multiple of the identity.
Therefore

〈Ω0,Ψ
∗ΨΩ0〉 = ‖Ψ(Ω0)‖2 = ‖Ω1‖2 = 1

yields Ψ∗Ψ = 1. Hence Ψ is isometric. This implies that, for a ∈ A, we have

ω1(a) = 〈Ω1, π1(a)Ω1〉 = 〈Ψ(Ω0),Ψ
(
π0(a)Ω0

)
〉 = 〈Ω0, π0(a)Ω0〉 = ω(a).

We conclude that ω1 = ω, and hence also that ω2 = ω. This shows that the state ω is pure
if the corresponding cyclic representation is irreducible.

Corollary 3.20. For a commutative unital C∗-algebra A the set of pure states coincides
with the set Â of unital characters:

Ext(S(A)) = Hom1(A,C) = Â.

Proof. According to Theorem 3.19, a state ω is pure if and only if the corresponding cyclic
representation (πω,Hω,Ωω) is irreducible. Since A is commutative, this is equivalent to

dimHω = 1 (Corollary 3.14), and then π(a) = ω(a)1 shows that ω ∈ Â. Conversely, every
character defines a one-dimensional representation which is obviously irreducible.

Remark 3.21. For a compact space X and A = C(X), we know that the states of A
correspond to regular probability measures µ on X (Example 2.26) and the elements of Â
correspond to the Dirac measures. Therefore the preceding theorem means that the extreme
points in the convex set of regular probability measures on X are the Dirac measures.

Theorem 3.22. (Gelfand–Räıkov Theorem) For every C∗-algebra A, the irreducible repre-
sentations separate the points, i.e., for every 0 6= a ∈ A there exists an irreducible represen-
tation (π,H) with π(a) 6= 0.
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Proof. We may w.l.o.g. assume that A is unital (Proposition 1.14). Fix 0 6= a ∈ A and note
that this implies that a∗a 6= 0. With Proposition 2.27 we now find a state ω ∈ S(A) with
ω(a∗a) > 0.

Now we recall the Krein–Milman Theorem which implies that the weak-∗-compact convex
set S(A) is the closed convex hull of its extreme points, i.e., the pure states. Hence there
even exists a pure state ω with ω(a∗a) > 0. Then the corresponding GNS representation πω
is irreducible with πω(a) 6= 0 because ω(a∗a) = ‖πω(a)Ω‖2 > 0.

The Gelfand–Räıkov Theorem is a remarkably strong result on representations of C∗-
algebras. It is based on the Krein–Milman Theorem asserting that a compact convex set
is always generated by its extreme points, which implies in particular that extreme points
exist. One cannot expect the existence of a faithful irreducible representation because, if A
is commutative, then all irreducible representations are one-dimensional. However, since we
can form direct sums of representations, the Gelfand–Räıkov Theorem implies the Gelfand–
Naimark Theorem.

Exercises for Section 3

Exercise 3.1. Let b : V × V → C be a sesquilinear form on the complex vector space V , i.e., b is
linear in the second argument and antilinear in the first.

(i) Show that b satisfies the polarization identity which permits to recover all values of b from
those on the diagonal:

b(x, y) =
1

4

3∑
k=0

i−kb(x+ iky, x+ iky).

As a consequence, every operator A ∈ B(H), H a complex Hilbert space, is uniquely determined by
the numbers 〈v,Av〉, v ∈ H.

(ii) Show also that, if b is positive semidefinite, then it satisfies the Cauchy–Schwarz inequality:

|b(x, y)|2 ≤ b(x, x)b(y, y) for v, w ∈ V.

Exercise 3.2. (Direct sums of Hilbert spaces) For a family of (Hj)j∈J of Hilbert spaces, we consider
the set

H :=
⊕̂
j∈J

Hj :=
{

(xj)j∈J ∈
∏
j∈J

Hj :
∑
j∈J

‖xj‖2 <∞
}
.

Show that:

(i) H is a linear subspace of the linear space
∏
j∈J Hj .

Hint: ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2) holds in every Hilbert space.

(ii) If x = (xj)j∈J ∈ H, then the set of all j with xj 6= 0 is countable.

(iii) For x, y ∈ H, the absolutely convergent series 〈x, y〉 =
∑
j∈J〈xj , yj〉 defines a positive definite

scalar product on H for which H becomes a Hilbert space.
Hint: |〈x, y〉| ≤ ‖x‖‖y‖ ≤ 1

2
(‖x‖2 + ‖y‖2) holds in every Hilbert space.

(iv) For a family of bounded operators Aj ∈ B(Hj), there exist a bounded operator A on H with
(Ax)j = Ajxj for x ∈ H, j ∈ J , if and only if supj∈J ‖Aj‖ <∞.

Exercise 3.3. Show that, for an orthogonal family (xj)j∈J in the Hilbert space H, the following
are equivalent:

(i) (xj)j∈J is summable in the following sense: There exists an x ∈ H such that, for every ε > 0,
there exists a finite subset Jε ⊆ J with the property that, for every finite subset F ⊇ Jε, we
have

∥∥∑
j∈F xj − x

∥∥ < ε.
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(ii) (‖xj‖2)j∈J is summable in R.

Hint: A series
∑∞
n=1 xjn converges in H if and only if the partial sums sN :=

∑N
n=1 xjn form a

Cauchy sequence.
Show further that, if this is the case, then

∥∥∑
j∈J xj

∥∥2 =
∑
j∈J ‖xj‖

2 and the set {j ∈ J : xj 6= 0}
is countable.

Exercise 3.4. Show that, for an orthonormal family (xj)j∈J in the Hilbert space H, the following
assertions hold:

(a) (∀x ∈ H)
∑
j∈J |〈xj , x〉|

2 ≤ ‖x‖2 (Bessel inequality) and only countably many xj are non-zero.

(b) x =
∑
j∈J〈x, xj〉xj holds if and only if

∑
j∈J |〈x, xj〉|

2 = ‖x‖2 (Parseval equality).

(c) If (xn)n∈N is an orthonormal sequence in H, then the series
∑∞
n=1

1
n
xn converges, but not

absolutely.

Exercise 3.5. Let (Hj)j∈J be an orthogonal family of closed subspaces of the Hilbert space H.

Show that, for each x = (xj)j∈J ∈
⊕̂
Hj , the sum Φ(x) :=

∑
j∈J xj converges in H and that

Φ:
⊕̂

j∈JHj → H, (xj)j∈J 7→
∑
j∈J xj defines an isometric embedding (cf. Exercise 3.3).

Exercise 3.6. Let A : H1 → H2 be an isometric linear map between two Hilbert spaces. Show that
A is unitary if A(H1) is dense in H2. Hint: Subsets of complete metric spaces are complete if and
only if they are closed.

Exercise 3.7. (Intertwining operators) Let (πj ,Hj), j = 1, 2, 3 be representations of the ∗-algebra
A. Show that:

(i) Composition defines a map

Hom((π2,H2), (π3,H3))×Hom((π1,H1), (π2,H2))→ Hom((π1,H1), (π3,H3)).

(ii) Hom((π1,H1), (π2,H2)) is a closed subspace of the Banach space B(H1,H2).

(iii) A ∈ Hom((π1,H1), (π2,H2)) implies A∗ ∈ Hom((π2,H2), (π1,H1)).

(iv) For every representation (π,H) of A, the space End(π,H) is a C∗-subalgebra of B(H).

Exercise 3.8. Let (X,S, µ) be a finite measure space and A := L∞(X,S, µ) the C∗-algebra of
(equivalence classes of) essentially bounded measurable functions. Show that

π(f)h := fh

defines a ∗-representation of A on L2(X,µ) for which the constant function Ω = 1 is a cyclic vector
and

End(π, L2(X,µ)) = π(L∞(X,µ)).

Exercise 3.9. (Block matrix picture of subrepresentations) LetH = H1⊕H2 be an orthogonal direct
sum of Hilbert spaces. We identify operators A ∈ B(H) with

(2×2)-matrices A =

(
a11 a12
a21 a22

)
with aij ∈ B(Hj ,Hi). Show that: For a representation (π,H) of a

∗-algebra A, the subspace H1 is invariant if and only if there exist representations πj : A → B(Hj),

j = 1, 2, such that π(a) =

(
π1(a) 0

0 π2(a)

)
for a ∈ A.

Exercise 3.10. (Direct sums of cyclic representations) Let (ωn)n∈N be a sequence of states of the
unital C∗-algebra A and λn ≥ 0 with

∑
n λn = 1. Show that the series ω :=

∑
n λnωn converges in

the Banach space A′, that ω ∈ S(A), and that the cyclic representation (πω,Hω,Ωω) is equivalent
to a subrepresentation of the direct sum representation ⊕n∈N(πωn ,Hωn).
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Exercise 3.11. Show that every finite dimensional representation (π,H) of an involutive algebra
A is a direct sum of irreducible representations.

Exercise 3.12. Show that every representation (π,H) of a finite dimensional ∗-algebra A is a direct
sum of irreducible representations (πj ,Hj)j∈J and that all irreducible representations of A are finite
dimensional.

Exercise 3.13. Let (π,H,Ω) be a cyclic representation of the ∗-algebra A and A∗ the algebraic
dual space of A. Show that

Φ: H → A∗, Φ(ξ)(a) := 〈Ω, π(a)ξ〉

defines an injective linear map satisfying

Φ ◦ π(a) = Ra ◦ Φ for a ∈ A and (Raω)(b) = ω(ba).

Compare this realization of (π,H) as a subspace of A∗ with the GNS construction.

Exercise 3.14. Let A be a non-unital C∗-algebra and A+ be its unitization. We consider a state
ν ∈ S(A+) and a corresponding cyclic GNS representation (π,H,Ω) with ν(a) = 〈Ω, π(a)Ω〉 for
a ∈ A. We further put ω := ν|A and write ω+ for the positive functional on A+ obtained by
ω+(1) := ‖ω‖. Show that:

(i) ν = ω+ + ν′, where ν′ vanishes on A and satisfies ν′(1) = 1− ‖ω‖ ≥ 0.

(ii) The following are equivalent:

(a) The restriction π|A is non-degenerate.

(b) Ω ∈ π(A)Ω.

(c) Ω is cyclic for π(A).

(d) ‖ω‖ = 1, i.e., ω+ = ν.

Hint: Show first the equivalence of (i)-(iii). Write Ω = Ω0⊕Ω1 with Ω0 ∈
(
π(A)Ω

)⊥
and

Ω1 ∈ π(A)Ω, so that π(A)Ω0 = {0} (why?). Then ‖ω‖ ≤ ‖Ω1‖2 and 1 = ‖Ω0‖2 + ‖Ω1‖2.
Therefore ‖ω‖ = 1 implies Ω0 = 0, hence (b), and, conversely, (a) implies Ω0 = 0 by
Lemma 3.4.

Exercise 3.15. (Reduction to non-degenerate representations) Let (π,H) be a representation of
the ∗-algebra A. Show that (π,H) ∼= (π0,H0)⊕ (π1,H1), where π0(A) = {0} (this representation is
“totally degenerate”) and π1 is non-degenerate.

Exercise 3.16. Let (Hj)j∈J be a family of Hilbert spaces and Aj ∈ B(Hj). Suppose that
supj∈J ‖Aj‖ <∞. Then A(xj) := (Ajxj) defines a bounded linear operator on ⊕̂j∈JHj with

‖A‖ = sup
j∈J
‖Aj‖.

If, conversely, H = ⊕̂j∈JHj is a Hilbert space direct sum and A ∈ B(H) preserves each subspace
Hj , then the restrictions Aj := A|Hj are bounded operators in B(Hj) satisfying ‖A‖ = supj∈J ‖Aj‖.

4 Von Neumann Algebras

A fundamental observation about sets of operators on Hilbert spaces is that, for a ∗-invariant
subset S ⊆ B(H), a closed subspace K of H is S-invariant if and only if the corresponding
orthogonal projection PK onto K belongs to the commutant

S′ := {A ∈ B(H) : (∀s ∈ S)As = sA}
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(Lemma 3.3). For this reason, ∗-invariant subalgebras which are commutants are of partic-
ular importance; they are called von Neumann algebras. This is the reason for considering
primarily ∗-invariant algebras of operators.

In this section we start with the description of some topologies on the algebra B(H) of
bounded operators on a complex Hilbert space which are weaker than the norm topology. In
Subsection 4.2 we define von Neumann algebras as ∗-subalgebras A ⊆ B(H) which coincide
with their bicommutant, i.e., A = A′′.

An important difference between C∗- and von Neumann algebras is that every von Neu-
mann algebra M is generated (as a von Neumann algebra) by the subset P (M) of its pro-
jections (=hermitian idempotents). This is shown in Subsection 4.3, where we also explain
the natural equivalence relation on P (M) and how it can be used to distinguish three types
I, II and III of simple von Neumann algebras (=factors). The structure of type I factors
is completely determined in terms of tensor products in Subsection 4.4. We conclude this
section with a construction of a factor of type II (Subsection 4.6).

4.1 Topologies on B(H)
In this subsection we define some topologies on the space B(H) of all continuous operators
which are weaker (coarser) than the norm topology. Accordingly, closedness in these weaker
topologies is a stronger condition, so that one may expect it to have stronger impact on the
structure of these algebras (cf. Theorem 4.13).

Definition 4.1. Let H be a Hilbert space. On B(H) we define the weak operator topology
τw as the coarsest topology for which all functions

fv,w : B(H)→ C, A 7→ 〈v,Aw〉, v, w ∈ H,

are continuous (cf. Appendix A.1 and Exercise 4.17). The closure of a subset S ⊆ B(H) in
this topology is denoted Sw.

We define the strong operator topology τs on B(H) as the coarsest topology for which all
maps

B(H)→ H, A 7→ Av, v ∈ H,

are continuous. This topology is also called the topology of pointwise convergence. The
closure of a subset S ⊆ B(H) in this topology is denoted Ss.

For the closure in the norm topology, we write Sn.

Remark 4.2. (a) Since

|fv,w(A)− fv,w(B)| = |〈v, (A−B)w〉| ≤ ‖(A−B)w‖ · ‖v‖ ≤ ‖A−B‖‖w‖‖v‖

by the Cauchy–Schwarz Inequality, the functions fv,w are continuous on B(H) with respect
to the strong operator topology. Therefore the weak operator topology is weaker (=coarser)
than the strong one, which in turn in weaker than the norm topology. For a subset S ⊆ B(H),
we therefore have the inclusions

S ⊆ Sn ⊆ Ss ⊆ Sw. (17)

(b) If dimH < ∞, then the norm topology, the strong and the weak operator topology
coincide on B(H). In fact, choosing an orthonormal basis (e1, . . . , en) in H, we represent A ∈
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B(H) by the matrix A = (aij) ∈ Mn(C), where aij = 〈ei, Aej〉 = fei,ej (A). If Eij ∈ Mn(C)
denote the matrix units, we have A =

∑n
i,j=1 aijEij , so that

‖A‖ ≤
n∑

i,j=1

|aij |‖Eij‖ =

n∑
i,j=1

|fei,ej (A)|‖Eij‖,

which shows that convergence in the weak topology implies convergence in the norm topology.
(c) If dimH =∞, then the Gram–Schmidt process ensures the existence of an orthonor-

mal sequence (fn)n∈N in H. We consider the operators

Pn(v) = 〈fn, v〉fn and Qn(v) = 〈f1, v〉fn for n ∈ N.

Then Pn is the orthogonal projection onto the one-dimensional subspace Cfn. For any v ∈ H,
we have

∑
n |〈v, fn〉|2 ≤ ‖v‖2 (Bessel inequality), so that limn→∞〈v, fn〉 = 0. This shows

that
lim
n→∞

‖Pn(v)‖2 = lim
n→∞

|〈fn, v〉|2 = 0,

so that Pn → 0 in the strong operator topology. As Pn(fn) = fn, we have ‖Pn‖ = 1 and Pn
does not converge in the norm topology.

The sequence Qn does not converge in the strong operator topology because Qn(f1) = fn
does not converge in H. However, Qn → 0 holds in the weak operator topology because, for
every w ∈ H, we have

〈w,Qnv〉 = 〈f1, v〉〈w, fn〉 → 0.

The proof of the following lemma is an easy exercise (cf. Exercise 4.7):

Lemma 4.3. (A neighborhood basis for weak and strong topology) Let A ∈ B(H).

(a) A basis of neighborhoods of A in the strong operator topology consists of the sets

U = {S ∈ B(H) : ‖Svj −Avj‖ < ε for j = 1, . . . , n},

where ε > 0, n ∈ N and v1, . . . , vn ∈ H.

(b) A basis of neighborhoods of A in the weak operator topology consists of the sets

U = {S ∈ B(H) : |〈wj , (S −A)vj〉| < ε for j = 1, . . . , n},

where ε > 0, n ∈ N and v1, . . . , vn, w1, . . . , wn ∈ H.

Lemma 4.4. Let (An)n∈N be a bounded sequence of hermitian operators which is increasing
(An ≤ An+1) or decreasing (An ≥ An+1). Then A := limn→∞An exists in B(H) with respect
to the weak operator topology and A∗ = A.

Proof. Assume that ‖An‖ ≤ C holds for every n ∈ N. Then, for every v ∈ H, we have

− C‖v‖2 ≤ 〈v,Anv〉 ≤ C‖v‖2, (18)

and since the sequence (〈v,Anv〉)n∈N is monotone and bounded, it converges. The polariza-
tion identity

〈v,Anw〉 =
1

4

3∑
k=0

i−k〈v + ikw,An(v + ikw)〉
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now implies that
β(v, w) := lim

n→∞
〈v,Anw〉

exists for any v, w ∈ H. As β is a pointwise limit of hermitian forms onH, it also is hermitian.
Passing to the limit in the estimate |〈v,Anw〉| ≤ C‖v‖‖w‖, we obtain

|β(v, w)| ≤ C‖v‖‖w‖ for v, w ∈ H,

so that there exists a bounded hermitian operator A ∈ B(H) with

β(v, w) = 〈v,Aw〉 for v, w ∈ H.

(Exercise 4.16; the main point is that w 7→ β(v, w) is a continuous linear map, hence repre-
sented by a scalar product by the Riesz–Fischer Theorem). Then An → A holds in the weak
operator topology.

4.2 von Neumann algebras

We now introduce von Neumann algebras as ∗-subalgebra A ⊆ B(H) which coincide with
their bicommutant A = A′′. , which is equivalent to A being the commutant of some ∗-
invariant subset. We also prove von Neumann’s Bicommutant Theorem assertion that, for a
∗-subalgebra A ⊆ B(H) whose representation on H is non-degenerate, the bicommutant A′′
coincides with the closure in the strong and the weak operator topology.

Definition 4.5. For a subset S ⊆ B(H), we define the commutant by

S ′ := {A ∈ B(H) : (∀S ∈ S)SA = AS}.

Lemma 4.6. For subsets E,F ⊆ B(H), we have:

(i) E ⊆ F ′ ⇔ F ⊆ E′.

(ii) E ⊆ E′′.

(iii) E ⊆ F ⇒ F ′ ⊆ E′.

(iv) E′ = E′′′.

(v) E = E′′ if and only if E = F ′ holds for some subset F ⊆ B(H).

Proof. (i)-(iii) are trivial.
(iv) From (ii) we get E′ ⊆ (E′)′′ = E′′′. Moreover, (ii) and (iii) imply E′′′ ⊆ E′.
(v) If E = F ′, then E′′ = F ′′′ = F ′ = E is a consequence of (iv). The converse is

trivial,

Lemma 4.7. The commutant E′ of a subset E ⊆ B(H) has the following properties:

(i) If E is commutative, then so is E′′.

(ii) E′ is a unital subalgebra of B(H) which is closed in the weak operator topology, hence
in particular closed in the strong and the norm topology.

(iii) If E∗ = E, then E′ is also ∗-invariant, hence in particular a C∗-subalgebra of B(H).
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Proof. (i) That E is commutative is equivalent to E ⊆ E′, but this implies E′′ ⊆ E′ = E′′′

(Lemma 4.6(iv)), which means that E′′ is commutative.
(ii) Clearly E′ is a linear subspace closed under products, hence a subalgebra of B(H). To

see that E′ is closed in the weak operator topology, let v, w ∈ H and B ∈ E. For A ∈ B(H)
we then have

fv,w(AB −BA) = 〈v,ABw〉 − 〈v,BAw〉 = (fv,Bw − fB∗v,w)(A),

which leads to
E′ =

⋂
v,w∈H,B∈E

ker(fv,Bw − fB∗v,w),

which is subspace of B(H) that is closed in the weak operator topology.
(iii) If A ∈ E′ and B ∈ E, then

A∗B −BA∗ = (B∗A−AB∗)∗ = 0

follows from B∗ ∈ E. Therefore E′ is ∗-invariant. Since it is in particular norm closed by
(ii), E′ is a C∗-subalgebra of B(H).

We now come to one of the most fundamental concepts of this course.

Definition 4.8. A unital ∗-subalgebra M ⊆ B(H) is called a von Neumann algebra if
M =M′′.

A von Neumann algebra M is called a factor if its center

Z(M) := {z ∈M : (∀a ∈M) az = za} =M∩M′

is trivial, i.e., Z(M) = C1.

We shall see later that factors are precisely the simple von Neumann algebras in the sense
that they have no non-trivial ideal which also is a von Neumann algebra (Exercise 4.11).
Factors are the building blocks of general von Neumann algebras, and there is a well-developed
decomposition theory according to which any von Neumann algebra is a so-called “direct
integral” of factors (cf. [Dix69]). The classification theory of factors is an important branch
of noncommutative geometry (cf. [Co94]).

Remark 4.9. (a) In view of Lemma 4.7, any von Neumann algebraM is closed in the weak
operator topology. As the norm topology is finer than the weak operator topology, it follows
in particular that M is norm closed, hence a C∗-algebra. Von Neumann’s Bicommutant
Theorem 4.13 below shows the converse for unital ∗-invariant algebras: they are von Neumann
if and only if they are closed in the weak or strong operator topology.

(b) For every ∗-invariant subset E ⊆ B(H), the commutant E′ is a von Neumann algebra
because it is also ∗-invariant and E′′′ = E′ (Lemma 4.6).

Lemma 4.10. For a von Neumann algebra M⊆ B(H), the following assertions hold:

(i) The commutant M′ also is a von Neumann algebra.

(ii) The center Z(M) is a commutative von Neumann algebra

(iii) The following are equivalent:
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(a) M is a factor.

(b) M′ is a factor.

(c) The representation of span(M ·M′) on H is irreducible.

Proof. (i) Remark 4.9(b).
(ii) follows from Z(M) = (M∪M′)′ and Remark 4.9(b).
(iii) The equivalence of (a) and (b) follows from Z(M) = Z(M′). The equivalence with

(c) follows from (M∪M′)′ =M′ ∩M = Z(M) and Schur’s Lemma (Theorem 3.13).

Example 4.11. (a) The full algebra M = B(H) is a von Neumann algebra. In this case
M′ = C1 (Exercise 4.15), which implies that B(H) is a factor. If n = dimH ∈ N0 ∪ {∞},
then B(H) is called a factor of type In.

(b) For H = Cn, it follows in particular that Mn(C) ∼= B(Cn) is a von Neumann algebra
with commutant Mn(C)′ = C1.

(c) We consider the subalgebra A := Mn(C) of the matrix algebra

B := Mn(Mm(C)) ∼= Mnm(C) ∼= B(Cnm)

of (n× n)-matrices whose entries are (m×m)-matrices. Then C := Mm(C)1 ∼= Mm(C) (the
multiples of the identity) form a subalgebra of B. Using (b), it is easy to see that

C′ = A and A′ = C

(Exercise 4.13). Therefore A is a von Neumann algebra whose commutant is C.
Identifying Cnm with Cn ⊗ Cm, we have A ∼= B(Cn) ⊗ 1 and C ∼= 1 ⊗ B(Cm). We shall

develop this point of view in more detail in Subsection 4.4 below.

The following theorem implies in particular that von Neumann algebras are precisely the
weakly (strongly) closed ∗-subalgebras of B(H) which are non-degenerate in the following
sense.

Definition 4.12. A ∗-algebra A ⊆ B(H) is said to be non-degenerate if AH spans a dense
subspace of H, i.e., if the identical representation of A on H is non-degenerate. Note that
this condition is trivially satisfied if 1 ∈ A.

Theorem 4.13. (von Neumann’s Bicommutant Theorem) Let H be a Hilbert space and
A ⊆ B(H) be a non-degenerate ∗-subalgebra, then the closure of A in the weak and strong
operator topology coincides with A′′.

Proof. As A′′ is closed in the weak-operator topology by Lemma 4.7, A ⊆ A′′ implies

A ⊆ As ⊆ Aw ⊆ A′′

(see (17) in Remark 4.2). It therefore remains to show that A′′ ⊆ As.
So let T ∈ A′′. A basis of neighborhoods of A in the strong operator topology is specified

by a finite set v1, . . . , vn ∈ H and ε > 0 via

U = {S ∈ B(H) : ‖Svj − Tvj‖ < ε for j = 1, . . . , n}

(Lemma 4.3). Fixing the vj and ε > 0, we therefore have to find an S ∈ A ∩ U .
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We consider the ∗-homomorphism

ρ : B(H)→ B(Hn), A 7→ diag(A, . . . , A).

Then a quick calculation shows that, an element X = (Xij) ∈ B(Hn) ∼= Mn(B(H)) (Exer-
cise 1.8) commutes with ρ(A) if and only of all entries Xij commute with A, i.e.,

ρ(A)′ ∼= Mn(A′). (19)

This in turn implies that
ρ(A)′′ ∼= Mn(A′)′ = A′′1n (20)

(Exercise 4.13).
Next we observe that ρ(A) ⊆ B(Hn) is non-degenerate. In fact, if w = (w1, . . . , wn) ∈ Hn

satisfies
ρ(A)w = (Aw1, . . . , Awn) = 0

for every A ∈ A, then, for each j, we have Awj = {0}, so that wj = 0 by Lemma 3.4 because
A is non-degenerate. Applying Lemma 3.4 again, we see that ρ(A) is non-degenerate.

Consider the vector v := (v1, . . . , vn) ∈ Hn. Then E := ρ(A)v contains v by Lemma 3.4
because ρ(A) is non-degenerate. As ρ(A) is ∗-invariant, the orthogonal projection PE onto E
commutes with ρ(A) (Lemma 3.3), hence with ρ(T ) by (20). We conclude that ρ(T )E ⊆ E
(Lemma 3.3). In particular ρ(T )v ∈ E = ρ(A)v, and this means that there exists an A ∈ A
with

n∑
j=1

‖Tvj −Avj‖2 = ‖ρ(T )v − ρ(A)v‖2 < ε2.

We thus obtain ‖Tvj −Avj‖ < ε for j = 1, . . . , n.

At this point the next step is to determine the structure of a von Neumann algebra more
closely. We shall do this shortly by using representation theoretic tools.

4.3 Projections in von Neumann algebras

One of the main differences between C∗-algebras and von Neumann algebras is that von Neu-
mann algebras M are generated by their projections (Proposition 4.18). In a commutative
C∗-algebra C(X), X compact, a projection is a characteristic function χE of an open com-
pact subset E ⊆ X. If X is connected, then χ∅ = 0 and χX = 1 are the only projections in
C(X). However, for a commutative von Neumann algebra such as L∞(X,µ), the density of
the subspace of step functions shows that the projections, resp., the characteristic functions
span a norm-dense subspace.

Definition 4.14. A positive measure µ on (X,S) is said to be σ-finite if X =
⋃
n∈NEn

with En ∈ S and µ(En) <∞. This is an important assumption for many results in measure
theory, such as Fubini’s Theorem and the Radon–Nikodym Theorem.

A positive measure µ on (X,S) is called semi-finite if, for each E ∈ S with µ(E) = ∞,
there exists a measurable subset F ⊆ E satisfying 0 < µ(F ) <∞.

The following lemma is a central basic tool to deal with Hilbert spaces with continuous
decompositions.
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Lemma 4.15. (Multiplication operators) Let (X,S, µ) be a measure space and L∞(X,µ) be
the corresponding ∗-algebra of essentially bounded measurable functions. Then the following
assertions hold:

(i) For each f ∈ L∞(X,µ), we obtain a bounded operator Mf ∈ B(L2(X,µ)) by Mf (g) :=
fg satisfying ‖Mf‖ ≤ ‖f‖∞.13

(ii) The map M : L∞(X,µ) → B(L2(X,µ)), f 7→ Mf is a representation of the ∗-algebra

L∞(X,µ), where f∗(x) := f(x).

(iii) If µ is semi-finite , then M is isometric, i.e., ‖Mf‖ = ‖f‖∞ for each f , so that we
may identify L∞(X,µ) with a subalgebra of B(L2(X,µ)).

(iv) If (fn)n∈N is a bounded sequence in L∞(X,µ) converging pointwise
µ-almost everywhere to f , then Mfn →Mf in the weak operator topology.

(v) If µ is finite, then 1 ∈ L2(X,µ) is a cyclic vector for M and ML∞(X,µ) = M ′L∞(X,µ) is
its own commutant, hence in particular a von Neumann algebra.

Proof. (i) Since |f(x)g(x)| ≤ ‖f‖∞|g(x)| holds µ-almost everywhere, Mf defines a bounded
operator on L2(X,µ) with ‖Mf‖ ≤ ‖f‖∞.

(ii) We clearly have Mf+g = Mf +Mg, Mfg = MfMg and M∗f = Mf∗ , so that M defines
a homomorphism of C∗-algebras.

(iii) Now assume that ‖f‖∞ > c ≥ 0. Then F := {|f | ≥ c} has positive measure, and since
µ is semi-finite, it contains a subset E of positive and finite measure. Then χE ∈ L2(X,µ)
and

c‖χE‖2 ≤ ‖fχE‖2 ≤ ‖Mf‖‖χE‖2
lead to ‖Mf‖ ≥ c. Since c was arbitrary, we obtain ‖f‖∞ ≤ ‖Mf‖.

(iv) For g, h ∈ L2(X,µ), the function gh is integrable and |fngh| ≤ ‖fn‖∞|gh|, so that
the Dominated Convergence Theorem implies that

〈Mfng, h〉 =

∫
X

fngh dµ→
∫
X

fgh dµ = 〈Mfg, h〉.

(v) The subspace π(L∞(X,µ))1 = L∞(X,µ) is dense in L2(X,µ), because, for each
f ∈ L2(X,µ), the sequence fn, defined by

fn(x) :=

{
f(x) for |f(x)| ≤ n
0 for |f(x)| > n

converges to f because

‖f − fn‖22 =

∫
{|f |>n}

|f(x)|2 dµ(x)→ 0

13Although elements of L∞(X,µ) can be represented by bounded functions, they are equivalence classes
of functions modulo functions h for which h−1(C×) is a set of measure zero. Accordingly,

‖f‖∞ = inf{c ∈ [0,∞) : µ({|f | > c}) = 0}

denotes the essential supremum of the function (cf. [Ru86]).
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follows from the Monotone Convergence Theorem. Here we use that

{|f | =∞} =
⋂
n∈N
{|f(x)| > n} =

⋂
n∈N
{x ∈ X : |f(x)| > n}

is a set of measure zero.
Since π(L∞(X,µ)) is commutative, it is contained in its own commutant. Suppose,

conversely, that B ∈ π(L∞(X,µ))′. Then h := B(1) ∈ L2(X,µ), and, for f ∈ L∞(X,µ) ⊆
L2(X,µ), we have

B(f) = B(f · 1) = B(π(f)1) = π(f)B(1) = fh.

If f = χEn is the characteristic function of the set

En := {x ∈ X : n ≤ |h(x)| ≤ n+ 1},

then ‖B‖‖f‖2 ≥ ‖B(f)‖2 = ‖hf‖2 ≥ n‖f‖2, and since B is bounded, it follows that ‖f‖22 =
µ(En) = 0 if n is sufficiently large. This means that h ∈ L∞(X,µ). Now π(h) and B coincide
on the dense subspace L∞(X,µ), hence on all of L2(X,µ). This proves that B = π(h) ∈
π(L∞(X,µ)).

Remark 4.16. If (X,S, µ) is a finite measure space, then Lemma 4.15 implies in particular
that the C∗-algebra L∞(X,S, µ) is realized as a von Neumann algebra on L2(X,S, µ) by
multiplication operators.

Definition 4.17. For a ∗-algebra M, we write

P (M) := {p ∈M : p = p2 = p∗}

for the set of all projections in M, i.e., the set of hermitian idempotents.

Proposition 4.18. Every von Neumann algebraM⊆ B(H) is generated, as a von Neumann
algebra, by P (M), i.e., M = P (M)′′.

Proof. Since P (M) consists of hermitian elements, the von Neumann algebra it generates is
B := P (M)′′ ⊆M. It suffices to show that B contains every hermitian element x = x∗ ∈M.
Let C∗(x) ∼= C(σ(x)) ⊆M be the unital C∗-algebra generated by x. For a ∈ R, the sequence
fan(t) := e−n(max(t−a,0)) ∈ [0, 1] is bounded and converges in a monotone fashion pointwise
to the characteristic function χ(−∞,a]. Lemma 4.4 now shows that fan(x) ∈ C∗(x) ⊆ M
converges in the weak operator topology to a hermitian operator Pa ∈ C∗(x)′′ ⊆M.

To see that Pa is a projection, it suffices to consider its action on the cyclic subspace
Hv := JC∗(x)vK generated by an element v ∈ H. Note that any such subspace is invariant
under Pa. In view of Example 3.11, this representation is equivalent to the multiplication
representation of C∗(x) ∼= C(σ(x)) on a space L2(σ(x), µ) for some probability measure
µ on the spectrum σ(x) ⊆ C. Since Pa = Mχ(−∞,a] follows from Lemma 4.15(iv) and
multiplications with characteristic functions are projections, Pa is a projection.

As the bounded continuous function idσ(x) is a pointwise monotone limit of step function
sn, i.e., of linear combinations of characteristic functions of the form χ(−∞,a], we find a
sequence bn ∈ B converging to x in the weak operator topology because it holds on every
subspace Hv. This shows that x ∈ B.
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Corollary 4.19. Let M ⊆ B(H) be a von Neumann algebra and A = A∗ ∈ B(H). Then
A ∈M if and only if A preserves all M-invariant closed subspaces of H.

Proof. By Lemma 3.3 the orthogonal projections onto the closed M-invariant subspaces
K ⊆ H are precisely the projections in the commutant M′. If A preserves all M-invariant
subspaces, then it commutes with all projections in M′ (Lemma 3.3) and now Proposi-
tion 4.18 shows that A ∈ P (M′)′ =M′′ =M.

The fact that the projections p ∈ P (M) correspond to theM′-invariant subspaces permits
us to relate projections inM toM′-subrepresentations. This suggests a natural equivalence
relation:

Lemma 4.20. For p, q ∈ P (M), the following are equivalent:

(i) There exists u ∈M with p = u∗u and q = uu∗.

(ii) The representations of M′ on pH and qH are equivalent.

Proof. (i) ⇒ (ii): The relation p = u∗u implies that u|pH is an isometry:

‖upv‖2 = 〈pv, u∗upv〉 = 〈pv, p2v〉 = 〈pv, pv〉 = ‖pv‖2

and that keru = ker p = (pH)⊥. This means that u is a partial isometry (cf. Exercise 4.26).
We claim that q = uu∗ is the orthogonal projection onto up(H). In fact, for v ∈ H, we

have

qupv = uu∗upv = up2v = upv and ker q = keru∗ = (uH)⊥ = (upH)⊥.

This implies that u restricts to a unitary operator pH → qH and, as u ∈ M, it is an
intertwining operator for M′.

(ii) ⇒ (i): Let U : pH → qH be an M′ intertwining operator and extend U to a partial
isometry u ∈ B(H) with kernel (pH)⊥. Then ker(u∗) = (uH)⊥ = (qH)⊥ and u∗|qH : qH →
pH is unitary. In particular, u∗ is a partial isometry from qH to pH. This implies that
u∗u = p and uu∗ = q (cf. Exercise 4.26).

Definition 4.21. (a) For two projections p, q in a von Neumann algebraM, we write p ∼ q
if there exists a u ∈ M with p = u∗u and q = uu∗. Then p and q are called equivalent (in
the sense of Murray–von Neumann). We write [p] for the equivalence class of p and [P (M)]
for the set of equivalence classes of projections.

(b) There is a natural order on P (M) defined by p ≤ q if pH ⊆ qH. We write [p] ≤ [q]
if p is equivalent to a projection p̃ ≤ q, i.e., if the representation of M′ on pH is equivalent
to a subrepresentation of the representation on qH, a property which depends only on the
equivalence classes of p, resp., q (Lemma 4.20). The interpretation of the order relation in
terms of representations of M′ shows immediately that ≤ is a quasi-order, i.e., a symmetric
transitive relation.

Example 4.22. (a) (Equivalence classes of projections in B(H)) If M = B(H), then M′ =
C1, so that two projections p, q ∈M are equivalent if and only if pH and qH are isomorphic
Hilbert spaces, i.e., if dim pH = dim qH.14 Therefore the set [P (B(H))] of equivalence classes
is parametrized by the set of all cardinal numbers ≤ dimH.

14Here we use the non-trivial result that two Hilbert spaces H1 and H2 are isomorphic, i.e., there exists a
unitary operator H1 →H2, if and only if the cardinalities of orthonormal bases in H1 and H2 (their Hilbert
dimension) coincide. The necessity of this condition is clear, but the sufficiency requires that, for infinite
cardinal numbers ℵ, we have ℵ = ℵ·ℵ0 and the Schröder–Bernstein Theorem is required to define the Hilbert
dimension.
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(b) (Equivalence classes of projections in abelian algebras) If M is abelian, then two
projections p, q ∈ P (M) are equivalent if and only if p = q. For the von Neumann algebra
M = L∞(X,S, µ), µ a finite measure, the set P (M) is the set of characteristic functions
χE , considered as elements of L∞(X,S, µ). Therefore P (M) can be identified with S/ ∼,
where E ∼ F if µ(E4F ) = 0.

Definition 4.23. If M ⊆ B(H) is a factor, we use the representation of M′ on H to
distinguish three types I, II, III:

(I) There exists an irreducible subrepresentation for M′.

(II) There exists no irreducible subrepresentation forM′ but a subrepresentation (ρ,K) for
M′ which is not equivalent to a proper subrepresentation of itself.

(III) All subrepresentations (ρ,K) for M′ are equivalent to proper subrepresentations of
themselves.

According to Definition 4.23, factors come in three types. We now address the problem
to get a better picture of factors of type I and to see how other factors can be constructed.
For type I, we need tensor products of Hilbert spaces to understand their structure. We saw
already some indication for that in Example 4.11(c).

The immediate examples of factors are of type I:

Example 4.24. (a) If dimH <∞, then all factors M⊆ B(H) are of type I (Exercise).
(b) The factor M = B(H) is of type I because M′ = C1 and every one-dimensional

subspace Cv ⊆ H is an irreducible subrepresentation of M′.

At this point we quote the following theorem without proof (cf. [Bl06, Thm. III.1.7.9]).
It describes the ordered sets ([P (M)],≤) for factors on separable Hilbert spaces:

Theorem 4.25. If M⊆ B(H) is a factor and H is separable, then the order on [P (M)] is
linear and the ordered set ([P (M)],≤) is isomorphic to one of the following:

• The set {0, 1, . . . , n} (type In); a typical example is M = Mn(C).

• N0 ∪ {∞} (type I∞); a typical example is M = B(H), dimH =∞.

• [0, 1] (type II1).

• [0,∞] (type II∞).

• {0,∞} (type III).

Definition 4.26. A positive functional ω on a ∗-algebra is called a trace if ω(ab) = ω(ba)
for a, b ∈ A. If A is a C∗-algebra, a tracial state is a state which is a trace.

Immediately from the definitions, we obtain:

Lemma 4.27. For a trace τ : M→ C on the von Neumann algebra M, we have

p, q ∈ P (M), p ∼ q ⇒ τ(p) = τ(q).

Example 4.28. (a) On Mn(C) ∼= B(Cn), τ(A) := 1
n tr(A) is a tracial state.

(b) IfM is a factor of type II1, then one can show that there exists a unique tracial state τ
([Tak02, Cor. V.2.32]), and that τ induces an order isomorphism [P (M)]→ [0, 1], [p] 7→ τ(p).

(c) If dimH =∞, then B(H) has no trace (Exercise 4.22).
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4.4 Tensor products of Hilbert spaces

In this subsection we introduce tensor products of Hilbert space. Here our motivation is to
understand type I factors. More precise, for any type I factor M ⊆ B(H), there exists a
tensor product factorization H ∼= H1⊗̂H2 with M = B(H1)⊗ 1. In this sense type I factors
leads to the most obvious pairs of mutually commuting pairs of subalgebras (M,M′) of B(H)
whose union acts irreducibly.

Definition 4.29. Let H and K be Hilbert spaces. On the vector space tensor product H⊗K,
we obtain by

〈x⊗ y, x′ ⊗ y′〉 := 〈x, x′〉〈y, y′〉

a well-defined hermitian form. 15 To see that it is positive definite, we consider an arbitrary
element z =

∑n
j=1 xj ⊗ yj ∈ H⊗K. Choosing an orthonormal basis in span{y1, . . . , yn} and

expanding accordingly, we may w.l.o.g. assume that y1, . . . , yn are orthonormal. Then

〈z, z〉 =

n∑
j,k=1

〈xj , xk〉〈yj , yk〉 =

n∑
j=1

〈xj , xj〉 =
∑
j

‖xj‖2 ≥ 0,

and if 〈z, z〉 = 0, then xj = 0 for each j implies z = 0. Therefore the hermitian form on
H⊗K is positive definite. We write

H⊗̂K

for the completion of H⊗K with respect to 〈·, ·〉 and call it the tensor product Hilbert space.

Remark 4.30. (a) One can obtain a more concrete picture of the tensor product by choosing
orthonormal bases (ej)j∈J in H and (fk)k∈K in K. Then the family (ej ⊗ fk)(j,k)∈J×K is
orthonormal in the tensor product and spans a dense subspace, so that it is an orthonormal
basis. That it spans a dense subspace follows directly from the continuity of the bilinear map

γ : H×K → H⊗K, γ(x, y) := x⊗ y

which follows from ‖γ(x, y)‖ = ‖x‖‖y‖.
(b) Similarly, we find that the subspaces ej⊗K of H⊗̂K are pairwise orthogonal and span

a dense subspace, so that

H⊗̂K ∼=
⊕̂

j∈J
(ej ⊗K)

(cf. Exercise 3.5). In addition, we have

〈ej ⊗ v, ej ⊗ w〉 = 〈v, w〉,
15To derive the existence of this hermitian form from the universal property of the tensor product, one first

observes that, for every fixed pair (x, y), the map

αx,y : H×K → C, (x′, y′) 7→ 〈x, x′〉〈y, y′〉

is bilinear, hence factors through a linear map

αx,y : H⊗K → C, x′ ⊗ y′ 7→ 〈x, x′〉〈y, y′〉.

Since, for each z ∈ H⊗K, the map (x, y) 7→ αx,y(z) is complex bilinear, there exists a well-defined sesquilinear
map

〈·, ·〉 : (H⊗K)× (H⊗K)→ C
mapping (x⊗ y, x′ ⊗ y′) to αx,y(x′ ⊗ y′).
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so that the inclusion maps
ηj : K → H⊗̂K, v 7→ ej ⊗ v

are isometric embeddings. This implies that

H⊗̂K ∼= `2(J,K)

(cf. Example 3.6).

Definition 4.31. With a slight generalization, we can form tensor products of finitely many
Hilbert spaces H1, . . . ,Hn by

⊗̂nj=1Hj :=
(
⊗̂n−1

j=1Hj
)
⊗̂Hn,

so that an alternative construction is to apply the construction of twofold tensor products
several times.

Pairs of linear operators define operators on the tensor product space:

Lemma 4.32. Let A ∈ B(H) and B ∈ B(K). Then there exists a unique bounded linear
operator A⊗B on H⊗̂K with

(A⊗B)(v ⊗ w) := (Av)⊗ (Bw) for v ∈ H, w ∈ K. (21)

It satisfies
‖A⊗B‖ ≤ ‖A‖‖B‖ and (A⊗B)∗ = A∗ ⊗B∗.

Proof. Since the elements v ⊗ w span a dense subspace of H ⊗ K, the operator A ⊗ B is
uniquely determined by (21). It therefore remains to show its existence. To this end, we first
consider the case A = 1.

Identifying H⊗̂K with `2(J,K) (Remark 4.30(b)), we see that B defines an operator B̃

on `2(J,K) ∼= ⊕̂j∈JK by B̃(xj) := (Bxj), and ‖B̃‖ = ‖B‖ (Exercise 3.16). This proves the
existence of 1⊗B. We likewise obtain an operator A⊗ 1 with ‖A⊗ 1‖ = ‖A‖, and we now
put

A⊗B := (A⊗ 1)(1⊗B).

It satisfies

(A⊗B)(v ⊗ w) = (A⊗ 1)(1⊗B)(v ⊗ w) = (A⊗ 1)(v ⊗Bw) = Av ⊗Bw

and
‖A⊗B‖ = ‖(A⊗ 1)(1⊗B)‖ ≤ ‖A⊗ 1‖‖1⊗B‖ = ‖A‖ · ‖B‖.

From

〈(A⊗B)(v ⊗ w), v′ ⊗ w′〉 = 〈Av, v′〉〈Bw,w′〉 = 〈v,A∗v′〉〈w,B∗w′〉
= 〈v ⊗ w, (A∗ ⊗B∗)(v′ ⊗ w′)〉

we derive that (A⊗B)∗ = A∗ ⊗B∗.

Lemma 4.33. Let H and K be two Hilbert spaces and H⊗̂K be their tensor product. In
B(H⊗̂K) we have

(B(H)⊗ 1)′ = 1⊗B(K) and B(H)⊗ 1 = (1⊗B(K))′.
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Proof. Clearly, B(H)⊗1 commutes with 1⊗B(K), so that B(H)⊗1 ⊆ (1⊗B(K))′. We show

that we actually have equality. Let (ej)j∈J be an ONB in H, so that H⊗̂K =
⊕̂

j∈Jej ⊗K ∼=⊕̂
j∈JK. We write

Pj : H⊗̂K → K, x⊗ v 7→ 〈ej , x〉v
for the corresponding “projections” which are in particular B(K)-intertwining operators. Let
A ∈ (1⊗B(K))′. Then, for i, j ∈ J , Aij := PiAP

∗
j ∈ B(K) ∩B(K)′ = C1. Let aij ∈ C with

Aij = aij1 and v, w ∈ K be unit vectors. Then

〈ei ⊗ v,A(ej ⊗ w)〉 = 〈v, aijw〉 = aij〈v, w〉

implies that the closed subspaces H⊗ w ∼= H are A-invariant with

A(ej ⊗ w) =
(∑
i∈I

aijei

)
⊗ w.

Therefore the matrix (aij)i,j∈J defines a bounded operator Ã on H with A = Ã⊗1 and thus
A ∈ B(H)⊗ 1.

The relation (B(H)⊗ 1)′ = 1⊗B(K) follows by exchanging the roles of H and K.

With the preceding lemma we can now describe the structure of type I factors:

Proposition 4.34. A factor M⊆ B(H) is of type I if and only if there exist Hilbert spaces
H1 and H2 such that H ∼= H1⊗̂H2 and M∼= B(H1)⊗ 1.

Proof. (a) IfM = B(H1)⊗1 ⊆ B(H1⊗H2), then Lemma 4.33 shows thatM′ = 1⊗B(H2). In
particular, all subspaces Ω⊗H2, carry a representation ofM′ equivalent to the representation
of B(H2) on H2. This representation is irreducible and therefore M is of type I.

(b) Suppose, conversely, thatM is of type I, so that H contains irreducibleM′-subrepre-
sentations. To see that H is an orthogonal direct sum of irreducible M′-representations, we
use Zorn’s Lemma to find a maximal set {Kj : j ∈ J} of mutually orthogonal irreducible

M′-invariant subspaces of H. Set K :=
∑
j∈J Kj ∼=

⊕̂
j∈JKj (Exercise 3.5). Then K⊥ is

also M′-invariant. We write p : H → K⊥ for the orthogonal projection. Then p is surjective
and intertwining for M′. If L ⊆ H is an M′-irreducible subspace not contained in K, then
p|L : L → K⊥ is a non-zero intertwining operator, so that Corollary 3.15 implies the existence
of an M′-irreducible subspace of K⊥, contradicting the maximality of the family (Kj)j∈J .
Therefore all M′-irreducible subspaces are contained in K.

For A ∈ M and j ∈ J , the restriction A|Kj : Kj → H commutes with M′, so that Corol-
lary 3.15 shows that either A(Kj) = {0} or A(Kj) is M′-irreducible, and thus
A(Kj) ⊆ K. This implies that the subspace K ⊆ H is invariant under M and M′. So
the orthogonal projection onto K is contained inM∩M′ = C1, and, as K 6= {0} by assump-
tion, K = H (cf. Lemma 4.10(iii)).

The same argument shows that, for every j0 ∈ J , the subspace MKj0 , which is invariant
under M and M′, is dense in H. We thus find for every j an A ∈ B(H) such that AKj0 is
not orthogonal to Kj . Corollary 3.16 now shows that the M′ representations on the Kj are
mutually equivalent because they are equivalent to the representation of Kj0 . Let us write
(ρ,H2) for the so-obtained irreducible representation of M′. With H1 := `2(J,C), we then
obtain an equivalence of M′-representations:

H =
⊕̂

j∈J
Kj ∼= `2(J,H2) ∼= H1⊗̂H2 with M′ ⊆ 1⊗B(H2).
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As M′ acts irreducibly on H2, we obtain from Schur’s Lemma and the fact that 1⊗B(H2)
is a von Neumann algebra the relation M′ =M′′′ = 1⊗B(H2) (Theorem 4.13), and finally
M =M′′ = B(H1)⊗ 1 with Lemma 4.33.

Identifying H1 with a subspace of the form H1 ⊗ Ω, ‖Ω‖ = 1, of H ∼= H1⊗̂H2, we
immediately obtain:

Corollary 4.35. For every type I factor M ⊆ B(H), there exists a Hilbert space H1 and a
∗-isomorphism Φ: M→ B(H1) that is continuous with respect to the weak operator topology
on H, resp., H1.

Corollary 4.36. Every finite dimensional factor is isomorphic to Mn(C) for some n ∈ N.

Proof. Let M⊆ B(H) be a finite dimensional factor. Since the lenght of any chain

p1 < p2 < . . . < pn

of projections in M is bounded by dimM, there exists a minimal (non-zero) projection.
Therefore M is of type I and thus M ∼= B(K) for a Hilbert space K. As M is finite
dimensional, we have K ∼= Cn for n = dimK <∞, and therefore M∼= Mn(C).

Corollary 4.37. Every finite dimensional C∗-algebra A is an `∞ direct sum of matrix al-
gebras A ∼=

⊕N
j=1Mnj (C).

Proof. Since every finite dimensional C∗-algebra is a von Neumann algebra (it is closed in the
weak operator topology by Exercise 4.10), this follows by combining the preceding corollary
on the structure of the finite dimensional factors with the direct sum decomposition into
factors (Exercise 4.12).

4.5 Tensor products and factor representations

Definition 4.38. A representation (π,H) of a ∗-algebra A is called a factor representation
if the von Neumann algebra π(A)′′ generated by π(A) is a factor.

Proposition 4.39. Let Aj, j = 1, 2, be two ∗-algebras and (πj ,H) be ∗-representations
on H such that π1(A1) commutes with π2(A2). Then π(a1 ⊗ a2) := π1(a1)π2(a2) defines a
∗-representation of A := A1 ⊗A2 on H.

(a) If (π,H) is irreducible, then the representations π1 and π2 are factor representations.

(b) If (π,H) is irreducible and π1 is of type I, then there exists irreducible representations
(ρj ,Hj) of Aj, j = 1, 2, such that π ∼= ρ1 ⊗ ρ2 in the sense that H ∼= H1⊗̂H2 and
π(a1 ⊗ a2) = ρ1(a1)⊗ ρ2(a2).

Proof. (a) Let M := π1(A1)′′. Then M′ ⊇ π2(A2), so that

M∩M′ ⊆ π2(A2)′ ∩ π1(A1)′ = π(A)′ = C1.

Therefore M is a factor. The same argument shows that π2(A2)′′ is a factor.
(b) IfM = π1(A1)′′ is a factor of type I, then there exist Hilbert spaces H1 and H2 with

H ∼= H1⊗̂H2 and M ∼= B(H1) ⊗ 1. Then π2(A2) ⊆ M′ = 1 ⊗ B(H2), so that there exist
representations ρj of Aj on Hj with

π(a1⊗2) = π1(a1)π2(a2) = (ρ1(a1)⊗ 1)(1⊗ ρ2(a2)) = ρ1(a1)⊗ ρ2(a2).
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Remark 4.40. Note that a von Neumann algebra M ⊆ B(H) is a factor if and only the
representation of M⊗M′ on H is irreducible (Lemma 4.10(iii)). This is a “converse” to
Proposition 4.39(a). It shows that a representation (π1,H) is a factor representation if and
only if there exists a representation of some ∗-algebra A2 commuting with π1(A1) such that
the corresponding representation of A1⊗A2 is irreducible (a natural choice is A2 := π1(A1)′).

4.6 Type II1 factors and ICC groups

Definition 4.41. A group G is called ICC (infinite conjugacy classes) if, for every g 6= e,
the conjugacy class Cg = {hgh−1 : h ∈ G} is infinite.

Example 4.42. Typical examples of ICC groups are: PGL2(R) = GL2(R)/R×1 or the group
S(X) of finite permutations of an infinite set (cf. Exercise 4.20).

Proposition 4.43. (The regular representation of an ICC group is of type II1) Let G 6= {e}
be an ICC group. We consider the representation (π,H) of G × G on the Hilbert space
H = `2(G,C) ⊆ CG given by

(π(g, h)f)(x) := f(g−1xh).

This representation is irreducible and the restriction π`(g) := π(g, e) to the subgroup G×{e}
is a factor representation of type II1, i.e., π`(G)′′ is a factor of type II1.

Proof. First we show that π is irreducible. We consider the ONB (δg)g∈G, consisting of
δ-functions satisfying

π(g, h)δx = δgxh−1 for g, h, x ∈ G.
Clearly, the vector δ1 is cyclic and invariant under the diagonal subgroup

K := {(g, g) : g ∈ G}.

The K-invariance means for an element f ∈ `2(G,C) that it is constant on conjugacy classes,
and since all non-trivial conjugacy classes are infinite, we have

`2(G,C)K = Cδ1.

As δ1 is G×G-cyclic, it is separating for the commutant C := π(G×G)′ (Exercise 4.3). Since
C commutes with π(K), it leaves the one-dimensional subspace `2(G,C)K invariant, and this
implies C = C1, so that the irreducibility of π follows from Schur’s Lemma.

This implies that the left regular representation (π`,H) of G, resp., the linear extension
to the ∗-algebra C[G] on `2(G,C), is a factor representation (Proposition 4.39). We claim
that the factor M := π`(G)′′ is of type II1. In view of Theorem 4.25 it suffices to show that
M admits a trace and that it is not of type In for some n ∈ N.

We consider the state

ω : M→ C, ω(A) := 〈δ1, Aδ1〉 = (Aδ1)(1).

We claim that it is a trace, i.e.,

ω(AB) = ω(BA) for A,B ∈ πr(G)′.

For each A ∈M ⊆ πr(G)′, the function a : = Aδ1 satisfies

Aδx = Aπr(x)−1δ1 = πr(x)−1Aδ1 = πr(x)−1a, i.e., (Aδx)(y) = a(yx−1).
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This further leads to

(Af)(1) =
∑
x∈G

f(x)(Aδx)(1) =
∑
x∈G

f(x)a(x−1).

For b := Bδ1, this leads to

ω(AB) = A(Bδ1)(1) =
∑
x∈G

a(x−1)b(x) =
∑
x∈G

b(x−1)a(x) = . . . = ω(BA).

Therefore ω is a trace, so thatM is of type In for some finite n or of type II1 (cf. Exercise 4.22).
If M is of type In, then M ∼= Mn(C) is finite dimensional, so that dim(spanπ`(G)) < ∞.
This in turn implies that π`(G)δ1 = {δg : g ∈ G} is finite-dimensional, which implies that G
is finite and ICC, hence trivial. This contradicts our initial hypothesis.

4.7 Tensor products of von Neumann algebras

Definition 4.44. For two von Neumann algebra Mj ⊆ B(Hj), j = 1, 2, we define their
tensor product by

M1⊗M2 := (M1 ⊗M2)′′ ⊆ B(H1⊗̂H2).

Lemma 4.45. If Mj ⊆ B(Hj), j = 1, 2, are factors, then

M1⊗M2 ⊆ B(H1 ⊗H2)

is a factor.

Proof. The commutant of the center Z(M1⊗M2) contains M1 ⊗M2 and M′1 ⊗M′2. As
M1 ⊗ 1 and M′1 ⊗ 1 generate B(H1) ⊗ 1 (Lemma 4.10) and likewise 1 ⊗M2 and 1 ⊗M′2
generate 1⊗B(H2) (Lemma 4.10(iii)), it follows that

Z(M1⊗M2) ⊆ (B(H1)⊗ 1)′ ∩ (1⊗B(H2))′ = (1⊗B(H2)) ∩ (1⊗B(H2))′ = C(1⊗ 1).

More generally, one even has the general Commutation Theorem for von Neumann alge-
bras, asserting that

(M⊗N )′ =M′⊗N ′,

but this is a deep theorem beyond the scope of this lecture (cf. [Bl06]). Some special cases
are easy. For instance

(M⊗B(H2))′ = (M⊗ 1)′ ∩ (1⊗B(H2))′ = (M⊗ 1)′ ∩ (B(H1)⊗ 1) =M′ ⊗ 1,

which in turn implies
(M⊗ 1)′ = (M′′ ⊗ 1)′ =M′⊗B(H2).

Remark 4.46. (On the classification of type II factors) (a) One can shows that any type
II∞-factor is of the form

M =M1⊗B(`2),

whereM1 is a type II1-factor that can be obtained asM1 = pMp for a projection p ∈ P (M)
which is finite in the sense that, q ≤ p and q ∼ p imply p = q (p is not equivalent to a proper
subprojection; this is equivalent to p 6∼ 1).

(b) Conversely, for every type II1 factor N , the factor M := N⊗B(`2) is of type II∞.
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(c) As we have seen in Theorem 4.25, the types of finite non-zero projections in a factor
M can be labeled by positive real numbers τ([p]). In view of (a), it is a natural question when

two factors pMp and qMq are isomorphic. It turns out that the set of numbers τ([p])
τ([q]) ∈ R×

for which this is the case is a subgroup Γ ⊆ (R×, ·) called the fundamental group of M. It is
an important invariant of type II∞-factors that plays a key role in their classification theory.

4.8 Direct limits and infinite tensor products

Definition 4.47. (Direct limits of Hilbert spaces) Let (Hn)n∈N be a sequence of Hilbert
spaces such that Hn ⊆ Hn+1 for every n ∈ N. Then the union

⋃
n∈NHn (more formally it is

a direct limit) carries a natural scalar product defined by

〈x, y〉 := 〈x, y〉Hn if x, y ∈ Hn.

The completion of this space is denoted

H := lim
−→
Hn

and called the direct limit Hilbert space. It is a Hilbert space in which the Hn are naturally
embedded as subspaces and the union

⋃
nHn of these subspaces is dense.

Example 4.48. (a) If J =
⋃
n Jn, where the Jn form an increasing sequence of subsets of

J , then `2(J) ∼= lim
−→

`2(Jn).

(b) InH = L2([0, 1],C) we consider the subspaceHn of functions constant on the intervals
of the form [k2−n, (k + 1)2−n), 0 ≤ k < 2n. Then dimHn = 2n, Hn ⊆ Hn+1 and the union
of the Hn is dense in H. Therefore H ∼= lim

−→
Hn.

Definition 4.49. (Infinite tensor products of Hilbert spaces) Let (Hn, vn)n∈N be a sequence
of Hilbert spaces Hn and vn ∈ Hn be a unit vector. Then we obtain isometric embeddings

αn : H1 ⊗ · · · ⊗ Hn → H1 ⊗ · · · ⊗ Hn+1, x1 ⊗ · · · ⊗ xn 7→ x1 ⊗ · · · ⊗ xn ⊗ vn+1.

We write

H :=
⊗̂

n∈N
(Hn, vn) := lim

−→
H1 ⊗ · · · ⊗ Hn

for the corresponding direct limit Hilbert space. We think of it as an incomplete infinite
tensor product because it only contains very specific infinite tensor products. Usually the
image of an element x1 ⊗ · · · ⊗ xn ∈ ⊗nk=1Hk in H is denoted

x1 ⊗ · · · ⊗ xn ⊗ vn+1 ⊗ vn+2 ⊗ · · · .

In this sense H is generated by the infinite tensor products whose tail is determined by the
sequence (vn)n∈N of unit vectors.

Definition 4.50. (Infinite tensor products of von Neumann algebras) Now let (An, ωn)n∈N
be a sequence of C∗-algebras and ωn ∈ S(An) be states. We consider the corresponding GNS
representation (πn,Hn) of An with cyclic unit vector Ωn. Recall that this representation is
determined up to equivalence by the requirement that

ωn(A) = 〈Ωn, πn(A)Ωn〉 for A ∈ An
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(GNS Theorem 3.9).
We now form the infinite tensor product Hilbert space

H :=
⊗̂

n∈N
(Hn,Ωn).

On this space we have a natural representation of each algebra An determined by

ρn(A)(x1 ⊗ · · · ⊗ xn ⊗ xn+1 ⊗ · · · ) = x1 ⊗ · · · ⊗ xn−1 ⊗Axn ⊗ xn+1 ⊗ · · · ,

resp.,
ρn(A) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸

n−1 times

⊗A⊗ 1⊗ 1⊗ · · · .

Then
M := {ρn(An) : n ∈ N}′′ ⊆ B(H)

is a von Neumann algebra that can be considered as an infinite tensor product of von Neu-
mann algebras:

M∼=
⊗

n∈N
πn(An)′′.

The unit vector
Ω := Ω1 ⊗ Ω2 ⊗ Ω3 ⊗ · · · ⊗ · · · ∈ H

is a cyclic vector for M and the corresponding state is given by

ω(ρ1(A1) · · · ρn(An)) = 〈Ω, ρ1(A1) · · · ρn(An)Ω〉 =

n∏
j=1

ωj(Aj).

Accordingly, ω is called an infinite product state.

With these tools we can now describe how type III factors can be obtained rather easily.
This construction is due to R. T. Powers who found with the factors (Rλ)0<λ<1 the first
uncountable family of mutually non-equivalent type III factors ([Po67]). The classification of
type III factors was carried out (respectively reduced to other problems) later by A. Connes
(cf. [Co73, Co94]) who received the Fields Medal for these results.

Theorem 4.51. (Powers) For 0 ≤ λ ≤ 1, we consider on An = M2(C) the state

ωn(A) :=
a11 + λa22

1 + λ
.

Then the von Neumann algebras

Rλ :=
⊗

n∈N
πn(An)′′ ∼=

⊗
n∈N

M2(C)

on the corresponding infinite tensor product is a factor. Moreover,

(i) R0 is of type I.

(ii) R1 is of type II1

(iii) For 0 < λ < 1, the factors Rλ are of type III and mutually non-isomorphic.
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Proof. We refer to [BR02] for the proof. Here are a few comments.
(i) For λ = 0 one shows that R0 = B(H), i.e., that the representation on H is irre-

ducible. This can be derived from the fact that, for every n, we have Hn ∼= C2 with the
canonical representation of M2(C) and Ωn = e1 (the first basis vector). This implies that
the representation of

A1 ⊗ · · · ⊗ An ∼=
n⊗
k=1

M2(C) ∼= M2(C2k)

is the canonical representation on

H1 ⊗ · · · ⊗ Hn ∼= C2 ⊗ · · · ⊗ C2 ∼= C2k .

Then one uses the general result that a “direct limit” of irreducible representations are
irreducible (Exercise 4.27).

(ii) For λ = 1, the states ωn are the normalized trace ωn(A) = 1
2 tr(A) on M2(C). This

implies that ω also is a normalized trace on the factor R1. As it is not finite dimensional, it
must be of type II1 (Exercise 4.22 and Theorem 4.25).

Definition 4.52. A von Neumann algebraM is called hyperfinite if there exists an increasing
sequence (Mn)n∈N of finite dimensional ∗-subalgebrasMn such that the subalgebra

⋃
nMn

is dense in M with respect to the weak operator topology, resp., generates M (see von
Neumann’s Bicommutant Theorem 4.13).

Remark 4.53. (On the classification of hyperfinite factors) The Powers factors Rλ are
hyperfinite by construction. A classification of hyperfinite factors is known and much less
complicated than the general case. Clearly all type I factors B(H), H at most separable, are
hyperfinite. According to a classical result of Murray and von Neumann all hyperfinite type
II1 factors are isomorphic, hence isomorphic to R1. Further, A. Connes showed that there
is only one hyperfinite factor of type II∞, namely R1⊗B(`2) (the “infinite matrix algebra”
with entries in R1) [Co73, Co75]. Type III factors can be labeled by a parameter λ ∈ [0, 1],
so that, for 0 < λ < 1, the Powers factor is of type IIIλ and Connes’ results imply that it is
the only hyperfinite factor of this type. Hyperfinite factors of type III0 have been classified
by W. Krieger (the Krieger factors) [Kr76] and the uniqueness of hyperfinite type III1-factors
is due to U. Haagerup [Ha87].

Exercises for Section 4

Exercise 4.1. Let (pn)n∈N be a sequence of projections in a von Neumann algebra M ⊆ B(H).
Suppose that it either is increasing (pn ≤ pn+1) or decreasing (pn ≥ pn+1). Then p := limn→∞ pn
exists in M with respect to the weak operator topology and p ∈ P (M).

Exercise 4.2. Let (L,≤) be a partially ordered set. Then L is called a lattice if the following axioms
are satisfied:

(L1) L has a maximal element 1 and a minimal element 0.

(L2) For two elements x, y ∈ L supremum and infimum

x ∨ y := min{z ∈ L : x ≤ z, y ≤ z}, resp., x ∧ y := max{z ∈ L : z ≤ x, z ≤ y}

exist.
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We write a < b for a ≤ b and a 6= b. If a ∈ L, then an element a′ is said to be a complement for
a if a ∧ a′ = 0 and a ∨ a′ = 1. A lattice L is said to be a Boolean algebra if every element has a
complement and L is distributive, i.e., for any three elements a, b, c ∈ L the identities

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

are satisfied. A Boolean σ-algebra is a Boolean algebra in which countable sups and infs exist.
Show that, for every commutative von Neumann algebra M, the ordered set (P (M),≤) is a

Boolean σ-algebra. Hint: Exercise 4.1.

Exercise 4.3. Let S ⊆ H be a subset andM⊆ B(H) be a unital ∗-subalgebra. Then the following
are equivalent:

(i) S is M-generating, i.e., JMSK = H.

(ii) S is M′-separating, i.e., if M ∈M′ satisfies MS = {0}, then M = 0.

Hint: Consider the projection P onto JMSK.

Exercise 4.4. Let (vn)n∈N be a sequence in a Hilbert space H which converges weakly to v, i.e.,
〈vn, w〉 → 〈v, w〉 for every w ∈ H, and assume that ‖vn‖ → ‖v‖. Then vn → v in the norm topology.

Exercise 4.5. Show that, on the unit sphere S := {x ∈ H : ‖x‖ = 1} of a Hilbert space H, the norm
topology coincides with the weak topology.

Exercise 4.6. Suppose that dimH =∞. Show that the unit sphere S(H) is dense in the closed unit
ball B ⊆ H with respect to the weak topology, which is the coarsest topology for which all functions
fv = 〈·, v〉 : B → C, v ∈ H are continuous.

Exercise 4.7. (A neighborhood basis for the weak operator topology) Let H be a Hilbert space and
A ∈ B(H). Show that, a basis for the neighborhoods of A in the weak operator topology is given by
the subsets of the form

U := {B ∈ B(H) : (∀j = 1, . . . , n) |〈vj , (B −A)wj〉| < ε}, n ∈ N, vj , wj ∈ H, ε > 0.

Exercise 4.8. Let H be a Hilbert space. Show that:

(a) The involution ∗ on B(H) is continuous with respect to the weak operator topology.

(b) On every bounded subset K ⊆ B(H) the multiplication (A,B) 7→ AB is continuous with
respect to the strong operator topology.

(c) The left and right multiplications LA(B) := AB and RA(B) := BA on B(H) are continuous
in the weak and the strong operator topology.

Exercise 4.9. Let E ⊆ H be a dense subspace. Show that, on every bounded subset B ⊆ B(H),
the weak operator topology is the coarsest topology for which all functions

fv,w : B → C, v, w ∈ E,

are continuous.

Exercise 4.10. Show that every finite dimensional subspace F ⊆ B(H) is closed in the weak
operator topology.
Hint: Let A ∈ F and consider the subspace E := F + CA. It suffices to show that F is closed in
E. To this end, observe that the linear functionals fv,w|E separate the points on E and derive that
every linear functional on E is continuous with respect to the weak operator topology. Conclude
that F is closed in E.

Exercise 4.11. Let M ⊆ B(H) be a von Neumann algebra and let p = p∗ = p2 ∈ Z(M) be a
projection. Then the following assertions hold:
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(a) Mp := pM =Mp is an ideal of M.

(b) Mp = {M ∈M : (1− p)M = 0}.
(c) Mp is a von Neumann algebra in B(pH). Hint: Exercise 4.8.

(d) M =Mp ⊕M(1−p), where both summands are ideals.

(e) Z(M) = Z(Mp)⊕ Z(M1−p).

If Z(M) 6= C, i.e., ifM is not a factor, then Z(M) contains a projection p 6= 0,1 (Proposition 4.18),
so that M is not simple.

Exercise 4.12. Let M⊆ B(H) be a von Neumann algebra and suppose that Z := Z(M) ∼= Cn as
a ∗-algebra (Example 1.7(b)). Then there exist central projections p1, . . . , pn with

1 = p1 + · · ·+ pn and pipj = δijpj .

We then have

M∼=
n⊕
j=1

Mpj ,

where each ideal Mpj ⊆ B(pjH) is a factor.

Exercise 4.13. Let R be a unital ring an Mn(R) the corresponding matrix ring. Show that, for a
unital subring S ⊆ R, the commutants in Mn(R) satisfy

(S1)′ = Mn(S ′) and Mn(S)′ = S ′1.

Exercise 4.14. Let S ⊆ B(H) be a ∗-invariant subset. Show that S and the von Neumann algebra
S ′′ leave the same closed subspaces of H invariant.

Exercise 4.15. Show that, for any Hilbert space H,

Z(B(H)) = {Z ∈ B(H) : (∀A ∈ B(H)AZ = ZA} = C1.

Hint: Apply Exercise 1.7 with A = 〈v, ·〉v to see that every v ∈ H is an eigenvector of Z.

Exercise 4.16. Let H be a Hilbert space and β : H × H → C be a continuous sesquilinear from.
Then there exists a uniquely determined bounded operator A ∈ B(H) with

β(v, w) = 〈v,Aw〉 for all v, w ∈ H.

Show further that β is hermitian (positive semidefinite) if and only if A is hermitian (positive).

Exercise 4.17. Show that the weak operator topology on B(H) coincides with the coarsest topology
for which all functionals fv(A) := 〈v,Av〉, v ∈ H, are continuous. Hint: Polarization identity,
Exercise 3.1.

Exercise 4.18. Let M ⊆ B(H) be a von Neumann algebra and p ∈ P (M) be a projection. Show
that pMp ⊆ B(pH) coincides with the commutant ofM′|pH. In particular, pMp is a von Neumann
algebra. Hint: If A ∈ B(pH) commutes with M′ on pH, then the trivial extension by 0 on (pH)⊥

also commutes with M′, and therefore A ∈M′′ satisfies A = pAp and therefore A ∈ pMp.

Exercise 4.19. (Direct sums of von Neumann algebras) Let Mj ⊆ B(Hj) be a family of von

Neumann algebras, H :=
⊕̂

j∈JHj the Hilbert space direct sum of the Hj and

M :=
⊕

j∈J
Mj :=

{
(Mj)j∈J ∈

∏
j∈J

Mj : sup
j∈J
‖Mj‖ <∞

}
the `∞-direct sum of the von Neumann algebrasMj . Show thatM can be realized in a natural way
as a von Neumann algebra on H.
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Exercise 4.20. Let X be an infinite set and S(X) be the group of all those permutations ϕ of X
moving only finitely many points, i.e.,

|{x ∈ X : ϕ(x) 6= x}| <∞.

Show that, for each element ϕ 6= idX in S(X), the conjugacy class

Cϕ := {ψϕψ−1 : ψ ∈ S(X)}

is infinite, i.e., S(X) is ICC.
Hin: For each ϕ ∈ S(X), consider its fixed point set Fix(ϕ). How does it behave under conjugation?

Exercise 4.21. Consider the groups PGLn(C) := GLn(C)/C×1 and PUn(C) := Un(C)/T1. Show
that in both groups the conjugacy class of every element g 6= 1 is infinite.

Exercise 4.22. Let H be an infinite-dimensional Hilbert space. Show that every trace functional
(Definition 4.26) T : B(H)→ C vanishes, i.e., T ≥ 0 and

T (AB) = T (BA) for A,B ∈ B(H)

implies T = 0. Here are some steps to follow:

(a) T is conjugation invariant, i.e., T (gAg−1) = T (A) for g ∈ GL(H) and A ∈ B(H).

(b) If P and Q are two orthogonal projections in B(H) for which there are unitary isomorphisms
P (H)→ Q(H) and P (H)⊥ → Q(H)⊥, then T (P ) = T (Q).

(c) For each n ∈ N, there exists a unitary isomorphism un : H → Hn, i.e.,

H = H1 ⊕ · · · ⊕ Hn with Hj ∼= H.

Let P
(n)
j denote the orthogonal projection onto Hj .

(d) Show that T (P
(n)
j ) = 1

n
T (1) and use (b) to derive T (P

(2)
1 ) = T (P

(3)
1 ). Conclude that T (1) = 0.

Exercise 4.23. (Jauch’s Theorem) Let A ⊆ B(H) be a von Neumann algebra. Show that the
following assertions are equivalent 16

(a) The commutant A′ is commutative (the representation of A on H is then called multiplicity
free).

(b) Any maximal commutative von Neumann subalgebra B ⊆ A satisfies B′ = B, i.e., it is maximal
commutative in B(H).

Hint: If A′ is commutative, then A′ = Z(A′) = Z(A), and if B ⊆ A is maximal commutative, then
A′ = Z(A) ⊆ B, which in turn leads to B′ ⊆ A. If, conversely, B ⊆ A is commutative with B′ = B,
then A′ ⊆ B′ ⊆ A.

Exercise 4.24. Let (π,H) be an irreducible representation of the ∗-algebra A and πn :=
∑n
j=1 π

be the n-fold direct sum of π with itself on Hn =
⊕n

j=1H. Show that

πn(A)′ ∼= Mn(C).

Hint: Write operators on Hn as matrices with entries in B(H) (cf. Exercise 1.8) and evaluate the
commuting condition.

16This exercise illustrates the hypothesis of Commutative Superselection Rules in Quantum Field Theory
(cf. [Wi95, p. 759]). Here A plays the role of the von Neumann algebra generated by the observables of
a quantum system, so that its commutant corresponds to the superselection rules. A commutative von
Neumann algebra B which is maximal in B(H) is called a complete set of commuting observables. The result
discussed in the exercise (Jauch’s Theorem) then states that the commutativity of the superselection rules is
equivalent to the existence of a complete commuting set of observables.
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Exercise 4.25. Let A be a ∗-algebra and P (A) be the set of projections (hermitian idempotents)
in A. We define a relation ∼ on P (A) by p ∼ q if there exists a u ∈ A with p = u∗u and q = uu∗.
Show that ∼ defines an equivalence relation on P (A).

Exercise 4.26. (Partial isometries) An operator U ∈ B(H) is called a partial isometry if U |ker(U)⊥

is an isometry. Show that the following are equivalent:

(i) U is a partial isometry.

(ii) P := U∗U is a projection (the domain projection of U).

(iii) U∗ is a partial isometry.

(iv) Q := UU∗ is a projection (the range projection of U).

Exercise 4.27. Let M ⊆ B(H) be a von Neumann algebra generated by the subalgebras Mn,
n ∈ N. Suppose further, that (Hn)n∈N is an increasing sequence of subspaces whose union is dense
in H. Suppose that, for every n ∈ N, the subspace Hn is Mn-invariant and the representation of
Mn on Hn is irreducible. Then the representation of M on H is irreducible.

5 Fock spaces and second quantization

In this section we use tensor powers to construct the symmetric (bosonic) Fock space

F+(H) = S(H) =
⊕̂∞

n=0
Sn(H)

and the skew-symmetric (fermionic) Fock space

F−(H) = Λ(H) =
⊕̂∞

n=0
Λn(H)

of a complex Hilbert space. In Subsection 5.1 we introduce the basic ingredients, the sym-
metric and alternating powers Sn(H) and Λn(H), which are subspaces of the n-fold tensor
product H⊗n. Then we construct the Weyl operators W (v), v ∈ H, on the symmetric Fock
space in Subsection 5.2 and show that they define a unitary representation of the Heisenberg
group Heis(H). For every real subspace V ⊆ H, we thus obtain a von Neumann algebra
R(V ) := W (V )′′ on S(H) (Subsection 5.3) and observe that this leads in many cases to
factors. In Quantum Field Theory one uses this construction to construct so-called free field
from a unitary representation of the Poincaré group ([Ar99]).

5.1 Symmetric and exterior powers

In this section we discuss two important constructions of new Hilbert spaces from old ones:
symmetric and alternating powers. The symmetric group Sn has a unitary representation on
H⊗n defined by permutation of the factors

ρ(σ)(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

The two most important subspaces ofH⊗n are the two eigenspaces of Sn for the two characters
of this group. For the trivial character we obtain the subspace

Sn(H) := (H⊗n)Sn
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of Sn-invariant vectors. It is called the nth symmetric power of H, and for the signature
character sgn: Sn → {±1}, we obtain the subspace

Λn(H) := (H⊗n)Sn,sgn = {v ∈ H⊗n : (∀σ ∈ Sn) ρ(σ)v = sgn(σ)v}.

It is called the nth exterior power of H.
It is easy to write down projections onto these subspaces using the invariant probability

measures on the finite group Sn:

P+ :=
1

n!

∑
σ∈Sn

ρ(σ)

is the projection onto Sn(H) and

P− :=
1

n!

∑
σ∈Sn

sgn(σ)ρ(σ)

is the projection onto Λn(H) (Exercise 5.1).
For v1, . . . , vn ∈ H, we define the symmetric product

v1 · · · vn := v1 ∨ · · · ∨ vn :=
√
n!P+(v1 ⊗ · · · ⊗ vn)

and the exterior (=alternating) product by

v1 ∧ · · · ∧ vn :=
√
n!P−(v1 ⊗ · · · ⊗ vn).

These products define continuous complex n-linear maps Hn → Sn(H) and Hn → Λn(H). It
follows directly from the definition that the ∨-product is symmetric and the wedge product
∧ is alternating, i.e.,

vσ(1) ∨ · · · ∨ vσ(n) = v1 ∨ · · · ∨ vn for σ ∈ Sn

and
vσ(1) ∧ · · · ∧ vσ(n) = sgn(σ)v1 ∨ · · · ∨ vn. for σ ∈ Sn

The inner products of such elements are given by

〈v1 ∨ · · · ∨ vn, w1 ∨ · · · ∨ wn〉 =
√
n!〈v1 ∨ · · · ∨ vn, w1 ⊗ · · · ⊗ wn〉

=
∑
σ∈Sn

〈vσ(1), w1〉 · · · 〈vσ(n), wm〉 (22)

and likewise

〈v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn〉 =
√
n!〈v1 ∧ · · · ∧ vn, w1 ⊗ · · · ⊗ wn〉

=
∑
σ∈Sn

sgn(σ)〈vσ(1), w1〉 · · · 〈vσ(n), wm〉 = det(〈vi, wj〉)1≤i,j≤n. (23)

We also note that, for v ∈ H and vn = v ∨ · · · ∨ v︸ ︷︷ ︸
n−times

, we have

〈vn, wn〉 = n!〈v, w〉n and ‖vn‖ =
√
n!‖v‖n. (24)
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Lemma 5.1. Let (ej)j∈J be an ONB in H.

(i) For m ∈ N(J)
0 , the set of finitely supported functions J → N0, j 7→ mj, considered as

multi-indices, we put |m| :=
∑
j∈J mj. Then the elements

em :=
∨
j∈J

e
mj
j = e

mj1
j1
∨ · · · ∨ emjkjk

for {j ∈ J : mj 6= 0} = {j1, . . . , jk}

with |m| = n form an orthogonal basis of Sn(H) satisfying

‖em‖2 = m! for m! :=
∏
j∈J

mj !.

(ii) Suppose that ≤ is a linear order on J and, for F = {f1, . . . , fn} ⊆ J with f1 < . . . < fn
put eF := ef1 ∧· · ·∧efn . Then {eF : F ⊆ J, |F | = n} is an orthonormal basis of Λn(H).

Proof. (i) Expanding wedge products v1 ∨ · · · ∨ vn ∈ Sn(H) with respect to the orthonormal
basis (ej)j∈J , we see that the

ej1 ∨ · · · ∨ ejn , j1, . . . , jn ∈ J,

form a total subset of Sn(H). This proves that the em, |m| = n, form a total subset of Sn(H).
Next we observe that, for

em = e
mj1
j1
∨ · · · ∨ emjkjk

and en = e
nj1
j1
∨ · · · ∨ enj`j`

to have a non-zero scalar product we need that mj = nj for every j ∈ J . Therefore the
system (em)|m|=n is orthogonal in Sn(H). From (22) we further obtain that

〈em, em〉 =
∏
j∈J

mj ! = m!.

(ii) Expanding wedge products v1∧· · ·∧vn with respect to the orthonormal basis (ej)j∈J ,
we see that the

ej1 ∧ · · · ∧ ejn , j1, . . . , jn ∈ J,
form a total subset of Λn(H). If |{j1, . . . , jn}| < n, then ej1 , . . . , ejn are linearly dependent,
so that ej1 ∧ · · · ∧ ejn = 0. If |{j1, . . . , jn}| = n, we put F := {j1, . . . , jn} and note that for
σ ∈ Sn we have

ej1 ∧ · · · ∧ ejn = sgn(σ)ejσ(1) ∧ · · · ∧ ejσ(n)
.

This proves that the eF , F ⊆ J an n-element subset, form a total subset of Λn(H). Since

〈eF , eF ′〉 = δF,F ′ ,

the eF form an orthonormal basis of Λn(H).

Definition 5.2. The direct sum Hilbert space

S(H) := F+(H) :=
⊕̂∞

n=0
Sn(H)

is called the symmetric (bosonic) Fock space of H. The direct sum Hilbert space

Λ(H) := F−(H) :=
⊕̂∞

n=0
Λn(H)

is called the antisymmetric (fermionic) Fock space of H.
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Remark 5.3. The terms bosonic and fermionic are due to the interpretation of these spaces
in physics. There are two types of elementary particles: bosons and fermions. These are
related to symmetric, resp., alternating tensors as follows.

(a) Suppose that the Hilbert space H1 describes the states of a single (quantum mechani-
cal) particle P1 in the sense explained in the introduction. Suppose further that H2 describes
the states of a second particle P2. The tensor product Hilbert space H1⊗̂H2 corresponds
to the composition of the systems corresponding to H1 and H2, respectively. Therefore it
describes the states of all those particles composed of one particle of type P1 and one particle
of type P2.

(b) If P is a single particle described by the Hilbert space H, then particles composed
of n particles of this type are described by the Hilbert space H⊗n. However, it turns out
that this Hilbert space is (in general) far too large and one only needs a suitable subspace.
If P is a boson, then the n-particle states are described by the subspace Sn(H) of symmetric
tensors and if P is a fermion, then the n-particle states are described by the subspace Λn(H)
of alternating tensors. This means that n bosons of the same type form symmetric states in
which they cannot be distinguished. In particular, all bosons contributing to an n-particle
state may be in the same state, and this corresponds to the states [vn] ∈ P(Sn(H)).

Fermions behave very differently: in an n-fermion state all n particles have to be in
different states. This has the interesting consequence that, if H is of finite dimension n
(interpreted as n different fermion states), then Λk(H) = {0} for k > n means that there are
no k-fermion state for k > n that can be formed with particles corresponding to H.

(c) The bosonic Fock space F+(H) = S(H) is the Hilbert spaces describing all finite
particle states of a single boson and the fermionic Fock space F−(H) = Λ(H) is the Hilbert
spaces describing all finite particle states of a single fermion. In this context the space H,
considered as a subspace of F±(H) is called the one-particle space. The passage from one-
particle systems to multi-particle systems, resp., fields, is often called second quantization.
Here the idea is that a “first quantization” leads from a mechanical system to a quantum
system corresponding to H and the “second quantization” establishes the passage from single
particles to fields. The one-dimensional space F0

±(H) corresponds to the zero-particle states
and the unit vectors in this space, denoted Ω, are called vacuum vectors.

5.2 Weyl operators on the symmetric Fock space

In this subsection we consider the bosonic Fock space S(H) of the complex Hilbert space H.
We want to define natural unitary operators on this space, called the Weyl operators. They
will form a unitary representation of the Heisenberg group Heis(H).

We start by observing that, for every v ∈ H, the series

Exp(v) :=

∞∑
n=0

1

n!
vn ,

defines an element in S(H) and that by (24) the scalar product of two such elements is given
by

〈Exp(v),Exp(w)〉 =

∞∑
n=0

n!

(n!)2
〈v, w〉n = e〈v,w〉.

Lemma 5.4. Exp(H) is total in S(H), i.e., it spans a dense subspace.
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Proof. Let K ⊆ S(H) be the closed subspace generated by Exp(H). We consider the unitary
representation of the circle group T ⊆ C× on S(H) by

Uz(v1 ∨ · · · ∨ vn) := zn(v1 ∨ · · · ∨ vn) for n ∈ N0, vj ∈ H.

The decomposition S(H) =
⊕̂∞

n=0S
n(H) is the eigenspace decomposition with respect to the

operators Uz and it is easy to see that the action of T on S(H) has continuous orbit maps
(Exercise 5.6).

For ξ ∈ S(H) with ξ =
∑∞
n=0 ξn and ξn ∈ Sn(H), we have Uzξ =

∑
n z

nξn, so that

ξn =
1

2π

∫ 2π

0

e−2πintUeitξ dt

(observe the analogy with Fourier coefficients). It follows that, for ξ ∈ K, the existence of the
above Riemann integral in the closed subspace K implies ξn ∈ K. We conclude that vn ∈ K
for v ∈ H and n ∈ N0. Therefore it suffices to observe that the subset {vn : v ∈ H} is total
in Sn(H) (Exercise 5.4).

For v, x ∈ H we have

〈Exp(v + x),Exp(w + x)〉 = e〈v+x,w+x〉 = e〈v,w〉e〈x,w〉+
‖x‖2

2 e〈v,x〉+
‖x‖2

2 ,

so that there exists a well-defined and uniquely determined unitary operator Ux on S(H)
satisfying

Ux Exp(v) = e−〈x,v〉−
‖x‖2

2 Exp(v + x) for x, v ∈ H (25)

(Exercise 5.5; the surjectivity of Ux follows from the totality of Exp(H)). A direct calculation
then shows that

UxUy = e−i Im〈x,y〉Ux+y for x, y ∈ H. (26)

In fact, for v ∈ H, we have

UxUy Exp(v) = Uxe
−〈y,v〉− ‖y‖

2

2 Exp(v + y)

= e−〈y,v〉−
‖y‖2

2 e−〈x,v+y〉− ‖x‖
2

2 Exp(v + y + x)

= e−〈x+y,v〉e−
‖y‖2

2 −
‖x‖2

2 −〈x,y〉 Exp(v + y + x)

and

Ux+y Exp(v) = e−〈x+y,v〉− ‖x+y‖
2

2 Exp(v + y + x)

= e−〈x+y,v〉− ‖x‖
2

2 −
‖y‖2

2 −Re〈x,y〉 Exp(v + y + x)

The relation (26) shows that the map U : (H,+)→ U(S(H)) is not a group homomorphism.
Instead, we have to replace the additive group of H by the Heisenberg group

Heis(H) := T×H with (z, v)(z′, v′) := (zz′e−i Im〈v,v′〉, v + v′).

For this group, we obtain a unitary representation

Û : Heis(H)→ U(S(H)) by Û(z,v) := zUv.
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The operators
W (v) := Uiv/

√
2, v ∈ H

are called Weyl operators. They satisfying the Weyl relations

W (v)W (w) = e−i Im〈v,w〉/2W (v + w), v, w ∈ H. (27)

The Weyl algebra

W (H) := C∗({W (v) : v ∈ H}) ⊆ B(S(H))

is the C∗-subalgebra of B(S(H)) generated by the Weyl operators. The Weyl algebra plays
an important role in Quantum (Statistical) Mechanics and Quantum Field Theory. This is
partly due to the fact that it is a simple C∗-algebra (all ideals are trivial), which implies that
all its representations are faithful. Closely related is its universal property: If A is a unitary
C∗-algebra and ϕ : H → U(A) a map satisfying the Weyl relations in the form

ϕ(v)ϕ(w) = e−i Im〈v,w〉/2ϕ(v + w), v, w ∈ H, (28)

then there exists a unique homomorphism Φ: W (H) → A of unital C∗-algebras with
Φ ◦W = ϕ. An excellent discussion of the Weyl algebra and its properties can be found
in the monograph [BR96] which also describes the physical applications in great detail.

5.3 From real subspaces to von Neumann algebras

In this subsection we describe a mechanism that associates to real subspaces of a Hilbert
space H von Neumann algebras on the symmetric Fock space S(H). This constructions
plays an important role in recent developments of Algebraic Quantum Field Theory (AQFT)
because it provides natural links between the geometric structure of spacetime and operator
algebras (see in particular [Ar99, Lo08, Le15]). It has also been of great interest for the
classification of factors because it provides very controlled constructions of factors whose
type can be determined in some detail ([AW63, AW68]).

We write
γ(v, w) := Im〈v, w〉 for v, w ∈ H

and observe that γ is skew-symmetric and non-degenerate, so that the underlying real Hilbert
space HR carries the structure of a symplectic vector space (HR, γ). Accordingly, we write

V ′ := {w ∈ H : (∀v ∈ V ) γ(v, w) = 0}

for the symplectic orthogonal space of V . It is easy to see that V ′ = iV ⊥R , where V ⊥R is the
real orthogonal space of V with respect to the real-valued scalar product Re〈v, w〉. Note that
V ′′ = V follows from the Hahn–Banach Extension Theorem.

Using the Weyl operators, we associate to every real linear subspace V ⊆ H a von
Neumann subalgebra

R(V ) := W (V )′′ = {W (v) : v ∈ V }′′ ⊆ B(S(H)).

This leads to a variety of interesting von Neumann algebras and also to factors of various
types.

Lemma 5.5. We have
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(i) R(H) = B(F+(H)), resp., the representation of Heis(H) on F+(H) is irreducible.

(ii) R(V ) = R(V ).

(iii) Ω = Exp(0) ∈ F+(H) is cyclic for R(V ) if and only if V + iV is dense in H.

(iv) Ω = Exp(0) ∈ F+(H) is separating for R(V ) if and only if V ∩ iV = {0}.

(v) R(V ) ⊆ R(W )′ if and only if V ⊆W ′.

(vi) R(V ) is commutative if and only if V ⊆ V ′.

Proof. (i) follows from [BR96, Prop. 5.2.4(3)].
(ii) follows from the fact that H → B(F+(H)), v 7→Wv is strongly continuous and R(V )

is closed in the weak operator topology.
(iii) Let K := V + iV . Then R(V )Ω ⊆ F+(K), so that Ω cannot be cyclic if K 6= H.
Suppose, conversely, that K = H and that f ∈ (R(V )Ω)⊥. Then the holomorphic function

f̂(v) := 〈f,Exp(v)〉 on H vanishes on iV , hence also on V + iV , and since this subspace is
dense in H, we obtain f = 0 because Exp(H) is total in F+(H).

(iv) In view of (ii), we may assume that V is closed. Let 0 6= w ∈ K := V ∩ iV . To see
that Ω is not separating for R(V ), it suffices to show that, for the one-dimensional Hilbert
space H0 := Cw, the vector Ω is not separating for R(Cw) = B(F+(Cw)) (see (i)). This is
obviously the case because dimF+(Cw) > 1.

Suppose that K = {0}. As K = V ′′∩ (iV ′′) = (V ′+ iV ′)′, it follows that V ′+ iV ′ is dense
in H. By (iii), Ω is cyclic for R(V ′) which commutes with R(V ). Therefore Ω is separating
for R(V ).

(v) follows directly from the Weyl relations (27).
(vi) follows from (v).

Theorem 5.6. ([Ar63]) (Araki’s Theorem) For closed real subspaces V,W, Vj of H, the
following assertions hold:

(i) R(V ) ⊆ R(W ) if and only if V ⊆W .

(ii) R
(⋂

j∈J Vj
)

=
⋂
j∈J R(Vj).

(iii) R(V )′ = R(V ′) (Duality).

(iv) Z(R(V )) = R(V ∩ V ′). In particular, R(V ) is a factor if and only if V ∩ V ′ = {0}.

Proof. We only comment on some of these statements:
(i) That V ⊆ W implies R(V ) ⊆ R(W ) is clear, but the converse is non-trivial. It can

be derived from the duality propery (iv), which is a deep result, basically the main result of
[Ar63].

(ii) here “⊆” is easy.
(iii) is a deep theorem.
(iv) follows from (ii) and (iii).

The preceding theorem asserts in particular that R(V ) is a factor if and only if
V ∩ V ′ = {0}. Subspaces with this property are very easy to construct. In [Ar64b] many
results on the types of the so-obtained factors have been derived. In particular, it is shown
that factors of type II do not arise from this construction and [Ar64] provides an explicit
criterion for R(V ) to be of type I. “Generically”, the so-obtained factors are of type III.
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5.4 The canonical commutation relations (CCR)

On the dense subspace S(H)0 =
∑∞
n=0 S

n(H) of the symmetric Fock space S(H), we have
for each f ∈ H the creation operator

a∗(f)(f1 ∨ · · · ∨ fn) := f ∨ f1 ∨ · · · ∨ fn.

This operator has an adjoint a(f) on S(H)0, given by

a(f)Ω = 0, a(f)(f1 ∨ · · · ∨ fn) =

n∑
j=1

〈f, fj〉f1 ∨ · · · ∨ f̂j ∨ · · · ∨ fn,

where f̂j means omitting the factor fj . Note that a(f) defines a derivation on the commuta-
tive algebra S(H)0. One easily verifies that these operators satisfy the canonical commutation
relations (CCR):

[a(f), a(g)] = 0 [a(f), a∗(g)] = 〈f, g〉1. (29)

Lemma 5.7. d
dt

∣∣
t=0

U(tx) = a∗(x)− a(x) on S0(H).

Proof. We associate to every F ∈ S(H) the function on H defined by

Θ(F )(v) := 〈F,Exp(v)〉

and note that

Θ(v1∨· · ·∨vn)(v) = 〈v1∨· · ·∨vn,Exp(v)〉 =
1

n!
〈v1∨· · ·∨vn, vn〉 =

n∏
j=1

〈vj , v〉 =

n∏
j=1

Θ(vj)(v).

This implies in particular that

Θ|S(H)0 : S(H)0 → Pol(H) (30)

is a unital algebra homomorphism with respect to the natural commutative algebra structure
on S(H)0 defined by

(v1 ∨ · · · ∨ vk) · (w1 ∨ · · · ∨ wm) := v1 ∨ · · · ∨ vk ∨ w1 ∨ · · · ∨ wm.

It follows in particular that

Φ ◦ a∗(v) = mΘ(v) ◦ Φ and Φ ◦ a(v) = ∂v ◦ Φ,

where mg(h) = g · h and

(∂vF )(x) =
d

dt

∣∣∣
t=0

F (x+ tv).

Next we observe that

Θ(UxF )(v) = 〈F,U−x Exp(v)〉 = e〈x,v〉−
‖x‖2

2 〈F,Exp(v − x)〉 = e〈x,v〉−
‖x‖2

2 Θ(F )(v − x).

Accordingly, we define the operators Ûx on functions F : H → C by

(ÛxF )(v) := e〈x,v〉−
‖x‖2

2 F (v − x).
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If F is partially differentiable, this leads to

d

dt

∣∣∣
t=0

(ÛtxF )(v) = 〈x, v〉F (v)− (∂xF )(v) = Θ(x)(v)F (v)− (∂xF )(v),

i.e.,

Θ ◦ d
dt

∣∣∣
t=0

Utx =
d

dt

∣∣∣
t=0

Ûtx ◦Θ = (mΘ(x) − ∂x) ◦Θ = Θ ◦ (a∗(x)− a(x))

by (30). This implies the assertion because Θ is injective.

Remark 5.8. In the context of the theory of unbounded operators, one can show that the
skew-hermitian operators a∗(v)− a(v) on S(H)0 have a skew-adjoint closure, so that Stone’s

Theorem leads to unitary operators ea
∗(v)−a(v), and the preceding calculations then imply

that
Uv = ea

∗(v)−a(v) for v ∈ H.

Accordingly, we obtain

W (v) = Uiv/
√

2 = e
i√
2
a∗(v)+a(v)

for v ∈ H.

Remark 5.9. As the Weyl algebra W (H) ⊆ B(S(H)) is generated by the Weyl operators, the
Fock state corresponding to the vacuum vector Ω = Exp(0) ∈ S(H)0 is uniquely determined
by

〈Ω,W (f)Ω〉 = 〈Exp(0), Uif/
√

2 Exp(0)〉 = 〈Exp(0), e−‖f‖
2/4 Exp(if/

√
2)〉 = e−

1
4‖f‖

2

. (31)

Exercises for Section 5

Exercise 5.1. Let G be a finite group, (π,H) be a unitary representation and χ : G → C× be a
homomorphism (a character of G). Show that:

(i) Pχ := 1
|G|
∑
g∈G χ(g)−1π(g) is the orthogonal projection onto the χ-eigenspace

Hχ := {v ∈ H : (∀g ∈ G)π(g)v = χ(g)v}.

(ii) PχPη = 0 for χ 6= η.

(iii) P :=
∑
χ∈Hom(G,T) Pχ is the projection onto the closed subspace of H spanned by the G-

eigenvectors.

Exercise 5.2. (Second quantization as a functor) Let H and K be complex Hilbert spaces and
A : H → K be a contraction. Show that:

(a) There are unique contractions

Γ±(A) : F±(H)→ F±(K)

defined by

Γ+(A)(v1 ∨ · · · ∨ vn) := Av1 ∨ · · · ∨Avn, resp., Γ−(A)(v1 ∧ · · · ∧ vn) := Av1 ∧ · · · ∧Avn.

(b) Γ±(1H) = 1F±(H), Γ±(AB) = Γ±(A)Γ±(B) and Γ±(A∗) = Γ±(A)∗.
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Exercise 5.3. Let V and W be K-vector spaces and β : V n → W be a symmetric n-linear map.
Show that β is completely determined by the values on the diagonal β(v, . . . , v), v ∈ V .
Hint: Consider

β((t1v1 + . . .+ tnvn)n) =
∑

m1+...+mn=n

n!

m1! · · ·mn!
tm1
1 · · · tmnn β(vm1

1 , . . . , vmnn )

and recover β(v1, . . . , vn) as a suitable partial derivative.

Exercise 5.4. Let V be K-vector space and Sn(V ) := (V ⊗)Sn be the nth symmetric power of V .
Show that

Sn(V ) = span{v⊗n : v ∈ V }.
Hint: Use the same technique as in Exercise 5.3.

Exercise 5.5. Let H1 and H2 be Hilbert space, X be a set and γj : X → Hj , j = 1, 2, be maps
with total range. Then the following are equivalent:

(a) There exists a unitary operator U : H1 → H2 with U ◦ γ1 = γ2.

(b) 〈γ2(x), γ2(y)〉 = 〈γ1(x), γ1(y)〉 for all x, y ∈ X.

Exercise 5.6. Let X be a topological space, H be a Hilbert space and γ : X → H be a map. Show
that γ is continuous if and only if the corresponding kernel function

K : X ×X → C, K(x, y) := 〈γ(x), γ(y)〉

is continuous.

A Complementary material

A.1 Initial and Final Topologies

If f : X → Y is a map and τX is a topology on X, then the topology

f∗τX := {A ⊆ Y : f−1(A) ∈ τX}

is called the push-forward of τX by f . Similarly, we obtain for each topology τY on Y a
topology

f∗τY := f−1τY := 〈f−1(O) : O ∈ τY 〉top

on X, called the pull-back of τY by f . The main point of initial and final topologies is to
extend these concepts to families of maps.

Definition A.1. Let X be a set and (Yi, τi)i∈I be topological spaces.
(a) Let fi : X → Yi be maps. Then the topology

τ := 〈f−1
i (τi), i ∈ I〉top

generated by all inverse images f−1
i (Oi), Oi ∈ τi, is called the initial topology defined by the

family (fi, Yi)i∈I .
(b) Let fi : Yi → X be maps. Then the topology

τ := {U ⊆ X : (∀i ∈ I)f−1
i (U) ∈ τi} =

⋂
i∈I

fi,∗τi

is called the final topology on X defined by the family (fi, Yi)i∈I . That τ is indeed a topology
is due to the fact that the assignment U 7→ f−1

i (U) preserves arbitrary intersections and
unions.
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Lemma A.2. If f : (X, τX)→ (Y, τY ) is a map between topological spaces and B a sub-basis
of τY , then f is continuous if and only if for each B ∈ B, the inverse image f−1(B) is open.

Proof. The set
f∗τX := {A ⊆ Y : f−1(A) ∈ τX}

is easily seen to be a topology on Y . Now f is continuous if and only if f∗τX ⊇ τY , and since
B generates τY , this happens if and only if B ⊆ f∗τX .

Lemma A.3. The initial topology τ defined by the family fi : X → Yi, i ∈ I, of maps is
the coarsest topology for which all maps fi are continuous. It has the following universal
property: If Z is a topological space, then a map h : Z → X is continuous if and only if all
maps fi ◦ h : Z → Yi are continuous.

Proof. Apply Lemma A.2 to the sub-basis {f−1
i (Oi) : Oi ⊆ Yi open} of τ .

Lemma A.4. The final topology defined by the family fi : Yi → X, i ∈ I, is the finest
topology for which all maps fi are continuous. It has the following universal property: If Z is
a topological space, then a map h : X → Z is continuous if and only if all maps h ◦ fi, i ∈ I,
are continuous.

Proof. For an open subset O ⊆ Z, the inverse image h−1(O) ⊆ X is open if and only if for
each i ∈ I, the set f−1

i (h−1(O)) = (h ◦ fi)−1(O) is open in Yi. Therefore h is continuous if
and only if each map h ◦ fi is continuous.

Example A.5. Let (X, τ) be a topological space and Y ⊆ X be a subset. We write ιY : Y →
X for the canonical embedding, mapping each y ∈ Y to itself. Then the initial topology on
Y with respect to ιY coincides with the subspace topology

τY = {ι−1
Y (U) = U ∩ Y : U ∈ τ}.

Definition A.6. (Quotient topology) (a) Let ∼ be an equivalence relation on the topo-
logical space X, [X] := X/ ∼= {[x] : x ∈ X} be the set of equivalence classes, and
q : X → [X], x 7→ [x] the quotient map. Then the final topology on [X] defined by q : X → [X]
is called the quotient topology.

(b) According to Definition A.1, a subset U ⊆ [X] is open if and only its inverse image
q−1(U) is an open subset ofX and Lemma A.4 implies that a map h : [X]→ Z to a topological
space Z is continuous if and only if h ◦ q X → Z is continuous.

(c) An important special cases arises if S ⊆ X is a subset and we define the equivalence
relation ∼ in such a way that S = [x] for each x ∈ S and [y] = {y} for each y ∈ Sc. Then
the quotient space is also denoted X/S := X/ ∼. It is obtained by collapsing the subset S
to a point.

Definition A.7. (Product topology) Let (Xi)i∈I be a family of topological spaces and
X :=

∏
i∈I Xi be their product set. We think of its elements as all tuples (xi)i∈I with xi ∈ Xi,

or, equivalently, as the set of all maps
x : I →

⋃
i∈I Xi with xi := x(i) ∈ Xi for each i ∈ I.

We have for each i ∈ I a projection map

pi : X → Xi, (xj)j∈I 7→ xi.

The initial topology on X with respect to this family pi : X → Xi is called the product
topology and X, endowed with this topology, it called the topological product space.
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Example A.8. Typical examples of product spaces are Rn and Cn. More generally, one can
shows that for any finite collection (X1, d1), . . . , (Xn, dn) of metric spaces, the metrics

d1(x, y) :=

n∑
j=1

dj(xj , yj) and d∞(x, y) := max{dj(xj , yj) : j = 1, . . . , n}

define the product topology on X :=
∏n
j=1Xj .

From Lemma A.4, we immediately obtain:

Proposition A.9. A map f = (fi) : Y →
∏
i∈I Xi to a product space is continuous if and

only if all component maps fi = pi ◦ f : Y → Xi are continuous.

Example A.10. (The topology of pointwise convergence) Let X be a set and Y be a
topological space. We identify the set F(X,Y ) of all maps X → Y with the product space
Y X =

∏
x∈X Y . Then the product topology on Y X yields a topology on F(X,Y ), called

the topology of pointwise convergence. We shall see later, when we discuss convergence in
topological spaces, why this makes sense.

It is the coarsest topology on F(X,Y ) for which all evaluation maps

evx : F(X,Y )→ Y, f 7→ f(x)

are continuous because these maps correspond to the projections Y X → Y .

A.2 Locally Compact Spaces

Proposition A.11. For a topological space X, the following are equivalent:

(i) X is quasi-compact, i.e., every open cover has a finite subcover.

(ii) For each family (Ai)i∈I of closed subsets of X with
⋂
i∈I Ai = ∅, there exists a finite

subset F ⊆ I with
⋂
i∈F Ai = ∅.

Proof. (i) ⇔ (ii) follows by taking complements: The condition
⋂
i∈I Ai = ∅ means that

the family (Aci )i∈I of complements is an open covering of X because X = ∅c =
⋃
i∈I A

c
i .

Similarly,
⋂
i∈F Ai = ∅ means that (Aci )i∈F is a finite subcovering.

Definition A.12. A separated topological space X is called locally compact if each point
x ∈ X has a compact neighborhood.

Lemma A.13. If X is locally compact and x ∈ X, then each neighborhood U of x contains
a compact neighborhood of x.

Proof. Let K be a compact neighborhood of x ∈ X. Since it suffices to show that U ∩ K
contains a compact neighborhood of x, we may w.l.o.g. assume that X is compact. Replacing
U by its interior, we may further assume that U is open, so that its complement U c is compact.

We argue by contradiction and assume that U does not contain any compact neighborhood
of x. Then the family F of all intersections C ∩U c, where C is a compact neighborhood of x,
contains only non-empty sets and is stable under finite intersections. We thus obtain a family
of closed subsets of the compact space U c for which all finite intersections are non-empty,
and therefore Proposition A.11 implies that its intersection

⋂
C(C ∩ U c) contains a point y.

Then y ∈ U c implies x 6= y, and since X is separated, there exist open neighborhoods Ux of
x and Uy of y with Ux ∩ Uy = ∅. Then U cy is a compact neighborhood of x, which leads to
the contradiction y ∈ U cy ∩ U c to y ∈ Uy.
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Definition A.14. A subset A of a topological space X is said to be relatively compact if A
is compact.

Lemma A.15. Let X be locally compact, K ⊆ X compact and U ⊇ K open. Then there
exists a compact subset V ⊆ X with

K ⊆ V 0 ⊆ V ⊆ U.

Proof. For each x ∈ K we choose a compact neighborhood Vx ⊆ U
(Lemma A.13). Then there exist finitely many x1, . . . , xn with K ⊆

⋃n
i=1 V

0
xi and we put

V :=
⋃n
i=1 Vxi ⊆ U .

Proposition A.16. (Urysohn’s Theorem) Let X be locally compact, K ⊆ X compact and
U ⊇ K be an open subset. Then there exists a continuous function h : X → R with

h|K = 1 and h|X\U = 0.

Proof. We put U(1) := U . With Lemma A.15, we find an open, relatively compact subset
U(0) with K ⊆ U(0) ⊆ U(0) ⊆ U(1). Iterating this procedure leads to a subset U( 1

2 ) with

U(0) ⊆ U
(1

2

)
⊆ U

(1

2

)
⊆ U(1).

Continuing like this, we find for each dyadic number k
2n ∈ [0, 1] an open, relatively compact

subset U( k
2n ) with

U
( k

2n

)
⊆ U

(k + 1

2n

)
for k = 0, . . . , 2n − 1.

Let D := { k2n : k = 0, . . . , 2n, n ∈ N} for the set of dyadic numbers in [0, 1]. For r ∈ [0, 1], we
put

U(r) :=
⋃

s≤r,s∈D
U(s).

For r = k
2n this is consistent with the previous definition. For t < t′ we now find r = k

2n <

r′ = k+1
2n in D with t < r < r′ < t′, so that we obtain

U(t) ⊆ U(r) ⊆ U(r′) ⊆ U(t′).

We also put U(t) = ∅ for t < 0 and U(t) = X for t > 1. Finally, we define

f(x) := inf{t ∈ R : x ∈ U(t)}.

Then f(K) ⊆ {0} and f(X \ U) ⊆ {1}.
We claim that f is continuous. So let x0 ∈ X, f(x0) = t0 and ε > 0. We put V :=

U(t0 + ε) \ U(t0 − ε) and note that this is a neighborhood of x0. From x ∈ V ⊆ U(t0 + ε)
we derive f(x) ≤ t0 + ε. If f(x) < t0 − ε, then also x ∈ U(t0 − ε) ⊆ U(t0 − ε), which is a
contradiction. Therefore |f(x)−f(x0)| ≤ ε holds on V , and this implies that f is continuous.
Finally, we put h := 1− f .
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Exercises for Section A.2

Exercise A.1. (One point compactification) Let X be a locally compact space. Show that:

(i) There exists a compact topology on the set Xω := X ∪ {ω}, where ω is a symbol of a point
not contained in X. Hint: A subset O ⊆ Xω is open if it either is an open subset of X or
ω ∈ O and X \O is compact. Note that the local compactness of X is needed for the Hausdorff
property of Xω.

(ii) The inclusion map ηX : X → Xω is a homeomorphism onto an open subset of Xω.

(iii) If Y is a compact space and f : X → Y a continuous map which is a homeomorphism onto the
complement of a point in Y , then there exists a homeomorphism F : Xω → Y with F ◦ηX = f .

The space Xω is called the Alexandroff compactification or the one point compactification of
X.17

Exercise A.2. (Stereographic projection) We consider the n-dimensional sphere

Sn := {(x0, x1, . . . , xn) ∈ Rn+1 : x20 + x21 + · · ·+ x2n = 1}.

We call the unit vector e0 := (1, 0, . . . , 0) the north pole of the sphere and −e0 the south pole. We
then have the corresponding stereographic projection maps

ϕ± : U± := Sn \ {±e0} → Rn, (y0, y) 7→ 1

1∓ y0
y.

Show that these maps are homeomorphisms with inverse maps

ϕ−1
± (x) =

(
± ‖x‖

2
2 − 1

‖x‖22 + 1
,

2x

1 + ‖x‖22

)
.

Exercise A.3. Show that the one-point compactification of Rn is homeomorphic to the n-dimensional
sphere Sn. Hint: Exercise A.2.

Exercise A.4. Show that the one-point compactification of an open interval ]a, b[⊆ R is homeo-
morphic to S1.

Exercise A.5. Show that the one-point compactification of N is homeomorphic to {0}∪{ 1
n

: n ∈ N}.

Exercise A.6. Let X be a locally compact space and Y ⊆ X be a subset. Show that Y is locally
compact with respect to the subspace topology if and only if there exists an open subset O ⊆ X and
a closed subset A with Y = O ∩ A. Hint: If Y is locally compact, write it as a union of compact
subsets of the form Oi ∩ Y , Oi open in X, where Oi ∩ Y has compact closure, contained in Y . Then
put O :=

⋃
i∈I Oi and A := Y ∩O.

Exercise A.7. Let f : X → Y be a continuous proper map between locally compact spaces, i.e.,
inverse image of compact subsets are compact. Show that

(a) f is a closed map, i.e., maps closed subsets to closed subsets.

(b) If f is injective, then it is a topological embedding onto a closed subset.

(c) There is a well-defined homomorphism f∗ : C0(Y )→ C0(X) of C∗-algebras, defined by f∗h :=
h ◦ f .

(d) For each regular Borel measure µ on X, the push-forward measure f∗µ on Y , defined by
(f∗µ)(E) := µ(f−1(E)) is regular. Hint: To verify outer regularity, pick an open O ⊇ f−1(E)
with µ(O \ f−1(E)) < ε. Then U := f(Oc)c is an open subset of Y containing E and

Õ := f−1(U) satisfies f−1(E) ⊆ Õ ⊆ O, which leads to (f∗µ)(U \ E) < ε.

17Alexandroff, Pavel (1896–1982)
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A.3 Hilbert–Schmidt and Trace Class Operators

In subsection we collect some facts on Hilbert–Schmidt and trace class operators.

A.3.1 Hilbert–Schmidt Operators

Lemma A.17. Let H, K be Hilbert spaces, (ej)j∈J an orthonormal basis in H, and (fk)k∈K
an orthonormal basis in K. For A ∈ B(H,K), we then have∑

j∈J
‖Aej‖2 =

∑
k∈K

‖A∗fk‖2.

Proof.
∑
j ‖Aej‖2 =

∑
j,k |〈Aej , fk〉|2 =

∑
j,k |〈ej , A∗fk〉|2 =

∑
k ‖A∗fk‖2.

Definition A.18. Let H and K be Hilbert spaces and (ej)j∈J an orthonormal basis. An
operator A ∈ B(H,K) is called a Hilbert–Schmidt operator if

‖A‖2 :=
(∑
j∈J
‖Aej‖2

) 1
2

<∞.

In view of Lemma A.17, the preceding expression does not depend on the choice of the
orthonormal basis in H. We write B2(H,K) for the space of Hilbert–Schmidt operators in
B(H,K), B2(H) := B2(H,H) for the Hilbert–Schmidt operators on H, and Bfin(H) for the
space of continuous finite rank operators on H.

Proposition A.19. Let H and K be Hilbert spaces.

(i) For A ∈ B2(H,K), we have ‖A‖ ≤ ‖A‖2 = ‖A∗‖2.

(ii) If A,B ∈ B2(H,K) and (ej)j∈J is an orthonormal basis of H, then

〈A,B〉 :=
∑
j

〈B∗Aej , ej〉 =
∑
j

〈Aej , Bej〉 (32)

converges and defines the structure of a complex Hilbert space on B2(H,K) with the
norm

‖A‖HS := ‖A‖2 :=
√
〈A,A〉.

(iii) 〈A,B〉 as in (32) does not depend on the chosen orthonormal basis.

(iv) 〈A,B〉 = 〈B∗, A∗〉 for A,B ∈ B2(H,K).

(v) If A ∈ B(K) and B,C ∈ B2(H,K), then AB ∈ B2(H,K) with

‖AB‖2 ≤ ‖A‖ · ‖B‖2 and 〈AB,C〉 = 〈B,A∗C〉.

(vi) Hilbert–Schmidt operators are compact, i.e., B2(H,K) ⊆ K(H,K).

Proof. (i) The relation ‖A‖2 = ‖A∗‖2 is immediate from the proof of Lemma A.17. To
prove that ‖A‖ ≤ ‖A‖2, let ε > 0 and (ej)j∈J be an orthonormal basis of H such that
‖Aej0‖ ≥ ‖A‖ − ε for an element j0 ∈ J . Then

‖A‖22 =
∑
j∈J
‖Aej‖2 ≥ (‖A‖ − ε)2.
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Since ε > 0 was arbitrary, we obtain ‖A‖2 ≥ ‖A‖.
(ii) It is clear from the definition that

Φ: B2(H,K)→ `2(J,K), A 7→ (Aej)j∈J

is an isometric embedding. That Φ is surjective follows from the observation that, for v ∈
`2(J,K) and x ∈ H, the prescription Ax :=

∑
j∈J〈ej , x〉vj defines a bounded operator H → K

with
‖Ax‖2 ≤

∑
j∈J
|〈x, ej〉|2

∑
j

‖vj‖2 = ‖x‖2‖v‖2

(Cauchy–Schwarz inequality). Hence A ∈ B2(H,K) with Φ(A) = v. This shows that Φ is an
isometric bijection, and therefore that B2(H,K) is a Hilbert space with scalar product given
by 〈A,B〉 =

∑
j∈J〈Aej , Bej〉 =

∑
j∈J〈B∗Aej , ej〉.

(iii) This follows from the fact that the scalar product on the Hilbert space B2(H,K) is
uniquely determined by the norm via the polarization identity.

〈A,B〉 =
1

4

3∑
k=0

i−k〈A+ ikB,A+ ikB〉.

(iv) We know already that A 7→ A∗ is an isometry of B2(H,K) onto B2(K,H). Hence
both sides in (iv) are hermitian forms on B2(H,K) which define the same norm. Since the
scalar product is uniquely determined by the norm via the polarization identity, the assertion
follows.

(v) The first part follows from

‖AB‖22 =
∑
j∈J
‖ABej‖2 ≤

∑
j∈J
‖A‖2‖Bej‖2 = ‖A‖2‖B‖22.

For the second part, we calculate

〈AB,C〉 =
∑
j∈J
〈C∗ABej , ej〉 =

∑
j∈J
〈(A∗C)∗Bej , ej〉 = 〈B,A∗C〉.

(vi) If A ∈ B2(H,K) and (ej)j∈J is an orthonormal basis of H, then the finiteness of∑
j ‖Aej‖2 <∞ implies that JA := {j ∈ J : Aej 6= 0} is countable. If JA is finite, then A is

a finite rank operator, hence in particular compact. If JA is infinite, then it can be written
as JA = {jn : n ∈ N}. For each n ∈ N, we we consider the operator An defined by

Anej :=

{
Aej for j ∈ {j1, . . . , jn}
0 otherwise .

Then the sequence (An)n∈N converges to A in B2(H,K) and hence, in particular, with respect
to the operator norm. Therefore A is a limit of finite rank operators and therefore compact.

A.3.2 Trace Class Operators

Definition A.20. We say that an operator A ∈ B(H) is of trace class if A ∈ B2(H) and

‖A‖1 := sup{|〈A,B〉| : B ∈ B2(H), ‖B‖ ≤ 1}

is finite. We write B1(H) ⊆ B2(H) for the subspace of trace class operators. It follows easily
from the definition that ‖ · ‖1 defines a norm on B1(H).
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Proposition A.21. The following assertions hold:

(i) If A ∈ B(H) and B ∈ B1(H), then AB ∈ B1(H) with ‖AB‖1 ≤ ‖A‖ · ‖B‖1.

(ii) ‖A‖2 ≤ ‖A‖1 for A ∈ B1(H).

(iii) B1(H) is invariant under taking adjoints, and ‖A∗‖1 = ‖A‖1.

(iv) B2(H)B2(H) ⊆ B1(H).

(v) For x, y ∈ H we define the operator

Px,y := |x〉〈y| by Px,y(z) = 〈y, z〉x.

Then ‖Px,y‖ = ‖Px,y‖1 = ‖x‖ · ‖y‖.

Proof. (i) This follows from |〈AB,X〉| = |〈B,A∗X〉| ≤ ‖B‖1‖A‖ · ‖X‖ for X ∈ B2(H) with
‖X‖ ≤ 1.

(ii) From ‖X‖ ≤ ‖X‖2 for X ∈ B2(H) (Proposition A.19(i)), it follows that

{X ∈ B2(H) : ‖X‖ ≤ 1} ⊇ {X ∈ B2(H) : ‖X‖2 ≤ 1}.

Hence the assertion follows from ‖A‖2 = sup{|〈A,X〉| : ‖X‖2 ≤ 1}.
(iii) From |〈A∗, X〉| = |〈X∗, A〉| = |〈A,X∗〉| and the fact that X 7→ X∗ is an isometry of

B(H) and B2(H), we see that A∗ ∈ B1(H) with ‖A∗‖1 = ‖A‖1.
(iv) If A = BC with B,C ∈ B2(H), then we have for X ∈ B2(H) the estimate

|〈A,X〉| = |〈BC,X〉| = |〈C,B∗X〉| ≤ ‖C‖2‖B∗X‖2 ≤ ‖C‖2‖B‖2‖X‖.

Hence A ∈ B1(H) with ‖A‖1 ≤ ‖B‖2‖C‖2.
(v) For A ∈ B2(H), we have

〈A,Px,y〉 =
∑
j

〈Aej , Px,yej〉 =
∑
j

〈Aej , x〉〈y, ej〉 =
∑
j

〈ej , A∗x〉〈y, ej〉 = 〈y,A∗x〉 = 〈Ay, x〉,

(33)
hence ‖Px,y‖ ≤ ‖Px,y‖1 ≤ ‖x‖ · ‖y‖. As ‖Px,y(y)‖ = ‖y‖2‖x‖ shows that ‖Px,y‖ ≥ ‖x‖ · ‖y‖,
the assertion follows.

Proposition A.22. Let (ej)j∈J be an orthonormal basis and A ∈ B1(H). Then the sum

trA :=
∑
j∈J
〈Aej , ej〉

converges absolutely and has the following properties:

(i) | trA| ≤ ‖A‖1, i.e., tr is a continuous linear functional on B1(H) and it is independent
of the chosen orthonormal basis.

(ii) 〈A,B〉 = tr(AB∗) and tr(AB) = tr(BA) for A,B ∈ B2(H).

(iii) For A ∈ B1(H), the function X 7→ tr(XA) on B(H) is continuous and extends the
linear functional X 7→ 〈A∗, X〉 on B2(H). Moreover, tr(AX) = tr(XA).
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(iv) Each A ∈ B1(H) can be written as A =
∑∞
n=1 Pvn,wn , where (vn)n∈N and (wn)n∈N are

orthogonal sequences. Then ‖A‖1 =
∑∞
n=1 ‖vn‖ · ‖wn‖ and trA =

∑∞
n=1〈wn, vn〉.

(v) Bfin(H) is dense in B1(H).

(vi) B1(H) ∼= K(H)′ and B1(H)′ ∼= B(H), where the pairings are given by the bilinear form
(A,B) 7→ tr(AB).

(vii)
(
B1(H), ‖ · ‖1

)
is a Banach space.

(viii) If (ej)j∈J is an orthonormal basis, then ‖A‖1 ≤
∑
i,j∈J |〈Aei, ej〉| holds for all A ∈

B(H).

Proof. Let J0 ⊆ J be a finite subset and (λj)j∈J0 be complex numbers with |λj | = 1 and
λj〈Aej , ej〉 = |〈Aej , ej〉|. Then (33) shows that∑

j∈J0

|〈Aej , ej〉| =
∑
j∈J0

λj〈Aej , ej〉 =
〈
A,
∑
j∈J0

λjPej

〉
≤ ‖A‖1

∥∥∥ ∑
j∈J0

λjPej

∥∥∥ ≤ ‖A‖1.
This proves the estimate under (i) and the absolute convergence of the series. To see that
tr(A) does not depend on the chosen basis, let (fk)k∈K be another basis and calculate∑

k

〈Afk, fk〉 =
∑
k,j

〈Afk, ej〉〈ej , fk〉 =
∑
k,j

〈fk, A∗ej〉〈ej , fk〉

=
∑
j

〈ej , A∗ej〉 =
∑
j

〈Aej , ej〉.

(ii) The first part is precisely Proposition A.19(ii). The second follows from Proposi-
tion A.19(iv):

tr(AB) = 〈A,B∗〉 = 〈B,A∗〉 = tr(BA).

(iii) For A ∈ B1(H) and B ∈ B(H), we use Proposition A.21(i) to see that AB ∈ B1(H)
with | tr(XA)| ≤ ‖XA‖1 ≤ ‖X‖ · ‖A‖1. This proves the first part of (iii).

To show that tr(AX) = tr(XA) holds for A ∈ B1(H) and X ∈ B(H), we note that, since
both sides define complex bilinear forms, we may assume that A is hermitian. Then the
fact that A is compact (Proposition A.19(vi)) shows that there exists an orthogonal basis
(ej)j∈J with Aej = λjej . We may thus assume that Aej = λjej and note that this implies
A∗ej = λjej . Then

tr(AX) =
∑
j

〈AXej , ej〉 =
∑
j

〈Xej , A∗ej〉 =
∑
j

λj〈Xej , ej〉 =
∑
j

〈XAej , ej〉 = tr(XA).

(iv) Since A is compact, it can be written as A =
∑∞
n=1 Pvn,wn , as required (cf. [We76,

Satz 7.6]). Now Proposition A.21 yields ‖A‖1 ≤
∑∞
n=1 ‖vn‖ · ‖wn‖.

To obtain the converse estimate, we consider the operator Xn =
∑n
j=1 cjPvj ,wj , where

cj = 1
‖vj‖·‖wj‖ if Pvj ,wj 6= 0. Then ‖X‖ ≤ 1 follows from Exercise A.8. Moreover, we have

‖A‖1 ≥ 〈A,Xn〉 =

n∑
j=1

〈vj , Xn.wj〉 =

n∑
j=1

cj‖vj‖2‖wj‖2 =

n∑
j=1

‖vj‖ · ‖wj‖.
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Since n was arbitrary, we obtain ‖A‖1 ≥
∑∞
j=1 ‖vj‖·‖wj‖ and therefore equality. It follows, in

particular, that A = limm→∞Am with Am =
∑m
n=1 Pvn,wn because ‖A−Am‖ =

∑
j>m ‖vj‖·

‖wj‖. Therefore

trA = lim
m→∞

trAm = lim
m→∞

m∑
j=1

〈vj , wj〉 =

∞∑
j=1

〈vj , wj〉.

(v) Since B1(H) is invariant under taking adjoints, it suffices to show that each symmetric
element A in B1(H) can be approximated by finite rank operators with respect to ‖ · ‖1. We
write A =

∑∞
n=1 λnPvn , where (vn)n∈N is an orthonormal system and conclude as in (iv)

that An → A.
(vi) The continuity of the pairing B1(H) × B(H) → C, (A,B) 7→ tr(AB) follows from

| tr(AB)| ≤ ‖AB‖1 ≤ ‖A‖1‖B‖. First we show that this pairing yields an isomorphism of
B1(H) with K(H)′. So let f ∈ K(H)′. Then f |B2(H) is a linear functional with |f(X)| ≤ ‖f‖·
‖X‖ ≤ ‖f‖·‖X‖2 (Proposition A.19(i)), hence can be represented by an element Y ∈ B2(H).
Then f(X) = 〈X,Y 〉 = tr(XY ∗) holds for all X ∈ B2(H), and with |f(X)| ≤ ‖f‖ · ‖X‖ we
obtain Y ∈ B1(H) with ‖Y ‖1 = ‖Y ∗‖1 ≤ ‖f‖. The converse follows from the density of
Bfin(H) ⊆ B2(H) in K(H).

Next we show that B1(H)′ ∼= B(H). So we have to represent each continuous linear
functional f on B1(H) by a bounded linear operator on H. From Proposition A.21 we recall
that ‖Pv,w‖1 = ‖v‖·‖w‖. Therefore, for each w ∈ H, the mapping v 7→ f(Pv,w) is continuous
and linear, hence can be represented by a vector aw in the sense that f(Pv,w) = 〈v, aw〉 holds
for all v ∈ H. Moreover, the above calculation shows that ‖aw‖ ≤ ‖f‖ · ‖w‖. Since the
assignment w 7→ aw is linear, we find a bounded operator A on H with Aw = aw for all
w ∈ H and ‖A‖ ≤ ‖f‖. Now f(Pv,w) = 〈v,Aw〉 = 〈Pv,w, A〉 holds for v, w ∈ H. From that
we obtain f(X) = tr(XA∗) for X ∈ Bfin(H) and since, in view of (v), Bfin(H) is dense in
B1(H), we obtain f(X) = tr(XA∗) for all X ∈ B1(H). This proves (vi).

(vii) Since B1(H) ∼= K(H)′ follows from (vi), the completeness of B1(H) follows from the
fact that dual spaces of normed spaces are Banach spaces.

(viii) Let (vn)n∈N and (wn)n∈N be sequences in H satisfying
∑∞
n=1 ‖vn‖2 < ∞ and∑∞

n=1 ‖wn‖2 < ∞. Then ‖Pvn,wn‖1 = ‖vn‖ · ‖wn‖ (Proposition A.21(v)) implies that the
series A :=

∑∞
n=1 Pvn,wn converges absolutely in B1(H). Therefore

∞∑
n=1

〈Xvn, wn〉 =

∞∑
n=1

tr(XPvn,wn) = tr(XA).

This proves that each ultraweakly continuous linear functional on B(H) is also weak-∗-con-
tinuous.

If, conversely, f(X) = tr(AX) with A ∈ B1(H), then we want to show that f is ultra-
weakly continuous. Writing A = B+ − B− + i(C+ − C−), where B+, B−, C+ and C− are
positive trace class operators, we may assume that A is positive. Then A =

∑∞
n=1 Pun , where

(un)n∈N is an orthogonal sequence consisting of eigenvectors of eigenvalue ‖un‖2, and, in view
of (iv), ‖A‖1 =

∑∞
n=1 ‖un‖2 < ∞. We conclude that f(X) = tr(XA) =

∑∞
n=1〈X.un, un〉

with
∑∞
n=1 ‖un‖2 = ‖A‖1 <∞. Hence f is ultraweakly continuous. Now the assertion follows

from the fact that the weak-∗-topology and the ultraweak topology are the coarsest topology
for which the same set of linear functionals is continuous.

(ix) We may assume that the sum
∑
i,j |〈Aei, ej〉| exists. In view of

|〈Aei, ej〉| ≤ ‖A‖, this implies that
∑
i,j |〈Aei, ej〉|2 <∞, i.e., A ∈ B2(H).
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Let B =
∑
i,j∈J bi,jPej ,ei be a finite sum of the operators Pej ,ei . Then B ∈ B2(H),

|bi,j | ≤ ‖B‖ for all i, j, and

| tr(AB)| ≤
∑
i,j

|bi,j tr(APei,ej )| ≤
∑
i,j

|bi,j | · |〈Aei, ej〉| ≤ ‖B‖
∑
i,j

|〈Aei, ej〉|.

This prove that whenever the sum
∑
i,j |〈Aei, ej〉| exists, then A ∈ B1(H) with ‖A‖1 ≤∑

i,j |〈Aei, ej〉|.

Exercise A.8. Show that, it A =
∑n
j=1 λjPvj ,wj , where the finite sequences v1, . . . , vn,

w1, . . . , wn are orthonormal, then ‖A‖ = max{|λj | : j = 1, . . . , n}.
Hint: Awj = λjvj for every j.

A.4 The Stone–Weierstraß Theorem

Definition A.23. (a) Let M be a set and A ⊆ KM be a set of functions M → K. We say
that A separates the points of M if for two points x 6= y in X there exists some f ∈ A with
f(x) 6= f(y).

(b) A linear subspace A ⊆ KM is called an algebra if it is closed under pointwise multi-
plication.

Lemma A.24. There exists an increasing sequence of real polynomials pn which converges
in [0, 1] uniformly to the square root function x 7→

√
x.

Proof. We consider the function f(t) := t−1/2 on (0, 1]. Then

f (k)(t) = (−1)k
1 · 3 · · · (2k − 1)

2k
t−1/2−k.

Therefore the Taylor polynomial qk of order k in t = 1 of f satisfy the relation

qk+1(t) = qk(t) +
1 · 3 · · · (2k + 1)

2k+1(k + 1)!
(1− t)k+1.

We consider the polynomials pk(t) := tqk(t). Then (pn)n∈N0
is an increasing sequence of

non-negative polynomials on [0, 1] whose pointwise limit is the function t 7→ tt−1/2 =
√
t.

For every ε ∈ (0, 1), the convergence is uniform on the interval [ε, 1] because the Taylor series
of f converges uniformly in this interval. On the interval [0, ε], we have

√
t− pk(t) ≤

√
t ≤
√
ε.

Hence the convergence is uniform on [0, 1].

Theorem A.25. (Stone–Weierstraß) 18 19 Let X be a compact space and A ⊆ C(X,R) be a
point separating subalgebra containing the constant functions. Then A is dense in C(X,R)
w.r.t. ‖ · ‖∞.

18Stone, Marshall (1903–1989)
19Weierstraß, Karl (1815–1897)
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Proof. Let B := A denote the closure of A in the Banach space

(C(X,R), ‖ · ‖∞).

Then B also contains the constant functions, separates the points and is a subalgebra (Exer-
cise A.9). We have to show that B = C(X,R).

Here is the idea of the proof. First we use Lemma A.24 to see that for f, g ∈ B, also |f |,
min(f, g) and max(f, g) are contained in B. Then we use the point separation property to
approximate general continuous functions locally by elements of B. Now the compactness of
X permits to complete the proof.

Here are the details: Let (pn)n∈N be the sequence of polynomials from Lemma A.24. For

f ∈ B, we consider the functions pn
(

f2

‖f‖2∞

)
, which also belong to B. In view of Lemma A.24,

they converge uniformly to
√

f2

‖f‖2∞
= |f |
‖f‖∞ , so that |f | ∈ B.

Now let f, g ∈ B. Then B contains the functions

min(f, g) =
1

2
(f + g − |f − g|) and max(f, g) =

1

2
(f + g + |f − g|).

Next let x 6= y in X and r, s ∈ R. According to our assumption, there exists a function g ∈ B
with g(x) 6= g(y). For

h := r + (s− r) g − g(x)

g(y)− g(x)
∈ B

we then have h(x) = r and h(y) = s.
Claim: For f ∈ C(X,R), x ∈ X and ε > 0, there exists a function gx ∈ B with

f(x) = gx(x) and (∀y ∈ X) gx(y) ≤ f(y) + ε.

To verify this claim, pick for each z ∈ X a function hz ∈ B with hz(x) = f(x) and
hz(z) ≤ f(z) + ε

2 . Then there exists a neighborhood Uz of z with

(∀y ∈ Uz) hz(y) ≤ f(y) + ε.

Since X is compact, it is covered by finitely many Uz1 , . . . , Uzk of these neighborhoods. Then
gx := min{hz1 , . . . , hzk} is the desired function.

Now we complete the proof by showing that B = C(X,R). So let f ∈ C(X,R) and ε > 0.
For each x ∈ X, pick gx ∈ B with

(∀y ∈ X) f(x) = gx(x) and gx(y) ≤ f(y) + ε.

Then the continuity of f and gx yield neighborhoods Ux of x with

∀y ∈ Ux : gx(y) ≥ f(y)− ε.

Now the compactness of X implies the existence of finitely many points x1, . . . , xk such that
X ⊆ Ux1

∪ · · · ∪ Uxk . We now put ϕε := max{gx1
, . . . , gxk} ∈ B. Then

∀y ∈ X : f(y)− ε ≤ ϕε(y) ≤ f(y) + ε.

This implies that ‖f − ϕε‖∞ ≤ ε and since ε was arbitrary, f ∈ B.
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Corollary A.26. Let X be a compact space and A ⊆ C(X,C) be a point separating subalgebra
containing the constant functions which is invariant under complex conjugation, i.e., f ∈ A
implies f ∈ A. Then A is dense in C(X,C) w.r.t. ‖ · ‖∞.

Proof. Let AR := A∩C(X,R). Since A is conjugation invariant, we have A = AR⊕iAR. This
implies thatAR contains the real constants and separates the points of X. Now Theorem A.25
implies that AR is dense in C(X,R), and therefore A is dense in the complex Banach space
C(X,C) = C(X,R) + iC(X,R).

Exercises for Section A.4

Exercise A.9. If X is a compact topological space and A ⊆ C(X,R) is a subalgebra, then its closure
also is a subalgebra. Hint: If fn → f and gn → g uniformly, then also fn + gn → f + g, λfn → λf
and fngn → fg uniformly.

Exercise A.10. Let [a, b] ⊆ R be a compact interval. Show that the space

A :=
{
f |[a,b] : (∃a0, . . . , an ∈ R, n ∈ N) f(x) =

n∑
i=0

aix
i
}

of polynomial functions on [a, b] is dense in C([a, b],R) with respect to ‖ · ‖∞.

Exercise A.11. Let K ⊆ Rn be a compact subset. Show that the space A consisting of all
restrictions of polynomial functions

f(x) =
∑
α∈Nn0

aαx
α, aα ∈ R, xα = xα1

1 · · ·x
αn
n ,

to K is dense in C(K,R) with respect to ‖ · ‖∞.

Exercise A.12. Let S1 = {z ∈ C : |z| = 1} and

A :=
{
f |S1 : (∃a0, . . . , an ∈ C, n ∈ N) f(z) =

n∑
j=0

anz
n
}
.

Show that A is not dense in C(S1,C). Hint: Consider the function f(z) := z−1 on S1 and try to
approximate it by elements fn of A; then consider the complex path integrals

∮
|z|=1

fn(z) dz. Why

does the Stone–Weierstraß Theorem not apply?

Exercise A.13. For a locally compact space X, we consider the Banach space C0(X) of all con-
tinuous functions f : X → C vanishing at infinity, i.e., with the property that for each ε > 0 there
exists a compact subset Cε ⊆ X with |f(x)| ≤ ε for x 6∈ Cε. Suppose that A ⊆ C0(X) is a complex
subalgebra satisfying

(a) A is invariant under conjugation.

(b) A has no zeros, i.e., for each x ∈ X there exists an f ∈ A with f(x) 6= 0.

(c) A separates the points of X.

Show that A is dense in C0(X) with respect to ‖·‖∞. Hint: Let Xω be the one-point compactification

of X. Then each function f ∈ C0(X) extends to a continuous function f̃ on Xω by f̃(ω) := 0, and
this leads to bijection

C∗(Xω) := {f ∈ C(Xω) : f(ω) = 0} → C0(X), f 7→ f |X .

Use the Stone–Weierstraß Theorem to show that the algebra

Ã := C1 + {ã : a ∈ A}

is dense in C(Xω) and show that if f̃n + λ1 → f̃ for λn ∈ C, f ∈ C0(X), fn ∈ A, then λn → 0 and
fn → f .
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A.5 Summability in Banach spaces

Definition A.27. Let I be a set and X a Banach space. Then a family (xi)i∈I is called
summable to x ∈ X if, for every ε > 0, there exists a finite subset Iε ⊆ I with the property
that, for every finite subset F ⊇ Iε, we have∥∥∥∑

i∈F
xi − x

∥∥∥ < ε.

If (xi)i∈I is summable to x, we write x =
∑
i∈I xi.

20

Remark A.28. (a) Note that, for I = N, the summability of a family (xn)n∈N in a Banach
space X is stronger than the convergence of the series

∑∞
n=1 xn. In fact, if x =

∑
n∈N xn

holds in the sense of summability and Nε ⊆ N is a finite subset with the property that, for
every finite subset F ⊇ Nε, we have ‖

∑
n∈F xn − x‖ < ε, then we have for N > maxNε in

particular ∥∥∥ N∑
n=1

xn − x
∥∥∥ < ε,

showing that the series
∑∞
n=1 xn converges to x.

(b) If, conversely, the series
∑∞
n=1 xn converges absolutely to some x ∈ X and ε > 0, then

there exists an N ∈ N with
∑∞
n=N ‖xn‖ < ε. With Nε := {1, . . . , N} we then find for every

finite superset F ⊇ Nε that

‖x−
∑
n∈F

xn‖ ≤
∑

n∈N\F

‖xn‖ ≤
∑
n>N

‖xn‖ < ε.

Therefore we also have x =
∑
n∈N xn in the sense of summability.

(c) For X = R and I = N, summability of (xn)n∈N implies in particular convergence of all
reordered series

∑∞
n=1 xσ(n), where σ : N→ N is a bijection. Therefore Riemann’s Reordering

Theorem shows that summability implies absolute convergence.
(d) If (xi)i∈I is a family in R+ = [0,∞), then the situation is much simpler. Here

summability is easily seen to be equivalent to the existence of the supremum of the set
F := {

∑
i∈F xi : F ⊆ I, |F | <∞} of all finite partial sums, and in this case

∑
i∈I xi = supF .

Lemma A.29. Let (Hj)j∈J be a family of Hilbert spaces and

H :=
{

(xj)j∈J ∈
∏
j∈J
Hj :

∑
j∈J
‖xj‖2 <∞

}
.

Then H is a Hilbert space with respect to the scalar product

〈(xj)j∈J , (yj)j∈J〉 =
∑
j∈J
〈xj , yj〉.

Proof. First we show that H is a linear subspace of the complex vector space
∏
j∈J Hj , in

which we define addition and scalar multiplication componentwise. Clearly, H is invariant
under multiplication with complex scalars. For a, b ∈ Hj , the parallelogram identity

‖a+ b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2

20This can also be formulated in terms of convergence of nets. First we order the set I := {F ⊆ I : |F | <∞}
of finite subsets of I by set inclusion, so that F 7→

∑
i∈F xi is a net in X, called the net of partial sums.

Then the summability of (xi)i∈I in X is equivalent to the convergence of this net in X.
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(verify!) implies that
‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2).

For x = (xj)j∈J , y = (yj)j∈J ∈ H, we therefore obtain∑
j∈J
‖xj + yj‖2 ≤ 2

∑
j∈J
‖xj‖2 + 2

∑
j∈J
‖yj‖2 <∞.

This shows that x+ y ∈ H, so that H is indeed a linear subspace.
For x, y ∈ H, the polarization identity

〈x, y〉 =
1

4

3∑
k=0

ik‖x+ iky‖2

(Exercise 3.1(i)) and x± y, x± iy ∈ H imply that the sum

〈x, y〉 =
∑
j∈J
〈xj , yj〉

exists. For 0 6= x, some xi is non-zero, so that 〈x, x〉 ≥ 〈xi, xi〉 > 0. It is a trivial verification
that 〈·, ·〉 is a hermitian form. Therefore H, endowed with 〈·, ·〉, is a pre-Hilbert space.

It remains to show that it is complete. This is proved in the same way as the completeness
of the space `2 of square-summable sequences, which is the special case J = N and Hj = C
for each j ∈ J . Let (xn)n∈N be a Cauchy sequence in H. Then ‖xnj − xmj ‖ ≤ ‖xn − xm‖
holds for each j ∈ J , so that (xnj )n∈N is a Cauchy sequence in Hj . Now the completeness of
the spaces Hj imply the existence of elements xj ∈ Hj with xnj → xj . For every finite subset
F ⊆ J , we then have∑

j∈F
‖xj‖2 = lim

n→∞

∑
j∈F
‖xnj ‖2 ≤ lim

n→∞

∑
j∈J
‖xnj ‖2 = lim

n→∞
‖xn‖2,

which exists because (xn)n∈N is a Cauchy sequence. This implies that x := (xj)j∈J ∈ H with
‖x‖2 ≤ limn→∞ ‖xn‖2.

Finally, we show that xn → x holds in H. So let ε > 0 and Nε ∈ N with ‖xn − xm‖ ≤ ε
for n,m ≥ Nε. For a finite subset F ⊆ J , we then have∑

j∈F
‖xj − xnj ‖2 = lim

m→∞

∑
j∈F
‖xmj − xnj ‖2 ≤ lim

m→∞
‖xm − xn‖2 ≤ ε2

for n ≥ Nε. We therefore obtain

‖x− xn‖2 = sup
F⊆J,|F |<∞

∑
j∈F
‖xj − xnj ‖2 ≤ ε2.

This implies that xn → x in H, and thus H is complete.

A.6 The Fourier transform on Rn

For f ∈ L1(Rn), we define its Fourier transform by

f̂(ξ) :=

∫
Rn
f(x)ei〈ξ,x〉 dx.
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The Dominated Convergence Theorem immediately implies that f̂ : Rn → R is a continuous
function satisfying

‖f̂‖∞ ≤ ‖f‖1.
The Banach space L1(Rn) is a Banach-∗-algebra with respect to the involution

f∗(x) := f(−x), x ∈ Rn

and the convolution product

(f1 ∗ f2)(x) :=

∫
Rn
f1(y)f2(x− y) dy

which satisfies
‖f1 ∗ f2‖1 ≤ ‖f1‖ · ‖f2‖

(an easy application of Fubini’s Theorem).
With Fubini’s Theorem, we obtain for f1, f2 ∈ L1(Rn):

(f1 ∗ f2)̂ (ξ) =

∫
Rn

∫
Rn
f1(y)f2(x− y)ei〈ξ,x〉 dy dx

=

∫
Rn
f1(y)ei〈ξ,y〉

∫
Rn
f2(x− y)ei〈ξ,x−y〉 dx dy

=

∫
Rn
f1(y)ei〈ξ,y〉

∫
Rn
f2(x)ei〈ξ,x〉 dx dy

=

∫
Rn
f1(y)ei〈ξ,y〉f̂2(ξ) dy

= f̂1(ξ)f̂2(ξ)

and we also note that
f̂ = f̂∗ for f ∈ L1(Rn).

Therefore the Fourier transform

F : L1(Rn)→ (Cb(Rn), ‖ · ‖∞), f 7→ f̂

is a morphism of Banach-∗-algebras.

Proposition A.30. (Riemann–Lebesgue Lemma) For each f ∈ L1(Rn) the Fourier trans-

form f̂ vanishes at infinity, i.e., f̂ ∈ C0(Rn).

Proof. For each 0 6= x ∈ Rn we obtain with e−iπ = −1 and the translation invariance of
Lebesgue measure the relation

f̂(x) = 2
1

2

∫
Rn
ei〈x,y〉f(y) dy

=
1

2

∫
Rn
ei〈x,y〉f(y) dy − 1

2

∫
Rn
e
i〈x,y− π

‖x‖2
x〉
f(y) dy

=
1

2

∫
Rn
ei〈x,y〉f(y) dy − 1

2

∫
Rn
ei〈x,y〉f

(
y +

π

‖x‖2
x
)
dy

=
1

2

∫
Rn
ei〈x,y〉

[
f(y)− f

(
y +

π

‖x‖2
x
)]
dy.
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This implies that

|f̂(x)| ≤ 1

2

∫
Rn

∣∣∣f(y)− f
(
y +

π

‖x‖2
x
)∣∣∣ dy.

Now the assertion follows from the continuity of the map

Rn → L1(Rn), x 7→ λxf

in 0 (Exercise) and limx→∞
x
‖x‖2 = 0.

Proposition A.31. F(L1(Rn)) is dense in C0(Rn) w.r.t. ‖ · ‖∞.

Proof. We know already that A := F(L1(Rn)) is a conjugation invariant subalgebra of
C0(Rn). According to the Stone–Weierstraß Theorem for non-compact spaces (Exercise A.13),
we have to see that A has no common zeros and that it separates the points of Rn. This is
verified in (a) and (b) below.

(a) Let x0 ∈ Rn and B be the ball of radius 1 around x0. Then f(x) := χB(x)e−i〈x0,x〉 is
an element of L1(Rn) and

f̂(x0) =

∫
B

dx = vol(B) > 0.

Therefore A has no common zeros.
(b) For x0 6= y0 ∈ Rn, we pick α ∈ R such that z0 := α(x0 − y0) satisfies ei〈x0−y0,z0〉 6= 1.

Then there exists a ball B with center z0 such that ei〈x0−y0,z〉 6= 1 for every z ∈ B. Then the
L1-function

f(x) := χB(x)(e−i〈x0,x〉 − e−i〈y0,x〉)

has a Fourier transform satisfying

f̂(x0)− f̂(y0) =

∫
B

(e−i〈x0,x〉 − e−i〈y0,x〉)(ei〈x0,x〉 − ei〈y0,x〉) dx

=

∫
B

|ei〈x0,x〉 − ei〈y0,x〉|2 dx > 0.
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