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Notation and Conventions

If H is a complex Hilbert space, then its scalar product is written 〈·, ·〉. It is
linear in the first and antilinear in the second argument

λ〈v, w〉 = 〈λv,w〉 = 〈v, λw〉,

and ‖v‖ :=
√
〈v, v〉 is the corresponding norm.

• N := {1, 2, 3, . . .}

• R+ := {x ∈ R : x ≥ 0} = [0,∞[.

• R× := R \ {0}, C× := C \ {0}, T := {z ∈ C : |z| = 1}.

For Banach spaces X and Y we write

B(X,Y ) := {A : X → Y : A linear, ‖A‖ <∞}

for the Banach space of bounded linear operators from X to Y . For X = Y
we abbreviate B(X) := B(X,X) and write GL(X) for the group of invertible
elements in B(X). If H is a complex Hilbert space, then we have an antilinear
isometric map B(H)→ B(H), A 7→ A∗, determined uniquely by

〈Av,w〉 = 〈v,A∗w〉 for v, w ∈ H.

We write
U(H) := {g ∈ GL(H) : g−1 = g∗}

for the unitary group. For H = Cn, the corresponding matrix group is denoted

Un(C) := {g ∈ GLn(C) : g−1 = g∗}.

If G is a group, we write 1 for its neutral element and

λg(x) = gx, ρg(x) = xg and cg(x) = gxg−1

for left multiplications, right multiplications, resp., conjugations.
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Introduction

A unitary representation of a group G is a homomorphism π : G → U(H) of G
to the unitary group

U(H) = {g ∈ GL(H) : g∗ = g−1}

of a complex Hilbert space H. Such a representation is said to be irreducible
if {0} and H are the only π(G)-invariant closed subspaces of H. The two
fundamental problems in representation theory are:

(FP1) To classify, resp., parameterize the irreducible representations of G, and

(FP2) to explain how a general unitary representation can be decomposed into
irreducible ones. This is called the problem of harmonic analysis because it
contains in particular the expansion of a periodic L2-function as a Fourier
series.

As formulated above, both problems are not well-posed. First, one has to
specify the class of representations one is interested in, and this class may de-
pend on the group G, resp., additional structure on this group. Only in very
rare situations, one studies arbitrary unitary representations. If, f.i., G is a
topological group, i.e., if G carries a topology for which the group operations are
continuous, one is only interested in unitary representations which are continu-
ous in the sense that for each v ∈ H, the orbit map

πv : G→ H, g 7→ π(g)v

is continuous. If G is a Lie group, a concept refining that of a topological group,
so that it makes sense to talk about smooth functions on G, then we consider
only representations for which the subspace

H∞ := {v ∈ H : πv : G→ H is smooth}

of smooth vectors is dense in H.
This means that there are three basic contexts for representation theory

• the discrete context (G is considered as a discrete group, no restrictions)

• the topological context (G is a topological group; continuity required)

• the Lie context (G is a Lie group; smoothness required).

In each of these contexts, the two fundamental problems mentioned above are
of a completely different nature because they concern different classes of repre-
sentations. For example one can show that the harmonic analysis problem has
a good solution for the topological group GL2(R), but not for the same group,
considered as a discrete one. To make statements like this more precise is one
of the fundamental tasks of representation theory.

To give a first impression of the major difficulties involved in this program,
we discuss some examples.
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Remark 0.0.1. If the group G is abelian, then one can show that all irreducible
representations (π,H) are one-dimensional, so that π(a) = χ(a)1 holds for a
group homomorphism

χ : A→ T := {z ∈ C : |z| = 1}

into the circle group. Such homomorphisms are called characters. For a topo-
logical group G we write

Ĝ := Hom(G,T)

for the set of continuous characters. They form a group under pointwise mul-
tiplication, called the character group. Since all irreducible representations are
one-dimensional, the group Ĝ parameterizes the irreducible representations and
the solution of (FP1) therefore consists in a description of the group Ĝ.

The second fundamental problem (FP2) is much harder to deal with. If
(π,H) is a unitary representation, then each irreducible subrepresentation is
one-dimensional, hence given by a G-eigenvector v ∈ H satisfying

π(g)v = χ(g)v for g ∈ G

and some character χ ∈ Ĝ. Now one would like to “decompose” H into the
G-eigenspaces

Hχ := {v ∈ H : (∀g ∈ G)π(g)v = χ(g)v}.
As the following two examples show, there are situations where this is possible,
but this is not always the case.

Example 0.0.2. To solve (FP1) for the group G := T, we first note that for
each n ∈ Z, χn(z) := zn defines a continuous character of T, and one can show
that these are all continuous characters. Therefore χnχm = χn+m leads to

T̂ = Hom(T,T) ∼= Z.

The group T has a continuous representation on the space H = L2(T, µ),
where µ is the probability measure on T specified by∫

T
f(z) dµ(z) :=

1
2π

∫ 2π

0

f(eit) dt

and
(π(t)f)(z) := f(tz).

Then the T-eigenfunctions in H corresponding to χn are the functions χn them-
selves, and it is a basic result in the theory of Fourier series that any function
f ∈ H can be expanded as a Fourier series

f =
∑
n∈Z

anχn

converging in H. In this sense H is a (topological) direct sum of the subspaces
Cχn, which means that the representation π decomposes nicely into irreducible
pieces.
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Example 0.0.3. For the group G := R, the solution of (FP1) asserts that each
continuous character is of the form

χλ(x) := eiλx, λ ∈ R,

so that χλχµ = χλ+µ leads to
R̂ ∼= R.

The group R has a continuous representation on the space H = L2(R, dx)
given by

(π(x)f)(y) := f(x+ y).

Then the R-eigenfunctions in H corresponding to χλ solve the equation

f(x+ y) = eiλxf(y)

almost everywhere on R, which leads to f = cχλ for some c ∈ C. Unfortu-
nately, the functions χλ are not square integrable because |χλ| = 1 and R has
infinite measure. Therefore the representation (π,H) contains no irreducible
subspaces and we need refined methods to say what it means to decompose it
into irreducible ones.

The problem of decomposing functions into simpler pieces with respect to
the transformation behavior under a certain symmetry group arises in many
situations, not only in mathematics, but also in the natural sciences. In math-
ematics, unitary representation theory has many applications in areas ranging
from number theory, geometry, real and complex analysis to partial differential
equations.

However, one of the strongest motivation for the systematic development of
the theory of unitary group representations, started in the 1940s, was its close
connection to Quantum Mechanics. This connection is due to the fact that the
states of a quantum mechanical system are modeled by the set

P(H) := {[v] = Cv : 0 6= v ∈ H}

of one-dimensional subspaces of a complex Hilbert space, its projective space.
This spaces carries several interesting structures. The most important one for
physics is the function

β : P(H)× P(H)→ [0, 1], β([v], [w]) :=
|〈v, w〉|2

‖v‖2‖w‖2
,

which is interpreted as a transition probability between the two states [v] and
[w]. A central feature of quantum physical models is that systems are often
specified by their symmetries. This means that each system has a symmetry
group G. This group acts on the corresponding set P(H) of states in such a
way that it preserves the transition probabilities, i.e., we have a group action
G× P(H)→ P(H), (g, [v]) 7→ g[v], satisfying

β(g[v], g[w]) = β([v], [w]) for g ∈ G, 0 6= v, w ∈ H.
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To link these structures to unitary representations, we have to quote Wigner’s
fundamental theorem that for each bijection ϕ of P(H) preserving β, there
exists either a linear or an antilinear surjective isometry ψ : H → H such that
ϕ[v] = [ψ(v)] holds for each 0 6= v ∈ H (cf. [FF00, Thm. 14.3.6] for Wigner’s
Theorem and various generalizations and [PF80] for the Lorentzian case). We
thus obtain a surjective homomorphism

Γ: Us(H)→ Aut(P(H), β), ψ 7→ ϕ,

where Us(H) denotes the set of semilinear unitary operators, where semilinear
means either linear or antilinear. If G ⊆ Aut(P(H), β) is a quantum mechanical
symmetry group, we thus obtain a subgroup G] := Γ−1(G) ⊆ Us(H) with a
semilinear unitary representation on H, and the subgroup G]u := G] ∩ U(H) of
index two is a unitary group. One subtlety that we observe here is that the
homomorphism Γ is not injective, if dimH > 1, its kernel consists of the circle
group T1 = {z1 : |z| = 1, z ∈ C}, so that

G ∼= G]/T

and G] is an extension of the group G by the circle group T.
It is this line of reasoning that leads us from quantum mechanical modeling to

the problem of classifying irreducible unitary representation of a group G, resp.,
its extensions G], because these representations correspond to systems with the
same kind of symmetry. Similar questions lead in particular to the problem of
classifying elementary particles in terms of representations of certain compact
Lie groups.



Chapter 1

Continuous Unitary
Representations

Throughout these notes we shall mainly be concerned with continuous repre-
sentations of topological groups. Therefore Section 1.1 introduces topological
groups and some important examples. In Section 1.2 we discuss continuity of
unitary representations and provide some methods that can be used to verify
continuity easily in many situations. We also introduce the strong topology
on the unitary group U(H) for which a continuous unitary representation of G
is the same as a continuous group homomorphism π : G → U(H). As a first
step in the decomposition theory of representations, we discuss in Section 1.3
direct sums of unitary representations and show that every representation is a
direct sum of cyclic ones. Later we shall study cyclic representations in terms
of positive definite functions on G.

1.1 Topological Groups

Definition 1.1.1. A topological group is a pair (G, τ) of a group G and a
Hausdorff topology τ for which the group operations

mG : G×G→ G, (x, y) 7→ xy and ηG : G→ G, x 7→ x−1

are continuous if G × G carries the product topology. Then we call τ a group
topology on the group G.

Remark 1.1.2. The continuity of the group operations can also be translated
into the following conditions which are more direct than referring to the product
topology on G. The continuity of the multiplication mG in (x, y) ∈ G×G means
that for each neighborhood V of xy there exist neighborhoods Ux of x and Uy
of y with UxUy ⊆ V . Similarly, the continuity of the inversion map ηG in x
means that for each neighborhood V of x−1, there exist neighborhoods Ux of x
with U−1

x ⊆ V .

7
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Remark 1.1.3. For a group G with a topology τ , the continuity of mG and ηG
already follows from the continuity of the single map

ϕ : G×G→ G, (g, h) 7→ gh−1.

In fact, if ϕ is continuous, then the inversion ηG(g) = g−1 = ϕ(1, g) is the
composition of ϕ and the continuous map G→ G×G, g 7→ (1, g). The continuity
of ηG further implies that the product map

idG×ηG : G×G→ G×G, (g, h) 7→ (g, h−1)

is continuous, and therefore mG = ϕ ◦ (idG×ηG) is continuous.

Remark 1.1.4. Every subgroup of a topological group is a topological group.

Example 1.1.5. (1) G = (Rn,+) is an abelian topological group with respect
to any metric defined by a norm.

More generally, the additive group (X,+) of every Banach space is a topo-
logical group.

(2) (C×, ·) is a topological group and the circle group T := {z ∈ C× : |z| = 1}
is a compact subgroup.

(3) The group GLn(R) of invertible (n× n)-matrices is a topological group
with respect to matrix multiplication. The continuity of the inversion follows
from Cramer’s Rule, which provides an explicit formula for the inverse in terms
of determinants: For g ∈ GLn(R), we define bij(g) := det(gmk)m6=j,k 6=i. Then
the inverse of g is given by

(g−1)ij =
(−1)i+j

det g
bij(g)

(see Proposition 1.1.10 for a different argument).
(4) Any group G is a topological group with respect to the discrete topology.

We have already argued above that the group GLn(R) carries a natural
group topology. This group is the unit group of the algebra Mn(R) of real
(n × n)-matrices. As we shall see now, there is a vast generalization of this
construction.

Definition 1.1.6. A Banach algebra is a triple (A,mA, ‖ · ‖) of a Banach space
(A, ‖ · ‖), together with an associative bilinear multiplication

mA : A×A → A, (a, b) 7→ ab

for which the norm ‖ · ‖ is submultiplicative, i.e.,

‖ab‖ ≤ ‖a‖ · ‖b‖ for a, b ∈ A.

By abuse of notation, we shall mostly call A a Banach algebra, if the norm and
the multiplication are clear from the context.
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A unital Banach algebra is a pair (A,1) of a Banach algebra A and an
element 1 ∈ A satisfying 1a = a1 = a for each a ∈ A.

The subset
A× := {a ∈ A : (∃b ∈ A) ab = ba = 1}

is called the unit group of A (cf. Exercise 1.1.24).

Example 1.1.7. (a) If (X, ‖ · ‖) is a Banach space, then the space B(X) of
continuous linear operators A : X → X is a unital Banach algebra with respect
to the operator norm

‖A‖ := sup{‖Ax‖ : x ∈ X, ‖x‖ ≤ 1}

and composition of maps. Note that the submultiplicativity of the operator
norm, i.e.,

‖AB‖ ≤ ‖A‖ · ‖B‖,

is an immediate consequence of the estimate

‖ABx‖ ≤ ‖A‖ · ‖Bx‖ ≤ ‖A‖ · ‖B‖ · ‖x‖ for x ∈ X.

In this case the unit group is also denoted GL(X) := B(X)×.
(b) If X is a compact space and A a Banach algebra, then the space C(X,A)

ofA-valued continuous functions on X is a Banach algebra with respect to point-
wise multiplication (fg)(x) := f(x)g(x) and the norm ‖f‖ := supx∈X ‖f(x)‖
(Exercise 1.1.22)

(c) An important special case of (b) arises for A = Mn(C), where we obtain
C(X,Mn(C))× = C(X,GLn(C)) = GLn(C(X,C)).

Example 1.1.8. For any norm ‖ · ‖ on Rn, the choice of a basis yields an iso-
morphism of algebras Mn(R) ∼= B(Rn), so that GLn(R) ∼= B(Rn)× = GL(Rn).

Remark 1.1.9. In a Banach algebraA, the multiplication is continuous because
an → a and bn → b implies ‖bn‖ → ‖b‖ and therefore

‖anbn − ab‖ = ‖anbn − abn + abn − ab‖ ≤ ‖an − a‖ · ‖bn‖+ ‖a‖ · ‖bn − b‖ → 0.

In particular, left and right multiplications

λa : A → A, x 7→ ax, and ρa : A → A, x 7→ xa,

are continuous with

‖λa‖ ≤ ‖a‖ and ‖ρa‖ ≤ ‖a‖.

Proposition 1.1.10. The unit group A× of a unital Banach algebra is an open
subset and a topological group with respect to the topology defined by the metric
d(a, b) := ‖a− b‖.
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Proof. The proof is based on the convergence of the Neumann series
∑∞
n=0 x

n

for ‖x‖ < 1. For any such x we have

(1− x)
∞∑
n=0

xn =
( ∞∑
n=0

xn
)

(1− x) = 1,

so that 1 − x ∈ A×. We conclude that the open unit ball B1(1) is contained
in A×.

Next we note that left multiplications λg : A → A with elements g ∈ A×
are continuous (Remark 1.1.9), hence homeomorphisms because λ−1

g = λg−1 is
also continuous. Therefore gB1(1) = λgB1(1) ⊆ A× is an open subset, showing
that g is an interior point of A×. Therefore A× is open.

The continuity of the multiplication of A× follows from the continuity of
the multiplication on A by restriction and corestriction (Remark 1.1.9). The
continuity of the inversion in 1 follows from the estimate

‖(1− x)−1 − 1‖ = ‖
∞∑
n=1

xn‖ ≤
∞∑
n=1

‖x‖n =
1

1− ‖x‖
− 1 =

‖x‖
1− ‖x‖

,

which tends to 0 for x → 0. The continuity of the inversion in g0 ∈ A× now
follows from the continuity in 1 via

g−1 − g−1
0 = g−1

0 (g0g
−1 − 1) = g−1

0 ((gg−1
0 )−1 − 1)

because left and right multiplication with g−1
0 is continuous. This shows that

A× is a topological group.

As we shall see throughout these notes, dealing with unitary representations
often leads us to Banach algebras with an extra structure given by an involution.

Definition 1.1.11. (a) An involutive algebra A is a pair (A, ∗) of a complex
algebra A and a map A → A, a 7→ a∗, satisfying

(1) (a∗)∗ = a (Involutivity)

(2) (λa+ µb)∗ = λa∗ + µb∗ (Antilinearity).

(3) (ab)∗ = b∗a∗ (∗ is an antiautomorphism of A).

Then ∗ is called an involution on A. A Banach-∗-algebra is an involutive algebra
(A, ∗), where A is a Banach algebra and ‖a∗‖ = ‖a‖ holds for each a ∈ A. If,
in addition,

‖a∗a‖ = ‖a‖2 for a ∈ A,

then (A, ∗) is called a C∗-algebra.

Example 1.1.12. (a) The algebra B(H) of bounded operators on a complex
Hilbert space H is a C∗-algebra. Here the main point is that for each A ∈ B(H)
we have

‖A‖ = sup{|〈Av,w〉| : ‖v‖, ‖w‖ ≤ 1},
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which immediately implies that ‖A∗‖ = ‖A‖. It also implies that

‖A∗A‖ = sup{|〈Av,Aw〉| : ‖v‖, ‖w‖ ≤ 1} ≥ sup{‖Av‖2 : ‖v‖ ≤ 1} = ‖A‖2,

and since ‖A∗A‖ ≤ ‖A∗‖ · ‖A‖ = ‖A‖2 is also true, we see that B(H) is a
C∗-algebra.

(b) From (a) it immediately follows that every closed ∗-invariant subalgebra
of A ⊆ B(H) also is a C∗-algebra.

(c) If X is a compact space, then the Banach space C(X,C), endowed with
‖f‖ := supx∈X |f(x)| is a C∗-algebra with respect to f∗(x) := f(x). In this case
‖f∗f‖ = ‖|f |2‖ = ‖f‖2 is trivial.

(d) If X is a locally compact space, then we say that a continuous function
f : X → C vanishes at infinity if for each ε > 0 there exists a compact subset
K ⊆ X with |f(x)| ≤ ε for x 6∈ K. We write C0(X,C) for the set of all
continuous functions vanishing at infinity and endow it with the norm ‖f‖ :=
supx∈X |f(x)|. (cf. Exercise 1.1.23). Then C0(X,C) is a C∗-algebra with respect
the involution f∗(x) := f(x).

Example 1.1.13. (a) If H is a (complex) Hilbert space, then its unitary group

U(H) := {g ∈ GL(H) : g∗ = g−1}

is a topological group with respect to the metric d(g, h) := ‖g−h‖. It is a closed
subgroup of GL(H) = B(H)×.

For H = Cn, endowed with the standard scalar product, we also write

Un(C) := {g ∈ GLn(C) : g∗ = g−1} ∼= U(Cn),

and note that
U1(C) = {z ∈ C× = GL(C) : |z| = 1} ∼= T

is the circle group.
(b) If A is a unital C∗-algebra, then its unitary group

U(A) := {g ∈ A : gg∗ = g∗g = 1}

also is a topological group with respect to the norm topology.

Exercises for Section 1.1

Exercise 1.1.14. (Antilinear Isometries) Let H be a complex Hilbert space.
Show that:

(a) There exists an antilinear isometric involution τ on H. Hint: Use an or-
thonormal basis (ej)j∈J of H.

(b) A map ϕ : H → H is an antilinear isometry if and only if

〈ϕ(v), ϕ(w)〉 = 〈w, v〉 for v, w ∈ H.
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(c) If σ is an antilinear isometric involution of H, then there exists an or-
thonormal basis (ej)j∈J fixed pointwise by σ. Hint: Show that Hσ :=
{v ∈ H : σ(v) = v} is a real Hilbert space with Hσ ⊕ iHσ = H and pick
an ONB in Hσ.

Exercise 1.1.15. (Antilinear Isometries) Let H be a complex Hilbert space.
Show that:

(a) In the group Us(H) of semilinear (=linear or antilinear) surjective isometries
of H, the unitary group U(H) is a normal subgroup of index 2.

(b) Each antilinear isometry ϕ of H induces a map ϕ : P(H) → P(H), [v] 7→
[ϕ(v)] preserving β([v], [w]) = |〈v,w〉|2

‖v‖2‖w‖2 , i.e.,

β(ϕ[v], ϕ[w]) =
|〈ϕ(v), ϕ(w)〉|2

‖ϕ(v)‖2‖ϕ(w)‖2
= β([v], [w]).

(c) An element g ∈ U(H) induces the identity on P(H) if and only if g ∈ T1.

(d) If there exists an antilinear isometry inducing the identity on P(H), then
dimH = 1. Hint: Show first that σ2 = λ1 for some λ ∈ T. Find µ ∈ T
such that τ := µσ is an involution and use Exercise 1.1.14(c).

Exercise 1.1.16. Let G be a topological group. Show that the following asser-
tions hold:

(i) The left multiplication maps λg : G→ G, x 7→ gx are homeomorphisms.

(ii) The right multiplication maps ρg : G→ G, x 7→ xg are homeomorphisms.

(iii) The conjugation maps cg : G→ G, x 7→ gxg−1 are homeomorphisms.

(iv) The inversion map ηG : G→ G, x 7→ x−1 is a homeomorphism.

Exercise 1.1.17. Let G be a group, endowed with a topology τ . Show that
(G, τ) is a topological group if the following conditions are satisfied:

(i) The left multiplication maps λg : G→ G, x 7→ gx are continuous.

(ii) The inversion map ηG : G→ G, x 7→ x−1 is continuous.

(iii) The multiplication mG : G×G→ G is continuous in (1,1).

Hint: Use (i) and (ii) to derive that all right multiplications and hence all
conjugations are continuous.

Exercise 1.1.18. Let G be a group, endowed with a topology τ . Show that
(G, τ) is a topological group if the following conditions are satisfied:

(i) The left multiplication maps λg : G→ G, x 7→ gx are continuous.

(ii) The right multiplication maps ρg : G→ G, x 7→ xg are continuous.
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(iii) The inversion map ηG : G→ G is continuous in 1.

(iv) The multiplication mG : G×G→ G is continuous in (1,1).

Exercise 1.1.19. Show that if (Gi)i∈I is a family of topological groups, then
the product group G :=

∏
i∈I Gi is a topological group with respect to the

product topology.

Exercise 1.1.20. Let G and N be topological groups and suppose that the
homomorphism α : G→ Aut(N) defines a continuous map

G×N → N, (g, n) 7→ α(g)(n).

Then N ×G is a group with respect to the multiplication

(n, g)(n′, g′) := (nα(g)(n′), gg′),

called the semidirect product ofN andG with respect to α. It is denotedNoαG.
Show that it is a topological group with respect to the product topology.

A typical example is the group

Mot(H) := Hoα U(H)

of affine isometries of a complex Hilbert space H; also called the motion group.
In this case α(g)(v) = gv and Mot(H) acts on H by (b, g).v := b+gv (hence the
name). On U(H) we may either use the norm topology or the strong topology.
For both we obtain group topologies on Mot(H) (verify this!).

Exercise 1.1.21. Let X be a topological space and G be a topological group.
We want to define a topology on the group C(X,G), endowed with the pointwise
product (fg)(x) := f(x)g(x). We specify a set τ of subsets of C(X,G) by
O ∈ τ if for each g ∈ O there exists a compact subset K ⊆ X and an open
1-neighborhood U ⊆ G such that

W (K,U) := {f ∈ C(X,G) : f(K) ⊆ U}

satisfies gW (K,U) ⊆ O. Show that τ defines a group topology on C(X,G). It
is called the compact open topology, or the topology of uniform convergence on
compact subsets of X. Hint: You may cut the problem into the following steps:

(i) For compact subsets K1, . . . ,Kn of X and open 1-neighborhoods U1, . . . , Un
in G, we have

W
( n⋃
i=1

Ki,

n⋂
i=1

Ui

)
⊆

n⋂
i=1

W (Ki, Ui).

(ii) W (K,U) ∈ τ for K ⊆ X compact and U ⊆ G an open 1-neighborhood.
Hint: If f(K) ⊆ U , there exists a 1-neighborhood V in G with f(K)V ⊆
U , and then fW (K,V ) ⊆W (K,U).

(iii) τ is a topology on C(X,G).
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(iv) Use Exercise 1.1.17 to show that C(X,G) is a topological group. For
the continuity of the multiplication in 1, use that W (K,V )W (K,V ) ⊆
W (K,U) whenever V V ⊆ U .

Exercise 1.1.22. Let X be a compact space and A be a Banach algebra. Show
that:

(a) The space C(X,A) of A-valued continuous functions on X is a complex
associative algebra with respect to pointwise multiplication (fg)(x) :=
f(x)g(x).

(b) ‖f‖ := supx∈X ‖f(x)‖ is a submultiplicative norm on C(X,A) for which
C(X,A) is complete, hence a Banach algebra. Hint: Continuous func-
tions on compact spaces are bounded and uniform limits of sequences of
continuous functions are continuous.

(c) C(X,A)× = C(X,A×).

(d) If A is a C∗-algebra, then C(X,A) is also a C∗-algebra with respect to the
involution f∗(x) := f(x)∗, x ∈ X.

Exercise 1.1.23. Let X be a locally compact space and A be a Banach algebra.
We say that a continuous function f : X → A vanishes at infinity if for each
ε > 0 there exists a compact subset K ⊆ X with ‖f(x)‖ ≤ ε for x 6∈ K. We
write C0(X,A) for the set of all continuous A-valued functions vanishing at
infinity. Show that all assertions of Exercise 1.1.22 remain true in this more
general context.

Exercise 1.1.24. Let A be a Banach algebra over K ∈ {R,C}. If A has no
unit, we cannot directly associate a “unit group” to A. However, there is a
different way to do that by considering on A the multiplication

x ∗ y := x+ y + xy.

Show that:

(a) The space A+ := A × K is a unital Banach algebra with respect to the
multiplication

(a, t)(a′, t′) := (aa′ + ta′ + t′a, tt′).

(b) The map η : A → A+, x 7→ (x, 1) is injective and satisfies η(x ∗ y) =
η(x)η(y). Conclude in particular that (A, ∗, 0) is a monoid, i.e., a semi-
group with neutral element 0.

(c) An element a ∈ A is said to be quasi-invertible if it is an invertible element
in the monoid (A, ∗, 0). Show that the set A× of quasi-invertible elements
of A is an open subset and that (A×, ∗, 0) is a topological group.
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1.2 Continuous Unitary Representations

For a topological group G, we only want to consider unitary representations
which are continuous in some sense. Since we have already seen above that
the unitary group U(H) of a Hilbert space is a topological group with respect
to the metric induced by the operator norm, it seems natural to call a unitary
representation π : G → U(H) continuous if it is continuous with respect to the
norm topology on U(H). However, the norm topology on U(H) is very fine, so
that continuity with respect to this topology is a condition which is much too
strong for many applications. We therefore need a suitable weaker topology on
the unitary group.

We start by defining some topologies on the space B(H) of all continuous
operators which are weaker than the norm topology.

Definition 1.2.1. Let H be a Hilbert space. On B(H) we define the weak
operator topology τw as the coarsest topology for which all functions

fv,w : B(H)→ C, A 7→ 〈Av,w〉, v, w ∈ H,

are continuous. We define the strong operator topology τs as the coarsest topol-
ogy for which all maps

B(H)→ H, A 7→ Av, v ∈ H,

are continuous. This topology is also called the topology of pointwise conver-
gence.

Remark 1.2.2. (a) Since

fv,w(A)− fv,w(B) = 〈(A−B)v, w〉 ≤ ‖(A−B)v‖ · ‖w‖

by the Cauchy–Schwarz Inequality, the functions fv,w are continuous on B(H)
with respect to the strong operator topology. Therefore the weak operator
topology is weaker (=coarser) than the strong one.

(b) In the weak operator topology all left and right multiplications

λA : B(H)→ B(H), X 7→ AX and ρA : B(H)→ B(H), X 7→ XA

are continuous. Indeed, for v, w ∈ H, we have

fv,w(λA(X)) = 〈AXv,w〉 = fv,A∗w(X),

so that fv,w ◦λA is continuous, and this implies that λA is continuous. Similarly,
we obtain fv,w ◦ ρA = fAv,w, and hence the continuity of ρA.

Proposition 1.2.3. On the unitary group U(H) the weak and the strong oper-
ator topology coincide and turn it into a topological group.

We write U(H)s for the topological group (U(H), τs).
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Proof. For v ∈ H and gi → g in U(H) in the weak operator topology, we have

‖giv − gv‖2 = ‖giv‖2 + ‖gv‖2 − 2 Re〈giv, gv〉 = 2‖v‖2 − 2 Re〈giv, gv〉
→ 2‖v‖2 − 2 Re〈gv, gv〉 = 0.

Therefore the orbit maps U(H)→ H, g 7→ gv are continuous with respect to the
weak operator topology, so that the weak operator topology on U(H) is finer
than the strong one. Since it is also coarser by Remark 1.2.2, both topologies
coincide on U(H).

The continuity of the multiplication in U(H) is most easily verified in the
strong operator topology, where it follows from the estimate

‖gihiv − ghv‖ = ‖gi(hi − h)v + (gi − g)hv‖ ≤ ‖gi(hi − h)v‖+ ‖(gi − g)hv‖
= ‖(hi − h)v‖+ ‖(gi − g)hv‖.

This expression tends to zero for gi → g and hi → h in the strong operator
topology.

The continuity of the inversion follows in the weak topology from the conti-
nuity of the functions

fv,w(g−1) = 〈g−1v, w〉 = 〈v, gw〉 = 〈gw, v〉 = fw,v(g)

for v, w ∈ H and g ∈ U(H).

Remark 1.2.4. (a) If dimH < ∞, then the norm topology and the strong
operator topology coincide on B(H), hence in particular on U(H). In fact,
choosing an orthonormal basis (e1, . . . , en) in H, we represent A ∈ B(H) by the
matrix A = (aij) ∈ Mn(C), where aij = 〈Aej , ei〉 = fej ,ei(A). If Eij ∈ Mn(C)
denote the matrix units, we then have A =

∑n
i,j=1 aijEij , so that

‖A‖ ≤
n∑

i,j=1

|aij |‖Eij‖ =
n∑

i,j=1

|fej ,ei(A)|‖Eij‖,

which shows that convergence in the weak topology implies convergence in the
norm topology.

(b) If dimH = ∞, then the strong operator topology on U(H) is strictly
weaker than the norm topology. In fact, let (ei)i∈I be an orthonormal basis of
H. Then I is infinite, so that we may w.l.o.g. assume that N ⊆ I. For each n we
then define the unitary operator gn ∈ U(H) by gnei := (−1)δinei. For n 6= m,
we then have

‖gn − gm‖ ≥ ‖(gn − gm)en‖ = ‖ − 2en‖ = 2,

and

〈gnv, w〉 − 〈v, w〉 = 〈gnv − v, w〉 = 〈−2〈v, en〉en, w〉 = −2〈v, en〉〈en, w〉 → 0

implies that limn→∞ gn = 1 in the weak operator topology.
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Definition 1.2.5. Let H be a complex Hilbert space and G a topological group.
A continuous homomorphism

π : G→ U(H)s

is called a (continuous) unitary representation of G. We often denote unitary
representations as pairs (π,H). In view of Proposition 1.2.3, the continuity of
π is equivalent to the continuity of all the representative functions

πv,w : G→ C, πv,w(g) := 〈π(g)v, w〉.

A representation (π,H) is called norm continuous, if it is continuous with
respect to the operator norm on U(H). Clearly, this condition is stronger

Here is a convenient criterion for the continuity of a unitary representation:

Lemma 1.2.6. A unitary representation (π,H) of the topological group G is
continuous if and only if there exists a subset E ⊆ H for which spanE is dense
and the functions πv,w are continuous for v, w ∈ E.

Proof. The condition is clearly necessary because we may take E = H.
To see that it is also sufficient, we show that all functions πv,w, v, w ∈ H, are

continuous. If F := spanE, then all functions πv,w, v, w ∈ F , are continuous
because the space C(G,C) of continuous functions on G is a vector space.

Let v, w ∈ H and vn → v, wn → w with vn, wn ∈ F . We claim that the
sequence πvn,wn converges uniformly to πv,w, which then implies its continuity.
In fact, for each g ∈ G we have

|πvn,wn(g)− πv,w(g)| = |〈π(g)vn, wn〉 − 〈π(g)v, w〉|
= |〈π(g)(vn − v), wn〉 − 〈π(g)v, w − wn〉|
≤ ‖π(g)(vn − v)‖‖wn‖+ ‖π(g)v‖‖w − wn‖
= ‖vn − v‖‖wn‖+ ‖v‖‖w − wn‖ → 0.

Example 1.2.7. If (ej)j∈J is an orthonormal basis of H, then E := {ej : j ∈ J}
is a total subset. We associate to A ∈ B(H) the matrix (ajk)j,k∈J , defined by

ajk := 〈Aek, ej〉,

so that
A
∑
k∈J

xkek =
∑
j∈J

(∑
k∈J

ajkxk

)
ej .

Now Lemma 1.2.6 asserts that a unitary representation (π,H) of G is con-
tinuous if and only if all functions

πjk(g) := 〈π(g)ek, ej〉 = πek,ej (g)

are continuous. These functions are the entries of π(g), considered as a (J ×J)-
matrix.
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To deal with unitary group representations, we shall frequently have to deal
with representations of more general structures, called involutive semigroups.

Definition 1.2.8. A pair (S, ∗) of a semigroup S and an involutive antiauto-
morphism s 7→ s∗ is called an involutive semigroup. Then we have (st)∗ = t∗s∗

for s, t ∈ S and (s∗)∗ = s.

Example 1.2.9. (a) Any abelian semigroup S becomes an involutive semigroup
with respect to s∗ := s.

(b) If G is a group and g∗ := g−1, then (G, ∗) is an involutive semigroup.
(c) An example of particular interest is the multiplicative semigroup S =

(B(H), ·) of bounded operators on a complex Hilbert spaceH (Example 1.1.12(a)).

Definition 1.2.10. (a) A representation (π,H) of the involutive semigroup
(S, ∗) is a homomorphism π : S → B(H) of semigroups satisfying π(s∗) = π(s)∗

for each s ∈ S.
(b) A representation (π,H) of (S, ∗) is called non-degenerate, if π(S)H spans

a dense subspace of H. This is in particular the case if 1 ∈ π(S).
(c) A representation (π,H) is called cyclic if there exists a v ∈ H for which

π(S)v spans a dense subspace of H.
(d) A representation (π,H) is called irreducible if {0} and H are the only

closed π(S)-invariant subspaces of H.

Example 1.2.11. If G is a group with g∗ = g−1, then the representations of
the involutive semigroup (G, ∗) mapping 1 ∈ G to 1 ∈ B(H), are precisely the
unitary representations of G. All unitary representations of groups are non-
degenerate since π(1) = 1.

Exercises for Section 1.2

Exercise 1.2.12. Let H be a Hilbert space. Show that:

(1) The involution on B(H) is continuous with respect to the weak operator
topology.

(2) On every bounded subset K ⊆ B(H) the multiplication (A,B) 7→ AB is
continuous with respect to the strong operator topology.

(3) On the unit sphere S := {x ∈ H : ‖x‖ = 1} the norm topology coincides
with the weak topology.

Exercise 1.2.13. Let H be a Hilbert space and U(H)s its unitary group, en-
dowed with the strong (=weak) operator topology. Show that the action map

σ : U(H)s ×H → H, (g, v) 7→ gv

is continuous. Conclude that each continuous unitary representation (π,H) of
a topological group G defines a continuous action of G on H by g.v := π(g)v.
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Exercise 1.2.14. Let (an)n∈N be a sequence of real numbers. Show that we
obtain a continuous unitary representation of G = (R,+) on H = `2(N,C) by

π(t)x = (eita1x1, e
ita2x2, . . .).

Show further that, if the sequence (an) is unbounded, then π is not norm con-
tinuous. Is it norm continuous if the sequence (an) is bounded?

Exercise 1.2.15. Let (π,H) be a representation of an involutive semigroup
(S, ∗). Show that:

(a) (π,H) is non-degenerate if and only if π(S)v ⊆ {0} implies v = 0.

(b) Show that (π,H) is an orthogonal direct sum of a non-degenerate represen-
tation and a zero representation (ζ,K), i.e., ζ(S) = {0}.

Exercise 1.2.16. Let (π,H) be a representation of the involutive semigroup
(G, ηG), where G is a group. Show that:

(a) (π,H) is non-degenerate if and only if π(1) = 1.

(b) H = H0 ⊕H1, where Hj = ker(η(1)− j1), is an orthogonal direct sum.

Exercise 1.2.17. Let (X, d) be a metric space and G := Aut(X, d) be the
group of automorphisms of (X, d), i.e., the group of bijective isometries. Show
that the coarsest topology on G for which all functions

fx : G→ R, fx(g) := d(g.x, x)

are continuous turns G into a topological group and that the action
σ : G×X → X, (g, x) 7→ g.x is continuous.

1.3 Discrete Decomposition of Unitary Repre-
sentations

One major goal of the theory of unitary representations is to decompose a
unitary representation into simpler pieces. The first basic observation is that
for any closed invariant subspace K ⊆ H, its orthogonal complement is also
invariant, so that we obtain a decomposition into the two subrepresentations
on K and K⊥. The next step is to iterate this process whenever either K of
K⊥ is not irreducible. This method works well if H is finite dimensional, but in
general it may not lead to a decomposition into irreducible pieces. However, we
shall apply this strategy to show at least that every unitary representation is a
direct sum of cyclic ones.

We start with the discussion of invariant subspaces.

Lemma 1.3.1. Let K ⊆ H be a closed subspace, P ∈ B(H) be the orthogonal
projection on K and S ⊆ B(H) be a ∗-invariant subset. Then the following are
equivalent
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(i) K is S-invariant.

(ii) K⊥ is S-invariant.

(iii) P commutes with S.

Proof. (i) ⇒ (ii): If w ∈ K⊥ and v ∈ K, we have for any s ∈ S the relation
〈sw, v〉 = 〈w, s∗v〉 = 0 because s∗v ∈ SK ⊆ K.

(ii) ⇒ (iii): First we observe that the same argument as above implies that
the invariance of K⊥ entails the invariance of K = (K⊥)⊥.

We write v = v0 + v1, according to the decomposition H = K ⊕ K⊥. Then
we have for any s ∈ S:

sPv = sv0 = Psv0 = P (sv0 + sv1) = Psv,

so that P commutes with S.
(iii) ⇒ (i) follows from the fact that K = ker(P − 1) is an eigenspace of P ,

hence invariant under every operator commuting with P .

We record an important consequence for unitary representations:

Proposition 1.3.2. If (π,H) is a continuous unitary representation of the
group G and H1 ⊆ H a closed invariant subspace, then H2 := H⊥1 is also
invariant.

Writing elements of B(H) according to the decomposition H = H1 ⊕ H2

as matrices
(
a b
c d

)
with a ∈ B(H1), b ∈ B(H2,H1), c ∈ B(H1,H2) and

d ∈ B(H2) (Exercise 1.3.19), we then have

π(g) =
(
π1(g) 0

0 π2(g)

)
,

where (πi,Hi), i = 1, 2, are continuous unitary representations.

Proof. The invariance of H2 follows from Lemma 1.3.1 because π(G) ⊆ B(H)
is ∗-invariant. Therefore πj(g) := π(g)|HjHj is a unitary operator for each g ∈ G
and we obtain two unitary representations (πj ,Hj). Their continuity follows
immediately from the continuity of (π,H).

Definition 1.3.3. (a) If (π,H) is a unitary representation of G and K ⊆ H a
closed G-invariant subspace, then ρ(g) := π(g)|KK defines a unitary representa-
tion (ρ,K) which is called a subrepresentation of (π,H).

(b) If (π,H) and (ρ,K) are unitary representations, then a bounded operator
A : K → H satisfying

A ◦ ρ(g) = π(g) ◦A for all g ∈ G

is called an intertwining operator. We write BG(K,H) for the set of all in-
tertwining operators. It is a closed subspace of the Banach space B(K,H)
(Exercise 1.3.20).
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Two unitary representations (π,H) and (ρ,K) are said to be equivalent if
there exists a unitary intertwining operator A : K → H. It is easy to see that this
defines indeed an equivalence relation on the class of all unitary representations.
We write [π] for the equivalence class of the representation (π,H).

To understand the decomposition of representations into smaller pieces, we
also need infinite “direct sums” of representations, hence the concept of a direct
sum of Hilbert spaces which in turn requires the somewhat subtle concept of
summability in Banach spaces.

Definition 1.3.4. Let I be a set and X a Banach space. Then a family (xi)i∈I
is called summable to x ∈ X if for each ε > 0 there exists a finite subset Iε ⊆ I
with the property that for every finite subset F ⊇ Iε we have

‖
∑
i∈F

xi − x‖ < ε.

If (xi)i∈I is summable to x, we write x =
∑
i∈I xi.

1

Remark 1.3.5. (a) Note that for I = N the summability of a family (xn)n∈N
in a Banach space X is stronger than the convergence of the series

∑∞
n=1 xn.

In fact, if x =
∑
n∈N xn holds in the sense of summability and Nε ⊆ N is a

finite subset with the property that for every finite subset F ⊇ Nε we have
‖
∑
n∈F xn − x‖ < ε, then we have for N > max Nε in particular

‖
N∑
n=1

xn − x‖ < ε,

showing that the series
∑∞
n=1 xn converges to x.

(b) If, conversely, the series
∑∞
n=1 xn converges absolutely to some x ∈ X and

ε > 0, then there exists an N ∈ N with
∑∞
n=N ‖xn‖ < ε. With Nε := {1, . . . , N}

we then find for every finite superset F ⊇ Nε that

‖x−
∑
n∈F

xn‖ ≤
∑

n∈N\F

‖xn‖ ≤
∑
n>N

‖xn‖ < ε.

Therefore we also have x =
∑
n∈N xn in the sense of summability.

(c) For X = R and I = N summability of (xn)n∈N implies in particular
convergence of all reordered series

∑∞
n=1 xσ(n), where σ : N → N is a bijection.

Therefore Riemann’s Reordering Theorem shows that summability implies ab-
solute convergence.

(d) If (xi)i∈I is a family in R+ = [0,∞[, then the situation is much simpler.
Here summability is easily seen to be equivalent to the existence of the supre-
mum of the set F := {

∑
i∈F xi : F ⊆ I, |F | < ∞} of all partial sums, and in

this case
∑
i∈I xi = supF .

1This can also be formulated in terms of convergence of nets. First we order the set
I := {F ⊆ I : |F | < ∞} of finite subsets of I by set inclusion, so that F 7→

P
i∈F xi is a net

in X, called the net of partial sums. Then the summability of (xi)i∈I in X is equivalent to
the convergence of this net in X.



22 CHAPTER 1. CONTINUOUS UNITARY REPRESENTATIONS

Lemma 1.3.6. Let (Hj)j∈J be a family of Hilbert spaces and

H :=
{

(xj)j∈J ∈
∏
j∈J
Hj :

∑
j∈J
‖xj‖2 <∞

}
.

Then H is a Hilbert space with respect to the scalar product

〈(xj)j∈J , (yj)j∈J〉 =
∑
j∈J
〈xj , yj〉.

Proof. First we show that H is a linear subspace of the complex vector space∏
j∈J Hj , in which we define addition and scalar multiplication componentwise.

Clearly, H is invariant under multiplication with complex scalars. For a, b ∈ Hj
the parallelogram identity

‖a+ b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2

(Exercise) implies in particular that

‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2).

For x = (xj)j∈J , y = (yj)j∈J ∈ H, we therefore obtain∑
j∈J
‖xj + yj‖2 ≤ 2

∑
j∈J
‖xj‖2 + 2

∑
j∈J
‖yj‖2 <∞.

This shows that x+ y ∈ H, so that H is indeed a linear subspace.
For x, y ∈ H, the polarization identity

〈x, y〉 =
1
4
(
〈x+ y, x+ y〉 − 〈x− y, x− y〉+ i〈x+ iy, x+ iy〉 − i〈x− iy, x− iy〉

)
(Exercise 1.3.14(i)) and x± y, x± iy ∈ H imply that the sum

〈x, y〉 =
∑
j∈J
〈xj , yj〉

exists. For 0 6= x, some xi is non-zero, so that 〈x, x〉 ≥ 〈xi, xi〉 > 0. It is a
trivial verification that 〈·, ·〉 is a hermitian form. Therefore H, endowed with
〈·, ·〉, is a pre-Hilbert space.

It remains to show that it is complete. This is proved in the same way as the
completeness of the space `2 of square-summable sequences, which is the special
case J = N and Hj = C for each j ∈ J . Let (xn)n∈N be a Cauchy sequence
in H. Then ‖xnj − xmj ‖ ≤ ‖xn − xm‖ holds for each j ∈ J , so that (xnj )n∈N is
a Cauchy sequence in Hj . Now the completeness of the spaces Hj imply the
existence of elements xj ∈ Hj with xnj → xj . For every finite subset F ⊆ J , we
then have∑

j∈F
‖xj‖2 = lim

n→∞

∑
j∈F
‖xnj ‖2 ≤ lim

n→∞

∑
j∈J
‖xnj ‖2 = lim

n→∞
‖xn‖2,
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which exists because (xn)n∈N is a Cauchy sequence. This implies that x :=
(xj)j∈J ∈ H with ‖x‖2 ≤ limn→∞ ‖xn‖2.

Finally, we show that xn → x holds in H. So let ε > 0 and Nε ∈ N with
‖xn − xm‖ ≤ ε for n,m ≥ Nε. For a finite subset F ⊆ J , we then have∑

j∈F
‖xj − xnj ‖2 = lim

m→∞

∑
j∈F
‖xmj − xnj ‖2 ≤ lim

m→∞
‖xm − xn‖2 ≤ ε2

for n ≥ Nε. We therefore obtain

‖x− xn‖2 = sup
F⊆J,|F |<∞

∑
j∈F
‖xj − xnj ‖2 ≤ ε2.

This implies that xn → x in H, and thus H is complete.

Definition 1.3.7. For a family of (Hj)j∈J of Hilbert spaces, we define⊕̂
j∈J
Hj :=

{
(xj)j∈J ∈

∏
j∈J
Hj :

∑
j∈J
‖xj‖2 <∞

}
with the scalar product from Lemma 1.3.6. We call this space the Hilbert space
direct sum of the spaces (Hj)j∈J . This space is larger than the direct vector
space sum of the Hj , which is a dense subspace of

⊕̂
j∈JHj (Exercise). In the

following we always identify Hi with the subspace

Hi ∼= {(xj)j∈J : (∀j 6= i) xj = 0}.

Note that the requirement that (‖xj‖2)j∈J is summable implies in particu-
lar that, for each x ∈ H, only countably many xj are non-zero, even if J is
uncountable (Exercise 1.3.15).

Example 1.3.8. (a) If Hj = C for each j ∈ J , we also write

`2(J,C) :=
⊕̂

j∈J
C =

{
(xj)j∈J ∈ CJ :

∑
j∈J
|xj |2 <∞

}
.

On this space we have

〈x, y〉 =
∑
j∈J
〈xj , yj〉 and ‖x‖2 =

∑
j∈J
|xj |2.

For J = {1, . . . , n}, we obtain in particular the Hilbert space

Cn ∼= `2({1, . . . , n},C).

(b) If all Hilbert spaces Hj = K are equal, we put

`2(J,K) :=
⊕̂

j∈J
K =

{
(xj)j∈J ∈ KJ :

∑
j∈J
|xj |2 <∞

}
.

On this space we also have

〈x, y〉 =
∑
j∈J
〈xj , yj〉 and ‖x‖2 =

∑
j∈J
|xj |2.
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Proposition 1.3.9. Let (πj ,Hj)j∈J be a family of continuous unitary repre-
sentation of G. Then

π(g)(vj)j∈J :=
(
πj(g)vj)j∈J

defines on H :=
⊕̂

j∈JHj a continuous unitary representation.

The representation (π,H) is called the direct sum of the representations πj,
j ∈ J . It is also denoted π =

∑
j∈J πj .

Proof. Since all operators πj(g) are unitary, we have∑
j∈J
‖πj(g)vj‖2 =

∑
j∈J
‖vj‖2 <∞ for v = (vj)j∈J ∈ H.

Therefore each π(g) defines a unitary operator on H and we thus obtain a
unitary representation (π,H) of G because each πj is a unitary representation.

To see that it is continuous, we use Lemma 1.2.6, according to which it
suffices to show that, for v ∈ Hi and w ∈ Hj , the function

πv,w(g) = 〈π(g)v, w〉 = δij〈πj(g)v, w〉

is continuous, which immediately follows from the continuity of the representa-
tion πj .

As we shall see soon, we cannot expect in general that a unitary represen-
tation decomposes into irreducible ones, but the following proposition is often
a useful replacement.

Proposition 1.3.10. Each continuous unitary representation (π,H) of G is
(equivalent to) a direct sum of cyclic subrepresentations (πj ,Hj)j∈J .

Proof. The proof is a typical application of Zorn’s Lemma. We order the set
M of all sets (Hj)j∈J of mutually orthogonal closed G-invariant subspaces on
which the representation is cyclic by set inclusion. Clearly, each chain K in this
ordered space has an upper bound given by the union

⋃
K ∈ M. Now Zorn’s

Lemma yields a maximal element (Hj)j∈J in M.
Let K :=

∑
j∈J Hj . Since each Hj is G-invariant and each π(g) is con-

tinuous, K is also G-invariant. In view of Proposition 1.3.2, the orthogonal
complement K⊥ is also G-invariant. If K⊥ is non-zero, we pick 0 6= v ∈ K⊥.
Then H′ := spanπ(G)v is a closed G-invariant subspace on which the represen-
tation is cyclic. Therefore H′, together with (Hj)j∈J is an orthogonal family of
G-cyclic subspaces. This contradicts the maximality of (Hj)j∈J , and therefore
K⊥ = {0}, which proves that K = H.

Finally, we note that the mutual orthogonality of the spaces Hj implies the
existence of a map

Φ:
⊕̂

j∈J
Hj → H, Φ(x) :=

∑
j∈J

xj
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which is easily seen to be isometric (Exercise 1.3.18). Since its range is dense and
complete, it is also surjective. Moreover, π(g)Φ((xj)) = Φ((πj(g)xj)) implies
that Φ is an equivalence of unitary representations.

Proposition 1.3.11. Each finite dimensional continuous unitary representa-
tion (π,H) of a group G is a direct sum of irreducible representations.

Proof. This is proved easily by induction on dimH. If dimH ≤ 1, there is
nothing to show. Suppose that dimH = d > 0 and that the assertion is true
for representations of dimension < d. Let K ⊆ H be a minimal G-invariant
subspace. Then the representation πK ofG onK is irreducible andH = K⊕K⊥ is
aG-invariant decomposition (Proposition 1.3.2). Using the induction hypothesis
on the representation on K⊥, the assertion follows.

Corollary 1.3.12. If G is a finite group, then each unitary representation
(π,H) of G is a direct sum of irreducible representations (πj ,Hj)j∈J .

Proof. First we use Proposition 1.3.10 to decompose π as a direct sum of cyclic
representations πj . Hence it suffices to show that each cyclic representation is
a direct sum of irreducible ones. Since G is finite, each cyclic representation is
finite dimensional, so that the assertion follows from Proposition 1.3.11.

Remark 1.3.13. The preceding corollary remains true for representations of
compact groups. Here the main point is to show that every cyclic representation
contains a finite dimensional invariant subspace, which can be derived from the
existence of Haar measure and the theory of compact operators.

Exercises for Section 1.3

Exercise 1.3.14. Let b : V × V → C be a sesquilinear form on the complex
Vector space V , i.e., b is linear in the first argument and antilinear in the second.

(i) Show that b satisfies the polarization identity which permits the recover
all values of b from those on the diagonal:

b(x, y) =
1
4

3∑
k=0

ikb(x+ iky, x+ iky).

(ii) Show also that, if b is positive semidefinite, then it satisfies the Cauchy–
Schwarz inequality:

|b(x, y)|2 ≤ b(x, x)b(y, y) for v, w ∈ V.

Exercise 1.3.15. Show that for each summable family (xj)j∈J in the Banach
space X, the set

J× = {j ∈ J : xj 6= 0}

is countable, and that, if J× = {jn : n ∈ N} is an enumeration of J×, then∑
j∈J xj =

∑∞
n=1 xjn . Hint: Show that each set Jn := {j ∈ J : ‖x‖n > 1

n} is
finite.
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Exercise 1.3.16. Show that for an orthogonal family (xj)j∈J in the Hilbert
space H, the following are equivalent:

(i) (xj)j∈J is summable.

(ii) (‖xj‖2)j∈J is summable in R.

Show further that, if this is the case, then
∥∥∑

j∈J xj
∥∥2 =

∑
j∈J ‖xj‖2 and the

set {j ∈ J : xj 6= 0} is countable.

Exercise 1.3.17. Show that for an orthonormal family (xj)j∈J in the Hilbert
space H, the following assertions hold:

(i) (∀x ∈ H)
∑
j∈J |〈xj , x〉|2 ≤ ‖x‖2 (Bessel inequality).

(ii) x =
∑
j∈J〈x, xj〉xj holds if and only if

∑
j∈J |〈x, xj〉|2 = ‖x‖2 (Parseval

equality).

Exercise 1.3.18. Let (Hj)j∈J be an orthogonal family of closed subspaces of
the Hilbert space H. Show that for each x = (xj)j∈J ∈

⊕̂
Hj , the sum Φ(x) :=∑

j∈J xj converges in H and that Φ:
⊕̂

j∈JHj → H, (xj)j∈J 7→
∑
j∈J xj defines

an isometric embedding (cf. Exercise 1.3.16).

Exercise 1.3.19. Let V be a vector space which is the direct sum

V = V1 ⊕ · · · ⊕ Vn

of the subspaces Vi, i = 1, . . . , n. Accordingly, we write v ∈ V as a sum
v = v1 + · · · + vn with vi ∈ V . To each ϕ ∈ End(V ) we associate the map
ϕij ∈ Hom(Vj , Vi), defined by ϕij(v) = ϕ(v)i for v ∈ Vj . Show that

(a) ϕ(v)i =
∑n
j=1 ϕij(vj) for v =

∑n
j=1 vj ∈ V .

(b) The map

Γ:
n⊕

i,j=1

Hom(Vj , Vi)→ End(V ), Γ((ψij))(v) :=
n∑

i,j=1

ψij(vj)

is a linear isomorphism. In this sense we may identify endomorphisms of
V with (n× n)-matrices with entries in Hom(Vj , Vi) in position (i, j).

(c) If V is a Banach space and each Vi is a closed subspace, then the map

S : V1 × · · · × Vn → V, (v1, . . . , vn) 7→
n∑
i=1

vi

is a homeomorphism. Moreover, a linear endomorphism ϕ : V → V is con-
tinuous if and only if each ϕij is continuous. Hint: For the first assertion
use the Open Mapping Theorem. Conclude that if ιi : Vi → V denotes
the inclusion map and pj : V → Vj the projection map, then both are
continuous. Then use that ϕij = pi ◦ ϕ ◦ ηj .
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Exercise 1.3.20. Let (π,H) and (ρ,K) be unitary representations of G. Show
that the space BG(K,H) of all intertwining operators is a closed subspace of
the Banach space B(K,H)

Exercise 1.3.21. Let G be a group. Show that:

(a) Each unitary representation (π,H) of G is equivalent to a representation
(ρ, `2(J,C)) for some set J . Therefore it makes sense to speak of the set
of equivalence classes of representations with a fixed Hilbert dimension.

(b) Two unitary representations πj : G→ U(H), j = 1, 2, are equivalent if and
only if there exists a unitary operator U ∈ U(H) with

π2(g) = Uπ1(g)U−1 for each g ∈ G.

Therefore the set of equivalence classes of unitary representations of G on
H is the set of orbits of the action of U(H) on the set Hom(G,U(H)) for
the action (U ∗ π)(g) := Uπ(g)U−1.

Exercise 1.3.22. Let V be a K-vector space and A ∈ End(V ). We write
Vλ(A) := ker(A−λ1) for the eigenspace of A corresponding to the eigenvalue λ
and V λ(A) :=

⋃
n∈N ker(A − λ1)n for the generalized eigenspace of A corre-

sponding to λ. Show that if A,B ∈ End(V ) commute, then

BV λ(A) ⊆ V λ(A) and BVλ(A) ⊆ Vλ(A)

holds for each λ ∈ K.

Exercise 1.3.23. Let (S, ∗) be an involutive semigroup. Show that:

(a) Every cyclic representation is non-degenerate.

(b) If (π,H) is a direct sum of cyclic representations, then it is is non-degenerate.

(c) Every non-degenerate representation (π,H) of S is a direct sum of cyclic
representations. Hint: One can follows the argument in Proposition 1.3.10,
but one step requires additional care, namely that for 0 6= v ∈ H, the
representation of S on the closed subspace K := spanπ(S)v is cyclic. One
has to argue that v ∈ K to see that this is the case, and this is where it is
needed that (π,H) is non-degenerate.
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Chapter 2

Representations on
L2-spaces

In the first chapter we have seen how to deal with discrete decompositions of
Hilbert spaces and unitary representations. We now turn to the continuous
side. Here the simplest situations arise for Hilbert spaces of the type L2(X,µ),
where (X,S, µ) is a measure space. We start with recalling the construction of
the L2-space in Section 2.1. Then we turn to unitary operators on this space
coming from measurable transformations of X and multiplication with functions
(Section 2.2), and how this leads to unitary representations. In Section 2.3 we
discuss the Riesz Representation Theorem and how it connects locally compact
spaces with measure theory. It provides a natural source of L2-spaces on which
topological groups act unitarily. In Section 2.4 we briefly discuss Haar measure
on a locally compact group G and how it leads to faithful continuous unitary
representations of G.

2.1 Measures and L2-spaces

Definition 2.1.1. Let X be a set.
(a) A subset S ⊆ P(X) is called a σ-algebra if

(SA1) ∅ ∈ S.

(SA2) Ac := X \A ∈ S for A ∈ S.

(SA3)
⋃∞
j=1Aj ∈ S for every sequence (Aj)j∈N in S.

Note that (SA2) and (SA3) imply that S is also closed under countable inter-
sections. If S is a σ-algebra of subsets of X, then the pair (X,S) is called a
measurable space or a Borel space and the elements of S are called the measur-
able subsets.

(b) If (X,S) and (X ′,S′) are measurable spaces, then a map f : X → X ′

is said to be measurable if f−1(S′) ⊆ S, i.e., inverse images of measurable sets

29
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are measurable. It is easy to see that compositions of measurable maps are
measurable.

A map f : X → X ′ is called a Borel isomorphism if there exists a measurable
map g : X ′ → X with f ◦g = idX′ and g◦f = idX . This is equivalent to f being
bijective, measurable and f−1 also measurable (Exercise). We write Aut(X,S)
for the group of Borel automorphisms of (X,S).

Definition 2.1.2. Let (X,S) be a measurable space.
(a) A positive measure on (X,S) is a function µ : S→ [0,∞] with µ(∅) = 0

which is countably additive, i.e., for each disjoint sequence (En)n∈N in S we have

µ
( ∞⋃
n=1

En

)
=
∞∑
n=1

µ(En). (2.1)

A positive measure is called a probability measure if µ(X) = 1.
(b) A measure space is a triple (X,S, µ), where µ is a positive measure on

(X,S).
(c) A complex measure is a function µ : S→ C which is countably additive.

In particular, ∞ is excluded as a possible value.

We shall now freely use basic results and constructions from Lebesgue mea-
sure theory, such as the integral of measurable functions and the convergence
theorems.

Definition 2.1.3. For a measurable function f : X → C, we define

‖f‖2 :=
(∫

X

|f(x)|2 dµ(x)
) 1

2

and put
L2(X,µ) := {f : ‖f‖2 <∞}.

If f, g ∈ L2(X,µ), then |f |2, |g|2 are integrable, and so is (|f | + |g|)2 because
(|f | + |g|)2 ≤ 2|f |2 + 2|g|2. Therefore |f ||g| = 1

2

(
(|f | + |g|)2 − |f |2 − |g|2

)
in

L1(X,µ), i.e., this function is integrable. For f, g ∈ L2(X,µ) we may thus define

〈f, g〉 :=
∫
X

fg dµ.

This expression makes sense because fg is integrable. One easily verifies that
we thus obtain a positive semidefinite hermitian form on L2(X,µ) whose corre-
sponding seminorm is given by ‖f‖2 =

√
〈f, f〉. With

N = {f ∈ L2(X,µ) : ‖f‖2 = 0}

we now derive that
L2(X,µ) := L2(X,µ)/N

is a pre-Hilbert space w.r.t. 〈[f ], [g]〉 := 〈f, g〉, and it is a standard result of
integration theory that it is complete, i.e., a Hilbert space and that the step
functions, i.e., the integrable measurable functions with finitely many values
form a dense subspace.
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Definition 2.1.4. There are two more Banach spaces associated with a measure
space (X,S, µ) that we shall need in the following.

(a) For a measurable function f : X → C, we define

‖f‖1 :=
(∫

X

|f(x)| dµ(x)
)

and L1(X,µ) := {f : ‖f‖1 <∞},

and write L1(X,µ) := L1(X,µ)/N , where N is the subspace of functions van-
ishing µ-almost everywhere. In measure theory one shows that this space is a
Banach space with respect to ‖ · ‖1.

(b) We consider the algebra L∞(X,C) of bounded measurable functions
f : X → C and define

‖f‖∞ := inf{C ≥ 0: µ({|f | > C}) = 0},

where {|f | > C} := {x ∈ X : |f(x)| > C}. It is easy to verify that

‖λf‖∞ = |λ|‖f‖∞ for λ ∈ C and ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

Therefore N := {f ∈ L∞(X,C) : ‖f‖∞ = 0} (the set of all functions vanishing
µ-almost everywhere) is a subspace, and

L∞(X,µ) := L∞(X)/N

is a normed space with respect to ‖[f ]‖∞ := ‖f‖∞, which is easily seen to be
complete. In fact, for every Cauchy sequence [fn] in this space, there exists
an E ∈ S of measure zero such that the restrictions fn|X\E form a Cauchy
sequence with respect to the sup norm. If f is its limit, then we extend f by 0
on E to obtain an element [f ] ∈ L∞(X,µ) with [fn]→ [f ].

For (fg)(x) := f(x)g(x) and f∗(x) := f(x), we have

‖fg‖∞ ≤ ‖f‖∞‖g‖∞ and ‖f∗‖∞ = ‖f‖∞, ‖f∗f‖∞ = ‖f‖2∞,

so that L∞(X,µ) carries the structure of a C∗-algebra.

For the following lemma, we recall that a positive measure µ on (X,S) is
said to be σ-finite if X =

⋃
n∈N En with En ∈ S and µ(En) < ∞. This is

an important assumption for many results in measure theory, such as Fubini’s
Theorem and the Radon–Nikodym Theorem.

Lemma 2.1.5. For each f ∈ L∞(X,µ), we obtain a bounded operator λf ∈
B(L2(X,µ)) by λf (g) := fg. It satisfies ‖λf‖ ≤ ‖f‖∞, and the corresponding
map

λ : L∞(X,µ)→ B(L2(X,µ)), f 7→ λf

is a homomorphism of C∗-algebras. If, in addition, µ is σ-finite, then λ is
isometric, i.e., ‖λf‖ = ‖f‖∞ for each f .
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Proof. Since |f(x)g(x)| ≤ ‖f‖∞|g(x)| holds µ-almost everywhere, we see that
λf defines a bounded operator on L2(X,µ) with ‖λf‖ ≤ ‖f‖∞. We clearly have
λfg = λfλg and λ∗f = λf∗ , so that λ defines a homomorphism of C∗-algebras.

Now assume that ‖f‖∞ > c ≥ 0. Then F := {|f | ≥ c} has positive measure,
and since µ is σ-finite, it contains a subset E of positive and finite µ-measure.
Then h := χE ∈ L2(X,µ) and

c‖h‖2 ≤ ‖fh‖2 ≤ ‖λf‖‖h‖2

leads to ‖λf‖ ≥ c, and since c was arbitrary, we obtain ‖f‖∞ ≤ ‖λf‖.

Exercises for Section 2.1

Exercise 2.1.6. We say that a measure µ on (X,S) semifinite if for each
E ∈ S with µ(E) = ∞, there exists a measurable subset F ⊆ E satisfying
0 < µ(F ) < ∞. Show that any σ-finite measure is semifinite and that the
conclusion of Lemma 2.1.5 remains valid for semifinite measure spaces. Show
also that the counting measure on an uncountable set is semifinite but not σ-
finite.

2.2 Unitary Representations on L2-spaces

2.2.1 Measure Classes and Their Invariance

Definition 2.2.1. Let (X,S) be a measurable space and λ, µ be positive mea-
sures on (X,S). We say that λ is absolutely continuous with respect to µ if

µ(E) = 0, E ∈ S ⇒ λ(E) = 0.

We then write λ << µ. We call λ and µ equivalent if they have the same zero
sets, i.e., if λ << µ and µ << λ. We then write λ ∼ µ. It is easy to see that ∼
defines an equivalence relation on the set of positive measures on (X,S). The
corresponding equivalence classes [λ] are called measure classes.

The Theorem of Radon–Nikodym ([Ru86, Thm. 6.10]) is a central result in
abstract measure theory. It makes the relation λ << µ more concrete.

Theorem 2.2.2. (Radon–Nikodym Theorem) If µ is a σ-finite measure on
(X,S) and λ << µ is a finite positive measure, then there exists a unique non-
negative f ∈ L1(X,µ) with

λ(E) =
∫
E

f(x) dµ(x) for E ∈ S.

We then write
λ = f · µ, and

dλ

dµ
:= f

is called the Radon–Nikodym derivative of λ with respect to µ.
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Remark 2.2.3. (a) If λ is not finite, but only σ-finite, then the relation λ << µ
still implies the existence of a measurable non-negative function f : X → R+

with
λ(E) =

∫
E

f(x) dµ(x) for E ∈ S.

In fact, the σ-finiteness of λ implies the existence of a disjoint sequence (En)n∈N
in S with X =

⋃
nEn and λ(En) <∞. Then λ|En << µ|En implies the existence

of fn ∈ L1(E,µn) with λEn = fnµ|En . Then f(x) := fn(x) for x ∈ En defines
a measurable function on X with λ = fµ.

From the uniqueness of fn on each En, it follows that f is unique up to a
function vanishing on the complement of a µ-zero set.

(b) The set
{f = 0} := {x ∈ X : f(x) = 0}

is a λ-zero set because

λ({f = 0}) =
∫
{f=0}

f(x) dµ(x) = 0.

If λ ∼ µ, then this implies that {f = 0} is also a µ-zero set, and we obtain

µ = f−1λ,

because we may w.l.o.g. assume that f(X) ⊆ R×.

We have already seen that each σ-finite positive measure µ on (X,S) defines
a natural Hilbert space L2(X,µ). We are interested in unitary group represen-
tations on this space. Clearly, a natural group to be considered in this context
is the group

Aut(X,S) := {ϕ : X → X : ϕ meas., ∃ψ : X → X meas., ψ ◦ ϕ = ϕ ◦ ψ = idX}

of automorphism of the measurable space (X,S).
Recall that for a measurable map ϕ : (X,S)→ (X ′,S′) and a measure µ on

(X,S), we obtain a measure ϕ∗µ on (X ′,S′) by

(ϕ∗µ)(E) := µ(ϕ−1(E)) for E ∈ S′.

It is called the push-forward of µ by ϕ. The corresponding transformation
formula for integrals reads∫

X′
f(x) d(ϕ∗µ)(x) =

∫
X

f(ϕ(x)) dµ(x). (2.2)

For a given positive measure µ on (X,S), we thus obtain two subgroups of
Aut(X,S):

Aut(X,µ) := {ϕ ∈ Aut(X,S) : ϕ∗µ = µ}

and the larger group

Aut(X, [µ]) := {ϕ ∈ Aut(X,S) : ϕ∗µ ∼ µ}.



34 CHAPTER 2. REPRESENTATIONS ON L2-SPACES

If ϕ∗µ ∼ µ, then µ is said to be quasi-invariant under ϕ. Clearly,

Aut(X,µ) ⊆ Aut(X, [µ]).

For ϕ ∈ Aut(X, [µ]), we define

δ(ϕ) := δµ(ϕ) :=
d(ϕ∗µ)
dµ

and note that, with the notation ϕ∗f := f ◦ ϕ−1, we have

δ(ϕψ) = δ(ϕ) · ϕ∗(δ(ψ)), (2.3)

because

(ϕψ)∗µ = ϕ∗ψ∗µ = ϕ∗(δ(ψ)µ) = ϕ∗(δ(ψ)) · ϕ∗µ = ϕ∗(δ(ψ))δ(ϕ)µ.

Proposition 2.2.4. For f ∈ L2(X,µ) and ϕ ∈ Aut(X, [µ]), we put

(π(ϕ)f)(x) :=
√
δ(ϕ)(x)f(ϕ−1(x)).

Then (π, L2(X,µ)) is a unitary representation of the group Aut(X, [µ]).

Proof. Clearly, π(ϕ)f is measurable, and we also find

‖π(ϕ)f‖22 =
∫
X

δ(ϕ)(x)|f(ϕ−1(x))|2 dµ(x) =
∫
X

|f(ϕ−1(x))|2 d(ϕ∗µ)(x)

=
∫
X

|f(x)|2 dµ(x) = ‖f‖2,

so that π(ϕ) defines an isometry of L2(X,µ). We also observe that for ϕ,ψ ∈
Aut(X, [µ]) we obtain with (2.3):

π(ϕψ)f =
√
δ(ϕψ)ϕ∗(ψ∗f) =

√
δ(ϕ)ϕ∗

√
δ(ψ)ϕ∗(ψ∗f)

=
√
δ(ϕ)ϕ∗

(√
δ(ψ)(ψ∗f)

)
= π(ϕ)π(ψ)f.

In particular, we see that each isometry π(ϕ) is surjective with π(ϕ−1) =
π(ϕ)−1.

Remark 2.2.5. Let M(X,T) be the group of measurable functions
θ : X → T, where the group structure is defined by pointwise multiplication.
We also associate to each θ ∈M(X,T) a unitary operator on L2(X,µ) by

ρ(θ)f := θf.

Clearly, this defines a unitary representation

ρ : M(X,T)→ U(L2(X,µ)).
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For ϕ ∈ Aut(X, [µ]) we have

π(ϕ)ρ(θ)f =
√
δ(ϕ)(ϕ∗θ)(ϕ∗f) = ρ(ϕ∗θ)π(ϕ)f,

i.e.,
π(ϕ)ρ(θ)π(ϕ)−1 = ρ(ϕ∗θ). (2.4)

Next we observe that the transformation of measurable functions under
Aut(X,S) defines a homomorphism

β : Aut(X, [µ])→ Aut(M(X,T)), β(ϕ)θ := ϕ∗θ,

so that we can form the semidirect product group

M(X,T) o Aut(X, [µ]),

and the relation (2.4) implies that

π̂ : M(X,T) o Aut(X, [µ])→ U(L2(X,µ)), (θ, ϕ) 7→ ρ(θ)π(ϕ) (2.5)

defines a unitary representation of this semidirect product.

2.2.2 Intermezzo on Group Cocycles

Definition 2.2.6. Let N and G be groups and α : G → Aut(N) be a group
homomorphism, so that we can form the semidirect product group

Ĝ := N oα G,

i.e., the product set N ×G, endowed with the multiplication

(n, g)(n′, g′) := (nα(g)(n′), gg′).

A map f : G → N is called a (left) 1-cocycle, resp., a (left) crossed homo-
morphism if

f(gh) = f(g) · α(g)(f(h)) for g, h ∈ G. (2.6)

We write Z1(G,N)α for the set of 1-cocycles f : G→ N .
The cocycle relation (2.6) is equivalent to the map s := (f, idG) : G →

N oα G being a group homomorphism. If q : Ĝ → G, (n, g) 7→ g denotes the
corresponding quotient homomorphism, then q ◦ s = idG. Conversely, every
group homomorphism s : G → N oα G with q ◦ s = idG is of the form (f, idG)
for some f ∈ Z1(G,N)α.

Identifying N with the subgroup N o {1} of N oαG, we see that N acts on
the set

S := {s ∈ Hom(G,N oα G) : q ◦ s = idg}

by composition with the conjugation map

(n ∗ s)(g) := (n,1)s(g)(n,1)−1.
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For s(g) = (f(g), g), this leads to

(n ∗ s)(g) = (nf(g)α(g)(n−1), g),

and from that we derive that

(n ∗ f)(g) := nf(g)α(g)(n−1)

defines an action of the group N on the set Z1(G,N)α, satisfying n ∗ (f, idG) =
(n ∗ f, idG). We write

H1(G,N)α := Z1(G,N)α/N

for the set of N -orbits in this set. It is called the first cohomology set for G
with values in N with respect to α. In general, this cohomology set does not
carry a group structure, but it has a natural base point given by the orbit of
the constant cocycle f = 1. We write [f ] ∈ H1(G,N)α for the N -orbit of f ,
which is also called its cohomology class.

If N is abelian and written additively, the cocycle relation can be written as

f(gh) = f(g) + α(g)(f(h)) for g, h ∈ G. (2.7)

Since this relation is “additive in f”, the the set Z1(G,N)α is a group with
respect to pointwise addition. The N -action on this group is given by

(n ∗ f)(g) = f(g) + n− α(g)(n).

Cocycles of the form
dG(n)(g) := α(g)n− n

are called 1-coboundaries. They form a subgroup B1(G,N)α of Z1(G,N)α, so
that

H1(G,N)α ∼= Z1(G,N)α/B1(G,N)α

can be identified with the quotient group, hence carries a natural group struc-
ture.

2.2.3 Applications to Representation Theory

Let (X,S, µ) be a σ-finite measure space and

σ : G×X → X, (g, x) 7→ g.x

a group action by measurable maps such that each map σg(x) := σ(g, x) pre-
serves the measure class [µ].

From Proposition 2.2.4, we obtain immediately that

(π(g)f)(x) :=
√
δ(σg)(x)f(σ−1

g (x))
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defines a unitary representation (π, L2(X,µ)) of G, but there are many other
representations. Indeed, let γ : G→M(X,T) be a 1-cocycle with respect to the
action of G on M(X,T) by g.θ := θ ◦ σ−1

g . Then

(γ, σ) : G→M(X,T) o Aut(X, [µ]), g 7→ (γ(g), σg)

is a group homomorphism, and (2.5) in Remark 2.2.5 implies that also

(πγ(g)f)(x) := γ(g)(x)
√
δ(σg)(x)f(σ−1

g (x)), πγ(g)f := γ(g) ·
√
δ(σg)(σg)∗f

defines a unitary representation of G on L2(X,µ). The following lemma already
shows the close connection between the problem to determine cohomology sets
and the classification problem for unitary representations.

Example 2.2.7. In the situation from above, we obtain in particular a natural
class of 1-cocycles by

γ(g) := δ(σg)is = eis log δ(σg), s ∈ R.

This leads to a family of unitary representations on L2(X,µ), parameterized by
s ∈ R:

(πs(g)f) := δ(σg)
1
2 +is(σg)∗f.

Lemma 2.2.8. If the cocycles γ1, γ2 : G → M(X,T) are equivalent, then the
representations πγ1 and πγ2 are equivalent.

Proof. If γ1 ∼ γ2, there exists a θ ∈M(X,T) with

(γ2(g), g) = (θ,1)(γ1(g), g)(θ,1)−1

holds in M(X,T) oG. This implies that

πγ2(g) = ρ(θ)πγ1(g)ρ(θ)−1 for g ∈ G.

Example 2.2.9. Let U ⊆ Rn be an open subset and λ be Lebesgue measure,
restricted to U . For each C1-diffeomorphism ϕ : U → U we then have the
transformation formulas∫

U

f(x) d(ϕ∗λ)(x) =
∫
U

f(ϕ(x)) dλ(x)

and ∫
U

f(ϕ(x))|det(dϕ(x))| dx =
∫
U

f(x) dx.

Comparing these two implies that∫
U

f(x) d(ϕ∗λ)(x) =
∫
U

f(ϕ(x))|det(dϕ(x))||det(dϕ(x))|−1 dλ(x)

=
∫
U

f(x)|det(dϕ(ϕ−1(x)))|−1 dλ(x)

=
∫
U

f(x)|det(dϕ−1(x))| dλ(x),



38 CHAPTER 2. REPRESENTATIONS ON L2-SPACES

and therefore
δ(ϕ)(x) :=

dϕ∗λ

dλ
= |det(dϕ−1(x))|.

Therefore
(π(ϕ)f)(x) :=

√
|det(dϕ−1(x))|f(ϕ−1(x))

defines a unitary representation of the group Diff1(U) of C1-diffeomorphisms of
U on L2(U, λ).

For U = Rn and the subgroup

Affn(R) := {ϕA,b(x) = Ax+ b : A ∈ GLn(R), b ∈ Rn}

we obtain in particular
δ(ϕA,b)(x) = |detA|−1,

so that
(π(ϕA,b)f)(x) :=

√
|detA|

−1
f(ϕ−1

A,b(x))

defines a unitary representation of the affine group Affn(R) on L2(Rn, λ).

Exercises for Section 2.2

Exercise 2.2.10. (Affine actions) Let V be a vector space and ρ : G→ GL(V )
be a representation of the group G on V . Show that:

(1) For each 1-cocycle f ∈ Z1(G,V )ρ we obtain on V an action of G by affine
maps via σf (g)(v) := ρ(g)v + f(g).

(2) The affine action σf has a fixed point if and only if f is a coboundary, i.e.,
of the form f(g) = ρ(g)v − v for some v ∈ V .

(3) If G is finite and V is defined over a field of characteristic zero, then the
group H1(G,V )ρ is trivial.

Exercise 2.2.11. (Affine isometric actions) LetH be a Hilbert space and (π,H)
be a unitary representation of G. Show that:

(1) For each 1-cocycle f ∈ Z1(G,H)π, we obtain an action of G on H by affine
isometries σf (g)(v) := π(g)v + f(g).

(2) If this action has a fixed point, then f is bounded. 1

(3) Consider the real unitary (=orthogonal) representation of G = R onH = R3

by

π(t) :=

cos t − sin t 0
sin t cos t 0

0 0 1

 .

Show that f : R → R3, f(t) := (0, 0, t)> = te3 is a 1-cocycle with non-
trivial cohomology class. Find a set of representatives for the correspond-
ing affine action and describe the orbits geometrically.

1The converse is also true. It is a consequence of the Bruhat–Tits Fixed Point Theorem.
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Exercise 2.2.12. (Left- and right cocycles) Let Ĝ = N oα G be a semidirect
product defined by the homomorphism α : G→ Aut(N). Show that:

(1) The map G × N → Ĝ, (g, n) 7→ (1, g)(n,1) is a group isomorphism if we
define the multiplication on G×N by

(g, n)(g′, n′) := (gg′, α(g′)−1(n)n′).

We write Goα N for this group.

(2) A map s : G→ GoαN, s(g, n) = (g, f(g)) is a group homomorphism if and
only if it is a right cocycle, i.e.,

f(gh) = α(h)−1(f(g))f(h) for g, h ∈ G.

Exercise 2.2.13. Let U ⊆ Rn be an open subset. We consider the group
G := Diff1(U) of C1-diffeomorphisms of U , and the group N := C(U,GLn(R)),
where the group structure on N is given by pointwise multiplication. Then
α(ϕ)(f) := f ◦ ϕ−1 defines a homomorphism α : G → Aut(N). Show that the
Jacobi matrix

J : Diff1(U)→ C(Rn,GLn(R)), J(ϕ) :=
(∂ϕi
∂xj

)
i,j=1,...,n

is a right cocycle with respect to α.

Exercise 2.2.14. Show that each σ-finite measure µ on a measurable space
(X,S) is equivalent to a finite measure.

Exercise 2.2.15. Let µ and λ be equivalent σ-finite measures on (X,S) and
h := dµ

dλ . Show that

Φ: L2(X,µ)→ L2(X,λ), f 7→
√
hf

defines a unitary map.

Exercise 2.2.16. (From measure classes to cohomology classes) Let σ : G ×
X → X be an action of G by measurable maps on (X,S) and [µ] be a G-
invariant σ-finite measure class. Verify the following assertions:

(a) Let R denote the group of all measurable functions f : X → R×+ with re-
spect to pointwise multiplication and write R0 for the subgroup of those
functions which are constant 1 on the complement of a µ-zero set. Then
R̃ := R/R0 is a group, whose elements are denoted [f ], and

g.[f ] := [(σg)∗f ]

defines an action of G on R̃ by automorphisms.

(b) δµ(g) := d(σg)∗µ
dµ defines a R̃-valued 1-cocycle on G.
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(c) If [h] ∈ R̃, then δhµ(g) = (σg)∗h
h δµ(g). Conclude that the cohomology class

[δµ] ∈ H1(G, R̃) does not depend on the representative µ of the measure
class [µ].

(d) Show that the measure class [µ] contains a G-invariant element if and only
if the cohomology class [δµ] vanishes.

Exercise 2.2.17. Consider the Gaußian measure

dγ(x) :=
1

(2π)
n
2
e−

1
2‖x‖

2
dx

on Rn. Its measure class is invariant under the action of the affine group Affn(R).
Find a formula for the action of this group on L2(Rn, γ).

Exercise 2.2.18. Let G be a group and H be a complex Hilbert space. We con-
sider the trivial homomorphism α = 1 : G→ Aut(U(H)), i.e., α(G) = {idU(H)}
for each g ∈ G. Show that there is a bijection between H1(G,U(H)) and the of
equivalence classes of unitary representations of the group G on H.

Exercise 2.2.19. Let (X,S, µ) be a measure space. Show that:

(a) If f ∈ L1(X,µ), then the measurable subset {|f | 6= 0} of X is σ-finite.

(b) If H ⊆ L2(X,µ) is a separable subspace, then there exists a σ-finite measur-
able subset X0 ⊆ X with the property that each f ∈ H vanishes µ-almost
everywhere on Xc

0 = X \X0.

Exercise 2.2.20. (Limitations of the Radon–Nikodym Theorem) Let (X,S, µ)
be a finite measure space. Define ν : S→ R+ by

ν(E) :=

{
0 for µ(E) = 0
∞ otherwise.

Show that ν is a measure and that ν ∼ µ, but there exists no R-valued measur-
able function f : X → R with ν = fµ. However, the constant function f = ∞
satisfies ν(E) =

∫
E
f(x) dµ(x) for each E ∈ S.

Exercise 2.2.21. (Modifying homomorphisms by cocycles) Let G and N be
groups and β : G→ N a homomorphism. Then α(g)(n) := β(g)nβ(g)−1 defines
a homomorphism α : G→ Aut(N). Show that:

(a) A function f : G → N is a 1-cocycle with respect to α if and only if the
pointwise product

fβ : G→ N, g 7→ f(g)β(g)

is a homomorphism.

(b) If γ : G→ N is another homomorphism, then f(g) := γ(g)β(g)−1 defines a
1-cocycle with respect to α.
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Exercise 2.2.22. Let (X,S, µ) be a finite measure space and G := Aut(X,µ)
be its automorphism group. Verify the following assertions:

(a) On S we obtain by d(E,F ) := µ(E∆F ) a semimetric. Let

[E] := {F ∈ S : d(E,F ) = 0}

denote the corresponding equivalence class of E and S := S/ ∼ denote the
set of equivalence classes. Then d([E], [F ]) := µ(E∆F ) defines a metric
on S.

(b) The map γ : S→ L2(X,µ), E 7→ χE satisfies

d(E,F ) = µ(E∆F ) = ‖χE − χF ‖2.

(c) N := {g ∈ G : (∀E ∈ S) d(gE,E) = 0} is a normal subgroup of G, and if
π : G → U(L2(X,µ)), π(g)f := f ◦ g−1 is the canonical unitary represen-
tation of G on L2(X,µ), then kerµ = N .

(d) On the quotient group G := G/N , we consider the coarsest topology for
which all functions

fE : G→ R, g 7→ µ(gE∆E)

are continuous. Show that G is a topological group and that π factors
through a topological embedding π : G → U(L2(X,µ))s. Hint: Exer-
cise 1.2.17 and Lemma 1.2.6.

2.3 L2-spaces on Locally Compact Spaces

In this section we discuss a central bridge between topology and measure theory,
the Riesz Representation Theorem.

Definition 2.3.1. Let X be a locally compact space. A positive Radon integral
on X is a linear functional

I : Cc(X,C)→ R

on the algebra Cc(X) := Cc(X,C) of compactly supported continuous functions
on X which is positive in the sense that

f ≥ 0 ⇒ I(f) ≥ 0.

For the following we recall that for a topological space X, the sigma algebra
B(X) of Borel sets is the σ-algebra generated by the open subsets. Accordingly,
a Borel measure on X is a measure defined on B(X).

Theorem 2.3.2. (Riesz Representation Theorem) Let X be a locally compact
space.
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(a) If µ is a positive Borel measure on X with µ(K) < ∞ for each compact
subset K, then the integral

Iµ : Cc(X)→ C, f 7→
∫
X

f(x) dµ(x)

is a positive Radon integral on X.

(b) For each positive Radon integral I on X there exists a positive Borel measure
µ on X, which is uniquely determined by the following properties:

(i) Iµ = I.

(ii) µ(K) <∞ for each compact subset K of X.

(iii) (Outer regularity) For each Borel subset E ⊆ X we have

µ(E) = inf{µ(U) : E ⊆ U,Uopen}.

(iv) If E ⊆ X is open or E is a Borel set with µ(E) <∞, then

µ(E) = sup{µ(K) : K ⊆ E,K compact}.

Then µ is called the Radon measure defined by I.

Proof. (Sketch) We only give a rough outline of the proof.
(a) is the simple part. First we observe that every continuous function

f : X → R is Borel measurable. If, in addition, f vanishes outside some compact
set K, then |f | ≤ ‖f‖∞χK implies the integrability of f with respect to µ.
Clearly, the so obtained linear functional Iµ is positive.

(b) The simple part of the proof is the verification of uniqueness. In view of
(iii) and (iv), µ is determined by its values on compact subsets of X. So let µ1

and µ2 be two Borel measures satisfying (i)-(iv) and K ⊆ X be compact. We
have to show that µ1(K) = µ2(K). So let ε > 0. In view of (iii), there exists
an open subset U ⊇ K with µ2(U) ≤ µ2(K) + ε. Using Urysohn’s Theorem, we
find a function f ∈ Cc(X,R) with 0 ≤ f ≤ 1, f |K = 1 and f |X\U = 0. Then

µ1(K) =
∫
X

χK(x) dµ1(x) ≤
∫
X

f(x) dµ1(x) = I(f) =
∫
X

f(x) dµ2(x)

≤
∫
X

χU (x) dµ2(x) = µ2(U) ≤ µ2(K) + ε.

Since ε was arbitrary, we obtain µ1(K) ≤ µ2(K). Exchanging the roles of µ1

and µ2 now shows equality. This proves uniqueness and we have also seen in
(a) that (i) implies (ii).

For the existence, we put for an open subset U ⊆ X:

µ(U) := sup{I(f) : supp(f) ⊆ U, 0 ≤ f ≤ 1}
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and note that µ(U1) ≤ µ(U2) for U1 ⊆ U2 follows immediately. This shows in
particular that

µ(E) = inf{µ(U) : E ⊆ U,Uopen} (2.8)

for each open subset E ⊆ X. We may therefore define µ(E) for an arbitrary
subset E ⊆ X by (2.8). For the somewhat technical and lengthy proof, we refer
to [Ru86, p.40ff].

Definition 2.3.3. Property (iv) in the Riesz Representation Theorem is ex-
pressed by saying that all open subsets and sets with finite measure are inner
regular. We call µ a regular Borel measure if all Borel sets are outer regular
and all open subsets are inner regular. Then the Riesz representation theorem
yields a bijection between Radon integrals and regular Borel measures. There-
fore regular Borel measures are often called Radon measures.

If µ is regular, then the proof of the following proposition shows that every
Borel set of finite measure is inner regular. In sufficiently nice spaces, regularity
is automatic (cf. [Ru86, Thm. 2.18]):

Proposition 2.3.4. If X is a locally compact space in which every open sub-
set is a countable union of compact subsets, then every Borel measure µ with
µ(K) <∞ for every compact subset is regular.

Remark 2.3.5. (a) If (X, d) is a metric, σ-compact locally compact space, then
every open subset of X is σ-compact. To see this, let O ⊆ X be a proper open
subset and X =

⋃
n∈N Kn, where each Kn is compact, and w.l.o.g. Kn ⊆ Kn+1

for n ∈ N. Then

f : X → R, f(x) := sup{r > 0: Br(x) ⊆ O} = dist(x,X \O)

is a continuous function (Exercise), measuring the distance to X \O. Then each
set

Qn :=
{
x ∈ Kn : f(x) ≥ 1

n

}
is compact and O =

⋃
n∈N Qn.

(b) Applying Proposition 2.3.4 to the Riemann integral on Cc(Rn), the Riesz
Representation Theorem yields the Lebesgue measure on B(Rn).

An important property of Radon measures is that many properties of L2-
functions can be derived from corresponding properties of continuous functions.
The key is the following approximation result:

Proposition 2.3.6. If µ is a Radon measure on a locally compact space X,
then Cc(X) is dense in L2(X,µ), resp., L2(X,µ).

Proof. Since the step functions form a dense subspace of L2(X,µ), it suffices to
show that any characteristic function χE with µ(E) <∞ can be approximated
by elements of Cc(X) in the L2-norm. Since every such Borel set is inner regular,
we may w.l.o.g. assume that E is compact. Then the outer regularity implies
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for each ε > 0 the existence of an open subset U ⊆ X with µ(U \ E) < ε.
Next we use Urysohn’s Theorem to find a continuous function f ∈ Cc(X) with
0 ≤ f ≤ 1, f |E = 1, and supp(f) ⊆ U . Then

‖f − χE‖22 =
∫
X

|f(x)− χE(x)|2 dµ(x) =
∫
U\E
|f(x)|2 dµ(x) ≤ µ(U \ E) < ε,

and this completes the proof.

Lemma 2.3.7. Let X be a topological space and Y be a locally compact space
and ν be a Radon measure on Y . Let f : X×Y → C be continuous and suppose
that there exists a compact subset K ⊆ Y with supp(f) ⊆ X × K. Then the
functions

f∨ : X → (C(K), ‖ · ‖∞), x 7→ fx, fx(y) := f(x, y)

and
F : X → C, x 7→

∫
Y

f(x, y) dν(y)

are continuous.

Proof. Let x0 ∈ X and ε > 0. Then

M := {(x, y) ∈ X × Y : |f(x, y)− f(x0, y)| < ε}

is an open subset of X ×Y containing the compact subset {x0}×K, hence also
a set of the form U ×K, where U is a neighborhood of x0 (Exercise 2.3.12), and
this means that for x ∈ U , we ‖fx − fx0‖∞ ≤ ε.

Finally, the continuity of the function F follows from the continuity of the
linear functional C(K) → C, h 7→

∫
K
h dν with respect to ‖ · ‖∞ on C(K) (cf.

Exercise 2.3.11).

Proposition 2.3.8. Let G be a topological group and σ : G × X → X be a
continuous action of G on the locally compact space X. Further, let µ be a Radon
measure on X whose measure class is G-invariant and for which the Radon–
Nikodym derivative δ(g) := d(σg)∗µ

dµ can be realized by a continuous function

δ̃ : G×X → R×, δ̃(g, x) := δ(g)(x).

Then the unitary representation (π, L2(X,µ)), defined by

(π(g)f)(x) :=
√
δ(g)(x)f(g−1.x)

is continuous.

Proof. In Proposition 2.3.6 we have seen that Cc(X) is dense in L2(X,µ). In
view of Lemma 1.2.6, it therefore suffices to show that for f, h ∈ Cc(X), the
function

πf,h : G→ C, g 7→ 〈π(g)f, h〉

=
∫
X

√
δ(g)(x)f(g−1.x)h(x) dµ(x) =

∫
supp(h)

√
δ(g)(x)f(g−1.x)h(x) dµ(x)

is continuous. This follows from Lemma 2.3.7.
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Corollary 2.3.9. Let G be a topological group, σ : G×X → X be a continuous
action of G on the locally compact space X and µ be a G-invariant Radon
measure on X. Then the unitary representation (π, L2(X,µ)), defined by

π(g)f := f ◦ σ−1
g

is continuous.

Example 2.3.10. (a) The translation representation of G = Rn on L2(Rn, dx),
given by

(π(x)f)(y) := f(x+ y)

is continuous.
(b) On the circle group G = T, we consider the Radon measure µT, given by∫

T
f(z) dµT(z) :=

1
2π

∫ 2π

0

f(eit) dt.

Then the unitary representation of T on L2(T, µT), given by

(π(t)f)(z) := f(tz)

is continuous.

Exercises for Section 2.3

Exercise 2.3.11. Let µ be a Radon measure on the locally compact space X
and K ⊆ X be a compact subset. Show that the integral

I : C(K)→ C, f 7→
∫
K

f(x) dµ(x)

satisfies
|I(f)| ≤ ‖f‖∞µ(K).

In particular, I is continuous.

Exercise 2.3.12. Let X and Y be Hausdorff spaces and K ⊆ X, resp., Q ⊆ Y
be a compact subset. Then for each open subset U ⊆ X ×Y containing K ×Q,
there exist open subsets UK ⊆ X containing K and UQ ⊆ Y containing Y with

K ×Q ⊆ UK × UQ ⊆ U.

2.4 Haar Measure on Locally Compact Groups

In this section G always denotes a locally compact group.
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Definition 2.4.1. (a) A positive Radon measure µ on G is called left invariant
if ∫

G

f(gx) dµ(x) =
∫
G

f(x) dµ(x) for f ∈ Cc(G), g ∈ G.

We likewise define right invariance by∫
G

f(xg) dµ(x) =
∫
G

f(x) dµ(x) for f ∈ Cc(G), g ∈ G.

(b) A positive left invariant Radon measure µ on G is called a (left) Haar
integral, resp., a (left) Haar measure, if 0 6= f ≥ 0 for f ∈ Cc(G) implies∫

G

f(x) dµ(x) > 0.

In the following we shall denote Haar measures on G by µG.

Remark 2.4.2. One can show that every locally compact group G possesses
a Haar measure and that for two Haar measures µ and µ′ there exists a λ > 0
with µ′ = λµ ([Neu90], [HiNe91]).

If G is compact and µ a Haar measure on G, then µ(G) is finite positive,
so that we obtain a unique Haar probability measure on G. We call this Haar
measure normalized.

Example 2.4.3. (a) If G is a discrete group, then Cc(G) is the space of finitely
supported functions on G, and the counting measure∫

G

f dµ :=
∑
g∈G

f(g)

is a Haar measure on G. If, in addition, G is finite, then∫
G

f dµ :=
1
|G|

∑
g∈G

f(g)

is a normalized Haar measure.
(b) For G = Z we obtain in particular a Haar measure by∫

Z
f dµZ :=

∑
n∈Z

f(n).

(c) On G = Rn, the Riemann, resp., Lebesgue integral defines a Haar mea-
sure by ∫

Rn
f dµG :=

∫
Rn
f(x) dx.

(d) On the circle group G = T,∫
T
f dµT :=

1
2π

∫ 2π

0

f(eit) dt
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is a Haar measure.
(e) If G = (R×, ·) is the multiplicative group of real numbers, then∫

R×
fdµ :=

∫
R×

f(x)
|x|

dx

is a Haar measure on G. Note that a continuous function with compact support
on R× vanishes in a neighborhood of 0, so that the integral is defined.

Lemma 2.4.4. If µG is a Haar measure on G and h ∈ C(G) with
∫
G
fh dµG = 0

for all f ∈ Cc(G), then h = 0.

Proof. Let g ∈ G. Then there exists a function f ∈ Cc(G) with 0 ≤ f and
f(g) > 0 (Urysohn’s Theorem). Now fh ∈ Cc(G) satisfies fh · h = f |h|2 ≥ 0,
so that

∫
G
f |h|2 dµG = 0 implies f |h|2 = 0, and therefore h(g) = 0.

Proposition 2.4.5. Let µG be a Haar measure on G. Then there exists a
continuous homomorphism

∆G : G→ (R×+, ·) with (ρg)∗µG = ∆G(g)−1µG for g ∈ G.

Proof. Since left and right multiplications on G commute, the Radon measure
(ρg)∗µG is also left invariant and satisfies∫

G

f d
(
(ρg)∗µG

)
=
∫
G

f ◦ ρg dµG > 0

for 0 6= f ≥ 0 (cf. (2.2)). Therefore (ρg)∗µG is a left Haar measure, and hence
there exists ∆G(g) ∈]0,∞[ with (ρg)∗µG = ∆G(g)−1µG (Remark 2.4.2).

Let 0 6= f ∈ Cc(G) with f ≥ 0. To see that

∆G(g)−1 =
1∫

G
fdµG

∫
G

(f ◦ ρg) dµG

depends continuously on g, we note that for a fixed g ∈ G, we actually in-
tegrate only over supp(f)g−1. For any compact neighborhood K of g0, the
subset supp(f)K−1 of G is compact (it is the image of the compact product set
supp(f)×K under the continuous map (x, y) 7→ xy−1), and for any g ∈ K we
have

∆G(g)−1 =
1∫

G
fdµG

∫
supp(f)K−1

(f ◦ ρg) dµG,

so that the continuity in g0 follows from Lemma 2.3.7. That ∆G is a homomor-
phism is an immediate consequence of the definition:

(ρgh)∗µG = (ρhρg)∗µG = (ρh)∗(ρg)∗µG
= ∆G(g)−1(ρh)∗µG = ∆G(g)−1∆G(h)−1µG

(cf. Exercise 2.2.16).
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Definition 2.4.6. The function ∆G is called the modular factor of G. Clearly,
it does not depend on the choice of the Haar measure µG. A locally compact
group G is called unimodular if ∆G = 1, i.e., each left invariant Haar measure
is also right invariant, hence biinvariant.

Proposition 2.4.7. A locally compact group G is unimodular if it satisfies one
of the following conditions:

(a) G is compact.

(b) G is abelian.

(c) Its commutator group (G,G) is dense.

Proof. (a) In this case ∆G(G) is a compact subgroup of R×+, hence equal to {1}.
(b) Follows from the fact that ρg = λg for any g ∈ G.
(c) Since R×+ is abelian, (G,G) ⊆ ker ∆G. If (G,G) is dense, the continuity

of ∆G implies that ∆G = 1.

Lemma 2.4.8. Let G be a locally compact group, µG a Haar measure and ∆G

be the modular factor. Then we have for f ∈ L1(G,µG) the following formulas:

(a)
∫
G
f(xg) dµG(x) = ∆G(g)−1

∫
G
f(x) dµG(x).

(b) ∆−1
G · µG is a right invariant measure on G.

(c)
∫
G
f(x−1) dµG(x) =

∫
G
f(x)∆G(x)−1 dµG(x).

Proof. (a) is the definition of the modular factor.
(b) Using (a), we obtain (ρg)∗µG = ∆G(g)−1µG. Since we also have (ρg)∗∆G =

∆G(g)−1∆G, (b) follows.
(c) Let I(f) :=

∫
G
f(x−1)∆G(x)−1 dµG(x). Then (b) implies that

I(f ◦ λg−1) =
∫
G

f(g−1x−1)∆G(x)−1 dµG(x) =
∫
G

f((xg)−1)∆G(x)−1 dµG(x)

=
∫
G

f(x−1)∆G(x)−1 dµG(x) = I(f),

so that I is left invariant. For 0 ≤ f 6= 0 in Cc(G) we also have I(f) > 0, so that
I is a Haar integral. In view of the Uniqueness of Haar measure, there exists a
C > 0 with

I(f) =
∫
G

f(x−1)∆G(x)−1 dµG(x) = C

∫
G

f(x) dµG(x) for f ∈ Cc(G).

It remains to show that C = 1. We apply the preceding relation to the compactly
supported function f̃(x) := f(x−1)∆G(x)−1 to find

C

∫
G

f̃(x) dµG(x) =
∫
G

f(x)∆G(x)∆G(x)−1 dµG(x) =
∫
G

f(x) dµG(x),

which leads to C = 1/C, and hence to C = 1.
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Proposition 2.4.9. Let G be a locally compact group and µG a (left) Haar
measure on G. On L2(G) := L2(G,µG) we have two continuous unitary repre-
sentations of G. The left regular representation

πl(g)f := f ◦ λ−1
g

and the right regular representation

πr(g)f :=
√

∆G(g)f ◦ ρg.

Proof. The continuity of the left regular representation follows from Corol-
lary 2.3.9. For the right regular representation we apply Proposition 2.3.8 to
the left action of G on G defined by σg(x) := xg−1 = ρg−1x. Then

δ̃(g, x) :=
d
(
(σg)∗µG

)
dµG

(x) =
d
(
(ρ−1
g )∗µG

)
dµG

(x) = ∆G(g)

is a continuous function on G×G, which implies the continuity of πr.

Corollary 2.4.10. For a locally compact group G, the left regular representation
is injective. In particular, G has a faithful continuous unitary representation.

Proof. For g 6= 1, pick disjoint open neighborhoods U of 1 and V of g with
gU ⊆ V . Let 0 ≤ f ∈ Cc(G) be non-zero with supp(f) ⊆ U . Then

〈πl(g)f, f〉 =
∫
G

f(g−1x)f(x) dµG(x) = 0

because supp(πl(g)f) = g supp(f) ⊆ gU ⊆ V intersects U trivially. On the other
hand the definition of Haar measure implies ‖f‖2 > 0, so that πl(g) 6= 1.

Exercises for Section 2.4

Exercise 2.4.11. Let λ = dX denote Lebesgue measure on the space Mn(R) ∼=
Rn2

of real (n×n)-matrices. Show that a Haar measure on GLn(R) is given by

dµGLn(R)(g) =
1

|det(g)|n
dλ(g).

Hint: Calculate the determinant of the linear maps λg : Mn(R)→ Mn(R), x 7→
gx.

Exercise 2.4.12. Let G = Aff1(R) ∼= R n R× denote the affine group of R,
where (b, a) corresponds to the affine map ϕb,a(x) := ax + b. This group is
sometimes called the ax+ b-group. Show that a Haar measure on this group is
obtained by ∫

G

f(b, a) dµG(b, a) :=
∫

R

∫
R×

f(b, a) db
da

|a|2
.

Show further that ∆G(b, a) = |a|−1, which implies that G is not unimodular.
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Exercise 2.4.13. We consider the group G := GL2(R) and the real projective
line

P1(R) = {[v] := Rv : 0 6= v ∈ R2}

of 1-dimensional linear subspaces of R2. We write [x : y] for the line R
(
x
y

)
.

Show that:

(a) We endow P1(R) with the quotient topology with respect to the map
q : R2 \ {0} → P1(R), v 7→ [v]. Show that P1(R) is homeomorphic to S1.
Hint: Consider the squaring map on T ⊆ C.

(b) The map R → P1(R), x 7→ [x : 1] is injective and its complement consists
of the single point ∞ := [1 : 0] (the horizontal line). We thus identify
P1(R) with the one-point compactification of R. These are the so-called
homogeneous coordinates on P1(R).

(c) The natural action of SL2(R) on P1(R) by g.[v] := [gv] is given in the
coordinates of (b) by

g.x = σg(x) :=
ax+ b

cx+ d
for g =

(
a b
c d

)
.

(d) There exists a unique Radon measure µ with total mass π on P1(R) which is
invariant under the group O2(R). Hint: Identify P1(R) with the compact
group SO2(R)/{±1} ∼= T.

(e) Show that, in homogeneous coordinates, we have dµ(x) = dx
1+x2 . Hint:(

cosx − sinx
sinx cosx

)
.0 = − tanx, and the image of Lebesgue measure on

]− π/2, π/2[ under tan is dx
1+x2 .

(f) Show that the action of SL2(R) on P1(R) preserves the measure class of µ.
Hint: Show that σg(x) := ax+b

cx+d satisfies σ′g(x) = 1
(cx+d)2 and derive the

formula

δ(σg)(x) =
d((σg)∗µ)

dµ
=

1 + x2

(a− cx)2 + (b− dx)2
, δ(σg)(∞) =

1
c2 + d2

.

(g) The density function also has the following metric interpretation with re-
spect to the euclidean norm on R2:

δ(σg)([v]) =
‖g−1v‖2

‖v‖2
.

The corresponding unitary representations of SL2(R) on L2(P1(R), µ) defined
by

πs(g)f := δ(σg)
1
2 +is(σg)∗f

(cf. Example 2.2.7) form the so-called spherical principal series.
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Exercise 2.4.14. LetX be a locally compact space, µ a positive Radon measure
on X, H a Hilbert space and f ∈ Cc(X,H) be a compactly supported continuous
function.

(a) Prove the existence of the H-valued integral

I :=
∫
X

f(x) dµ(x),

i.e., the existence of an element I ∈ H with

〈v, I〉 =
∫
X

〈v, f(x)〉 dµ(x) for v ∈ H.

Hint: Verify that the right hand side of the above expression is defined
and show that it defines a continuous linear functional on H.

(b) Show that, if µ is a probability measure, then

I ∈ conv(f(X)).

Hint: Use the Hahn–Banach Separation Theorem.

Exercise 2.4.15. Let σ : K × H → H, (k, v) 7→ k.v be a continuous action of
the compact group K by affine maps on the Hilbert space H. Show that σ has
a fixed point. Hint: For any orbit K-orbit K.v, define the center of mass by

c(v) :=
∫
K

k.v dµK(k),

where µK is a normalized Haar measure on K (cf. Exercise 2.4.14).
Conclude that for any continuous unitary representation (π,H) of K each

continuous 1-cocycle f : K → H is a coboundary, i.e., of the form f(k) = π(k)v−
v for some v ∈ H. Hint: Use Exercise 2.2.11.
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Chapter 3

Reproducing Kernel Spaces

In Chapter 2 we have seen how Hilbert spaces and continuous unitary represen-
tations can be constructed on L2-spaces. An L2-space L2(X,µ) of a measure
space (X,S) has the serious disadvantage that its elements are not functions
on X, they are only equivalence classes of functions modulo those vanishing on
µ-zero sets. However, many important classes of unitary representations can be
realized in spaces of continuous functions. In particular for infinite dimensional
Lie groups, this is the preferred point of view because measure theory on infi-
nite dimensional spaces has serious defects that one can avoid by using other
methods.

The main concept introduced in this chapter is that of a reproducing kernel
Hilbert space. These are Hilbert spaces H of functions on a set X for which
all point evaluations H → C, f 7→ f(x), are continuous linear functions. Repre-
senting these functions according to the Fréchet–Riesz Theorem by an element
Kx ∈ H, we obtain a function

K : X ×X → C, K(x, y) := Ky(x)

called the reproducing kernel of H. Typical questions arising in this context
are: Which functions on X×X are reproducing kernels (such kernels are called
positive definite) and, if we have a group action on X, how can we construct
unitary representations on reproducing kernel spaces.

Throughout this chapter K denotes either R or C.

3.1 Hilbert Spaces with Continuous Point Eval-
uations

Definition 3.1.1. Let X be a set.
(a) Consider a Hilbert space H which is contained in the space KX of K-

valued functions on X. We say that H has continuous point evaluations if for

53
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each x ∈ X the linear functional

evx : H → K, f 7→ f(x)

is continuous. In view of the Fréchet–Riesz Theorem, this implies the existence
of some Kx ∈ H with

f(x) = 〈f,Kx〉 for f ∈ H, x ∈ X.

The corresponding function

K : X ×X → C, K(x, y) := Ky(x)

is called the reproducing kernel of H. As we shall see below, H is uniquely
determined by K, so that we shall denote it by HK to emphasize this fact.

(b) A function K : X × X → K is called a positive definite kernel if for
each finite subset {x1, . . . , xn} ⊆ X the matrix

(
K(xi, xj)

)
i,j=1,...,n

is positive

semidefinite. For a function K : X ×X → C we write K∗(x, y) := K(y, x) and
say that K is hermitian (or symmetric for K = R) if K∗ = K.

We write P(X,K) for the set of positive definite kernels on the set X.

Remark 3.1.2. (a) Over K = C, the positive definiteness of a kernel K already
follows from the requirement that for all choices x1, . . . , xn ∈ X and c1, . . . , cn ∈
C we have

n∑
j,k=1

cjckK(xj , xk) ≥ 0

because this implies that K is hermitian (Exercise 3.1.7).
For K = R, the requirement of the kernel to be hermitian is not redundant.

Indeed, the matrix

(Kij)i,j=1,2 =
(

0 1
−1 0

)
,

considered as a kernel on the two element set X = {1, 2}, satisfies

2∑
j,k=1

cjckK(xj , xk) = 0

for x1, . . . , xn ∈ X and c1, . . . , cn ∈ R, but K is not hermitian.
(b) For any positive definite kernel K ∈ P(X) and x, y ∈ P(X), the positive

definiteness of the hermitian matrix(
K(x, x) K(x, y)
K(y, x) K(y, y)

)
implies in particular that

|K(x, y)|2 ≤ K(x, x)K(y, y) (3.1)
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In the following we call a subset S of a Hilbert space H total if it spans a
dense subspace.

Theorem 3.1.3. (Characterization Theorem) The following assertions hold for
a function K : X ×X → K:

(a) If K is the reproducing kernel of H ⊆ KX , then the following assertions
hold:

(1) K is positive definite.

(2) {Kx : x ∈ X} is total in H.

(3) For any orthonormal basis (ej)j∈J , we have K(x, y) =
∑
j∈J ej(x)ej(y).

(b) If K is positive definite, then H0
K := span{Kx : x ∈ X} ⊆ KX carries a

unique positive definite hermitian form satisfying

〈Ky,Kx〉 = K(x, y) for x, y ∈ X. (3.2)

The completion HK of H0
K permits an injection

ι : HK → KX , ι(v)(x) := 〈v,Kx〉

whose image is a Hilbert space with reproducing kernel K that we identify
with HK .

(c) K is positive definite if and only if there exists a Hilbert space H ⊆ KX with
reproducing kernel K.

Proof. (a)(1) That K is hermitian follows from

K(y, x) = Kx(y) = 〈Kx,Ky〉 = 〈Ky,Kx〉 = K(x, y).

For c ∈ Kn we further have∑
j,k

cjckK(xj , xk) =
∑
j,k

cjck〈Kxk ,Kxj 〉 = ‖
∑
k

ckKxk‖2 ≥ 0.

This proves (1).
(2) If f ∈ H is orthogonal to each Kx, then f(x) = 0 for each x ∈ X implies

f = 0. Therefore {Kx : x ∈ X} spans a dense subspace.
(3) If (ej)j∈J is an ONB of H, then we have for each y ∈ X the relation

Ky =
∑
j∈J
〈Ky, ej〉ej =

∑
j∈J

ej(y)ej ,

and therefore
K(x, y) = Ky(x) =

∑
j∈J

ej(y)ej(x).



56 CHAPTER 3. REPRODUCING KERNEL SPACES

(b) We want to put〈∑
j

cjKxj ,
∑
k

dkKxk

〉
:=
∑
j,k

cjdkK(xk, xj), (3.3)

so that we have to show that this is well-defined.
So let f =

∑
j cjKxj and h =

∑
k dkKxk ∈ H0

K . Then we obtain for the
right hand side∑

j,k

cjdkK(xk, xj) =
∑
j,k

cjdkKxj (xk) =
∑
k

dkf(xk). (3.4)

This expression does not depend on the representation of f as a linear combi-
nation of the Kxj . Similarly, we see that the right hand side does not depend
on the representation of h as a linear combination of the Kxk . Therefore

〈f, h〉 :=
∑
j,k

cjdkK(xk, xj)

is well-defined. Since K is positive definite, we thus obtain a positive semidefi-
nite hermitian form on H0

K . From (3.4) we obtain for h = Kx the relation

〈f,Kx〉 = f(x) for x ∈ X, f ∈ H0
K .

If 〈f, f〉 = 0, then the Cauchy–Schwarz inequality yields

|f(x)|2 = |〈f,Kx〉|2 ≤ K(x, x)〈f, f〉 = 0,

so that f = 0. Therefore H0
K is a pre-Hilbert space.

Now let HK be the completion of H0
K . Then

ι : HK → KX , ι(v)(x) := 〈v,Kx〉

is an injective linear map because the set {Kx : x ∈ X} is total in H0
K , hence

also in HK . Now HK ∼= ι(HK) ⊆ KX is a Hilbert space with continuous point
evaluations and reproducing kernel K.

(c) follows (a) and (b).

Lemma 3.1.4. (Uniqueness Lemma for Reproducing Kernel Spaces) If H ⊆
KX is a Hilbert space with continuous point evaluations and reproducing kernel
K, then H = HK .

Proof. Since K is the reproducing kernel of H, it contains the subspace H0
K :=

span{Kx : x ∈ X} ofHK , and the inclusion η : H0
K → H is isometric because the

scalar products on the pairs (Kx,Ky) coincide. Now η extends to an isometric
embedding η̂ : HK → H, and since H0

K is also dense in H, we see that η̂ is
surjective. For f ∈ HK we now have

η̂(f)(x) = 〈η̂(f),Kx〉H = 〈f,Kx〉HK = f(x),

so that η̂(f) = f , and we conclude that HK = H.
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Definition 3.1.5. The preceding lemma justifies the notation HK for the
unique Hilbert subspace of KX with continuous point evaluations and repro-
ducing kernel K. We call it the reproducing kernel Hilbert space defined by K.

Lemma 3.1.6. If HK ⊆ KX is a reproducing kernel space and S ⊆ X a subset
with

K(x, x) ≤ C for x ∈ S,

then
|f(x)| ≤

√
C‖f‖ for x ∈ S, f ∈ HK .

In particular, convergence in HK implies uniform convergence on S.

Proof. For f ∈ HK and x ∈ S, we have

|f(x)| = |〈f,Kx〉| ≤ ‖f‖ · ‖Kx‖ = ‖f‖
√
〈Kx,Kx〉 = ‖f‖

√
K(x, x) ≤

√
C‖f‖.

Exercises for Section 3.1

Exercise 3.1.7. Show that, if A ∈M2(C) satisfies

c∗Ac ≥ 0 for c ∈ C2,

then A∗ = A.

Exercise 3.1.8. Let X be a non-empty set and T ⊆ X × X be a subset
containing the diagonal. Then the characteristic function χT of T is a positive
definite kernel if and only if T is an equivalence relation.

Exercise 3.1.9. Show that if K is a positive definite kernel and c > 0, then
HcK = HK as subspaces of KX . Explain how their scalar products are related.

3.2 Basic Properties of Positive Definite Ker-
nels

The key advantage of Hilbert spaces with continuous point evaluations is that
they can be completely encoded in the function K, which is a much less com-
plex object than an infinite dimensional Hilbert space. Before we discuss some
important examples of positive definite kernels, we take a closer look at the
closure properties of the set P(X) of all positive definite kernels under several
operations.

Proposition 3.2.1. (Permanence properties of positive definite kernels) The
set P(X) of positive definite kernels on X ×X has the following properties:

(a) P(X) is a convex cone in KX×X , i.e., K,Q ∈ P(X) and λ ∈ R+ imply

K +Q ∈ P(X) and λK ∈ P(X).
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(b) The cone P(X) is closed under pointwise limits. In particular, if (Kj)j∈J
is a family of positive definite kernels on X and all sums K(x, y) :=∑
j∈J Kj(x, y) exist, then K is also positive definite.

(c) If µ is a positive measure on (J,S) and (Kj)j∈J is a family of positive
definite kernels such that for x, y ∈ X the functions j 7→ Kj(x, y) are
measurable and the functions j 7→ Kj(x, x) are integrable, then

K(x, y) :=
∫
J

Kj(x, y) dµ(j)

is also positive definite.

(d) (Schur) P(X) is closed under pointwise multiplication: If K,Q ∈ P(X),
then the kernel

(KQ)(x, y) := K(x, y)Q(x, y)

is also positive definite.

(e) If K ∈ P(X), then K and ReK ∈ P(X).

Proof. A hermitian kernel K is positive definite if

S(K) :=
n∑

j,k=1

K(xi, xj)cicj ≥ 0

holds for x1, . . . , xn ∈ X and c1, . . . , cn ∈ K.
(a) follows from S(K +Q) = S(K) + S(Q) and S(λK) = λS(K).
(b) follows from S(Kj) → S(K) if Kj → K holds pointwise on X ×X and

the fact that the set of positive semidefinite (n × n)-matrices is closed. For
K =

∑
j Kj we likewise have S(K) =

∑
j∈J S(Kj) ≥ 0.

(c) To see that the functions j 7→ Kj(x, y) are integrable, we first observe
that the positive definiteness of the kernels Kj implies that

|Kj(x, y)| ≤
√
Kj(x, x)

√
Kj(y, y)

(Remark 3.1.2) and since the functions j 7→
√
Kj(x, x) are square integrable by

assumption, the product
√
Kj(x, x)

√
Kj(y, y) is integrable. Now the assertion

follows from S(K) =
∫
J
S(Kj) dµ(j) ≥ 0, because µ is a positive measure.

(d) We have to show that the pointwise product C = (ajkbjk) of two positive
semidefinite matrices A and B is positive semidefinite.

On the Hilbert space H := Kn, the operator defined by B is orthogonally
diagonalizable with non-negative eigenvalues. Let f1, . . . , fn be an ONB of
eigenvectors for B and λ1, . . . , λn be the corresponding eigenvalues. Then

Bv =
n∑
j=1

〈v, fj〉Bfj =
n∑
j=1

λj〈v, fj〉fj =
n∑
j=1

λjf
∗
j v · fj =

n∑
j=1

λjfjf
∗
j v
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(where we use matrix products) implies B =
∑
j λjfjf

∗
j , and since the λj are

non-negative, it suffices to prove the assertion for the special case B = vv∗ for
some v ∈ Kn, i.e., bjk = vjvk. Then we obtain for d ∈ Kn

∑
j,k

djdkcjk =
∑
j,k

djdkvjvkajk =
∑
j,k

(djvj)dkvkajk ≥ 0,

and thus C is positive semidefinite.
(e) Since K is hermitian, we have K(x, y) = K(y, x), and this kernel is

positive definite. In view of (a), this implies that ReK = 1
2 (K + K) is also

positive definite.

Corollary 3.2.2. If f(z) :=
∑∞
n=0 anz

n is a power series with an ≥ 0 converg-
ing for |z| < r and K ∈ P(X) is a positive definite kernel with |K(x, y)| < r for
x, y ∈ X, then the kernel

(f ◦K)(x, y) := f(K(x, y)) =
∞∑
n=0

anK(x, y)n

is positive definite.

Proof. This follows from Proposition 3.2.1(b) because Proposition 3.2.1(d) im-
plies that the kernels K(x, y)n are positive definite.

3.3 Realizing Hilbert Spaces as Reproducing Ker-
nel Spaces

At this point we know how to get new positive definite kernels from given ones,
but we should also have a more effective means to recognize positive definite
kernels quickly.

Remark 3.3.1. (a) For any map γ : X → H of a set X into a Hilbert space
H, the kernel Kγ(x, y) := 〈γ(y), γ(x)〉 is positive definite because it clearly is
hermitian, and for x1, . . . , xn ∈ X and c1, . . . , cn ∈ K, we have

n∑
i,j=1

cjckKγ(xj , xk) =
n∑

i,j=1

cjck〈γ(xk), γ(xj)〉 = ‖
n∑
i=1

ckγ(xk)‖2 ≥ 0.

(b) For K ∈ P(X) and f : X → C, the kernel

Q(x, y) := f(x)K(x, y)f(y)

is also positive definite. In fact, it is the product of K with the kernel f(x)f(y)
whose positive definiteness follows from (a), applied to the function

γ = f : X → C = H
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and Proposition 3.2.1(d).
(c) If K ∈ P(X) and ϕ : Y → X is a function, then the kernel

ϕ∗K : Y × Y → C, (x, y) 7→ K(ϕ(x), ϕ(y))

is also positive definite. This is a direct consequence of the definitions.

Definition 3.3.2. Let H be a Hilbert space. A triple (X, γ,H) consisting of a
set X and a map γ : X → H is called a realization triple if γ(X) spans a dense
subspace of H. Then K(x, y) := 〈γ(y), γ(x)〉 is called the corresponding positive
definite kernel.

Theorem 3.3.3. (Realization Theorem for Positive Definite Kernels) For each
positive definite kernel K on X, there exists a realization triple (X, γ,H) with
reproducing kernel K. For any other such triple (X, γ′,H′), there exists a unique
isometry ϕ : H → H′ with ϕ ◦ γ = γ′.

Proof. Existence: Let HK ⊆ KX be the reproducing kernel Hilbert space with
kernel K (Theorem 3.1.3). Then γ : X → HK , γ(x) := Kx satisfies

〈γ(y), γ(x)〉 = 〈Ky,Kx〉 = Ky(x) = K(x, y).

Uniqueness: Let c1, . . . , cn ∈ K and x1, . . . , xn ∈ X. Then∥∥∥ n∑
j=1

cjγ
′(xj)

∥∥∥2

=
n∑

j,k=1

cjck〈γ′(xj), γ′(xk)〉

=
n∑

j,k=1

cjckK(xk, xj) =
∥∥∥ n∑
j=1

cjγ(xj)
∥∥∥2

.

We may therefore define a linear map

ϕ : span γ(X)→ H′, ϕ
( n∑
i=1

ciγ(xi)
)

:=
n∑
i=1

ciγ
′(xi).

As the preceding calculation shows, ϕ is isometric, hence extends to an isometry
ϕ : H → H′, and by definition it satisfies ϕ ◦γ = γ′. That ϕ is surjective follows
from the density of span(γ′(X)) in H′ and the uniqueness of ϕ follows from the
density of span(γ(X)) in H.

Definition 3.3.4. (a) For a positive definite kernel K : X ×X → C, the real-
ization triple (X, γ,HK) with γ(x) = Kx, used in the previous proof, is called
the canonical realization triple.

(b) For a realization triple (X, γ,H), the corresponding unitary map

ϕγ : H → HK with ϕγ(γ(x)) = Kx

satisfies
ϕγ(v)(x) = 〈ϕγ(v),Kx〉 = 〈v, γ(x)〉.

The isomorphism ϕγ is called a realization of H as a reproducing kernel space.
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Proposition 3.3.5. Let K be a continuous positive definite kernel on the topo-
logical space X. Then the map γ : X → HK , x 7→ Kx, is continuous and HK
consists of continuous functions.

Proof. The continuity of γ follows from the continuity of

‖Kx −Ky‖2 = K(x, x) +K(y, y)−K(x, y)−K(y, x).

Since the scalar product is a continuous function H×H → K, the continuity of
each f ∈ HK now follows from f(x) = 〈f,Kx〉 = 〈f, γ(x)〉 and the continuity
of γ.

Examples 3.3.6. (a) If H is a Hilbert space, then the kernel

K(x, y) := 〈y, x〉

on H is positive definite (Remark 3.3.1(a)). A corresponding realization is given
by the map γ = idH. In particular, H ∼= HK ⊆ KH.

(b) The kernel K(x, y) := 〈x, y〉 = 〈y, x〉 is also positive definite (Propo-
sition 3.2.1(e)). To identify the corresponding Hilbert space, we consider the
dual space H′ of continuous linear functionals on H. According to the Fréchet–
Riesz Theorem, every element of H′ has the form γv(x) := 〈x, v〉 for a uniquely
determined v ∈ H, and the map

γ : H → H′, v 7→ γv

is an antilinear isometry. In particular, H′ also is a Hilbert space, and the scalar
product on H′ (which is determined uniquely by the norm via polarization) is
given by

〈γy, γx〉 := 〈x, y〉 = K(x, y).

Therefore γ : H → H′ yields a realization of the kernel K, which leads to
HK ∼= H′.

(c) If (ej)j∈J is an orthonormal basis in H, then the map

γ : J → H, j 7→ ej

has total range, and K(i, j) := δij = 〈ei, ej〉 is the corresponding positive defi-
nite kernel on J . The element v ∈ H then corresponds to the function

ϕγ(v) : J → K, j 7→ 〈v, ej〉

of its coefficients in the expansion v =
∑
j∈J〈v, ej〉ej , and the map

ϕγ : H → `2(J,K), v 7→ (〈v, ej〉)j∈J

is an isomorphism of Hilbert spaces. We conclude that HK ∼= `2(J,K) ⊆ KJ is
the corresponding reproducing kernel space.
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(d) Let (X,S, µ) be a finite measure space and H = L2(X,µ). Then the
map

γ : S→ L2(X,µ), E 7→ χE

has total range because the step functions form a dense subspace of L2(X,µ).
We thus obtain a realization

ϕγ : L2(X,µ)→ HK ⊆ CS, ϕγ(f)(E) = 〈f, χE〉 =
∫
E

f dµ,

of L2(X,µ) as a reproducing kernel space on S whose kernel is given by

K(E,F ) = 〈χF , χE〉 = µ(E ∩ F ).

(e) If H is a complex Hilbert space, then the kernel K(z, w) := e〈z,w〉 is also
positive definite (Corollary 3.2.2. The corresponding Hilbert space HK ⊆ CH
is called the (symmetric) Fock space F(H) of H. As we shall see below, it plays
an important role in representations theory, and in particular in mathematical
physics.

We also note that the same argument shows that for each λ ≥ 0, the kernel
eλ〈z,w〉 is positive definite.

(f) Let H be a Hilbert space and D := {z ∈ H : ‖z‖ < 1} be the open unit
ball. For each s ≥ 0, we find with Corollary 3.2.2 that the kernel

K(z, w) := (1− 〈z, w〉)−s =
∞∑
n=0

(
−s
n

)
(−1)n〈z, w〉n

=
∞∑
n=0

(−s)(−s− 1) · · · (−s− n+ 1)
n!

(−1)n〈z, w〉n

=
∞∑
n=0

s(s+ 1) · · · (s+ n− 1)
n!

〈z, w〉n

is positive definite.
We shall see below how these kernels can be used to obtain interesting unitary

representations of certain Lie groups.

Remark 3.3.7. (Extending γ : X → H to measures) Let (X,S) be a measur-
able space and K ∈ P(X) be a positive definite measurable kernel. Let µ be a
measure on (X,S) satisfying

cK :=
∫
X

√
K(x, x) dµ(x) <∞. (3.5)

Each f ∈ HK satisfies

|f(x)| ≤ ‖f‖ · ‖Kx‖ = ‖f‖
√
K(x, x).
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We also observe that the measurability of all functions Kx implies the measura-
bility of all functions inHK because they are pointwise limits of sequences of lin-
ear combinations of the Kx (cf. Theorem 3.1.3). We conclude that f ∈ L1(X,µ)
for each f ∈ HK , and that we have an estimate∣∣∣ ∫

X

f(x) dµ(x)
∣∣∣ ≤ cK‖f‖.

Therefore integration defines a continuous linear functional on HK , and we thus
obtain a uniquely determined element Kµ ∈ HK with∫

X

f(x) dµ(x) = 〈f,Kµ〉 for f ∈ HK .

This relation can be rewritten as 〈f,Kµ〉 =
∫
X
〈f,Ky〉 dµ(y), so that

Kµ =
∫
X

Ky dµ(y)

in the sense of weak integrals. Evaluating this relation in x ∈ X, leads to

Kµ(x) =
∫
X

Ky(x) dµ(y) =
∫
X

K(x, y) dµ(y).

We further obtain

0 ≤ 〈Kµ,Kµ〉 =
∫
X

Kµ(y) dµ(y) =
∫
X

∫
X

K(y, x) dµ(x) dµ(y).

Note that for the point measure δx in X we have Kδx = Kx, so that the
assignment µ 7→ Kµ can be considered as an extension of the map γK : X →
HK , x 7→ Kx, to a certain set of measures µ, restricted by the relation (3.5).

If µ is a Radon measure on a locally compact space, K is continuous and
f ∈ Cc(X), then ∫

X

|f(x)|
√
K(x, x) dµ(x) <∞,

so that we obtain in particular the relation∫
X

∫
X

f(x)f(y)K(x, y) dµ(x) dµ(y) ≥ 0, (3.6)

which shows that

〈f, h〉 :=
∫
X

∫
X

f(x)h(y)K(x, y) dµ(x) dµ(y) ≥ 0

defines a positive definite hermitian form on Cc(X).
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Exercises for Section 3.3

Exercise 3.3.8. Let HK ⊆ KX be a reproducing kernel Hilbert space and
HK =

⊕̂
j∈JHj be a direct Hilbert space sum. Show that there exist positive

definite kernels Kj ∈ P(X) with K =
∑
j∈J K

j and Hj = HKj for j ∈ J . Hint:
Consider Hj as a Hilbert space with continuous point evaluations and let Kj

be its reproducing kernel.

Exercise 3.3.9. Let X = [a, b] be a compact interval in R and K : [a, b]2 → C
be a continuous function. Then K is positive definite if and only if∫ b

a

∫ b

a

c(x)c(y)K(x, y) dx dy ≥ 0 for each c ∈ C([a, b],C).

Exercise 3.3.10. Show that for a ∈ C with Re a > 0 and z ∈ C, the following
integral exists and verify the formula:

1√
2π

∫
R
exz−

ax2
2 dx =

1√
a
e
z2
2a ,

where
√
a refers to the canonical branch of the square root on the right half

plane with
√

1 = 1. Hint: Assume first that a, z ∈ R. Then use a dominated
convergence argument to verify that the integral depends holomorphically on z
and a.

Exercise 3.3.11. Fix a > 0 and define γ : C→ L2(R, dx) by γ(z) := exz−
ax2
2 .

Show that

〈γ(z), γ(w)〉 =
√
π

a
e

(z+w)2

4a

and that γ(C) is total in L2(R). Use this to derive an isomorphism ϕγ of
L2(R, dx) with a reproducing kernel space of holomorphic functions on C.

Exercise 3.3.12. Let (X,S, µ) be a probability space. Show that on X = S,
the kernel

K(E,F ) := µ(E ∩ F )− µ(E)µ(F )

is positive definite. Hint: Consider the hyperplane {f ∈ L2(X,µ) :
∫
X
f dµ =

0}.

Exercise 3.3.13. Show that on X := [0, 1], the kernel K(x, y) := min(x, y)−xy
is positive definite.

Exercise 3.3.14. On the interval [0, 1] ⊆ R, we consider H = L2([0, 1], dx) and
the map

γ : [0, 1]→ H, γ(x) := χ[0,x].

Show that:

(a) K(x, y) := 〈γ(y), γ(x)〉 = min(x, y).
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(b) im(γ) is total in H. Hint: The subspace spanned by im(γ) contains all Rie-
mannian step functions (those corresponding to finite partitions of [0, 1]
into subintervals). From this one derives that its closure contains all con-
tinuous functions and then use Proposition 2.3.6.

(c) The reproducing kernel space HK consists of continuous functions and

ϕγ : L2([0, 1])→ HK , ϕγ(f)(x) :=
∫ x

0

f(t) dt.

The space HK is also denoted H1
∗ ([0, 1]). It is the Sobolev space of all

continuous functions on [0, 1], vanishing in 0 whose derivatives are L2-
functions.

Exercise 3.3.15. Show that onX :=]0,∞[ the kernelK(x, y) := 1
x+y is positive

definite. Hint: Consider the elements eλ(x) := e−λx in L2(R+, dx).

Exercise 3.3.16. Let X be a topological space and Y ⊆ X be a dense subspace.
Show that, if K : X ×X → C is a continuous positive definite kernel, then the
restriction map

r : HK → CY , f 7→ f |Y
induced a unitary isomorphism onto the reproducing kernel space HQ with
Q := K|Y×Y .

Exercise 3.3.17. Let X be a set and K ∈ P(X,C) be a positive definite kernel.
Show that

(a) HK = HK and that the map σ : HK → HK , f 7→ f is anti-unitary.

(b) The map σ(f) = f preserves HK = HK and acts isometrically on this
space of and only if K is real-valued.

3.4 Inclusions of Reproducing Kernel Spaces

In this subsection, we discuss the order structure on the cone P(X) = P(X,C)
of complex-valued positive definite kernels on the set X and relate it to the
structure of the corresponding Hilbert spaces.

Definition 3.4.1. Let K ∈ P(X) and A ∈ B(HK). We define the symbol of A
as the kernel

KA : X ×X → C, KA(x, y) := 〈AKy,Kx〉.

Note that K1 = K for the identity operator 1 on HK . Since the Kx, x ∈ X,
form a total subset of X, A is uniquely determined by its symbol.

Lemma 3.4.2. The assignment B(H) 7→ CX×X , A 7→ KA has the following
properties:
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(i) (KA)∗ = KA∗ and KA is hermitian if and only if A is hermitian.

(ii) KA is positive definite if and only if A is positive.

Proof. For x, y ∈ X, the relation

KA(y, x) = 〈AKx,Ky〉 = 〈Kx, A
∗Ky〉 = KA∗(x, y)

implies that (KA)∗ = KA∗ . Since an operator is uniquely determined by its
symbol, (i) follows.

(ii) In view of (i), we may assume that A is hermitian. For c1, . . . , cn ∈ C
and x1, . . . , xn ∈ X and w :=

∑
j cjKxj , we have

〈Aw,w〉 =
n∑

j,k=1

cjck〈AKxj ,Kxk〉 =
n∑

j,k=1

cjckK
A(xk, xj).

Therefore A is a positive operator if and only if the kernel KA is positive definite.

Example 3.4.3. (a) Let (ej)j∈J be an orthonormal basis in the Hilbert space
H and K : J × J → C, (i, j) 7→ δij be the reproducing kernel corresponding
to the natural realization as functions on J (cf. Example 3.3.6(c)). Then the
symbol of A ∈ B(HK) is the function

KA(i, j) = 〈AKj ,Ki〉 = 〈Aej , ei〉 =: aij ,

where (aij)i,j∈J is the matrix of the operator A with respect to the orthonormal
basis (ej)j∈J .

(b) We realize the Hilbert space H as a reproducing kernel space HK on
X = H with kernel K(z, w) = 〈w, z〉 (cf. Example 3.3.6(a)). Then the symbol
of an operator A ∈ B(H) is the kernel KA(z, w) = 〈Aw, z〉.

(c) We assume that (X,S, µ) is a measure space and that we have a repro-
ducing kernel space HK ⊆ CX with an isometric embedding HK ↪→ L2(X,µ).1

Since the Kx form a total subset of HK , this condition is equivalent to
‖Kx‖2 <∞ for each x ∈ X, and the relation

K(x, y) = 〈Ky,Kx〉 =
∫
X

Ky(z)Kx(z) dµ(z) =
∫
X

K(x, z)K(z, y) dµ(z).

For a bounded operator A ∈ B(HK) and f ∈ HK , we then have

(Af)(z) = 〈f,A∗Kz〉 =
∫
X

f(w)A∗Kz(w) dµ(w)

=
∫
X

f(w)KA∗(w, z) dµ(w) =
∫
X

KA(z, w)f(w) dµ(w).

This means that every bounded operator A on HK can be written as a kernel
operator with kernel KA.

1The example under (a) is of this type if µ is the counting measure on J and K(i, j) = δij .
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Definition 3.4.4. (a) If C is a convex cone in the real vector space V , then we
define an order on V by a << b if b − a ∈ C. We say that b dominates a and
write a ≺ b if a << λb for some λ > 0.

A face F of C is a convex cone F ⊆ C with the property that

x+ y ∈ F, x, y ∈ C ⇒ x, y ∈ F.

This can also be expressed as

(F − C) ∩ C ⊆ F.

Since intersections of families of faces are faces (Exercise 3.4.11), it makes sense
to speak of the face generated by a subset of C. The face generated by an
element x ∈ C is the set of all elements of C, dominated by x (Exercise). An
extremal ray of C is a face of the form R+x ⊆ C. That x generates an extremal
ray means that x = y + z for y, z ∈ C implies that y, z ∈ R+x.

(b) In the following, we shall apply all concepts defined under (a) to the
convex cone P(X) of positive definite kernels.

We now relate these notions to the corresponding Hilbert spaces.

Remark 3.4.5. Let K,Q ∈ P(X). We describe the space HK+Q. In order to
do that, we define a map

γ : X → HK ⊕HQ, x 7→ (Kx, Qx).

Then 〈γ(y), γ(x)〉 = K(x, y) + Q(x, y), so that the Realization Theorem 3.3.3
shows that we obtain a realization of the closed subspace of HK⊕HQ generated
by γ(X) as HK+Q. Since

〈(f1, f2), γ(x)〉 = f1(x) + f2(x),

the mappingHK⊕HQ → HK+Q, (f1, f2) 7→ f1+f2 is surjective and an isometry
on the closed subspace generated by im(γ). Its kernel is the set of pairs (f,−f),
f ∈ HK ∩HQ. We conclude in particular that

HK+Q = HK +HQ ∼= (HK ⊕HQ)/(HK ∩HQ).

Lemma 3.4.6. Let H be a Hilbert space, K ∈ P(X) and HK be the corre-
sponding reproducing kernel Hilbert space. Then a linear mapping A : H → HK
is continuous if and only if, for each x ∈ X, the map H → C, v 7→ (Av)(x) is
continuous.

Proof. Since the point evaluations on HK are continuous, the continuity of the
functions v 7→ (Av)(x) is clearly necessary for the continuity of A.

Suppose, conversely, that all these functions are continuous. We claim that
the graph

Γ(A) := {(v,Av) ∈ H ×HK : v ∈ H}
is closed. In fact, if (vn, Avn)→ (v, w), then we have for each x ∈ X the relation
(Avn)(x) → w(x), and also (Avn)(x) → (Av)(x), which leads to Av = w. Now
the continuity of A follows from the Closed Graph Theorem.
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Theorem 3.4.7. For L,K ∈ P(X), the following are equivalent:

(1) L ≺ K, i.e., λK − L ∈ P(X) for some λ > 0.

(2) HL ⊆ HK .

(3) There exists a positive operator B ∈ B(HK) with KB = L.

Proof. (1) ⇒ (2): If L ≺ K, then we find a λ > 0 with K ′ := λK − L ∈ P(X).
Then λK = L + K ′, and therefore HK = HλK = HL + HK′ (Remark 3.4.5)
implies HL ⊆ HK .

(2) ⇒ (3): We claim that the embedding A : HL → HK is continuous with
L = KAA∗ . For each x ∈ X, the mapping HL → C, f 7→ (Af)(x) = f(x) is
continuous so that the continuity of A follows from Lemma 3.4.6. The definition
of A implies that

〈f, Lx〉 = f(x) = (Af)(x) = 〈Af,Kx〉 = 〈f,A∗Kx〉

for each f ∈ HL, and therefore Lx = A∗Kx. This in turn leads to

L(x, y) = 〈Ly, Lx〉 = 〈A∗Ky, A
∗Kx〉 = 〈AA∗Ky,Kx〉 = KAA∗(x, y).

(3) ⇒ (1): The operator C := ‖B‖1−B is positive, so that

KC = ‖B‖K1 −KB = ‖B‖K − L ∈ P(X)

(Lemma 3.4.2). Hence L ≺ K.

Remark 3.4.8. Note that Theorem 3.4.7 implies in particular that the mapping
B 7→ KB yields a linear isomorphism of the convex cone B(HK)+ of positive
operators on HK onto the face of P(X) generated by K.

Proposition 3.4.9. For 0 6= K ∈ P(X), the following are equivalent:

(1) dimHK = 1.

(2) R+K is an extremal ray in P(X).

(3) There exists a non-zero function f ∈ CX with K(x, y) = f(x)f(y) for all
x, y ∈ X.

Proof. (1) ⇔ (2) follows from Remark 3.4.8 and the observation that the cone
of positive operators in HK is one-dimensional if and only if HK itself is one
dimensional.

(1) ⇒ (3): If HK is one-dimensional, then let f ∈ HK denote a unit vector.
We claim that K(x, y) = f(x)f(y) holds for all x, y ∈ X. In fact, we have
Ky = c(y)f for some c(y) ∈ C, so that f(x) = 〈f,Kx〉 = 〈f, c(x)f〉 = c(x) leads
to K(x, y) = Ky(x) = c(y)f(x) = f(x)f(y).

(3) ⇒ (1): If K(x, y) = f(x)f(y), then all functions Ky are multiples of f ,
so that HK = Cf is one-dimensional if K is non-zero.
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Remark 3.4.10. We claim that the extremal rays of the cone B(H)+ of positive
operators on H are of the form R+Pv, where

Pvx = 〈x, v〉v for some 0 6= v ∈ H.

To verify this claim, we identify H with the reproducing kernel space HK ⊆
CH with K(z, w) = 〈w, z〉 (Example 3.3.6(a)). In view of Remark 3.4.8, an
operator A ∈ B(H)+ generates an extremal ray if and only if its symbol KA

corresponds to a minimal non-zero subspace HKA of H = HK . This is clearly
equivalent to dimHKA = 1, which in turn is equivalent to

KA(z, w) = 〈Aw, z〉 = f(z)f(w)

for some f ∈ HK = H (Proposition 3.4.9). Since each f ∈ H can be represented
as f(z) = 〈v, z〉 for some v ∈ H (a continuous antilinear functional), we have

f(z)f(w) = 〈v, z〉〈w, v〉 = 〈Pv(w), z〉 = KPv (z, w).

This proves that R+A is extremal if and only if A = Pv for some non-zero vector
v ∈ H.

Exercises for Section 3.4

Exercise 3.4.11. Let C be a convex cone in a real vector space. Show that for
any family (Fi)i∈I of faces of C, the intersection

⋂
i∈I Fi also is a face.

Exercise 3.4.12. Let C be a convex cone in a real vector space and f : V → R
a linear functional with f(C) ⊆ R+. Show that ker f ∩ C is a face of C.

Exercise 3.4.13. Let C be a convex cone in a topological vector space V . Show
that every proper face F of C is contained in the boundary ∂C. Hint: Show that
the face generated by any x ∈ C0 is all of C by showing that C ⊆

⋃
λ>0(λx−C).

Exercise 3.4.14. We have seen in Example 3.3.6 that the L2-space for a finite
measure µ on (X,S) can be realized as a reproducing kernel space Hµ ⊆ CS

with kernel K(E,F ) = µ(E ∩ F ). Show that for two finite positive measures λ
and µ on (X,S), we have

Hλ ⊆ Hµ ⇐⇒ (∃C > 0)µ ≤ Cλ.

Hint: Use Theorem 3.4.7 to see that for the corresponding kernels Kµ and Kλ

we have Kλ(E,E) ≤ CKµ(E,E) for all E ∈ S.
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Chapter 4

Commutants and Tensor
Products

In this chapter we turn to finer information on unitary representations, resp.,
representations of involutive semigroups. We have already seen in Lemma 1.3.1
that for a representation (π,H) of (S, ∗), a closed subspace K of H is invariant
if and only if the corresponding orthogonal projection PK onto K belongs to the
subalgebra

BS(H) = {A ∈ B(H) : (∀s ∈ S)Aπ(s) = π(s)A}.
This algebra is called the commutant of π(S) and since its hermitian projections
are in one-to-one correspondence with the closed invariant subspaces of H, it
contains all information on how the representation (π,H) decomposes.

A key result in this context is Schur’s Lemma, asserting that π(S)′ = C1
if and only if (π,H) is irreducible. The proof we give is based on Gelfand’s
Representation Theorem for commutative C∗-algebras, which is explained in
Section 4.1. In Section 4.2, Schur’s Lemma is used to get complete informa-
tion on the commutant of any representation generated by irreducible ones. In
Section 4.3 we introduce tensor products of unitary representations. They pro-
vide in particular a natural way to deal with infinite multiples of an irreducible
representation and to determine their commutants in terms of the so-called
multiplicity space.

4.1 Commutative C∗-algebras

Let A be a commutative Banach-∗-algebra. We write

Â := Hom(A,C) \ {0},

where Hom(A,C) denotes the set of all morphisms of Banach-∗-algebras, i.e.,
continuous linear functionals χ : A → C with the additional property that

χ(ab) = χ(a)χ(b) and χ(a∗) = χ(a) for a, b ∈ A. (4.1)

71
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Thinking of C as a one-dimensional Hilbert space, we have C ∼= B(C), so
that Hom(A,C) can also be considered as the set of one-dimensional (involutive)
representations of the Banach-∗-algebra A.

Since the set Hom(A,C) is defined by the equations (4.1), it is a weak-∗-
closed subset of the topological dual space A′. One can also show that ‖χ‖ ≤ 1
for any χ ∈ Hom(A,C) (Exercise 4.1.4), so that Hom(A,C) is also bounded,
hence weak-∗-compact by the Banach–Alaoglu Theorem. Therefore Â is a lo-
cally compact space.

Since Â ⊆ CA carries the weak-∗-topology, i.e., the topology of pointwise
convergence, each element a ∈ A defines a continuous function

â : Â → C, â(χ) := χ(a).

Since â extends to a continuous function on the compact space Hom(A,C)
vanishing in the 0-functional, we have â ∈ C0(Â) (Exercise 4.1.5), with

|â(χ)| = |χ(a)| ≤ ‖χ‖‖a‖ ≤ ‖a‖

(cf. Exercise 4.1.4). We thus obtain a map

G : A → C0(Â), a 7→ â,

called the Gelfand transform. For a, b ∈ A and χ ∈ Â we have

G(ab)(χ) = χ(ab) = χ(a)χ(b) = G(a)(χ)G(b)(χ)

and
G(a∗)(χ) = χ(a∗) = χ(a) = G(a)∗(χ),

so that G is a morphism of Banach-∗-algebras, i.e., a continuous homomorphism
compatible with the involution.

Theorem 4.1.1. (Gelfand Representation Theorem) If A is a commutative
C∗-algebra, then the Gelfand transform

G : A → C0(Â)

is an isometric isomorphism.

For a proof we refer to [Ru73, Thm. 11.18].

Remark 4.1.2. (a) If A is already of the form A = C0(X) for a locally compact
space, then one can show that the natural map

η : X → Â, η(x)(f) := f(x)

is a homeomorphism, so that we can recover the space X as Â.
(b) The image G(A) of the Gelfand transform is a ∗-subalgebra of C0(Â)

separating the points of A and for each χ ∈ A, there exists an element a ∈ A
with â(χ) 6= 0. Therefore the Stone–Weierstraß Theorem (for locally compact
spaces) implies that G(A) is dense in C0(Â).
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Corollary 4.1.3. If A is a unital C∗-algebra and dimA > 1, then there exist
non-zero commuting elements a, b ∈ A with ab = 0.

Proof. Since A 6= C1, there exists an element x ∈ A \ C1. Writing x = y + iz
with y∗ = y and z∗ = z, it follows immediately that A contains a hermitian
element a ∈ A \C1. Let B ⊆ A be the closed unital subalgebra of A generated
by a. Then B is commutative and larger than C1, hence isomorphic to C0(X) for
some locally compact space X (Theorem 4.1.1). Then X contains at least two
points x 6= y, and Urysohn’s Lemma implies the existence of non-zero elements
a, b ∈ Cc(X) ⊆ C0(X) ∼= B with ab = 0.

Exercises for Section 4.1

Exercise 4.1.4. Let A be a Banach algebra and χ : A → C be an algebra
homomorphism. Show that:

(a) χ extends to the unital Banach algebra A+ := A×C with the multiplication

(a, t)(a′, t′) := (aa′ + ta′ + t′a, tt′)

(cf. Exercise 1.1.24).

(b) If A is unital and χ 6= 0, then

χ(1) = 1 and χ(A×) ⊆ C×.

Conclude further that χ(B1(1)) ⊆ C× and derive that χ is continuous
with ‖χ‖ ≤ 1.

Exercise 4.1.5. Suppose that Y is a compact space y0 ∈ Y and X := Y \{y0}.
Show that the restriction map yields an isometric isomorphism of C∗-algebras:

r : C∗(Y,C) := {f ∈ C(Y,C) : f(y0) = 0} → C0(X,C).

Exercise 4.1.6. Let A be a C∗-algebra. Show that:

(i) If a = a∗ ∈ A is a hermitian element, then ‖an‖ = ‖a‖n holds for each
n ∈ N. Hint: Consider the commutative C∗-subalgebra generated by a.

(ii) If B is a Banach-∗-algebra and α : B → A a continuous morphism of Banach-
∗-algebras, then ‖α‖ ≤ 1. Hint: Let C := ‖α‖ and derive with (i) for b ∈ B
the relation

‖α(b)‖2n = ‖α(bb∗)‖n = ‖α((bb∗)n)‖ ≤ C‖(bb∗)n‖ ≤ C‖b‖2n.

Finally, use that C1/n → 1.

Exercise 4.1.7. Let A be a C∗-algebra. We call a hermitian element a = a∗ ∈
A positive if a = b2 for some hermitian element b = b∗ ∈ A. Show that:
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(a) Every positive Element a ∈ A has a positive square root. Hint: Consider the
commutative C∗-subalgebra B generated by b and recall that B ∼= C0(X)
for some locally compact space.

(b) If C0(X), X a locally compact space, is generated as a C∗-algebra by some
f ≥ 0, then it is also generated by f2. Hint: Use the Stone–Weierstraß
Theorem.

(c) If b is a positive square root of a, then there exists a commutative C∗-
subalgebra of A containing a and b in which b is positive. Hint: Write
b = c2 and consider the C∗-algebra generated by c.

(d) Every positive Element a ∈ A has a unique positive square root. Hint: Use
(b) and (c) to see that any positive square root of a is contained in the
C∗-algebra generated by a; then consider the special case A = C0(X).

Exercise 4.1.8. Let A be a unital C∗-algebra and a = a∗ ∈ A with ‖a‖ < 1.
Show that

b :=
√

1− a2 :=
∞∑
n=0

( 1
2

n

)
(−1)na2n

is hermitian and satisfies b2 = 1− a2. Show further that

u := a+ i
√

1− a2 ∈ U(A)

and conclude that A = span U(A). Hint: To verify b2 = 1 − a2, it suffices to
consider the commutative C∗-algebra generated by a.

4.2 The Commutant of a Representation

4.2.1 Basic Properties of Commutants

Definition 4.2.1. For a subset S ⊆ B(H), we define the commutant by

S′ := {A ∈ B(H) : (∀s ∈ S) sA = As}.

If (π,H) is a representation of an involutive semigroup S, then π(S)′ =
BS(H,H) is called the commutant of (π,H). It coincides with the space of
self-intertwining operators of the representation (π,H) with itself (cf. Defini-
tion 1.3.3).

Lemma 4.2.2. For subsets E,F ⊆ B(H), we have:

(i) E ⊆ F ′ ⇔ F ⊆ E′.

(ii) E ⊆ E′′.

(iii) E ⊆ F ⇒ F ′ ⊆ E′.

(iv) E′ = E′′′.
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(v) E = E′′ if and only if E = F ′ holds for some F ⊆ B(H).

Proof. (i) is trivial.
(ii) In view of (i), this is equivalent to E′ ⊆ E′, hence trivial.
(iii) is also trivial.
(iv) From (ii) we get E′ ⊆ (E′)′′ = E′′′. Moreover, (ii) and (iii) imply

E′′′ ⊆ E′.
(v) If E = F ′, then E′′ = F ′′′ = F ′ = E is a consequence of (iv). The

converse is trivial,

Lemma 4.2.3. The commutant E′ of a subset E ⊆ B(H) has the following
properties:

(i) If E is commutative, then so is E′′.

(ii) E′ is a subalgebra of B(H) which is closed in the weak operator topology,
hence in particular norm-closed.

(iii) If E∗ = E, then E′ is also ∗-invariant, hence in particular a C∗-subalgebra
of B(H).

Proof. (i) That E is commutative is equivalent to E ⊆ E′, but this implies
E′′ ⊆ E′ = E′′′ (Lemma 4.2.2(iv)), which means that E′′ is commutative.

(ii) Clearly E′ is a linear subspace closed under products, hence a subalgebra
of B(H). To see that E′ is closed in the weak operator topology, let v, w ∈ H
and B ∈ E. For A ∈ B(H) we then have

fv,w(AB −BA) = 〈ABv,w〉 − 〈BAv,w〉 = (fBv,w − fv,B∗w)(A),

which leads to
E′ =

⋂
v,w∈H,B∈E

ker(fBv,w − fv,B∗w),

which is subspace of B(H) that is closed in the weak operator topology.
(iii) If A ∈ E′ and B ∈ E, then

A∗B −BA∗ = (B∗A−AB∗)∗ = 0

follows from B∗ ∈ E. Therefore E′ is ∗-invariant. Since it is in particular norm
closed by (ii), E′ is a C∗-subalgebra of B(H).

Definition 4.2.4. A unital ∗-subalgebra A ⊆ B(H) is called a von Neumann
algebra if A = A′′.

A von Neumann algebra A is called a factor if its center

Z(A) := {z ∈ A : (∀a ∈ A) az = za}

is trivial, i.e., Z(A) = C1.
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Remark 4.2.5. (a) In view of Lemma 4.2.3, any von Neumann algebra A is
closed in the weak operator topology.

(b) For every ∗-invariant subset E ⊆ B(H), the commutant E′ is a von
Neumann algebra because it is also ∗-invariant and E′′′ = E′ (Lemma 4.2.2).
In particular, for any von Neumann algebra A, the commutant A′ is also a von
Neumann algebra.

(c) Clearly, the center Z(A) of a von Neumann algebra can also be written
as

Z(A) = A ∩A′ = A′′ ∩ A′ = Z(A′).

In particular, we see that A is a factor if and only if its commutant A′ is a
factor.

Example 4.2.6. The full algebra A = B(H) is a von Neumann algebra. In
this case A′ = C1 (Exercise), which implies in particular that B(H) is a factor.
Such factors are called type I factors.

4.2.2 Schur’s Lemma and some Consequences

The fact that commutants are always C∗-algebras is extremely useful in repre-
sentation theory. We now use the results on commutative C∗-algebras explained
in Section 4.1.

Theorem 4.2.7. (Schur’s Lemma) A representation (π,H) of an involutive
semigroup is irreducible if and only if its commutant is trivial, i.e., π(S)′ = C1.

Proof. If (π,H) is not irreducible and K ⊆ H is a proper closed invariant sub-
space, then the orthogonal projection P ontoK commutes with π(S) (Lemma 1.3.1)
and P 6∈ C1. Therefore (π,H) is irreducible if π(S)′ = C1.

Suppose, conversely, that π(S)′ 6= C1. Then Corollary 4.1.3 applies to the
C∗-algebra π(S)′ (Lemma 4.2.3), so that there exist non-zero commuting A,B ∈
π(S)′ with AB = 0. Then K := A(H) is a non-zero closed subspace invariant
under π(S) and satisfying BK = {0}. Therefore (π,H) is not irreducible.

For a version of Schur’s Lemma for real Hilbert spacs, asserting that in this
case the commutant is one of the skew fields R, C of H, we refere to [SV02].

Corollary 4.2.8. Every irreducible representation (π,H) of a commutative in-
volutive semigroup (S, ∗) is one-dimensional.

Proof. If S is commutative, then π(S) ⊆ π(S)′. If (π,H) is irreducible, then
π(S)′ = C1 by Schur’s Lemma, and therefore π(S) ⊆ C1, so that the irre-
ducibility further implies dimH = 1.

Corollary 4.2.9. Suppose that (π,H) is an irreducible representation of an in-
volutive semigroup and (ρ,K) any representation of S. If BS(H,K) 6= {0}, then
(π,H) is equivalent to a subrepresentation of (ρ,K). In particular, BS(H,K) = 0
if both representations are irreducible and non-equivalent.
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Proof. Let A ∈ BS(H,K) be a non-zero intertwining operator. Then A∗A ∈
BS(H) = π(S)′ = C1 by Schur’s Lemma. If this operator is non-zero, then
〈A∗Av, v〉 = ‖Av‖2 ≥ 0 for v ∈ H implies that A∗A = λ1 for some λ > 0. Then
B :=

√
λ
−1
A is another intertwining operator with B∗B = 1. Hence B : H → K

is an isometric embedding. In particular, its image K0 is a closed non-zero
invariant subspace on which the representation induced by ρ is equivalent to
(π,H).

Corollary 4.2.10. If (π,H) is a representation of an involutive semigroup and
H1,H2 ⊆ H are non-equivalent irreducible subrepresentations, then H1⊥H2.

Proof. Let P : H → H1 denote the orthogonal projection onto H1. Since H1

is invariant under π(S), Lemma 1.3.1 implies that P ∈ BS(H,H1). Hence
P |H2 ∈ BS(H2,H1) = {0} by Corollary 4.2.9. This means that H1⊥H2.

At this point it is natural to observe that any representation (π,H) of an
involutive semigroup S decomposes naturally into a discrete part (πd,Hd) which
is a direct sum of irreducible ones and a continuous part (πc,Hc) which does
not contain any irreducible subrepresentations.

Proposition 4.2.11. Let (π,H) be a representation of the involutive semigroup
S on H and Hd ⊆ H be the closed subspace generated by all irreducible subrep-
resentations. Then the following assertions hold:

(i) Hd is S-invariant and the representation (πd,Hd) of S is a direct sum of
irreducible ones.

(ii) The orthogonal space Hc := H⊥d carries a representation (πc,Hc) of S which
does not contain any irreducible subrepresentation.

Proof. It is clear that the subspace Hd is S-invariant because it is generated by
a family of S-invariant subspaces. To see that it is a direct sum of irreducible
representations, we apply Zorn’s Lemma. Let Hj , j ∈ J , be a maximal set of
S-invariant subspaces of H such that the corresponding representations (πj ,Hj)
are irreducible and their sum

∑
j∈J Hj is orthogonal. SetH0 :=

∑
j∈J Hj ⊆ Hd.

Then H1 := H⊥0 ∩ Hd is S-invariant. We write p : Hd → H1 for the orthogonal
projection. Then p is surjective and if H1 6= {0}, there exists an irreducible
subspace K ⊆ Hd with p(K) 6= {0}. This means that BS(K,H1) 6= {0} and
hence, by Corollary 4.2.9, that the representation on K is equivalent to an irre-
ducible subrepresentation of H1. This contradicts the maximality of the family
(Hj)j∈J . We conclude that H1 = {0}, and (i) follows from Exercise 1.3.18.

Assertion (ii) follows from the construction of Hd.

Definition 4.2.12. If (π,H) is an irreducible representation, then we write [π]
for its (unitary) equivalence class.

For a topological group G, we write Ĝ for the set of equivalence classes of
irreducible unitary representations (cf. Exercise 1.3.21). It is called the unitary
dual of G.
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Let (ρ,H) be a continuous unitary representations of G. For [π] ∈ Ĝ, we
write H[π] ⊆ H for the closed subspace generated by all irreducible subrepre-
sentations of type [π]. From Corollaries 4.2.9 and 4.2.10 it follows in particular
that

H[π]⊥H[π′] for [π] 6= [π′],

so that the discrete part of (ρ,H) is a direct sum

Hd =
⊕̂

[π]∈ bGH[π]

(Exercise 1.3.18). The subspaces H[π] are called the isotypic components of H.

Remark 4.2.13. (Reduction of commutants) Applying Corollary 4.2.9 to the
decomposition

H = Hc ⊕Hd = Hc ⊕
⊕̂

[π]∈ bGH[π],

we see that

BG(H[π],Hc) = {0} and BG(H[π],H[π′]) = {0}

for [π] 6= [π′]. Therefore BG(H) preserves each H[π], hence it also preserves
Hc = H⊥d because it is ∗-invariant.

From Exercise 4.2.23 we thus derive that

BG(H) =
{

(A[π]) ∈
∏

[π]∈ bG
BG(H[π]) : sup

[π]∈ bG ‖Aπ‖ <∞
}
⊕BG(Hc).

Using the concept of an `∞ direct sum of Banach spaces

⊕∞j∈JXj :=
{

(xj)j∈J ∈
∏
j∈J

Xj : ‖x‖ := sup
j∈J
‖xj‖ <∞

}
,

it follows that
BG(H) ∼=

(
⊕∞

[π]∈ bG BG(H[π])
)
⊕BG(Hc).

In the following section we shall determine the commutant of the isotypic
components of a representation.

Example 4.2.14. (a) For an abelian topological group A, we have seen in
Corollary 4.2.8 that all irreducible unitary representations are one-dimensional,
hence given by continuous homomorphisms

χ : A→ T.

Since U(C) = U1(C) = T is abelian, two characters define equivalent unitary
representations if and only if they coincide. Therefore the unitary dual of A can
be identified with the group

Â := Hom(A,T)
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of continuous characters of A.
For any continuous unitary representation (π,H) of A and χ ∈ Â, the iso-

typic subspace

Hχ := H[χ] = {v ∈ H : (∀a ∈ A)π(a)v = χ(a)v}

is the simultaneous eigenspace of A on H corresponding to the character χ.
Taking all the simultaneous eigenspaces together, we obtain the subspace

Hd = ⊕̂χ∈ bAHχ
from Proposition 4.2.11.

(b) In general its orthogonal complement Hc is non-trivial, as the regular
representation of R on L2(R) shows. To see this, we first observe that, in view
of Exercise 4.2.24, every continuous character of R is of the form χλ(x) = eiλx.
Therefore any eigenfunction f ∈ L2(R) satisfies for each x ∈ R for almost every
y ∈ R the relation

f(y + x) = eiλxf(y).

This implies in particular that the function |f | is, as an element of L2(R, dx),
translation invariant. We thus obtain

∞ >

∫
R
|f(x)|2 dx =

∑
n∈Z

∫ 1

0

|f(x)|2 dx,

and therefore f vanishes almost everywhere. This proves that the discrete part
is trivial, i.e., L2(R, dx)d = {0}.

Example 4.2.15. If A is a compact group and µA is a normalized Haar measure
on A, we have for each non-trivial character χ ∈ Â∫

A

χµA = 0.

In fact, for a ∈ A we have

I :=
∫
A

χ(x) dµA(x) =
∫
A

χ(ax) dµA(x) = χ(a)
∫
A

χ(x) dµA(x) = χ(a)I,

and for χ(a) 6= 1, we derive I = 0. We conclude that Â is an orthonormal subset
of L2(A,µA) because

〈χ, η〉 =
∫
A

χη dµA = δχ,η.

This observation has an important application to the analysis of unitary rep-
resentations of A because it permits to derive an explicit form for the projection
onto the isotypic components.

Let (π,H) be a continuous unitary representation of A and χ ∈ Â. For
v ∈ H we consider the H-valued integral

Pχ(v) :=
∫
A

χ(g)π(g)v dµA(g).
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We refer to Exercise 2.4.14 for its existence. Clearly, Pχ defines a linear map
H → H with

‖Pχ(v)‖ ≤
∫
A

|χ(g)|‖π(g)v‖ dµA(g) =
∫
A

‖v‖ dµA(g) = ‖v‖,

so that Pχ is a contraction. We also note that

〈Pχ(v), w〉 =
∫
A

χ(g)〈π(g)v, w〉 dµA(g) =
∫
A

χ(g)〈v, π(g−1)w〉 dµA(g)

= 〈v,
∫
A

χ(g)π(g−1)w dµA(g)〉 = 〈v,
∫
A

χ(g−1)π(g)w dµA(g)〉

= 〈v,
∫
A

χ(g)π(g)w dµA(g)〉 = 〈v, Pχ(w)〉,

so that P ∗χ = Pχ. If v ∈ Hχ, then

Pχ(v) =
∫
A

χ(g)χ(g)v dµA(g) =
∫
A

χ(g)χ(g) dµA(g) · v = v,

and for a ∈ A we have

π(a)Pχ(v) =
∫
A

χ(g)π(a)π(g)v dµA(g) =
∫
A

χ(g)π(ag)v dµA(g)

=
∫
A

χ(a−1g)π(g)v dµA(g) = χ(a)
∫
A

χ(g)π(g)v dµA(g) = χ(a)Pχ(v).

This shows that P 2
χ = Pχ = P ∗χ is the orthogonal projection onto the eigenspace

Hχ.
As we shall see in the following subsection, H = Hd holds for any continuous

unitary representation of a compact group, and for compact abelian groups A,
this leads to

H =
⊕̂

χ∈ bAHχ.
This decomposition is of particular interest for the right regular represen-

tation (πr, L2(A)). In this case we can be more specific. For f ∈ L2(A) we
have

Pχ(f)(h) =
∫
A

χ(g)f(hg) dµA(g) =
∫
A

χ(h−1g)f(g) dµA(g)

= χ(h)
∫
A

χ(g)f(g) dµA(g).

This proves in particular that L2(A,µA)χ = Cχ, so that we obtain

L2(A,µA) =
⊕̂

χ∈ bACχ,
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and since the characters form an orthonormal system, the map

F : L2(A,µA)→ `2(Â,C), F(f)(χ) := f̂(χ) :=
∫
A

χ(g)f(g) dµA(g)

is unitary. This map is called the Fourier transform and its unitarity is called
the Plancherel Theorem.

Example 4.2.16. The preceding example specializes in particular to the right
regular representation of the circle group G = T on H = L2(T, µT).

To see how this representation decomposes, we first recall from
Example 4.2.14(b) that each character of R is of the form χλ(x) = eiλx for some
λ ∈ R. Since q : R→ T, t 7→ eix factors through an isomorphism R/2πZ→ T of
topological groups, it follows that any character χ ∈ T̂ satisfies

χ(eix) = eiλx

for some λ ∈ R and any x ∈ R. Then χ(1) = 1 implies λ ∈ Z, so that χn(z) = zn

for some n ∈ Z and all z ∈ T. This proves that

T̂ = {χn : n ∈ Z} ∼= Z.

In this case the Fourier transform is given by

F : L2(T)→ `2(Z,C), f̂(n) =
∫

T
z−nf(z) dµT(z)

and the corresponding expansion in L2(T) has the form

f =
∑
n∈Z

f̂(n)χn, f(z) =
∑
n∈Z

f̂(n)zn for z ∈ T.

Identifying T with R/2πZ and L2(T) with 2π-periodic functions, this takes
the familiar form for Fourier series:

f(x) =
∑
n∈Z

f̂(n)einx, f̂(n) =
1

2π

∫ 2π

0

e−inxf(x) dx,

where the series on the left convergence in L2([0, 2π]).

Remark 4.2.17. (a) There exist abelian topological groups A with faithful
continuous unitary representations for which all continuous characters are triv-
ial, i.e., Â = {1}. For these groups, the two fundamental problems discussed in
the introduction make no sense.

To see how such groups arise in concrete situations, let (X,S, µ) be a finite
measure space. An E ∈ S is called an atom if µ(F ) ∈ {0, µ(E)} for any
measurable subset F ⊆ E. Accordingly, µ is said to be atomic if all elements of
S with positive measure are atoms and non-atomic if there is no atom.
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In [GN01] it is shown that if (X,S, µ) is a finite non-atomic measure space,
then the group

M(X,T) = {f ∈ L∞(X,µ) : |f | = 1},
endowed with the weak operator topology obtained from the embedding

L∞(X,µ) ↪→ B(L2(X,µ))

(cf. Lemma 2.1.5), is an abelian topological group for which all continuous char-
acters are trivial.

(b) Another pathology that can occur for an (abelian) topological group G
is that all its continuous unitary representations are trivial. Such topological
groups are called exotic. In Chapter 2 of [Ba91] one finds various constructions
of such group of the type G = E/Γ, where E is a Banach space and Γ ⊆ E is
a discrete subgroup. Note that for any such exotic group G, in particular all
characters are trivial.

From Exercise 4.2.24, we immediately derive that all characters of G = E/Γ
are of the form

χ(v + Γ) = e2πiα(v),

where α ∈ E′ is a continuous linear functional satisfying α(Γ) ⊆ Z. If G is
exotic, resp., Ĝ = {1}, then the subgroup Γ has the strange property that for
any continuous linear functional α ∈ E′ with α(Γ) ⊆ Z we have α = 0. It is not
hard to see that this never happens if dimE <∞.

4.2.3 Discrete Decomposability for Compact Groups

Let (π,H) be a continuous unitary representation of the compact group G and
µG be a normalized Haar measure on G. We assume that H 6= {0} and want
to show that H = Hd, i.e., that H decomposes as a direct sum of irreducible
representations. This will follow, as soon as we can show that H contains a non-
zero finite dimensional G-invariant subspace because every finite dimensional
representation is a direct sum of irreducible ones (Proposition 1.3.11).

If 0 6= A = A∗ ∈ BG(H) is a non-zero compact intertwining operator,
then the Spectral Theorem for compact hermitian operators implies that H =⊕̂

λ∈RHλ(A) is the orthogonal direct sum of the eigenspaces

Hλ(A) := ker(A− λ1)

and if λ 6= 0, then dimHλ(A) < ∞. Since A is non-zero, it has a non-zero
eigenvalue λ, and therefore Hλ(A) is a finite dimensional subspace of H which
is G-invariant (Exercise 1.3.22). It therefore remains to construct a non-zero
hermitian compact element of BG(H).

Proposition 4.2.18. For each A ∈ B(H), there exists a unique operator AG ∈
BG(H) with the property that

〈AGv, w〉 =
∫
G

〈π(g)Aπ(g)−1v, w〉 dµG for v, w ∈ H.

Moreover, (AG)∗ = (A∗)G and if A is compact, then AG is also compact.
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We also write this operator as an operator-valued integral∫
G

π(g)Aπ(g)−1 dµG := AG.

Proof. On H we consider the sesquilinear form defined by

F (v, w) :=
∫
G

〈π(g)Aπ(g)−1v, w〉 dµG(g).

Then

|F (v, w)| ≤
∫
G

‖π(g)Aπ(g)−1‖‖v‖‖w‖ dµG(g)

=
∫
G

‖A‖‖v‖‖w‖ dµG(g) = ‖A‖‖v‖‖w‖,

and we conclude the existence of a unique bounded operator AG ∈ B(H) with

F (v, w) = 〈AGv, w〉 for v, w ∈ H

(Exercise in Functional Analysis). To see that AG commutes with each π(g),
we calculate

〈π(g)AGπ(g)−1v, w〉 =
∫
G

〈π(g)π(h)Aπ(h)−1π(g)−1v, w〉 dµG(h)

=
∫
G

〈π(gh)Aπ(gh)−1v, w〉 dµG(h)

=
∫
G

〈π(h)Aπ(h)−1v, w〉 dµG(h) = 〈AGv, w〉.

Next we note that

〈(AG)∗v, w〉 = 〈v,AGw〉 =
∫
G

〈v, π(g)Aπ(g)−1w〉 dµG(g)

=
∫
G

〈π(g)A∗π(g)−1v, w〉 dµG(g) = 〈(A∗)Gv, w〉.

Finally, we assume that A is compact, i.e., the image of the closed unit ball
B ⊆ H is relatively compact. We have to show that the same holds for AG.
Since G is compact, the set B′ := π(G)AB ⊆ π(G)AB is also compact because
the action G × H → H, (g, v) 7→ π(g)v is continuous (Exercise 1.2.13). The
closed convex hull K := conv(B′) is also compact (Exercise 4.2.26).

We claim that AG(B) ⊆ K, and this will imply that AG is compact. So let
v ∈ H and c ∈ R with Re〈v, x〉 ≤ c for all x ∈ K. Then we obtain for w ∈ B:

Re〈v,AGw〉 = Re
∫
G

〈v, π(g)Aπ(g)−1w〉 dµG(g)

=
∫
G

Re〈v, π(g)Aπ(g)−1w〉 dµG(g) ≤
∫
G

c dµG(g) = c.
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Since
K = {x ∈ H : (∀v ∈ H) Re〈v, x〉 ≤ sup Re〈v,K〉}

by the Hahn–Banach Separation Theorem, it follows that AGw ∈ K, and thus
AGB ⊆ K.

Combining the preceding proposition with the discussion above, we obtain:

Proposition 4.2.19. If (π,H) is a non-zero continuous unitary representa-
tion of the compact group G, then H contains a non-zero finite dimensional
G-invariant subspace.

Proof. We have to show the existence of a non-zero compact hermitian inter-
twining operator. So let v0 ∈ H be a unit vector and consider the orthogonal
projection P (v) := 〈v, v0〉v0 onto Cv0. Then dim(im(P )) = 1 implies that P
is compact, and since it is an orthogonal projection, we also have P ∗ = P .
Therefore

PG(v) :=
∫
G

(π(g)Pπ(g)−1)v dµG(g) =
∫
G

〈π(g)−1v, v0〉π(g)v0 dµG(g)

from Proposition 4.2.18 is a compact hermitian operator. To see that it is
non-zero, we simply observe that

〈PGv0, v0〉 =
∫
G

〈π(g)−1v0, v0〉〈π(g)v0, v0〉 dµG(g) =
∫
G

|〈π(g)v0, v0〉|2 dµG(g) > 0

follows from 〈π(1)v0, v0〉 > 0 and the defining property of the Haar measure µG.

Theorem 4.2.20. (Fundamental Theorem on Unitary Representations of Com-
pact Groups—Abstract Peter–Weyl Theorem) If (π,H) is a continuous unitary
representation of the compact group G, then (π,H) is a direct sum of irreducible
representations and all irreducible representations of G are finite dimensional.

Proof. Writing H = Hd⊕Hc for the decomposition into discrete and continuous
part (Proposition 4.2.11), we use Proposition 4.2.19 to see that ifHc 6= {0}, then
it contains a finite dimensional invariant subspace, contradicting the definition
of Hc (Proposition 1.3.11). Therefore Hc = {0} and thus H = Hd, so that the
first part follows from Proposition 4.2.11. Applying Proposition 4.2.11 to an
irreducible representation (π,H) of G, we thus get dimH <∞.

Exercises for Section 4.2

Exercise 4.2.21. (Concrete commutants) Let (X,S, µ) be a finite measure
space, H := L2(X,µ) the corresponding Hilbert space and

π : L∞(X,µ)→ B(L2(X,µ)), π(f)g := fg

be the homomorphism from Lemma 2.1.5. Show that:
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(1) 1 ∈ L2(X,µ) is a cyclic vector for π, i.e., not contained in a proper closed
subspace invariant under L∞(X,µ).

(2) If B ∈ π(L∞(X,µ))′, then

(a) B(f) = B(1)f for f ∈ L2(X,µ). Hint: Verify this relation first for
bounded functions f .

(b) B(1) is bounded. Hint: Apply B to the characteristic function of the
set En := {x ∈ X : n ≤ |B(1)|(x) ≤ n+ 1}.

(c) B = π(B(1)).

(5) π(L∞(X,µ)) = π(L∞(X,µ))′ is its own commutant, hence in particular a
von Neumann algebra.

Exercise 4.2.22. Let (π,H) be an irreducible representation of the involutive
semigroup (S, ∗) and πn := ⊕nj=1π be the n-fold direct sum of π with itself on
Hn = ⊕nj=1H. Show that

πn(S)′ ∼= Mn(C).

Hint: Write operators on Hn as matrices with entries in B(H) (cf. Exer-
cise 1.3.19) and evaluate the commuting condition.

Exercise 4.2.23. Let (Hj)j∈J be a family of Hilbert spaces and Aj ∈ B(Hj).
Suppose that supj∈J ‖Aj‖ <∞. Then A(xj) := (Ajxj) defines a bounded linear
operator on ⊕̂j∈JHj with

‖A‖ = sup
j∈J
‖Aj‖.

If, conversely, H = ⊕̂j∈JHj is a Hilbert space direct sum and A ∈ B(H)
preserves each subspace Hj , then the restrictions Aj := A|Hj are bounded
operators in B(Hj) satisfying ‖A‖ = supj∈J ‖Aj‖.

Exercise 4.2.24. Let V be a real topological vector space. Show that each
continuous character χ : V → T is of the form χ(v) = eiα(v) for some continuous
linear functional α ∈ V ′. Hint: Let U ⊆ V be a circular 0-neighborhood
(circular means that λU ⊆ U for |λ| ≤ 1; such neighborhoods form a local basis
in 0) with Reχ(v) > 0 for v ∈ U + U . Define a continuous (!) function

L : U →]− π, π[⊆ R by eiL(u) = χ(u).

Observe that L(x+ y) = L(x) + L(y) for x, y ∈ U and use this to see that

α(x) := lim
n→∞

nL
(x
n

)
is an additive extension of L to V . Now it remains to observe that continuous
additive maps V → R are linear functionals (prove Q-linearity first).
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Exercise 4.2.25. Let G be a countable group acting in a measure preserving
fashion on the σ-finite measure space (X,S, µ). The measure µ is said to be
ergodic (with respect to this action) if any G-invariant subset E ∈ S either

µ(E) = 0 or µ(Ec) = 0.

Show that, if µ is ergodic, then the unitary representation of M(X,T) oG on
L2(X,µ) by

(π(θ, g)f)(x) := θ(x)f(g−1.x)

(cf. Remark 2.2.5) is irreducible. We suggest the following steps:

(i) Any element of the commutant of π(M(X,T)) coincides with ρ(h)f := hf
for some h ∈ L∞(X,µ). Hint: Exercise 4.1.8 implies M(X,T) has the
same commutant as L∞(X,µ); then use Exercise 4.2.21.

(ii) If ρ(h) commutes with π(G), then h coincides µ-almost everywhere with a
constant function. Hint: Here we need the countability of G to select for
an invariant class in L∞(X,µ) a G-invariant measurable function in this
class.

(iii) Use Schur’s Lemma to conclude that π is irreducible because

π(M(X,T) oG)′ = C1.

Exercise 4.2.26. Show that if B is a compact subset of a Banach space E,
then its closed convex hull K := conv(B) is also compact. Hint: Since we are
dealing with metric spaces, it suffices to show precompactness, i.e., that for
each ε > 0, there exists a finite subset F ⊆ K with K ⊆ Bε(F ) := F + Bε(0).
Since B is compact, there exists a finite subset FB ⊆ B with B ⊆ Bε(FB).
Then conv(B) ⊆ conv(FB) + Bε(0), and since conv(FB) is compact (why?),
conv(FB) ⊆ Bε(F ) for a finite subset F ⊆ conv(FB). This leads to conv(B) ⊆
F +B2ε(0), which implies implies K ⊆ F +B≤2ε(0).

Exercise 4.2.27. Show that for each n ∈ N the unitary group

Un(C) = {g ∈ GLn(C) : 1 = g∗g = gg∗}

is compact.

Exercise 4.2.28. Let H be a complex Hilbert space and G ⊆ U(H)s be a
closed subgroup. Show that G is compact if and only if H can be written
as an orthogonal direct sum H =

⊕̂
j∈JHj of finite dimensional G-invariant

subspaces. Hint: Use Tychonov’s Theorem and Exercise 4.2.27 to see that for
any family of finite dimensional Hilbert spaces (Hj)j∈J , the topological group∏
j∈J U(Hj)s is compact.
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4.3 Tensor Products of Unitary Representations

In this section we define tensor products of Hilbert spaces and of unitary rep-
resentations. Our motivation for discussing tensor products are twofold. First,
they provide a natural construction for new unitary representations of product
groups G1 ×G2 from representations of the factor groups G1 and G2. Second,
they can also be used to give natural descriptions of isotypical representations
of a group G in terms of a multiplicity space on which G acts trivially and the
corresponding irreducible representation.

4.3.1 Tensor Products of Hilbert Spaces

Definition 4.3.1. Let H and K be Hilbert spaces. Then

K
(
(x, y), (x′, y′)

)
:= 〈x′, x〉〈y′, y〉

defines on the product set H×K a positive definite kernel because it is a prod-
uct of two positive definite kernels (Proposition 3.2.1(d)). The corresponding
Hilbert space in CH×K is called the tensor product of H and K and is denoted
by H⊗̂K.

Then the realization map

γ : H×K → H⊗̂K, γ(x, y) := K(x,y)

is bilinear and we write
x⊗ y := K(x,y)

for the image of (x, y) under this map. These elements span a dense subspace
and their scalar products are given by

〈x⊗ y, x′ ⊗ y′〉 = 〈K(x,y),K(x′,y′)〉 = K((x′, y′), (x, y)) = 〈x, x′〉〈y, y′〉.

Remark 4.3.2. (a) One can obtain a more concrete picture of the tensor prod-
uct by choosing orthonormal bases (ej)j∈J in H and (fk)k∈K in K. Then the
family (ej⊗fk)(j,k)∈J×K is orthonormal in the tensor product and spans a dense
subspace, so that it is an orthonormal basis. That it spans a dense subspace
follows directly from the continuity of the bilinear map γ (Proposition 3.3.5),
which implies that

x⊗ y = γ(x, y) =
∑

j∈J,k∈K

〈x, ej〉〈y, fk〉 · ej ⊗ fk.

(b) Similarly, we find that the subspaces ej ⊗ K of H⊗̂K are pairwise or-
thogonal and span a dense subspace, so that

H⊗̂K ∼= ⊕̂j∈J(ej ⊗K)

(cf. Exercise 1.3.18). In addition, we have

〈ej ⊗ v, ej ⊗ w〉 = 〈v, w〉,
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so that the inclusion maps

K → H⊗̂K, v 7→ ej ⊗ v

are isometric embeddings. This implies that

H⊗̂K ∼= `2(J,K)

(cf. Example 1.3.8).
(c) With a slight generalization, we can form tensor products of finitely many

Hilbert spaces H1, . . . ,Hn by using the kernel

K(x, x′) :=
n∏
j=1

〈x′j , xj〉 for x = (x1, . . . , xn) ∈
n∏
j=1

Hj ,

which leads to a reproducing kernel space

⊗̂nj=1Hj := HK ⊆ C
Qn
j=1Hj .

One easily verifies that

⊗̂nj=1Hj ∼=
(
⊗̂n−1

j=1Hj
)
⊗̂Hn,

so that an alternative construction is to apply the construction of twofold tensor
products several times.

To form tensor products of two representations, we first verify that pairs of
linear operators define operators on the tensor product space:

Lemma 4.3.3. Let A ∈ B(H) and B ∈ B(K). Then there exists a unique
bounded linear operator A⊗B on H⊗̂K with

(A⊗B)(v ⊗ w) := (Av)⊗ (Bw) for v ∈ H, w ∈ K. (4.2)

It satisfies

‖A⊗B‖ ≤ ‖A‖‖B‖ and (A⊗B)∗ = A∗ ⊗B∗.

Proof. Since the elements v ⊗ w span a dense subspace, the operator A⊗ B is
uniquely determined by (4.2). It therefore remains to show its existence. To
this end, we fist consider the case A = 1.

Identifying H⊗̂K with `2(J,K) (Remark 4.3.2(b)), we see that B defines
an operator B̃ on `2(J,K) ∼= ⊕̂j∈JK by B̃(xj) := (Bxj), and ‖B̃‖ = ‖B‖
(Exercise 4.2.23). This proves the existence of 1 ⊗ B. We likewise obtain an
operator A⊗ 1 with ‖A⊗ 1‖ = ‖A‖, and we now put

A⊗B := (A⊗ 1)(1⊗B).

It satisfies

(A⊗B)(v ⊗ w) = (A⊗ 1)(1⊗B)(v ⊗ w) = (A⊗ 1)(v ⊗Bw) = Av ⊗Bw
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and
‖A⊗B‖ = ‖(A⊗ 1)(1⊗B)‖ ≤ ‖A⊗ 1‖‖1⊗B‖ ≤ ‖A‖ · ‖B‖.

From

〈(A⊗B)(v ⊗ w), v′ ⊗ w′〉 = 〈Av, v′〉〈Bw,w′〉 = 〈v,A∗v′〉〈w,B∗w′〉
= 〈v ⊗ w, (A∗ ⊗B∗)(v′ ⊗ w′)〉

we derive that (A⊗B)∗ = A∗ ⊗B∗.

Lemma 4.3.4. Let (πj ,Hj) be a continuous unitary representation of Gj for
j = 1, 2. Then

(π1 ⊗ π2)(g1, g2) := π1(g1)⊗ π2(g2)

defines a continuous unitary representation of the product group G1 × G2 in
H1⊗̂H2.

Proof. From the uniqueness part of Lemma 4.3.3 we derive that

(π1(g1)⊗ π2(g2))(π1(h1)⊗ π2(h2)) = π1(g1h1)⊗ π2(g2h2)

and
(π1(g1)⊗ π2(g2))∗ = π1(g−1

1 )⊗ π2(g−1
2 ).

Therefore π1 ⊗ π2 is a unitary representation of G1 ×G2.
For vj , wj ∈ Hj , we further have

〈(π1 ⊗ π2)(g1, g2)(v1 ⊗ w1), v2 ⊗ w2〉 = 〈π1(g1)v1, w1〉〈π2(g2)v2, w2〉,

which is a continuous function on G1×G2. Now the continuity of π1⊗π2 follows
from the fact that the elements v1 ⊗ v2, v1 ∈ H1, v2 ∈ H2, form a total subset
(Lemma 1.2.6).

Definition 4.3.5. If (π1,H1) and (π2,H2) are unitary representations of the
same group G, then we define their tensor product as the representation on
H1⊗̂H2, given by

(π1 ⊗ π2)(g) := π1(g)⊗ π2(g).

This corresponds to the restriction of the tensor product representation of G×G
to the diagonal ∆G = {(g, g) : g ∈ G} ∼= G.

Definition 4.3.6. Let (ρ,H) be a continuous unitary representation of G and
(π,Hπ) be an irreducible one. Then the Banach space Mπ := BG(Hπ,H) is
called the multiplicity space for π in ρ.

From Schur’s Lemma we know that BG(Hπ) = C1, so that we obtain a
sesquilinear map

〈·, ·〉 : Mπ ×Mπ → C, B∗A = 〈A,B〉1.

If A 6= 0 and v ∈ Hπ is a unit vector, then Av 6= 0 because otherwise Aπ(G)v =
π(G)Av = 0 leads to A = 0. We therefore obtain

〈A,A〉 = 〈A∗Av, v〉 = ‖Av‖2 > 0,
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showing that 〈·, ·〉 is positive definite on Mπ, turning Mπ into a pre-Hilbert
space. This argument also shows that the evaluation map

evv : Mπ → H, A 7→ Av

is an isometric embedding.

Proposition 4.3.7. The multiplicity space Mπ is a Hilbert space and the eval-
uation map induces a unitary map

ev : Mπ⊗̂Hπ → H[π], A⊗ v 7→ Av

which is an equivalence of unitary representations if Mπ⊗̂Hπ is endowed with
the representation 1⊗ π of G.

Proof. Replacing H by the isotypic component H[π] does not change the space
Mπ (Remark 4.2.13), so that we may w.l.o.g. assume that H = H[π]. In view of
Proposition 4.2.11, we can write H as ⊕̂j∈JHπ ∼= `2(J,C)⊗̂Hπ for some set J .
For each x ∈ `2(J,C) we then obtain an element Ax ∈ Mπ by Ax(w) := x⊗ w
for w ∈ Hπ. In particular, we obtain for the unit vector v from above the
relation Ax(v) = x ⊗ v with ‖Ax‖2 = ‖v ⊗ x‖2 = ‖x‖2. Conversely, we have
for each j ∈ J an intertwining operator Pj : H → Hπ, x ⊗ w 7→ 〈x, ej〉ej ⊗ w,
corresponding to the orthogonal projection of H onto Hj ∼= ej ⊗Hπ. For each
A ∈Mπ we then have PjA ∈ BG(Hπ) = C1, so that

Av =
∑
j∈J

PjAv ∈
∑
j∈J

Cej ⊗ v ⊆ `2(J,C)⊗ v

implies that Av = x ⊗ v for some x ∈ `2(J,C). This proves that A = Ax.
Collecting all this information, we see that

evv : Mπ → `2(J,C)⊗ v ∼= `2(J,C)

is unitary, and therefore that Mπ is a Hilbert space isomorphic to `2(J,C).
The preceding discussion also shows that the evaluation map

Mπ ⊗Hπ → H, A⊗ v 7→ Av

induces an isomorphism of Hilbert spaces

Mπ⊗̂Hπ → H,

and even an equivalence of representations if Mπ⊗̂Hπ is endowed with the
representation 1⊗ π.

The main advantage of the multiplicity space, as compared to the description
of H[π] as a tensor product `2(J,C)⊗̂Hπ, is thatMπ and its scalar product are
naturally defined in terms of the irreducible representation (π,Hπ) and the
representation (ρ,H). We don’t have to refer to Zorn’s Lemma to define it.
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Lemma 4.3.8. If (π,H) is an irreducible representation of G and ρ := 1 ⊗ π
is the tensor product with the trivial representation 1 on M, then

ρ(G)′ = B(M)⊗ 1 ∼= B(M).

Proof. Let (ej)j∈J be an ONB in M, so that M = `2(J,C), M⊗̂H ∼=
⊕

j∈J H
and ρ ∼= ⊕j∈Jπ. We write

Pj : M⊗̂H → H, x⊗ v 7→ 〈x, ej〉w

for the projections which are in particular intertwining operators.
Clearly, B(M) ⊗ 1 ⊆ ρ(G)′. If, conversely, A ∈ ρ(G)′, then, for i, j ∈ J ,

Aij := PiAP
∗
j ∈ BG(H) = C1 by Schur’s Lemma. Let aij ∈ C with Aij = aij1

and v, w ∈ H be unit vectors. Then

〈A(ej ⊗ v), ei ⊗ w〉 = 〈aijv, w〉 = aij〈v, w〉

implies that the closed subspaces M⊗ v ∼=M are A-invariant with

A(ej ⊗ v) =
(∑
i∈I

aijei

)
⊗ v.

Therefore the matrix (aij)i,j∈J defines a bounded operator Ã on M with A =
Ã⊗ 1. This proves that A ∈ B(M)⊗ 1.

Proposition 4.3.9. If (πj ,Hj), j = 1, 2, are irreducible unitary representations
of the groups Gj, then the tensor product representation π1 ⊗ π2 of G1 ×G2 on
H1⊗̂H2 is irreducible.

Proof. Lemma 4.3.8 implies that

(π1 ⊗ π2)(G1 ×G2)′ = (π1(G1)⊗ 1)′ ∩ (1⊗ π2(G))′

= (1⊗B(H2)) ∩ (B(H1)⊗ 1).

To see that this is not larger than C1, let A ∈ B(H1) and B ∈ B(H2) with
C := A⊗ 1 = 1⊗B. Let (ej)j∈J be an ONB in H1 and (fk)k∈K be an ONB in
H2. Then this operator preserves all subspaces H1 ⊗ fk and ej ⊗H2, so that

(H1 ⊗ fk) ∩ (ej ⊗H2) = Cej ⊗ fk

(Remark 4.3.2(a)) implies that all elements ej ⊗ fk are eigenvectors. Write
C(ej ⊗ fk) = cjk(ej ⊗ fk). Then C = A ⊗ 1 implies that cjk does not depend
on k, and C = 1 ⊗ B implies that it does not depend on j. Therefore C = c1
for c = cjk.
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4.3.2 Types of Representations

Definition 4.3.10. Let (π,H) be a representation of an involutive semigroup
(S, ∗). It is said to be

(i) multiplicity free if its commutant π(S)′ is commutative, i.e.,

π(S)′ ⊆ π(S)′′.

(ii) a factor representation or primary if

Z(π(S)′) := π(S)′ ∩ π(S)′′ = C1,

i.e., the von Neumann algebra π(S)′, resp., π(S)′′ is a factor (cf. Re-
mark 4.2.5).

(iii) a factor representation of type I if H = H[ρ] for an irreducible representa-
tion (ρ,Hρ), i.e.,

H ∼=Mρ⊗̂Hρ with π(s) = 1⊗ ρ(s) for s ∈ S.

(iv) A topological group G is said to be tame or of type I if all its unitary factor
representations are of type I.

Remark 4.3.11. To understand the terminology introduced above, it is instruc-
tive to consider the special case where H = Hd, i.e., the representation (ρ,H)
is a direct sum of irreducible representations. We combine Remark 4.2.13 and
Lemma 4.3.8 to see that

ρ(G)′ = BG(H) ∼= ⊕∞
[π]∈ bGBG(H[π]) ∼= ⊕∞[π]∈ bGB(Mπ)

is an `∞-direct sum. In view of Z(B(M)) = C1 for any non-zero Hilbert space
K (Example 4.2.6), we have

Z(BG(H)) ∼= ⊕∞
[π]∈ bGC1 ∼= `∞(J,C) for J := {[π] ∈ Ĝ : H[π] 6= {0}}.

(a) That the representation of H is multiplicity free means that BG(H) is
commutative, which in turn is equivalent to dimMπ ≤ 1 for each [π] ∈ Ĝ. This
means that the representation on H[ρ] is irreducible and that (ρ,H) is a direct
sum of pairwise non-equivalent irreducible representations.

(b) We also see that (ρ,H) is a factor representation if and only if `∞(J,C) ∼=
C, i.e., |J | = 1. This means that H = H[π] is an isotypic representation. In par-
ticular, the isotypic components of any representation are factor representations.
By definition, these are the factor representations of type I.

(c) If (π,H) is a finite dimensional factor representation, then it is of type I
because it is a direct sum of irreducible ones (Proposition 1.3.11).
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Remark 4.3.12. (a) The Fundamental Theorem on Unitary Representations
of Compact Groups 4.2.20 implies in particular that compact groups are tame.

(b) If G is abelian and (π,H) a unitary representation, then π(G) ⊆ π(G)′

implies that π(G) ⊆ Z(π(G)′). If, in addition, (π,H) is a factor representation,
then π(G) ⊆ C1. This implies that (π,H) is a factor representation if and only
if there exists a character χ ∈ Ĝ with π(g) = χ(g)1 for g ∈ G. It follows in
particular that all factor representations are of type I, so that abelian groups
are tame.

(c) The general idea is that the tameness condition for topological groups
means that the two fundamental problems of representation theory are well-
posed for G. Later we shall make this statement more explicit.

Two central results in the representation theory of locally compact groups
assert that a discrete group G is tame if and only if it possesses an abelian
normal subgroup of finite index (cf. [Fo05, Thm. 7.8]). This means that if
discrete groups are “too large” or “too non-commutative”, then they are not
tame.

On the positive side, one knows that if G ⊆ GLn(R) is a subgroup which
is algebraic in the sense that it is the common zero set of a family (pj)j∈J of
polynomials in the n2 matrix entries, then G is tame (cf. [Fo05, Thm. 7.8]).

Proposition 4.3.13. Suppose that (π,H) is an irreducible representation of the
product group G = G1 ×G2. Then π|G1 and π|G2 are factor representations. If
one of these is of type I, then there exist irreducible representations (πj ,Hj) of
Gj, j = 1, 2, with

π ∼= π1 ⊗ π2.

Proof. We identify G1 and G2 with the corresponding subgroups of G. In view
of Schur’s Lemma, we then have

C1 = π(G)′ = (π(G1)π(G2))′ = π(G1)′ ∩ π(G2)′.

Therefore π(G2) ⊆ π(G1)′ implies that

π(G1)′ ∩ π(G1)′′ ⊆ π(G1)′ ∩ π(G2)′ = C1,

which means that π|G1 is a factor representation. A similar argument shows
that π|G2 is a factor representation.

If π|G1 is of type I, then we accordingly have H ∼= H1⊗̂H2, where π(g1) =
π1(g1) ⊗ 1 for g1 ∈ G1 and an irreducible representation (π1,H1) of G1. Then
Lemma 4.3.8 implies that

π(G1)′ = (π1(G1)⊗ 1)′ = 1⊗B(H2),

and since π(G2) ⊆ π(G1)′, we thus obtain a unitary representation π2 : G2 →
U(H2) with

π(g2) = 1⊗ π2(g2) for g2 ∈ G2.

Now 1⊗ π2(G2)′ ⊆ π(G)′ = C1 implies that π2(G2)′ = C1, so that (π2,H2) is
irreducible, and we clearly have π ∼= π1 ⊗ π2.
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Corollary 4.3.14. If G = G1 ×G2 is a direct product group and one factor is
tame, then the map

Γ: Ĝ1 × Ĝ2 → Ĝ, ([π1], [π2]) 7→ [π1 ⊗ π2]

is a bijection.

Proof. First we observe that Γ is well defined because equivalent unitary rep-
resentations have equivalent tensor products (Exercise). Next, the preceding
Proposition 4.3.13 asserts that Γ is surjective. To see that it is also injective,
assume w.l.o.g. that G1 is tame. If the representations π1 ⊗ π2 and ρ1 ⊗ ρ2 of
G are equivalent, then the restrictions to G1 are equivalent isotypic representa-
tions, so that Remark 4.2.13 implies that π1 ∼ ρ1. The same argument applies
to the restriction to G2, which leads to π2 ∼ ρ2.

Exercises for Section 4.3

Exercise 4.3.15. We have defined the tensor product H⊗̂K of two Hilbert
spaces as a space of functions on the product H×K, defined by the kernel

K((x′, y′), (x, y)) = 〈x, x′〉〈y, y′〉.

Show that H⊗̂K consists of continuous maps which are biantilinear, i.e., anti-
linear in each argument.

Exercise 4.3.16. Show that if (π,H) is a factor representation of G and there
exists an irreducible subrepresentation H1 ⊆ H, then (π,H) is of type I. Hint:
Consider the decomposition H = Hd⊕Hc into continuous and discrete part and
show that Hc is trivial.



Chapter 5

Representations on
Reproducing Kernel Spaces

In this chapter we combine the concepts of the preceding two chapters. First
we explain how group actions on a space X lead to unitary representations on
reproducing kernel spaces on X (Section 5.1) and discuss a variety of examples
in Section 5.2. A key advantage of this general setup is that it specializes to
many interesting settings. In particular, we shall see in Section 5.3 how cyclic
continuous unitary representations are encoded in positive definite functions.

In Section 5.1 we also describe the commutant of a representation on a
reproducing kernel space in terms of invariance conditions on certain kernels.
This technique provides a simple direct way for verifications of irreducibility in
many important contexts.

5.1 From Cocycles to Unitary Representations

If X is a set, then the group SX of all bijections of X, the symmetric group on
X, acts by (ϕ, θ) 7→ ϕ∗θ = θ ◦ ϕ−1 on the group (K×)X , so that we can form
the semidirect product group (K×)X o SX with the multiplication

(θ, ϕ)(θ′, ϕ′) = (θ · (ϕ∗θ′), ϕϕ′) and (θ, ϕ)−1 = ((ϕ−1)∗θ−1, ϕ−1).

This semidirect product group acts in a natural way on the vector space KX of
complex-valued functions on X, given by(

π(θ, ϕ)f
)
(x) := θ(x)f(ϕ−1(x)), π(θ, ϕ)f = θ · ϕ∗f.

If HK ⊆ KX is a reproducing kernel space, we are now interested in a
characterization of those pairs (θ, ϕ) for which π(θ, ϕ) leaves HK invariant and
induces a unitary operator on this space.

95
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Lemma 5.1.1. Let HK ⊆ KX be a reproducing kernel space, θ : X → K× a
function and ϕ : X → X a bijection. Then π(θ, ϕ) preserves HK and restricts
to a unitary operator on this space if and only if

K(ϕ(x), ϕ(y)) = θ(ϕ(x))K(x, y)θ(ϕ(y)) for x, y ∈ X, (5.1)

which is equivalent to

π(θ, ϕ)Kx = θ(ϕ(x))
−1
Kϕ(x) for x ∈ X. (5.2)

Proof. Condition (5.2) can be written as

θ(ϕ(x))K(x, y) = θ(ϕ(x))Ky(x) =
(
π(θ, ϕ)Ky

)
(ϕ(x)) = θ(ϕ(y))

−1
Kϕ(y)(ϕ(x))

for x, y ∈ X, and this is equivalent to (5.1).
If HK is invariant under π(θ, ϕ) and it restricts to a unitary operator on

HK , we obtain for f ∈ HK and x ∈ X:

〈f, π(θ, ϕ)Kx〉 = 〈π(θ, ϕ)−1f,Kx〉 = (π(θ, ϕ)−1f)(x)

= (π(((ϕ−1)∗θ)−1, ϕ−1)f)(x) = θ(ϕ(x))−1f(ϕ(x)) = 〈f, θ(ϕ(x))
−1
Kϕ(x)〉

which is (5.2).
Suppose, conversely, that (5.1) and (5.2) hold. For

γ(x) := Kx and γ′(x) := θ(ϕ(x))
−1
Kϕ(x),

we then find that

〈γ′(y), γ′(x)〉 = θ(ϕ(x))−1θ(ϕ(y))
−1
〈Kϕ(y),Kϕ(x)〉

= θ(ϕ(x))−1θ(ϕ(y))
−1
K(ϕ(x), ϕ(y)) = K(x, y) = 〈γy, γx〉.

Therefore π(θ, ϕ) coincides on H0
K with the unique unitary map Φ: HK → HK

satisfying Φ ◦ γ = γ′ (Theorem 3.3.3). In Definition 3.3.4 we have seen that Φ
is given on any f ∈ HK by the formula

Φ(f)(ϕ(x)) = 〈Φ(f),Kϕ(x)〉 = 〈Φ(f), θ(ϕ(x))Φ(Kx)〉
= θ(ϕ(x))〈f,Kx〉 = θ(ϕ(x))f(x) = (π(θ, ϕ)f)(ϕ(x)).

This proves that π(θ, ϕ) leaves HK invariant and restricts to a unitary map on
this space.

Definition 5.1.2. Composing in each argument with ϕ−1, (5.1) can also be
written as

K(x, y) = θ(x)K(ϕ−1(x), ϕ−1(y))θ(y) for x, y ∈ X,

and this means that K is invariant under the action of the group (K×)X o SX
on the set KX×X of kernels, given by

((θ, ϕ).K)(x, y) := θ(x)K(ϕ−1(x), ϕ−1(y))θ(y).
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In particular, the stabilizer of K with respect to this action is a subgroup

Aut(X,K) := {(f, ϕ) ∈ (K×)X o SX : (f, ϕ).K = K},

called the automorphism group of the pair (X,K).
From the preceding Lemma 5.1.1, we immediately derive that, ifK is positive

definite, then
(πK(θ, ϕ)f)(x) := θ(x)f(ϕ−1(x)) (5.3)

defines a unitary representation of Aut(X,K) on the reproducing kernel Hilbert
spaceHK and that it is the maximal subgroup of (K×)XoSX with this property.

Example 5.1.3. If K = C and K(x, y) = δx,y is the δ-kernel on the set X, then
every bijection ϕ ∈ SX preserves this kernel, which leads to

Aut(X,K) = TX o SX .

Definition 5.1.4. Let σ : G×X → X, (g, x) 7→ σg(x) = g.x be an action of G
on X. Then σ defines a homomorphism σ : G → SX , g 7→ σg, and to obtain a
homomorphism

σ̃ = (J, σ) : G→ (K×)X o SX ,

the map J : G→ (K×)X needs to be a 1-cocycle, i.e.,

J(gh) = J(g) · g∗J(h) for g, h ∈ G

(cf. (2.6)). Here we simply write g∗ instead of (σg)∗. In the following we
often write J(g, x) := J(g)(x), so that the cocycle property for the function
J : G×X → K× reads

J(gh, x) = J(g, x)J(h, g−1.x) for g, h ∈ G, x ∈ X. (5.4)

Remark 5.1.5. The cocycle condition implies in particular that J(1, x) =
J(1, x)2, so that J(1, x) = 1 holds for each x ∈ X. This in turn implies that

J(g, x)−1 = J(g−1, g−1.x) for g ∈ G, x ∈ X. (5.5)

Proposition 5.1.6. Let K ∈ P(X,K) be a positive definite kernel,
σ : G×X → X be a group action and J : G×X → K× be a 1-cocycle. Then

(πK(g)f)(x) := J(g, x)f(g−1.x)

defines a unitary representation of G on HK if and only if K satisfies the in-
variance condition

K(g.x, g.y) = J(g, g.x)K(x, y)J(g, g.y) for g ∈ G, x, y ∈ X, (5.6)

which is equivalent to

πK(g)Kx = J(g−1, x)Kg.x for g ∈ G, x ∈ X. (5.7)

If these conditions are satisfied, we further have:
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(a) If, in addition, X is a topological space, G a topological group, and σ, J and
K are continuous, then the representation (πK ,HK) of G is continuous.

(b) Any G-invariant closed subspace K ⊆ HK is a reproducing kernel space HQ
whose kernel Q satisfies

Q(g.x, g.y) = J(g, g.x)Q(x, y)J(g, g.y) for g ∈ G, x, y ∈ X. (5.8)

Proof. The fist part follows immediately from Lemma 5.1.1, applied to (θ, ϕ) =
(J(g), σg) for g ∈ G and the relation J(g, g.x)−1 = J(g−1, x) (Remark 5.1.5).

(a) We apply Lemma 1.2.6 to the total subset E := {Kx : x ∈ X}. For
x, y ∈ X we have

〈π(g)Ky,Kx〉 = (π(g)Ky)(x) = J(g−1, y)Kg.y(x) = J(g−1, y)K(x, g.y),

which depends continuously on g. Therefore the representation (πK ,HK) is
continuous.

(b) Since the inclusion K → HK is continuous, K has continuous point evalu-
ations, hence is a reproducing kernel space HQ (Lemma 3.1.4). By assumption,
HQ = K is invariant under the unitary G-action defined by

(πK(g)f)(x) = J(g, x)f(g−1.x),

so that (5.8) follows from the first part of the proof.

Definition 5.1.7. If (5.6) is satisfied, the cocycle J is called a multiplier for
the kernel K.

Remark 5.1.8. The preceding proposition applies in particular if the kernel K
is G-invariant, i.e.,

K(g.x, g.y) = K(x, y) for g ∈ G, x, y ∈ X.

Then we may use the cocycle J = 1 and obtain a unitary representation of G
on HK by

(π(g)f)(x) := f(g−1.x), f ∈ HK , x ∈ X, g ∈ G.

Commutants and Invariant Kernels

Definition 5.1.9. Let σ : G×X → X be a group action and J : G×X → K× be
a corresponding cocycle. We write P(X,σ, J) for the set of all positive definite
kernels K ∈ P(X,K) satisfying the J-invariance condition (5.6):

K(g.x, g.y) = J(g, g.x)K(x, y)J(g, g.y) for g ∈ G, x, y ∈ X. (5.9)

Since this condition is linear in K, P(X,σ, J) is closed under sums and positive
scalar multiplication, hence a convex cone.
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Remark 5.1.10. If K is J-invariant positive definite andHK = H1⊕H2 is a G-
invariant orthogonal decomposition into two closed subspaces and K = K1 +K2

the corresponding decomposition of K with Hj = HKj (Exercise 3.3.8), then
Proposition 5.1.6(b) implies that Kj ∈ P(X,σ, J) for j = 1, 2.

Proposition 5.1.11. (a) For K,L ∈ P(X,σ, J), the relation HL ⊆ HK is
equivalent to the existence of a positive operator B ∈ BG(HK) with L = KB.

(b) For B ∈ B(HK), the J-invariance of KB is equivalent to B ∈ BG(HK).

Proof. (cf. [Dix64, p. 35]) In view of Theorem 3.4.7, it remains to show that an
operator B ∈ B(HK) commutes with G if and only if its symbol KB(x, y) =
〈BKy,Kx〉 = (BKy)(x) is J-invariant. As we have seen in Proposition 5.1.6,
the invariance condition is equivalent to

πK(g)Kx = J(g−1, x)Kg.x for g ∈ G, x ∈ X.

Since KB
x = BKx, the invariance of KB is equivalent to

πK(g)BKx = J(g−1, x)BKg.x = BπK(g)Kx for g ∈ G, x ∈ X.

Since the Kx span a dense subspace of HK , this condition is equivalent to
B ∈ πK(G)′.

The following theorem provides an important criterion for irreducibility of
representations on reproducing kernel spaces. However, it is still quite abstract
and therefore not easy to apply. However, we shall see below how it can be
turned into an effective tool for actions on Hilbert spaces of holomorphic func-
tions.

Theorem 5.1.12. (Irreducibility Criterion for Reproducing Kernel Spaces) If
0 6= K ∈ P(X,σ, J), then the representation (πK ,HK) of G is irreducible if and
only if R+K is an extremal ray of the convex cone P(X,σ, J).

Proof. According to Proposition 5.1.11 and Theorem 3.4.7, the face of P(X,σ, J)
generated by K is in one-to-one correspondence with the cone of positive op-
erators in the commutant π(G)′. The kernel K generates an extremal ray if
and only if this face is one-dimensional, i.e., if and only if the commutant π(G)′

is one-dimensional which in turn means that π(G)′ = C1. Since by Schur’s
Lemma (Theorem 4.2.7) the latter condition is equivalent to the irreducibility
of the representation (π,H), the assertion follows.

Remark 5.1.13. Let K ∈ P(X,σ, J), so that we have a unitary representation
(πK ,HK) of G satisfying

π(g)Kx = J(g−1, x)Kg.x ∈ C×Kg.x, g ∈ G, x ∈ X.

This implies in particular that

K(x, x) = ‖Kx‖2 = |J(g−1, x)|2K(g.x, g.x).
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If all vectors Kx are non-zero, i.e., K(x, x) > 0 for each x ∈ X, then we can
normalize these vectors and obtain

γ(x) :=
1√

K(x, x)
Kx, x ∈ X.

Then (X, γ,HK) also is a realization triple, and the corresponding kernel is
given by

Q(x, y) := 〈γ(y), γ(x)〉 =
K(x, y)√

K(x, x)
√
K(y, y)

,

so that the map

ϕγ : HK → HQ, ϕγ(f)(x) := 〈f, γ(x)〉 =
f(x)√
K(x, x)

is unitary.
We now transfer the unitary representation (πK ,HK) to HQ by

πQ(g) := ϕγ ◦ πK(g) ◦ ϕ−1
γ ,

so that

(πQ(g)f)(x) =
1√

K(x, x)
J(g, x)

√
K(g−1.x, g−1.x)f(g−1.x) = JQ(g, x)f(g−1.x)

for

JQ(g, x) = J(g, x)

√
K(g−1.x, g−1.x)

K(x, x)
=

J(g, x)
|J(g, x)|

∈ T.

We thus obtain an equivalent unitary representation (πQ,HQ) with a T-valued
multiplier. If the original multiplier has positive values, i.e., J(g, x) > 0 for
g ∈ G and x ∈ X, then JQ = 1 and the kernel Q on X is G-invariant.

Exercises for Section 5.1

Exercise 5.1.14. Let K : X×X → C be a positive definite kernel and θ : X →
C× a function. Determine necessary and sufficient conditions on θ such that

θ(x)K(x, y)θ(y) = K(x, y) for x, y ∈ X.

Hint: Consider the subset X1 := {x ∈ X : K(x, x) > 0} and its complement X0

separately.

Exercise 5.1.15. Let K,Q ∈ P(X,C) be positive definite kernels on X and
θ : X → C×. Show that

mθ : HK → HQ, f 7→ θf

defines a unitary map if and only if

Q(x, y) = θ(x)K(x, y)θ(y) for x, y ∈ X.
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Exercise 5.1.16. Let (V, ‖ · ‖) be a normed space,

P(V ) := {[v] := Rv : 0 6= v ∈ V }

be the space of one-dimensional subspace of V (the projective space). Show
that

(a) g.[v] := [gv] defines an action of GL(V ) on P(V ).

(b) J : GL(V ) × P(V ) → R×, J(g, [v]) := ‖g−1v‖
‖v‖ is a 1-cocycle with respect to

this action.

5.2 Some Examples

Let H be a complex Hilbert space. We consider the kernel K(z, w) := e〈z,w〉

corresponding to the Fock space F(H) := HK ⊆ CH. Fock spaces play a cen-
tral role in operator theory and mathematical physics, in particular in Quantum
Field Theory (QFT). In this section we discuss several interesting unitary rep-
resentations of groups on F(H).

Since our approach is based on reproducing kernels, we start with groups
acting on H, and then discuss the cocycles that are needed to make the kernel
invariant under the group action.

5.2.1 The Schrödinger Representation of the Heisenberg
Group

The simplest group acting onH is the group of translations. For v ∈ H, we write
τv(x) := x + v for the corresponding translation. We want to associate to τv a
unitary operator on the Hilbert space HK . Since the kernel K is not translation
invariant, this requires a function θv : H → C× with (θv, τv) ∈ Aut(H,K).

To find this function, we observe that

K(z + v, w + v) = e〈z+v,w+v〉 = e〈z,v〉e〈z,w〉e〈v,w〉e〈v,v〉

= e〈z,v〉+
1
2 〈v,v〉K(z, w)e〈v,w〉+

1
2 〈v,v〉.

Therefore
θv(z) := e〈z−v,v〉+

1
2 〈v,v〉 = e〈z,v〉−

1
2 〈v,v〉

satisfies
K(z + v, z + w) = θv(z + v)K(z, w)θw(z + v),

which means that (θv, τv) ∈ Aut(H,K). Hence

(π(v)f)(z) := θv(z)f(z − v) = e〈z,v〉−
1
2 〈v,v〉f(z − v)

defines a unitary operator on HK (Lemma 5.1.1).
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However, this assignment does not define a unitary representation (H,+)→
U(HK) because we have in Aut(H,K) the relation

(θv, τv)(θw, τw) = (θv · (τv)∗θw, τv+w) 6= (θv+w, τv+w)

because

(θv · (τv)∗θw)(z) = e〈z,v〉−
1
2 〈v,v〉e〈z−v,w〉−

1
2 〈w,w〉

= e〈z,v+w〉− 1
2 〈v+w,v+w〉e−〈v,w〉+

1
2 (〈v,w〉+〈w,v〉)

= θv+w(z)e
1
2 (〈w,v〉−〈v,w〉) = θv+w(z)e−

i
2 Im〈v,w〉.

This leads us to the Heisenberg group of H, which is given by

Heis(H) := R×H and (t, v)(s, w) :=
(
t+ s− 1

2
Im〈v, w〉, v + w

)
.

It is easy to verify that this defines a group structure on R×H with

(0, v)(0, w) =
(
− 1

2
Im〈v, w〉, v + w

)
.

Proposition 5.2.1. The group Heis(H) is a topological group with respect to
the product topology on R ×H, σ(t, v)(z) := z + v defines a continuous action
of Heis(H) on H and

J((t, v), z) := eitθv(z) = eit+〈z,v〉−
1
2 〈v,v〉

is a continuous cocycle. Further,

(π(t, v)f)(z) := eitθv(z)f(z − v) = eit+〈z,v〉−
1
2 〈v,v〉f(z − v)

defines a continuous unitary representation of Heis(H) on F(H).

Proof. The continuity of the group operations on Heis(H) is clear and the con-
tinuity of the action on H is trivial.

From the preceding calculations we know that the map

Heis(H)→ Aut(H,K), (t, v) 7→ (eitθv, τv)

is a homomorphism, and this implies that J is a cocycle. Its continuity is
clear, and therefore Proposition 5.1.6 implies that π defines a continuous unitary
representation of Heis(H) on HK = F(H).

Remark 5.2.2. (a) If σ : H → H is an antilinear isometric involution, then

Hσ := {v ∈ H : σ(v) = v}

is a real form of H, i.e., a closed real subspace for which

H = Hσ ⊕ iHσ
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is orthogonal with respect to the real scalar product (x, y) := Re〈x, y〉. To verify
this claim, we recall the relation

〈z, w〉 = 〈σ(w), σ(z)〉

from Exercise 1.1.14. For z, w ∈ Hσ it implies that 〈z, w〉 ∈ R, and for z ∈
Hσ, w ∈ iHσ = H−σ we obtain 〈z, w〉 ∈ iR, so that (z, w) = 0.

This observation has the interesting consequence that {0}×Hσ is a subgroup
of the Heisenberg group Heis(H) and that

(π(v)f)(x) = θv(x)f(x− v) = e〈v,x〉−
1
2 〈v,v〉f(x− v).

defines a unitary representation of Hσ on the Fock space F(H). We shall see
later that F(H) is isomorphic to the reproducing kernel space on Hσ defined by
the real-valued kernel K(z, w) = e(z,w).

(b) For a real Hilbert space H, the situation is simpler. Then we have the
relation θv+w = θv · (τv)∗θw, so that

(π(v)f)(x) = θv(x)f(x− v)

defines a unitary representation of the additive group (H,+) on the reproducing
kernel space HK with kernel K(z, w) = e(z,w).

5.2.2 The Fock Representation of the Unitary Group

Proposition 5.2.3. Let H be a complex Hilbert space and F(H) := HK ⊆ CH
be the Fock space on H with the reproducing kernel K(z, w) = e〈z,w〉. Further,
let Fm(H) ⊆ F(H) denote the subspace of those functions in F(H) which are
homogeneous of degree m, i.e., f(λz) = λmf(z) for λ ∈ C, z ∈ H. Then the
following assertions hold:

(i) The action
(
π(g)f

)
(v) := f(g−1v) defines a continuous unitary representa-

tion of U(H)s on F(H). The closed subspaces Fm(H) are invariant under
this action and their reproducing kernel is given by Km(z, w) = 1

m! 〈z, w〉
m.

(ii) Let (ej)j∈J be an orthonormal basis of H. Then the functions

pm(z) = zm :=
∏
j∈J

z
mj
j for zj := 〈z, ej〉,m ∈ N(J)

0 ,

form a complete orthogonal system in F(H) and ‖pm‖2 = m! :=
∏
j∈J mj !.

Proof. Since the action of U(H)s on H given by (g, v) 7→ gv is continuous
(Exercise 1.2.13), it follows from the invariance of K under this action that(
π(g)f

)
(v) = f(g−1v) defines a continuous unitary action of U(H)s on F(H)

(Proposition 5.1.6). It is clear that the subspaces Fm(H) are invariant under
this action.
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Next we consider the action of the subgroup T := T1 ⊆ U(H) on F(H). For
m ∈ Z, let

F(H)m := {f ∈ F(H) : (∀t ∈ T)(∀z ∈ H) f(tz) = tmf(z)}

be the common eigenspace corresponding to the character t1 7→ t−m of T
(cf. Example 4.2.16). According to the discussion in Example 4.2.15 and Theo-
rem 4.2.20, we have an orthogonal decomposition

F(H) = ⊕̂m∈ZF(H)m.

In view of Exercise 3.3.8, we have a corresponding decompositionK =
∑
m∈Z K

m

of the reproducing kernel Then Km
x ∈ F(H)m is the projection of Kx to the

subspace F(H)m, which leads with the discussion in Example 4.2.15 to

Km
x (y) =

1
2π

∫ 2π

0

e−imtKx(eity) dt =
1

2π

∫ 2π

0

∞∑
n=0

1
n!
e−imt〈eity, x〉n dt

=
∞∑
n=0

1
2π

∫ 2π

0

1
n!
eit(n−m)〈y, x〉n dt =

{
1
m! 〈y, x〉

m, for m ∈ N0

0, for m < 0.

We conclude that Km(z, w) = 1
m! 〈z, w〉

m for m ∈ N0 and that F(H)m = 0 for
m < 0. We also see that F(H)m ⊆ Fm(H) for all m ∈ N0 and therefore obtain
Fm(H) = F(H)m for each m ∈ N because the inclusion Fm(H) ⊆ F(H)m is
trivial.

(ii) We consider the topological product group T := TJ and note that Ty-
chonov’s Theorem implies that this group is compact if it is endowed with the
product topology. Next we observe that the natural homomorphism

α : T → U(H), α
(
(tj)j∈J

)∑
j∈J

zjej :=
∑
j∈J

tjzjej

(the action of T by diagonal matrices) defines a continuous unitary representa-
tion. In view of the continuity criterion Lemma 1.2.6, this follows from the fact
that the functions T → C, t = (tj)j∈J 7→ 〈α(t)ek, e`〉 = δ`ktk are continuous for
all k, ` ∈ J . Next we use (i) to conclude that π ◦α is a continuous unitary repre-
sentation of T on F(H). Since T is compact abelian, the Fundamental Theorem
on Unitary Representations of Compact Groups (Theorem 4.2.20) shows that
the eigenfunctions of T form a total subset of F(H). So we have to determine
these eigenfunctions.

Each continuous character χ : T → T is of the form χm(z) =
∏
j∈J z

mj
j

for m ∈ Z(J), where Z(J) ⊆ ZJ denotes the subset of all functions with finite
support, i.e., the free abelian group on J (Exercise 5.2.10). Accordingly, we
have

F(H) =
⊕̂

m∈Z(J)
F(H)m,

where

F(H)m = {f ∈ F(H) : (∀t ∈ T )π(α(t))f = f ◦ α(t)−1 = χ−m(t)f}
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(cf. Example 4.2.15). Then we have a corresponding decompositionK =
∑

m∈Z(J) Km

of the reproducing kernel (Exercise 3.3.8). To determine the kernels Km, we
first observe that, in view of (i), F(H)m ⊆ F(H)m holds for

∑
j∈J mj = m.

We recall from Example 4.2.15 the orthogonal projection

Pm : F(H)m → F(H)m, Pm(f)(z) =
∫
T

χm(t)f(α(t)−1z) dµT (t).

In particular, we obtain

Km
w (z) = Pm(Km

w )(z) =
∫
T

χm(t)Km
w (α(t)−1z) dµT (t)

=
1
m!

∫
T

χm(t−1)〈α(t)z, w〉m dµT (t).

To evaluate this expression, we recall the multinomial formula

(x1 + . . .+ xn)k =
∑
|α|=k

(
k

α

)
xα, xα := xα1

1 · · ·xαnn ,

(
k

α

)
:=

k!
α1! · · ·αn!

,

where |α| := α1 + · · · + αn. We thus obtain for z, w ∈ H with the Cauchy
Product Formula

〈α(t)z, w〉m =
(∑
j∈J

tjzjwj

)m
=

∑
m∈N(J)

0 ,|m|=m

(
m

m

)
tmzmwm

with uniform convergence in t ∈ T . This leads to Km
w (z) = 0 for m 6∈ N(J)

0 , and
for m ∈ N(J)

0 we get

Km
w (z) =

1
m!

(
m

m

)
zmwm =

1
m!

zmwm =
1

m!
pm(z)pm(w).

This shows that F(H)m = Cpm (Proposition 3.4.9), and Theorem 3.1.3(3)
implies that ‖pm‖2 = m!.

Remark 5.2.4. At this point we have unitary representations of the Heisenberg
group Heis(H) and the unitary group U(H) on the Fock space F(H). These two
representations are compatible in the following sense.

For each g ∈ U(H), we obtain a topological automorphism of Heis(H) by
α(g)(t, v) := (t, gv), and we thus obtain a homomorphism

α : U(H)→ Aut(Heis(H)),

defining a continuous action of U(H)s on Heis(H) (cf. Exercise 1.2.13). There-
fore we obtain a topological semidirect product group

Heis(H) oα U(H).
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In view of the relation

(π(g)π(t, v)f)(z) = eit+〈g
−1z,v〉− 1

2 〈v,v〉f(g−1z − v)

= eit+〈z,gv〉−
1
2 〈gv,gv〉f(g−1(z − gv)) = (π(t, gv)π(g)f)(z),

we have
π(g)π(t, v)π(g)−1 = π(t, gv),

so that the representations of Heis(H) and U(H) on the Fock space combine
to a continuous unitary representation π(t, v, g) := π(t, v)π(g) of the semidirect
product group.

5.2.3 Hilbert Spaces on the Unit Disc

Before we discuss some typical examples of Hilbert spaces on the unit disc,
we show that many L2-spaces of holomorphic functions have continuous point
evaluations.

Proposition 5.2.5. Let Ω ⊆ C be an open subset and ρ : Ω → R×+ be a mea-
surable function such that every point p ∈ Ω has a neighborhood on which ρ is
bounded below by some ε > 0. Then

H :=
{
f ∈ O(Ω):

∫
Ω

|f(z)|2ρ(z)dz <∞
}

is a Hilbert space with respect to the scalar product

〈f, g〉 :=
∫

Ω

f(z)g(z)ρ(z) dz,

and the inclusion H → O(Ω) is continuous with respect to the topology of uni-
form convergence on compact subsets sets on O(Ω). In particular, the point
evaluations on H are continuous.

Proof. Let p ∈ Ω and r > 0 such that the closed disc D := B≤r(p) of radius r
is contained in Ω. Then the compactness of D implies that ρ is bounded below
by some ε > 0 on D. For f ∈ O(Ω) we obtain from the mean value property

1
πr2

∫
D

f(w) dw =
1
πr2

∫ r

0

∫ 2π

0

f(p+ reit) dt rdr =
1
πr2

∫ r

0

2πf(p) rdr

=
2
r2

∫ r

0

rdr · f(p) = f(p).

Now the Cauchy–Schwarz inequality in L2(D, dz) leads to

|f(p)|2 ≤ 1
(πr2)2

∫
D

|f(w)|2 dw ·
∫
D

1dw =
1
πr2

∫
D

|f(w)|2 dw

≤ 1
επr2

∫
D

|f(w)|2ρ(w) dw ≤ 1
επr2

‖f‖2.
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Applying this to smaller discs Bs(q) ⊆ Br(p), we find for q ∈ Br−s(p) the
estimate

|f(q)|2 ≤ 1
επs2

‖f‖2.

This estimate proves that every Cauchy sequence (fn)n∈N in H is a Cauchy
sequence on Br−s(p) with respect to the sup-norm, hence uniformly convergent
to a continuous holomorphic function f : Br−s(p) → C. Therefore the limit
f(z) := limn→∞ fn(z) exists pointwise on Ω and f is holomorphic because it is
holomorphic in a neighborhood of any p ∈ Ω.

Since each compact subset B ⊆ Ω can be covered by finitely many discs on
which the sequence converges uniformly, it converges uniformly on B, so that
we obtain ∫

B

|f(z)|2ρ(z) dz = lim
n→∞

∫
B

|fn(z)|2ρ(z) dz ≤ lim
n→∞

‖fn‖2.

Therefore
∫

Ω
|f(z)|2ρ(z) dz ≤ limn→∞ ‖fn‖2 follows from the Monotone Con-

vergence Theorem, so that f ∈ H.
To see that fn → f holds in H, let δ > 0 and ‖fn − fm‖ ≤ δ for m,n ≥ n0.

Then for each compact subset B ⊆ Ω and m ≥ n0, we have∫
B

|f(z)− fm(z)|2ρ(z) dz = lim
n→∞

∫
B

|fn(z)− fm(z)|2ρ(z) dz

≤ lim
n→∞

‖fn − fm‖2 ≤ δ2

and hence ‖f − fm‖ ≤ δ. This proves that fm → f , and therefore that H is
complete.

Example 5.2.6. (a) Let D := {z ∈ C : |z| < 1} denote the unit disc, and
consider for a real m > 1 the Hilbert space

Hm = {f ∈ O(D) : ‖f‖m <∞},

where

‖f‖2m :=
m− 1
π

∫
D
|f(z)|2(1− |z|2)m−2 dz.

Since the measure (1 − |z|2)m−2dz is invariant under the action of T by
scalar multiplication, we obtain with Proposition 2.3.8 a continuous unitary
representation of T on Hm, given by (t.f)(w) := f(tw).

Further, Proposition 5.2.5 implies that Hm is a reproducing kernel Hilbert
space and Proposition 5.1.6 shows that its kernel Km is T-invariant, i.e.,

Km(tz, tw) = Km(z, w) for z, w ∈ D, t ∈ T.

From the Fundamental Theorem on Unitary Representations of Compact
Groups (Theorem 4.2.20) we now derive that Hm is an orthogonal direct sum



108 CHAPTER 5. REPRESENTATIONS ON KERNEL SPACES

of the T-eigenspaces Hm,n, corresponding to the characters χn(t) := tn. If
f ∈ Hm,n, then

f(tz) = tnf(z) for z ∈ D, t ∈ T,

and this implies that f(wz) = wnf(z) for |w| ≤ 1 because both sides are
holomorphic in w and coincide on T. Therefore f(z) = czn for some c ∈ C,
and thus either Hm,n = Cpn for pn(z) = zn, or Hm,n = {0}, where the latter
relation holds in particular for n < 0 because the functions zn, n < 0, on D\{0}
do not extend holomorphically to D.

To see which monomials are contained in Hm, we calculate ‖pn‖2m:

‖pn‖2m =
m− 1
π

∫
D
|z|2n(1− |z|2)m−2 dz = 2(m− 1)

∫ 1

0

r2n+1(1− r2)m−2 dr

= (m− 1)
∫ 1

0

un(1− u)m−2 du.

Let In,k := (k + 1)
∫ 1

0
un(1− u)k du. Then integration by parts gives

In,k =
n

k + 2
In−1,k+1

whenever n > 0 and k > −1. Proceeding further, we obtain I0,k = 1 and thus

In,k =
n!

(k + 2) · · · (k + n+ 1)
I0,k+n =

(
k + n+ 1

n

)−1

.

We thus obtain ‖pn‖2m = In,m−2 =
(
m−1+n

n

)−1
. We know already from above

that the orthogonal family (pn)n∈N0 is complete. With Theorem 3.1.3(iii), we
thus obtain for the reproducing kernel

Km(z, w) =
∞∑
n=0

(
m+ n− 1

n

)
znwn = (1− zw)−m

(cf. Example 3.3.6(f) for H = C). For m = 2, the Hilbert space Hm is called the
Bergman space of D. It is the space of square integrable holomorphic functions
on D.

One also obtains an interesting “limit space” for m = 1. This can be done
as follows. On O(D) we consider

‖f‖2 := lim
r→1
r<1

1
2π

∫ 2π

0

|f(reit)|2 dt.

To evaluate this expression, let f(z) =
∑∞
n=0 anz

n denote the Taylor series
of f about 0 which converges uniformly on each compact subset of D. Hence
we can interchange integration and summation and obtain

1
2π

∫ 2π

0

|f(reit)|2 dt =
∞∑

n,m=0

anam
1

2π

∫ 2π

0

rn+meit(n−m) dt =
∞∑
n=0

|an|2r2n.
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Applying the Monotone Convergence Theorem to the sequences (|an|2r2n)n∈N ∈
`1(N0), we see that (|an|2)n∈N ∈ `1(N0) if and only if ‖f‖ <∞, and that in this
case ‖f‖2 =

∑∞
n=0 |an|2. Therefore

H1 := {f ∈ O(D) : ‖f‖ <∞} ∼= `2(N0,C)

is a Hilbert space and the polynomials form a dense subspace of H1. Moreover,
the monomials pn(z) = zn form an orthonormal basis ofH1. Note that ‖pn‖ = 1
is exactly the limit obtained for general m > 1 if m tends to 1. We put

K1(z, w) =
∞∑
n=0

pn(z)pn(w) =
∞∑
n=0

znwn =
1

1− zw

(cf. Theorem 3.1.3(a)). Then, for w ∈ D, the functions Kw(z) = 1
1−zw =∑∞

n=0 w
nzn are contained in H1, and for f(z) =

∑∞
n=0 anz

n, we get

〈f,Kw〉 =
∞∑
n=0

anw
n = f(w).

This proves that H1 has continuous point evaluations and that its reproducing
kernel is given by K1.

The space H1 is called the Hardy space of D and K1 is called the Cauchy
kernel. This is justified by the following observation. For each holomorphic
function f on D extending continuously to the boundary, we obtain the simpler
formula for the norm:

‖f‖2 =
1

2π

∫ 2π

0

|f(eit)|2 dt.

We see, in particular, that such a function is contained in H1 and thus

f(z) = 〈f,K1
z 〉 =

1
2π

∫ 2π

0

f(eit)K1
z (eit) dt =

1
2π

∫ 2π

0

f(eit)
1− ze−it

dt

=
1

2πi

∫ 2π

0

f(eit)
eit − z

eitidt =
1

2πi

∮
|ζ|=1

f(ζ)
ζ − z

dζ,

where the latter integral denotes a complex line integral. This means that the
fact that K1 is the reproducing kernel for H1 is equivalent to Cauchy’s integral
formula

f(z) =
1

2πi

∮
|ζ|=1

f(ζ)
ζ − z

dζ.

We have already seen how the spaces Hm decompose under the unitary
representation of the group T, but the spaces Hm carry for m ∈ N a unitary
representation of the larger group

G := SU1,1(C) :=
{
g =

(
a b

b a

)
∈ GL2(C) : a, b ∈ C, |a|2 − |b|2 = 1

}
.
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We claim that
σg(z) := g.z := (az + b)(bz + a)−1

defines a continuous action of G on D. Note that this expression is always
defined because |z| < 1 and |b| < |a| implies that bz + a 6= 0. That σg(z) ∈ D
for z ∈ D follows from

|az+ b|2 = |a|2|z|2 + (abz+ abz) + |b|2 < |b|2|z|2 + (abz+ abz) + |a|2 = |bz+ a|2.

The relations σ1(z) = z and σgg′ = σgσg′ are easily verified (see Exercise 5.2.13).
To see that this action is transitive, we note that for |z| < 1,

g :=
1√

1− |z|2

(
1 z
z 1

)
∈ SU1,1(C)

satisfies g.0 = z.
To obtain a unitary action of G onHm, we have to see how the corresponding

kernel Km transforms under the action of G. For the kernel Q(z, w) = 1 − zw
an easy calculation shows that

Q(g.z, g.w) = 1− (az + b)
(bz + a)

(aw + b)
(bw + a)

=
(bz + a)(a+ bw)− (az + b)(aw + b)

(bz + a)(a+ bw)

=
(|a|2 − |b|2)(1− zw)

(bz + a)(a+ bw)
=

Q(z, w)
(bz + a)(a+ bw)

.

Finally, we note that,
J(g, z) := a− bz

defines a 1-cocycle for the action of G on D, which can be verified by direct
calculation), and

J(g, g.z) = a− baz + b

bz + a
=
abz + |a|2 − baz − |b|2

bz + a
=

1
bz + a

,

so that we obtain for
Jm(g, z) := J(g, z)−m

the relation
Km(g.z, g.w) = Jm(g, g.z)K(z, w)Jm(g, g.w),

and Proposition 5.1.6 show that, for m ∈ N,

(πm(g)f)(z) = Jm(g, z)f(g−1.z) = (a− bz)−mf
(
az − b
a− bz

)
defines a continuous unitary representation of G = SU1,1(C) on Hm.

For m = 2, the space H2 is the Bergman space of the disc and

J2(g, z) =
1

(a− bz)2
= σ′g−1(z)

for g ∈ SU1,1(C), so that the existence of the representation in this case also
follows from Exercise 5.2.12.
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Remark 5.2.7. From Example 3.3.6 we recall the positive definite kernels

Ks(z, w) := (1− zw)−s, s > 0,

on the open unit disc D ⊆ C. We have seen in Example 5.2.6 that for s ∈ N, we
have a unitary representation of SU1,1(C) on the corresponding Hilbert space.
The reason for restricting to integral values of s is that otherwise we don’t have
a corresponding cocycle. However, for Q(z, w) = 1− zw, we have

Q(g.z, g.w) =
Q(z, w)

(bz + a)(a+ bw)
. =

Q(z, w)
|a|2(1 + (b/a)z)(1 + (b/a)w)

Q(z, w),

and therefore
Ks(g.z, g.w) = θg(z)θg(w)Ks(z, w)

for
θg(z) := |a|s(1 + (b/a)z)s,

where, in view of |b| < |a|, the right hand side can be defined by a power series
converging in D.

As we shall see below, these considerations lead to a projective unitary rep-
resentation of SU1,1(C) on Hs by

(πs(g)f)(z) := θg(g−1.z)f(g−1.z).

5.2.4 Some Representations of SU2(C)

In this section we discuss the action of SU2(C) on a Hilbert space of polynomials
on the complex plane. We shall see later that all these representations are
irreducible, and one can even show that they exhaust the irreducible continuous
unitary representations of this compact group.

Example 5.2.8. For m ∈ N0, let Hm = {f ∈ O(C) : ‖f‖m <∞}, where

‖f‖2m =
m+ 1
π

∫
C

|f(z)|2

(1 + |z|2)m+2
dz

and dz denotes Lebesgue measure on C.
Then exactly the same arguments as in Example 5.2.6, based on the rotation

invariance of the density (1+ |z|2)−(m+2), show that Hm is a reproducing kernel
Hilbert space and that the monomial pn(z) := zn contained in Hm form an
orthogonal total subset. To determine these monomials, we calculate

‖pn‖2m =
m+ 1
π

∫
C

|z|2n

(1 + |z|2)m+2
dz = 2(m+ 1)

∫ ∞
0

r2n+1(1 + r2)−m−2 dr

= (m+ 1)
∫ ∞

0

un(1 + u)−m−2 du.



112 CHAPTER 5. REPRESENTATIONS ON KERNEL SPACES

Let In,k := (k − 1)
∫∞

0
un

(1+u)k
du. This integral exists if and only if k > n + 1.

Under this assumption integration by parts yields In,k = n
k−2In−1,k−1. For

n = 0, we get I0,k = −
∫∞

0
(1− k)(1 + u)−k du = 1. Therefore

In,k =
n!

(k − 2)(k − 3) · · · (k − n− 1)
I0,k−n =

(
k − 2
n

)−1

and ‖pn‖2 =
(
m
n

)−1 for n ≤ m, so that the monomials
√(

m
n

)
pn, n = 0, . . . ,m

form an orthonormal basis in Hm and in particular Hm consists of all polyno-
mials of degree ≤ m.

Since the the point evaluations on the finite dimensional space Hm are con-
tinuous, we have a reproducing kernel which is given by

Km(z, w) =
m∑
n=0

(
m

n

)
znwn = (1 + zw)m.

(Theorem 3.1.3). The group G = SU2(C) acts on the Riemann sphere Ĉ =

C∪ {∞} by g.z = az+b
−bz+a for g =

(
a b

−b a

)
(Exercise 5.2.13). We claim that we

have a unitary representation on SU2(C) on the Hilbert space Hm by

(πm(g)f) (z) = (a+ bz)mf
(
az − b
a+ bz

)
= (a+ bz)mf(g−1.z).

Note that the factor (a + bz)m ensures that, although f(g−1.z) is a rational
function, the product is a polynomial of degree ≤ m.

It is instructive to see how this arises from the identification of Ĉ with the
projective line P1(C) = P(C2). Let Fm(C2) be the subspace of the Fock space
F(C2) consisting of homogeneous polynomials of degree m. From the inclusion

C→ C2, z 7→ (z, 1),

we obtain an inclusion

R : Fm(C2)→ O(C), (Rf)(z) := f(z, 1),

and the injectivity of R follows from the homogeneity of the elements of Fm(C2).
Defining a Hilbert space structure on the image of R in such a way that R is
unitary, its image is a reproducing kernel space with kernel

K(z, w) =
1
m!
〈(z, 1), (w, 1)〉m =

(1 + zw)m

m!
.

Since this is, up to a positive factor, the kernel of Hm, it follows that im(R) =
Hm and that the unitary representation of SU2(C) ⊆ U(C2) on Fm(C2) cor-
responds to the unique unitary representation πm on Hm for which R is an
intertwining operator.
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For g =
(
a b

−b a

)
∈ SU2(C) we then find with g−1 =

(
a −b
b a

)
the formula

(πm(g)R(f))(z) := (f ◦g−1)(z, 1) = f(az− b, bz+a) = (a+ bz)m(Rf)
(az − b
bz + a

)
.

Exercises for Section 5.2

Exercise 5.2.9. Let V be a real vector space and ω : V × V → R be a bilinear
map.

(a) Show that on R× V we obtain a group structure by

(t, v)(s, w) := (t+ s+ ω(v, w), v + w).

This group is called the Heisenberg group Heis(V, ω).

More generally, we obtain for any two abelian groups V and Z and any
biadditive map ω : V × V → Z a group structure on Z × V by

(t, v)(s, w) := (t+ s+ ω(v, w), v + w).

(b) Let H be a complex Hilbert space. How do we have to choose V and ω to
obtain an isomorphism Heis(V, ω) ∼= Heis(H)?

(c) Verify that Z(Heis(V, ω)) = R× rad(ωs), where

ωs(v, w) := ω(v, w)−ω(w, v) and rad(ωs) := {v ∈ V : ωs(v, V ) = {0}}.

(d) Show that for V = R2 with ω(x, y) = x1y2, the Heisenberg group H(V, ω)
is isomorphic to the matrix group

H :=

{1 x z
0 1 y
0 0 1

 : x, y, z ∈ R

}
.

Exercise 5.2.10. Let G =
∏
j∈J Gj be a product of abelian topological groups

and pj : G→ Gj be the projection maps. Show that the map

S :
⊕
j∈J

Ĝj → Ĝ, (χj)j∈J 7→
∏
j∈J

(χj ◦ pj)

is an isomorphism of abelian groups.

Exercise 5.2.11. On Rn we consider the vector space Pk of all homogeneous
polynomials of degree k:

p(x) =
∑
|α|=k

cαx
α, cα ∈ R, xα := xα1

1 · · ·xαnn , |α| = α1 + · · ·+ αn.
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We associate to such a polynomial p a differential operator by

p(∂) :=
∑
|α|=k

cα∂
α, ∂α := ∂α1

1 · · · ∂αnn , ∂i :=
∂

∂xi
.

Show that the Fischer inner product

〈p, q〉 := (p(∂)q)(0)

defines on Pk the structure of a real Hilbert space with continuous point evalu-
ations. Show further that its kernel is given by

K(x, y) =
1
k!
〈x, y〉k =

1
k!

( n∑
j=1

xjyj

)k
.

Hint: Show that the monomials pα(x) = xα form an orthogonal subset with
〈pα, pα〉 = α! and conclude with Theorem 3.1.3 that K(x, y) =

∑
|α|=m

xαyα

α! .

Exercise 5.2.12. Let D1,D2 ⊆ C be two open subsets and ϕ : D1 → D2 be
a biholomorphic map, i.e., ϕ is bijective and ϕ−1 is also holomorphic. Let
B(D) := L2(D, dz)∩O(D) denote the Bergman space of D. Show that the map

Φ: B(D2)→ B(D1), f 7→ (ϕ∗f) · ϕ′, ϕ∗f = f ◦ ϕ

is unitary. Hint: For the real linear map λz : C → C, w 7→ zw, we have
detR(λz) = |z|2.

Exercise 5.2.13. We consider the group G := GL2(C) and the complex pro-
jective line (the Riemann sphere)

P1(C) = {[v] := Cv : 0 6= v ∈ C2}

of 1-dimensional linear subspaces of C2. We write [x : y] for the line C
(
x
y

)
.

Show that:

(a) The map C → P1(C), z 7→ [z : 1] is injective and its complement consists
of the single point ∞ := [1 : 0] (the horizontal line). We thus identify
P1(C) with the one-point compactification Ĉ of C. These are the so-called
homogeneous coordinates on P1(C).

(b) The natural action of GL2(C) on P1(C) by g.[v] := [gv] is given in the
coordinates of (b) by

g.z = σg(z) :=
az + b

cz + d
for g =

(
a b
c d

)
.
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(c) On C2 we consider the indefinite hermitian form

β(z, w) := z1w1 − z2w2 = w∗
(

1 0
0 −1

)
z.

We define

U1,1(C) := {g ∈ GL2(C) : (∀z, w ∈ C2)β(gz, gw) = β(z, w)}.

Show that g ∈ U1,1(C) is equivalent to

g−1 =
(

1 0
0 −1

)
g∗
(

1 0
0 −1

)
.

Show further that the above relation is equivalent to

det g ∈ T, d = a det g and c = bdet g.

In particular, we obtain |a|2 − |b|2 = 1.

(d) The hermitian form β is negative definite on the subspace [z1 : z2] if and
only if |z1| < |z2|, i.e., [z1 : z2] = [z : 1] for |z| < 1. Conclude that
g.z := az+b

cz+d defines an action of U1,1(C) on the open unit disc D in C.

5.3 Positive Definite Functions

It was one of our first observations in Section 1.3 that any unitary representation
decomposes as a direct sum of cyclic ones. The main point of this section is to
describe the bridge between cyclic representations and positive definite kernels
on the group G which are invariant under right translations. Such kernels are
determined by the function ϕ := K1 via K(g, h) = ϕ(gh−1), and ϕ is said to be
positive definite if K has this property. We shall see that any cyclic represen-
tation of G is equivalent to one in a reproducing kernel subspace Hϕ ⊆ C(G)
corresponding to a continuous positive definite function ϕ, and characterize the
irreducible ones geometrically by the condition that ϕ generates an extremal
ray in the cone of continuous positive definite functions on G.

5.3.1 Cyclic Representations

Definition 5.3.1. A function ϕ : S → C on an involutive semigroup (S, ∗) is
called positive definite if the kernel

Kϕ : S × S → C, Kϕ(s, t) := ϕ(st∗)

is positive definite. We then write Hϕ ⊆ CS for the corresponding reproducing
kernel Hilbert space.

(b) If G is a group, then (G, ηG) is an involutive semigroup, so that a function
ϕ : G→ C is called positive definite if the kernel

Kϕ : G×G→ C, Kϕ(s, t) := ϕ(st−1)
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is positive definite. We then writeHϕ := HKϕ for the corresponding reproducing
kernel space in CG.

A kernel K : G×G→ C is called right invariant if

K(xg, yg) = K(x, y) holds for g, x, y ∈ G.

For any such kernel the function ϕ := K1 satisfies

K(x, y) = K(xy−1,1) = ϕ(xy−1).

Conversely, for every function ϕ : G→ C, the kernel K(x, y) := ϕ(xy−1) is right
invariant. Therefore the right invariant positive definite kernels on G correspond
to positive definite functions.

(c) For a topological group G, we write P(G) for the set of continuous
positive definite functions on G. The subset

S(G) := {ϕ ∈ P(G) : ϕ(1) = 1}

is called the set of states of G.
Clearly, P(G) is a convex cone and S(G) ⊆ P(G) is a convex subset with

P(G) = R+S(G). The extreme points of S(G) are called pure states of G.
Recall from Proposition 3.3.5 that Hϕ ⊆ C(G) for each continuous positive

definite function ϕ ∈ P(G).
(d) If A is a Banach-∗-algebra, then a linear functional f : A → C is said

to be positive if it is a positive definite function on the involutive semigroup
((A, ·), ∗), i.e., if the sesquilinear kernel

K(a, b) := f(ab∗)

is positive definite.

Remark 5.3.2. If (π,H) is a unitary representation of the involutive semigroup
(S, ∗) and v ∈ H, then the function

πv : S → C, s 7→ 〈π(s)v, v〉

is positive definite because

K(s, t) := πv(st∗) = 〈π(s)π(t∗)v, v〉 = 〈π(t∗)v, π(s∗)v〉,

and the positive definiteness of this kernel follows from Remark 3.3.1. The
corresponding realization map is

γ : S → H, γ(s) = π(s∗)v

(Theorem 3.3.3). If v is a cyclic vector, then this map has total range, so that

ϕγ : H → HK , ϕγ(w)(s) := 〈w, π(s∗)v〉 = 〈π(s)w, v〉

is an isomorphism of Hilbert spaces. In view of

ϕγ(π(t)w)(s) = 〈π(st)w, v〉 = ϕγ(w)(st),

this map intertwines the representation π of S on H with the representation of
S on HK by (s.f)(x) := f(xs).
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In the following we write a cyclic unitary representation (π,H) with cyclic
vector v as a triple (π,H, v).

Proposition 5.3.3. Let G be a topological group.
(a) For every continuous unitary representation (π,H) of G and v ∈ H,

πv(g) := 〈π(g)v, v〉

is a continuous positive definite function.
(b) Conversely, for every continuous positive definite function ϕ : G → C,

the reproducing kernel space Hϕ ⊆ C(G,C) with the kernel K(g, h) := ϕ(gh−1)
carries a continuous unitary representation of G, given by

(πϕ(g)f)(x) := f(xg),

satisfying πϕϕ = ϕ, i.e.,

ϕ(g) = 〈πϕ(g)ϕ,ϕ〉 for g ∈ G.

(c) A continuous unitary representation (π,H) of G is cyclic if and only if
it is equivalent to some (πϕ,Hϕ) with ϕ ∈ P(G).

(d) For two cyclic unitary representations (π,H, v) and (π′,H′, v′) of G,
there exists a unitary intertwining operator Γ: H → H′ with Γ(v) = v′ if and
only if πv = (π′)v

′
.

Proof. (a) follows immediately from Remark 5.3.2.
(b) We first observe that the kernelK is invariant under right multiplications:

K(xg, yg) = ϕ(xg(yg)−1) = K(x, y), x, y, g ∈ G,

so that we obtain a continuous unitary representation (πϕ,Hϕ) of G (Proposi-
tion 5.1.6). Finally, we note that K(x, g) = ϕ(xg−1) leads to Kg = ϕ ◦ ρg−1 , so
that

〈πϕ(g)ϕ,ϕ〉 = 〈πϕ(g)ϕ,K1〉 = (πϕ(g)ϕ)(1) = ϕ(g).

(c) To see that (πϕ,Hϕ) is cyclic, we show that ϕ is a cyclic vector. In fact,
if f ∈ Hϕ is orthogonal to πϕ(G)ϕ, then we have

f(g) = (π(g)f)(1) = 〈π(g)f, ϕ〉 = 〈f, π(g)−1ϕ〉 = 0,

for each g ∈ G, and therefore f = 0.
If, conversely, (π,H) is a cyclic continuous unitary representation of G and

v ∈ H a cyclic vector, then ϕ := πv ∈ P(G) by (a), and Remark 5.3.2 implies
that the map

ϕγ : H → Hϕ, ϕγ(w)(g) = 〈π(g)w, v〉

is a unitary intertwining operator. We conclude that (π,H) ∼= (πϕ,Hϕ).
(d) If Γ: H → H′ is a unitary intertwining operator with Γ(v) = v′, then we

have for each g ∈ G the relation

(π′)v
′
(g) = 〈π′(g)v′, v′〉 = 〈Γ(π(g)v),Γ(v)〉 = 〈π(g)v, v〉 = πv(g).
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Suppose, conversely, that ϕ := πv = (π′)v
′
. Then we obtain with Re-

mark 5.3.2 unitary intertwining operators

Γ: H → Hϕ with Γ(v) = ϕ

and
Γ′ : H′ → Hϕ with Γ′(v′) = ϕ.

Then Γ′ ◦Γ−1 : H → H′ is a unitary intertwining operator mapping v to v′.

Applying the Irreducibility Criterion for Reproducing Kernel Spaces (Theo-
rem 5.1.12) to the right action of G on itself and J = 1, we immediately obtain:

Proposition 5.3.4. For ϕ ∈ S(G), the representation (πϕ,Hϕ) is irreducible
if and only if ϕ is an extreme point of S(G), i.e., a pure state.

Proof. We only have to observe that R+ϕ is an extreme ray of the cone P(G)
if and only if ϕ is an extreme point of S(G) (Exercise 5.3.20).

Example 5.3.5. (a) Let G be an abelian topological group and Ĝ its character
group. Further, let S be the smallest σ-algebra on Ĝ for which all the evaluation
functions

ĝ : Ĝ→ T, χ 7→ χ(g)

are Borel measurable. 1 It is generated by the inverse images ĝ−1(E), E ⊆
T an open subset. For any finite measure µ on (Ĝ,S), we obtain a unitary
representation of G on L2(Ĝ, µ) by

(π(g)f)(χ) := ĝ(χ)f(χ).

Suppose that G is first countable, i.e., has a countable basis of 1-neighbor-
hoods. We claim that π is continuous. It suffices to verify sequential continuity
of the functions

πv,w : G→ C, πv,w(g) = 〈π(g)v, w〉 =
∫

bG ĝ(χ)v(χ)w(χ) dµ(χ).

In view of the estimate

|ĝ(χ)v(χ)w(χ)| = |v(χ)w(χ)| = |(vw)(χ)|

and vw ∈ L1(Ĝ, µ), this follows from Lebesgue’s Dominated Convergence The-
orem.

It follows in particular that the function

µ̂(g) :=
∫

bG ĝ(χ) dµ(χ) = 〈π(g)1, 1〉

1In general, this σ-algebra may be much smaller than the σ-algebra of Borel sets for the
topology of pointwise convergence. This is due to the fact that arbitrary unions of open sets
are open, but for measurable subsets, only countable unions are measurable.
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is continuous and positive definite. It is called the Fourier transform of µ. In
Corollary 6.2.19 below we shall develop tools to verify that 1 is a cyclic vector
for this representation (see also Example 6.2.21), 2 so that

Hbµ ∼= L2(Ĝ, µ)

and we shall also see that for a locally compact abelian group G every positive
definite function is the Fourier transform of a unique Radon measure µ on Ĝ
(Bochner’s Theorem).

(b) The preceding construction applies in many special cases. If G = (V,+)
is a Banach space, then Ĝ ∼= V ′, the topological dual space (Exercise 4.2.24),
so that we obtain for any finite Borel measure µ on V ′ the continuous positive
definite function

µ̂(v) :=
∫
V ′
eiα(v) dµ(α).

For V = Rn this specializes to

µ̂(x) :=
∫

Rn
ei〈x,y〉 dµ(y),

which in probability theory is also called the characteristic function of the mea-
sure µ.

5.3.2 Spherical Functions

In many situations one is interested in understanding and classifying unitary
representations in reproducing kernel spaces HQ of continuous functions (and
with continuous point evaluations) on a homogeneous space X := G/K of a
topological group G and a closed subgroup K, where G acts by (π(g)f)(x) =
f(g−1x). For any unitary representation (πQ,HQ) in such a Hilbert space, we
know from Proposition 5.1.6 that its kernel Q on X is G-invariant, i.e.,

Q(g.x, g.y) = Q(x, y) for g ∈ G, x, y ∈ X.

Hence the problem is to describe the convex cone P(X)G of G-invariant positive
definite continuous kernels on X. In particular, we are interested in its extremal
rays because they correspond to irreducible representations (Theorem 5.1.12).

Choosing the natural base point x0 := 1K ∈ G/K = X, we see that the
transitivity of the G-action on X implies that any invariant kernel Q satisfies

Q(g.x0, h.x0) = Q(h−1g.x0, x0),

hence is determined by the function

ϕ : G→ C, ϕ(g) := Q(g.x0, x0).
2The main difficulty is to show that the von Neumann algebra generated by the functionsbg, g ∈ G, is all of L∞( bG,µ), when we consider these functions as operators on L2( bG,µ). This

requires spectral measures as a tool (cf. Corollary 6.2.19).
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Clearly, ϕ is K-biinvariant because for h1, h2 ∈ K we have

ϕ(h1gh2) = Q(h1gh2.x0, x0) = Q(g.x0, h
−1
1 .x0) = Q(g.x0, x0).

If, conversely, ϕ : G→ C is an K-biinvariant function, then

Q(g1K, g2K) := ϕ(g−1
2 g1)

is a well-defined G-invariant kernel on G/K and ϕ(gK) := ϕ(g) defines a K-
invariant function on G/K (cf. Exercise 5.3.26 for continuity issues). This leads
to the following concept.

Lemma 5.3.6. The kernel Q on G/K is positive definite if and only if the
function ϕ : G→ C, defined by ϕ(g) := Q(g.x0, x0) is positive definite.

Proof. We have

Qϕ(g, h) := ϕ(gh−1) = Q(gh−1.x0, x0) = Q(h−1.x0, g
−1.x0),

and this kernel on G is positive definite if and only if Q is positive definite
because the map G→ G/K, g 7→ g−1.x0 is surjective.

Definition 5.3.7. Let (G,K) be a pair of a topological group G and a subgroup
K. A continuous positive definite function ϕ ∈ P(G) is said to be spherical if it
is K-biinvariant and the representation (πϕ,Hϕ) with (πϕ(g)f)(x) := f(g−1x)
is irreducible.

Remark 5.3.8. (K-biinvariant functions and K-fixed vectors) If ϕ ∈ P(G) is
a K-biinvariant positive definite function on G, then the element ϕ ∈ Hϕ is a
K-invariant vector, i.e., an element of HKϕ .

Suppose, conversely, that (π,H) is a continuous unitary representation of
G and v0 ∈ HK is a K-fixed vector. Then the orbit map G → H, g 7→ π(g)v
factors through a continuous G-equivariant map

γ : G/K → π(g)v0,

so that the closed G-invariant subspace H0 ⊆ H generated by v0 leads to a
realization triple (G/K, γ,H0) for the kernel

Q(gK, hK) = 〈γ(hK), γ(gK)〉 = 〈π(h)v0, π(g)v0〉 = πv0(g−1h)

(cf. Definition 3.3.4), and hence to a realization of the representation (π,H0) in
continuous functions on G/K.

Remark 5.3.9. The terminology is due to the special case where X is the
sphere

S := S(V ) := {x ∈ V : ‖x‖ = 1}
in a real euclidean space V , such as Rn. On this space the orthogonal group

O(V ) := {g ∈ GL(V ) : g> = g−1}

of linear surjective isometries acts transitively (Exercise 5.3.27) and the corre-
sponding spherical functions on O(V ) correspond to the irreducible representa-
tions of O(V ) in reproducing kernel spaces in C(S).
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Definition 5.3.10. Let (π,H) be a unitary representation of the group G and
K ⊆ G a subgroup. For a homomorphism χ : K → T, we write

HK,χ := {v ∈ H : (∀k ∈ K)π(k)v = χ(k)v}

for the corresponding common eigenspace in H. For the trivial character χ = 1,
we write HK = HK,1 for the space of K-fixed vectors in H.

Proposition 5.3.11. (Irreducibility criterion for cyclic representations) Sup-
pose that the unitary representation (π,H) of G is generated by the subspace
HK,χ for some character χ : K → T of a subgroup K. If dimHK,χ = 1, then
(π,H) is irreducible.

Proof. Let K ⊆ H be a closed non-zero invariant subspace and P : H → K be
the orthogonal projection. Since P commutes with G, we then have P (HK,χ) =
KK,χ. Since K = P (H) is generated, as a unitaryG-representation, byHK,χ, the
representation on K is generated by P (HK,χ) = KK,χ, and we see in particular
that KK,χ 6= {0}. As HK,χ is one-dimensional, we this leads to HK,χ = KK,χ ⊆
K, so that H = K follows from the fact that HK,χ generates H. This proves
that the representation (π,H) is irreducible.

Proposition 5.3.12. Let Q ∈ P(G/K)G be a G-invariant positive definite
kernel. Then the following assertions hold:

(a) HQ is generated by the closed subspace HKQ of K-fixed vectors.

(b) If dimHKQ = 1, then the unitary representation (πQ,HQ) of G is irreducible.

Proof. (a) The evaluation in the base point x0 = 1K ∈ G/K is fixed under K,
so that Qx0 ∈ HKQ . Now πQ(g).Qx0 = Qg.x0 (Proposition 5.1.6) implies that
the G-invariant subspace generated by HKQ contains all elements Qx, x ∈ G/K,
hence is dense.

(b) follows by combining (a) with Proposition 5.3.11.

Definition 5.3.13. Representations (π,H) of G with dimHK = 1 which are
generated by this subspace are called class one representations. As we have seen
above, class one representations are always irreducible.

In view of Remark 5.3.8 all class one representations can be realized in repro-
ducing kernel spaces HQ ⊆ C(G/K) with kernel Q(xK, yK) = 〈π(x−1y)vK , vK〉
for any vK ∈ HK . Here the main point of the class one condition is that the vec-
tor vK ∈ HK is unique up to scalar multiples, so that the space BG(H, C(G/K))
of intertwining operators is one-dimensional, hence the name.

Remark 5.3.14. We have seen in Proposition 5.3.11 that any class one rep-
resentation is irreducible. The main advantage of class one representations
is that they are completely encoded in the single spherical function ϕ(g) =
〈vK , π(g)vK〉, where vK ∈ HK is a unit vector because every other unit vector
leads to the same function and (π,H) ∼= (πϕ,Hϕ) by Proposition 5.3.3. This
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fact makes class one representations particularly accessible via the correspond-
ing spherical functions.

The converse is not true in general, i.e., there may be irreducible represen-
tations (πQ,HQ) in C(G/K) which are not class one. To see this, we choose
K := {1}, then each irreducible representation (π,H) of G can be realized in
C(G) by a right invariant kernel defined by a positive definite function (Propo-
sition 5.3.3), but in this case HK = H is not one-dimensional in general.

To obtain situations where all irreducible representation are type one, so that
their classification is more manageable, one has to look for conditions ensuring
that K is “large” in G. One such requirement is that for every continuous
unitary representation (π,H) of G and the orthogonal projection PK : H → HK ,
the set of all operators

S := {PKπ(g)PK : g ∈ G} ⊆ B(HK)

is commutative. Then (G,K) is called a Gelfand pair.
If K ⊆ HK is an S-invariant closed subspace, then PK(π(G)K) ⊆ K implies

that the closed G-invariant subspace KG generated by K satisfies KKG = K. In
particular, the set S acts irreducibly on HK if (π,H) is irreducible. Since S
is commutative and ∗-invariant, in view of Schur’s Lemma, this implies that
dimHK = 1, hence that (π,H) is of class one.

Examples 5.3.15. If K is a topological group and G := K ×K, then X := K
is a homogeneous space of G by the action (g1, g2).x := g1xg

−1
2 . Then the

stabilizer of the element x0 := 1 is the diagonal subgroup

∆K := {(k, k−1) : k ∈ K} ∼= K,

so that K ∼= G/∆K . In this context a G-invariant kernel Q on K corresponds
via ϕ(k) := Q(k,1) to a conjugation invariant function on K. Such functions
on a group are also called central.

One can show that (K ×K,∆K) always is a Gelfand pair if K is compact.
Typical examples of central functions on groups arise from finite dimensional

unitary representations. For any such representation (π,H) of K, the function

χπ(k) := tr(π(k))

is a central positive definite function, called the character of π. In fact, the
space B(H) carries the Hilbert space structure given by the Hilbert–Schmidt
scalar product

〈A,B〉 := tr(AB∗) = tr(B∗A),

which leads to a unitary representation of K ×K on B(H) via

π̃(k1, k2)A := π(k1)Aπ(k2)∗,

and then
χπ(k) = tr(π(k)) = 〈π̃(k,1)1,1〉.

If (π,H) is an irreducible representation of K, then one can derive from Proposi-
tion 4.3.9 that (π̃, B(H)) is also irreducible, so that χπ(k1k

∗
2) defines a spherical

function on K ×K.
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It is an important representation theoretic problem to classify for a given pair
(G,K) the spherical functions. As the following example shows, this problem
has tight links with problems in classical harmonic analysis.

Example 5.3.16. (Spherical functions on motion groups) Let V be a euclidean
space and

G ∼= V o O(V )

be its group of surjective isometries (Exercise 5.3.22). We endow O(V ) with
the strong operator topology and recall that it acts continuously on V (Exer-
cise 1.2.13), so thatG is a topological group with respect to the product topology
(Exercise 1.1.20). The group G acts transitively on V by (v, g).x := g.x+ v and
the stabilizer of 0 is the group K := O(V ) of linear surjective isometries.

We are interested in the spherical functions of the pair (G,K) and, more
generally, in positive definite K-biinvariant functions on G. Since K acts tran-
sitively on the spheres in V (Exercise 5.3.27), every K-biinvariant continuous
function ϕ : G→ C can be written as

ϕ(v, g) = f(‖v‖),

where f : R+ → C is a continuous function. Now the main problem is to see for
which functions f , the function ϕ is spherical, resp., positive definite.

We claim that the functions

ϕλ(v, k) := e−λ‖v‖
2

(5.10)

are positive definite for λ ≥ 0. To verify this claim, we note that the corre-
sponding kernel is given by

Q((v, k), (w, h)) = ϕλ((v, k)(w, h)−1) = ϕλ((v, k)(−h−1w, h−1))

= ϕλ(v − kh−1w) = e−λ‖v−kh
−1w‖2 = e−λ‖k

−1v−h−1w‖2

= e−λ‖v‖
2
e−λ‖w‖

2
e2λ〈k−1v,h−1w〉

(cf. Exercise 5.3.19).
To see that this kernel is positive definite, we first use Remark 3.3.1(b) and

Corollary 3.2.2 to see that it suffices to show that the kernel

((v, k), (w, h)) 7→ 〈k−1v, h−1w〉

is positive definite, but this follows from Remark 3.3.1(a).
Now Proposition 3.2.1 implies immediately that any function of the form

ϕ(v, k) :=
∫ ∞

0

ϕλ(v, k) dµ(λ) =
∫ ∞

0

e−λ‖v‖
2
dµ(λ)

for a finite Borel measure µ on R+ is positive definite and it is an important
result of Schoenberg that, if V is infinite dimensional, all K-biinvariant positive
definite functions on G are of this form ([Sch38]), i.e., ϕ(v, k) = f(‖v‖), where

f(r) =
∫ ∞

0

e−λr dµ(λ),



124 CHAPTER 5. REPRESENTATIONS ON KERNEL SPACES

i.e., f is the Laplace transform of a finite Borel measure on R+. In particular, the
functions ϕλ are the extreme points in the set S(G,K) of K-biinvariant positive
definite normalized functions and therefore the corresponding representation
(πQλ ,HQλ) on the reproducing kernel space associated to the G-invariant kernel
Qλ on V is irreducible. As we have seen above, this kernel is given by

Qλ(v, w) = ϕ(v − w, 0) = e−λ‖v−w‖
2

= e−λ‖v‖
2
e−λ‖w‖

2
e2λ〈v,w〉.

For Q′(v, w) := e2λ〈v,w〉 we thus obtain from Exercise 5.1.15 that the map

Φ: HQ′ → HQλ , Φ(f)(v) := e−λ‖v‖
2
f(v)

is unitary. Note that HQ′ is the Fock space F2λ(V ) on V , corresponding to the
scaled inner product 2λ〈v, w〉.

On the space HQ, the unitary representation of the affine group G is simply
given by composition

(πλ(v, k)f)(x) = f((v, k)−1.x) = f(k−1(x− v)),

but the unitary representation π′λ on the Fock space HQ′ transferred by Φ
satisfies

(π′λ(v, k)f)(x) = e−λ‖v‖
2+2λ〈x,v〉f(k−1(x− v)),

which corresponds to the formula found in Remark 5.2.2 for the canonical action
of the translation group on the Fock space.

For finite dimensional euclidean spaces V ∼= Rn, the spherical functions have
a more complicated structure. They are the Fourier transforms of the invariant
measures on spheres. We shall see in Chapter 6 below where this comes from.

Examples 5.3.17. (a) Let (π,F(H)) be the representation of the Heisenberg
group Heis(H) on the Fock space

(π(t, v)f)(z) = eit+〈z,v〉−
1
2 〈v,v〉f(z − v)

(Proposition 5.2.1). Recall that F(H) = HQ for Q(z, w) = e〈z,w〉.
First we note that the constant function 1 = Q0 is a cyclic vector. Indeed,

for J((t, v), x) = eit+〈x,v〉−
1
2 〈v,v〉 we have

π(t, v)Qx = J((t, v)−1, x)Qx+v ∈ C×Qx+v,

so that Qx ∈ C×π(0, x)Q1, and since the set {Qx : x ∈ H} is total, the vector 1
is cyclic. The corresponding positive definite function is

ϕ(t, v) = 〈π(t, v)1, 1〉 = (π(t, v)1)(0) = J((t, v), 0) = eit−
1
2 〈v,v〉.

The affine space H is a homogeneous Heis(H)/K for K = T × {0} and
π(t, 0) = eit1 for all t ∈ R. Therefore the character χ(t, 0) := eit of K sat-
isfies F(H)K,χ = F(H), so that the irreducibility criterion Proposition 5.3.11
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does not apply. However, one can show with tools based on complex analysis
(Kobayashi’s Theorem) that (π,F(H)) is irreducible.

(b) Let (π,F(H)) be the representation of the semidirect product group
G := Heis(H) o U(H) on the Fock space

(π(t, v, g)f)(z) = eit+〈z,v〉−
1
2 〈v,v〉f(g−1(z − v))

(Remark 5.2.4). Since 1 is cyclic for Heis(H), it is in particular cyclic for G.
For the action of G on H by (t, v, g).z = gx + v we have H ∼= G/K for K =
T×{0}×U(H), and 1 is a χ-eigenvector for K for the character χ(t, 0, g) := eit.

We claim that F(H)K,χ = C1. Considering the action of the subgroup
T1 ⊆ U(H), the decomposition F(H) = ⊕̂m∈N0Fm(H) from Proposition 5.2.3
implies that F(H)K,χ ⊆ F0(H) = C1. Therefore the irreducibility criterion
Proposition 5.3.11 implies that the representation of G on F(H) is irreducible.

Note that the same conclusion applies for the oscillator group Heis(H)oT1.
(c) Let (πm,Fm(H)) be the representation of U(H) on the subspace Fm(H)

of homogeneous functions of degree m in F(H) by (πm(g)f)(z) = f(g−1z). Its
reproducing kernel is Q(z, w) = 〈z,w〉m

m! (Proposition 5.2.3). Since all functions in
this space are homogeneous, they are uniquely determined by their restrictions
to the unit sphere

S := {v ∈ H : ‖v‖ = 1}.
Therefore the set {Qv : ‖v‖ = 1} is total.

Let (ej)j∈J be an orthonormal basis of H, j0 ∈ J be a fixed element and
e0 := ej0 . Then U(H)e0 = S and πm(g)Qv = Qgv imply that the element Qe0
is a cyclic vector unit. The corresponding positive definite function is

ϕ(g) = 〈πm(g)Qe0 , Qe0〉 = (πm(g)Qe0)(e0) = Qe0(g−1e0)

=
1
m!
〈g−1e0, e0〉m =

1
m!
〈ge0, e0〉m =

1
m!
g00

m.

Let T ∼= TJ be the subgroup of diagonal operators in U(H) with respect to
the orthonormal basis. Then Qe0 is a T -eigenvector for some character χ of T ,
given by

χ(t) = t−mj0 ,

and we have seen in Proposition 5.2.3 that any character χm of T occurs at
most with multiplicity 1 in F(H). Therefore

Fm(H)T,χ = CQe0

is one-dimensional, and the irreducibility criterion Proposition 5.3.11 implies
that (πm,Fm(H)) is irreducible.

(d) We consider the representations (πm,Hm) of the group G = SU1,1(C)
on the Hilbert space Hm ⊆ O(D) on the open unit disc D ⊆ C with kernel
Q(z, w) = (1− zw)−m, where m ∈ N is fixed:

(πm(g)f)(z) = Jm(g, z)f(g−1.z) = (a− bz)−mf
(
az − b
a− bz

)
.
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First we show that 1 = Q0 is a cyclic vector. Since the action of SU1,1(C)
on D is transitive, the relation

πm(g)Q0 = Jm(g−1, 0)Qg.0 = a−mQg.0

implies that Q0 is cyclic. This relation also implies that it is an eigenvector of
the subgroup

T :=
{(

a 0
0 a−1

)
: a ∈ T

}
⊆ SU1,1(C)

of diagonal matrices, and the corresponding character is

χ

(
a 0
0 a−1

)
= a−m.

The other T -eigenvector in Hm are the monomials zn, n ∈ N, which form
a total orthonormal system. For g ∈ T we have Jm(g, z) = a−m, so that we
obtain for f(z) = zn the relation

(πm(g)f)(z) = a−mf(g−1.z) = a−m−2nf(z).

It follows in particular that HT,χm = C1, so that Proposition 5.3.11 implies that
(πm,Hm) is irreducible.

Example 5.3.18. (A non-type I factor representation) Let 1 6= G be a discrete
group such that all non-trivial conjugacy classes are infinite, such as PGL2(R) =
GL2(R)/R×1 (cf. Exercise 5.3.23).

We consider the representation (π,H) of G × G on the Hilbert space H =
`2(G,C) ⊆ CG given by

(π(g, h)f)(x) := f(g−1xh).

First we show that this representation is irreducible. We consider the ONB
(δg)g∈G, consisting of δ-functions satisfying

π(g, h)δx = δgxh−1 , g, h, x ∈ G.

Clearly, the vector δ1 is cyclic and invariant under the diagonal subgroup

K := ∆G := {(g, g) : g ∈ G}.

The K-invariance means for an element f ∈ `2(G,C) that it is constant on
conjugacy classes, and since all non-trivial conjugacy classes are infinite, we
have

`2(G,C)K = Cδ1.

Therefore Proposition 5.3.11 implies that (π, `2(G,C)) is irreducible.
This implies that the right regular representation of G on `2(G,C), defined

by πr(g) := π(1, g), is a factor representation. We claim that this factor rep-
resentation is not of type I, i.e., a multiple of an irreducible representation.
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Assume the contrary, i.e., H ∼=Mπ⊗̂Hπ is isotypic with multiplicity spaceMπ.
Then πr(G)′ ∼= B(Mπ) by Lemma 4.3.8. We consider the map

T : πr(G)′ → C, T (A) := 〈Aδ1, δ1〉 = (Aδ1)(1).

It clearly satisfies T (1) = 1, and we claim that it is a trace, i.e.,

T (AB) = T (BA) for A,B ∈ πr(G)′.

For each A ∈ πr(G)′, the function a : = Aδ1 satisfies

Aδx = Aπr(x)−1δ1 = πr(x)−1Aδ1 = πr(x)−1a, i.e., (Aδx)(y) = a(yx−1).

This further leads to

(Af)(g) = 〈Af, δg〉 =
∑
x∈G

f(x)〈Aδx, δg〉 =
∑
x∈G

a(gx−1)f(x).

For b := Bδ1, this leads to

T (AB) = A(Bδ1)(1) =
∑
x∈G

a(x−1)(Bδ1)(x)

=
∑
x∈G

a(x−1)b(x) =
∑
x∈G

b(x−1)a(x) = . . . = T (BA).

In view of Exercise 5.3.24, the existence of T implies that dimMπ < ∞,
and hence that dim spanπl(G) ≤ dimB(Mπ) < ∞. This in turn implies that
πl(G)δ1 = {δg : g ∈ G} is finite dimensional, which implies that G is finite,
hence trivial. This contradicts our initial hypothesis.

Exercises for Section 5.3

Exercise 5.3.19. LetG = NoαK be a semidirect product group and ϕ ∈ P(N)
be a positive definite function on N which is K-invariant in the sense that

ϕ(k.n) = ϕ(n) for k ∈ K,n ∈ N.

Then
ψ : G→ C, ψ(n, k) := ϕ(n)

is a positive definite function on G. Hint: Show that the representation (πϕ,Hϕ)
of N extends by πϕ(k)f := f ◦ α(k)−1 to a unitary representation (πϕ,Hϕ) of
G (Proposition 5.1.6) and consider πϕ ∈ P(G).

Exercise 5.3.20. Let C ⊆ V be a convex cone in the real vector space V and
α ∈ V ∗ with α(c) > 0 for 0 6= c ∈ C. Show that

S := {c ∈ C : α(c) = 1}

satisfies:
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(a) C = R+S.

(b) x ∈ S is an extreme point of S if and only if R+x is an extremal ray of C.

Exercise 5.3.21. (Metric characterization of midpoints) Let (X, ‖ · ‖) be a
normed space and x, y ∈ X distinct points. Let

M0 := {z ∈ X : ‖z − x‖ = ‖z − y‖ = 1
2‖x− y‖} and m :=

x+ y

2
.

For a subset A ⊆ X we define its diameter

δ(A) := sup{‖a− b‖ : a, b ∈ A}.

Show that:

(1) If X is a pre-Hilbert space (i.e., a vector space with a hermitian scalar
product), then M0 = {m} is a one-element set.

(2) For z ∈M0 we have ‖z −m‖ ≤ 1
2δ(M0) ≤ 1

2‖x− y‖.

(3) For n ∈ N we define inductively:

Mn := {p ∈Mn−1 : (∀z ∈Mn−1) ‖z − p‖ ≤ 1
2δ(Mn−1)}.

Then we have for each n ∈ N:

(a) Mn is a convex set.

(b) Mn is invariant under the point reflection sm(a) := 2m− a in m.

(c) m ∈Mn.

(d) δ(Mn) ≤ 1
2δ(Mn−1).

(4)
⋂
n∈N Mn = {m}.

Exercise 5.3.22. (Isometries of normed spaces are affine maps) Let (X, ‖ · ‖)
be a normed space endowed with the metric d(x, y) := ‖x− y‖. Show that each
isometry ϕ : (X, d)→ (X, d) is an affine map by using the following steps:

(1) It suffices to assume that ϕ(0) = 0 and to show that this implies that ϕ is
a linear map.

(2) ϕ(x+y
2 ) = 1

2 (ϕ(x) + ϕ(y)) for x, y ∈ X. Hint: Exercise 5.3.21.

(3) ϕ is continuous.

(4) ϕ(λx) = λϕ(x) for λ ∈ 2Z ⊆ R.

(5) ϕ(x+ y) = ϕ(x) + ϕ(y) for x, y ∈ X.

(6) ϕ(λx) = λϕ(x) for λ ∈ R.
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Exercise 5.3.23. Let X be an infinite set and S(X) be the group of all those
permutations ϕ of X moving only finitely many points, i.e.,

|{x ∈ X : ϕ(x) 6= x}| <∞.

Show that for each element ϕ 6= idX in S(X) the conjugacy class

Cϕ := {ψϕψ−1 : ψ ∈ S(X)}

is infinite. Hint: Consider a description of ϕ in terms of cycles.

Exercise 5.3.24. Let H be an infinite dimensional Hilbert space. Show that
every linear trace functional T : B(H)→ C vanishes in 1, i.e.,

T (AB) = T (BA) for A,B ∈ B(H)

implies T (1) = 0. Here are some steps to follow:

(a) T is conjugation invariant, i.e., T (gAg−1) = T (A) for g ∈ GL(H) and
A ∈ B(H).

(b) If P and Q are two orthogonal projections in B(H) for which there are
unitary isomorphisms P (H)→ Q(H) and P (H)⊥ → Q(H)⊥, then T (P ) =
T (Q).

(c) For each n ∈ N, there exists a unitary isomorphism un : H → Hn, i.e.,

H = H1 ⊕ · · · ⊕ Hn with Hj ∼= H.

Let P (n)
j denote the orthogonal projection onto Hj .

(d) Show that T (P (n)
j ) = 1

nT (1) and use (b) to derive T (P (2)
1 ) = T (P (3)

1 ).
Conclude that T (1) = 0.

Exercise 5.3.25. Let G be a topological group, O ⊆ G be an open subset
and S ⊆ G any subset. Then the subsets OS and SO of G are open. Hint:
OS =

⋃
s∈S Os.

Exercise 5.3.26. Let G be a topological group and K ⊆ G be a closed sub-
group. We endow G/K with the quotient topology, i.e., O ⊆ G/K is open if
and only if q−1(O) ⊆ G is open, where q : G→ G/K is the quotient map. Show
that:

(a) The quotient map q : G→ G/K is open. Hint: Exercise 5.3.25.

(b) To see that G/K is Hausdorff, argue that for y 6∈ xK there exists an
open 1-neighborhood U in G with U−1Uy ∩ xK = ∅ and derive that
π(Uy) ∩ π(Ux) = ∅.

(c) The action σ : G × G/K → G/K, (g, xK) 7→ gxK is continuous. Hint: (a)
and the openness of idG×q.
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(d) The map q×q : G×G→ G/K×G/K is an open map, i.e., O ⊆ G/K×G/K
is open if and only if (q × q)−1(O) is open in G×G.

(e) Show that for every continuous K-biinvariant function ϕ : G→ C, the kernel
Q(xK, yK) := ϕ(xy−1) on G/K ×G/K is continuous.

Exercise 5.3.27. Show that for a euclidean space V , the group O(V ) of linear
surjective isometries acts transitively on the sphere

S(V ) = {v ∈ V : ‖v‖ = 1}.

Hint: For a unit vector v ∈ S(V ) consider the map

σv(x) := x− 2〈x, v〉v.

Show that σv ∈ O(V ) and that for x, y ∈ S(V ) there exists a v ∈ S with
σv(x) = y.

Exercise 5.3.28. Let (π,H) be a non-degenerate representation of the invo-
lutive semigroup (S, ∗) and v ∈ H. Show that the following assertions are
equivalent:

(a) v is a cyclic vector for π(S).

(b) v is a cyclic vector for the von Neumann algebra π(S)′′.

(c) v separating for the von Neumann algebra π(S)′, i.e., the map
π(S)′ → H, A 7→ Av is injective.

Hint: To see that (c) implies (a), consider the projection P onto (π(S)v)⊥,
which is an element of π(S)′.

Exercise 5.3.29. Let (π,H) be a non-degenerate multiplicity free representa-
tion of the involutive semigroup (S, ∗) on the separable Hilbert space H. Show
that (π,H) is cyclic. Hint: Write H as a direct sum of at most countably many
cyclic representations (πj ,Hj , vj) with cyclic unit vectors (vj)j∈J and find cj > 0
such that v :=

∑
j∈J cjvj converges in H. Now show that v is a separating vec-

tor for π(S)′ and use Exercise 5.3.28. Note that the orthogonal projections Pj
onto Hj are contained in π(S)′.

Exercise 5.3.30. Let G be a topological group, K ⊆ G be a closed subgroup
andX := G/K the corresponding homogeneous space with base point x0 := 1K.
We fix a 1-cocycle J : G×X → C× and 0 6= Q ∈ P(X,σ, J), so that

(π(g)f)(x) := J(g, x)f(g−1.x)

defines a unitary representation of G on HQ ⊆ CX (Proposition 5.1.6). Show
that:

(a) χ(k) := J(k, x0) defines a character χ : K → T.
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(b) HK,χQ :=
⋂
k∈K ker(π(k) − χ(k)1) 6= {0}. It generates HQ under the G-

action.

(c) If HK,χQ is one dimensional, then the G-representation on HQ is irreducible.

Hint: Proposition 5.3.11.

Exercise 5.3.31. Let σ : G ×X → X, (g, x) 7→ g.x be a transitive continuous
action of the topological group G on the topological space X. Fix x0 ∈ X and
let K := {g ∈ G : g.x0 = x0} be the stabilizer subgroup of x0. Show that:

(a) We obtain a continuous bijective map η : G/K → X, gK 7→ g.x0.

(b) Suppose that η has a continuous local section, i.e., x0 has a neighborhood
U for which there exists a continuous map τ : U → G with τ(y).x0 = y for
y ∈ U . Then η is open, hence a homeomorphism.

(c) Let G := Rd be the group (R,+), endowed with the discrete topology and
X := R, endowed with the canonical topology. Then σ(x, y) := x + y
defines a continuous transitive action of G on X for which the orbit map
η is continuous and bijective but not open.

Exercise 5.3.32. Let V be a euclidean space, S ⊆ V be its unit sphere, G :=
O(V ) be its orthogonal group, endowed with the strong operator topology, e0 ∈
S and K ∼= O(e⊥0 ) be the stabilizer of e0 in G. Show that the orbit map
σe0 : O(V )→ S, g 7→ ge0 induces a homeomorphism

η : G/K = O(V )/O(e⊥0 )→ S, gK 7→ ge0.

Hint: Show first that for U := S \ {−e0} the map

σ : U → O(V ), σ(z)(v) := 2
〈v, e0 + z〉
‖e0 + z‖2

(e0 + z)− v

is continuous and satisfies
σ(z)(e0) = z.

Then apply Exercise 5.3.32.
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Chapter 6

From the Group Algebra to
Spectral Measures

The main goal of this chapter is to explain how representations of locally com-
pact abelian groups G can be described in terms of spectral measures on their
character group Ĝ, endowed with a suitable locally compact topology. This is
of particular interest for the group G = (R,+) because it provides a description
of all continuous one-parameter groups of the group U(H)s in terms of spectral
measures on R.

To achieve this goal, we want to apply the Gelfand Representation Theorem
to a suitable commutative Banach-∗-algebra. Such a group algebra can be ob-
tained for a locally compact group G from the convolution product on L1(G,µG)
and a suitable ∗-operation turning L1(G,µG) into a Banach-∗-algebra. The main
point of this construction is that the continuous unitary representations of G
are in one-to-one correspondence with the non-degenerate representations of
this Banach-∗-algebra.

Here we shall mainly exploit the applications of this algebra for abelian
groups. We first discuss in Section 6.2 spectral measures and explore in Sec-
tion 6.3 how this applies to representations of abelian locally compact groups.
In particular, we obtain a rather complete description of the representations of
the additive group (R,+).

133
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6.1 The Group Algebra of a Locally Compact
Group

6.1.1 The Convolution Product

Let G be a locally compact group and µG be a left Haar measure on G. For
f, g ∈ Cc(G) we define we define the convolution product

(f ∗ g)(x) :=
∫
G

f(y)g(y−1x) dµG(y) =
∫
G

f(xy)g(y−1) dµG(y). (6.1)

This integral is defined because the first integrand is supported by the compact
set supp(f). Using the modular factor ∆G, we define an involution on Cc(G)
by

f∗(x) := ∆G(x)−1f(x−1). (6.2)

Lemma 6.1.1. For f, g ∈ Cc(G), we have

(i) f ∗ g ∈ Cc(G) with supp(f ∗ g) ⊆ supp(f) supp(g) and convolution is asso-
ciative.

(ii) ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

(iii) ‖f∗‖1 = ‖f‖1.

(iv) (f ∗ g)∗ = g∗ ∗ f∗.

(v) For x ∈ G and f ∈ Cc(G) we put λxf := f ◦ λ−1
x and ρxf := f ◦ ρx. Then

(a) λx(f ∗ g) = (λxf) ∗ g, ρx(f ∗ g) = f ∗ ρxg,

(b) ρx(f) ∗ g = f ∗∆G(x)−1(λx−1g).

(c) (λxf)∗ = ∆G(x)ρxf∗ and (ρxf)∗ = ∆G(x)−1λxf
∗.

(d) ‖λxf‖1 = ‖f‖1 and ‖ρxf‖1 = ∆G(x)−1‖f‖1.

(vi) For f ∈ Cc(G), the map G→ L1(G,µG), x 7→ λx(f) is continuous.

Proof. (i) The continuity of f ∗g follows from Lemma 2.3.7, applied to supp(f)×
G. If (f ∗ g)(x) 6= 0, then there exists a y ∈ G with f(y)g(y−1x) 6= 0. Then
y ∈ supp(f) and y−1x ∈ supp(g), so that x ∈ supp(f) supp(g). In particular,
f ∗ g has compact support if f and g have.

For the associativity of the convolution product, we calculate

((f ∗ g) ∗ h)(x) =
∫
G

∫
G

f(z)g(z−1y)h(y−1x) dµG(y) dµG(z)

=
∫
G

f(z)
∫
G

g(y)h(y−1z−1x) dµG(y) dµG(z)

=
∫
G

f(z)(g ∗ h)(z−1z) dµG(z) = (f ∗ (g ∗ h))(x).
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(ii) We have

|f ∗ g(x)| ≤
∫
G

|f(y)||g(y−1x)| dµG(y)

and therefore

‖f ∗ g‖1 ≤
∫
G

∫
G

|f(y)||g(y−1x)| dµG(y) dµG(x)

Fubini=
∫
G

|f(y)|
∫
G

|g(y−1x)| dµG(x) dµG(y)

=
∫
G

|f(y)|
∫
G

|g(x)| dµG(x) dµG(y) = ‖g‖1
∫
G

|f(y)| dµG(y)

= ‖g‖1‖f‖1.

Here the application of Fubini’s Theorem is justified by the fact that both
integrals extend over sets of finite measure, so that the assumption of σ-finiteness
is satisfied for the corresponding restricted measures.

(iii) In view of Lemma 2.4.8, we have

‖f∗‖1 =
∫
G

∆G(x−1)|f(x−1)| dµG(x) =
∫
G

|f(x)| dµG(x) = ‖f‖1.

(iv) As in (iii), we get

(f ∗ g)∗(x) = ∆G(x)−1

∫
G

f(y)g(y−1x−1) dµG(y)

= ∆G(x)−1

∫
G

f(x−1y)g(y−1) dµG(y)

=
∫
G

g∗(y)∆G(x−1y)f(x−1y) dµG(y)

=
∫
G

g∗(y)f∗(y−1x) dµG(y) = (g∗ ∗ f∗)(x).

(v) (a) follows immediately from (6.1).
(b) follows from

((ρxf) ∗ g)(y) =
∫
G

f(zx)g(z−1y) dµG(z) = ∆G(x)−1

∫
G

f(z)g(xz−1y) dµG(z)

= ∆G(x)−1(f ∗ λx−1g)(y).

(c) follows from

(λxf)∗(y) = ∆G(y)−1f(x−1y−1) = ∆G(x)∆G(yx)−1f(x−1y−1)
= ∆G(x)f∗(yx) = ∆G(x)(ρxf∗)(y),

which in turn implies
(ρxf)∗ = ∆G(x)−1λxf

∗.
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(d) follows from the left invariance of µG.
(vi) In view of

‖λxf − λx′f‖1 =
∫
G

|f(x−1g)− f(x′−1g)| dµG(g),

the assertion follows from Lemma 2.3.7 for f ∈ Cc(G).

Let L1(G) := L1(G,µG) denote the completion of Cc(G) with respect to ‖·‖1.
The preceding lemma implies that the convolution product and the involution
extend to continuous maps on L1(G), turning it into a Banach-∗-algebra. We
also extend the left translations λg and the maps ∆G(g)ρg to isometries of
L1(G).

Proposition 6.1.2. Let (π,H) be a continuous unitary representation of the
locally compact group G. For f ∈ L1(G) and v, w ∈ H, we define by

〈π(f)v, w〉 :=
∫
G

f(g)〈π(g)v, w〉 dµG(g) (6.3)

an operator π(f) ∈ B(H), which we also denote symbolically by

π(f) =
∫
G

f(g)π(g) dµG(g).

It has the following properties:

(i) ‖π(f)‖ ≤ ‖f‖1.

(ii) The continuous linear extension π : L1(G)→ B(H) defines a representation
of the Banach-∗-algebra L1(G), i.e., it is a homomorphism of algebras
satisfying π(f)∗ = π(f∗) for f ∈ L1(G).

(iii) For x ∈ G and f ∈ L1(G) we have π(x)π(f) = π(λxf) and π(f)π(x) =
∆G(x)π(ρxf).

(iv) The representation π of L1(G) on H is non-degenerate.

(v) π(L1(G))′ = π(G)′ and, in particular, π(G) ⊆ π(L1(G))′′ and π(L1(G)) ⊆
π(G)′′.

(vi) The representations of G and L1(G) have the same closed invariant sub-
spaces. In particular, one is irreducible if and only if the other has this
property.

Proof. (i) First we observe that the sesquilinear map

(v, w) 7→
∫
G

f(g)〈π(g)v, w〉 dµG(g)
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is continuous:∣∣∣ ∫
G

f(g)〈π(g)v, w〉 dµG(g)
∣∣∣ ≤ ∫

G

|f(g)|‖π(g)v‖‖w‖ dµG(g) = ‖f‖1‖v‖‖w‖.

Hence there exists a unique operator π(f) ∈ B(H) satisfying (i) and (6.3).
(ii) In view of (i), π defines a continuous linear map L1(G) → B(H). It

remains to verify

π(f ∗ g) = π(f)π(g) and π(f)∗ = π(f∗).

Since Cc(G) is dense in L1(G), it suffices to verify these relations for f, g ∈
Cc(G). For v, w ∈ H, we have

〈π(f ∗ g)v, w〉 =
∫
G

∫
G

f(y)g(y−1x)〈π(x)v, w〉 dµG(y) dµG(x)

Fubini=
∫
G

f(y)
∫
G

g(y−1x)〈π(x)v, w〉 dµG(x) dµG(y)

=
∫
G

f(y)
∫
G

g(x)〈π(yx)v, w〉 dµG(x) dµG(y)

=
∫
G

f(y)
∫
G

g(x)〈π(x)v, π(y−1)w〉 dµG(x) dµG(y)

=
∫
G

f(y)〈π(g)v, π(y−1)w〉 dµG(y)

=
∫
G

f(y)〈π(y)π(g)v, w〉 dµG(y)

= 〈π(f)π(g)v, w〉.

This proves that π(f ∗ g) = π(f)π(g). We further have

〈v, π(f∗)w〉 =
∫
G

∆G(x)f(x−1)〈v, π(x)w〉 dµG(x)

=
∫
G

∆G(x)f(x−1)〈π(x−1)v, w〉 dµG(x)

=
∫
G

f(x)〈π(x)v, w〉 dµG(x)

= 〈π(f)v, w〉,

which implies π(f)∗ = π(f∗).
(iii) Since λx defines an isometry of L1(G), it suffices to assume that f ∈

Cc(G). For v, w ∈ H, we have

〈π(x)π(f)v, w〉 = 〈π(f)v, π(x−1)w〉 =
∫
G

f(y)〈π(y)v, π(x−1)w〉 dµG(y)

=
∫
G

f(y)〈π(xy)v, w〉 dµG(y) =
∫
G

f(x−1y)〈π(y)v, w〉 dµG(y)

= 〈π(λxf)v, w〉.
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From this relation and (ii) we further derive

(π(f)π(x))∗ = π(x−1)π(f∗) = π(λx−1f∗) = π(∆G(x)(ρxf)∗) = ∆G(x)π(ρxf)∗,

and this proves (iii).
(iv) To see that the representation of L1(G) is non-degenerate, we show

that for every 0 6= v ∈ H there exists an f ∈ Cc(G) with ‖π(f)v − v‖ < ε.
To find such an f , let U be a 1-neighborhood in G with ‖π(g)v − v‖ < ε for
g ∈ U . Urysohn’s Lemma implies the existence of 0 6= f ∈ Cc(G) with 0 ≤ f
and supp(f) ⊆ U . Then

∫
G
f(g) dµG(g) > 0, and after multiplication with a

suitable scalar, we may w.l.o.g. assume that
∫
G
f(g) dµG(g) = 1. Then

‖π(f)v − v‖ =
∥∥∥∫

G

f(g)π(g)v −
∫
G

f(g)v dµG(g)
∥∥∥

=
∥∥∥∫

G

f(g)(π(g)v − v) dµG(g)
∥∥∥

≤
∫
G

|f(g)|‖π(g)v − v‖ dµG(g) ≤ ε
∫
G

f(g) dµG(g) = ε.

(v) First we show that π(L1(G)) ⊆ π(G)′′. So let A ∈ π(G)′. For f ∈ L1(G)
and v, w ∈ H we then have

〈Aπ(f)v, w〉 = 〈π(f)v,A∗w〉 =
∫
G

f(g)〈π(g)v,A∗w〉 dµG(g)

=
∫
G

f(g)〈Aπ(g)v, w〉 dµG(g) =
∫
G

f(g)〈π(g)Av,w〉 dµG(g) = 〈π(f)Av,w〉,

which implies that Aπ(f) = π(f)A.
Next we show that π(G) ⊆ π(L1(G))′′. If A ∈ π(L1(G))′, then

π(g)Aπ(f) = π(g)π(f)A = π(λgf)A = Aπ(λgf) = Aπ(g)π(f)

for each f ∈ L1(G), and since the representation of L1(G) on H is non-
degenerate, it follows that π(g)A = Aπ(g).

From π(L1(G)) ⊆ π(G)′′, we now get π(G)′′′ = π(G)′ ⊆ π(L1(G))′, and
likewise we derive from π(G) ⊆ π(L1(G))′′ that π(L1(G))′ ⊆ π(G)′, so that we
have equality.

(vi) Since the closed invariant subspaces correspond to the orthogonal pro-
jections in the commutant (Lemma 1.3.1), this follows from (v).

We have just seen how to “integrate” a continuous unitary representation
of G to a representation of the Banach-∗-algebra L1(G). Thinking of π(f) =∫
G
f(x)π(x) dµG(x), this means a “smearing” of the unitary operators π(x). If

the group G is not discrete, then G is not contained in L1(G) (as δ-functions),
so that it is not obvious how to recover the unitary representation of G from
the corresponding representation of L1(G). However, since the representation
of L1(G) is non-degenerate, the operators π(x), x ∈ G, are uniquely determined
by the relation π(x)π(f) = π(λxf) for f ∈ L1(G). To make systematic use of
such relations, we now introduce the concept of a multiplier of an involutive
semigroup.
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6.1.2 Unitary Multiplier Actions on Semigroups

Definition 6.1.3. Let (S, ∗) be an involutive semigroup. A multiplier of S is a
pair (λ, ρ) of maps λ, ρ : S → S satisfying the following conditions:

aλ(b) = ρ(a)b, λ(ab) = λ(a)b, and ρ(ab) = aρ(b).

We write M(S) for the set of all multipliers of S and turn it into an involutive
semigroup by

(λ, ρ)(λ′, ρ′) := (λ ◦ λ′, ρ′ ◦ ρ) and (λ, ρ)∗ := (ρ∗, λ∗),

where λ∗(a) := λ(a∗)∗ and ρ∗(a) = ρ(a∗)∗. We write

U(M(S)) := {(λ, ρ) ∈M(S) : (λ, ρ)(λ, ρ)∗ = (λ, ρ)∗(λ, ρ) = 1}

for the unitary group of M(S).

Remark 6.1.4. (a) The assignment ηS : S → M(S), a 7→ (λa, ρa) defines a
morphism of involutive semigroups which is surjective if and only if S has an
identity. Its image is an involutive semigroup ideal in M(S), i.e.,

M(S)ηS(S) ⊆ ηS(S) and ηS(S)M(S) ⊆ ηS(S).

(b) The map
M(S)× S → S, ((λ, ρ), s) 7→ λ(s)

defines a left action of the semigroup M(S) on S, and

S ×M(S)→ S, ((λ, ρ), s) 7→ ρ(s)

defines a right action of M(S) on S.

Example 6.1.5. (a) The C∗-algebra (Cb(X), ‖ · ‖∞) of bounded continuous
functions on a locally compact space acts via the multipliers

λ(f)h = ρ(f)h = fh

on the commutative C∗-algebra C0(X).
(b) Let H be a complex Hilbert space and K(H) be the C∗-algebra of com-

pact operators on H. Then we obtain for each A ∈ B(H) a multiplier (λA, ρA)
on K(H).

Lemma 6.1.6. Let G be a locally compact group and (L1(G), ∗) be its convolu-
tion algebra. Then, for each g ∈ G, the pair

m(g) :=
(
λg,∆G(g)−1ρg−1

)
is a unitary multiplier of L1(G) and m : G → U(M(L1(G))) is a group homo-
morphism.
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Proof. That each m(g) is a multiplier of the involutive semigroup L1(G) follows
from Lemma 6.1.1(v)(a),(b). We further obtain from Lemma 6.1.1(v)(c) that

λ∗g = ∆G(g)ρg,

so that

m(g)∗ = (∆G(g−1)ρ∗g−1 , λ∗g) = (λg−1 ,∆G(g)ρg) = m(g−1) = m(g)−1,

which shows that m(g) is unitary. That m is multiplicative is an immediate
consequence of the definitions.

Proposition 6.1.7. For each non-degenerate representation (π,H) of S there
exists a unique unitary representation (π̃,H) of U(M(S)), determined by

π̃(g)π(s) = π(gs) for g ∈ U(M(S)), s ∈ S. (6.4)

Proof. Every non-degenerate representation of S is a direct sum of cyclic ones
(Exercise 1.3.23), which in turn are of the form (πϕ,Hϕ) (Remark 5.3.2). We
therefore may assume that (π,H) = (πϕ,Hϕ). The reproducing kernel K of
Hϕ is K(s, t) := ϕ(st∗), and it is invariant under the right action of any g =
(λg, ρg) ∈ U(M(S)):

K(ρg(s), ρg(t)) = ϕ(ρg(s)ρg(t)∗) = ϕ(ρg(s)ρ∗g(t
∗)) = ϕ(ρg(s)λ−1

g (t∗))

= ϕ(sλgλ−1
g (t∗)) = ϕ(st∗) = K(s, t).

Hence π̃ϕ(g)(f) := f ◦ ρg defines a unitary representation (π̃ϕ,Hϕ) of U(M(S))
satisfying (6.4). That this condition determines π̃ϕ uniquely follows from the
non-degeneracy of the cyclic representation (πϕ,Hϕ) (Exercise 1.3.23).

6.1.3 Intermezzo on Banach Space-Valued Integrals

Let X be a compact space, µ a Radon probability measure on X, E a Banach
space and f : X → E a continuous function. We want to define the E-valued
integral

∫
X
f(x) dµ(x).

Lemma 6.1.8. There exists at most one element I ∈ E with

λ(I) =
∫
X

λ(f(x)) dµ(x) for each λ ∈ E′.

Proof. This is an immediate consequence of the fact that E′ separates the points
of E.

We define a linear functional

Ĩ : E′ → C, Ĩ(λ) :=
∫
X

λ(f(x)) dµ(x)
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and observe that the integral exists because the integrand is a continuous func-
tion on X. We also observe that

|Ĩ(λ)| ≤
∫
X

|λ(f(x))| dµ(x) ≤
∫
X

‖λ‖ · ‖f(x)‖ dµ(x) = ‖λ‖ ·
∫
X

‖f(x)‖ dµ(x),

so that Ĩ ∈ E′′ with

‖Ĩ‖ ≤
∫
X

‖f(x)‖ dµ(x).

We recall the isometric embedding

ηE : E → E′′, η(v)(λ) = λ(v).

A Banach space E is said to be reflexive if ηE is surjective, but this is not the
case for each Banach space. A typical examples is c0 with c′′0 = (`1)′ = `∞.
However, we want to show that Ĩ = η(I) for some I ∈ E, which means that I
satisfies the condition in Lemma 6.1.8.

Let K := conv(f(X)) and recall from Exercise 4.2.26 that K is a compact
subset of E with respect to the norm topology. Write Ew for the space E,
endowed with the weak topology, i.e., the coarsest topology for which all ele-
ments λ ∈ E′ are continuous. Then the identity E → Ew is continuous and Ew
is Hausdorff, which implies that K is also compact with respect to the weak
topology. The embedding η : Ew → E′′ is clearly continuous with respect to
the weak-∗-topology on E′′ (with respect to E′) and the weak topology on E,
because for each λ ∈ E′ the map Ew → C, v 7→ η(v)(λ) = λ(v) is continuous.
Therefore the image η(K) ⊆ E′′ is weak-∗-compact.

Finally we show that Ĩ ∈ η(K). In fact, for each λ ∈ E′ we have

Ĩ(λ) =
∫
X

λ(f(x)) dµ(x) ≤
(

supλ(K)
)
µ(X) = supλ(K) = sup η(K)(λ),

so that the Hahn–Banach Separation Theorem and the weak-∗-closedness of
η(K) imply that

Ĩ ∈ η(K).

This proves the following theorem:

Theorem 6.1.9. Let X be a compact space, µ a Radon measure on X, E a
Banach space and f : X → E a continuous function. Then there exists a unique
element I ∈ E with

λ(I) =
∫
X

λ(f(x)) dµ(x) for λ ∈ E′.

Proof. It only remains to argue that the requirement that µ(X) = 1 can be
dropped. If µ(X) = 0, we anyway have I = 0, and if µ(X) > 0, then we simply
replace µ by 1

µ(X)µ and f by µ(X)f , and apply the preceding arguments.
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We denote the element I also by∫
X

f(x) dµ(x).

We have already seen that∥∥∥∫
X

f(x) dµ(x)
∥∥∥ ≤ ∫

X

‖f(x)‖ dµ(x). (6.5)

Remark 6.1.10. If A : E → F is a continuous linear map between Banach
spaces, then

A

∫
X

f(x) dµ(x) =
∫
X

Af(x) dµ(x).

For each λ ∈ F ′ we have

λ
(
A

∫
X

f(x) dµ(x)
)

= (λ ◦A)
(∫

X

f(x) dµ(x)
)

=
∫
X

(λ ◦A)(f(x)) dµ(x)

= λ
(∫

X

Af(x) dµ(x)
)
,

so that the assertion follows from Lemma 6.1.8.

6.1.4 Recovering the Representation of G

Proposition 6.1.11. For f, h ∈ Cc(G) we have

f ∗ h =
∫
G

f(x)λx(h) dµG(x)

as an L1(G)-valued integral.

Proof. Let K ⊆ G be a compact subset containing

supp(f) · supp(h) ⊇ supp(f ∗ h).

Since supp(f) is compact and the map

G→ C(K), x 7→ f(x)λx(h)|K

is continuous (Lemma 2.3.7), Theorem 6.1.9 implies the existence of a C(K)-
valued integral

I :=
∫
G

f(x)λx(h)|K dµG(x).

If A : C(K) → L1(G) is the canonical inclusion, defined by extending a
function f : K → C by 0 on G \K, then

AI =
∫
G

f(x)λx(h) dµG(x)
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follows from the fact that λx(h) vanishes outside of K. Since point evaluations
on C(K) are continuous, we have for each y ∈ K:

I(y) =
∫
G

f(x)λx(h)(y) dµG(x) = (f ∗ h)(y),

hence I = (f ∗ h)|K , and finally AI = f ∗ h follows from supp(f ∗ h) ⊆ K.

Theorem 6.1.12. Let G be a locally compact group. Then there exists for each
non-degenerate representation (π,H) of the Banach-∗-algebra L1(G) a unique
unitary representation (πG,H) with the property that

πG(g)π(f) = π(λgf) for g ∈ G, f ∈ L1(G).

The representation (πG,H) is continuous, and for f ∈ L1(G) we have

π(f) =
∫
G

f(x)πG(x) dµG(x),

so that π coincides with the representation of L1(G) defined by πG.

Proof. Since we have the homomorphism

m : G→ U(M(L1(G))), g 7→ (λg,∆G(g)−1ρg−1

)
from Example 6.1.5, the existence of πG follows from Proposition 6.1.7.

To see that πG is continuous, let v ∈ H and f ∈ Cc(G). Then the map

G→ H, g 7→ πG(g)π(f)v = π(λgf)v

is continuous because the map G → L1(G), g 7→ λgf is continuous (Lemma
6.1.1(vi)). Since the elements of the form π(f)v span a dense subspace, the
continuity of πG follows from Lemma 1.2.6.

To see that integration of πG yields the given representation π, it suffices to
show that for f, h ∈ Cc(G) and v ∈ H we have

πG(f)π(h)v = π(f)π(h)v

because the elements of the form π(h)v, h ∈ Cc(G), v ∈ H, form a dense subset
of H. For v, w ∈ H we obtain a continuous linear functional

ω : L1(G)→ C, f 7→ 〈π(f)v, w〉.

Applying, Proposition 6.1.11 to this functional, we get with Proposition 6.1.2(iii):

〈π(f)π(h)v, w〉 = 〈π(f ∗ h)v, w〉 = ω(f ∗ h) =
∫
G

f(x)ω(λxh) dµG(x)

=
∫
G

f(x)〈π(λxh)v, w〉 dµG(x) =
∫
G

f(x)〈πG(x)π(h)v, w〉 dµG(x)

= 〈πG(f)π(h)v, w〉.

This proves that π(f)π(h) = πG(f)π(h).
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Exercises for Section 6.1

Exercise 6.1.13. Let G be a locally compact group. Show that the convolution
product on Cc(G) satisfies

‖f ∗ h‖∞ ≤ ‖f‖1 · ‖h‖∞.

Conclude that convolution extends to a continuous bilinear map

L1(G,µG)× C0(G)→ C0(G).

Conclude that for f ∈ L1(G,µG) and h ∈ Cc(G), the convolution product f ∗ h
can be represented by a continuous function in C0(G).

Exercise 6.1.14. Let G be a compact group. Show that every left or right
invariant closed subspace of L2(G) consists of continuous functions. Hint: Use
Exercise 6.1.13 and express the integrated representation of L1(G) on L2(G) in
terms of the convolution product.

Exercise 6.1.15. Let π : G→ U(H) be a unitary representation of the locally
compact group G on H which is norm-continuous, i.e., continuous with respect
to the norm topology on U(H). Show that there exists an f ∈ Cc(G) for which
the operator π(f) is invertible.

6.2 Projection-valued Measures

We have already seen in Chapter 1 that forming direct sums of Hilbert spaces
and decomposing a given Hilbert space as an orthogonal direct sum of closed
subspaces is an important technique in representation theory. However, this
technique only leads to a complete understanding of those representations which
are direct sums of irreducible ones, i.e., H = Hd in the notation of Chapter 4.
Up to this point, we know that even the group (R,+) has natural representations
not containing any irreducible subrepresentation. In this section we develop the
concept of a projection valued measure, which provides a continuous analog of
direct sum decompositions of Hilbert spaces. In particular, it can be used to
study the structure of representations without irreducible subrepresentations.
The general idea is that a representation may be composed from irreducible
ones in the same way as a measure space is composed from its points, which
need not have positive measure.

6.2.1 Spectral Measures

Definition 6.2.1. Let H be a Hilbert space and

PH := {P ∈ B(H) : P = P 2 = P ∗}

be the set of all orthogonal projections on H. Further, let (X,S) be a mea-
surable space. A map P : S → PH is called a spectral measure or a projection
valued measure if
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(SM1) P (X) = 1, and

(SM2) If (Ej)j∈N is a disjoint sequence in S, then

P (∪∞j=1Ej)v =
∞∑
j=1

P (Ej)v for each v ∈ H.

In this sense we have

P
( ∞⋃
j=1

Ej

)
=
∞∑
j=1

P (Ej)

in the strong operator topology.

Remark 6.2.2. For each spectral measure P on (X,S) and each v ∈ H,

P v(E) := 〈P (E)v, v〉 = ‖P (E)v‖2

defines a positive measure on (X,S) with total mass ‖v‖2. In particular, it is a
probability measure if v is a unit vector.

Definition 6.2.3. If X is a locally compact space and S := B(X) the σ-algebra
of Borel subsets of X, then a spectral measures P : B(X) → PH is said to be
regular if all measures P v, v ∈ H, are regular.

Remark 6.2.4. If (X,S) is a measurable space, then S is an abelian involutive
semigroup with respect to the operations

A ·B := A ∩B and A∗ := A.

In Proposition 6.2.6 below we shall see that every spectral measure is in partic-
ular a representation of this involutive semigroup (S, ∗).

The following lemma describes a typical situation where spectral measures
arise.

Lemma 6.2.5. Let (X,S, µ) be a measure space and H := L2(X,µ). For E ∈ S
we define an operator on H by P (E)f := χEf . Then P defines a projection
valued measure on H.

Proof. From Lemma 2.1.5 we recall the homomorphism of C∗-algebras

ρ : L∞(X,µ)→ B(L2(X,µ)), ρ(h)f = hf.

For each E ∈ S, the characteristic function χE satisfies χE = χ∗E = χ2
E , so that

P (E) = ρ(χE) ∈ PH.
Clearly, P (X) = 1. Now let (Ej)j∈N be a disjoint sequence in X and f ∈ H.

We put Fk :=
⋃k
j=1Ej and F :=

⋃∞
j=1Ej . Then

‖P (F )f − P (Fk)f‖2 = ‖P (F \ Fk)f‖2 =
∫
F\Fk

|f(x)|2 dµ(x)→ 0
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by Lebesgue’s Dominated Convergence Theorem. Therefore

P (F )f = lim
k→∞

P (Fk)f =
∞∑
n=1

P (En)f,

and this completes the proof.

Proposition 6.2.6. For a spectral measure P : S → PH, the following asser-
tions hold:

(i) P (∅) = 0.

(ii) P (E ∪ F ) + P (E ∩ F ) = P (E) + P (F ).

(iii) P (E ∩ F ) = P (E)P (F ) = P (F )P (E). In particular, the set P (S) is
commutative and P : (S,∩)→ B(H) is a representation of the involutive
semigroup (S, ∗).

(iv) If Ej ⊆ Ej+1 for all j ∈ N, then we have in the strong operator topology

P
( ∞⋃
j=1

Ej

)
= lim
j→∞

P (Ej).

(v) If Ej ⊇ Ej+1 for all j ∈ N, then we have in the strong operator topology

P
( ∞⋂
j=1

Ej

)
= lim
j→∞

P (Ej).

Proof. (i) We consider the disjoint sequence defined by E1 := X and En := ∅
for n > 1. Then (SM2) implies

1 = P (X) = 1 +
∞∑
n=2

P (∅),

which leads to 1 = 1 + P (∅), and therefore to P (∅) = 0.
(ii) We write

F ∪ E = (E ∩ F ) ∪ (F \ E) ∪ (E \ F )

and F = (F ∩E)∪ (F \E). Then P (F ) = P (E ∩F ) +P (F \E), and therefore

P (E ∪ F ) = P (E ∩ F ) +
(
P (F )− P (E ∩ F )

)
+
(
P (E)− P (E ∩ F )

)
= P (E) + P (F )− P (E ∩ F ).

(iii) We first assume that E and F are disjoint. Then

P (E) + P (F ) = P (E ∪ F ) = P (E ∪ F )2 = (P (E) + P (F ))2

= P (E)2 + P (F )2 + P (E)P (F ) + P (F )P (E)
= P (E) + P (F ) + P (E)P (F ) + P (F )P (E),
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so that
P (E)P (F ) = −P (F )P (E). (6.6)

Multiplying (6.6) from the left with P (E), we obtain

P (E)P (F ) = P (E)2P (F ) = −P (E)P (F )P (E) = P (F )P (E)2 = P (F )P (E).

With (6.6) we thus obtain

P (E)P (F ) = P (F )P (E) = 0.

Now let E,F ∈ S be arbitrary. With the preceding discussion we obtain

P (E)P (F ) = (P (E ∩ F ) + P (E \ F ))(P (F ∩ E) + P (F \ E))
= P (E ∩ F )P (F ∩ E) = P (E ∩ F ).

(iv), (v) are easy consequences of (SM2). For (iv), we apply (SM2) to the
disjoint sequence Fk := Ek \ Ek−1, k ∈ N, with E0 := ∅, to obtain

P
( ∞⋃
n=1

En

)
= P

( ∞⋃
n=1

Fn

)
=
∞∑
n=1

P (Fn) = lim
m→∞

m∑
n=1

P (Fn) = lim
m→∞

P (Em).

For (v), we apply (iv) to the sets Fn := E1 \ En to get

P (E1)− P (En) = P (Fn)→ P
( ⋃
n∈N

E1 \ En
)

= P
(
E1 \

⋂
n∈N

En

)
= P (E1)− P

( ⋂
n∈N

En

)
.

Example 6.2.7. (Discrete spectral measures)
(a) Let H =

⊕̂
j∈JHj be a direct sum of Hilbert spaces (Lemma 1.3.6). For

each subset I ⊆ J , we define P (I) ∈ PH as the orthogonal projection onto the
subspace

∑
j∈I Hj . Then P : P(J) → PH is a spectral measure. Since each

element v ∈ H is a countable orthogonal sum v =
∑
j∈J vj , we have for I ⊆ J :

P v(I) =
∑
j∈I

P v({j}) =
∑
j∈I
‖vj‖2,

where the sum is countable. Therefore every measure P v is a countable linear
combination of point measures with the mass ‖vj‖2 in the point j.

(b) Conversely, let X be a set and P : P(X) → PH be a spectral measure
with

‖v‖2 = P v(X) =
∑
x∈X

P v({x}) for v ∈ H. (6.7)
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For each x ∈ X, we then obtain a closed subspace Hx := P ({x})H, and, in view
of P ({x})P (X \ {x}) = 0 (Proposition 6.2.6(iii)), these subspaces are mutually
orthogonal. Now our assumptions imply that for each v ∈ H:

‖v‖2 =
∑
x∈X

P v({x}) =
∑
x∈X
‖P ({x})v‖2.

and therefore v ∈
∑
x∈X Hx. This implies that

∑
x∈X Hx is dense in H, so

that H is isomorphic to the Hilbert direct sum
⊕̂

x∈XHx (Exercise 1.3.18).
We therefore have exactly the same situation as in (a) because (6.7) implies
P (I) =

∑
x∈I P ({x}) for each subset I ⊆ X, where the right hand side is the

projection onto the subspace
∑
x∈I Hx.

Proposition 6.2.8. (The Spectral Integral) Let P : S → PH be a spectral
measure on (X,S). Then there exists a unique linear map

P : L∞(X,S)→ B(H),

called the spectral integral, with P (χE) = P (E) for E ∈ S. This map satisfies

P (f)∗ = P (f), P (fg) = P (f)P (g) and ‖P (f)‖ ≤ ‖f‖∞, (6.8)

so that (P,H) is a representation of the commutative C∗-algebra L∞(X,S) of
all bounded measurable functions on (X,S).

Proof. (1) If f : X → C is a measurable step function, then we write f =∑
j αjχAj with Aj = f−1(αj) and pairwise different αj ∈ C. Then the set Aj

form a measurable partition of X and we define

P (f) :=
∑
j

αjP (Aj).

Let S(X,S) be the space of measurable step function. Then the definition above
yields a map

P : S(X,S)→ B(H).

(2) If f =
∑
k βkχBk is another representation of f as a linear combination of

characteristic functions corresponding to pairwise disjoint measurable subsets,
then

f =
∑
k,j

βkχBk∩Aj

and restriction to Aj leads to βk = αj if Bk ∩Aj 6= ∅. Now we obtain∑
k

βkP (Bk) =
∑
k,j

βkP (Bk ∩Aj) =
∑
k,j

αjP (Bk ∩Aj) =
∑
j

αjP (Aj).

Therefore the integral does not depend on the representation of f .
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(3) The advantage of (2) consists in the fact that for two step function f
and g we find a finite measurable partition of X by A1, . . . , An such that both
can be written as f =

∑
j αjχAj and g =

∑
j βjχAj . This leads immediately to

P (f + g) = P (f) + P (g).

Since P (λf) = λP (f) follows directly from (1), the map P : S(X,S) → B(H)
is linear. We further have

P (f)∗ =
∑
j

αjP (Aj)∗ =
∑
j

αjP (Aj) = P (f)

and Proposition 6.2.6 implies

P (f)P (g) =
∑
j

αjP (Aj)
∑
k

βkP (Ak) =
∑
j,k

αjβkP (Aj)P (Ak)

=
∑
j,k

αjβkP (Aj ∩Ak) =
∑
j

αjβjP (Aj) = P (fg).

(4) (Continuity of P ) Let v ∈ H and let A1, . . . , An in S be disjoint subsets
in S. Then the vectors P (Aj)v are pairwise orthogonal (Proposition 6.2.6(ii)),
so that

‖v‖2 ≥ ‖P (
n⋃
j=1

Aj)v‖2 =
n∑
j=1

‖P (Aj)v‖2,

and we obtain for any function of the form f =
∑n
j=1 αjχAj the relation

‖P (f)v‖2 = ‖
∑
j

αjP (Aj)v‖2 =
∑
j

|αj |2‖P (Aj)v‖2

≤ ‖f‖2∞
∑
j

‖P (Aj)v‖2 ≤ ‖f‖2∞‖v‖2.

This proves that ‖P (f)‖ ≤ ‖f‖∞, and the density of S(X,µ) in L∞(X,S)
implies that P extends to a continuous linear map P̂ : L∞(X,S) → B(H).
Continuity implies that (6.8) also holds for P̂ .

Remark 6.2.9. (a) If P is a spectral measure on (X,S), then we obtain for each
v ∈ H a measure P v on (X,S). For each measurable function f ∈ L∞(X,S),
we then obtain the relation

〈P (f)v, v〉 =
∫
X

f(x) dP v(x) and ‖P (f)v‖2 =
∫
X

|f(x)|2 dP v(x). (6.9)

between usual integrals with respect to the measure P v and the spectral integrals
with respect to P .

If f = χE is a characteristic function, then (6.9) reproduces simply the
definition of the measure P v, which implies the first relation for step functions



150 CHAPTER 6. SPECTRAL MEASURES

because both sides of the equation are linear in f . Since both sides define
continuous linear functionals on L∞(X,S)∣∣∣ ∫

X

f(x) dP v(x)
∣∣∣ ≤ ∫

X

|f(x)| dP v(x) ≤ ‖f‖∞P v(X) = ‖f‖∞‖v‖2

(cf. (6.8) in Proposition 6.2.8), step functions form a dense subspace, they co-
incide on all of L∞(X,S). The second relation now follows from

‖P (f)v‖2 = 〈P (f)∗P (f)v, v〉 = 〈P (|f |2)v, v〉 =
∫
X

|f(x)|2 dP v(x).

(b) From (6.9) we further get

PP (f)v(E) = 〈P (E)P (f)v, P (f)v〉 = 〈P (f)P (E)P (f)v, v〉

= 〈P (|f |2χE)v, v〉 =
∫
E

|f |2 dP v,

which in turn leads to
PP (f)v = |f |2P v (6.10)

in the sense of measures with densities.

Example 6.2.10. Let (X,S, µ) be a measure space and H = L2(X,µ) be
the corresponding L2-space. In Lemma 6.2.5 we have see that P (E)f = χEf
defines a spectral measure P : S → B(H). In view of ‖hf‖2 ≤ ‖h‖∞‖f‖2, the
multiplication map

L∞(X,µ)× L2(X,µ)→ L2(X,µ), h · f := h · f

is continuous, so that we obtain P (h)f = h ·f for all h ∈ L∞(X,µ) because this
relation holds for all measurable step functions. Therefore the spectral integral
of a function is a multiplication operator, and we recover the representation of
L∞(X,µ) from Lemma 2.1.5.

For the proof of the spectral theorem in the following subsection, we need
the following lemma.

Lemma 6.2.11. Let H ∼= ⊕̂j∈JHj be a direct sum of Hilbert spaces and (X,S)
be a measurable space. Suppose that we are given for each j ∈ J a spectral
measure Pj : S→ PHj . Then

P (E)v :=
(
Pj(E)vj

)
for v = (vj)j∈J ∈ H

defines a spectral measure P : S→ PH.

Proof. Clearly, P (E)∗ = P (E) = P (E)2, so that each P (E) is indeed an or-
thogonal projection. Further, P (X) = 1, and for any disjoint sequence (En)n∈N
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of Borel subsets of X, we obtain P (En)P (Em) = 0 for n 6= m. Therefore the
sequence

(
P (En)v

)
n∈N is orthogonal for each v ∈ H. Further,

‖P (E)v‖2 =
∑
j∈J
‖Pj(E)vj‖2 =

∑
j∈J

∑
n∈N
‖Pj(En)vj‖2

=
∑
n∈N

∑
j∈J
‖Pj(En)vj‖2 =

∑
n∈N
‖P (En)v‖2,

i.e.,

lim
n→∞

‖
n∑

m=1

P (Em)v‖2 = ‖P (E)v‖2

and

〈P (E)v, w〉 =
∑
j∈J
〈Pj(E)vj , wj〉 =

∑
j∈J

∞∑
n=1

〈Pj(En)vj , wj〉

=
∞∑
n=1

∑
j∈J
〈Pj(En)vj , wj〉 =

∞∑
n=1

〈P (En)v, w〉,

follows from absolute summability. With Exercise 6.2.23 we now obtain

lim
n→∞

n∑
m=1

P (Em)v = P (E)v,

i.e., P is a spectral measure.

6.2.2 The Spectral Theorem for Commutative Banach-∗-
Algebras

In this section we shall prove one of the central tools in representation theory,
namely the Spectral Theorem for commutative Banach-∗-algebras. Basically,
all other spectral theorems can be derived from this one by specialization.

Theorem 6.2.12. (Spectral Theorem for commutative Banach-∗-algebras) Let
A be a commutative Banach-∗-algebra. Then the following assertions hold:

(i) If P : B(Â) → PH is a regular Borel spectral measure on Â, then πP (a) :=
P (â) defines a non-degenerate representation of A on H.

(ii) If (π,H) is a non-degenerate representation of A, then there exists a unique
regular spectral measure P on Â with π = πP .

Proof. (i) Since the Gelfand transform G : A → C0(Â), a 7→ â is a homomor-
phism of Banach-∗-algebras (Section 4.1) and the same holds for the homomor-
phism

P : L∞(Â)→ B(H), f 7→ P (f)
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obtained as the spectral integral (Proposition 6.2.8), the composition

πP := P ◦ G : A → B(H), a 7→ P (â)

is a representation of the Banach-∗-algebra A.
To see that the representation (π,H) is non-degenerate, let v ∈ H be a unit

vector. Then the positive Borel measure P v on X is regular, so that there exists
for each ε > 0 a compact subset C ⊆ Â with P v(C) > 1−ε. For any continuous
function f ∈ Cc(Â) with 0 ≤ f ≤ 1 and f |C = 1 we then have

1− ε < P v(C) =
∫
C

dP v(χ) ≤
∫

bA f(χ) dP v(χ) = 〈P (f)v, v〉,

and ‖P (f)v‖2 = 〈P (f2)v, v〉 ≤ 1, so that

‖P (f)v − v‖2 = ‖P (f)v‖2 + ‖v‖2 − 2〈P (f)v, v〉 ≤ 2− 2〈P (f)v, v〉
≤ 2− 2(1− ε) = 2ε.

Therefore P (Cc(Â))H is dense inH. Since G(A) is dense in C0(Â) by the Stone–
Weierstraß Theorem (Remark 4.1.2), it follows that πP (A)H is also dense in H,
and therefore the representation (π,H) is non-degenerate.

(ii) First we show that we may assume that A = C0(X) for some locally
compact space X. So let B := π(A). Then B is a commutative C∗-algebra and
π : A → B is a morphism of Banach-∗-algebras with dense range. In view of the
Gelfand Representation Theorem (Theorem 4.1.1), B ∼= C0(Y ) for some locally
compact space Y . For y ∈ Y and δy(f) := f(y), we have π∗(δy) := δy ◦ π ∈ Â
because π∗(δy) 6= 0 follows from the fact that π has dense range. The so
obtained map π∗ : Y → Â is continuous because for each a ∈ A, the function
y 7→ π∗(δy)(a) = π(a)(y) is continuous. Moreover, it extends to an injective
continuous map

π∗ : Y ∪ {0} = Hom(B,C)→ Â ∪ {0} = Hom(A,C)

of compact spaces which therefore is a topological embedding. This implies that
π∗(Y )∪{0} is a compact subset of Â∪{0} so that Y ∼= π∗(Y ) is a closed subset
of Â. We may therefore assume that Y is a closed subset of Â, so that π obtains
the simple form π(a) = â|Y . If PB is a regular Borel spectral measure on Y
with PB(f) = f for f ∈ B ⊆ B(H), then PA(E) := PB(E∩Y ) is a regular Borel
spectral measure on Â (cf. Exercise 6.2.25(d)), and for a ∈ A we have

PA(â) = PB(â|Y ) = PB(π(a)) = π(a).

Replacing A by B, we may thus assume that A = C0(X) holds for some locally
compact space X.

Next we show the uniqueness of the spectral measure. Let P and P̃ be
spectral measures with the desired properties. For v ∈ H we then obtain two
positive measures P v and P̃ v on Â with∫

bA â(χ) dP v(χ) = 〈P (â)v, v〉 = 〈π(a)v, v〉 =
∫

bA â(χ) dP̃ v(χ)
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for a ∈ A. In view of the Riesz Representation Theorem 2.3.2, the regularity
assumption implies P v = P̃ v. Since each P (E) is uniquely determined by the
numbers P v(E) = 〈P (E)v, v〉, v ∈ H, the uniqueness of P follows.

Now we prove the existence. To this end, we decompose the representation
(π,H) into cyclic representations (πj ,Hj), j ∈ J (Exercise 1.3.23). If we have
for each j ∈ J a spectral measure P j with values on B(Hj) and the desired
properties, then Lemma 6.2.11 implies that

P (E)v :=
(
Pj(E)vj

)
for v = (vj)j∈J ∈ H

defines a spectral measure. We may thus assume that the representation of
A = C0(X) is cyclic. Let v ∈ H be a cyclic vector, so that π(A)v is dense in
H. Then

πv : C0(X)→ C, f 7→ 〈π(f)v, v〉
is a positive functional, and the Riesz Representation Theorem 2.3.2 provides a
unique regular Borel measure P v on X with

πv(f) =
∫
X

f(χ) dP v(χ) for f ∈ C0(X).

Next we show that H ∼= L2(X,P v). To this end, we consider the map
Φ̃: C0(X)→ H, a 7→ π(a)v. Then

〈Φ̃(a), Φ̃(b)〉 = 〈π(a)v, π(b)v〉 = 〈π(ab∗)v, v〉

= πv(ab∗) =
∫
X

a(x)b(x) dP v(x) = 〈a, b〉L2(X,Pv).

Hence the map L2(X,P v) 3 a→ π(a)v ∈ H is well defined and, since C0(X) is
dense in L2(X,P v) (Proposition 2.3.6), it extends to an isometric embedding

Φ: L2(X,P v)→ H,

which is surjective because π(A)v is dense. For each a ∈ A we have

〈π(a)v, v〉 = 〈a, 1〉L2(X,Pv) = 〈Φ(a),Φ(1)〉 = 〈π(a)v,Φ(1)〉,

so that Φ(1) = v.
Let ρ : L∞(X)→ B

(
L2(X,P v)

)
denote the representation from Lemma 2.1.5.

For a, b ∈ A we then have

π(a)Φ(b) = π(a)π(b)v = π(ab)v = Φ(ab) = Φ(ρ(a)b).

In view of the density of C0(X) in L2(X,P v), Φ is an intertwining operator for
the representations ρ and π of A. We may thus assume that H = L2(X,P v).

Finally, let P (E)f = χEf denote the spectral measure on L2(X,P v) from
Example 6.2.10. For a ∈ A we now have P (a) = ρ(a). It remains to show that,
for f ∈ L2(X,P v), the measures

E 7→ P f (E) = 〈P (E)f, f〉 = 〈χEf, f〉 =
∫
E

|f(x)|2 dP v(x)

are regular, but this is a consequence of the following Lemma 6.2.13.
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Lemma 6.2.13. If µ is a regular Borel measure on the locally compact space
X and f ∈ L2(X,µ), then the finite measure µf (E) :=

∫
E
|f(x)|2 dµ(x) is also

regular.

Proof. Let E ⊆ X be a Borel set. We have to show that E is outer regular.
We may assume µ(E) < ∞ because otherwise there is nothing to show. Let
ε > 0. For n ∈ N we consider the sets Fn := {x ∈ X : |f(x)| ≥ n}. Then
µf (X \ Fn)→ µf (X) = ‖f‖22 implies that µf (Fn) ≤ ε for n ≥ Nε. If V ⊇ E is
an open subset with µ(V ) ≤ µ(E) + ε

N2
ε

, then we obtain for n = Nε:

µf (V \ E) = µf
(
(V ∩ Fn) \ E

)
+ µf

(
(V \ Fn) \ E

)
≤ µf (Fn) + µf

(
(V \ Fn) \ E

)
≤ ε+

ε

n2
n2 = 2ε.

This proves the outer regularity of E.
To see that each open subset U ⊆ X is inner regular, we argue similarly.

The preceding proof even implies the following:

Corollary 6.2.14. A representation (π,H) of a commutative Banach-∗-algebra
is cyclic with cyclic vector v if and only if there exists a finite Radon mea-
sure µ on Â such that (π,H, v) is unitarily equivalent to the representation(
πµ, L

2(Â, µ), 1
)

with π(a)f = â · f .

Proof. First we show that the representation πµ on L2(Â, µ) is cyclic. Since µ
is finite, 1 ∈ L2(X,µ). Further, πµ(A)1 = {â : a ∈ A}. According to the Stone-
Weierstraß Theorem, G(A) is dense in C0(Â), so that the density of Cc(Â) ⊆
C0(Â) in L2(Â, µ) (Proposition 2.3.6) implies that 1 is a cyclic vector.

If, conversely, (π,H, v) is a cyclic representation of A with cyclic vector v,
then the argument in the proof of Theorem 6.2.12 implies that it is equivalent
to a representation (πµ, L2(Â, µ), 1).

Lemma 6.2.15. Let P : S → PH be a spectral measure and (fn)n∈N be a
bounded sequence in L∞(X,S) converging pointwise to some f : X → C. Then
P (fn)v → P (f)v holds for each v ∈ H.

Proof. From the Dominated Convergence Theorem we obtain

〈P (fn)v, v〉 =
∫
X

fn(x) dP v(x)→
∫
X

f(x) dP v(x) = 〈P (f)v, v〉,

which also implies

‖P (fn)v‖2 = 〈P (|fn|2)v, v〉 → 〈P (|f |2)v, v〉 = ‖P (f)v‖2.

By polarization (Exercise 1.3.14(i)), we also obtain

〈P (fn)v, w〉 → 〈P (f)v, w〉, v, w ∈ H.

Now the assertion follows from Exercise 6.2.23.
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Remark 6.2.16. (a) In Mackey’s books (cf. [Ma76, p. 93]) one finds the notion
of a projection-valued measure. If (X,S) is a measurable space and H a Hilbert
space, then a map P : S→ PH is called a projection-valued measure if:

(1) H is separable.

(2) P (∅) = 0 and P (X) = 1.

(3) P (E ∩ F ) = P (E)P (F ) for E,F ∈ S.

(4) P (
⋃∞
j=1Ej) =

∑∞
j=1 P (Ej) pointwise for each disjoint sequence (Ej)j∈N

in S.

It is clear that projection-valued measures define spectral measures, and with
Proposition 6.2.6 we also see that every spectral measure on a separable Hilbert
space is a projection-valued measure.

(b) In Rudin’s Functional Analysis [Ru73] one finds the notion of a resolution
of the identity P : S→ PH, where the following properties are required:

(1) P (∅) = 0 and P (X) = 1.

(2) P (E ∩ F ) = P (E)P (F ) for E,F ∈ S.

(3) If E ∩ F = ∅, then P (E ∪ F ) = P (E) + P (F ).

(4) The functions P v : E 7→ 〈P (E)v, v〉, v ∈ H, are measures on (X,S).

We have already seen that all these properties are satisfied by spectral mea-
sures. Conversely, it is shown in [Ru73, Prop. 12.18] that every resolution of
the identity is a spectral measure.

6.2.3 An Application to von Neumann Algebras

Let A ⊆ B(H) be a von Neumann algebra, i.e., A = A′′ (cf. Definition 4.2.4).
We want to show that A is generated, as a von Neumann algebra, by its pro-
jections, i.e., that the set

PA := {P ∈ A : P = P ∗ = P 2}

satisfies P ′′A = A.

Lemma 6.2.17. Let (π,H) be a non-degenerate representation of the Banach-
∗-algebra A and P : S = B(Â) → PH the corresponding regular Borel spectral
measure with P (â) = π(a) for a ∈ A. Then

π(A)′′ = P (S)′′.

Proof. Clearly P (S)′′ is a von Neumann algebra in B(H), hence in particular
norm closed. Since it contains all operators P (E), E ∈ S, it contains the
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operators P (f) for all measurable step functions f : Â → C. As these form a
dense subspace of L∞(Â), we see that

π(A) = P ({â : a ∈ A}) ⊆ P (C0(Â)) ⊆ P (L∞(Â)) ⊆ P (S)′′.

To prove the converse inclusion, we have to show that each P (E) is contained
in π(A)′′, i.e., that it commutes with π(A)′. In view of Exercise 4.1.8, the unital
C∗-algebra π(A)′ is spanned by its unitary elements, so that it suffices to show
that P (E) commutes with all unitary elements u ∈ π(A)′. For any such unitary
element

Pu(E) := uP (E)u−1

defines a regular spectral measure with the property that for a ∈ A we have

Pu(â) = uP (â)u−1 = uπ(a)u−1 = π(a).

Therefore the uniqueness of the spectral measure representing π implies that
Pu = P , i.e., that each P (E) commutes with u.

The following proposition is a useful tool in representation theory. It implies
in particular that the commutant of any unitary representation is completely
determined by its orthogonal projections, hence by the closed invariant sub-
spaces.

Proposition 6.2.18. For any von Neumann algebra A ⊆ B(H) we have P ′′A =
A, where PA is the set of orthogonal projections contained in A.

Proof. From PA ⊆ A = A′′ we immediately derive that P ′′A ⊆ A′′ = A.
To see that we actually have equality, let a ∈ A be a hermitian element and

B ⊆ A be the C∗-algebra generated by a. Then there exists a spectral measure
P : S = B(B̂)→ PH with P (̂b) = b for each b ∈ B. From Lemma 6.2.17 we now
derive that

a ∈ B ⊆ B′′ = P (S)′′.

Further, P (S) ⊆ P (S)′′ = B′′ ⊆ A′′ = A implies P (S) ⊆ PA, so that we arrive
at a ∈ P (S)′′ ⊆ P ′′A. Since a was arbitrary and each element of A is a linear
combination of two hermitian elements, we obtain A ⊆ P ′′A.

Corollary 6.2.19. Let (X,S, µ) be a σ-finite measure space and S ⊆ L∞(X,µ)
be a ∗-subsemigroup with the property that S is the smallest σ-algebra on X for
which all elements of S are measurable. We identify L∞(X,µ) with the cor-
responding subalgebra of B(L2(X,µ)) acting by multiplication operators. Then
S′′ = L∞(X,µ) holds in B(L2(X,µ)) and if µ is finite, then 1 is a cyclic vector
for the representation of S on L2(X,µ).

Proof. Let A := S′′ ⊆ L∞(X,µ) (Exercise 4.2.21) be the von Neumann algebra
generated by S and PA its set of projections. We claim that

A := {E ⊆ X : χE ∈ A}
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is a σ-algebra. Clearly 0 ∈ A implies ∅ ∈ A, and since 1 ∈ A, we also have
χEc = 1 − χE ∈ A for each E ∈ A. From χE · χF = χE∩F we also derive that
A is closed under intersections. Further

χE∪F = χE + χF − χE∩F

implies that A is closed under finite unions.
Now let (En)n∈N be a sequence of elements in A. It remains to show that

E :=
⋃
n∈N En ∈ A. Let Fn := E1 ∪ · · · ∪En. Then Fn ∈ A implies χFn ∈ A. In

view of Proposition 6.2.6(iv) χFn → χE holds in the strong operator topology
because the map E 7→ χE is a spectral measure (Lemma 6.2.5). As A is closed
in this topology (Remark 4.2.5(a)), χE ∈ A.

We may w.l.o.g. assume that S is a ∗-algebra. If f = f∗ ∈ S, the commu-
tative C∗-algebra generated by f is contained in A and contains all functions
h◦f , where h : C→ C is continuous (this is an easy consequence of the Gelfand
Representation Theorem). In particular, it contains for each c ∈ R the function
max(f, c). Now e−n(max(f,c)−c) ∈ A converges pointwise to the characteris-
tic function χf≤c. Therefore Lemma 6.2.15 implies that χf≤c ∈ A, so that
{f ≤ c} ∈ A. This proves that each real-valued function f ∈ S is A-measurable,
and hence that every f ∈ S is A-measurable. By assumption, we now find that
A = S, which implies A = L∞(X,µ) because L∞(X,µ) is a von Neumann
algebra in B(L2(X,µ)) (Exercise 4.2.21).

Clearly, 1 is a cyclic vector for L∞(X,µ) = S′′, and therefore Exercise 5.3.28
implies that it is also cyclic for S.

Remark 6.2.20. (Central decomposition) If G is a topological group and (π,H)
a continuous unitary representation, then Z := Z(π(G)′) is a commutative von
Neumann algebra and one can apply the spectral theorem to this algebra to ob-
tain a spectral measure on Ẑ. Then all spectral projections P (E) are contained
in Z, and for any such projection we obtain a G-invariant decomposition

H = P (E)H⊕ P (Ec)H.

Since P (E) also commutes with π(G)′, the commutant preserves these two sub-
spaces, which implies that

BG(P (E)H, P (Ec)H) = {0},

which means that both pieces are “disjoint” as G-representations. Refining
these techniques leads to a so-called “direct integral decomposition” of H into
factor representations. This is an important generalization of the isotypical
decomposition of a unitary representation with H = Hd to the general case,
when there is a non-zero continuous part.

Example 6.2.21. (a) Let A be an abelian topological group, H a topological
group, and α : H → Aut(A) be a homomorphism defining a continuous action
of H on A. We want to construct irreducible unitary representations of the
semidirect product group G := Aoα H.
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On the character group Â, we consider the smallest σ-algebra S for which all
functions â : Â→ T, χ 7→ χ(a), are measurable. If µ : S→ [0, 1] is a probability
measure on Â invariant under the right action of H on Â, given by α̂(h)(χ) :=
χ ◦ α(h), we obtain a unitary representation of G by

π(a, h)f := â · (f ◦ α̂(h)).

In view of Corollary 6.2.19, we then have

π(A)′′ = L∞(Â, µ),

and therefore
π(A)′ = π(A)′′′ = L∞(Â, µ)′ = L∞(Â, µ)

by Exercise 4.2.21. This implies that

π(G)′ = π(A)′∩π(H)′ = L∞(Â, µ)H := {f ∈ L∞(Â, µ) : (∀h ∈ H) f◦α̂(h) = f}.

Note that the relation f ◦ α̂(h) = f only means an identity of elements of
L∞(Â, µ), i.e., that these functions coincide up to a set of µ-measure zero.

We call the measure µ strongly ergodic if

L∞(Â, µ)H = C1.

Now the preceding argument implies that µ is strongly ergodic if and only if
π(G)′ = C1, which, by Schur’s Lemma, is equivalent to the irreducibility of the
representation (π, L2(Â, µ)).

(b) To see a more concrete example, let A = Rn and H = On(R) ⊆
GLn(R) ∼= Aut(A). We identify Â with Rn via χy(x) := ei〈x,y〉. Then the
surface measure µr on the sphere

S(r) := {v ∈ Rn : ‖v‖ = r}

is H-invariant, and by identifying S(r) with the coset space On(R)/On−1(R),
we derive from Exercise 6.2.30 that this measure is strongly ergodic. In par-
ticular, we obtain an irreducible unitary representation of the motion group
G = Rn o On(R) on L2(S(r), µr) by

(πr(x, g)f)(y) := ei〈x,y〉f(g−1y), 0 ≤ r <∞.

For more general examples and results in this context, we refer to [Fa08] (cf.
also the discussion in Example 5.3.16).

Remark 6.2.22. The construction in the preceding example can be generalized
as follows. Let A be an abelian topological group and X a set. Consider a
homomorphism β : A → TX (which is the same as a map X → Â), and let S
be the smallest σ-algebra on X for which all maps β(a), a ∈ A, are measurable.

Suppose, in addition, that H is a topological group acting continuously on
A by α : H → Aut(A) and that it acts on X by σX : H → SX with β(a)◦σ−1

X =
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β(α(h)a) for a ∈ A, h ∈ H (this means that the map X → Â is H-equivariant).
Then H acts by automorphism on the measurable space (X,S) and every H-
strongly ergodic measure µ on (X,S) leads to an irreducible representation of
G on L2(X,µ) by

(π(a, h)f)(x) := β(a) · (f ◦ σX(h)−1).

Exercises for Section 6.2

Exercise 6.2.23. Let (vn)n∈N be a sequence in a Hilbert space H which con-
verges weakly to v and satisfies ‖vn‖ → ‖v‖. Then we have vn → v.

Exercise 6.2.24. Let α : A → B be a homomorphism of commutative Banach-
∗-algebras which is non-degenerate in the sense that no (non-zero) character of
B vanishes on α(A). Show that

α̂ : B̂ → Â, χ 7→ χ ◦ α

is a continuous map which is proper, i.e., inverse images of compact subsets of
Â are compact. Hint: Extend α̂ to a continuous map Hom(B,C)→ Hom(A,C).

Exercise 6.2.25. Let f : X → Y be a continuous proper map between locally
compact spaces. Show that

(a) f is a closed map, i.e., maps closed subsets to closed subsets.

(b) If f is injective, then it is a topological embedding onto a closed subset.

(c) There is a well-defined homomorphism f∗ : C0(Y )→ C0(X) of C∗-algebras,
defined by f∗h := h ◦ f . Identifying X with C0(X )̂ and Y with C0(Y )̂ ,
we have f̂∗ = f .

(d) For each regular Borel measure µ on X, the push-forward measure f∗µ on
Y , defined by (f∗µ)(E) := µ(f−1(E)) is regular. Hint: To verify outer
regularity, pick an open O ⊇ f−1(E) with µ(O \ f−1(E)) < ε. Then
U := f(Oc)c is an open subset of Y containing E and Õ := f−1(U)
satisfies f−1(E) ⊆ Õ ⊆ O, which leads to (f∗µ)(U \ E) < ε.

Exercise 6.2.26. (Cyclic spectral measures) Let P : S → PH be a spec-
tral measure on (X,S) with a cyclic vector v. Find a unitary isomorphism
Φ: L2(X,P v)→ H with Φ(χEf) = P (E)Φ(f) for f ∈ L2(X,P v).

Exercise 6.2.27. (Unitary one-parameter groups) Let P : S→ PH be a spec-
tral measure on (X,S) and f : X → R be a measurable function. Show that

(a) π : R → U(H), π(t) := P (eitf ) defines a continuous unitary representation
of R on H.

(b) If f is bounded, then π is norm continuous.
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(c) If f is norm-continuous, then f is essentially bounded.

Exercise 6.2.28. (Strongly ergodic measures) Let (X,S) be a measurable
space and
σ : G ×X → X an action of a group G on X by measurable maps. Show that
for a finite G-invariant measure µ on (X,S), the following are equivalent

(a) L2(X,µ)G = C1, i.e., the only elements of L2(X,µ) invariant under the
representation (π(g)f)(x) := f(g−1x) are the constants.

(b) L∞(X,µ)G = C1.

Then the measure µ is called strongly G-ergodic.

Exercise 6.2.29. Let G be a compact group and µG be normalized Haar mea-
sure ofG. Show µG is strongly ergodic for the multiplication action σ(g, h) := gh
of G on itself is strongly ergodic. Hint: Exercise 6.1.14.

Exercise 6.2.30. Let G be a compact group, µG be normalized Haar mea-
sure of G, H a closed subgroup of G, q : G → G/H the quotient map and
µ := q∗µG. Show that µ is strongly ergodic with respect to the left translation
action σ(g, xH) := gxH of G on the quotient space G/H of left cosets of H.
Hint: Exercise 6.2.29. For more details on ergodic measures we refer to [FD88,
Sect. VIII.19].

Exercise 6.2.31. Let H be a compact group, G ⊆ H be a dense subgroup
and µH normalized Haar measure of H. Show that µH is strongly ergodic with
respect to the multiplication action σ(g, h) := gh of G on H.

Exercise 6.2.32. Show that the Haar measure on T is ergodic for the action
of Z on T by n.eit := ei(t+nθ), where θ is an irrational number.

Exercise 6.2.33. Let A ⊆ B(H) be a commutative von Neumann algebra,
where H is separable. Show that the following assertions are equivalent

(a) A is maximal commutative, i.e., A′ = A.

(b) The representation of A on H is multiplicity free, i.e., A′ is commutative.

(c) The representation of A on H is cyclic.

Hint: Use Exercise 5.3.29 for (b) ⇒ (c) and for (b) ⇒ (a) observe that A′ is
commutative if and only if A′ ⊆ A′′ = A. For (c) ⇒ (b) use Corollary 6.2.14
to identify the cyclic representations as some L2(Â, µ), and then Lemma 6.2.17
to see that in this case the commutant is the commutative algebra L∞(Â, µ)′ =
L∞(Â, µ) ⊆ B(L2(Â, µ)) (Exercise 4.2.21).



6.3. ABELIAN LOCALLY COMPACT GROUPS 161

Exercise 6.2.34. Let A ⊆ B(H) be a von Neumann algebra. Show that the
following assertions are equivalent 1

(a) The commutant A′ is commutative, i.e., the representation of A on H is
multiplicity free.

(b) Any maximal commutative von Neumann subalgebra B ⊆ A satisfies B′ =
B, i.e., it is maximal commutative in B(H).

Hint: If A′ is commutative, then A′ = Z(A′) = Z(A), and if B ⊆ A is maximal
commutative, then Z(A) ⊆ B, so that A′ ⊆ B, which in turn leads to B′ ⊆ A.
If, conversely, B ⊆ A is commutative with B′ = B, then A′ ⊆ B′ ⊆ A.

6.3 Representations of Abelian Locally Compact
Groups

Proposition 6.3.1. For an abelian locally compact group G, the following as-
sertions hold:

(a) L1(G) is a commutative Banach-∗-algebra.

(b) The map

η : Ĝ→ L1(G)′, η(χ)(f) :=
∫
G

f(x)χ(x) dµG(x)

maps the character group Ĝ bijectively onto L1(G)̂ .

Proof. (a) It suffices to show that the convolution product is commutative on
the dense subalgebra Cc(G). Since the modular factor ∆G of G is trivial (Propo-
sition 2.4.7), we have

(f ∗ h)(y) =
∫
G

f(x)h(x−1y) dµG(x) =
∫
G

f(x−1)h(yx) dµG(x)

=
∫
G

f(x−1y)h(x) dµG(x) = (h ∗ f)(y).

(b) Since each character χ ∈ Ĝ is a bounded measurable function, it defines
an element in L1(G)′. If πχ(g) = χ(g)1 is the one-dimensional irreducible rep-
resentation of G, defined by the character χ, then the corresponding integrated
representation of L1(G) is given by

πχ(f) =
∫
G

f(x)χ(x)1 dµG(x) = η(χ)(f)1,

1This exercise illustrates the hypothesis of Commutative Superselection Rules in Quan-
tum Field Theory (cf. [Wi95, p. 759]). Here A plays the role of the von Neumann algebra
generated by the observables of a quantum system, so that its commutant corresponds to the
superselection rules. A commutative von Neumann algebrea B which is maximal in B(H) is
called a complete set of commuting observables. The result discussed in the exercise (Jauch’s
Theorem) then states that the commutativity of the superselection rules is equivalent to the
existence of a complete commuting set of observables.
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so that η(χ) : L1(G)→ C defines a non-zero algebra homomorphism because it
is a non-degenerate representation.

If, conversely, γ : L1(G) → C is a non-zero continuous homomorphism of
Banach-∗-algebras, then π(f) := γ(f)1 defines a one dimensional non-degenerate
representation of L1(G), and the corresponding representation of G is given by
a continuous character χ with πχ = π. This implies that γ = η(χ).

In the following we endow the character group Ĝ always with the locally
compact topology for which η is a homeomorphism. This is the coarsest topology
for which all functions

f̂ : Ĝ→ C, χ 7→
∫
G

f(x)χ(x) dµG(x)

are continuous, and, by definition, all these functions vanish at infinity, i.e.,
f̂ ∈ C0(Ĝ). The function f̂ is called the Fourier transform of f .

Example 6.3.2. For G = Rn we have already seen that each element of Ĝ is
of the form χx(y) = ei〈x,y〉 for some x ∈ Rn. Therefore the Fourier transform
can be written as

f̂(y) =
∫

Rn
f(x)ei〈x,y〉 dx.

From Lebesgue’s Dominated Convergence Theorem it follows immediately
that all the functions f̂ are continuous with respect to the standard topology of
Rn. Therefore the bijection

ι : Rn → R̂n, x 7→ χx

is continuous. Further, the Riemann–Lebesgue Lemma (Proposition 6.3.3 be-
low) implies that all functions f̂ vanish at infinity, and this implies that ι extends
to a continuous map

ιω : (Rn)ω → (R̂n)ω ∼= Hom(L1(Rn),C)

of the one-point compactifications. As ιω is a bijection and Rnω is compact, it
follows that ιω, and hence also ι, is a homeomorphism.

Proposition 6.3.3. (Riemann–Lebesgue) For each f ∈ L1(Rn) the Fourier
transform f̂ vanishes at infinity, i.e., f̂ ∈ C0(Rn).

Proof. For each 0 6= x ∈ Rn we obtain with e−iπ = −1 and the translation
invariance of Lebesgue measure the relation

f̂(x) = 2
1
2

∫
Rn
ei〈x,y〉f(y) dy

=
1
2

∫
Rn
ei〈x,y〉f(y) dy − 1

2

∫
Rn
e
i〈x,y− π

‖x‖2
x〉
f(y) dy

=
1
2

∫
Rn
ei〈x,y〉f(y) dy − 1

2

∫
Rn
ei〈x,y〉f

(
y +

π

‖x‖2
x
)
dy

=
1
2

∫
Rn
ei〈x,y〉

[
f(y)− f

(
y +

π

‖x‖2
x
)]
dy.
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This implies that

|f̂(x)| ≤ 1
2

∫
Rn

∣∣∣f(y)− f
(
y +

π

‖x‖2
x
)∣∣∣ dy.

Now the assertion follows from the continuity of the map

Rn → L1(Rn), x 7→ λxf

in 0 (Lemma 6.1.1) and limx→∞
x
‖x‖2 = 0.

Theorem 6.3.4. (Spectral Theorem for locally compact abelian groups) Let G
be a locally compact abelian group and Ĝ ∼= L1(G)̂ be its character group. Then,
for each regular spectral measure P on the locally compact space Ĝ, the unitary
representation

πP : G→ U(H), πP (g) := P (ĝ), ĝ(χ) = χ(g),

is continuous. If, conversely, (π,H) is a continuous unitary representation of
G on H, then there exists a unique regular spectral measure P with π = πP .

Proof. First we use the spectral measure P to define a non-degenerate repre-
sentation πP of L1(G) by πP (f) := P (f̂) (Theorem 6.2.12). Then we clearly
have

πP (g)πP (f) = P (ĝ)P (f̂) = P (ĝf̂), g ∈ G, f ∈ L1(G).

Next we observe that for each character χ ∈ Ĝ we have

(λgf )̂ (χ) =
∫
G

(λgf)(x)χ(x) dµG(x) =
∫
G

f(g−1x)χ(x) dµG(x)

=
∫
G

f(x)χ(gx) dµG(x) = χ(g)
∫
G

f(x)χ(x) dµG(x) = ĝ(χ)f̂(χ).

We thus obtain

πP (g)πP (f) = P (ĝf̂) = P ((λgf )̂ ) = πP (λgf),

so that πP : G→ U(H) is the unique continuous unitary representation of G on
H corresponding to the representation of L1(G) (Theorem 6.1.12). In particular,
πP is continuous. It follows in particular that πP is continuous.

If, conversely, (π,H) is a continuous unitary representation of G and
π : L1(G) → B(H) the corresponding non-degenerate representation of L1(G),
then we use Theorem 6.2.12 to obtain a regular spectral measure P on Ĝ ∼=
L1(G)̂ with π(f) = P (f̂), f ∈ L1(G). Then

π(g)π(f) = π(λgf) = P (ĝf̂) = P (ĝ)P (f̂) = P (ĝ)π(f)

implies that P (ĝ) = π(g) holds for each g ∈ G (Theorem 6.1.12).
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Definition 6.3.5. Let P be a regular spectral measure on Ĝ. If (Ui)i∈I are
open subset of Ĝ with P (Ui) = 0, then the same holds for U :=

⋃
i∈I Ui. In

fact, since P is inner regular, it suffices to observe that for each compact subset
C ⊆ U we have P (C) = 0, but this follows from the fact that C is covered by
finitely many Ui. We conclude that there exists a maximal open subset U ⊆ Ĝ
with P (U) = 0, and its complement

supp(P ) := U c

is called the support of P , resp., the support of the corresponding representation.
It is the smallest closed subset A of Ĝ with P (A) = 1.

Combining Corollary 6.2.14 with the arguments in the preceding proof, we
immediately obtain a description of the cyclic representations:

Corollary 6.3.6. A representation (π,H) of an abelian locally compact group
G is cyclic if and only if there exists a finite Radon measure µ on Ĝ such
that (π,H) is equivalent to the cyclic representation

(
πµ, L

2(Ĝ, µ), 1
)
, given by

πµ(g)f = ĝ ·f . In particular, all these representations are continuous and cyclic.

Theorem 6.3.7. (Bochner’s Theorem) A continuous function ϕ on the locally
compact abelian group G is positive definite if and only if there exists a finite
Radon measure µ on Ĝ with ϕ = µ̂. Then µ is uniquely determined by ϕ.

Proof. We have already seen in Proposition 5.3.3 that ϕ is positive definite if and
only if ϕ = πv holds for a continuous cyclic unitary representation (π,H, v). In
view of Corollary 6.3.6, any such representation is equivalent to a representation
of the form (πµ, Ĝ, 1), where µ is a regular Borel measure on Ĝ and πµ(g)f = ĝf .
Now the assertion follows from

〈πµ(g)1, 1〉 = 〈ĝ, 1〉 =
∫
G

ĝ(χ) dµ(χ) = µ̂(g).

To see that µ is unique, we note that it can be written as

µ(E) = 〈P (E)1, 1〉 = P 1(E)

in terms of the spectral measure P . Therefore its uniqueness follows from the
uniqueness of the spectral measure.

Remark 6.3.8. An important but subtle point of the theory of non-discrete
spectral measures is the measurement of multiplicities. For a discrete spectral
measure P : S → PH the multiplicity of x ∈ X can simply be measured by
dimP ({x})H, but for the continuous part of S this is more complicated. One
way to deal with this problem is to decompose H into cyclic subspaces

Hv := span{P (E)v : E ∈ S}

with respect to P . From

〈P (E)v, P (F )v〉 = 〈P (E ∩ F )v, v〉 = P v(E ∩ F )
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one easily derives that
Hv ∼= L2(X,P v)

(cf. Examples 3.3.6(d)). On this space the representation of the involutive semi-
group (S, idS) is multiplicity free because (P (S)|Hv )′ ∼= L∞(X,P v) (Exer-
cise 4.2.21) is commutative. Now H is a direct sum of such spaces Hv, so that
one may count multiplicities by comparing the measures P v. This problem
is studied systematically in Halmos’ nice book [Ha57] which is still the best
reference for these issues.

Exercises for Section 6.3

Exercise 6.3.9. Show that every cyclic representation of an abelian involutive
semigroup (S, ∗) is multiplicity free. Hint: Since π(S)′ = π(S)′′′, one may
assume that S = A is a commutative C∗-algebra. In this case we know the cyclic
representations and the corresponding commutants (Exercise 4.2.21). Combined
with Exercise 5.3.29, this proves that a non-degenerate representation of an
abelian involutive semigroup on a separable Hilbert space is cyclic if and only
if it is multiplicity free.

6.4 Unitary Representations of R
The following theorem shows how spectral measures lead to unitary representa-
tions of the group (R,+) and vice versa. It may be considered as a classification
of unitary one-parameter groups in terms of spectral measures on R which pro-
vides important structural information.

Theorem 6.4.1. Let P : S → PH be a spectral measure and f : X → R be a
measurable function. Then

π(t) := P (eitf )

defines a continuous unitary representation π : R→ U(H).
Conversely, every continuous unitary representation of R has this form for

X = R and f(x) = x.

Proof. Since R → U(L∞(X,C)), t 7→ eitf is a homomorphism into the unitary
group of the C∗-algebra L∞(X,C), it follows from Proposition 6.2.8 that π(t) :=
P (eitf ) defines a unitary representation of R.

Now let v ∈ H. Then Remark 6.2.9 implies that

πv(t) = 〈π(t)v, v〉 = 〈P (eitf )v, v〉 =
∫
X

eitf(x) dP v(x),

and the continuity of this function follows from Lebesgue’s Theorem on Domi-
nated Convergence.

If, conversely, (π,H) is a continuous unitary representation of R, then The-
orem 6.3.4 implies the existence of a spectral measure P on R̂ with π(t) = P (t̂)
for t ∈ R. Identifying the locally compact space R̂ with R in such a way that
t̂(x) = eitx (Example 6.3.2), the assertion follows.
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Remark 6.4.2. If π is defined as above, then all operators P (E), E ∈ S,
commute with π(R).

Example 6.4.3. Note that Theorem 6.4.1 applies in particular for X = R and
S = B(R) (the σ-algebra of Borel sets) and f(x) = x.

If, f.i., µ is a Borel measure on R and H = L2(R, µ) as in Lemma 6.2.5, then
we obtain a continuous unitary representation by π(t)f = eitxf (Exercise).

Remark 6.4.4. We have seen above that every unitary one-parameter group
is of the form π(t) = P (eit idR) for some spectral measure P on R. If the
spectral measure P is supported by a bounded subset of R, i.e., there exist
a, b ∈ R with P ([a, b]) = 1, then the function idR is essentially bounded and
A := P (idR) ∈ B(H) is a bounded hermitian operator satisfying

π(t) = P (eit idR) =
∞∑
k=0

1
k!
P (it idR)k =

∞∑
k=0

1
k!

(itA)k = eitA.

Taking derivatives in t, we obtain

A = lim
t→0

1
it

(
π(t)− 1

)
in the operator norm.

For a general unitary one-parameter group the corresponding spectral mea-
sure P on R may have unbounded supported, which is reflected in the fact that
the limit

Av := lim
t→0

1
it

(
π(t)v − v

)
may not exist for every v ∈ H. Write D(A) for the linear subspace of H
consisting of all elements for which this limit exists. Then

A : D(A)→ H

is called an unbounded operator. A closer analysis of this situation leads to the
theory of unbounded selfadjoint operators on Hilbert spaces.

Here we only note that for every bounded subset B ⊆ R the closed subspace
HB := P (B)H is invariant, and on this subspace we have

π(t)|HB = P (eit idR)|HB = P (eit idR χB )|HB = eitP (idR χB)|HB ,

and since the operator P (idR χB) is bounded, we obtain in particular that HB ⊆
D(A) with

A|HB = P (idR χB)|HB .
In view of P ([−n, n]) → P (R) = 1 in the strong operator topology, the union⋃
n∈NH[−n,n] is dense in H, which implies that D(A) is a dense subspace of H.

We say that A is densely defined.
This suggests that A should be something like P (idR), and to make sense

out of that, one has to extend the spectral integral to unbounded measurable
functions.
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Exercises for Section 6.4

Exercise 6.4.5. (One-parameter groups of U(H))

(1) Let A = A∗ ∈ B(H) be a bounded hermitian operator. Then γA(t) := eitA

defines a norm-continuous unitary representation of (R,+).

(2) Let P : (X,S)→ B(H) be a spectral measure and f : X → R a measurable
function. Then γf (t) := P (eitf ) is a continuous unitary representation of
(R,+). Show that γf is norm-continuous if and only of f is essentially
bounded.
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Chapter 7

Closed Subgroups of
Banach Algebras

In this chapter we study one of the central tools in Lie theory: the exponential
function of a Banach algebra. This function has various applications in the
structure theory of Lie groups. First of all, it is naturally linked to the one-
parameter subgroups, and it turns out that the local group structure of A× for
a unital Banach algebra A in a neighborhood of the identity is determined by
its one-parameter subgroups.

In Section 7.1, we discuss some basic properties of the exponential function of
a unital Banach algebra A. In Section 7.2, we then use the exponential function
to associate to each closed subgroup G ⊆ A× a Banach–Lie algebra L(G), called
the Lie algebra of G. We then show that the elements of L(G) are in one-to-one
correspondence with the one-parameter groups of G and study some functorial
properties of the assignment L : G 7→ L(G). The last section of this chapter is
devoted to some tools to calculate the Lie algebras of closed subgroups of A.

7.1 Elementary Properties of the Exponential
Function

Let A be a unital Banach algebra. For x ∈ A we define

ex : =
∞∑
k=0

1
k!
xk. (7.1)

The absolute convergence of the series on the right follows directly from the
estimate

∞∑
k=0

1
k!
‖xk‖ ≤

∞∑
k=0

1
k!
‖x‖k = e‖x‖

169
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and the Comparison Test for absolute convergence of a series in a Banach space.
We define the exponential function of A by

exp: A → A, exp(x) := ex.

Lemma 7.1.1. Let x, y ∈ A.

(i) If xy = yx, then exp(x+ y) = expx exp y.

(ii) exp(A) ⊆ A×, exp(0) = 1, and (expx)−1 = exp(−x).

(iii) For g ∈ A× we have gexg−1 = egxg
−1

.

(iv) exp is differentiable in 0 with d exp(0)x = x for x ∈ A.

Proof. (i) Using the general form of the Cauchy Product Formula (Exercise 7.1.8),
we obtain

exp(x+ y) =
∞∑
k=0

(x+ y)k

k!
=
∞∑
k=0

1
k!

k∑
`=0

(
k

`

)
x`yk−`

=
∞∑
k=0

k∑
`=0

x`

`!
yk−`

(k − `)!
=
( ∞∑
p=0

xp

p!

)( ∞∑
`=0

y`

`!

)
.

(ii) From (i) we derive in particular expx exp(−x) = exp 0 = 1, which implies
(ii).

(iii) is a consequence of gxng−1 = (gxg−1)n and the continuity of the con-
jugation map cg(x) := gxg−1 on A.

(iv) For the exponential series we have the estimate

‖ex − 1− x‖ = ‖
∑
n≥2

xn

n!
‖ ≤

∑
n≥2

‖x‖n

n!
= e‖x‖ − 1− ‖x‖,

showing that

lim
x→0

‖ex − 1− x‖
‖x‖

≤ lim
x→0

e‖x‖ − 1− ‖x‖
‖x‖

= 0,

and hence that exp is differentiable in 0 with d exp(0)x = x for x ∈ A.

Remark 7.1.2. (a) For n = 1, the exponential function

exp: R ∼= Mn(R)→ R× ∼= GLn(R), x 7→ ex

is injective, but this is not the case for n > 1. In fact,

exp
(

0 −2π
2π 0

)
= 1

follows from

exp
(

0 −t
t 0

)
=
(

cos t − sin t
sin t cos t

)
, t ∈ R.

This example is the real picture of the relation e2πi = 1.
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Definition 7.1.3. A one-parameter (sub)group of a group G is a group ho-
momorphism γ : (R,+) → G. The following result describes the differentiable
one-parameter subgroups of A×.

Theorem 7.1.4. (One-parameter Group Theorem) For each x ∈ A, the map

γx : (R,+)→ A, t 7→ exp(tx)

is a smooth group homomorphism solving the initial value problem

γx(0) = 1 and γ′x(t) = γx(t)x for t ∈ R.

Conversely, every continuous one-parameter group γ : R→ A× is of this form.

Proof. In view of Lemma 7.1.1(i) and the differentiability of exp in 0, we have

lim
h→0

1
h

(
γx(t+ h)− γx(t)

)
= lim
h→0

1
h

(
γx(t)γx(h)− γx(t)

)
= γx(t) lim

h→0

1
h

(
ehx − 1

)
= γx(t)x.

Hence γx is differentiable with γ′x(t) = xγx(t) = γx(t)x. From that it immedi-
ately follows that γx is smooth with γ

(n)
x (t) = xnγx(t) for each n ∈ N.

We first show that each one-parameter group γ : R→ A× which is differen-
tiable in 0 has the required form. For x := γ′(0), the calculation

γ′(t) = lim
s→0

γ(t+ s)− γ(t)
s

= lim
s→0

γ(t)
γ(s)− γ(0)

s
= γ(t)γ′(0) = γ(t)x

implies that γ is continuously differentiable. Therefore

d

dt
(e−txγ(t)) = −e−txxγ(t) + e−txγ′(t) = 0

implies that e−txγ(t) = γ(0) = 1 for each t ∈ R, so that γ(t) = etx.
Eventually we consider the general case, where γ : R→ A× is only assumed

to be continuous. The idea is to construct a differentiable function γ̃ by applying
a smoothing procedure to γ and to show that the smoothness of γ̃ implies that
of γ. So let f : R → R+ be a twice continuously differentiable function with
f(t) = 0 for |t| > ε and

∫
R f(t) dt = 1, where ε is chosen such that ‖γ(t)−1‖ < 1

2
holds for |t| ≤ ε.

We define

γ̃(t) :=
∫

R
f(s)γ(t− s) ds = γ(t)

∫
R
f(s)γ(−s) ds = γ(t)

∫ ε

−ε
f(s)γ(−s) ds.

Here we use the existence of Riemann integrals of continuous curves with values
in Banach spaces, which follows from Theorem 6.1.9. Change of Variables leads
to

γ̃(t) =
∫

R
f(t− s)γ(s) ds,
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which is differentiable because

γ̃(t+ h)− γ̃(t)
h

=
∫

R

f(t+ h− s)− f(t− s)
h

γ(s) ds

and the functions fh(t) := f(t+h)−f(t)
h converge uniformly for h→ 0 to f ′ (this

is a consequence of the Mean Value Theorem). We further have∥∥∥∥∫ ε

−ε
f(s)γ(−s) ds− 1

∥∥∥∥ =
∥∥∥∥∫ ε

−ε
f(s)

(
γ(−s)− 1

)
ds

∥∥∥∥
≤
∫ ε

−ε
f(s)‖γ(−s)− 1‖ ds ≤ 1

2

∫ ε

−ε
f(s) ds =

1
2
,

because of the inequality ‖
∫
h(s) ds‖ ≤

∫
‖h(s)‖ ds (cf. Subsection 6.1.3).

Let g :=
∫ ε
−ε f(s)γ(−s) ds. In view of ‖g − 1‖ ≤ 1

2 we have g ∈ A× (see the
proof of Proposition 1.1.10) and therefore γ(t) = γ̃(t)g−1. Now the differentia-
bility of γ̃ implies that γ is differentiable, and one can argue as above.

Product and Commutator Formula

We have seen in Lemma 7.1.1 that the exponential image of a sum x + y can
be computed easily if x and y commute. In this case we also have for the
commutator [x, y] := xy − yx = 0 the formula exp[x, y] = 1. The following
proposition gives a formula for exp(x+ y) and exp([x, y]) in the general case.

If g, h are elements of a group G, then (g, h) := ghg−1h−1 is called their
commutator. On the other hand, we call for two element a, b ∈ A the expression

[a, b] := ab− ba

their commutator bracket.

Proposition 7.1.5. For x, y ∈ A, the following assertions hold:

(i) limk→∞

(
e

1
kxe

1
k y
)k

= ex+y (Trotter Product Formula).

(ii) limk→∞
(
e

1
kxe

1
k ye−

1
kxe−

1
k y
)k2

= exy−yx (Commutator Formula).

Proof. We start with a general consideration. We shall have to estimate an
expression of the form Ak −Bk. To this end we write

Ak −Bk = (Ak −Ak−1B) + (Ak−1B −Ak−2B2) + . . .+ (ABk−1 −Bk)

= Ak−1(A−B) +Ak−2(A−B)B + . . .+ (A−B)Bk−1

=
k−1∑
j=0

Aj(A−B)Bk−1−j .

Let us assume that there exists a constant C > 0 with

‖Aj‖, ‖Bj‖ ≤ C for 1 ≤ j ≤ k. (7.2)
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Then we get the estimate

‖Ak −Bk‖ ≤
k−1∑
j=0

‖Aj‖ · ‖Bk−1−j‖ · ‖A−B‖ ≤ kC2‖A−B‖.

(i) We apply the estimate from above to some special situations. First we
consider k = n, A = e

1
nxe

1
ny and B = e

1
n (x+y). Then

An −Bn =
(
e

1
nxe

1
ny
)n − e(x+y),

and we have to show that this expression tends to zero. We therefore check the
assumptions from above. We have

‖A‖ ≤ ‖e 1
nx‖ ‖e 1

ny‖ ≤ e 1
n‖x‖e

1
n‖y‖ = e

1
n (‖x‖+‖y‖),

and therefore ‖Aj‖ ≤ e‖x‖+‖y‖ for j ≤ n. We likewise obtain ‖Bj‖ ≤ e‖x‖+‖y‖

for j ≤ n, and hence

‖An −Bn‖ ≤ e2(‖x‖+‖y‖)n‖A−B‖.

We further have

n(A−B) =
e

1
nxe

1
ny − e 1

n (x+y)

1
n

=
e

1
nx(e

1
ny − 1) + (e

1
nx − 1) + 1− e 1

n (x+y)

1
n

→ e0 · d exp(0)y + d exp(0)x− d exp(0)(x+ y)
= y + x− (x+ y) = 0.

This implies An −Bn → 0 and hence the Trotter Formula.
(ii) Now let k = n2, A = e

1
nxe

1
nye−

1
nxe−

1
ny and B = e

1
n2 (xy−yx). Then

An
2
−Bn

2
=
(
e

1
nxe

1
nye−

1
nxe−

1
ny
)n2

− exy−yx,

and we have to show that this expression tends to zero. Again, we verify (7.2).
In view of

‖B‖ ≤ e
1
n2 ‖xy−yx‖ ≤ e

1
n2 (2‖x‖·‖y‖),

we have ‖Bj‖ ≤ e2‖x‖·‖y‖ for j ≤ n2. To estimate the A-part, let us write
O(tk) for a function for which t−kO(tk) is bounded for t→ 0. We likewise write
O(nk), k ∈ Z, for a function for which n−kO(nk) is bounded for n → ∞. We
consider the smooth curve

γ : R→ A×, t 7→ etxetye−txe−ty.
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Then etx = 1 + tx+ t2

2 x
2 +O(t3) leads to

γ(t) =
(
1 + tx+

t2

2
x2 +O(t3)

)(
1 + ty +

t2

2
y2 +O(t3)

)
·
(
1− tx+

t2

2
x2 +O(t3)

)(
1− ty +

t2

2
y2 +O(t3)

)
= 1 + t(x+ y − x− y) + t2(x2 + y2 + xy − x2 − xy − yx− y2 + xy) +O(t3)

= 1 + t2(xy − yx) +O(t3).

This implies that γ′(0) = 0 and γ′′(0) = 2(xy − yx). Moreover, for j ≤ n2 we
have for each ε > 0

‖Aj‖ = ‖γ( 1
n )j‖ ≤ ‖γ( 1

n )‖j ≤
(
1 + 1

n2 ‖xy − yx‖+O(n−3)
)j

≤
(
1 +

1
n2
‖xy − yx‖+O(n−3)

)n2

.

For sufficiently large n, we thus obtain for all j ≤ n2:

‖Aj‖ ≤
(
1 +

1
n2

(‖xy − yx‖+ 1)
)n2

≤ e‖xy−yx‖+1.

This proves the existence of a constant C > 0 (independent of n) with

‖An
2
−Bn

2
‖ ≤ Cn2‖A−B‖ for all n ∈ N.

We further have

n2(A−B) =
γ( 1

n )− e
1
n2 (xy−yx)

1
n2

=
γ( 1

n )− 1 + 1− e
1
n2 (xy−yx)

1
n2

→ 1
2γ
′′(0)− (xy − yx) = (xy − yx)− (xy − yx) = 0.

This proves (ii).

Exercises for Section 7.1

Exercise 7.1.6. Let X1, . . . , Xn be Banach spaces and β : X1 × . . .×Xn → Y
a continuous n-linear map.

(a) Show that there exists a constant C ≥ 0 with

‖β(x1, . . . , xn)‖ ≤ C‖x1‖ · · · ‖xn‖ for xi ∈ Xi.

(b) Show that β is differentiable with

dβ(x1, . . . , xn)(h1, . . . , hn) =
n∑
j=1

β(x1, . . . , xj−1, hj , xj+1, . . . , xn).
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Exercise 7.1.7. Let Y be a Banach space and an,m, n,m ∈ N, elements in Y
with ∑

n,m

‖an,m‖ := sup
N∈N

∑
n,m≤N

‖an,m‖ <∞.

(a) Show that

A :=
∞∑
n=1

∞∑
m=1

an,m =
∞∑
m=1

∞∑
n=1

an,m

and that both iterated sums exist.

(b) Show that for each sequence (Sn)n∈N of finite subsets Sn ⊆ N×N, n ∈ N,
with Sn ⊆ Sn+1 and

⋃
n Sn = N× N we have

A = lim
n→∞

∑
(j,k)∈Sn

aj,k.

Exercise 7.1.8. (Cauchy Product Formula) Let X,Y, Z be Banach spaces and
β : X × Y → Z a continuous bilinear map. Suppose that if x :=

∑∞
n=0 xn is

absolutely convergent in X and if y :=
∑∞
n=0 yn is absolutely convergent in Y ,

then

β(x, y) =
∞∑
n=0

n∑
k=0

β(xk, yn−k).

Hint: Use Exercise 7.1.7(b).

Exercise 7.1.9. The function

Φ : R→ R, t 7→

{
e−

1
t , for t > 0

0, for t ≤ 0

is smooth. Hint: The higher derivatives of e−
1
t are of the form P (t−1)e−

1
t ,

where P is a polynomial.
(b) For λ > 0 the function Ψ(t) := Φ(t)Φ(λ − t) is a non-negative smooth

function with supp(Ψ) = [0, λ].

Exercise 7.1.10. (A smoothing procedure) Let f ∈ C1
c (R) be a C1-function

with compact support and γ ∈ C(R, E), where E is a Banach space. Then the
convolution

h := f ∗ γ : R→ E, t 7→
∫

R
f(s)γ(t− s) ds =

∫
R
f(t− s)γ(s) ds

of f and γ is continuously differentiable with h′ = f ′ ∗ γ. Hint:∫
R
f(t− s)γ(s) ds =

∫
t−supp(f)

f(t− s)γ(s) ds.
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Exercise 7.1.11. Show that for X = −X∗ ∈ Mn(C) the matrix eX is unitary
and that the exponential function

exp : Ahermn(C) := {X ∈Mn(C) : X∗ = −X} → Un(C), X 7→ eX

is surjective.

Exercise 7.1.12. Show that for X> = −X ∈Mn(R) the matrix eX is orthog-
onal and that the exponential function

exp : Skewn(R) := {X ∈Mn(R) : X> = −X} → On(R)

is not surjective. Can you determine which orthogonal matrices are contained in
the image? Can you interprete the result geometrically in terns of the geometry
of the flow R× Rn → Rn, (t, v) 7→ etXv.

Exercise 7.1.13. Show that for A := C(S1) the exponential function

exp : Aherm(A) := {a ∈ A : a∗ = −a} → U(A) = C(S1,T), a 7→ ea

is not surjective. It requires some covering theory to determine which elements
f ∈ C(S1,T) lie in its image. Hint: Use the winding number with respect to 0.

Exercise 7.1.14. Show that for any measure space (X,S) and the C∗-algebra
A := L∞(X,S), the exponential function

exp : Aherm(A)→ U(A), a 7→ ea

is surjective.

Exercise 7.1.15. Show that for every von Neumann algebra A, the exponential
function

exp : Aherm(A)→ U(A), a 7→ ea

is surjective. This applies in particular to A = B(H), so that for every complex
Hilbert space H, the exponential function exp : Aherm(H) → U(H), a 7→ ea is
surjective.

Exercise 7.1.16. (a) Calculate etN for t ∈ K and the matrix

N =


0 1 0 . . . 0
· 0 1 0 ·
· · · ·
· · 1
0 . . . 0

 ∈Mn(K).

(b) If A is a block diagonal matrix diag(A1, . . . , Ak), then eA is the block
diagonal matrix diag(eA1 , . . . , eAk).

(c) Calculate etA for a matrix A ∈ Mn(C) given in Jordan normal form.
Hint: Use (a) and (b).
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Exercise 7.1.17. Let a, b ∈Mn(C) be commuting elements.

(a) If a and b are nilpotent, then a+ b is nilpotent.

(b) If a and b are diagonalizable, then a+ b and ab are diagonalizable.

(c) If a and b are unipotent, then ab is unipotent.

Exercise 7.1.18. For A ∈Mn(C) we have eA = 1 if and only if A is diagonal-
izable with all eigenvalues contained in 2πiZ. Hint: Exercise 2.2.19.

7.2 Closed Subgroups of Banach Algebras

We call a closed subgroup G ⊆ A× of a unital Banach algebra A a linear group.
In this section we shall use the exponential function to assign to each linear
group G a vector space

L(G) := {x ∈ A : exp(Rx) ⊆ G},

called the Lie algebra of G. This subspace carries an additional algebraic struc-
ture because for x, y ∈ L(G) the commutator [x, y] = xy − yx is contained in
L(G), so that [·, ·] defines a skew-symmetric bilinear operation on L(G). As a
first step, we shall see how to calculate L(G) for concrete groups.

7.2.1 The Lie Algebra of a Linear Group

We start with the introduction of the concept of a Lie algebra.

Definition 7.2.1. (a) Let K be a field and L a K-vector space. A bilinear map
[·, ·] : L× L→ L is called a Lie bracket if

(L1) [x, x] = 0 for x ∈ L and

(L2)
[
x, [y, z]

]
=
[
[x, y], z

]
+
[
y, [x, z]

]
for x, y, z ∈ L (Jacobi identity).1

A Lie algebra 2 (over K) is a K-vector space L endowed with a Lie bracket. A
subspace E ⊆ L of a Lie algebra is called a subalgebra if [E,E] ⊆ E. A homomor-
phism ϕ : L1 → L2 of Lie algebras is a linear map with ϕ([x, y]) = [ϕ(x), ϕ(y)]
for x, y ∈ L1. A Lie algebra is said to be abelian if [x, y] = 0 holds for all
x, y ∈ L.

A Banach–Lie algebra is a Banach space L, endowed with a Lie algebra
structure for which the bracket [·, ·] is continuous, i.e., there exists a C > 0 with

‖[x, y]‖ ≤ C‖x‖ · ‖y‖ for x, y ∈ L.

The following lemma shows that each associative algebra also carries a nat-
ural Lie algebra structure.

1Carl Gustav Jacob Jacobi (1804–1851), mathematician in Berlin and Königsberg (Kalin-
ingrad). He found his famous identity about 1830 in the context of Poisson brackets, which
are related to Hamiltonian Mechanics and Symplectic Geometry.

2The notion of a Lie algebra was coined in the 1920s by Hermann Weyl.
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Lemma 7.2.2. Each associative algebra A is a Lie algebra AL with respect to
the commutator bracket

[a, b] := ab− ba.

If A is Banach algebra, then AL is a Banach–Lie algebra.

Proof. (L1) is obvious. For (L2) we calculate

[a, bc] = abc− bca = (ab− ba)c+ b(ac− ca) = [a, b]c+ b[a, c],

and this implies

[a, [b, c]] = [a, b]c+ b[a, c]− [a, c]b− c[a, b] = [[a, b], c] + [b, [a, c]].

If, in addition, A is a Banach algebra, then the norm on A is submultiplica-
tive, and this leads to

‖[x, y]‖ = ‖xy − yx‖ ≤ ‖x‖‖y‖+ ‖y‖‖x‖ = 2‖x‖‖y‖.

Definition 7.2.3. A closed subgroup G ⊆ A is called a linear group. For each
subgroup G ⊆ A we define the set

L(G) := {x ∈ A : exp(Rx) ⊆ G}

and observe that R L(G) ⊆ L(G) follows immediately from the definition.

The next proposition assigns a Lie algebra to each linear group.

Proposition 7.2.4. If G ⊆ A× is a closed subgroup, then L(G) is a closed real
Lie subalgebra of AL and we obtain a map

expG : L(G)→ G, x 7→ ex.

We call L(G) the Lie algebra of G and the map expG the exponential function
of G. In particular we have

L(A×) = AL.

Proof. Let x, y ∈ L(G). For k ∈ N and t ∈ R we have exp t
kx, exp t

ky ∈ G and
with the Trotter Formula (Proposition 7.1.5), we get for all t ∈ R:

exp(t(x+ y)) = lim
k→∞

(
exp

tx

k
exp

ty

k

)k
∈ G

because G is closed. Therefore x+ y ∈ L(G).
Similarly we use the Commutator Formula to get

exp t[x, y] = lim
k→∞

(
exp

tx

k
exp

y

k
exp− tx

k
exp−y

k

)k2

∈ G,

hence [x, y] ∈ L(G).
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Remark 7.2.5. If G is an abelian subgroup of A×, then L(G) is also abelian.

Lemma 7.2.6. Let G ⊆ A× be a subgroup. If Hom(R, G), denotes the set of
all continuous group homomorphisms (R,+)→ G, then the map

Γ: L(G)→ Hom(R, G), x 7→ γx, γx(t) = exp(tx)

is a bijection.

Proof. For each x ∈ L(G), the map γx is a continuous group homomorphism
(Theorem 7.1.4), and since x = γ′x(0), the map Γ is injective. To see that
it is surjective, let γ : R → G be a continuous group homomorphism and
ι : G → A× the natural embedding. Then ι ◦ γ : R → A× is a continuous
group homomorphism, so that there exists an x ∈ A with γ(t) = ι(γ(t)) = etx

for all t ∈ R (Theorem 7.1.4). This implies that x ∈ L(G), and therefore that
γx = γ.

Remark 7.2.7. The preceding lemma implies in particular that for a linear
group, the set L(G) can also be defined in terms of the topological group struc-
ture on G as L(G) := Hom(R, G), the set of continuous one-parameter groups.
From the Trotter Formula and the Commutator Formula we also know that the
Lie algebra structure on L(G) can be defined intrinsically by

(λγ)(t) := γ(λt),

(γ1 + γ2)(t) := lim
n→∞

(
γ1( tn )γ2( tn )

) 1
n

and

[γ1, γ2](t) := lim
n→∞

(
γ1( tn )γ2( 1

n )γ1(− t
n )γ2(− 1

n )
) 1
n2
.

This shows that the Lie algebra L(G) does not depend on the special realization
of G as a group of matrices.

Examples 7.2.8. Let X be a Banach space.
(a) Then B(X) is a unital Banach algebra. We write GL(X) := B(X)× for

its unit group and gl(X) := (B(X), [·, ·]) of its Lie algebra.
(b) Let X̃ := X × R. We consider the homomorphism

Φ: X → GL(X̃), x 7→
(

1 x
0 1

)
and observe that Φ is an isomorphism of the topological group (X,+) onto a
linear group.

The continuous one-parameter groups γ : R → X are easily determined be-
cause γ(nt) = nγ(t) for all n ∈ Z, t ∈ R, implies further γ(q) = qγ(1) for all
q ∈ Q and hence, by continuity, γ(t) = tγ(1) for all t ∈ R. Since (X,+) is
abelian, the Lie bracket on the Lie algebra L(X,+) vanishes, and we obtain

L(X,+) = (X, 0) ∼= L(Φ(X)) =
{(0 x

0 0

)
: x ∈ X

}
(Exercise).
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Definition 7.2.9. A linear Lie group is a closed subgroup G of the unit group
A× of a unital Banach algebra A for which the exponential function

expG : L(G)→ G

is a local homeomorphism in 0, i.e., it maps some open 0-neighborhood U in
L(G) homeomorphically onto an open 1-neighborhood in G.

7.2.2 Functorial Properties of the Lie Algebra

So far we have assigned to each linear group G its Lie algebra L(G). We shall
also see that this assignment can be “extended” to continuous homomorphisms
between linear groups in the sense that we assign to each such homomorphism
ϕ : G1 → G2 a homomorphism L(ϕ) : L(G1)→ L(G2) of Lie algebras, and this
assignment satisfies

L(idG) = idL(G) and L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1)

for a composition ϕ1 ◦ϕ2 of two continuous homomorphisms ϕ1 : G2 → G1 and
ϕ2 : G3 → G2. In the language of category theory, this means that L defines
a functor from the category of linear groups (where the morphisms are the
continuous group homomorphisms) to the category of real Banach–Lie algebras.

Proposition 7.2.10. Let ϕ : G1 → G2 be a continuous group homomorphism
of linear groups. Then the derivative

L(ϕ)(x) :=
d

dt t=0
ϕ(expG1

(tx))

exists for each x ∈ L(G1) and defines a homomorphism of Lie algebras
L(ϕ) : L(G1)→ L(G2) with

expG2
◦L(ϕ) = ϕ ◦ expG1

, (7.3)

i.e., the following diagram commutes

G1
ϕ−−−−−−−−−→ G2xexpG1

xexpG2

L(G1)
L(ϕ)−−−−−−−−−→ L(G2).

Then L(ϕ) is the uniquely determined linear map satisfying (7.3).
If, in addition, H is a linear Lie group, then L(ϕ) is continuous.

Proof. For x ∈ L(G1) we consider the homomorphism γx ∈ Hom(R, G1) given
by γx(t) = etx. According to Lemma 7.2.6, we have

ϕ ◦ γx(t) = expG2
(ty)



7.2. CLOSED SUBGROUPS OF BANACH ALGEBRAS 181

for some y ∈ L(G2), because ϕ ◦ γx : R → G2 is a continuous group homo-
morphism. Then clearly y = (ϕ ◦ γx)′(0) = L(ϕ)x. For t = 1 we obtain in
particular

expG2
(L(ϕ)x) = ϕ(expG1

(x)),

which is (7.3).
Conversely, every linear map ψ : L(G1)→ L(G2) with

expG2
◦ ψ = ϕ ◦ expG1

satisfies
ϕ ◦ expG1

(tx) = expG2
(ψ(tx)) = expG2

(tψ(x)),

and therefore

L(ϕ)x =
d

dt t=0
expG2

(tψ(x)) = ψ(x).

Next we show that L(ϕ) is a homomorphism of Lie algebras. From the
definition of L(ϕ) we immediately get for x ∈ L(G1):

expG2
(sL(ϕ)(tx)) = ϕ(expG1

(stx)) = expG2
(tsL(ϕ)(x)), s, t ∈ R,

which leads to L(ϕ)(tx) = tL(ϕ)(x).
Since ϕ is continuous, the Trotter Formula implies that

expG2
(L(ϕ)(x+ y)) = ϕ

(
expG1

(x+ y)
)

= lim
k→∞

ϕ
(

expG1

1
k
x expG1

1
k
y
)k

= lim
k→∞

(
ϕ
(

expG1

1
k
x
)
ϕ
(

expG1

1
k
y
))k

= lim
k→∞

(
expG2

1
k

L(ϕ)(x) expG2

1
k

L(ϕ)(y)
)k

= expG2

(
L(ϕ)(x) + L(ϕ)(y)

)
for all x, y ∈ L(G1). Therefore L(ϕ)(x + y) = L(ϕ)(x) + L(ϕ)(y) because the
same formula holds with tx and ty instead of x and y. Hence L(ϕ) is additive
and therefore linear.

We likewise obtain with the Commutator Formula

ϕ(exp[x, y]) = exp[L(ϕ)(x),L(ϕ)(y)]

and thus L(ϕ)([x, y]) = [L(ϕ)(x),L(ϕ)(y)].
If, in addition, H is a linear Lie group, then expH is a local homeomorphism

in 0, so that the relation ϕ◦expG = expH ◦L(ϕ) implies that L(ϕ) is continuous
on some 0-neighborhood, and since it is a linear map, it is continuous.

Note that we did not show at this point that L(ϕ) is continuous. To verify
this claim, we have to restrict to the class of those groups for which the expo-
nential function is a local homeomorphism around 0, and this is precisely the
class of linear Banach–Lie groups.
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Corollary 7.2.11. If ϕ1 : G1 → G2 and ϕ2 : G2 → G3 are continuous homo-
morphisms of linear Lie groups, then

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1).

Moreover, L(idG) = idL(G) .

Proof. We have the relations

ϕ1 ◦ expG1
= expG2

◦L(ϕ1) and ϕ2 ◦ expG2
= expG3

◦L(ϕ2),

which immediately lead to

(ϕ2 ◦ ϕ1) ◦ expG1
= ϕ2 ◦ expG2

◦L(ϕ1) = expG3
◦(L(ϕ2) ◦ L(ϕ1)),

and the uniqueness assertion of Proposition 7.2.10 implies that

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1).

Clearly idL(G) is a linear map satisfying expG ◦ idL(G) = idG ◦ expG, so that
the uniqueness assertion of Proposition 7.2.10 implies L(idG) = idL(G).

Corollary 7.2.12. If ϕ : G1 → G2 is an isomorphism of linear Lie groups, then
L(ϕ) is an isomorphism of Lie algebras.

Proof. Since ϕ is an isomorphism of linear Lie groups, it is bijective and ψ :=
ϕ−1 also is a continuous homomorphism. We then obtain with Corollary 7.2.11
the relations idL(G2) = L(idG2) = L(ϕ ◦ ψ) = L(ϕ) ◦ L(ψ) and likewise

idL(G1) = L(ψ) ◦ L(ϕ).

Hence L(ϕ) is an isomorphism with L(ϕ)−1 = L(ψ).

Definition 7.2.13. If V is a vector space and G a group, then a homomorphism
ϕ : G→ GL(V ) is called a representation of G on V . If g is a Lie algebra, then
a homomorphism of Lie algebras ϕ : g → gl(V ) is called a representation of g
on V .

As a consequence of Proposition 7.2.10, we obtain

Corollary 7.2.14. If ϕ : G → GL(V ) is a continuous representation of the
linear group G on the Banach space V , then L(ϕ) : L(G) → gl(V ) is a repre-
sentation of the Lie algebra L(G).

Definition 7.2.15. The representation L(ϕ) obtained in Corollary 7.2.14 from
the group representation ϕ is called the derived representation. This is motivated
by the fact that for each x ∈ L(G) we have

L(ϕ)x =
d

dt t=0
etL(ϕ)x =

d

dt t=0
ϕ(exp tx).
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7.2.3 The Adjoint Representation

Let G ⊆ GL(V ) be a linear Lie group and L(G) ⊆ gl(V ) the corresponding Lie
algebra. For g ∈ G we define the conjugation automorphism cg ∈ Aut(G) by
cg(x) := gxg−1. Then

L(cg)(x) =
d

dt t=0
cg(exp tx) =

d

dt t=0
g(exp tx)g−1

=
d

dt t=0
exp(tgxg−1) = gxg−1

(Lemma 7.1.1), and therefore L(cg) = cg|L(G). We define the adjoint represen-
tation of G on L(G) by

Ad: G→ Aut(L(G)), Ad(g)(x) := L(cg)x = gxg−1.

(That this is a representation follows immediately from the explicit formula).
For each x ∈ L(G), the map G → L(G), g 7→ Ad(g)(x) = gxg−1 is conti-

nuous and each Ad(g) is an automorphism of the Lie algebra L(G). Therefore
Ad is a continuous homomorphism from the linear group G to the linear group
Aut(L(G)) ⊆ GL(L(G)). The derived representation

L(Ad): L(G)→ gl(L(G))

is a representation of L(G) on L(G). The following lemma gives a formula for
this representation. First we define for x ∈ L(G):

ad(x) : L(G)→ L(G), adx(y) := [x, y] = xy − yx.

Lemma 7.2.16. For each x ∈ A we have

Ad(expx) = exp(adx). (7.4)

Proof. We define the linear maps

Lx : A → A, y 7→ xy, Rx : A → A, y 7→ yx.

Then LxRx = RxLx and adx = Lx −Rx, so that Lemma 7.1.1(ii) leads to

Ad(expx)y = exye−x = eLxe−Rxy = eLx−Rxy = ead xy.

This proves (7.4).

Lemma 7.2.17. L(Ad) = ad.

Proof. In view of Proposition 7.2.10, this is an immediate consequence of the
relation Ad(expx) = ead x (Lemma 7.2.16).
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Exercises for Section 7.2

Exercise 7.2.18. (a) If (Gj)j∈J is a family of linear groups in A×, then their
intersection G :=

⋂
j∈J Gj also is a linear group.

(b) If (Gj)j∈J is a family of subgroups of A×, then

L
( ⋂
j∈J

Gj

)
=
⋂
j∈J

L(Gj).

Exercise 7.2.19. Let G := GLn(K) and V := Pk(Kn) be the space of homoge-
neous polynomials of degree k in x1, . . . , xn, considered as functions Kn → K.
Show that:

(1) dimV =
(
k+n−1
n−1

)
.

(2) We obtain a continuous representation ρ : G → GL(V ) of G on V by
(ρ(g)f)(x) := f(g−1x).

(3) For the elementary matrix Eij = (δij) we have L(ρ)(Eij) = −xj ∂
∂xi

. Hint:
(1 + tEij)−1 = 1− tEij .

Exercise 7.2.20. If X ∈ End(V ) is nilpotent, then adX ∈ End(End(V )) is
also nilpotent. Hint: adX = LX −RX and both summands commute.

Exercise 7.2.21. If (V, ·) is an associative algebra, then we have Aut(V, ·) ⊆
Aut(V, [·, ·]).

Exercise 7.2.22. (a) For each linear group G, Ad : G→ Aut(L(G)) is a group
homomorphism.

(b) For each Lie algebra g, the operators adx(y) := [x, y] are derivations and
the map ad: g→ gl(g) is a homomorphism of Lie algebras.

Exercise 7.2.23. Let V and W be vector spaces and q : V × V → W a skew-
symmetric bilinear map. Then

[(v, w), (v′, w′)] :=
(
0, q(v, v′)

)
is a Lie bracket on g := V ×W . For x, y, z ∈ g we have

[
x, [y, z]

]
= 0.

Exercise 7.2.24. Let g be a Lie algebra with
[
x, [y, z]

]
= 0 for x, y, z ∈ g.

Then
x ∗ y := x+ y +

1
2

[x, y]

defines a group structure on g. An example for such a Lie algebra is the three-
dimensional Heisenberg algebra

g =


0 x y

0 0 z
0 0 0

 : x, y, z ∈ K

 .
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7.3 Calculating Lie Algebras of Linear Groups

In this section we shall see various techniques to determine the Lie algebra of a
linear Lie group.

Example 7.3.1. Let K ∈ {R,C}. Then the group G := SLn(K) = det−1(1) =
ker det is a linear group. To determine its Lie algebra, we first claim that

det(ex) = eTr x (7.5)

holds for x ∈Mn(K). To verify this claim, we consider

det : Mn(K) ∼= (Kn)n → K

as a multilinear map, where each matrix x is considered as an n-tuple of its
column vectors x1, . . . , xn. Then Exercise 7.1.6 implies that

(ddet)(1)(x) = (ddet)(e1, . . . , en)(x1, . . . , xn)
= det(x1, e2, . . . , en) + . . .+ det(e1, . . . , en−1, xn) = x11 + . . .+ xnn = Trx.

Now we consider the curve γ : R → K× ∼= GL1(K), t 7→ det(etx). Then γ is a
continuous group homomorphism, hence of the form γ(t) = eat for a = γ′(0)
(Theorem 7.1.4). On the other hand the Chain Rule implies

a = γ′(0) = ddet(1)
(
d exp(0)(x)

)
= Tr(x),

and this implies (7.5). We conclude that

sln(K) := L(SLn(K)) = {x ∈Mn(K) : (∀t ∈ R) 1 = det(etx) = etTr x}
= {x ∈Mn(K) : Trx = 0}.

Lemma 7.3.2. Let V and W be Banach spaces and β : V ×V →W a continuous
bilinear map. For (x, y) ∈ gl(V )× gl(W ), the following are equivalent:

(a) etyβ(v, v′) = β(etxv, etxv′) for all t ∈ R and all v, v′ ∈ V .

(b) yβ(v, v′) = β(xv, v′) + β(v, xv′) for all v, v′ ∈ V .

Proof. (a) ⇒ (b): Taking the derivative in t = 0, the relation (a) leads to

y.β(v, v′) = β(xv, v′) + β(v, xv′),

where we use the Product and the Chain Rule (Exercise 7.1.6).
(b) ⇒ (a): If (b) holds, then we obtain inductively

ynβ(v, v′) =
n∑
k=0

(
n

k

)
β(xkv, xn−kv′).
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For the exponential series this leads with the general Cauchy Product Formula
(Exercise 7.1.8) to

eyβ(v, v′) =
∞∑
n=0

1
n!
ynβ(v, v′) =

∞∑
n=0

1
n!

( n∑
k=0

(
n

k

)
β(xkv, xn−kv)

)
=
∞∑
n=0

n∑
k=0

β

(
1
k!
xkv,

1
(n− k)!

xn−kv′
)

= β

( ∞∑
k=0

1
k!
xkv,

∞∑
m=0

1
m!
xmv′

)
= β (exv, exv′) .

Since (b) also holds for the pair (tx, ty) for all t ∈ R, this completes the proof.

Proposition 7.3.3. Let V and W be Banach space and β : V × V → W a
continuous bilinear map. For the group

O(V, β) = {g ∈ GL(V ) : (∀v, v′ ∈ V ) β(gv, gv′) = β(v, v′)},

we then have

o(V, β) := L(O(V, β)) = {x ∈ gl(V ) : (∀v, v′ ∈ V ) β(xv, v′) + β(v, xv′) = 0}.

Proof. We only have to observe that X ∈ L(O(V, β)) is equivalent to the pair
(X, 0) satisfying condition (a) in Lemma 7.3.2.

Example 7.3.4. (a) Let B ∈Mn(K), β(v, w) = v>Bw, and

G := {g ∈ GLn(K) : g>Bg = B} ∼= O(Kn, β).

Then Proposition 7.3.3 implies that

L(G) = {x ∈ gln(K) : (∀v, v′ ∈ V ) β(xv, v′) + β(v, xv′) = 0}
= {x ∈ gln(K) : (∀v, v′ ∈ V ) v>x>Bv′ + v>Bxv′ = 0}
= {x ∈ gln(K) : x>B +Bx = 0}.

In particular, we obtain for the orthogonal group

On(K) := {g ∈ GLn(K) : g> = g−1}

the Lie algebra

on(K) := L(On(K)) = {x ∈ gln(K) : x> = −x} =: Skewn(K).

Let q := n− p and let Ip,q denote the corresponding matrix

Ip,q =
(

1p 0
0 −1q

)
∈Mp+q(R).
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Then we obtain for the indefinite orthogonal group

Op,q(R) := {g ∈ GLn(R) : g>Ip,qg = Ip,q},

the Lie algebra

op,q(K) := L(Op,q(K)) = {x ∈ glp+q(K) : x>Ip,q + Ip,qx = 0},

and for the symplectic group

Sp2n(K) := {g ∈ GL2n(K) : g>Bg = B}, B =
(

0 −1n
1n 0

)
,

we find

sp2n(K) := L(Sp2n(K)) := {x ∈ gl2n(K) : x>B +Bx = 0}.

(b) Applying Proposition 7.3.3 with V = Cn and W = C, considered as real
vector spaces, we also obtain for a hermitian form

β : Cn × Cn → C, (z, w) 7→ w∗Ip,qz :

up,q(C) := L(Up,q(C))
= {x ∈ gln(C) : (∀z, w ∈ Cn)w∗Ip,qxz + w∗x∗Ip,qz = 0}
= {x ∈ gln(C) : Ip,qx+ x∗Ip,q = 0}.

In particular, we get

un(C) := L(Un(C)) = {x ∈ gln(C) : x∗ = −x}.

(c) IfH is a complex Hilbert space, then U(H) is a closed subgroup of GL(H),
and we obtain for its Lie algebra

u(H) := L(U(H)) = {x ∈ gl(H) : x∗ = −x}.

Example 7.3.5. Let g be a Banach Lie algebra and

Aut(g) := {g ∈ GL(g) : (∀x, y ∈ g) g[x, y] = [gx, gy]}.

Then Aut(g) is a closed subgroup of GL(g), hence a linear group. To calculate
the Lie algebra of G, we use Lemma 7.3.2 with V = W = g and β(x, y) = [x, y].
Then we see that D ∈ aut(g) := L(Aut(g)) is equivalent to (D,D) satisfying
the conditions in Lemma 7.3.2, and this leads to

aut(g) = L(Aut(g)) = {D ∈ gl(g) : (∀x, y ∈ g)D[x, y] = [Dx, y] + [x,Dy]}

The elements of this Lie algebra are called derivations of g, and aut(g) is also
denoted der(g). Note that the condition on an endomorphism of g to be a
derivation resembles the Leibniz Rule (Product Rule).
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Remark 7.3.6. If A is a complex unital Banach algebra, we call a linear group
G ⊆ A× a complex linear group if L(G) ⊆ A is a complex subspace, i.e., iL(G) ⊆
L(G). Since Proposition 7.2.4 only ensures that L(G) is a real subspace, this
requirement is not automatically satisfied.

If H is a complex Hilbert space, then the linear group U(H) ⊆ GL(H) is not
a complex linear group because

iu(H) = Herm(H) 6⊆ u(H).

This is due to the fact that the scalar product on H whose automorphism group
is U(H), is not complex bilinear. For any complex bilinear form β : V ×V → C,
the corresponding group O(V, β) is a complex linear group because

o(V, β) = {X ∈ gl(V ) : (∀v, w ∈ V )β(Xv,w) + β(v,Xw) = 0}

is a complex subspace of gl(V ).

7.4 Smooth Functions Defined by Power Series

Lemma 7.4.1. If A is a unital Banach algebra, then we endow the vector space
TA := A⊕A with the norm ‖(a, b)‖ := ‖a‖+ ‖b‖ and the multiplication

(a, b)(a′, b′) := (aa′, ab′ + a′b).

Then TA is a unital Banach algebra with identity (1, 0).
Writing ε := (0,1), then each element of TA can be written in a unique

fashion as (a, b) = a+ bε and the multiplication satisfies

(a+ bε)(a′ + b′ε) = aa′ + (ab′ + a′b)ε.

In particular, ε2 = 0.

Proof. That TA is a unital algebra is a trivial verification. That the norm is
submultiplicative follows from

‖(a, b)(a′, b′)‖ = ‖aa′‖+ ‖ab′ + a′b‖ ≤ ‖a‖ · ‖a′‖+ ‖a‖ · ‖b′‖+ ‖a′‖ · ‖b‖
≤ (‖a‖+ ‖b‖)(‖a′‖+ ‖b′‖) = ‖(a, b)‖ · ‖(a′, b′)‖.

This proves that (TA, ‖·‖) is a unital normed algebra, the unit being 1 = (1, 0).
The completeness of TA follows easily from the completeness of A (Exercise).

Lemma 7.4.2. Let cn ∈ K and r > 0 with
∑∞
n=0 |cn|rn < ∞. Further let A be

a unital Banach algebra. Then

f : Br(0) := {x ∈ A : ‖x‖ < r} → A, x 7→
∞∑
n=0

cnx
n
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defines a smooth function. Its derivative is given by

df(x) =
∞∑
n=0

cndpn(x),

where pn(x) = xn is the nth power map whose derivative is given by

dpn(x)y = xn−1y + xn−2yx+ . . .+ xyxn−2 + yxn−1.

For ‖x‖ < r and y ∈ A with xy = yx we obtain in particular

dpn(x)y = nxn−1y and df(x)y =
∞∑
n=1

cnnx
n−1y.

Proof. First we observe that the series defining f(x) converges for ‖x‖ < r by
the Comparison Test (for series in Banach spaces). We shall prove by induction
over k ∈ N that all such functions f are Ck-functions.
Step 1: First we show that f is a C1-function. We define αn : A→ A by

αn(h) := xn−1h+ xn−2hx+ . . .+ xhxn−2 + hxn−1.

Then αn is a continuous linear map with ‖αn‖ ≤ n‖x‖n−1. Furthermore

pn(x+ h) = (x+ h)n = xn + αn(h) + rn(h),

where

‖rn(h)‖ ≤
(
n

2

)
‖h‖2‖x‖n−2 +

(
n

3

)
‖h‖3‖x‖n−3 + . . .+ ‖h‖n

=
∑
k≥2

(
n

k

)
‖h‖k‖x‖n−k.

In particular limh→0
‖rn(h)‖
‖h‖ = 0, and therefore pn is differentiable in x with

dpn(x) = αn. The series

β(h) :=
∞∑
n=0

cnαn(h)

converges absolutely in End(A) by the Ratio Test since ‖x‖ < r:

∞∑
n=0

|cn|‖αn‖ ≤
∞∑
n=0

|cn| · n · ‖x‖n−1 <∞.

We thus obtain a linear map β(x) ∈ End(A) for each x with ‖x‖ < r.
Now let h satisfy ‖x‖+ ‖h‖ < r, i.e., ‖h‖ < r − ‖x‖. Then

f(x+ h) = f(x) + β(x)(h) + r(h), r(h) :=
∞∑
n=2

cnrn(h),
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where

‖r(h)‖ ≤
∞∑
n=2

|cn|‖rn(h)‖ ≤
∞∑
n=2

|cn|
n∑
k=2

(
n

k

)
‖h‖k‖x‖n−k

≤
∞∑
k=2

( ∞∑
n=k

|cn|
(
n

k

)
‖x‖n−k

)
‖h‖k <∞

follows from ‖x‖+ ‖h‖ < r because

∑
k

∑
n≥k

|cn|
(
n

k

)
‖x‖n−k‖h‖k =

∑
n

|cn|(‖x‖+ ‖h‖)n ≤
∑
n

|cn|rn <∞.

Therefore the continuity of real-valued functions represented by a power series
yields

lim
h→0

‖r(h)‖
‖h‖

=
∞∑
k=2

( ∞∑
n=k

|cn|
(
n

k

)
‖x‖n−k

)
0k−1 = 0.

This proves that f is a C1-function with the required derivative.
Step 2: To complete our proof by induction, we now show that if all functions
f as above are Ck, then they are also Ck+1. In view of Step 1, this implies that
they are smooth.

To set up the induction, we consider the Banach algebra TA from Lemma 7.4.1
and apply Step 1 to this algebra to obtain a smooth function

F : {x+ εh ∈ TA : ‖x‖+ ‖h‖ = ‖x+ εh‖ < r} → TA

F (x+ εh) =
∞∑
n=0

cn · (x+ εh)n,

We further note that (x+ εh)n = xn + dpn(x)h · ε. This implies the formula

F (x+ εh) = f(x) + εdf(x)h,

i.e., that the extension F of f to TA describes the first order Taylor expansion of
f in each point x ∈ A. Our induction hypothesis implies that F is a Ck-function.

Let x0 ∈ A with ‖x0‖ < r and pick a basis h1, . . . , hd of A with
‖hi‖ < r − ‖x0‖. Then all functions x 7→ df(x)hi are defined and Ck on a
neighborhood of x0, and this implies that the function

Br(0)→ Hom(A,A), x 7→ df(x)

is Ck. This in turn implies that f is Ck+1.

The following proposition shows in particular that inserting elements of a
Banach algebra in power series is compatible with composition.
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Proposition 7.4.3. (a) On the set PR of power series of the form

f(z) :=
∞∑
n=0

anz
n, an ∈ K

and converging on the open disc BR(0) := {z ∈ K : |z| < R}, we define for
r < R:

‖f‖r :=
∞∑
n=0

|an|rn.

Then ‖ · ‖r is a norm with the following properties:

(1) ‖ · ‖r is submultiplicative: ‖fg‖r ≤ ‖f‖r‖g‖r.

(2) The polynomials fN (z) :=
∑N
n=0 anz

n satisfy ‖f − fN‖r → 0.

(3) If A is a finite dimensional Banach algebra and x ∈ A satisfies ‖x‖ < R,
then f(x) :=

∑∞
n=0 anx

n converges. We further have

‖f(x)‖ ≤ ‖f‖r for ‖x‖ ≤ r < R

and for f, g ∈ PR we have

(f · g)(x) = f(x)g(x).

(b) If g ∈ PS with ‖g‖s < R for all s < S and f ∈ PR, then f ◦ g ∈ PS
defines an analytic function on the open disc of radius S, and for x ∈ A with
‖x‖ < S we have ‖g(x)‖ < R and the Composition Formula

f(g(x)) = (f ◦ g)(x). (7.6)

Proof. (1) First we note that PR is the set of all power series f(z) =
∑∞
n=0 anz

n

for which ‖f‖r <∞ holds for all r < R. We leave the easy argument that ‖ · ‖r
is a norm to the reader. If ‖f‖r, ‖g‖r < ∞ holds for g(z) =

∑∞
n=0 bnz

n, then
the Cauchy Product Formula (Exercise 7.1.8) implies that

‖fg‖r =
∞∑
n=0

∣∣∣ n∑
k=0

akbn−k

∣∣∣rn ≤ ∞∑
n=0

n∑
k=0

|ak| |bn−k|rkrn−k = ‖f‖r‖g‖r.

(2) follows immediately from ‖f − fN‖r =
∑
n>N |an|rn → 0.

(3) The relation ‖f(x)‖ ≤ ‖f‖r follows from ‖anxn‖ ≤ |an|rn and the Dom-
ination Test for absolutely converging series in a Banach space. The relation
(f ·g)(x) = f(x)g(x) follows directly from the Cauchy Product Formula because
the series f(x) and g(x) converge absolutely (Exercise 7.1.8).

(b) We may w.l.o.g. assume that K = C because everything on the case
K = R can be obtained by restriction. Our assumption implies that g(BS(0)) ⊆
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BR(0), so that f ◦g defines a holomorphic function on the open disc BS(0). For
s < S and ‖g‖s < r < R we then derive

∞∑
n=0

‖angn‖s ≤
∞∑
n=0

|an|‖g‖ns ≤ ‖f‖r.

Therefore the series f ◦ g =
∑∞
n=0 ang

n converges absolutely in PS with respect
to ‖ · ‖s, and we thus obtain the estimate

‖f ◦ g‖s = lim
N→∞

‖
N∑
n=0

ang
n‖s ≤

∞∑
n=0

|an|‖g‖ns ≤ ‖f‖r.

For s := ‖x‖ we obtain ‖g(x)‖ ≤ ‖g‖s < R, so that f(g(x)) is defined. For
s < r < R we then have

‖f(g(x))− fN (g(x))‖ ≤ ‖f − fN‖r → 0.

Likewise

‖(f ◦ g)(x)− (fN ◦ g)(x)‖ ≤ ‖(f ◦ g)− (fN ◦ g)‖s ≤ ‖f − fN‖r → 0,

and we get

(f ◦ g)(x) = lim
N→∞

(fN ◦ g)(x) = lim
N→∞

fN (g(x)) = f(g(x))

because the Composition Formula trivially holds if f is a polynomial.

7.5 The Logarithm Function

After the preparations of the preceding section, it is now easy to see that the
matrix exponential function of a unital Banach algebra defines a smooth map
on A. In this section we describe some elementary properties of this function.

Proposition 7.5.1. Let A be a unital Banach algebra. Then the exponential
function exp: A → A is smooth. For xy = yx we have

d exp(x)y = exp(x)y = y exp(x). (7.7)

Proof. To verify the formula for the differential, we note that for xy = yx,
Lemma 7.4.2 implies that

d exp(x)y =
∞∑
k=1

1
k!
kxk−1y =

∞∑
k=0

1
k!
xky = exp(x)y.

For x = 0, the relation exp(0) = 1 now implies in particular that
d exp(0)y = y.
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Proposition 7.5.2. For each sufficiently small open neighborhood U of 0 in A,
the map

exp |U : U → A×

is a diffeomorphism onto an open neighborhood of 1 in A×.

Proof. We have already seen that exp is a smooth map, and that d exp(0) = idA.
Therefore the assertion follows from the Inverse Function Theorem.

If U is as in Proposition 7.5.2 and V = exp(U), we define

logV : = (exp |U )−1 : V → U ⊆ A.

We shall see below why this function deserves to be called a logarithm function.

Theorem 7.5.3. (No Small Subgroup Theorem) There exists an open neigh-
borhood V of 1 in A× such that {1} is the only subgroup of A× contained in V .

Proof. Let U be as in Proposition 7.5.2 and assume further that U is convex
and bounded. We set U1 := 1

2U . Let G ⊆ V := expU1 be a subgroup of A× and
g ∈ G. Then we write g = expx with x ∈ U1 and assume that x 6= 0. Let k ∈ N
be maximal with kx ∈ U1 (the existence of k follows from the boundedness of
U). Then

gk+1 = exp(k + 1)x ∈ G ⊆ V

implies the existence of y ∈ U1 with exp(k + 1)x = exp y. Since (k + 1)x ∈
2U1 = U follows from k+1

2 x ∈ [0, k]x ⊆ U1, and exp |U is injective, we obtain
(k + 1)x = y ∈ U1, contradicting the maximality of k. Therefore g = 1.

Next we apply the tools from Section 7.4 to the logarithm series. Since
this series has the radius of convergence 1, it defines a smooth function A× ⊇
B1(1)→ A, and we shall see that it provides a smooth inverse of the exponential
function.

Lemma 7.5.4. The series log(1 + x) :=
∑∞
k=1(−1)k+1 xk

k converges for x ∈ A
with ‖x‖ < 1 and defines a smooth function

log : B1(1)→ A.

For ‖x‖ < 1 and y ∈ A with xy = yx we have

(d log)(1 + x)y = (1 + x)−1y.

Proof. The convergence follows from

∞∑
k=1

(−1)k+1 r
k

k
= log(1 + r) <∞

for |r| < 1, so that the smoothness follows from Lemma 7.4.2.
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If x and y commute, then the formula for the derivative in Lemma 7.4.2
leads to

(d log)(1 + x)y =
∞∑
k=1

(−1)k+1xk−1y = (1 + x)−1y

(see the proof of Proposition prop:1.1.7).

Proposition 7.5.5. (a) For x ∈ A with ‖x‖ < log 2 we have

log(expx) = x.

(b) For g ∈ GLd(K) with ‖g − 1‖ < 1 we have exp(log g) = g.

Proof. (a) We apply Proposition 7.4.3 with g = exp ∈ PS , S = log 2, R =
elog 2 = 2 and ‖ exp ‖s ≤ es ≤ eS = 2 for s < S. We thus obtain log(expx) = x
for ‖x‖ < log 2.

(b) Next we apply Proposition 7.4.3 with f = exp, S = 1 and g(z) =
log(1 + z) to obtain exp(log g) = g.
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Chapter 8

Complex Methods

8.1 Hilbert Spaces of Holomorphic Functions

The constructions in Chapter 3 do not refer to any differentiable structure on
the set X, but positive definite kernels are also quite useful in complex anal-
ysis, where one studies holomorphic functions. One possibility to introduce
holomorphic functions in an infinite dimensional context is the following:

Definition 8.1.1. (a) Let E be a complex locally convex space and D ⊆ C
be an open subset. A map γ : D → E is called a holomorphic curve if it is
continuous and

γ′(z) := lim
h→0

γ(z + h)− γ(z)
h

exists in every z ∈ D. It is called antiholomorphic of the map z 7→ γ(z) is
holomorphic.

(b) Let E1 and E2 be a locally convex spaces and D ⊆ E1 be an open
subset. A map f : D → E2 is said to be (anti-)holomorphic if it is continuous
and for every holomorphic curve γ : D0 → D, the composition f ◦ γ : D0 → D is
(anti-)holomorphic. 1

We write O(D, E) for the space of holomorphic E-valued functions on the
domain D. For E = C, we simply write O(D) := O(D,C) for the space of
holomorphic functions on D, which is a complex algebra with respect to the
pointwise operations (Exercise 8.2.5).

Remark 8.1.2. Compositions of holomorphic functions are holomorphic: If
E1, E2 and E3 are complex locally convex spaces Dj ⊆ Ej , j = 1, 2, open
subsets and ϕ : D1 → D2, ψ : D2 → E3 holomorphic, then their composition

ψ ◦ ϕ : D1 → E3

1For more details on holomorphic function in infinite dimensional spaces, we refer to Hervé’s
book [He89]. The preceding concept applies in particular to X = Cn. In this case the
continuity requirement on f can be dropped. It is a deep result in the theory of several complex
variables, called Hartog’s Theorem, that continuity follows from the partial holomorphy of f .
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is also holomorphic. In fact, for every holomorphic curve γ : D0 → D1, the
composition ϕ ◦ γ is a holomorphic curve in D2, so that the holomorphy of ψ
implies that ψ ◦ (ϕ ◦ γ) is holomorphic.

Similarly one argues that compositions of holomorphic maps with antiholo-
morphic maps are antiholomorphic and compositions of two antiholomorphic
maps are holomorphic.

Lemma 8.1.3. Let X0, X1, . . . , Xn be complex locally convex spaces and

β : X1 × · · · ×Xn → X0

be a continuous n-linear map. Then β is holomorphic.

Proof. Let D ⊆ C be an open subset and γ : D → X be a holomorphic curve,
i.e., γ = (γ1, . . . , γn) for holomorphic curves γj : D → Xj . We have to show that
the curve

f(z) := β(γ1(z), . . . , γn(z))

is holomorphic. For z + h ∈ D we derive from the n-linearity of β that

f(z + h)− f(z) = β(γ1(z + h), . . . , γn(z + h))− β(γ1(z), . . . , γn(z))
= β(γ1(z + h), . . . , γn(z + h))− β(γ1(z), γ2(z + h), . . . , γn(z + h))

+− · · · − β(γ1(z), . . . , γn(z))

=
n∑
j=1

β(γ1(z), . . . , γj(z + h)− γj(z), . . . , γn(z + h)).

This implies that

lim
h→0

f(z + h)− f(z)
h

= lim
h→0

n∑
j=1

β(γ1(z), . . . ,
γj(z + h)− γj(h)

h
, . . . , γn(z))

=
n∑
j=1

β(γ1(z), . . . , γ′j(z), . . . , γn(z)).

Therefore β is holomorphic.

Theorem 8.1.4. (Principle of Analytic Continuation) Let D be an open con-
nected subset of the complex locally convex space X and f, g : D → Y be two
holomorphic functions into a locally convex space Y . Then f = g if one of the
following conditions is satisfied:

(a) There exists a non-empty open subset U ⊆ D with f |U = g|U .

(b) There exists an antilinear involution σ on X such that f = g holds on
D ∩ (p+Xσ) for some p ∈ D, where Xσ := {v ∈ X : σv = v} denotes the
real subspace of σ-fixed vectors.
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Proof. Since the continuous linear functionals on Y separate the points, it suf-
fices to show that α ◦ f vanishes for every α ∈ Y ′. Therefore we may w.l.o.g.
assume that Y = C. Replacing f by f − g, we may also assume that g = 0.

(a) Let V denote the interior of the set {x ∈ D : f(x) = 0} and F := V
denote its closure. Then the continuity of f − g implies that f vanishes on the
closed set F . This set is non-empty because it contains U . We claim that F is
also open, so that the connectedness of D implies that F = D, and hence that
f = 0.

Pick x ∈ F and let W ⊆ D be an open convex neighborhood of x. We want
to show that f vanishes on W by reducing this assertion to the one-dimensional
case. Let w ∈W and v ∈ V ∩W . Such a point exists because x ∈ V . Then the
map

γv : C→ X, z 7→ v + z(w − v)

is affine, hence holomorphic, and Ωv := γ−1
v (W ) is an open convex subset of C.

From γv(0) = v we derive that the holomorphic function f ◦ γv on Ωv vanishes
on a neighborhood 0, hence on all of Ωv by the one-dimensional version of (a).
This implies that f(w) = 0, and because w ∈ W was arbitrary, we derive that
f vanishes on W .

(b) In view of (a), it suffices to show that f vanishes on some neighborhood
of p. We may therefore assume that D is a convex neighborhood of p invariant
under the antiholomorphic involution τ(v) := p+ σ(v − p) fixing p. For q ∈ D,
the convexity of D implies that

q0 :=
1
2

(q + τ(q)) = p+
1
2

((v − p) + σ(v − p)) ∈ D ∩ (p+Xσ)

is fixed by τ , so that

σ(q0 − p) = τ(q0)− p = q0 − p

implies that
q0 ∈ p+Xσ.

Further,

2σ(q − q0) = σ(q − τ(q)) = σ(q − σ(q)) = σ(q)− q = τ(q)− q = 2(q0 − q)

yields q − q0 ∈ iXσ = X−σ. Now the map

γq : C→ X, z 7→ q0 + iz(q − q0)

is holomorphic and Ωq := γ−1
q (D) is an open convex subset of C. For z ∈ R∩Ωq

we have
γq(z) ∈ D ∩ (q0 + Ri(q − q0)) ⊆ D ∩ (p+Xσ),

so that the holomorphic functions f ◦γq vanishes on this open interval, and this
implies that it vanishes on Ωq because its set of zeros is not discrete.
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Definition 8.1.5. Let X be a complex locally convex space. The conjugate
linear space X is defined to be the same set X with the same addition, but the
scalar multiplication defined by (λ, v) 7→ λv. Then idX : X → X is an antilinear
isomorphism of complex vector spaces.

A hermitian kernel K : D × D → C is said to be holomorphic if it is holo-
morphic as a function on the open subset D ×D of the complex product space
X ×X.

Proposition 8.1.6. Let D be an open subset of the locally convex space X and
K ∈ P(D) be a holomorphic positive definite kernel. Then HK ⊆ O(D).

Proof. First we use Proposition 3.3.5 to see that HK ⊆ C(D,C). Next we
observe that, for each w ∈ D, the function Kw(z) := K(z, w) is holomorphic
on D. Let f ∈ HK and γ : D0 → D be a holomorphic curve. Then for each
compact subset S0 ⊆ D0, the image S := γ(S0) in D is compact, so that C :=
supx∈S K(x, x) <∞. Therefore convergence inHK implies uniform convergence
on S.

Let f ∈ HK and fn ∈ H0
K with fn → f . Then, for each n ∈ N, the function

fn ◦γ : D → C is holomorphic, and fn ◦γ → f ◦γ uniformly on compact subsets
of D0, so that f ◦ γ is also holomorphic. This proves that f ∈ O(D).

Examples 8.1.7. (a) The Kernel K(z, w) := 〈z, w〉 on a complex Hilbert space
H is holomorphic. Indeed, as a function on the product space H × H, it is
complex bilinear and continuous, hence holomorphic (Lemma 8.1.3).

(b) If K ∈ P(D) is a holomorphic kernel with |K(z, w)| < r for z, w ∈
D, where r is the radius of convergence of the complex power series f(z) =∑∞
n=0 anz

n with an ≥ 0 for each n ∈ N, then the positive definite kernel
f(K(z, w)) =

∑∞
n=0 anK(z, w)n is also holomorphic because composition of

holomorphic functions (on domains in C) are holomorphic (Example 3.3.6 (e),
(f)).

(c) Let H be a complex Hilbert space. Then the kernels eλ〈z,w〉, λ > 0, on
H and (1− 〈z, w〉)−s, s ≥ 0, on the open unit ball of H are holomorphic.

The following lemma is an important tool to verify holomorphy of vector-
valued functions.

Lemma 8.1.8. If D ⊆ E is an open subset of the complex locally convex space
E and V a sequentially complete locally convex space. Then a map γ : D → V
is holomorphic if and only if it is weakly holomorphic, i.e., for each λ ∈ V ′, the
composition λ ◦ γ is holomorphic.

Proof. Since holomorphy is tested by composition with holomorphic curves, we
may w.l.o.g. assume that E = C. Clearly, the weak holomorphy of γ follows
from its holomorphy (Remark 8.1.2 and Lemma 8.1.3). So let us assume that γ
is weakly holomorphic. Let α ∈ V ′, z ∈ D and assume that z + h ∈ D holds for
|h| ≤ 2ε. Then, for |h| < ε, the Cauchy Integral Formula

f(z + h) =
1

2πi

∮
|ζ|=2ε

f(z + ζ)
ζ − h

dζ
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yields
1
h
〈α, f(z + h)− f(z)〉 =

1
2πi

∮
|ζ|=2ε

(α ◦ f)(z + ζ)
(ζ − h)ζ

dζ

because
1
h

( 1
ζ − h

− 1
ζ

)
=
ζ − (ζ − h)
hζ(ζ − h)

=
1

ζ(ζ − h)
.

Since V is sequentially complete, the V -valued integral∮
|ζ|=2ε

f(z + ζ)
(ζ − h)ζ

dζ

exists (cf. Lemma 8.2.4 below), and since V ′ separates the points of V , we derive
the relation

1
h

(
f(z + h)− f(z)

)
=

1
2πi

∮
|ζ|=2ε

f(z + ζ)
(ζ − h)ζ

dζ.

Finally, the fact that the function

F : {h ∈ C : |h| ≤ ε} × {ζ ∈ C : |ζ| = 2ε} → V, (h, ζ) 7→ f(z + ζ)
(ζ − h)ζ

is continuous entails that

lim
h→0

1
h

(
f(z + h)− f(z)

)
=

1
2πi

∮
|ζ|=2ε

f(z + ζ)
ζ2

dζ

holds in V (Exercise!). This means that f : D → V is holomorphic.

The following result sharpens Proposition 8.1.6 considerably. It will be used
below to derive irreducibility criteria for unitary representations on reproducing
kernel spaces.

Proposition 8.1.9. If K ∈ P(D) is a holomorphic positive definite kernel, then
the map

γ : D → H, z 7→ Kz

is antiholomorphic.

Proof. In view of Lemma 8.1.8, it suffices to show that γ is weakly antiholo-
morphic, i.e., all compositions with continuous linear functionals are antiholo-
morphic. This is an immediate consequence of Proposition 8.1.6, which asserts
that, for each f ∈ HK , the map

D → C, z 7→ 〈γ(z), f〉 = f(z)

is antiholomorphic.

Theorem 8.1.10. (S. Kobayashi’s Irreducibility Criterion) Let D be an open
subset of a complex locally convex space, σ : G × X → X be a group action,
J : G×D → C× a corresponding cocycle, and K ∈ P(D, σ, J) be a holomorphic
positive definite kernel. If G acts transitively on D, then the representation
(πK ,HK) is irreducible.
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Proof. Suppose that K ⊆ HK is a closed G-invariant subspace and let Q be its
reproducing kernel, so that K = HQ. Then Proposition 5.1.6(b) implies that
Q ∈ P(X,σ, J), and from Proposition 5.1.11 we derive that Q = KB holds for
some B ∈ π(G)′. This shows that

Q(z, w) = 〈BKw,Kz〉 for z, w ∈ D.

To see that Q is holomorphic, we recall from Proposition 8.1.9 that the map
D → H, z 7→ Kz is antiholomorphic. Hence the map

H×H ⊇ D ×D → H×H, (z, w) 7→ (Kw,Kz)

is holomorphic, and since the map H × H → C, (z, w) 7→ 〈Bz,w〉 is continu-
ous bilinear, hence holomorphic (Lemma 8.1.3), composition of these two maps
implies that Q is holomorphic,

Pick x0 ∈ D. If Kx0 = 0, then also Q(x0, x0) = 0, so that there exists a
c ≥ 0 with Q(x0, x0) = λK(x0, x0). Then the invariance condition implies that

Q(g.x0, g.x0) = |J(g, x0)|2Q(x0, x0) = c|J(g, x0)|2K(x0, x0) = cK(g.x0, g.x0).

Our assumption that G acts transitively on D now implies that Q(z, z) =
cK(z, z) for all z ∈ D.

To derive from this relation that the two holomorphic functions cK and Q
on D ×D coincide, we note that the flip involution σ(z, w) := (z, w) on H×H
is antilinear and ∆H = {(z, z) : z ∈ H} is the set of its fixed points. Therefore
Q = cK follows from Theorem 8.1.4. If c = 0, then Q = 0 and HQ = {0}, and
if c > 0, then K = c−1Q implies that HK = HQ. This proves the irreducibility
of the representation (πK ,HK).

Example 8.1.11. Kobayashi’s Theorem can be used in particular to prove the
irreducibility of the representation of the Heisenberg group Heis(H) on the Fock
space F(H). In fact, we apply it with G = Heis(H), D = H, σ((t, v), z) = v+ z
and

J((t, v), z) = eit+〈z,v〉−
1
2 〈v,v〉.

8.2 Appendix: Vector-valued Riemann Integrals

Definition 8.2.1. Let E be a locally convex space. A sequence (xn)n∈N in E
is called a Cauchy sequence if for every 0-neighborhood U of E there exists an
NU ∈ N with

xn − xm ∈ U for n,m > NU .

The space E is said to be sequentially complete if every Cauchy sequence in E
has a limit.

Remark 8.2.2. Since the sets of the form

U(p, ε) := {x ∈ E : p(x) < ε},



8.2. APPENDIX: VECTOR-VALUED RIEMANN INTEGRALS 203

where p is a continuous seminorm on E form a basis of zero-neighborhoods, a
sequence (xn)n∈N is Cauchy if and only if for every continuous seminorm p and
every ε > 0 there exists an Nε ∈ N with

p(xn − xm) < ε for n,m > Nε.

Definition 8.2.3. Let E be a locally convex space. Then a curve γ : [a, b]→ E
is said to be differentiable in t if the limit

γ′(t) := lim
h→0

1
h

(γ(t+ h)− γ(t))

exists in E. Then γ′(t) is called the derivative of γ in t. The curve γ is said to
be differentiable if it is differentiable in every point, and it is called a C1-curve,
if, in addition, the curve γ′ : [a, b]→ E is also continuous.

Lemma 8.2.4. Let E be a sequentially complete locally convex space and
γ : [a, b] → E be a continuous curve. Then there exists a unique C1-curve
Γ: [a, b]→ E with Γ′ = γ and Γ(a) = 0. It is denoted

Γ(t) :=
∫ t

a

γ(τ) dτ.

Proof. For any partition T = (t0, t1, . . . , tn) of the interval [a, b], we write

S(T ) :=
∫ n−1

j=0

γ(tj)(tj+1 − tj)

for the corresponding Riemann sum. We call

δ(T ) := max{tj+1 − tj : j = 0, . . . , n− 1}

the width of T . We want to show that if (Tm) is a sequence of partitions with
δ(Tm) → 0, then the sequence (S(Tn)) in E converges. Since E is sequen-
tially complete, it suffices to show that it is a Cauchy sequence. So let p be a
continuous seminorm on E. Since γ is uniformly continuous with respect to p
(Exercise), there exists for each ε > 0 a δ > 0 with

p(γ(t)− γ(s)) ≤ ε for |t− s| ≤ δ.

Now let T and T ′ be two partitions with δ(T ), δ(T ′) < δ. Then their common
refinement T̃ also has this property and we have

p(S(T )− S(T̃ )) ≤
∑
j

ε(t̃j+1 − t̃j) = ε(b− a),

and since p(S(T ′)− S(T̃ )) satisfies the same estimate, we obtain

p(S(T )− S(T ′)) ≤ 2ε(b− a).
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This proves that (S(Tn))n∈N is a Cauchy sequence in E, and our estimates
show that the limit does not depend on the choice of the sequence (Tn). We
write ∫ b

a

γ(τ) dτ := lim
n→∞

S(Tn)

for this limit. We also observe that

p
(∫ b

a

γ(τ) dτ
)

= lim
n→∞

p(S(Tn)) ≤ lim
n→∞

n−1∑
j=0

p(γ(tj))(tj+1 − tj) =
∫ b

a

p(γ(t)) dt

for every continuous seminorm p.
Finally, we put

Γ(t) :=
∫ t

a

γ(τ) dτ.

For a ≤ t+ h ≤ b we then have

p
(Γ(t+ h)− Γ(t)

h
− γ(t)

)
= p
( 1
h

∫ t+h

t

γ(τ)− γ(t) dτ
)

≤ 1
h

∫ t+h

t

p(γ(τ)− γ(t)) dτ
)
→ 0

because p(γ(τ) − γ(t)) → 0 for τ → t. We conclude that Γ is a C1-curve with
Γ′ = γ and Γ(a) = 0.

If Γ̃ : [a, b]→ E is another C1-curve with these properties, then F := Γ̃− Γ
is a C1-curve with F ′ = 0 and F (a) = 0. Then we obtain for every continuous
linear functional λ ∈ E′ a C1-curve λ ◦ F : [a, b]→ R with

(λ ◦ F )(a) = 0 and (λ ◦ F )′ = 0.

Now basic calculus implies that λ ◦ F = 0, and hence that λ(F (t)) = 0 for each
λ ∈ E′ and t ∈ [a, b]. Since the continuous linear functionals on E separate the
points, we obtain F = 0.

Exercises for Section 8.1

Exercise 8.2.5. Let D be an open subset of a complex locally convex space.
Show that O(D) is a complex unital algebra with respect to pointwise multipli-
cation.

Exercise 8.2.6. Let H be a complex Hilbert space and H be its complex
conjugate space with the scalar multiplication defined by λ ∗ v := λv. Show
that the map

ϕ : H → H∗, ϕ(v)(w) := 〈w, v〉

is a linear isomorphism.
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Exercise 8.2.7. Let V be a complex locally convex space and σ : V → V be
a continuous antilinear involution. Further, let D ⊆ V be a convex σ-invariant
domain and HK ⊆ O(D) be a Hilbert space of holomorphic functions with
kernel K. Then

Dσ := {v ∈ V : σ(v) = v}

is an open domain in the real locally convex space V σ. Show that the restriction
map

r : O(D)→ C(Dσ), f 7→ f |Dσ

restricts to a unitary map r : HK → HQ, where Q := K|Dσ×Dσ .

Exercise 8.2.8. Let H be a real Hilbert space and HC be its complexification.
Show that the restriction map

R : F(HC)→ F(H), f 7→ f |H

is unitary, where F(H) is defined as the reproducing kernel space of the real-
valued kernel K(x, y) := e〈x,y〉.

8.3 More Representations of U(H)

We have already seen that each complex Hilbert space H can be realized as a
reproducing kernel space HQ on X = H with the kernel Q(z, w) = 〈w, z〉. In
the same spirit, we have defined n-fold tensor products H1⊗̂ · · · ⊗̂Hn as repro-
ducing kernel spaces on X =

∏n
j=1Xj with the kernel Q(z, w) :=

∏n
j=1〈wj , zj〉.

Specializing this construction to Hj = H for j = 1, . . . , n, we obtain the space

H⊗n := HQ ⊆ CH
n

with Q(z, w) :=
n∏
j=1

〈wj , zj〉.

Since the kernel Q is invariant under the natural action of the unitary group
U(H) on Hn by g.(z1, . . . , zn) := (gz1, . . . , gzn), we obtain a unitary represen-
tation

π(g) = g ⊗ g ⊗ · · · ⊗ g

of U(H) on H⊗n. For n > 1 this representation is no longer irreducible, and it
can be shown to be multiplicity free with finitely many irreducible summands
whose precise description is part of the so-called Schur–Weyl theory of decom-
positions of tensor products of representations.

That the representation is not irreducible for n > 1 is easy to see by showing
that its commutant is larger than C1. This is due to the fact that the symmetric
group Sn also has a unitary representation on H⊗n. To see this action, we first
note that Sn acts on the product space Hn by permuting the factors:

σ.(z1, . . . , zn) := (zσ−1(1), . . . , zσ−1(n)),
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and that this action preserves the kernel Q. Hence

(ρ(σ)f)(z1, . . . , zn) := f(zσ(1), . . . , zσ(n))

defines a unitary representation of Sn on H⊗n. In terms of tensor products, this
action is given by

(ρ(σ)(v1⊗· · ·⊗vn))(z1, . . . , zn) = v1(zσ(1)) · · · vn(zσ(n)) = vσ−1(z1) · · · vσ−1(n)(zn),

i.e.,
ρ(σ)(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

8.3.1 Symmetric and Exterior Powers

Clearly, ρ(Sn) ⊆ π(U(H))′ is non-trivial, which leads to a decomposition of
the representation π. The two most important subspaces of H⊗n are the two
eigenspaces of Sn for the two characters of this group. For the trivial character
we obtain the subspace

Sn(H) := (H⊗n)Sn

of Sn-invariant vectors. It is called the n-th symmetric power of H, and for the
signature character sgn: Sn → {±1}, we obtain the subspace

Λn(H) := (H⊗n)sgn,Sn = {v ∈ H⊗n : (∀σ ∈ Sn) ρ(σ)v = sgn(σ)v}.

It is called the n-th exterior power of H.
It is easy to write down projections onto these subspaces using the Haar

measures on the finite group Sn:

P+ :=
1
n!

∑
σ∈Sn

ρ(σ)

is the projection onto Sn(H) and

P− :=
1
n!

∑
σ∈Sn

sgn(σ)ρ(σ)

is the projection onto Λn(H). To verify these claims, one first verifies that

ρ(τ)P+ = P+ and ρ(τ)P− = sgn(τ)P−

by direct calculation. This proves that im(P+) ⊆ Sn(H), and that P+v = v
holds for each v ∈ Sn(H) is an immediate consequence of the definition of P+.
Therefore P+ is a projection, and that it is hermitian follows from

P ∗+ =
1
n!

∑
σ∈Sn

ρ(σ−1) =
1
n!

∑
σ∈Sn

ρ(σ) = P+.

Similarly one argues that P− is an orthogonal projection onto Λn(H).
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For v1, . . . , vn ∈ H, we define the symmetric product

v1 ∨ · · · ∨ vn := P+(v1 ⊗ · · · ⊗ vn)

and the exterior (=alternating) product by

v1 ∧ · · · ∧ vn := P−(v1 ⊗ · · · ⊗ vn).

These products define continuous complex n-linear maps Hn → Sn(H) and
Hn → Λn(H). It follows directly from the definition that the ∨-product is
symmetric and the wedge product ∧ is alternating, i.e.,

vσ(1) ∨ · · · ∨ vσ(n) = v1 ∨ · · · ∨ vn

and
vσ(1) ∧ · · · ∧ vσ(n) = sgn(σ)v1 ∨ · · · ∨ vn.

The inner products of such elements are given by

〈v1 ∨ · · · ∨ vn, w1 ∨ · · · ∨ wn〉 = 〈v1 ∨ · · · ∨ vn, w1 ⊗ · · · ⊗ wn〉

=
1
n!

∑
σ∈Sn

〈vσ(1), w1〉 · · · 〈vσ(n), wm〉

and likewise

〈v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wn〉 = 〈v1 ∧ · · · ∧ vn, w1 ⊗ · · · ⊗ wn〉

=
1
n!

∑
σ∈Sn

sgn(σ)〈vσ(1), w1〉 · · · 〈vσ(n), wm〉 =
1
n!

det(〈vi, wj〉)1≤i,j≤n.

8.3.2 The Representation of U(H) on Sn(H)

We first take a closer look at the subspace Sn(H). As a closed subspace of the
reproducing kernel space HQ = H⊗n, it also is a reproducing kernel space on
Hn, and the evaluation functionals on Sn(H) are obtained as the orthogonal
projections of Qw, w ∈ Hn, to Sn(H):

Q+(w, z) := P+(Qz)(w) =
1
n!

∑
σ∈Sn

Qz(σ−1.w) =
1
n!

∑
σ∈Sn

n∏
j=1

〈zj , wσ(j)〉.

To evaluate this expression, we note that the elements of Sn(H) are n-linear
functions onH which are invariant under the symmetric group, hence completely
determined by their values on the diagonal

∆H = {(v, · · · , v) : v ∈ H}

(Exercise). Therefore the restriction map

R : Sn(H)→ CH, (Rf)(z) := f(z, · · · , z)
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is injective, and it maps Sn(H) in a U(H)-equivariant fashion onto the Hilbert
space with reproducing kernel

Q̃+(z, w) := Q+((z, · · · , z), (w, · · · , w)) = 〈z, w〉n.

This implies that the unitary representation (Sn, Sn(H)) of U(H), given by

Sn(g)(v1 ∨ · · · ∨ vn) = gv1 ∨ · · · ∨ gvn

is equivalent to the representation on the dual space Fn(H)′ ∼= Fn(H) of the
set n-homogeneous functions in the Fock space. In particular, we derive from
Example 5.3.17 that this representation is irreducible.

8.3.3 The Representation of U(H) on Λn(H)

Now we turn to the representation Λn of U(H) on the exterior power, given by

Λn(g)(v1 ∧ · · · ∧ vn) = gv1 ∧ · · · ∧ gvn.

The subspace Λn(H) is generated by elements of the form v1 ∧ · · · ∧ vn. Since
the wedge product is alternating, this product vanishes if v1, . . . , vn are lin-
early independent. We also see that, if w1, . . . , wn is an orthonormal basis of
span{v1, . . . , vn}, then

v1 ∧ · · · ∧ vn ∈ Cw1 ∧ · · · ∧ wn.

We now assume that dimH ≥ n because otherwise Λn(H) vanishes. Let
e1, . . . , en be orthonormal. Then each other orthonormal tuple (v1, · · · , vn) in
H is of the form (ge1, . . . , gen) for some g ∈ U(H). This implies that

U(H).(e1 ∧ · · · ∧ en) ∪ {0} ⊇ {v1 ∧ · · · ∧ vn : v1, . . . , vn ∈ H},

so that
v0 := e1 ∧ · · · ∧ ek ∈ Λk(H)

is a cyclic vector for U(H).
Let (ej)j∈J be an orthonormal basis containing e1, . . . , en and, accordingly,

{1, . . . , n} ⊆ J . We also assume that J carries a linear order ≤ satisfying

1 ≤ 2 ≤ . . . ≤ n ≤ j for j ∈ J \ {1, . . . , n}.

For each n-element subset F = {j1, . . . , jn} ⊆ J with j1 < j2 < . . . < jn, we
then obtain an element

eF := ej1 ∧ · · · ∧ ejn ∈ Λn(H),

and, expanding wedge products v1 ∧ · · · ∧ vn with respect to the orthonormal
basis (ej)j∈J , we see that the finite wedge products

ej1 ∧ · · · ∧ ejn , j1, . . . , jn ∈ J,
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form a total subset of Λn(H). If |{j1, . . . , jn}| < n, then ej1 , . . . , ejn are linearly
dependent, so that ej1 ∧ · · · ∧ ejn = 0. If |{j1, . . . , jn}| = n, we put F :=
{j1, . . . , jn} and note that if σ ∈ Sn satisfies jσ(1) > jσ(2) > · · · > jσ(n), then

ej1 ∧ · · · ∧ ejn = sgn(σ)eF .

This proves that the eF , F ⊆ J an n-element subset, form a total subset of
Λn(H). Since

〈eF , eF ′〉 = det(δjk,j′m)1≤k,m≤n =

{
0 for F 6= F ′

1 for F = F ′,

we see that the eF even form an orthonormal basis of Λn(H).
To show that the representation of U(H) on Λn(H) is irreducible, we consider

the restriction to the subgroup T ∼= T J of diagonal operators with respect to
our orthonormal basis. For F = {j1, . . . , jn} we have

t.eF = tj1ej1 ∧ · · · ∧ tjnejn = (tj1 · · · tjn)eF .

Defining
χF ∈ T̂ ∼= TJ by χF (t) :=

∏
f∈F

tf ,

we conclude that
Λn(H)T,χF = CeF

because different n-element subsets F, F ′ ⊆ J lead to different characters of T .
As we have seen above, each eF is a cyclic vector for U(H), so that Proposi-
tion 5.3.11 now implies that the representation of U(H) on Λn(H) is irreducible.

For the cyclic vector v0 we have

ϕ(g) = 〈gv0, v0〉 = 〈ge1 ∧ · · · ∧ gen, e1 ∧ · · · ∧ en〉 =
1
n!

det(〈gej , ek〉)1≤j,k≤n.

Writing g as a block matrix with respect to the decomposition

H = H0 ⊕H⊥0 , H0 := span{e1, . . . , en},

this means that

ϕ(g) = det(a) for g =
(
a b
c d

)
.
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Chapter 9

Projective Unitary
Representations

In this chapter we discuss an important issue arising in many situations where
unitary operators are only determined up to a “phase factor” in the circle group
T. To understand the underlying structures, we take a brief look at central
group extensions for which the unitary group U(H), as a T-extension of the
projective unitary group PU(H), is a paradigmatic example.

We have already seen in Section 5.2 that for a complex Hilbert space H, we
do not get a unitary representation of the translation group (H,+) on the Fock
space F(H). Instead we have to extend this group to the Heisenberg group
Heis(H) which has a natural representation on F(H). In this section we take a
closer look at the underlying structures. In particular, we shall define projec-
tive unitary representations and explore how they are related to central group
extensions. For more details on projective representations, we refer to Chapter
9 of Magyar’s book [Mag92], where one finds in particular a detailed discussion
of the representations of the Galilei and the Poincaré group, the fundamental
symmetry groups of non-relativistic, resp., relativistic particle physics.

9.1 Central Group Extensions

Definition 9.1.1. An extension of groups is a short exact sequence

1→ N
ι−−→Ĝ q−−→G→ 1

of group homomorphisms. We then speak of an extension of G by N . Since
ι : N → Ĝ is injective, we may identify N with its image, so that the surjectivity
of q leads to G ∼= Ĝ/N.

An extension is called central if ι(N) is central in Ĝ. We call two extensions
N ↪→ Ĝ1 →→ G and N ↪→ Ĝ2 →→ G of G by the group N equivalent if there exists

211
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a homomorphism ϕ : Ĝ1 → Ĝ2 such that the following diagram commutes:

N
ι1−−−−−−−−−→ Ĝ1

q1−−−−−−−−−→ GyidN

yϕ yidG

N
ι2−−−−−−−−−→ Ĝ2

q2−−−−−−−−−→ G

It is easy to see that any such ϕ is in particular an isomorphism of groups (Exer-
cise). We write Ext(G,N) for the set of equivalence classes of group extensions
of G by N .

We call an extension q : Ĝ→ G split or trivial if there exists a group homo-
morphism σ : G→ Ĝ with q ◦ σ = idG. In this case the map

N oS G→ Ĝ, (n, g) 7→ nσ(g)

is an isomorphism, where the semidirect product structure is defined by the
homomorphism

S : G→ Aut(N), S(g)(n) := σ(g)nσ(g)−1

(Exercise).
When dealing with topological groups, one requires all homomorphisms to

be continuous, ι to be an embedding and q to be a quotient map.

In this section we shall only deal with central extensions. We start by intro-
ducing product coordinates on such extensions:

Remark 9.1.2. Let q : Ĝ→ G be a central group extension with kernel Z and
σ : G → Ĝ be a section of q which is normalized in the sense that σ(1) = 1.
Then the map

Φ: Z ×G→ Ĝ, (z, g) 7→ zσ(g)

is a bijection and it becomes an isomorphism of groups if we endow Z ×G with
the multiplication

(z, g)(z′, g′) = (zz′ω(g, g′), gg′), (9.1)

where
ω : G×G→ Z, (g, g′) 7→ σ(g)σ(g′)σ(gg′)−1. (9.2)

The map ω satisfies
σ(g)σ(g′) = ω(g, g′)σ(gg′), (9.3)

and the cocycle condition

ω(g, g′)ω(gg′, g′′) = ω(g′, g′′)ω(g, g′g′′) (9.4)

If σ′ : G → Ĝ is another normalized section, then there exists a function
θ : G→ Z with θ(1) = 1 and σ′ = σθ. Then we find the relation

ω′(g, g′) = ω(g, g′)
θ(g)θ(g′)
θ(gg′)

.
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Definition 9.1.3. If Z is an abelian group, G a group and ω : G × G → Z
a map satisfying (9.4), then we call ω a 2-cocycle. It is said to be normalized
if ω(1, g) = ω(g,1) = 1 for any g ∈ G. We write Z2(G,Z) for the set of
normalized 2-cocycles. It is easy to see that this is an abelian group under
pointwise multiplication.

Functions of the form

b(g, g′) :=
θ(g)θ(g′)
θ(gg′)

for some normalized function θ : G → Z are always normalized cocycles (Exer-
cise). They are called 2-coboundaries. The set B2(G,Z) of 2-coboundaries is a
subgroup of Z2(G,Z), and the quotient group

H2(G,Z) := Z2(G,Z)/B2(G,Z)

is called the second cohomology group of G with values in Z. We write [f ] for
the image of f ∈ Z2(G,Z) in H2(G,Z). It is called the cohomology class of f .

Theorem 9.1.4. For any ω ∈ Z2(G,Z), we obtain on Z ×G a group structure
by

(z, g)(z′, g′) := (zz′ω(g, g′), gg′).

We write Z ×ω G for this group. Then ι(z) := (z,1) and q(z, g) := g define a
central extension

Z
ι−−→Z ×ω G

q−−→G.
Every central extension of G by Z is equivalent to one of these, and Z ×ω G is
equivalent to Z ×ω′ G if and only if [ω] = [ω′].

In this sense the group H2(G,Z) parameterizes the equivalence classes of
central extensions of G by Z.

Proof. The associativity of the multiplication in Z ×ω G follows immediately
from the cocycle property of f . To see that we actually obtain a group, we
observe that the conditions ω(g,1) = ω(1, g) = 1 imply that 1 := (1,1) is an
identity element of Z ×f G and

(z, g)−1 = (z−1ω(g, g−1)−1, g−1) = (z−1ω(g−1, g)−1, g−1)

is the inverse of (z, g). Note that ω(g, g−1) = ω(g−1, g) follows from the cocycle
relation, applied to the triple (g, g−1, g). It is obvious that ι and q are group
homomorphisms and that ι(Z) = Z × {1} is central. Therefore Z ×ω G defines
a central extension of G by Z.

The preceding remark implies that any central extension is equivalent to
some Z ×ω G because for any normalized section σ : G→ Ĝ and

ω(g, g′) := σ(g)σ(g′)σ(gg′)−1

the map
Φ: Z ×ω G→ Ĝ, (z, g) 7→ zσ(g)
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is an equivalence of central extensions.
Finally we note that an equivalence

Ψ: Z ×ω′ G→ Z ×ω G

has the form Ψ(z, g) = (zθ(g), g) for some normalized function θ : G→ Z. Now
the requirement that Ψ is a group homomorphism implies that

zz′θ(g)θ(g′)ω(g, g′) = zz′θ(gg′)ω′(g, g′) for g, g′ ∈ G,

which is equivalent to

θ(g)θ(g′)
θ(gg′)

= ω(g, g′)−1ω′(g, g′).

We conclude that such an equivalence of central extension exists if and only if
[ω] = [ω′].

Example 9.1.5. (a) If G and Z are abelian groups, then every biadditive map

ω : G×G→ Z

is a group cocycle because

ω(g+g′, g′′)+ω(g, g′) = ω(g, g′′)+ω(g′, g′′)+ω(g, g′) = ω(g, g′+g′′)+ω(g′, g′′).

(b) The Heisenberg group Heis(H) of a Hilbert space is a central extension
of the additive group (H,+) by R, defined by the cocycle

ω(v, w) = −1
2

Im〈v, w〉.

Remark 9.1.6. If a central extension q : Ĝ→ G of G by Z is trivial, then any
homomorphic section σ : G→ Ĝ leads to an isomorphism of groups

Φ: Z ×G→ Ĝ, (z, g) 7→ zσ(g).

In particular, there exists a homomorphism p : Ĝ→ Z with p|Z = idZ . As Z is
abelian, it follows that

(Ĝ, Ĝ) ∩ Z = {1} (9.5)

holds for the commutator group of Ĝ. This is a necessary condition for the
triviality of a central extension.

If, conversely, this condition is satisfied, then q restricts to a group isomor-
phism

q|( bG, bG) : (Ĝ, Ĝ)→ (G,G),

so that its inverse provides a homomorphism

σ : (G,G)→ Ĝ with q ◦ σ = id(G,G) .
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However, in general σ does not extend to a homomorphic section on all of G.
An instructive example is the surjective homomorphism

q : C4 := {z ∈ C : z4 = 1} → C2 = {±1}, z 7→ z2.

It defines a central extension of C2 by C2 which is non-trivial because C2 × C2

contains no element of order 4. As C4 is abelian, its commutator group is trivial.
Therefore (9.5) is not sufficient for a central extension to split.

9.2 Projective Unitary Representations

Definition 9.2.1. Let H be a complex Hilbert space, PU(H) := U(H)/T1 be
the projective unitary group and q : U(H) → PU(H), g 7→ [g] := Tg, be the
quotient map. We endow PU(H) with the quotient topology with respect to
the strong operator topology on U(H) which turns it into a topological group
(Exercise 9.3.7).

Proposition 9.2.2. (a) The topology on PU(H) is the coarsest topology for
which all functions

hv,w : PU(H)→ R, [g] 7→ |〈gv, w〉|

are continuous.
(b) The quotient map q : U(H)→ PU(H) has continuous local sections, i.e.,

each [g] ∈ PU(H) has an open neighborhood U on which there exists a continuous
section σ : U → U(H) of q.

Proof. (a) Let q : U(H)→ PU(H) denote the quotient map. Then all functions
hv,w ◦ q = fv,w are continuous on U(H), which implies that the functions hv,w
are continuous on PU(H).

Let τ denote the coarsest topology on PU(H) for which all functions hv,w
are continuous. We know already that this topology is coarser than the quotient
topology. Next we observe that the relations

hv,w([g][g′]) = hg′v,w([g]) = hv,g−1w([g′])

imply that left and right multiplications are continuous in τ . To see that τ
coincides with the quotient topology, it therefore remains to see that [gi] → 1
in τ implies that [gi]→ 1 in the quotient topology.

For a net ([gi])i∈I in PU(H) we consider a lift (gi)i∈I in U(H). Since the
closed operator ball B := {A ∈ B(H) : ‖A‖ ≤ 1} is compact in the weak operator
topology (Exercise 9.3.8), there exists a convergent subnet gα(j) → g0 ∈ B. For
v, w ∈ H we then have

hv,w(gα(j))→ hv,w(1) = |〈v, w〉|

and also
hv,w(gα(j)) = |〈gα(j)v, w〉| → |〈g0v, w〉|,
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hence |〈g0v, w〉| = |〈v, w〉|. This implies in particular that for each non-zero
vector v, we have

g0v ∈ (v⊥)⊥ = Cv,

so that each vector is an eigenvector, and this implies that g0 = t1 for some
t ∈ C (Exercise). If v = w is a unit vector, we obtain |t| = |〈g0v, v〉| = 1.
Therefore we have gα(j) → t1 in U(H), and this implies that [gα(j)] → [1] in
PU(H).

If the net (gi)i∈I does not converge to 1 in PU(H), then there exists an open
1-neighborhood U for which the set IU := {i ∈ I : gi 6∈ U} is cofinal, which leads
to a subnet (gi)i∈IU converging to 1 in τ and contained in the closed subset U c.
Applying the preceding argument to this subnet now leads to a contradiction
since it cannot have any subnet converging to 1 because U c is closed.

(b) Since we can move sections with left multiplication maps, it suffices to
assume that g = 1. Pick 0 6= v0 ∈ H. Then

Ω := {g ∈ U(H) : 〈gv0, v0〉 6= 0}

is an open 1-neighborhood in U(H)s with ΩT = Ω. Therefore Ω := {[g] : g ∈ Ω}
is an open 1-neighborhood of PU(H) and for each g ∈ Ω there exists a unique
t ∈ T with

tg ∈ Ω+ := {g ∈ U(H) : 〈gv0, v0〉 > 0}.

We now define a map

σ : Ω→ Ω, [g] 7→ g for g ∈ Ω+.

To see that σ is continuous, it suffices to observe that the map

Ω→ Ω+, g 7→ |〈gv0, v0〉|
〈gv0, v0〉

g

is continuous and constant on the cosets of T. Hence it factors through a
continuous map Ω→ Ω+ which is σ. This proves that the quotient map

q : U(H)→ PU(H), g 7→ [g]

has a continuous section in some 1-neighborhood of PU(H).

Remark 9.2.3. (a) For each complex Hilbert space H, we have

Z(U(H)) = T1.

In fact, for each unit vector v ∈ H, the operator

σv(x) := x− 〈v, x〉v

is unitary with the eigenvector v for the eigenvalue −1 and v⊥ is pointwise
fixed. Therefore any linear map A ∈ B(H) commuting with σv preserves the
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line Cv. This implies that for any element z ∈ Z(U(H)) each unit vector v is
an eigenvector, and therefore z ∈ C1, so that z ∈ T1 by unitarity.

The projection

q : U(H)→ PU(H), g 7→ [g] = Tg

defines a central extension of PU(H) by T. We have seen in Remark 9.1.6 that
the subgroup

Z(U(H)) ∩ (U(H),U(H)) = T1 ∩ (U(H),U(H))

is a measure of non-triviality for this central extension.
(b) To determine this group, we fist assume that dimH = n is finite. Then

U(H) ∼= Un(C) and we have a homomorphism

det : Un(C)→ T

vanishing on all commutators. We write

SUn(C) := {g ∈ Un(C) : det(g) = 1}

for the special unitary group. Then

(Un(C),Un(C)) ⊆ SUn(C)

implies that

(Un(C),Un(C)) ∩ T1 ⊆ {z1 ∈ T1 : zn = 1} =: Cn.

We claim that we actually have equality. Let ζ ∈ Cn. Then we define two
unitary operators p, q ∈ Un(C) by

q(ej) = ζjej , j = 1, . . . , n and p(ej) :=

{
ej+1 for j < n

e1 for j = n.

For 1 < j we then have

(q, p)ej = qpq−1p−1ej = ζ−(j−1)qpej−1 = ζ−(j−1)qej = ζej

and
(q, p)e1 = ζ−nqpen = qe1 = ζe1.

This proves that (p, q) = ζ1, and hence that every element of Cn is a commutator
of two unitary operators. We conclude that

(Un(C),Un(C)) ∩ T1 = Cn1. (9.6)

(c) If dimH =∞, we have H ∼= `2(Z,C)⊗̂K for some other Hilbert space K.
In fact, if J is an index set of an ONB, then there exists a bijection Z× J → J
([La93, Thm. 3.3 in App. 2]). Alternatively, one can use Zorn’s Lemma directly
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to show that each infinite set J can be written as a disjoint union J =
⋃
i∈I Ji

of infinite countable sets, which leads to a bijection I × Z → J and hence to a
unitary map `2(J,C)→ `2(Z,C)⊗̂`2(I,C).

Let ζ ∈ T. Then we define two unitary operators p, q ∈ U(H) by

q(ej ⊗ v) = ζjej ⊗ v and p(ej ⊗ v) := ej+1 ⊗ v for j ∈ Z, v ∈ K.

We then have

(q, p)(ej⊗v) = qpq−1(ej−1⊗v) = ζ−(j−1)qp(ej−1⊗v) = ζ−(j−1)q(ej⊗v) = ζej⊗v,

so that (q, p) = ζ1. This proves that every element of T1 is a commutator group
of two unitary operators. We conclude that

T1 ⊆ (U(H),U(H)). (9.7)

Definition 9.2.4. Let G be a (topological) group. A projective unitary repre-
sentation is a (continuous) homomorphism π : G→ PU(H).

Remark 9.2.5. Clearly, every continuous unitary representation

π : G→ U(H)

also defines a continuous projective representation,

π : G→ PU(H), g 7→ [π(g)].

One can even say more, namely that, if N := {g ∈ G : π(g) ∈ T1}, then we
obtain a continuous unitary representation of the factor group G/N :

π : G/N → PU(H), gN 7→ [π(g)].

Example 9.2.6. (a) We have seen in Proposition 5.2.1 that the Heisenberg
group Heis(H) has a continuous unitary representation on the Fock space F(H)
defined by

(π(t, v)f)(z) = eit+〈z,v〉−
1
2 〈v,v〉f(z − v).

Since π(t, 0) = eit1 ∈ T1, we obtain a continuous projective representation

π : H → PU(F(H)), v 7→ [π(t, v)].

(b) Let G be a locally compact abelian group and H := L2(G,µG). Then we
have the right regular representation (πr, L2(G)) of G, given by (πr(g)f)(x) =
f(xg), but we also have a unitary representation

ρ : Ĝ→ U(L2(G)), (ρ(χ)f)(g) := χ(g)f(g).

We consider the corresponding map

π̂ : G× Ĝ→ U(L2(G)), (g, χ) 7→ πr(g)ρ(χ).
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This map is not a group homomorphism because

πr(g)ρ(χ) = χ(g)ρ(χ)πr(g) for g ∈ G,χ ∈ Ĝ.

From this relation we immediately derive that

π : G× Ĝ→ PU(H), (g, χ) 7→ [πr(g)ρ(χ)]

defines a projective representation of the abelian group G× Ĝ on L2(G).

Proposition 9.2.7. Let α : G → PU(H) be a continuous projective unitary
representation of G on H. Then

Ĝ := α∗U(H) := {(g, u) ∈ G×U(H) : α(g) = [u]},

endowed with the product topology, is a topological group and

q : Ĝ→ G, (g, u) 7→ g

is a quotient map with central kernel T, hence a central T-extension of G. By

π : Ĝ→ U(H), (g, u) 7→ u

we obtain a continuous unitary representation of G on H with π = α.

Proof. Clearly, Ĝ is a closed subgroup of G×U(H), hence in particular a topo-
logical group. Next we recall from Proposition 9.2.2(b) that there exists a
1-neighborhood V ⊆ PU(H) and a continuous section σ : V → U(H) of the
quotient map U(H) → PU(H), g 7→ [g]. Therefore we obtain on α−1(V ) ⊆ G a
continuous section

α−1(V )→ Ĝ, g 7→ (g, σ(α(g))),

showing that q has continuous local sections, hence in particular that q is a
quotient map (Exercise). The remaining assertions are trivial.

Examples 9.2.8. (a) For the projective unitary representation

π : H → PU(F(H))

on the Fock space of H, we know already that we have a corresponding unitary
representation π : Heis(H)→ U(H) of the Heisenberg group. This implies that
π∗U(H) ∼= Heis(H).

(b) If G is a locally compact abelian group and π : G× Ĝ→ PU(L2(G)) the
projective unitary representation from Example 9.2.6, then

π∗U(H) ∼= T×ω (G× Ĝ),

where the cocycle ω ∈ Z2(G× Ĝ,T) is given by

ω((g, χ), (g′, χ′)) := χ(g′)−1.
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9.3 Projective Invariance of Kernels

Definition 9.3.1. For a kernel K on the set X, we define its projective invari-
ance group by

PAut(X,K) := {ϕ ∈ SX : (∃θ : X → C×) (θ, ϕ).K = K},

where
((θ, ϕ).K)(x, y) := θ(x)K(ϕ−1(x), ϕ−1(y))θ(y)

is the natural action of (C×)XoSX on the space of kernels (cf. Definition 5.1.2).
By definition, we then have a surjective homomorphism

q : Aut(X,K)→ PAut(X,K), (f, ϕ) 7→ ϕ.

Its kernel is the set of all functions θ : X → C× leaving K invariant in the sense
that

θ(x)K(x, y)θ(y) = K(x, y) for all x, y ∈ X. (9.8)

We now take a closer look at the kernel of q.

Definition 9.3.2. We call a kernel K : X × X → C of transitive type if
K(x, x) 6= 0 for x ∈ X, and the equivalence relation on X generated by

{(x, y) ∈ X ×X : K(x, y) 6= 0}

coincides with X×X. This means that, for x, y ∈ X, there exist x0, x1, . . . , xn ∈
X with x0 = x, xn = y and

K(xi, xi+1) 6= 0 for i = 0, . . . , n− 1.

Proposition 9.3.3. Suppose that the kernel K is of transitive type and positive
definite. Then the following assertions hold:

(a) ker q ∼= T is the set of constant functions with values in T. In particular,

q : Aut(X,K)→ PAut(X,K)

defines a central T-extension of PAut(X,K).

(b) π : PAut(X,K)→ PU(HK), defined by

π(ϕ) := [π(θ, ϕ)] for (θ, ϕ) ∈ Aut(X,K), (π(θ, ϕ)f) = θ · (ϕ∗f)

defines a projective unitary representation of PAut(X,K) on HK .

Proof. (a) Suppose that f ∈ ker q, i.e., that (9.8) holds. If the kernel K is of
transitive type, then K(x, x) > 0 implies |f(x)| = 1, and for K(x, y) 6= 0 we
obtain f(x) = f(y). Therefore the kernel relation of f is an equivalence relation
on X containing all pairs (x, y) with K(x, y) 6= 0, hence equals X ×X, and this
means that f is constant.

(b) follows from (a) and the discussion in Definition 5.1.2.



9.3. PROJECTIVE INVARIANCE OF KERNELS 221

Remark 9.3.4. For the diagonal kernel K(x, y) = δx,y on a set X, the condition

θ(x)K(x, y)θ(y)

is satisfied for ever function θ : X → T and the kernel K is invariant under the
whole group SX . Therefore PAut(X,K) = SX and

Aut(X,K) ∼= TX o SX .

In particular, the kernel of the quotient homomorphism

q : Aut(X,K)→ PAut(X,K)

is not central because SX acts non-trivially on ker q ∼= TX . As the preceding
lemma shows, the kernel of q is minimal if K is of transitive type.

Definition 9.3.5. Let σ : G × X → X be an action of G on X. The kernel
K on X is called projectively G-invariant if σg ∈ PAut(X,K) holds for every
g ∈ G.

Proposition 9.3.6. If K is a projectively invariant kernel of transitive type,
then the group

Ĝ := {(f, g) ∈ (C×)X oG : (f, g).K = K}

is a central extension of G by the circle group T, i.e., the projection

p : Ĝ→ G, (f, g) 7→ g

is a surjective homomorphism with central kernel ker p ∼= T.

Proof. The projective invariance of K implies that the action σ defines a ho-
momorphism σ : G→ PAut(X,K). This implies that p(Ĝ) = G. The kernel of
p is the set of all functions f with (f,1).K = K, which is equivalent to f being
constant with values in T. Since G acts trivially on constant functions ker p is
central in the semidirect product group (C×)X oG and therefore also in Ĝ.

Exercises for Chapter 9

Exercise 9.3.7. Let G be a topological group and N E G be a closed normal
subgroup, so that we can form the quotient group G/N with the quotient map
q : G → G/N . We endow G/N with the quotient topology, i.e., O ⊆ G/N is
open if and only if q−1(O) ⊆ G is open. Show that G/N is a topological group
with respect to the quotient topology. Here are some steps to follow:

(a) Show that q is open. Hint: Exercise 5.3.25.

(b) To see that G/N is Hausdorff, argue that for y 6∈ xN there exists an open
1-neighborhood U in G with U−1Uy ∩ xN = ∅ and derive that π(Uy) ∩
π(Ux) = ∅.
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(c) Use Exercise 1.1.17 to complete the proof. To verify (iii), pick for any
open 1-neighborhood O in G/N an open 1-neighborhood U in G with
UU ⊆ q−1(O) and argue that π(U) = π(UN) is open.

Exercise 9.3.8. For a Hilbert space H, show that the closed operator ball

B := {A ∈ B(H) : ‖A‖ ≤ 1}

is compact with respect to the weak operator topology. Hint: Consider the
topological embedding

η : B → CH×H, η(A)(v, w) := 〈Av,w〉

and show that its image is compact by applying Tychonov’s Theorem.

Exercise 9.3.9. Let K : X ×X → C be a positive definite kernel. Let X0 :=
{x ∈ X : K(x, x) = 0} and X+ := X \X0. On X+ we consider the equivalence
relation generated by

x ∼ x′ if K(x, x′) 6= 0.

Show that:

(a) On each equivalence class [x], the kernel K [x] := K|[x]×[x] is of transitive
type.

(b) H[x] := HK[x] is a closed subspace of HK and

H[x]⊥H[y] = {0} for [x] 6= [y],

so that
HK =

⊕̂
[x],x∈X+

H[x].

(c) The equivalence relation on X+ and the subset X0 are invariant under the
group Aut(X,K).

Exercise 9.3.10. Let X be a compact space and x : (I,≤)→ X be a net, i.e.,
(I,≤) is a directed set. Show that if all convergent subnets x ◦ α : (J,≤) → X
of x converge to the same point p0 ∈ X, then xi → p0. Hint: If xi 6→ p0, then
there exists an open neighborhood U of p0 for which IU := {i ∈ I : xi ∈ U c} is
cofinal. Use the compactness of U c to see that x|IU has a convergent subnet,
and verify that this is also a subnet of x.

Exercise 9.3.11. Let G be a perfect group, i.e., G = (G,G). Show that a
central extension q : Ĝ→ G with kernel Z splits if and only if

Z ∩ (Ĝ, Ĝ) = {1}

(cf. Remark 9.1.6).



Chapter 10

Negative Definite Kernels
and Affine Actions

10.1 Negative Definite Kernels

Definition 10.1.1. Let X be a set. A hermitian kernel Q : X × X → K is
called negative definite if for (x1, c1), . . . , (xn, cn) in X × C with

∑
j cj = 0, we

have
n∑

j,k=1

cjckQ(xj , xk) ≤ 0.

We write N (X) = N (X,K) for the set of negative definite kernels on X. If
Q is negative definite, then the kernel −Q is said to be conditionally positive
definite.

Remark 10.1.2. (a) If f : X → K is a function, then the kernel

Qf (x, y) := f(x) + f(y)

is negative definite because
∑n
j=1 cj = 0 implies that

n∑
j,k=1

cjck(f(xj) + f(xk)) =
( n∑
j=1

cjf(xj)
) n∑
k=1

ck +
( n∑
k=1

ckf(xk)
) n∑
j=1

cj = 0.

We even conclude that ±Qf ∈ N (X). Note that for c ∈ R, we have Qf+ic = Qf ,
and that Qf = 0 implies that f is constant with values in iR.

(b) If K is a positive definite kernel, then −K is negative definite, i.e.,

−P(X) ⊆ N (X).

(c) Clearly, positive definiteness implies conditional positive definiteness,
but if K : X × X → K is conditionally positive definite and Kx0 vanishes for

223
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some x0 ∈ X, then K(x0, x) = 0 = K(x, x0) for any x ∈ X because K is
hermitian. This implies that for x1, . . . , xn and c1, . . . , cn ∈ K, we may put
c0 := −(c1 + . . .+ cn) to derive

0 ≤
n∑

j,k=0

cjckK(xj , xk) =
n∑

j,k=1

cjckK(xj , xk),

so that K is positive definite.
(d) The preceding argument can be used to write a negative definite kernel

Q as Qf − K, where K is positive definite. Pick x0 ∈ X and put f(x) :=
Q(x, x0)− 1

2Q(x0, x0). Then (a) implies that

K := Qf −Q, K(x, y) = Q(x, x0) +Q(x0, y)−Q(x0, x0)−Q(x, y).

is conditionally positive definite, but our construction also implies that Kx0 = 0,
so that K is positive definite by (c).

If h : X → C is another function for which Q−Qh vanishes in x0, then Qf−h
vanishes in x0, which implies that f − h is constant purely imaginary, so that
Qf = Qh.

Lemma 10.1.3. For each map γ : X → H of a set into a Hilbert space H,

Qγ(x, y) := ‖γ(x)− γ(y)‖2 = ‖γ(x)‖2 + ‖γ(y)‖2 − 2 Re〈γ(x), γ(y)〉

is a negative definite real-valued kernel on X vanishing on the diagonal.

Proof. We write Q = Q1 +Q2, where

Q1(x, y) := ‖γ(x)‖2 + ‖γ(y)‖2 and Q2(x, y) := −2 Re〈γ(x), γ(y)〉.

The first kernel is negative definite by Remark 10.1.2(a), and the second one is
negative definite because −Q2 is positive definite, which follows from Proposi-
tion 3.2.1(e) and Remark 3.3.1(a).

Definition 10.1.4. Let H be a real Hilbert space. A pair (X, γ,H) consisting
of a set X and a map γ : X → H is called an affine realization triple if γ(X) is
not contained in a proper closed affine subspace of H. Then

Q(x, y) := ‖γ(x)− γ(y)‖2

is called the corresponding negative definite kernel.

Before we turn to the uniqueness of the affine realizations of a negative
definite kernel, we explain the connection between negative and positive definite
real-valued kernels.

Lemma 10.1.5. If Q ∈ N (X,R) vanishes on the diagonal and x0 ∈ X, then
there exists a unique positive definite kernel K on X with Kx0 = 0 and

Q(x, y) = K(x, x) +K(y, y)− 2K(x, y).
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It is given by

K(x, y) :=
1
2

(Q(x, x0) +Q(x0, y)−Q(x, y)). (10.1)

Proof. That the kernel K defined by (10.1) is positive definite follows from
Remark 10.1.2(d). It satisfies Kx0 = 0 because Q vanishes on the diagonal, and
we have

K(x, x) +K(y, y)− 2K(x, y)
= Q(x, x0) +Q(y, x0)−Q(x, x0)−Q(y, x0) +Q(x, y) = Q(x, y).

ThatK is uniquely determined by these properties follows from Remark 10.1.2(d).

Theorem 10.1.6. (Realization Theorem for Negative Definite Kernels) Let
X be a non-empty set. For each negative definite real-valued kernel Q on X
vanishing on the diagonal, there exists an affine realization triple (X, γ,H). For
any other affine realization triple (X, γ′,H′) for Q, there exists a unique affine
isometry ϕ : H → H′ with ϕ ◦ γ = γ′.

Proof. Existence: Let x0 ∈ X and consider the real-valued kernel K from
Lemma 10.1.5 satisfying Kx0 = 0,

Q(x, y) = K(x, x) +K(y, y)− 2K(x, y)

and
K(x, y) =

1
2

(Q(x, x0) +Q(y, x0)−Q(x, y)).

We consider the canonical realization triple (X, γK ,HK) of the positive definite
kernel K with γK(x) = Kx. Then

‖γK(x)− γK(y)‖2 = ‖γK(x)‖2 + ‖γK(y)‖2 − 2 Re〈γK(x), γK(y)〉
= K(x, x) +K(y, y)− 2K(x, y) = Q(x, y).

Since γK(X) contains 0 = γK(x0) and spans a dense subspace ofHK , it is not
contained in any proper closed affine subspace of HK . Therefore (X, γK ,HK)
is an affine realization triple for Q.

Uniqueness: Let (X, γ,H) be an affine realization triple for Q. Pick x0 ∈ X
and consider the triple (X, η,H), where η(x) := γ(x) − γ(x0). Then η(x0) =
0 and there exists no proper closed affine subspace containing η(X), which
implies that η(X) spans a dense subspace of H. Therefore (X, η,H) is an affine
realization triple for Q and also a realization triple for the positive definite kernel

〈η(y), η(x)〉 =
1
2

(‖η(x)‖2 + ‖η(y)‖2 − ‖η(x)− η(y)‖2)

=
1
2

(‖η(x)− η(x0)‖2 + ‖η(y)− η(x0)‖2 − ‖η(x)− η(y)‖2)

=
1
2

(Q(x, x0) +Q(y, x0)−Q(x, y)) = K(x, y).
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Now we use Theorem 10.1.6 to find a surjective isometry

ϕ : H → HK with ϕ ◦ η = γK .

Then ϕ ◦ γ = γK +ϕ(γ(x0)) shows that the affine map ψ(v) := ϕ(v)−ϕ(γ(x0))
satisfies ψ ◦ γ = γK .

Combining Theorem 10.1.6 with Lemma 10.1.3, we obtain:

Corollary 10.1.7. (Schoenberg) A real-valued kernel Q on X vanishing on the
diagonal is negative definite if and only if there exists a map γ : X → H to some
real Hilbert space H satisfying

Q(x, y) = ‖γ(x)− γ(y)‖2, x, y ∈ X.

Corollary 10.1.8. A metric space (X, d) can be embedded isometry into a real
Hilbert space if and only if the kernel Q(x, y) := d(x, y)2 on X is negative
definite.

Theorem 10.1.9. (Schoenberg) A kernel Q on X × X is negative definite if
and only if, for each t > 0, the kernel e−tQ is positive definite.

Proof. Suppose first that Q is negative definite. In Remark 10.1.2(d), we have
seen that Q = Qf −K holds for a function f : X → C and a positive definite
kernel K on X. Then the positive definiteness of

e−tQ(x, y) = e−tQf (x,y)etK(x,y) = e−tf(x)e−tf(y)etK(x,y)

follows from the positive definiteness of etK (Corollary 3.2.2) and Remark 3.3.1(b).
If, conversely, e−tQ is positive definite for any t > 0, and E(x, y) := 1 =

Q1/2(x, y) is the constant kernel, then E is negative definite, and therefore

1
t
(E − e−tQ)

is negative definite. This implies that the pointwise limit

Q = lim
t→0

1
t
(E − e−tQ)

is also negative definite.

Exercises for Section 10.1

Exercise 10.1.10. Show that for each a ∈ R the kernel Qa(x, y) := (a+x−y)2

on R satisfies the inequalities
n∑

j,k=1

cjckQa(xj , xk) ≤ 0

for x1, . . . , xn ∈ R and c1, . . . , cn ∈ R with
∑
j cj = 0. Nevertheless, Qa is

negative definite only for a = 0.



Chapter 11

Hilbert–Schmidt and Trace
Class Operators

In this chapter, we collect some facts on Hilbert–Schmidt and trace class oper-
ators.

11.1 Hilbert–Schmidt Operators

For the following lemma, we note that for a finite rank operator on any vector
space V , its trace is well defined by identifying the finite rank operators with
V ⊗ V ∗ and the trace with the functional

tr : V ⊗ V ∗ → C, x⊗ α 7→ α(x).

Lemma 11.1.1. For x, y ∈ H, we write Px,y for the operator given by Px,y(v) =
〈v, y〉x and put Px := Px,x. Then the following assertions hold:

(i) trPx,y = 〈x, y〉.

(ii) P ∗x,y = Py,x.

(iii) Px,yPz,w = 〈z, y〉Px,w.

(iv) APx,yB
∗ = PAx,By for A,B ∈ B(H).

(v) PAx = APxA
∗.

(vi) If A =
∑n
j=1 λjPvj ,wj , where the finite sequences v1, . . . , vn, w1, . . . , wn are

orthonormal, then ‖A‖ = max{|λj | : j = 1, . . . , n}.

Proof. The simple proof of (i)–(v) is left to the reader.
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(vi) From Awj = λjvj we obtain ‖A‖ ≥ |λj | for all j = 1, . . . , n. Conversely,
we obtain for L := max{|λj | : j = 1, . . . , n} with

A∗A =
n∑

j,k=1

λjλkP
∗
vk,wk

Pvj ,wj =
n∑

j,k=1

λjλkPwk,vkPvj ,wj

=
n∑

j,k=1

λjλk〈vj , vk〉Pwk,wj =
n∑
j=1

|λj |2Pwj

that ‖Av‖2 = 〈A∗Av, v〉 ≤
∑n
j=1 |λj |2|〈v, wj〉|2 ≤ L2

∑n
j=1 |〈v, wj〉|2 ≤ L2‖v‖2,

and hence ‖A‖ ≤ L. Thus ‖A‖ = L.

Lemma 11.1.2. Let H, K be Hilbert spaces, (ej)j∈J an orthonormal basis in
H, and (fk)k∈K an orthonormal basis in K. For A ∈ B(H,K), we then have∑

j∈J
‖Aej‖2 =

∑
k∈K

‖A∗.fk‖2.

Proof.
∑
j ‖Aej‖2 =

∑
j,k |〈Aej , fk〉|2 =

∑
j,k |〈ej , A∗.fk〉|2 =

∑
k ‖A∗.fk‖2.

Definition 11.1.3. Let H and K be Hilbert spaces and (ej)j∈J an orthonormal
basis. An operator A ∈ B(H,K) is called a Hilbert–Schmidt operator if

‖A‖2 :=
(∑
j∈J
‖Aej‖2

) 1
2
<∞.

In view of Lemma 11.1.2, the preceding expression does not depend on the choice
of the orthonormal basis in H. We write B2(H,K) for the space of Hilbert–
Schmidt operators in B(H,K), B2(H) for the Hilbert–Schmidt operators in
B(H), and Bfin(H) = span{Px,y : x, y ∈ H} for the space of continuous finite
rank operators on H.

Proposition 11.1.4. Let H and K be Hilbert spaces.

(i) For A ∈ B2(H,K), we have ‖A‖ ≤ ‖A‖2 = ‖A∗‖2.

(ii) If A,B ∈ B2(H,K) and (ej)j∈J is an orthonormal basis of H, then

〈A,B〉 :=
∑
j

〈B∗Aej , ej〉

converges and defines the structure of a complex Hilbert space on B2(H,K)
such that 〈A,A〉 = ‖A‖22.

(iii) 〈A,B〉 as in (ii) does not depend on the chosen basis.

If H = K, then

(iv) 〈A,B〉 = 〈B∗, A∗〉 for A,B ∈ B2(H).
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(v) If A ∈ B(H) and B,C ∈ B2(H), then AB ∈ B2(H) with

‖AB‖2 ≤ ‖A‖ · ‖B‖2 and 〈AB,C〉 = 〈B,A∗C〉.

(vi) Hilbert–Schmidt operators are compact, i.e., B2(H) ⊆ K(H).

Proof. (i) The relation ‖A‖2 = ‖A∗‖2 is immediate from the proof of Lemma 11.1.2.
To prove that ‖A‖ ≤ ‖A‖2, let ε > 0 and (ej)j∈J be an orthonormal basis of H
such that ‖Aej0‖ ≥ ‖A‖ − ε for an element j0 ∈ J . Then

‖A‖22 =
∑
j∈J
‖Aej‖2 ≥ (‖A‖ − ε)2.

Since ε > 0 was arbitrary, we obtain ‖A‖2 ≥ ‖A‖.
(ii) One easily checks that the subspace

E :=
{

(vj)j∈J ∈ KJ :
∑
j

‖vj‖2 <∞
}

is a Hilbert space with scalar product given by 〈v, w〉 :=
∑
j∈J〈vj , wj〉. Further

it is clear from the definition that Φ: B2(H,K) → E,A 7→ (Aej)j∈J is an
isometric embedding. That Φ is surjective follows from the observation that
for v ∈ E and x ∈ H the prescription Ax :=

∑
j∈J〈x, ej〉vj defines a bounded

operator H → K with

‖Ax‖2 ≤
∑
j∈J
|〈x, ej〉|2

∑
j

‖vj‖2 = ‖x‖2‖v‖2

(Cauchy–Schwarz inequality). Hence A ∈ B2(H,K) with Φ(A) = v. This shows
that Φ is an isometric bijection, and therefore that B2(H,K) is a Hilbert space
with scalar product given by 〈A,B〉 =

∑
j∈J〈Aej , Bej〉 =

∑
j∈J〈B∗Aej , ej〉.

(iii) This follows from the fact that the scalar product on the Hilbert space
B2(H,K) is uniquely determined by the norm via the polarization identity.

(iv) We know already that A 7→ A∗ is an isometry of B2(H). Hence both
sides in (iv) are hermitian forms on B2(H) which define the same norm. Since
the scalar product is uniquely determined by the norm, the assertion follows.

(v) The first part follows from

‖AB‖22 =
∑
j∈J
‖ABej‖2 ≤

∑
j∈J
‖A‖2‖Bej‖2 = ‖A‖2‖B‖22.

For the second part, we calculate

〈AB,C〉 =
∑
j∈J
〈C∗ABej , ej〉 =

∑
j∈J
〈(A∗C)∗Bej , ej〉 = 〈B,A∗C〉.

(vi) If A ∈ B(H,K) is a Hilbert–Schmidt operator and (ej)j∈J is an or-
thonormal basis of H, then for each finite subset F ⊆ J we consider the op-
erator AF with AF .ej = Aej for j ∈ F and AF .ej = 0 otherwise. Then the
net (AF )F⊆J converges to A in B2(H,K) and hence, in particular, with respect
to the operator norm. Therefore A is a limit of finite rank operators, hence
compact.
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11.2 Trace Class Operators

Definition 11.2.1. We say that an operator A ∈ B(H) is of trace class if
A ∈ B2(H) and

‖A‖1 := sup{|〈A,B〉| : B ∈ B2(H), ‖B‖ ≤ 1}

is finite. We write B1(H) ⊆ B2(H) for the subspace of trace class operators. It
follows easily from the definition that ‖ · ‖1 defines a norm on B1(H).

Proposition 11.2.2. The following assertions hold:

(i) If A ∈ B(H) and B ∈ B1(H), then AB ∈ B1(H) with ‖AB‖1 ≤ ‖A‖ · ‖B‖1.

(ii) ‖A‖2 ≤ ‖A‖1 for A ∈ B1(H).

(iii) B1(H) is invariant under taking adjoints, and ‖A∗‖1 = ‖A‖1.

(iv) B2(H)B2(H) ⊆ B1(H).

(v) ‖Px,y‖ = ‖Px,y‖1 = ‖x‖ · ‖y‖ for x, y ∈ H.

Proof. (i) This follows from |〈AB,X〉| = |〈B,A∗X〉| ≤ ‖B‖1‖A‖ · ‖X‖ for X ∈
B2(H) with ‖X‖ ≤ 1.

(ii) From ‖X‖ ≤ ‖X‖2 for X ∈ B2(H) (Proposition 11.1.4(i)), it follows that

{X ∈ B2(H) : ‖X‖ ≤ 1} ⊇ {X ∈ B2(H) : ‖X‖2 ≤ 1}.

Hence the assertion follows from ‖A‖2 = sup{|〈A,X〉| : ‖X‖2 ≤ 1}.
(iii) From |〈A∗, X〉| = |〈X∗, A〉| = |〈A,X∗〉| and the fact that X 7→ X∗ is an

isometry of B(H) and B2(H), we see that A∗ ∈ B1(H) with ‖A∗‖1 = ‖A‖1.
(iv) If A = BC with B,C ∈ B2(H), then we have for X ∈ B2(H) the

estimate

|〈A,X〉| = |〈BC,X〉| = |〈C,B∗X〉| ≤ ‖C‖2‖B∗X‖2 ≤ ‖C‖2‖B‖2‖X‖.

Hence A ∈ B1(H) with ‖A‖1 ≤ ‖B‖2‖C‖2.
(v) For A ∈ B2(H), we have

〈A,Px,y〉 = tr(AP ∗x,y) = tr(APy,x) = trPAy,x = 〈Ay, x〉,

hence ‖Px,y‖ ≤ ‖Px,y‖1 ≤ ‖x‖ · ‖y‖. Moreover, ‖Px,y(y)‖ = ‖y‖2‖x‖ shows that
‖Px,y‖ ≥ ‖x‖ · ‖y‖. This proves the desired equality.

Proposition 11.2.3. Let (ej)j∈J be an orthonormal basis and A ∈ B1(H).
Then the sum

trA :=
∑
j∈J
〈Aej , ej〉

converges absolutely and has the following properties:
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(i) | trA| ≤ ‖A‖1, i.e., tr is a continuous linear functional on B1(H) and it is
independent of the chosen orthonormal basis.

(ii) 〈A,B〉 = tr(AB∗) and tr(AB) = tr(BA) for A,B ∈ B2(H).

(iii) For A ∈ B1(H), the function X 7→ tr(XA) on B(H) is continuous and ex-
tends the linear functional X 7→ 〈X,A∗〉 on B2(H). Moreover, tr(AX) =
tr(XA).

(iv) Each A ∈ B1(H) can be written as A =
∑∞
n=1 Pvn,wn , where (vn)n∈N and

(wn)n∈N are orthogonal sequences. Then ‖A‖1 =
∑∞
n=1 ‖vn‖ · ‖wn‖ and

trA =
∑∞
n=1〈vn, wn〉.

(v) Bfin(H) is dense in B1(H).

(vi) B1(H) ∼= K(H)′ and B1(H)′ ∼= B(H), where the pairings are given by the
bilinear form (A,B) 7→ tr(AB).

(vii)
(
B1(H), ‖ · ‖1

)
is a Banach space.

(viii) The ultraweak operator topology on B(H) coincides with the weak-∗-topology
with respect to the identification B(H) ∼= B1(H)′.

(ix) If (ej)j∈J is an orthonormal basis, then ‖A‖1 ≤
∑
i,j∈J |〈Aei, ej〉| holds for

all A ∈ B(H).

Proof. Let J0 ⊆ J be a finite subset and λj , j ∈ J0, be complex numbers with
|λj | = 1 and λj〈Aej , ej〉 = |〈Aej , ej〉|. Then, in view Lemma 11.1.1(vi),∑
j∈J0

|〈Aej , ej〉| =
∑
j∈J0

λj〈Aej , ej〉 = 〈A,
∑
j∈J0

λjPej 〉 ≤ ‖A‖1‖
∑
j∈J0

λjPej‖ ≤ ‖A‖1.

This proves the estimate under (i) and the absolute convergence of the series.
To see that trA does not depend on the chosen basis, let (fk)k∈K be another
basis and calculate∑

k

〈Afk, fk〉 =
∑
k,j

〈Afk, ej〉〈ej , fk〉 =
∑
k,j

〈fk, A∗ej〉〈ej , fk〉

=
∑
j

〈ej , A∗ej〉 =
∑
j

〈Aej , ej〉.

(ii) The first part is precisely Proposition 11.1.4(ii). The second follows from
Proposition 11.1.4(iv):

tr(AB) = 〈A,B∗〉 = 〈B,A∗〉 = tr(BA).

(iii) For A ∈ B1(H) and B ∈ B(H), we use Proposition 11.2.2(i) to see that
AB ∈ B1(H) with | tr(XA)| ≤ ‖XA‖1 ≤ ‖X‖ · ‖A‖1. This proves the first part
of (iii).
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To show that tr(AX) = tr(XA) holds for A ∈ B1(H) and X ∈ B(H), we
note that, since both sides define complex bilinear forms, we may assume that
A is hermitian. Then the fact that A is compact (Proposition 11.1.4(vi)) shows
that there exists an orthogonal basis consisting of eigenvectors for A. Thus we
may assume that Aej = λjej . Then

tr(AX) =
∑
j

〈AX.ej , ej〉 =
∑
j

〈X.ej , Aej〉 =
∑
j

λj〈X.ej , ej〉

=
∑
j

〈XAej , ej〉 = tr(XA).

(iv) Since A is compact, it can be written as A =
∑∞
n=1 λnPvn,wn , as required

(cf. [We76, Satz 7.6]). Now Proposition 11.2.2 yields ‖A‖1 ≤
∑∞
n=1 ‖vn‖ · ‖wn‖.

To obtain the converse estimate, we consider the operatorXn =
∑n
j=1 cjPvj ,wj ,

where cj = 1
‖vj‖·‖wj‖ if Pvj ,wj 6= 0. Then ‖X‖ ≤ 1 follows from Lemma 11.1.1(vi).

Moreover, we have

‖A‖1 ≥ 〈A,Xn〉 =
n∑
j=1

〈vj , Xn.wj〉 =
n∑
j=1

cj‖vj‖2‖wj‖2 =
n∑
j=1

‖vj‖ · ‖wj‖.

Since n was arbitrary, we obtain ‖A‖1 ≥
∑∞
j=1 ‖vj‖·‖wj‖ and therefore equality.

It follows, in particular, that A = limm→∞Am with Am =
∑m
n=1 Pvn,wn because

‖A−Am‖ =
∑
j>m ‖vj‖ · ‖wj‖. Therefore

trA = lim
m→∞

trAm = lim
m→∞

m∑
j=1

〈vj , wj〉 =
∞∑
j=1

〈vj , wj〉.

(v) Since B1(H) is invariant under taking adjoints, it suffices to show that
each symmetric element A in B1(H) can be approximated by finite rank oper-
ators with respect to ‖ · ‖1. We write A =

∑∞
n=1 λnPvn , where (vn)n∈N is an

orthonormal system and conclude as in (iv) that An → A.
(vi) The continuity of the pairing B1(H) × B(H) → C, (A,B) 7→ tr(AB)

follows from | tr(AB)| ≤ ‖AB‖1 ≤ ‖A‖1‖B‖. First we show that this pairing
yields an isomorphism of B1(H) with K(H)′. So let f ∈ K(H)′. Then f |B2(H) is
a linear functional with |f(X)| ≤ ‖f‖·‖X‖ ≤ ‖f‖·‖X‖2 (Proposition 11.1.4(i)),
hence can be represented by an element Y ∈ B2(H). Then f(X) = 〈X,Y 〉 =
tr(XY ∗) holds for all X ∈ B2(H), and with |f(X)| ≤ ‖f‖ · ‖X‖ we obtain
Y ∈ B1(H) with ‖Y ‖1 = ‖Y ∗‖1 ≤ ‖f‖. The converse follows from the density
of Bfin(H) ⊆ B2(H) in K(H).

Next we show that B1(H)′ ∼= B(H). So we have to represent each continuous
linear functional f on B1(H) by a bounded linear operator on H. From Propo-
sition 11.2.2 we recall that ‖Pv,w‖1 = ‖v‖ · ‖w‖. Therefore, for each w ∈ H, the
mapping v 7→ f(Pv,w) is continuous and linear, hence can be represented by a
vector aw in the sense that f(Pv,w) = 〈v, aw〉 holds for all v ∈ H. Moreover, the
above calculation shows that ‖aw‖ ≤ ‖f‖ · ‖w‖. Since the assignment w 7→ aw



11.2. TRACE CLASS OPERATORS 233

is linear, we find a bounded operator A on H with Aw = aw for all w ∈ H and
‖A‖ ≤ ‖f‖. Now f(Pv,w) = 〈v,Aw〉 = 〈Pv,w, A〉 holds for v, w ∈ H. From that
we obtain f(X) = tr(XA∗) for X ∈ Bfin(H) and since, in view of (v), Bfin(H)
is dense in B1(H), we obtain f(X) = tr(XA∗) for all X ∈ B1(H). This proves
(vi).

(vii) Since B1(H) ∼= K(H)′ follows from (vi), the completeness of B1(H)
follows from the fact that dual spaces of normed spaces are Banach spaces.

(viii) Let (vn)n∈N and (wn)n∈N be sequences in H satisfying
∑∞
n=1 ‖vn‖2 <

∞ and
∑∞
n=1 ‖wn‖2 <∞. Then ‖Pvn,wn‖1 = ‖vn‖·‖wn‖ (Proposition 11.2.2(v))

implies that the series A :=
∑∞
n=1 Pvn,wn converges absolutely in B1(H). There-

fore
∞∑
n=1

〈X.vn, wn〉 =
∞∑
n=1

tr(XPvn,wn) = tr(XA).

This proves that each ultraweakly continuous linear functional on B(H) is also
weak-∗-continuous.

If, conversely, f(X) = tr(AX) with A ∈ B1(H), then we want to show
that f is ultraweakly continuous. Writing A = B+ − B− + i(C+ − C−), where
B+, B−, C+ and C− are positive trace class operators, we may assume that A
is positive. Then A =

∑∞
n=1 Pun , where (un)n∈N is an orthogonal sequence

consisting of eigenvectors of eigenvalue ‖un‖2, and, in view of (iv), ‖A‖1 =∑∞
n=1 ‖un‖2 < ∞. We conclude that f(X) = tr(XA) =

∑∞
n=1〈X.un, un〉 with∑∞

n=1 ‖un‖2 = ‖A‖1 < ∞. Hence f is ultraweakly continuous. Now the asser-
tion follows from the fact that the weak-∗-topology and the ultraweak topology
are the coarsest topology for which the same set of linear functionals is contin-
uous.

(ix) We may assume that the sum
∑
i,j |〈Aei, ej〉| exists. In view of

|〈Aei, ej〉| ≤ ‖A‖, this implies that
∑
i,j |〈Aei, ej〉|2 <∞, i.e., A ∈ B2(H).

Let B =
∑
i,j∈J bi,jPej ,ei be a finite sum of the operators Pej ,ei . Then

B ∈ B2(H), |bi,j | ≤ ‖B‖ for all i, j, and

| tr(AB)| ≤
∑
i,j

|bi,j tr(APei,ej )| ≤
∑
i,j

|bi,j | · |〈Aei, ej〉| ≤ ‖B‖
∑
i,j

|〈Aei, ej〉|.

This prove that whenever the sum
∑
i,j |〈Aei, ej〉| exists, then A ∈ B1(H) with

‖A‖1 ≤
∑
i,j |〈Aei, ej〉|.
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[Dix64] Dixmier, J., “Les C∗-algèbres et leurs représentations,” Gauthier-
Villars, Paris, 1964
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