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Notation and Conventions

If H is a complex Hilbert space, then its scalar product is written (-,-). It is
linear in the first and antilinear in the second argument

Mv,w) = (v, w) = (v, \w),

and ||v]| := y/{v,v) is the corresponding norm. A subset E C H is called total
if span F is dense.

e N:=1{1,2,3,...}
e Ri:={zeR:2>0}=][0,00[
o R*:=R\ {0}, C*:=C\ {0}, T:={z€C: |z =1}

For two sets J and Y we write Y/ for the set of maps f: J — Y. If J is a set
and S an abelian semigroup with zero element 0, then we also write S/) C S
for the subset of finitely supported functions.

For Banach spaces X and Y we write

B(X,Y):={A: X - Y: A linear, ||A] < oo}

for the Banach space of bounded linear operators from X to Y. For X =Y
we abbreviate B(X) := B(X,X) and write GL(X) for the group of invertible
elements in B(X). If H is a complex Hilbert space, then we have an antilinear
isometric map B(H) — B(H), A — A*, determined uniquely by

(Av,w) = (v, A*w) for v,w € H.

We write
U(H):={geGL(H): g ' =g"}

for the unitary group. For H = C", the corresponding matrix group is denoted
U,(C) :={g € GL,(C): ™' = ¢"}.

If G is a group, we write 1 for its neutral element and

() =gz, py(x) =29 and c,(x)=grg™"

for left multiplications, right multiplications, resp., conjugations.
For a metrix space (X, d), we write

B.(z):={y e X:d(z,y) <r}

for the open balls.
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Introduction

A unitary representation of a group G is a homomorphism 7: G — U(H) to the
unitary group
UH)={9€GL(H): 9" =g~ '}

of a complex Hilbert space H. Such a representation is said to be irreducible
if {0} and H are the only m(G)-invariant closed subspaces of H. The two
fundamental problems in representation theory are:

(FP1) To classify, resp., parametrize the irreducible representations of G, and

(FP2) to explain how a given unitary representation can be decomposed into
irreducible ones. This is called the problem of harmonic analysis because it
contains in particular the expansion of a periodic L?-function as a Fourier
series.

As formulated above, both problems are not well-posed. First, one has to
specify the class of representations one is interested in, and this class may depend
on the group G, resp., additional structure on this group. Only in very rare
situations, one studies arbitrary unitary representations. If G is a topological
group, i.e., if G carries a topology for which the group operations are continuous,
one is only interested in unitary representations which are continuous in the
sense that, for each v € H, the orbit map

™ G—=>H, g~ 7(g)v

is continuous. If G is a Lie group, a concept refining that of a topological group,
so that it makes sense to talk about smooth functions on G, then we consider
only representations for which the subspace

H* ={veH:7": G— H issmooth}

of smooth vectors is dense in H.
This means that there are three basic contexts for representation theory

e the discrete context (G is considered as a discrete group, no restrictions)
e the topological context (G is a topological group; continuity required)
e the Lie context (G is a Lie group; smoothness required).

In each of these contexts, the two fundamental problems mentioned above are
of a completely different nature because they concern different classes of repre-
sentations. For example one can show that the harmonic analysis problem has
a good solution for the topological group GL2(R), but not for the same group,
considered as a discrete one. To make statements like this more precise is one
of the fundamental tasks of representation theory.

To give a first impression of the major difficulties involved in this program,
we discuss some examples.
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Remark 1. If the group G is abelian, then one can show that all irreducible
representations (m, H) are one-dimensional, so that m(g) = x(¢g)1 holds for a
group homomorphism

X:G—->T:={zeC:|z|=1}

into the circle group. Such homomorphisms are called characters. For an abelian
topological group G, we write

G := Hom(G,T)

for the set of continuous characters. They form a group under pointwise mul-
tiplication, called the character group of G. Since all irreducible unitary repre-
sentations of an abelian group G are one-dimensional, the group G parametrizes
the irreducible representations and the solution of (FP1) therefore consists in a
description of the group G.

The second fundamental problem (FP2) is much harder to deal with. If
(m,H) is a unitary representation, then each irreducible subrepresentation is
one-dimensional, hence generated by a G-eigenvector v € H satisfying

m(g)v=x(g)v for ¢geG

and some character xy € G. Now one would like to “decompose” H into the
G-eigenspaces
Hy ={veH: (Vg€ G)n(g)v=x(g9)v}

As the following two examples show, there are situations where this is possible,
but this is not always the case.

Example 1. To solve (FP1) for the circle group G := T, we first note that for
each n € Z, xn(z) := 2™ defines a continuous character of T, and one can show
that these are all continuous characters. Therefore x,Xm = Xn+m leads to

T = Hom(T, T) = Z.

The group T has a continuous representation on the space H = L*(T, u),
where p is the probability measure on T specified by

1

[ e = 5 [ ey
T ™ Jo

The regular representation of T is defined by
(w(t)f)(2) := f(tz).

Then the T-eigenfunctions in H corresponding to x,, are the functions y,, them-
selves, and it is a basic result in the theory of Fourier series that any function
f € H can be expanded as a Fourier series

/= Zaan

neEZ
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converging in #H. In this sense H is a (topological) direct sum of the subspaces
Cxn, which means that the representation m decomposes nicely into irreducible
pieces.

Example 2. For the group G := R, the solution of (FP1) asserts that each
continuous character is of the form

a(z) == e XNeR,
so that xaXx, = Xa+u leads to the group isomorphism
R — ]1?8, A= Xa-

The group R has a continuous representation on the space H = L?(R, dx)
given by
(m(@) f)(y) = f(z +y).

Then the R-eigenfunctions in H corresponding to y solve the equation

fla+y)=e*fly)

for every = and, for a given x, for almost every y € R. This leads in particular
to |f(y+ 1)| = |f(y)| for almost every y € R, and thus to

/R fw)Pdy=Y"

nez

1 1
/ If(y+n)l2dy=oo-/ F@) dy = oo,
0 0

whenever || f||2 # 0. Therefore the representation (7, ) contains no irreducible
subspaces and we need refined methods to say what it means to decompose it
into irreducible ones.

The problem of decomposing functions into simpler pieces with respect to
the transformation behavior under a certain symmetry group arises in many
situations, not only in mathematics, but also in the natural sciences. In math-
ematics, unitary representation theory has many applications in areas ranging
from number theory, geometry, real and complex analysis to partial differential
equations (see in particular [Ma78g]).

One of the strongest motivations for the systematic development of the the-
ory of unitary group representations that started in the 1940s, was its close
connection to Quantum Mechanics. This connection is due to the fact that the
state space of a quantum mechanical system is modeled by the set

P(H) :={[v]=Cv: 0£v e H}

of one-dimensional subspaces of a complex Hilbert space, its projective space.
This spaces carries several interesting structures. The most important one for
physics is the function
[{v, w)[?
B:P(H) x P(H) — [0,1],  B([v], [w]) :=

llPlwl??
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which is interpreted as a transition probability between the two states [v] and
[w]. A central feature of quantum physical models is that systems are often
specified by their symmetries. More concretely, this means that each system
has a symmetry group G. It acts on the corresponding set P(H) of states in
such a way that it preserves the transition probabilities, i.e., we have a group
action G x P(H) — P(H), (g, [v]) — g[v], satisfying

Blglv], glw]) = B([o], [w])  for g€ G,0#v,we.

To link these structures to unitary representations, we have to quote Wigner’s
fundamental theorem that for each bijection ¢ of P(H) preserving 3, there
exists either a linear or an antilinear surjective isometry @: ‘H — H such that
plv] = [@(v)] holds for each 0 # v € H (cf. [Bab4]; see also [FE00, Thm. 14.3.6]
for Wigner’s Theorem and various generalizations and [PF80] for the Lorentzian
case). This leads to a surjective homomorphism

T: AU(H) — Aut(P(H),8), & o,

where AU(H) denotes the set of semilinear unitary operators, where semilinear
means either linear or antilinear. If G C Aut(IP(H), ) is a quantum mechanical
symmetry group, we thus obtain a subgroup G* := I'"1(G) C AU(H) with a
semilinear unitary representation on H, and the subgroup G¥ := G* N U(H) of
index at most two is a unitary group. One subtlety that we observe here is that
the homomorphism I' is not injective. If dimH > 1, then its kernel consists of
the circle group T1 = {z1: |z| = 1,z € C}, so that

G=GYT

and G* is an extension of the group G by the circle group T which is central if
G* C U(H), resp., G CT(U(H)).

It is this line of reasoning that leads from quantum mechanical symmetries to
the problem of classifying irreducible unitary representation of a group G, resp.,
of its T-extensions G¥, because these representations correspond to systems with
the same kind of symmetry. Similar questions lead in particular to the problem
of classifying elementary particles in terms of representations of certain compact
Lie groups (cf. [BH09, [Va85| MaT8g]).



Chapter 1

Continuous Unitary
Representations

Throughout these notes we shall mainly be concerned with continuous repre-
sentations of topological groups. Therefore Section [I.1] introduces topological
groups and some important examples. In Section [I.2] we discuss continuity of
unitary representations and provide some methods that can be used to verify
continuity easily in many situations. We also introduce the strong topology
on the unitary group U(#) for which a continuous unitary representation of G
is the same as a continuous group homomorphism 7: G — U(H). As a first
step in the decomposition theory of representations, we discuss in Section [L.3
direct sums of unitary representations and show that every representation is a
direct sum of cyclic ones. Later we shall study cyclic representations in terms
of positive definite functions on G.

1.1 Topological Groups

Definition 1.1.1. A topological group is a pair (G,7) of a group G and a
Hausdorff topology 7 for which the group operations

mg:GxG—=G, (z,y)—2zy and ng:G—=G, z—z !
are continuous when G x G carries the product topology. Then we call T a group
topology on the group G.

Remark 1.1.2. The continuity of the group operations can also be translated
into the following conditions which are more direct than referring to the product
topology on G. The continuity of the multiplication m¢ in (z,y) € G X G means
that for each neighborhood V of xy there exist neighborhoods U, of = and U,
of y with U,U, C V. Similarly, the continuity of the inversion map 7ng in x
means that for each neighborhood V' of x7!, there exists a neighborhood U, of
rwithU;l={y t:yeU,}CV.
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Remark 1.1.3. For a group G with a topology 7, the continuity of m¢g and ng
already follows from the continuity of the single map

0:GxG—=G, (g,h)—ght.

In fact, if ¢ is continuous, then the inversion ng(g) = g~ = ¢(1,9) is the
composition of ¢ and the continuous map G — GxG, g — (1, g). The continuity
of ng further implies that the product map

idgxnc;:GXG—)GXG, (g,h)'—)(gJI_l)
is continuous, and therefore mg = ¢ o (idg xn¢g) is continuous.

Remark 1.1.4. Every subgroup H of a topological group G is a topological
group with respect to the subspace topology.

Examples 1.1.5. (a) G = (R", +) is an abelian topological group with respect
to any metric defined by a norm.

More generally, the additive group (X,+) of every normed space X is a
topological group.

(b) (C*,-) is a topological group and the circle group T := {z € C*: |z| = 1}
is a compact subgroup.

(c) The group GL,(R) of invertible (n x n)-matrices is a topological group
with respect to matrix multiplication. The continuity of the inversion follows
from Cramer’s Rule, which provides an explicit formula for the inverse in terms
of determinants: For g € GL,(R), we define b;;(g) := det(gmk)m=j k- Then
the inverse of g is given by

(_1)i+j
det g

(see Proposition [1.1.10| for a different argument).
(d) Any group G is a topological group with respect to the discrete topology.

(97D = bi;(9)

We have already argued above that the group GL,(R) carries a natural
group topology. This group is the unit group of the algebra M, (R) of real
(n x m)-matrices. As we shall see now, there is a vast generalization of this
construction.

Definition 1.1.6. A Banach algebra is a triple (A, m4, || -||) of a Banach space
(A, -|), together with an associative bilinear multiplication

my: AxA— A (a,b) — ab
for which the norm || - || is submultiplicative, i.e.,
labll < llall- bl for a,be A

By abuse of notation, we shall mostly call A a Banach algebra, if the norm and
the multiplication are clear from the context.
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A wunital Banach algebra is a pair (A, 1) of a Banach algebra .4 and an
element 1 € A satisfying 1a = al = a for each a € A and ||1|| = 1. The subset

A :={ae€ A: (3be A) ab=ba =1}

is called the unit group of A (cf. Exercise [1.1.15)).

Example 1.1.7. (a) If (X,| - ||) is a Banach space, then the space B(X) of
continuous linear operators A: X — X is a unital Banach algebra with respect
to the operator norm

[A]}:= sup{[|Az[|: = € X, [[=[| <1}

and composition of maps. Note that the submultiplicativity of the operator
norm, i.e.,

[AB]| < [|A]l - [|BII,
is an immediate consequence of the estimate
[ABz| < [|A[l - || Bz[| < [|A[l- | B]| - [l=]|  for = e X.

In this case the unit group is also denoted GL(X) := B(X)*.

(b) If X is a compact space and A a Banach algebra, then the space C(X, .A)
of A-valued continuous functions on X is a Banach algebra with respect to
pointwise multiplication (fg)(z) := f(x)g(x) and the norm

1f1 == sup [|f(2)]|
reX
(Exercise [1.1.14))

(¢) An important special case of (b) arises for A = M,,(C), where we obtain

Example 1.1.8. For any norm || - || on C", the choice of a basis yields an iso-
morphism of algebras M,,(C) = B(C"), so that GL,(C) = B(C™)* = GL(C").

Remark 1.1.9. In a Banach algebra A, the multiplication is continuous because
an — a and b, — b implies ||b,|| — ||b|| and therefore

lanbr — abl] = llanbn — aby + aby — ab]| < llan — all - [lbal + ]l - bn — bl] = 0.
In particular, left and right multiplications
Aa: A= Az —azx, and p,: A— Az~ za,
are continuous with
Pall < llall  and  [lpall < llall (1.1)

Proposition 1.1.10. The unit group A* of a unital Banach algebra is an open
subset and a topological group with respect to the topology defined by the metric
d(a,b) := |la —b||.
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Proof. The proof is based on the convergence of the Neumann series Z;’LO:O z"
for ||z|| < 1. For any such 2 we have

(lf:c)ix" = (ix")(lfx) =1,
n=0 n=0

so that 1 — 2 € A*. We conclude that the open unit ball B;(1) is contained
in A*.

Next we note that left multiplications Ay: A — A with elements g € A*
are continuous (Remark [1.1.9), hence homeomorphisms because A\;' = Xj-1 is
also continuous. Therefore gB1(1) = AyB1(1) C A* is an open subset, showing
that g is an interior point of A*. Hence A* is open.

The continuity of the multiplication of A* follows from the continuity of
the multiplication on A by restriction and corestriction (Remark [I.1.9). The
continuity of the inversion in 1 follows from the estimate

-t -1 =] e
n=1

& 1 ]
<3l = —1- ,
2 = ol = T[]

which tends to 0 for z — 0. The continuity of the inversion in g € A* is now
obtained as follows. If g, — g, then g,g~! — 1 follows from the continity of
the right multiplications, so that

1

gt =9 (gng ) P2 g7t

follows from the continuity of the inversion in 1 and the continuity of the left
multiplications. This shows that A is a topological group. O

As we shall see throughout these notes, dealing with unitary representations
often leads us to Banach algebras with an extra structure given by an involution.

Definition 1.1.11. (a) An involutive algebra A is a pair (A, *) of a complex
algebra A and a map A — A, a — a*, satisfying

(1) (a*)* = a (Involutivity)
(2) (Ma+ pb)* = Aa* +mb* (Antilinearity).
(3) (ab)* = b*a* (x is an antiautomorphism of A).

Then * is called an involution on A. A Banach-x-algebra is an involutive algebra
(A, *), where A is a Banach algebra and |a*|| = ||a|| holds for each a € A. If,
in addition,

la*all = lal? for ae A,

then (A, %) is called a C*-algebra.
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Example 1.1.12. (a) The algebra B(#) of bounded operators on a complex
Hilbert space H is a C*-algebra. Here the main point is that, for each A € B(H),
we have

[A]l = sup{|(Av, w)[: [Jo]], [lw] <1},

which immediately implies that ||A*|| = ||A]|. It also implies that
1A Al = sup{|(Av, Aw)|: [Jv]], w]| < 1} > sup{]|Av|*: [lo]| < 1} = [|A],

and since ||A*A|| < [|A*]| - |A|| = ||A]|*> by Example we see that B(H) is
a C*-algebra.

(b) From (a) it immediately follows that every closed *-invariant subalgebra
of A C B(H) also is a C*-algebra.

(c) If X is a compact space, then the Banach space C(X,C), endowed with

[fII':= sup | ()]
zeX

is a C*-algebra with respect to f*(x) := f(x). In this case || f*f|| = |||f|?|| =
| £II? is trivial.

(d) If X is a locally compact space, then we say that a continuous function
f: X — C vanishes at infinity if, for each ¢ > 0, there exists a compact subset
K C X with |f(z)] < e for z ¢ K. We write Cy(X,C) for the set of all
continuous functions vanishing at infinity and endow it with the norm

If1 == sup | f(z)].
reX
(cf. Exercise|1.1.16)). Then Cy(X,C) is a C*-algebra with respect the involution
[r(x) = f(z).
Example 1.1.13. (a) If H is a (complex) Hilbert space, then its unitary group
UH) :={g € GL(H): g" =g}

is a topological group with respect to the metric d(g, k) := ||g—h||. It is a closed
subgroup of the unit group GL(H) = B(H)* of the C*-algebra B(H).
For H = C", endowed with the standard scalar product, we also write

U,(C) :={g € GL,(C): g* = g~ '} = U(C"),

and note that
Ui(C)={z€C* =GL(C): |z| =1} =T

is the circle group.
(b) If A is a unital C*-algebra, then its unitary group

UA) :={gecA: g9 =g"g=1}

also is a topological group with respect to the norm topology.
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Exercises for Section [1.1]
Exercise 1.1.1. Show that, for each n € N, the unitary group
Un(C) ={g € GLn(C): 1 =g"g = gg"}
is compact.
Exercise 1.1.2. Let C,, := {z € C*: 2" = 1} denote the group of nth roots of unity
and (m,H) be a unitary representation of C,. Show that:
(i) Every homomorphism y: C,, — T is of the form x4 (z) = 2* for some k € Z.

(ii) The set C, = Hom(C,,T) is a group with respect to pointwise multiplication
which is isomorphic to C,,.

(i) Py := % EZECn 27 *n(2) is an orthogonal projection onto the common eigenspace
Hi = {v € H: (V2 € Cp) m(z)v = 2"}

(iv) PixPmn =0 for m —k ¢ nZ.
(V) PBo+Pit+--+Pyr=idyyand H=Ho D -+ ® Hp—1.
Exercise 1.1.3. Show that, for every finite abelian group A, the character group A=

Hom(A, T) is isomorphic to A. Hint: Exercise ii) and the primary decomposition
of A.

Exercise 1.1.4. (Antilinear Isometries) Let H be a complex Hilbert space. Show
that:

(a) There exists an antilinear isometric involution 7 on H. Such involutions are called
conjugations. Hint: Use an orthonormal basis (e;);jes of H.

(b) A map ¢: H — H is an antilinear isometry if and only if
(p(v), p(w)) = (w,v) for v,weH.

(¢) If o is an antilinear isometric involution of #, then there exists an orthonormal
basis (e;)jes fixed pointwise by o. Hint: Show that H := {v € H: o(v) = v}
is a real Hilbert space with H° @ iH’ = H and pick an ONB in H°.

(d) If dim# > 1, then no antilinear involution o acts trivially on P(H), i.e., there
exists an element v € H with o(v) ¢ Co.

(e) If dimH = 1, then every antilinear isometry o: H — H is an involution.

Exercise 1.1.5. (Antilinear Isometries) Let H be a complex Hilbert space. Show
that:

(a) Inthe group AU(H) of semilinear (=linear or antilinear) surjective isometries of H,
the unitary group U(#H) is a normal subgroup of index 2 (cf. Exercise a)).

(b) Each antilinear isometry ¢ of H induces a map ¢: P(H) — P(H), [v] — [p(v)]

v,w 2 .
preserving B([v], [w]) = m, ie.,

N [ O™ )] W
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(¢) An element g € U(H) induces the identity on P(H) if and only if g € T1.
(d) If there exists an antilinear isometry inducing the identity on P(#), then dim H = 1.
Hint: Show first that o® = 1 (Exercise e)) and then use Exercise c).

Exercise 1.1.6. Show that, for the one-dimensional Hilbert space H = C, the group
AU(#H) is isomorphic to the group O2(R) of linear isometries of the euclidean plane.

Exercise 1.1.7. Let H be a complex Hilbert space. We endow its unit sphere
S(H) :={veH: ||v|]| =1}

with the metric inherited from H: d(z,y) = || — y|| and consider the projective space
P(H) as the set of T-orbits in P(#). Show that the corresponding quotient metric on
P(H) satisfies

d([z], [y]) := d(Tz, Ty) = /2(1 — [{z,9)]) € [0, V2].

Exercise 1.1.8. Let (vn)nen be a sequence in a Hilbert space H which converges
weakly to v, i.e., (vn,w) — (v,w) for every w € H, and assume that ||v,| — [|v]].
Then we have v, — v.

Exercise 1.1.9. Let G be a topological group. Show that the following assertions
hold:
(i) The left multiplication maps A\g: G — G,z — gz are homeomorphisms.
(i1) The right multiplication maps py: G — G, x — xg are homeomorphisms.
(iii) The conjugation maps c,: G — G, x > gxg~' are homeomorphisms.
(iv) The inversion map ng: G — G,z + ™' is a homeomorphism.
Exercise 1.1.10. Let G be a group, endowed with a topology 7. Show that (G, 7) is
a topological group if the following conditions are satisfied:
(i) The left multiplication maps Ay: G — G,z — gx are continuous.
(ii) The inversion map ng: G — G,z ~ x~ ' is continuous.
(iii) The multiplication mg: G x G — G is continuous in (1, 1).
Hint: Use (i) and (ii) to derive that all right multiplications and hence all conjugations
are continuous.
Exercise 1.1.11. Let G be a group, endowed with a topology 7. Show that (G, 1) is
a topological group if the following conditions are satisfied:
(i) The left multiplication maps Ag: G — G,z — gx are continuous.
(i)
(iii) The inversion map ng: G — G is continuous in 1.
)

The right multiplication maps py: G — G,z — xg are continuous.

(iv) The multiplication m¢g: G X G — G is continuous in (1,1).

Exercise 1.1.12. Show that if (G;)ier is a family of topological groups, then the
product group G := Hie] G, is a topological group with respect to the product topol-

ogy.
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Exercise 1.1.13. Let G and N be topological groups and suppose that the homo-
morphism a: G — Aut(N) defines a continuous map

GxN— N, (g,n)— ag(n).
Then N x G is a group with respect to the multiplication

(n,9)(n',g') := (nag(n’), g9"),
called the semidirect product of N and G with respect to a. It is denoted N x, G.

Show that it is a topological group with respect to the product topology.
A typical example is the group

Mot(H) := H xo U(H)

of affine isometries of a complex Hilbert space H; also called the motion group. In
this case ay(v) = gv and Mot(H) acts on H by a, gv := b+ gv (hence the name).
On U(H) we may either use the norm topology or the strong topology. For both we
obtain group topologies on Mot(#) (verify this!) (cf. Exercise below).

Exercise 1.1.14. Let X be a compact space and A be a Banach algebra. Show that:

(a) The space C(X,.A) of A-valued continuous functions on X is a complex asso-
ciative algebra with respect to pointwise multiplication (fg)(z) := f(x)g(x).

(b) [|f]l :=sup,ex ||f(x)]] is a submultiplicative norm on C'(X, .A) for which C(X, A)
is complete, hence a Banach algebra. Hint: Continuous functions on compact
spaces are bounded and uniform limits of sequences of continuous functions are
continuous.

(c) C(X,A)* =C(X,A).

(d) If A is a C*-algebra, then C(X,.A) is also a C*-algebra with respect to the
involution f*(z) := f(z)*, z € X.

Exercise 1.1.15. Let A be a Banach algebra over K € {R,C}. If A has no unit, we
cannot directly associate a “unit group” to .A. However, there is a natural way to do
that by considering on A the multiplication

T*Y =T+ Y+ Y.

Show that:
(a) The space Ay := A x K is a unital Banach algebra with respect to the multi-
plication
(a,t)(d,t)
(b) The map n: A — A4,z — (x,1) is injective and satisfies n(z * y) = n(z)n(y).
Conclude in particular that (A, *,0) is a monoid, i.e., a semigroup with neutral
element 0.

= (aad’ +ta’ +t'a,tt’).

(¢) An element a € A is said to be quasi-invertible if it is an invertible element in
the monoid (A, *,0). Show that the set .A* of quasi-invertible elements of A is
an open subset and that (A%, *,0) is a topological group.

Exercise 1.1.16. Let X be a locally compact space and A be a Banach algebra. We
say that a continuous function f: X — A vanishes at infinity if, for each € > 0, there
exists a compact subset K C X with ||f(z)|| < € for z ¢ K. We write Co(X,.A)
for the set of all continuous .A-valued functions vanishing at infinity. Show that all
assertions of Exercise remain true in this more general context, where (c) has
to be interpreted in the sense of quasi-invertible elements (Exercise [I.1.15).
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1.2 Continuous Unitary Representations

For a topological group GG, we only want to consider unitary representations
which are continuous in some sense. Since we have already seen above that
the unitary group U(H) of a Hilbert space is a topological group with respect
to the metric induced by the operator norm, it seems natural to call a unitary
representation 7: G — U(H) continuous if it is continuous with respect to the
norm topology on U(H). However, the norm topology on U(H) is very fine, so
that continuity with respect to this topology is a condition which is much too
strong for many applications. We therefore need a suitable weaker topology on
the unitary group.

We start by defining some topologies on the space B(#) of all continuous
operators which are weaker than the norm topology.

Definition 1.2.1. Let H be a Hilbert space. On B(H) we define the weak
operator topology T,, as the coarsest topology for which all functions

fow: B(H) - C, Aw (Av,w), v,weH,

are continuous. We define the strong operator topology Ts as the coarsest topol-
ogy for which all maps

BH) > H, A~ Av, veH,

are continuous. This topology is also called the topology of pointwise conver-
gence.

Remark 1.2.2. (a) Since
[fo0(A) = fouw(B)] = [{(A = B)v,w)| < [[(A = B)o| - [lw]

by the Cauchy—Schwarz Inequality, the functions f, ,, are continuous on B(H)
with respect to the strong operator topology. Therefore the weak operator
topology is weaker (=coarser) than the strong one.

(b) In the weak operator topology all left and right multiplications

Aa: B(H) —» B(H), X~ AX and pa:B(H)— B(H), X— XA
are continuous. Indeed, for v,w € H, we have
fow(Aa(X)) = (AXv,w) = fo,a-0(X),

so that f, ., 0A4 is continuous, and this implies that A 4 is continuous. Similarly,
we obtain f, ., © pa = fav,w, and hence the continuity of pa.

Proposition 1.2.3. On the unitary group U(H), the weak and the strong op-
erator topology coincide and turn it into a topological group.

We write U(H); for the topological group (U(H), 7s)-
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Proof. For v € H and g,h € U(H), we have

[hv = gv]|* = [[ho]|* + [|lgv]|* — 2 Re(hv, gv) = 2|[v]|* — 2Re(gu, hv)
= 2”1)”2 —2Re fv,hv(g)'

Therefore the continuity of the function f, , implies that the orbit map U(H) —
‘H,g — gv is continuous in h with respect to the weak operator topology. We
conclude that the weak operator topology on U(H) is finer than the strong one.
Since it is also coarser by Remark both topologies coincide on U(H).

The continuity of the multiplication in U(#) is most easily verified in the
strong operator topology, where it follows from the estimate

lg'h'v— ghv| = |lg'(h" — h)v + (¢ — g)hv| < |lg' (K" — h)v|| + [[(¢" — g)hv]|
= [|(h" = h)v]| + [I(g" — g)hv]|.

This expression tends to zero for ¢ — g and A’ — h in the strong operator
topology.

The continuity of the inversion follows in the weak topology from the conti-
nuity of the functions

fow(g™) = (g7 0,w) = (v, gw) = (gw,v) = fuu(9)
for v,w € H and g € U(H). O

Remark 1.2.4. (a) If dimH < oo, then the norm topology and the strong
operator topology coincide on B(H), hence in particular on U(H). In fact,
choosing an orthonormal basis (e1,...,ey) in H, we represent A € B(H) by the
matrix A = (a;;) € M, (C), where a;; = (Aej,e;) = fe, e, (A). If By € M,(C)

denote the matrix units, we have A = Z?jzl ai; Eyj;, so that

1AL < D7 lagllEgl = Y ey e (DB,

ij=1 ij=1

which shows that convergence in the weak topology implies convergence in the
norm topology.

(b) If dimH = oo, then the strong operator topology on U(H) is strictly
weaker than the norm topology. In fact, let (e;);e; be an orthonormal basis of
H. Then I is infinite, so that we may w.l.o.g. assume that N C [. For each
n, we then define the unitary operator g, € U(H) by gne; := (—1)%ne;. For
n # m, we then have

l9n — gmll = [[(gn — gm)enll = | — 2en]l = 2,
and
<gnv,w> - <va> = <gnv - v7w> = <_2<Uven>€naw> = —2<v7en><en,w> -0

implies that lim,_,., g, = 1 in the weak operator topology.
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Definition 1.2.5. Let H be a complex Hilbert space and G a topological group.
A continuous homomorphism

m: G — U(H)s

is called a (continuous) unitary representation of G. We often denote unitary
representations as pairs (m,H). In view of Proposition the continuity
of 7 is equivalent to the continuity of all the representative functions (matrix
coefficients)

Tow: G—=C, myw(g) = (m(g)v,w).

A representation (w,H) is called norm continuous, if it is continuous with
respect to the operator norm on U(H). Clearly, this condition is stronger (Ex-

ercise |1.2.4).

Here is a convenient criterion for the continuity of a unitary representation:

Lemma 1.2.6. A unitary representation (mw,H) of the topological group G is
continuous if and only if there exists a total subset E C H (i.e., span E is dense)
such that the functions m, ., are continuous for v,w € E.

Proof. The condition is clearly necessary because we may take F = H.

To see that it is also sufficient, we show that all functions m, ,, v,w € H,
are continuous (Proposition . If F' := span E, then all functions 7, ,,
v,w € F, are continuous because the space C(G,C) of continuous functions on
G is a vector space.

Let v,w € ‘H and v, — v, w, — w with v,,w, € F. We claim that the
sequence T, ., converges uniformly to m, ,,, which then implies its continuity.
In fact, for each g € G, we have

1T w00 (9) = To,w(9)] = [(T(9)Vn, wn) — (T(g)v, w)]
= [(m(g)(vn — ), wn) — (7 (g)v,w — wy)|
< [Im(g)(vn — ) lllwnll + |7 (g)v]l[[w — wa |
= [lvn = vllllwn ]l + [[vll[lw = wn| = 0. O

Example 1.2.7. If (e;) e is an orthonormal basis of #, then E := {e;: j € J}
is a total subset. We associate to A € B(H) the matrix (a;x); ke, defined by

aji = (Aeg, e;),

so that

Akaek = Z (Zajkxk)ej.

keJ jeJ keJ

Now Lemma asserts that a unitary representation (m,H) of G is con-
tinuous if and only if all matrix coefficients

ij(g) = <7T(9)€k,€j> = Tey,e; (9)
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are continuous. These functions are the entries of w(g), considered as a (J x J)-
matrix.

For H = C", we have U(H) = U,(C), and the preceding argument show
that a unitary representation 7: G — U, (C) is continuous if and only if all the
functions m;;: G — C defined by the matrix entries 7(g) = (m;(9))1<i,j<n are
continuous.

To deal with unitary group representations, we shall frequently have to deal
with representations of more general structures, called involutive semigroups.

Definition 1.2.8. (a) A pair (S, %) of a semigroup S and an involutive antiau-
tomorphism s — s* is called an involutive semigroup. Then we have (st)* = t*s*
for s,t € S and (s*)* = s.

(b) If, in addition, S carries a topology 7 for which involution and multipli-
cation are continuous, then (S, *,7) is called a topological involutive semigroup.

Example 1.2.9. (a) Any abelian (topological) semigroup S becomes an invo-
lutive (topological) semigroup with respect to s* := s.

(b) If G is a (topological) group and g* := g1, then (G, *) is an involutive
(topological) semigroup.

(¢) An example of particular interest is the multiplicative semigroup S =
(B(H),-) of bounded operators on a complex Hilbert space % (Example[L.1.12(a)).

Definition 1.2.10. (a) A representation (w,H) of the involutive semigroup
(S, *) is a homomorphism 7: S — B(H) of semigroups satisfying 7(s*) = m(s)*
for each s € S.

(b) A representation (7, H) of (S, *) is called non-degenerate, if 7(S)H spans
a dense subspace of H. This is in particular the case if 1 € 7(.5).

(¢) A representation (m, H) is called cyclic if there exists a v € H for which
m(S)v spans a dense subspace of H.

(d) A representation (m,H) is called irreducible if H # {0} and {0} and H
are the only closed 7(S)-invariant subspaces of H.

Example 1.2.11. If G is a group with ¢* = ¢!, then the representations of
the involutive semigroup (G, *) mapping 1 € G to 1 € B(H), are precisely the
unitary representations of G. All unitary representations of groups are non-
degenerate since 7(1) = 1.

Exercises for Section [1.2]

Exercise 1.2.1. Let H be a Hilbert space. Show that:
(a) The involution * B(H) is continuous with respect to the weak operator topology.

(b) On every bounded subset K C B(H) the multiplication (A4, B) — AB is contin-
uous with respect to the strong operator topology.

(c) On the unit sphere S := {& € H: ||z|| = 1} the norm topology coincides with
the weak topology.



1.2. CONTINUOUS UNITARY REPRESENTATIONS 17

Exercise 1.2.2. Suppose that dim H = co. Show that the unit sphere S(H) is dense
in the closed unit ball B C ‘H with respect to the weak topology, which is the coarsest
topology for which all functions f, = (-,v): B — C,v € H are continuous.

Exercise 1.2.3. Let H be a Hilbert space and U(H), its unitary group, endowed with
the strong (=weak) operator topology. Show that the action map

o: UH)s xH—>H, (g,v)— gv

is continuous. Conclude that every continuous unitary representation (m,H) of a
topological group G defines a continuous action of G on H by g.v := 7(g)v.

Exercise 1.2.4. Let (an)nen be a sequence of real numbers. Show that we obtain a
continuous unitary representation of G = (R, +) on H = £*(N, C) by

n(t)z = (" xy, e 2xy, .. ).

Show further that, if the sequence (a,) is unbounded, then 7 is not norm continuous.
Is it norm continuous if the sequence (ay) is bounded?

Exercise 1.2.5. Let (m,H) be a representation of an involutive semigroup (S, *).
Show that:

(a) (m,H) is non-degenerate if and only if 7(S)v C {0} implies v = 0.

(b) Show that (m, #) is an orthogonal direct sum of a non-degenerate representation

and a zero representation (¢, K), i.e., ((S) = {0}.

Exercise 1.2.6. Let (m,H) be a representation of the involutive semigroup (G,nea),
where G is a group. Show that:

(a) (m,H) is non-degenerate if and only if 7(1) = 1.

(b) H ="Ho ® Hi, where H; = ker(n(1) — j1), is an orthogonal direct sum.
Exercise 1.2.7. (A topology on the isometry group of a metric space) Let (X, d) be
a metric space and Aut(X, d) be the group of automorphisms of (X, d), i.e., the group

of bijective isometries. Show that the coarsest topology on Aut(X,d) for which all
functions

for Aut(X,d) = R, fz(g) :=d(gz,x)

are continuous turns Aut(X,d) into a topological group and that the action
o: Aut(X,d) x X — X,(g,x) — gz is continuous (cf. Exercise and Proposi-

tion .

Exercise 1.2.8. Let E C H be a dense subspace. Show that on every bounded subset
B C B(H) the weak operator topology is the coarsest topology for which all functions

fow: B—C, v,wée€E,

are continuous.
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1.3 Discrete Decomposition and Direct Sums

One major goal of the theory of unitary representations is to decompose a
unitary representation into simpler pieces. The first basic observation is that,
for any closed invariant subspace K C H, its orthogonal complement is also
invariant, so that we obtain a decomposition into the two subrepresentations
on K and Kt. The next step is to iterate this process whenever either K of
K1 is not irreducible. This method works well if A is finite dimensional, but in
general it may not lead to a decomposition into irreducible pieces. However, we
shall apply this strategy to show at least that every unitary representation is a
direct sum of cyclic ones.
We start with the discussion of invariant subspaces.

Lemma 1.3.1. Let K C H be a closed subspace, P € B(H) be the orthogonal
projection on K and S C B(H) be a x-invariant subset. Then the following are
equivalent

(i) K is S-invariant.
(ii) K+ is S-invariant.
(iii) P commutes with S.
Proof. (i) = (ii): If w € K+ and v € K, we have for any s € S the relation
(sw,v) = (w, s*v) = 0 because s*v € SK C K.
(ii) = (iil): First we observe that the same argument as above implies that
the invariance of K1 entails the invariance of K = (K1)+.

We write v = vg + v1, according to the decomposition H = K @ K. Then
we have for any s € S:

sPv = svg = Psvg = P(svg + sv1) = Psv,

so that P commutes with S.
(iii) = (i) follows from the fact that K = ker(P — 1) is an eigenspace of P,
hence invariant under every operator commuting with P. O

We record an important consequence for x-representations:

Proposition 1.3.2. If (7, H) is a continuous representation of the topological
involutive semigroup (S, *) and H1 C H a closed invariant subspace, then Ho :=
Hi is also invariant.

Writing elements of B(H) according to the decomposition H = Hi & Ha
as matrices Lcl Z) with a € B(Hi1), b € B(Hz2,H1), ¢ € B(H1,H2) and
d € B(Hz) (Exercise|1.3.8), we then have

9= (76" i)

where (m;,Hi), i = 1,2, are continuous representations.
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Proof. The invariance of Hgy follows from Lemma because 7(S) C B(H)
is *-invariant. Therefore m;(s) := 77(3)|z7

J

and we obtain two representations (m;,H;) of (S,*). Their continuity follows
immediately from the continuity of (7, H). O

is a bounded operator for each s € S

Definition 1.3.3. (a) If (m, H) is a representation of (S, ) and K C H a closed
S-invariant subspace, then p(s) := 7(s)|& defines a representation (p, ) which
is called a subrepresentation of (m, H).

(b) If (m, H) and (p, K) are representations of (5, x), then a bounded operator
A: K — H satistying

Aop(s)=m(s)oA forall se8

is called an intertwining operator. We write Bg(K,H) for the set of all in-
tertwining operators. It is a closed subspace of the Banach space B(K,H)
(Exercise [1.3.9).

(¢) Two representations (w, H) and (p, K) of (S, *) are said to be equivalent if
there exists a unitary intertwining operator A: K — H. It is easy to see that this
defines indeed an equivalence relation on the class of all unitary representations.
We write [7] for the equivalence class of the representation (7, H).

To understand the decomposition of representations into smaller pieces, we
also need infinite “direct sums” of representations, hence the concept of a direct
sum of Hilbert spaces which in turn requires the somewhat subtle concept of
summability in Banach spaces.

Definition 1.3.4. Let I be a set and X a Banach space. Then a family (z;);ecs
is called summable to x € X if, for every € > 0, there exists a finite subset
I. C I with the property that, for every finite subset F' O I, we have

H g xi—xH<€.
i€l

If (74)ier is summable to x, we write z =), ; xlﬂ

Remark 1.3.5. (a) Note that, for I = N, the summability of a family (2, )nen
in a Banach space X is stronger than the convergence of the series >~ | .
In fact, if = ) .y holds in the sense of summability and N. C N is a
finite subset with the property that, for every finite subset F' O N, we have
| > ner Tn — || <€, then we have for N > max N, in particular

N
> wn—af <,
n=1

IThis can also be formulated in terms of convergence of nets. First we order the set
T:={F CI:|F| < oo} of finite subsets of I by set inclusion, so that F'~ >", . x; is a net
in X, called the net of partial sums. Then the summability of (z;);cs in X is equivalent to
the convergence of this net in X.
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showing that the series Y | x, converges to x.

(b) If, conversely, the series Y~ | x,, converges absolutely to some z € X and
e > 0, then there exists an N € Nwith Y > |lz, || <e. With N, :={1,..., N}
we then find for every finite superset F' O N, that

le ="zl < 3 Naall <7 flanll <o

ner neEN\F n>N

Therefore we also have x = ) 2, in the sense of summability.

(¢c) For X = R and I = N, summability of (x,)nen implies in particular
convergence of all reordered series ZZO:1 Tg(n), Wwhere 0: N — N is a bijection.
Therefore Riemann’s Reordering Theorem shows that summability implies ab-
solute convergence.

(d) If (z;)ier is a family in Ry = [0, oo], then the situation is much simpler.
Here summability is easily seen to be equivalent to the existence of the supre-
mum of the set F := {>°, px;: F CI,|F| < oo} of all finite partial sums, and
in this case ), ; x; = sup F.

Lemma 1.3.6. Let (H;)jcs be a family of Hilbert spaces and
Hi={(2)ses € [THs: 3 losl? < oo}
JjeJ jeJ
Then H is a Hilbert space with respect to the scalar product
(@3)ier Wi)jes) = D> (5, y5)-
jeJ

Proof. First we show that H is a linear subspace of the complex vector space
11 jes Hj, in which we define addition and scalar multiplication componentwise.
Clearly, H is invariant under multiplication with complex scalars. For a,b € H;,
the parallelogram identity

lla +b* + lla = b][* = 2{al|* + 2/|b]|*
(Exercise) implies that
lla +0]1* < 2(lall* + [[b]%)-
For x = (x;)jer,y = (y;)jes € H, we therefore obtain
Dol +yill? <2 llas?+2> ) llysll* < oo
JjeJ jeJ jeJ

This shows that x 4+ y € H, so that H is indeed a linear subspace.
For z,y € H, the polarization identity

3
1 .
(2,y) = 3 D itlle + iyl
k=0
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(Exercise i)) and x + y,x &+ iy € H imply that the sum

(@,y) = (x;,95)

JjeJ

exists. For 0 # x, some z; is non-zero, so that (z,x) > (z;,x;) > 0. It is a
trivial verification that (-,-) is a hermitian form. Therefore H, endowed with
(+,-), is a pre-Hilbert space.

It remains to show that it is complete. This is proved in the same way as the
completeness of the space £2 of square-summable sequences, which is the special
case J = N and H; = C for each j € J. Let (2")nen be a Cauchy sequence
in H. Then |z — 27| < ||z — 2™ holds for each j € J, so that (27 )nen is
a Cauchy sequence in H;. Now the completeness of the spaces H; imply the
existence of elements z; € H; with 27 — x;. For every finite subset F' C J, we
then have

S llaglP = dim S P < lim ST )P = dim o,
jeF jeF jeJ

which exists because (z™),en is a Cauchy sequence. This implies that z :=
(23)je0 € H with ]2 < limp oo [l27 2

Finally, we show that 2™ — x holds in . So let ¢ > 0 and N, € N with
||l — 2™ < e for n,m > N.. For a finite subset F' C .J, we then have

2 1 2 : 2 2
> ey =P = Jim 3 e o <t o - o < e
J€ je

for n > N.. We therefore obtain

lz —a"|* = sup Y|z —af|? <&
FQJ,\F|<ooj€F
This implies that 2™ — x in H, and thus H is complete. O

Definition 1.3.7. For a family of (#;),cs of Hilbert spaces, we define

D= e e [T Yl < oo

jeJ jed jeJ
with the scalar product from Lemma [T.3.6] We call this space the Hilbert space
direct sum of the spaces (#;);cs. This space is larger than the direct vector

space sum of the #;, which is a dense subspace of G/szﬂ-lj (Exercise). In the
following we always identify H; with the subspace

Hi = {(zj)jes: (Vj #1i) z; =0}

Note that the requirement that (||z;]|?);e. is summable implies in particu-
lar that, for each € H, only countably many x; are non-zero, even if J is
uncountable (Exercise [1.3.4)).
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Example 1.3.8. (a) If #; = C for each j € J, we also write

—

2.0 =@, €= {@)es eC: Y lo? < oo}

jeJ

On this space we have

(o) =S (o) and o2 =3 fosl2
jed jeJ
For J = {1,...,n}, we obtain in particular the Hilbert space
C" = ¢*({1,...,n},C).

(b) If all Hilbert spaces H; = K are equal, we put

—

CUK) =@ K= {(xj)jeJ ek’ S llayl® < oo}.

JjeJ

On this space we also have

(@y) = (zjy;) and lz]® =) flayl®.

jeJ jeJ

Proposition 1.3.9. Let (m;, H;)jes be a family of continuous unitary repre-
sentation of G. Then

m(9)(v;)jes = (mj(9)v))jes
defines on H := éjeJHj a continuous unitary representation.

The representation (m,H) is called the direct sum of the representations m;,
Jj € J. It is also denoted m = . ; ;.

Proof. Since all operators m;(g) are unitary, we have

Y lmi(@oil> =D llvjll* < oo for v =(v;)jes € H.

jeJ jeJ

Therefore each 7(g) defines a unitary operator on H (cf. Exercise and we
thus obtain a unitary representation (m,H) of G because each 7; is a unitary
representation.

To see that it is continuous, we use Lemma according to which it
suffices to show that, for v € H; and w € H;, the function

To,w(g) = (m(g)v, w) = 8;5(m;(g)v, w)

is continuous, which immediately follows from the continuity of the representa-
tions ;. O
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As we have seen in the introduction for the translation action of R on L?(R),
we cannot expect in general that a unitary representation decomposes into ir-
reducible ones, but the following proposition is often a useful replacement.

Proposition 1.3.10. Every non-degenerate representation (7w, H) of a involu-
tive semigroup (S, *) is a direct sum of cyclic subrepresentations (mwj, H;)je.r.

Proof. The proof is a typical application of Zorn’s Lemma. We order the set
M of all sets (#H;)jes of mutually orthogonal closed S-invariant subspaces on
which the representation is cyclic by set inclusion. Each chain /C in this ordered
space has an upper bound given by the union [JK € M. Now Zorn’s Lemma
yields a maximal element (H;);cs in M.

Let K := >, ;H;. Since each H; is S-invariant and each 7(s) is continuous,
KC is also S-invariant. In view of Proposition the orthogonal complement
Kt is also S-invariant. If K+ is non-zero, we pick 0 # v € K. Then C :=
span 7(S)v is a closed S-invariant subspace. We claim that v € C, which implies
that the representation on C is cyclic. To this end, we write v = vy + v; with
v1 € C and vy LC. Since C* is also S-invariant, we have

C > m(s)v = m(s)vg +m(s)vy,
—— =
ect ecC

so that 7(s)vg = 0 for every s € S. Since (m, H) is non-degenerate, it follows
that vo = 0 (Exercise . This shows that the representation on C is cyclic.
Therefore C, together with (#;) ;e s is an orthogonal family of S-cyclic subspaces.
This contradicts the maximality of (H;)jes. We thus obtain K1 = {0}, which
proves that K = H.

Finally, we note that the mutual orthogonality of the spaces H; implies the
existence of a map

¥ @jEJHj —H, P(z):= ij
JjeJ
which is easily seen to be isometric (Exercise|1.3.7)). Since its range is dense and
complete, it is also surjective. Moreover, m(s)®((x;)) = ®((m;(s)z;)) implies
that ® is an equivalence of representations. O

Corollary 1.3.11. Every non-degenerate continuous unitary representation
(m,H) of a topological group G is a direct sum of cyclic subrepresentations
(75, Hj)je-

Proposition 1.3.12. Every finite dimensional representation (w,H) of an in-
volutive semigroup (S, *) is a direct sum of irreducible representations.

Proof. This is proved easily by induction on dimH. If dimH < 1, there is
nothing to show. Suppose that dimH = d > 0 and that the assertion is
true for representations of dimension < d. Let K C H be a minimal S-
invariant subspace. Then the representation mx of S on K is irreducible and
H = K @ Kt is an S-invariant decomposition (Proposition . Using the
induction hypothesis on the representation on K=+, the assertion follows. O
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Corollary 1.3.13. If G is a finite group, then each unitary representation
(m,H) of G is a direct sum of irreducible representations (mwj, H;) e

Proof. First we use Proposition to decompose 7 as a direct sum of cyclic
representations 7;. Hence it suffices to show that each cyclic representation is
a direct sum of irreducible ones. Since G is finite, each cyclic representation is
finite dimensional, so that the assertion follows from Proposition O

The preceding corollary remains true for representations of compact groups:

Theorem 1.3.14. (Fundamental Theorem on Unitary Representations of Com-
pact Groups—Abstract Peter—Weyl Theorem) If (7, H) is a continuous unitary
representation of the compact group G, then (m,H) is a direct sum of irreducible
representations and all irreducible representations of G are finite dimensional.

In view of Corollary the main point of the proof of this theorem is
to show that every cyclic representation contains a finite dimensional invariant
subspace. This can be derived from the existence of an invariant probability
measure on a compact group (Haar measure), the theory of compact opera-

tors, and the Spectral Theorem for compact selfadjoint operators. We refer to
Appendix [A] for more details.

Exercises for Section [1.3

Exercise 1.3.1. Let A: H1 — H2 be an isometric linear map between two Hilbert
spaces. Show that A is unitary if A(#H1) is dense in Ho. Hint: Subsets of complete
metric spaces are complete if and only if they are closed.

Exercise 1.3.2. Let b: V x V — C be a sesquilinear form on the complex vector
space V, i.e., b is linear in the first argument and antilinear in the second.

(i) Show that b satisfies the polarization identity which permits to recover all values
of b from those on the diagonal:

|

3
b(z,y) = 7 > i*b(x + iy, z +i*y).
k=0

(ii) Show also that, if b is positive semidefinite, then it satisfies the Cauchy-Schwarz

inequality:
b@,y)> < b@,a)b(y,y) for  v,wE V.

Exercise 1.3.3. Show that a unitary representation (m, H) of a topological group G
is continuous if and only if there exists a dense subspace D C H such that all the
functions

m(g) == (m(g)v,v), vED

are continuous. Hint: Apply the polarization identity to the map (v, w) > Ty .

Exercise 1.3.4. Show that, for each summable family (z;);cs in the Banach space
X, the set

J*={jeJ:z; #0}
is countable, and that, if J* = {j: n € N} is an enumeration of J*, then 37, x; =
> | xj,. Hint: Show that each set J, := {j € J: ||z;|| > L} is finite.
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Exercise 1.3.5. Show that, for an orthogonal family (z;);ecs in the Hilbert space H,
the following are equivalent:

(i) (xj)jes is summable.

(i) (||lz;]*)jes is summable in R.
Show further that, if this is the case, then || ZjeJinHQ = ey |lz;]|*> and the set
{j € J: z; # 0} is countable.
Exercise 1.3.6. Show that for an orthonormal family (x;);es in the Hilbert space
H, the following assertions hold:

1) VzeH)> e, {z;,z)|*> < ||=||* (Bessel inequality).

(i) = = > ;c;(z,z;j)z; holds if and only if 37, ; l(z,z;)|*> = ||z||* (Parseval equal-

ity).

Exercise 1.3.7. Let (#;);cs be an orthogonal family of closed subspaces of the
Hilbert space H. Show that, for each z = (z;)jes € BH,;, the sum @(z) :== 37, ; z;
converges in ‘H and that ®: EB].GJ’Hj — H,(zj)jes — ZjEJ x; defines an isometric
embedding (cf. Exercise [1.3.5]).
Exercise 1.3.8. Let V be a vector space which is the direct sum

V=vio eV,

of the subspaces Vi, i = 1,...,n. Accordingly, we writev € V asasumv = v1+---+v,
with v; € V. To each ¢ € End(V) we associate the map ¢;; € Hom(V}, Vi), defined
by ¢i;(v) = ¢(v); for v € V;. Show that

(@) p(v)i =31 pij(v;) forv=3""_ v; € V.

(b) The map

I @ Hom(V;,V;) = End(V), T((¥i))(v) := Y tbus(v;)

ij=1 i,j=1
is a linear isomorphism. In this sense we may identify endomorphisms of V' with
(n x n)-matrices with entries in Hom(V}, V;) in position (4, 7).

(c) If V is a Banach space and each V; is a closed subspace, then the map
S:Vix--xV,—=V, (vl,...,vn)HZvi
i=1

is a homeomorphism. Moreover, a linear endomorphism ¢: V' — V' is continuous
if and only if each ¢;; is continuous. Hint: For the first assertion use the Open
Mapping Theorem. Conclude that if ¢;: V; — V denotes the inclusion map
and p;: V — Vj the projection map, then both are continuous. Then use that

ij = Pi © P Omn;.

Exercise 1.3.9. Let (m,H) and (p, ) be unitary representations of G. Show that
the space Ba (K, H) of all intertwining operators is a closed subspace of the Banach
space B(K,H)

Exercise 1.3.10. Let G be a group. Show that:
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(a) Each unitary representation (w,H) of G is equivalent to a representation
(p,£%(J,C)) for some set J. Therefore it makes sense to speak of the set of
equivalence classes of representations with a fixed Hilbert dimension.

(b) Two unitary representations m;: G — U(H), j = 1,2, are equivalent if and only
if there exists a unitary operator U € U(H) with
m2(g) = Um(g)U™"  foreach ge€G.

Therefore the set of equivalence classes of unitary representations of G on H is
the set of orbits of the action of U(#H) on the set Hom(G, U(H)) for the action
(U xm)(g) :=Un(g)U L.

Exercise 1.3.11. Let V be a K-vector space and A € End(V). We write V\(A) :=
ker(A — A1) for the eigenspace of A corresponding to the eigenvalue A and V*(A) :=
Unen ker(A —X1)" for the generalized eigenspace of A corresponding to X. Show that,
if A, B € End(V) commute, then

BV*(A) CV*A) and BV)y(A) C Vi(A)

holds for each X\ € K.



Chapter 2

The Commutant of a
Representation

In this chapter we turn to finer information on unitary representations, resp.,
representations of involutive semigroups. We have already seen in Lemma [L.3.1
that for a representation (m,H) of an involutive semigroup (.5, %), a closed sub-
space IC of H is invariant if and only if the corresponding orthogonal projection
Py onto K belongs to the subalgebra

7(S) := Bg(H) = {A € B(H): (Vs € S) Ar(s) = m(s)A}.

This algebra is called the commutant of w(S) and since its hermitian projections
are in one-to-one correspondence with the closed invariant subspaces of H, it
contains all information on how the representation (7, H) decomposes.

A key result in this context is Schur’s Lemma, asserting that 7(S)" = C1 if
and only if (7, #H) is irreducible. Its proof uses a result on C*-algebras that can
be found in Appendix [A.3]

2.1 Commutants and von Neumann algebras
Definition 2.1.1. For a subset S C B(H), we define the commutant by
S':={A € B(H): (Vs € S)sA = As}.

If (m,H) is a representation of an involutive semigroup S, then 7(S) =
Bs(H,H) is called the commutant of (w,H). It coincides with the space of
self-intertwining operators of the representation (w,H) with itself (cf. Defini-

tion [1.3.3)).

Lemma 2.1.2. For subsets E, F C B(H), we have:

() ECF e FCE.

27
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(i) EC E".
(i) ECF= F' CE
(iv) E = E".
(v) E=E"if and only if E = F’' holds for some subset F' C B(H).
Proof. (i) is trivial.
(ii) In view of (i), this is equivalent to £’ C E’, hence trivial.
(iii) is also trivial.
(iv) From (ii) we get E/ C (E')" = E"'. Moreover, (ii) and (iii) imply
E/// g El/.
(v) If E = F', then E” = F"" = F' = FE is a consequence of (iv). The
converse is trivial, O

Lemma 2.1.3. The commutant E' of a subset E C B(H) has the following
properties:

(i) If E is commutative, then so is E".

(ii) E’ is a subalgebra of B(H) which is closed in the weak operator topology,
hence in particular norm-closed.

(iii) If E* = E, then E’ is also x-invariant, hence in particular a C*-subalgebra

of B(H).

Proof. (i) That F is commutative is equivalent to £ C E’, but this implies
E" C E' = E" (Lemma iv)), which means that E” is commutative.

(ii) Clearly E’ is a linear subspace closed under products, hence a subalgebra
of B(H). To see that E’ is closed in the weak operator topology, let v, w € H
and B € E. For A € B(H) we then have

fow(AB — BA) = (ABv,w) — (BAv,w) = (fByw — fo,B*w)(4),

which leads to
E = ﬂ ker(va,w - fv,B*w)7

v,weH,BEE

which is subspace of B(H) that is closed in the weak operator topology.
(iii) If A € E' and B € E, then

A*B — BA* = (B*A— AB*)* =0

follows from B* € E. Therefore E’ is *-invariant. Since it is in particular norm
closed by (ii), E’ is a C*-subalgebra of B(H). O

Definition 2.1.4. A unital %-subalgebra A C B(H) is called a von Neumann
algebra if A= A".
A von Neumann algebra A is called a factor if its center

Z(A):={z€ A: (Va € A)az = za}
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is trivial, i.e., Z(A) = C1. Factors are the building blocks of general von Neu-
mann algebras, and there is a well-developed decomposition theory according
to which any von Neumann algebra is a so-called “direct integral” of factors
(cf. [Dix69]). The classification theory of factors is an important branch of
noncommutative geometry (cf. [Co94]).

Remark 2.1.5. (a) In view of Lemma any von Neumann algebra A is
closed in the weak operator topology.

(b) For every *-invariant subset £ C B(#), the commutant E’ is a von
Neumann algebra because it is also #-invariant and E”/ = E’ (Lemma [2.1.2)).
In particular, for any von Neumann algebra A, the commutant A’ is also a von
Neumann algebra.

(c) Clearly, the center Z(.A) of a von Neumann algebra can also be written
as

Z(A) = ANA = AN A = Z(A).

In particular, A is a factor if and only if its commutant A’ is a factor. Note
that Z(A) = (AU A") also is a von Neumann algebra.

Example 2.1.6. The full algebra A = B(H) is a von Neumann algebra. In
this case A’ = C1 (Exercise [2.2.1]), which implies that B(#) is a factor.

2.2 Schur’s Lemma and some Consequences

The fact that commutants are always C*-algebras is extremely useful in repre-
sentation theory. We now use the results on commutative C*-algebras explained

in Appendix [A73]

Theorem 2.2.1. (Schur’s Lemma) A representation (m,H) of an involutive
semigroup is irreducible if and only if its commutant is trivial, i.e., 7(S)" = C1.

Proof. If (w,H) is not irreducible and K C # is a proper closed invariant sub-
space, then the orthogonal projection P onto K commutes with m(S)
(Lemma[1.3.1)) and P ¢ C1. Therefore 7(S)’" # C1 if 7 is not irreducible.
Suppose, conversely, that 7(S)’ # C1. Then Corollary applies to the
C*-algebra 7(S)’ (Lemmal2.1.3)), so that there exist non-zero commuting A, B €
m(S) with AB = 0. Then K := A(H) is a non-zero closed subspace invariant
under 7(5) and satisfying BK = {0}. Therefore (7, H) is not irreducible. [

For a version of Schur’s Lemma for real Hilbert spaces, asserting that in this
case the commutant is one of the skew fields R, C of H, we refer to [SV02].

Corollary 2.2.2. Every irreducible representation (7, H) of a commutative in-
volutive semigroup (S, *) is one-dimensional.

Proof. If S is commutative, then 7(S) C «(S)’. If (m,H) is irreducible, then
7m(S) = C1 by Schur’s Lemma, and therefore w(S) C C1, so that the irre-
ducibility further implies dimH = 1. O
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Corollary 2.2.3. Suppose that (m,H) is an irreducible representation of an
involutive semigroup and (p,K) any representation of (S,*). If Bs(H,K) #
{0}, then (m,H) is equivalent to a subrepresentation of (p,KC). In particular,
Bgs(H,K) =0 if both representations are irreducible and non-equivalent.

Proof. Let A € Bs(H,K) be a non-zero intertwining operator. Then A*A €
Bs(H) = w(S) = C1 by Schur’s Lemma. If this operator is non-zero, then
(A*Av,v) = ||Av||? > 0 for v € H implies that A*A = A1 for some A > 0.
Then B := A~'/?A is another intertwining operator with B*B = 1. Hence
B:H — K is an isometric embedding. In particular, its image Ky is a closed
non-zero invariant subspace on which the representation induced by p is equiv-
alent to (m,H). O

Corollary 2.2.4. If (w,H) is a representation of an involutive semigroup and
Hi,Ho C H are non-equivalent irreducible subrepresentations, then Hi L Hs.

Proof. Let P: H — H; denote the orthogonal projection onto H;. Since H;
is invariant under 7(S5), Lemma implies that P € Bg(H,H1). Hence
Ply, € Bs(Ha,H1) = {0} by Corollary This means that Hi LHs. O

At this point it is natural to observe that any representation (m, ) of an
involutive semigroup S decomposes naturally into a discrete part (wq, H4) which
is a direct sum of irreducible ones and a continuous part (m., H.) which does
not contain any irreducible subrepresentations.

Proposition 2.2.5. (Maximal discrete subrepresentation) Let (7, H) be a rep-
resentation of the involutive semigroup S on H and Hq C H be the closed
subspace generated by all irreducible subrepresentations. Then the following as-
sertions hold:

(i) Hq is S-invariant and the representation (g, Haq) of S is a direct sum of
irreducible ones.

(ii) The orthogonal space H. := Hg carries a representation (m.,H.) of S
which does not contain any irreducible subrepresentation.

Proof. 1t is clear that the subspace H4 is S-invariant because it is generated by
a family of S-invariant subspaces. To see that it is a direct sum of irreducible
representations, we apply Zorn’s Lemma. Let H;, j € J, be a maximal set of S-
invariant subspaces of H such that the corresponding representations (m;, ;)
are irreducible and H;, LH;, for ji # jo. Set Ho := E]-EJH]‘ C Hg4. Then
Hy == Hy N Hg is S-invariant. We write p: Hy — H; for the orthogonal
projection. Then p is surjective and if H; # {0}, there exists an irreducible
subspace K C Hy4 with p(K) # {0}. This means that Bg(K,H1) # {0} and
hence, by Corollary [2.:2.3] the representation on K is equivalent to an irreducible
subrepresentation of 7{1. This contradicts the maximality of the family (#;),e.
We conclude that H; = {0}, and (i) follows from Exercise [[.3.7

Assertion (ii) follows from the construction of Hg. O
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Example 2.2.6. On R we consider the Borel measure jt = § + A|[1,00[, Where
A is the 1-dimensional Lebesgue measure and dg is the Dirac measure in 0, i.e.,
do(E)=11if 0 € E and 6¢(F) = 0 otherwise. Then the decomposition

L*(R, p) = L*(R, do) & L*([1, 00[) = C & L*([1, 00])

is invariant under the unitary representation (7(¢)f)(z) = e“*f(x) of G =
R. Clearly the function dp(z) = dp » is an eigenfunction, but this is the only
eigenfunction of m because the equation (e®* — \)f = 0 implies that f vanishes
on the complement of a countable set. We conclude that Hy = L*(R, 6y) = Cdp
is one-dimensional, and that H. = L?([1,00[) is the “continuous part” of the
representation 7 (see also Exercise @ .

Definition 2.2.7. If (7, H) is an irreducible representation of (S, *), then we
write [rr] for its (unitary) equivalence class. For a topological group G, we write
G for the set of equivalence classes of irreducible unitary representations (cf.
Exercise [1.3.10). It is called the unitary dual of G.

Let (p,H) be a continuous unitary representations of G. For [r] € G, we
write Hir) C© H for the closed subspace generated by all irreducible subrepre-
sentations of type [r]. From Corollaries and it follows that

Hix L Hz  for [7] # [7'],

so that the discrete part of (p, ) is an orthogonal direct sum

(Exercise [1.3.7). The subspaces H[,] are called the isotypic components of H,
resp., (7, H).

Remark 2.2.8. (Reduction of commutants) Applying Corollary to the
decomposition

H=H.OHi=MHD @[ﬂe@%m,
we see that
Ba(Hix, He) ={0}  and  Bg(Mix, Hipg) = {0} for  [n] # [7'].

Therefore Bg(H) preserves each M., hence it also preserves H. = Hg because
it is *-invariant.
From Exercise 2.2.3] we thus derive that

Bo(H) = {(Aim) € T Ba(Him): sup Al < oo} & Ba(He).
[W]E@ [7leG

Using the concept of an ¢>°-direct sum of Banach spaces

D X; = {@)ses € TT 5 ol = sup sl < oo},
J

jeJ jeJ
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it follows that

BG(H) = (EB([:)]E@

BG(H[w])) @ Ba(He)-

This reduces the determination of the commutant to discrete isotypical repre-
sentations and to continuous ones.

Example 2.2.9. For an abelian topological group A, we have seen in Corol-
lary [2:2.2] that all irreducible unitary representations are one-dimensional, hence
given by continuous homomorphisms y: A — T. Two such homomorphisms de-
fine equivalent unitary representations if and only if they coincide. Therefore
the unitary dual of A can be identified with the group

A= Hom(A, T)

of continuous characters of A. R
For any continuous unitary representation (7, H) of A and x € A, the iso-
typic subspace

Hy:=Hp ={veH: (Vac A)n(a)v = x(a)v}

is the simultaneous eigenspace of A on H corresponding to the character x.
Taking all the simultaneous eigenspaces together, we obtain the subspace

Hd = @XEIZHX
from Proposition [2.275]

Example 2.2.10. In general its orthogonal complement . is non-trivial, as
the translation representation of R on L?(R) shows (cf. Example . To see
this, we first observe that, in view of Exercise every continuous character
of R is of the form y(z) = €!**. Therefore any eigenfunction f € L?(R) satisfies
for each x € R for almost every y € R the relation

fly+a) =™ f(y).

This implies in particular that the function |f| is, as an element of L?(R,dz),
translation invariant. We thus obtain

1
0 > / F@)Pde =Y / (@) ? d,

neZ

and therefore f vanishes almost everywhere. This proves that, for the translation
action of R on L%(R,dx), the discrete part is trivial, i.e., L?(R,dz), = {0}.

Example 2.2.11. We take a closer look at the circle group A = T. To see how a
unitary representation (m, H) of T decomposes, we first recall from Exercise
that each character of R is of the form y,(z) = % for some A € R. Since

g: R = T,t — €™ is continuous, any character y € T satisfies

X(eim) _ ei)@
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for some A € R and any « € R. Then x(1) = 1 implies A € Z, so that x,(z) = 2"
for some n € Z and all z € T. This proves that

T:{Xn:nGZ}%Z.
Let (7,H) be a continuous unitary representation of T. For n € Z we write
Hy:={veH: n(z)v=2z:"v}

for the corresponding eigenspace in H. For v € H, we consider the H-valued
integral

1 27 i .
P,(v) := %/0 e (e dt

whose existence follows from the continuity of the integrand (as a Riemann
integral). Tt satisfies P,(v) = v for v € H, and P,(v) = 0 for v € H,,,
m # n because fo% e~inteimt qt = (. Since H is the orthogonal direct sum of
the eigenspaces by compactness of T (Theorem , P,: H — H, is the
orthogonal projection onto the eigenspace H.,.

For v € H, we write v, := P, (v) € H,, so that

holds in # = &nezHn. This is an abstract form of the Fourier expansion of a
periodic function, resp., a function on T.

For H := L*(T) with (7(2)f)(t) = f(tz), we claim that the functions x, (t) =
t", n € Z, are the only eigenfunctions. In fact, any eigenfunction f € H,, satisfies

2w
Fe) = Pupe) = 5= [ ety as
1 27+t

- e—in(s—t)f(eis) ds

) 1 /2 .
— eznt . % ) e—zns]c(ezs) ds.
almost everywhere. Therefore f € Cy,, and therefore H,, = Cx,. Each f €
L?(T) has in L?(T) a convergent expansion

1
T or

F=> Fn)xn with f(n)

nez

27
/ efintf(eit) dt.
0

Identifying T with R/27Z and L?(T) with 27-periodic functions, this takes
the familiar form for Fourier series:

f) = 3 Fmene, ) = o

nez

27
[ e,
0

where the series on the left convergence in L?([0, 27]).
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Remark 2.2.12. (a) There exist abelian topological groups A with faithful
continuous unitary representations for which all continuous characters are triv-
ial, i.e., A = {1}. For these groups, the two fundamental problems discussed in
the introduction make no sense.

In [GNO1] it is shown that the group

of all measurable maps f: [0,1] — T, endowed with the weak operator topology
obtained from the embedding

A: L>([0,1],C) < B(L*([0,1],C)), Xf)h=f-h,

(cf. Proposition is an abelian topological group for which all continuous
characters are trivial. [

(b) Another pathology that can occur for an (abelian) topological group G
is that all its continuous unitary representations are trivial. Such topological
groups are called ezotic. In Chapter 2 of [Ba91] one finds various constructions
of such group of the type G = E/T', where E is a Banach space and I' C F is a
discrete subgroup. For any such exotic group G, all characters are trivial.

From Exercise we immediately derive that all characters of G = E /T’
are of the form

X(U + F) — 6271'1’04(11)7
where o € E’ is a continuous linear functional satisfying «(T') C Z. If G is
exotic, resp., G = {1}, then the discrete subgroup I' of E has the strange

property that for any continuous linear functional o € E' with «(T') C Z we
have a = 0. It is not hard to see that this never happens if dim E < oc.

Exercises for Section [2I

Exercise 2.2.1. Show that, for any Hilbert space H,
Z(B(H))={Z € B(H): VA€ B(H)AZ = ZA} =C1.

Hint: Apply Exercise[1.3.11| with A = (-, v)v to see that every v € H is an eigenvector
of Z.

Exercise 2.2.2. Let (m, ) be an irreducible representation of the involutive semi-
group (S, *) and 7, := @}_;7 be the n-fold direct sum of 7 with itself on H" = ®j_; H.
Show that

mn(S) = M, (C).

Hint: Write operators on 1" as matrices with entries in B(#) (cf. Exercise [1.3.8) and
evaluate the commuting condition.

ISince products of L2-functions are L!-functions, it is easy to see that the topology
on M([0,1],C) is the coarsest topology for which all functions F}(g) := fol h(t)g(t) dt,
h € L'([0,1],C), are continuous. In functional analytic terms, it coincides with the weak-
*-topology on the subset M([0,1],T) of L*°([0,1],C) = L([0,1],C)".
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Exercise 2.2.3. Let (#;);cs be a family of Hilbert spaces and A; € B(H;). Suppose
that sup;¢; [|4;]] < co. Then A(x;) := (A;x;) defines a bounded linear operator on
@®jesH; with
[[A]l = sup [|A;]]-
jeJ

If, conversely, H = @jeﬂ-[j is a Hilbert space direct sum and A € B(H) preserves
each subspace H;, then the restrictions A; := Aly; are bounded operators in B(H,)
satisfying || Al = SUp;e [|A;]].

Exercise 2.2.4. Let V be a real topological vector space. Show that every continuous
character x: V — T is of the form x(v) = '**) for some continuous linear functional
a € V'. Hint: Let U C V be a circular 0-neighborhood (circular means that \U C U
for |A| < 1; such neighborhoods form a basis of 0-neighborhoods) with Re x(v) > 0 for
v € U+ U. Define a continuous (!) function

L:U—]—mna[CR by "™ =y(u).
Observe that L(z +y) = L(x) + L(y) for z,y € U and use this to see that

T
a(z) := lim nL(f)
n— oo n
is an additive extension of L to V. Now it remains to observe that continuous additive
maps V — R are linear functionals (prove Q-linearity first).

Exercise 2.2.5. Let A1 and A be abelian topological groups and A := A; x A2 be
their topological direct product. Show that A & A; x A,.

Exercise 2.2.6. Let (Aj)jcs be a family of abelian topological groups and A :=
HjEJ A; be the product group, endowed with the product topology. Show that the
map . R
S: @A — A, S@esx)a) =[] xi(ay)
JjEJ jeJ

is a group isomorphism. Hint: One has to reduce the problem to the case where J is
finite. To this end, an important point is that the 1-neighborhood {z € T: Rez > 0}
contains no non-trivial subgroup.

Exercise 2.2.7. Let u be a Borel measure on R and H := L*(R, ). On this space
we consider the unitary representation of G = R, given by (7(t)f)(z) = " f(x).
Describe the eigenspaces of m(R) in terms of the measure.
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Chapter 3

Representations on
L2—spaces

In the first two chapters we have seen how to deal with discrete decompositions
of Hilbert spaces and unitary representations. We now turn to the continuous
side. Here the simplest situations arise for Hilbert spaces of the type L?(X, u),
where (X, &, ) is a measure space. After discussing group representations on
these spaces and twisting by cocycles for abstract measure spaces, we shall see
how the context of Radon measures on locally compact spaces provides a natural
context where these representations are continuous.

3.1 Representations by multiplication operators

In this section we introduce two types of operators on L?-spaces: multiplications
with functions and compositions with bijections of the underlying space. In
general, the unitary representations constructed in this context come from a
mixture of both.

Definition 3.1.1. A positive measure p on (X,S) is said to be o-finite if
X =U,en En with E, € & and pu(E,) < co. This is an important assumption
for many results in measure theory, such as Fubini’s Theorem and the Radon—
Nikodym Theorem.

A positive measure p on (X, S) is called semifinite if, for each E € & with
w(E) = oo, there exists a measurable subset F' C E satisfying 0 < u(F) < 0.

Remark 3.1.2. (a) Any o-finite measure is semifinite. If X is an uncountable
set, then the counting measure

p: P(X) = NoU{oco}, w(E):=|E|
is semifinite, but not o-finite.

37
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(b) If (X;,6;,1;), j € J, are (semi-)finite measure spaces, and we put
X = UjeJXj, G:={ECX:(VjeJ)ENX, €6}

and
WE) = ui(ENX;),
jeJ
then & is a o-algebra on X, 1 is a measure, and (X, &, p) is a semifinite measure
space. In Exercise|3.3.1| we shall see a converse to this observation, namely that,
up to sets of measure zero, any semifinite measure space is a direct sum of finite
measure spaces.

The following lemma is an extremely important basic tool to deal with
Hilbert spaces with continuous decompositions.

Lemma 3.1.3. (Multiplication operators) Let (X,S,u) be a measure space
and L>®(X, i) be the corresponding x-algebra of essentially bounded measurable
functions. Then the following assertions hold:

(i) For each f € LOO(X, N)f we obtain a bounded operator My € B(L*(X, u))
by My(g) == fg satisfying [| Myl < || f]loo]]

(ii) The map M: L>(X,pn) — B(L*(X,p)), f — My is a homomorphism of
C*-algebras.

(iii) If p is semifinite , then X is isometric, i.e., ||Myf|| = || flloc for each f.

(iv) If (fa)nen is a bounded sequence in L*°(X,u) converging pointwise fi-
almost everywhere to f, then My, — My in the weak operator topology.

In the following all measure spaces that we consider are semifinite, so that,
in view of (iii), we may identify L°°(X, u) with a subalgebra of B(L?(X, u)).

Proof. (i) Since | f(x)g(z)| < || flloo|g(x)| holds u-almost everywhere, M defines
a bounded operator on L?(X, u) with [|[M¢]| < | f]lco-

(ii) We clearly have My, = My + My, My, = MyM, and My = My, so
that A\ defines a homomorphism of C*-algebras.

(iii) Now assume that || f|c > ¢ > 0. Then F := {|f| > ¢} has positive
measure, and since p is semifinite, it contains a subset E of positive and finite
measure. Then xyg € L?(X, ) and

cixellz < Ifxellz < 1Mflllixel:

lead to || M| > c. Since ¢ was arbitrary, we obtain || f|leo < ||Mf]|.

L Although elements of L>° (X, 1) can be represented by bounded functions, they are equiv-
alence classes of functions modulo functions h for which h=1(C*) is a set of measure zero.
Accordingly,

[[fllee = inf{c € [0, 00[: u({|f| > ¢}) = 0}
denotes the essential supremum of the function (cf. [Ru86]).
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(iv) For g, h € L?(X, i), the function gh is integrable and | f,gh| < || fnllso|ghl,
so that the Dominated Convergence Theorem implies that

<ang,h>:/angﬁdu%/xfgﬁdu=<Mfg,h>- O

Definition 3.1.4. For a measurable space (X,8) we write M(X,T) for the
group of measurable T-valued functions, where the group structure is defined
by the pointwise product.

Proposition 3.1.5. Let G be a topological group, (X, S, 1) be a measure space
and v: G - M(X,T) a group homomorphism. Then

(m(9)f)(x) = 7q(x) f(x)

defines a unitary representation of G on L*(X,u) such that if lim, oo gn =
g i G always implies that 4, — v holds pointwise, then m is sequentially
continuous. If, in addition, G is metrizable, then m is continuous.

Proof. Since vy,-1 = 7,, Lemma ii) implies that 7 is a unitary represen-
tation of G. If, in addition, g, — ¢ in G implies the pointwise convergence
¥(gn) = ~v(g), then Lemma iv) implies the sequential continuity of 7. [

Examples 3.1.6. (a) A typical example is the representation of G = R™ on
H = L*(R",dz) obtained by

(n(9).f)(x) = "9 f(a).

The preceding proposition implies that this is a continuous unitary representa-
tion.

The same argument actually works for any Borel measure p on R™ and the
representation on L?(R"™, i) given by the same formula.

(b) Here is a more abstract variant: If G is an abelian topological group,
then we endow the group G = Hom(G,T) of continuous characters of G with
the smallest o-algebra & for which all functions

3:G—=T, 3(x):=x(y)

are measurable. For every measure ;1 on (67 é)7 we then obtain on L? (@, S, 1)
a sequentually continuous unitary representation of G by

(T HX) =x@)fx), 7w(9)f=7f

Here we use that g, — g implies g, (x) = x(g) — x(g9) = g(x) for every x € G.
(¢) An important special case of (b) arises if G = (V, +) is the additive group
of a topological vector space V. If V/ = Hom(V,R) denotes the linear space
of continuous linear functionals on V, it follows from Exercise that the
character group R
V={cacV=V
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is isomorphic to the additive group of the dual space V’'. From the pointwise
convergence

*(a) == a(xr) = lim —in(em(z)/” —1)
n— oo

it follows that the o-algebra & on V' coincides with the smallest o-algebra for
which all evaluation functionals x*, x € V, are measurable.

The following lemma shows that the two constructions from
Examples [3.1.6((a),(b) are consistent:

Lemma 3.1.7. Under the identification of R™ with R" = {ey: y €R"}, ey(x) =
e!@Y)  the o-algebra & coincides with the Borel o-algebra on R™.

Proof. Since the functions ey, y € R™, are Borel measurable, we have S C
B(R™). The Borel o-algebra is generated by the products of intervals, so that
equality follows if we show that S contains all products of intervals. This follows
from Example[3.1.6) which implies that all coordinate functions R — R,z — ;,

are G-measurable. O

To understand how the representations constructed above decompose, we
have to compute their commutant. This is relatively easy for the representation
of the full algebra L>°(X, &, i), which is done in the following proposition that
constitutes a basic tool in many more sophisticated constructions.

Proposition 3.1.8. Let (X, 8, u) be a o-finite measure space, H := L*(X, )
the corresponding Hilbert space and

F:LDO(Xau)_)B(Lz(le’('))a 7T(f)g = fg-
be the homomorphism from Lemma [3.1.3] Then the following assertions hold:

(i) If p is finite, then 1 € L*(X, p) is a cyclic vector for w, i.e., not contained
in a proper closed subspace invariant under L™ (X, ).

(il) w(L>®(X,p)) = w(L>°(X, 1)) is its own commutant, hence in particular
a von Neumann algebra.

Proof. (i) m(L®(X,p))1 = L°(X,pu) is dense in L?(X, i), because for each
f € L3(X, i), the sequence f,,, defined by

_ Jf@) for [f(x)] <n
fo(z) = {0 for |f(z)| > n

converges to f because

If = full2 = /m> @) duz) 0
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follows from the Monotone Convergence Theorem. Here we use that

{Ifl =00} = ({z € X: |f(x)] > n}

neN

is a set of measure zero.
(ii) Since m(L*° (X, 1)) is commutative, it is contained in its own commutant.
Suppose, conversely, that B € w(L>°(X, u))’. Writing

X=J X, with p(X,) <o,

all subspace L?(X,,,u) = xx,L*(X,u) are invariant under B. Therefore it
suffices to show that, on every such subspace, B is given by multiplication with
a bounded function. We may therefore assume that p is finite.

Then h := B(1) € L*(X, p), and, for f € L°>(X, u) C L?(X, 1), we have

B(f) = B(f-1) = B(w(f)1) =« (f)B(1) = fh.
If f = xE, is the characteristic function of the set
E,:={zreX:n<|h(z) <n+1},

then || B(f)|l2 = ||hfll2 = n||f||2, and since B is bounded, it follows that || f||3 =
w(E,) = 0 if n is sufficiently large. This means that h € L>(X, u). Now 7(h)
and B coincide on the dense subspace L (X, u1), hence on all of L?(X, p1). This
proves that B = w(h) € m(L>®(X, pu)). O

Remark 3.1.9. (On the assumption of o-finiteness) If (X, &, u) is not o-finite

(but semifinite), the determination of the commutant of L>°(X, &, i), acting by

mutliplication operators, is connected to certain measure theoretic subtleties.
It is well known that for a o-finite measure space (X, &, i), the natural map

B L (X6, 0) = D60, BB = [

is an isometric isomorphism. Here L!(X, &, 1)’ denote the dual Banach space
with the operator norm and not a commutant. More generally, one can show
easily that ® is isometric if y is semifinite. In general, ® is not surjective, and
the measures spaces for which ® is a bijective isometry are called localizable
(cf. |FI81, 16.6.4], and [FI8I, 16.7] for an example of a measure space which
is not localizable). One can show that localizability is equivalent to (X, &, u)
being a direct sum (as in Remark [3.1.2b)) of finite measure spaces (cf. [SaTll
Prop. 1.18.1]).

These issues are related to the commutant A of L (X, &, u) as follows. For
B € A, we obtain with Proposition [3.1.§[ii) on every o-finite subset E € &
a unique element hp € L®(E,&|g, u) with Bf = hpf for f € L*(E, S|, u).
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Since, for every F € L'(X, &, u), the set {F # 0} is o-finite (Exercise |3.3.6)),
we thus obtain a natural map

U A— LNX, 6, ), \Il(B)F:/hEqu if {F+#0}CE.
X

This map turns out to be a surjective isometry for every semifinite measure
space. For the surjectivity, one only has to observe that, for every o-finite sub-
set E € &, any continuous linear functional «w on L' (X, &, 1) satisfies a(xgF) =
Jx heF du for aunique hgp € L>°(E, S|p, jt), and that the corresponding multi-
plication operators fit together to a bounded operator on L?(X, &, 1) commuting
with L>(X, &, ).

This shows that we can always identify the commutant of L (X, &, ) with
the dual space of L'(X,&, ), but if the measure space is not localizable, then
L>(X, &, p) is a proper subspace and this implies that it is not a von Neumann
algebra. This justifies the assumption of o-finiteness in Theorem below.

Remark 3.1.10. (a) In the following we shall see many instances of represen-
tations on spaces L*(X, &, i), where 7(G) = L>°(X, S, ). Since the hermitian
projections in this algebra are in one-to-one correspondence with the G-invariant
closed subspaces by Lemma it is important to have a clear picture of the
set
Pi={p e L®(X,6,n): p=p" =p’}.
The condition p = p* = p means that p is real-valued, and p? = p means that
p(X) € {0,1}. Therefore
P = {XE: FE € 6}
For E, F € &, the characteristic functions xyg and yr coincide as elements of

L>(X,6, ) if and only if u(EAF) = 0. This defines an equivalence relation
~, on 6, and we obtain a bijection

6/ ~u P, E— XE-
(b) Passing from the o-algebra & to its u-completion
6, ={FECX: (IF € 6) p(EAF) =0},

does neither change the corresponding space L? nor L>™. Therefore we may
pass from & to &, whenever it is convenient. We say that o is p-complete if
S, = 6, i.e., of all u-zero sets are contained in &.

Example 3.1.11. We claim that, for the representation of G := M(X,T)
on L*(X,p) (p a finite measure) by 7(g)f = gf, the commutant is 7(G) =
7(L%(X, 1),

In view of Proposition it suffices to show that G spans L™(X, u),
so that both have the same commutant. Since L*°(X,u) is spanned by the
real-valued functions f with || f|jcc < 1, this follows from the fact that

fEiv1-f2e M(X,T) for f:f’Hf”ooSl
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In most concrete situations, one is not dealing with the full group M (X, T),
but with much smaller groups or other subsemigroups of M(X,C). There-
fore it is crucial to have good tools to calculate the commutants, resp., bicom-
mutants in this case. The following theorem provides an effective tool to do
so by giving a description of all von Neumann subalgebras of the von Neu-
mann subalgebra L™= (X, &, ) C B(L*(X,6,u)) if u is o-finite (cf. Proposi-
tion ii)). Here we assume the o-finiteness of the measure to ensure that
the subspace L= (X, &, ) C B(L?*(X, S, u)) is actually a von Neumann algebra

(Remark |3.1.10).

Theorem 3.1.12. (The L*°-Subalgebra Theorem) Let (X, S, u) be a o-finite
measure space and A C L*(X,&,u) € B(L*(X,6,u)) be a von Neumann
algebra. Then

A:={Fc&: xgec A}

is a o-subalgebra of & and
A= L%(X, %, ).

Conversely, for every o-subalgebra A C &, L=(X, 2, uly) is a von Neumann
subalgebra of L™ (X, S, ).

Proof. Step 1: First we show that 2 is a o-algebra. Clearly 0 € A implies
() € A, and since 1 € A" = A, we also have xygc = 1 — xg € A for each E € 2.
From xg - xr = XEnr we derive that 2 is closed under finite intersections.
Now let (E,)nen be a sequence of elements in 2. It remains to show that
E :=N,eny En € A Let F,, := Ey N ---N E,. Then F, € 2 implies xr, € A.
Moreover, xr, — Xxr holds points, so that xr, — xr in the weak operator
topology by Lemma [3.1.3{iv). As A is closed in this topology by Lemma [2.1.3
we obtain xr € A and thus F' € 2. This proves that 2 is a o-algebra.

Step 2: That A DO L*™(X,2, puly) follows directly from the fact that A
contains all finite linear combinations > 5 CIXE; E; € 2, the norm-closedness
of A and the fact that every element f € L™(X,2, u|y) is a norm-limit of a
sequence of step functions f,. To verify the latter fact, it suffices to verify this
claim for bounded real-valued function f, and this can be done by defining

fn(x) = k for =ze€ {E < flz) < E}, keZ,
n n n
because this implies that [|f — fillec < 2.
Step 3: Finally we show that A C L>(X, 2, u|a), i.e., that all elements of
A are 2(-measurable (if possibly modified on sets of measure zero).
We recall that Lemma iv) implies that A is closed under bounded
pointwise limits. Let (p,)nen be the sequence of polynomials from Lemma
converging on [0, 1] uniformly to the square root function. For 0 # f € A, we

2
consider the functions pn(%), which also belong to A. Since they converge

pointwise to HJLJ|C|‘ , we see that |f| € A. For real-valued elements f, g € A, this
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further implies that

max(f,9) = 5(/ + 9 +17 — gl) € A

For any ¢ € R, it now follows that max(f, c) € A. The sequence e~"(max(/,¢)=¢) ¢
A is bounded and converges pointwise to the characteristic function xyy<.) of
the set

{f<eti={zeX: f(z) <c}.
We thus obtain that x(s<.} € .A. We conclude that the set {f < c} is contained
in the p-completion 2, of 2, and this finally shows that f € L>(X,,,u) =
L>~(X,2, 1) (Remark [3.1.10(b)). O

Corollary 3.1.13. If (X, 8, u) is a o-finite measure space and
FCL>®(X,6,u)

is a subset with the property that & is the smallest o-algebra for which all
elements of F are measurable, then F"’ = L*°(X,68,pu), i.e., F generates
L (X, 6, 1) as a von Neumann algebra.

Proof. We have seen in Theorem [3.1.12] that F” = L>=(X, 2, plg) holds for a
o-subalgebra 20 C &. Then all elements of F are measurable with respect to
the p-completion 2, of 2, so that & C 2. This implies that

]:H:Loo(va7/J'|Ql):LOO(X7Q[/J,7M|91) QLOO(X767/1’) O

Example 3.1.14. (a) Recall Example [3.1.6b), where G is an abelian topolog-
ical group and & is the smallest o- algebra on G for which all evaluation func-
tions g G — T are measurable. Then Corollary (3 implies that 7(G)"” =
L=(G, 6, ).

If, in addition, p is o-finite, it further follows from Proposition [3.1.8] that

7(G) = n(G)" = L™(G,6,pn) = L*(G, &, p).

It follows in particular, that, for every closed 7(G)-invariant closed subspace K C
H := L2(G, &, ), there exists an E € & with K = xgH = {f € H: f|g- = 0}.

(b) For the special case Where G = (V,+) for a topological vector space V,
we obtain with Example ( ) that the same assertion holds for the smallest
o-algebra G on G = V' for Wthh all the linear evaluation functionals z* () :=
a(X),z € V, are measurable.

Remark 3.1.15. (Refinements for locally compact groups) If G is a locally com-
pact abelian group, then its character group G carries a natural group topology,
called the compact open topology or the topology of uniform convergence on com-
pact subsets of G. This topology turns G into a locally compact abelian group

all of whose characters are of the form g, g € G, so that G = G as topological
groups (cf. [HM9g]). All these functions are measurable with respect to the
o-algebra of Borel subsets of G, so that Example (b) applies to any Borel

measure on G.
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3.2 Group actions preserving measure classes

Definition 3.2.1. Let (X, &) be a measurable space and A, u be positive mea-
sures on (X, S). We call A and p equivalent, and write A ~ p, if there exists a
measurable function

f: X —]0,00[ with /\(E):/Ef(x)du(x) forevery FEe€6&. (3.1)

It is easy to see that ~ defines an equivalence relation on the set of positive mea-
sures on (X, ). The corresponding equivalence classes [A] are called measure

classes.
For simplicity we also write (3.1) as

A=f-p.

The function

is called the Radon—Nikodym derivative of \ with respect to p.

The Theorem of Radon—Nikodym ([Ru86, Thm. 6.10]) is a central result in
abstract measure theory. It asserts that, for o-finite measures, A ~ p if and only
if u and A have the same zero sets. The latter condition is always necessary for
A~

Remark 3.2.2. (a) It is natural to restrict our considerations to o-finite mea-
sures because we shall mostly deal with finite measures p and with measures of
the form fu for an integrable function f € L(X, u).

However, it is instructive to observe that, if u is o-finite and A ~ p, then A
is also o-finite. In fact, we have

A(X) = /X f() du(x) = lim F(&) du(x),

and if X = J, ey Xn with u(X,) < oo, then the subsets X,, N {0 < f < m}
have finite A-measure.

(b) If A and p are o-finite, then the function f is uniquely determined up to
its values on a set of measure zero. If A = fiu = fou, then h := f; — fo satisfies
S hdp =0 for every E € & with A(E) < oo and hence for every E € & because
A is o-finite. Applying this to E = {h > 0} and E = {h < 0}, we see that h
vanishes p almost everywhere.

We are interested in unitary group representations on L?(X, u1) for a measure
space (X, 6, ). A natural group to be considered in this context is

Aut(X,6) :={p: X = X: p meas., J: X —» X meas.,pop=potp =idx}

of automorphism of the measurable space (X,S).
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Recall that, for a measurable map ¢: (X,6) — (X',&’) and a measure p

on (X, &), we obtain a measure ¢, on (X', &) by

(put)(B) := u(p~ ' (E)) for Eec6

It is called the push-forward of u by ¢. The corresponding transformation
formula for integrals reads

J(2) dlpop) (@) = / F(p(@)) du(a). (3.2)
X/ X

For a given o-finite positive measure p on (X, &), we thus obtain two subgroups
of Aut(X, S):
Aut(X, p) :={p € Awt(X,8): p.p = p}

and the larger group
Aut(X, [u]) == {p € Aut(X,6): pup ~ p}.
If .p ~ p, then p is said to be quasi-invariant under . Clearly,
Aut(X, p) C Aut(X, [u]).

For ¢ € Aut(X, [u]), we define

1

and note that, with the notation ¢, f := f o™, we have the cocycle property

S(ph) = () - pu(6(2)) (3.3)

p-almost everywhere because

(Pt = @athupt = @u(8(P)p) = 0 (0(Y)) - pupt = @i (8(1))S () 1

and the Radon-Nikodym derivatives are unique almost everywhere.

Proposition 3.2.3. Suppose that u is o-finite. For f € L?*(X,u) and ¢ €
Aut(X, [p]), we put

(m() ) () := V/o(p) (@) f (¢ ().
Then (m, L*(X, 1)) is a unitary representation of the group Aut(X, [u]).

Proof. Clearly, () f is measurable, and we also find
()13 = [ S @It @) dute) = [ 177 @) dpmi@)
— [ 1@ due) = 112,
X
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so that 7m(y) defines an isometry of L?*(X, ). We also observe that, for ¢, €
Aut(X, [u]), we obtain with (3.3):

() f = /() ou (Vi ) = V(0) s/ I(V) s (s f)
= V(0)es (VW) (Wi f)) = (@) () f.

In particular, we see that each isometry m(p) is surjective with m(¢~1)
m(p) 7"

0ol

3.2.1 Representation defined by cocycles]

The following corollary consitutes the basic tool to construct representations on
L2-spaces.

Corollary 3.2.4. Let (X, 8, u) be a o-finite measure space and
c:GxX =X, (g,2)—gx
a group action by measurable maps such that each map o4(x) := o(g,x) pre-

serves the measure class [p]. Let vg: X — T be measurable functions satisfying
the cocycle condition, i.e.,

Ygh =g 970 for g,h€G.
Then
(my(9) f)(x) == 74 () 5(09)(x)f(0;1(x)), T (9)f =g -/ 0(0g)(0g)sf
defines a unitary representation of G on L*(X, ).

Proof. Tt follows from Proposition that

(m(9)f)(@) = \/8(og) (@) f (g ' ()

defines a unitary representation (m, L?(X, 1)) of G, and since v is a cocycle, we
also have m.,(gh) = m,(g)m,(h) for g,h € G. O

Example 3.2.5. If the measure class [p] is G-invariant, we obtain in particular
a natural class of cocycles by

7(9) — 5(0_9)1'5 _ eislogé(og)7 seR.

This leads to a family of unitary representations on L?(X, i), parametrized by
seR:

(ms(9)f) := 8(0g) T+ (o) f.
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Example 3.2.6. Let U C R" be an open subset and A be Lebesgue measure,
restricted to U. For each C!-diffeomorphism ¢: U — U, we then have the
transformation formulas

| t@ i@ = [ fe@)ana)
/f )| det(dp(x |dzf/f

Comparing these two implies that

and

/ /(@) d(p. / J(p(@))| det(dp(w)) | det(dp(@))| ™ dA()
U

- /U F(@)] det(dp(e~ (2)] 71 dA(2)

_ /U F(@)] det(dp (2))] dA(x),

and therefore do
8() (@) = “2 () = | det(dp™" (@) .

Thus

() (@) := V| det(dp= (2))| f (¢~
defines a unitary representation of the group Diff 1(U ) of C1-diffeomorphisms of
U on L?(U,\).
For U = R” and the subgroup

Aff, (R) :={pap(z) = Az +b: A€ GL,(R),b € R"}

we obtain in particular
8(pap)(x) = | det A7,

so that

(m(pap)f =/|det 4] fSDAb

defines a unitary representation of the affine group Aff, (R) on L?(R",\).

Remark 3.2.7. One can show that every o-compact n-dimensional smooth
manifold M carries a measure p which, in every chart (¢,U) has a smooth
positive density with respect to Lebesgue measure on ¢(U) ([HiNel2]). Then
Diff (M) C Aut(M, [u]), so that we obtain a unitary representation of the full
diffeomorphism group Diff (M) on L?(M, p).

The following examples describes a continuous irreducible unitary represen-
tation of the affine group of the real line. One can actually show that, up to
equivalence, there is only one such representation.
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Example 3.2.8. (An irreducible representation of the affine group) We consider
the affine group G := Aff;(R) consisting of all affine automorphisms ¢, ) (z) =
ax—+b of R. It is also called the ax + b-group. Below we construct an irreducible
unitary representation of this group and one can show that, up to equivalence,
this is the only one.

For simplicity, we write the elements of this groups as pairs (b, a), so that
the multiplication (corresponding to composition of affine functions) is given by

(b,a)(V/,a") = (b+ab,ad"), a,a’ € R* bV €R.

We define a unitary representation of this group G = R x R* on L%(R) by

(m(b,a)f " /lalf (az).

It is easy to verify that this defines indeed a unitary representation (cf. Corol-
lary [3.2.4)). Here we use that o,z = a™ '@ implies (0(q))<dz = |a|dz.
To calculate its commutant, we first recall from Example that

(R x {1}) = L=(R).

For a € R*, h € L°(R) and f € L?(R), we have

(0, a)(hf)(x) = h(az)(w(0, a) f)(x).

Therefore h € L*°(R) defines an element in 7(G)" if and only if h,(x) = h(ax)
satisfies h, = h almost everywhere for every a € R*.

Let 0 < f € C.(R*) be a continuous function with compact support and
Jox (@) di = 1. Then

la] =

Fa)= | flahlan) 2= [ flas)he) L

R ol Jrx lal

is a continuous function on R* (Exercise; an easy consequence of the Dominated
Convergence Theorem). For each measurable subset £ C R*, we further have

frafi-f L s
= o SO B = Jo g O R = o

so that h = F almost everywhere (cf. Remark [3.2.2). Since F(axz) = F(x)
for almost every x, the continuity of F' implies that F(az) = F(x) for every
a,r € R*, and therefore F' is constant. We conclude that

7(GQ) = L=(R) Nx({0} x RX)' = C1,

so that 7 is irreducible.
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Remark 3.2.9. The mollifying technige encountered in the preceding example
can be used to show that, for every homogeneous space G/H of a locally compact
group G, the subspace L>(G/H)® of G-invariant elements coincides with the
constant functions. Again it is based on the convolution product

C.(G) x L®(G/H) — C(G/H).

Here is a general setting generalizing Example We shall see more
concrete examples of this type below.

Example 3.2.10. Let A be an abelian topological group and «: G — Aut(A)
be a continuous action of the group G (presently we consider no topology on
G) by topological automorphisms of A. Accordingly, we obtain an action & of

G on the character group A by @g(x) := x ooy, ". It is easy to verify that every

S) (cf. Example . Let

g

Q4 is an automorphism of the measurable space (A

[1] be a G-invariant o-finite measure class on (A, S). Then we obtain a umtary
p) by

representation of the group A x, G on L2( é

m(a,g)f :=ad(g)\/6,(9)(ag)sf, (m(a, 9)£)(x) == x(a)y/6.(9)(x) f(x 0 ag).

Then 7(A x {1}) = L>®(A, S, 1) by Example [3.1.14(a), so that
(A%, G) =L®(4,&,p1)°.

If the measure p is G-ergodic in the sense that Lw(g,@,u)g = C1, then
Schur’s Lemma implies that the representation 7 is irreducible.

Specializing this construction to the group A =R, G = R*, a,(z) = ax and
the Lebesgue measure u on Ax R, we obtain Example

3.2.2 Translations of gaussian measures

In this subsection we discuss a class of examples which are of central importance
in quantum field theory ([Si74]) and probability ([Hid0]).
We start with the Gaussian probability measure

1 2 d
e 2 dx
V2
on R with expectation value 0 and variance 1.
For every n € N, we then obtain on R™ a product probability measure

(2m)n/2 ¢

dy(x) =

At =A% with  dy"(z) = z.
This measure on R" is equivalent to Lebesgue measure, hence quasiinvariant
under the translations 7,(z) := = + y. The corresponding Radon-Nikodym
derivatives are given by

_llz—yl? )
s(w)(e) = WD ) - & e, (3.4
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We thus obtain on L?(R™,4") the unitary representation of the translation
group R” by

12 | (=)

(7)) (@) = Vo) @) fw—y) = e T 5 e — ).

This representation is equivalent to the translation representation of R™ on
L?(R", dx) (Exercise .

The situation becomes more interesting on infinite dimensional spaces. For
a set J we endow the product set X := R of all real-valued functions on R with
the smallest o-algebra & = B(R)®’ for which all projections py((x;)jes) = =
are Borel measurable maps. Then Kolmogorov’s Product Theorem implies the
existence of a unique probability measure v/ on (X, &), such that, for every
finite subset F' C J, we have (pp).y’ = 7 for the projection map pr(x) =
(z;)jer (cf. [Bar8, Satz 33.2]).

Definition 3.2.11. The measure 7/ on (R”,B(R)®7) is called the canonical
Gaussian measure on RY.

Remark 3.2.12. There are many other Gaussian product measures on R”. For
m € R and ¢ > 0, the Gaussian measure with expectation value m and variance
o2 on R is given by

]_ _ (m—'m)2

AYm o2 () = We 202 dx.

Accordingly, we obtain arbitrary product measures ® ;¢ JVm;,0? ON R”, and this
T

leads already to uncountably many measure classes on RY.

Proposition 3.2.13. (Translational quasi-invariance of Gaussian measure) The
standard Gaussian measure v’ on (R?,B(R)®7) is quasi-invariant under all
translations ,(z) = x +y for y € >(J,R).

Proof. If
yeRY = {zeR’: |{jeJ:z; #0}| < oo,

then F := {j € J: y; # 0} is finite. Now the decomposition J = FUF* leads
to a factorization v/ = 7 ® 4F° on R’ = RF x RF". Therefore the quasi-
invariance of v under 7, follows from the quasi-invariance of v on R¥ = RI¥
and the fact that 7y(xp, zpe) = (¥ + y, Tpe) with respect to the factorization
R’ = R¥ x RF.

To complete the proof, we can argue similarly in the case where F' is infinite,
hence countable (cf. Exercise. This reduces the problem to the case where
J = N. Here the problem is to show that the function ¢(y)(x) := e2on=1¥n®n
defines an element of L*(RN,~+Y) for every y € ¢2(N,R). This can be done as
follows. We consider the sequence

Pu(y)(z) i= X v

of functions in L2(RY 4N) and want to show that it is a Cauchy sequence.
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From the above formula for §(y), it follows that, for y € R™ | the function
©(y) on RY is 4N-integrable with

ly)?

[ e = [ e i@ =
RN RN
This further leads to
2 2
/ o(y)p(z) dy™ =/ ply+2)d =T
RN RN
and hence to

ly+=112
e 2

2 2
lo(y) — ()3 = €21 4 21717 — 2 =: D(y, 2).

The function D extends to a continuous function on ¢?(N, R), vanishing on the
diagonal. For y € (%(N,R), we write 4™ := (y1,...,9n,0,---) € R®. Then
en(y) = (y") leads to

llon () — em W3 = D(y™,y™) — D(y,y) =0

for n,m — oo. This implis that (¢, (y))nen is a Cauchy sequence in L2 (RN, 4N) C
LY(RY AN). We write ¢o(y) for its limit.

If F C N is finite and E; C RF a Borel set, we write E := E; x RE C RN
for the corresponding cylinder set. Then

Cy™i3 y™i3

((7)ANE) = ((7yn)sy™")(Er) =€ 7[E en(y)dy" =e T[Eson(y)dvl\’

This implies that

w3
() =772 pao(y) - AN
for every y € £2(N, R), and this completes our proof. O

Although we won’t need it in the following, we add a theorem clarifying pos-
sible “supports” for the standard Gaussian measure . It follows in particular
that it can be realized on Hilbert spaces on functions which are much smaller
than the space RY of all sequences. Such phenomena are studied systematically
in the context of stochastic processes.

Theorem 3.2.14. For a = (an)nen €0, 0[N, the set
(a) = {:lc eRN: 2| := Zanxi < oo}
n=1

satisfies

N2 )1y an < oo
V(E(a))—{o iFS an = oo,

In particular vN(¢2) = {0}.
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Proof. (cf. [Dx03] Thm. 5.2]) We consider the functions

¢ RS [0,00, q(@) i= Y ana?

and put gn(x) = 22;1 anz?.  Then lim. o4 e 59?2 = Xe2(a) and
0 <ec9/2 <1 lead to

N (?(a)) = lim e /2 N
e—0+ RN

by the Monotone Convergence Theorem. For any € > 0, we derive from the
Monotone Convergence Theorem

/ e_Eq/Zd’yN:/ lim e /24N = lim e =N /2 gy N
RN R

N N—oo N—oo JrN

. _ & N 2
frnd J\}E’)n e 2 En:l An T, dryN(xl’ - 7*/EN)

(oo} RN
N N 211
Ea
= lim H / e 2" dy(x,) = lim H =
N—oo —00 2

I
—~
—
_|_
™
S
2
N}
I
—
—#
_
+
)
S
&
N——

Taking logarithms and then passing to the limit € — 0+ thus leads to

1 & 0 if >, a,<oo
—log/N(*(a)) = lim = > log(1 + ca,) = ne
g7V (% (a)) 5%02; g( ) =1 5 = oo
To verify the last equality, we first observe that, if > a, < oo, this follows
from the Monotone Convergence Theorem applied to the counting measure on
N. If }°, a, = oo, then Y7 log(1 + €a,) = o< for every £ > 0. This proves
the assertion. O

Remark 3.2.15. (a) One remarkable consequence of the preceding theorem is
that the Hilbert space £2 is a zero set for the Gaussian measure on RY. Therefore
it is necessary to enlarge this space to some £2(a), 0 < a € ¢!, to obtain a Hilbert
space on which the measure v can be realized.

(b) Another interesting point is that

ﬂ *(a) = {x cRN: (Va € /") Z |an |22 < oo} = /(.
0<act! n

All sets £2(a) have full 4N-measure, but the subspace £> is a zero set because
¥([=r,7]) < 1 for every r > 0 leads to

Y (=r, M) = lim y([—r, )N =0.

N —oc0
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3.3 L?-spaces on locally compact spaces

In this section we briefly discuss some specific issues related to L2-spaces on
locally compact spaces. Here the main point is the concept of a Radon mea-
sure, i.e., a Borel measure which is closely linked with the topology on X. In
particular, for a Radon measure p, the subspace C.(X) of compactly supported
continuous functions is dense in L?(X, i), as the following proposition shows.

Definition 3.3.1. A measure p on a locally compact space X is called a Radon
measure if

(i) p(K) < oo for each compact subset K of X.

(ii) (Outer regularity) For each Borel subset E C X, we have

w(E) =inf{u(U): E C U,Uopen}.

(iii) If £ C X is open or E is a Borel set with u(E) < oo, then

w(E) =sup{u(K): K C E, K compact}.

The measure p is called regular if (ii) and (iii) are satisfied.

Proposition 3.3.2. If y is a Radon measure on a locally compact space X,
then C.(X) is dense in L*(X, ).

Proof. Since the step functions form a dense subspace of L?(X, ), it suffices to
show that any characteristic function x g with u(E) < oo can be approximated
by elements of C.(X) in the L2-norm. Since every such Borel set is inner regular,
we may w.l.o.g. assume that F is compact. Then the outer regularity implies
for each € > 0 the existence of an open subset U C X with u(U \ FE) < . Next
we use Urysohn’s Theorem [A.1.6] to find a continuous function f € Co(X) with
0< f<1, flg =1, and supp(f) C U. Then

I = xsll3 = /X (@) — xe(@)]? du(z) = /U IO dute) < 0\ B) <

and this completes the proof. O

Remark 3.3.3. In many cases the regularity of a Borel measure p on a lo-
cally compact space X for which all compact subspaces have finite measure is
automatic.
In [Ru86l Thm. 2.18] one finds the convenient criterion that this is the case
whenever every open subset O C X is a countable union of compact subsets.
This is in particular the case for R™, because we can write

. . c 1
0= U O, with O, := {x € O: dist(z,0°) > e ||l < n}
neN
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Proposition 3.3.4. Let G be a topological group and o: G x X — X be a
continuous action of G on the locally compact space X . Further, let u be a Radon

measure on X whose measure class is G-invariant and for which the Radon—

Nikodym derivative §(g) := d(%z*“ can be realized by a continuous function

5:Gx X = R*, (g,z):=0(g)(x).

Then the unitary representation (m, L>(X, i), defined by

(m(9)f)(x) == v/o(g) () f(g~" @)

18 continuous.

Proof. In Proposition we have seen that C.(X) is dense in L?(X, u). In
view of Lemma it therefore suffices to show that, for f,h € C.(X), the
function

mrn: G C, g (m(g)f, h)

= /X Vo(9)(@) fg™"x)h(z) du(z) = " Vo(9)(@) f(g™"x)h(z) du(x)

supp(

is continuous. This is an integral of the form

F(g) = /K H(x. g) du(x),

where K := supp(h) C X is compact and H: K x G — C is continuous. The
map

H:G— C(K), H(g)(x):=H(z)= H(,g)

is continuous with respect to || - ||oc on C(K )E| Therefore the continuity of the
function F' follows from the continuity of the linear functional C(K) — C, h —

S5 hdp with respect to || - [l on C(K) (cf. Exercise [3.3.2)). O

Corollary 3.3.5. Let G be a topological group, 0: G x X — X be a continuous
action of G on the locally compact space X and p be a G-invariant Radon
measure on X. Then the unitary representation (m, L?(X, u)), defined by

m(g)f = foo,"

18 continuous.

2For go € G and € > 0, the set
M :={(g,z) € G x K: |H(g,x) — H(go,7)| <&}

is open and contains {go} x K, hence also a set of the form U x K, where U is a neighborhood
of go. This means that for g € U, we ||[H9 — H90 || < €.
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Example 3.3.6. (a) The translation representation of G = R" on L?(R", dz),
given by
(m(2)f)(y) == flz +y)
is continuous.
(b) On the circle group G = T, we consider the Radon measure pr, given by

1

27
/ f(2) dpn(z) = o f(et)dt.
T ™ Jo

Then the unitary representation of T on L?(T, ur), given by
(w(t)f)(z) := f(tz)

is continuous.

Exercises for Chapter

Exercise 3.3.1. Let (X, &, ) be a semifinite measure space. Show that there exist
measurable subsets X; C X, j € J, of finite measure such that

—

L*(X,n) =P

Hint: Use Zorn’s Lemma to find a maximal family (X;);jes of measurable subsets of
X for which p(X; N X%) = 0 for j # k. Conclude that the corresponding subspaces
L2(Xj,,u|xj) of L?(X, u) are mutually orthogonal and that the intersection of their
orthogonal complements is trivial.

jEJLQ(vaﬂ‘Xj)'

Exercise 3.3.2. Let u be a Radon measure on the locally compact space X and
K C X be a compact subset. Show that the integral

I: C(K) —C, f»—)/Kf(a:)du(m)

satisfies
(O < [[flloopp(K).

In particular, I is continuous.

Exercise 3.3.3. Show that each o-finite measure p on a measurable space (X, &) is
equivalent to a finite measure.

Exercise 3.3.4. Let u and \ be equivalent o-finite measures on (X, &) and h := %,

dX
Show that
O: LP(X,pu) — LA(X,N\), f—Vhf

defines a unitary map.

Exercise 3.3.5. Consider the Gaussian measure

n 1 — L)z
dy"(x) = 7(270%6 zlell” gy

on R™. Its measure class is invariant under the action of the affine group Aff,(R).
Find a formula for the unitary representation of this group on L?(R™,~y™).



3.3. L?-SPACES ON LOCALLY COMPACT SPACES o7

Exercise 3.3.6. Let (X, &, ) be a measure space. Show that:
(a) If f € LP(X, ), 1 < p < o0, then the measurable subset { f # 0} of X is o-finite.

(b) If H C L*(X, ) is a separable subspace, then there exists a o-finite measurable
subset Xo C X with the property that each f € H vanishes p-almost everywhere
on X§ =X\ Xo.

Exercise 3.3.7. (Limitations of the Radon-Nikodym Theorem) Let (X, &, i) be a
finite measure space. Define v: & — Ry by

f E) =
W(E) = 0 for u( ) 0
oo otherwise.

Show that v is a measure with the same zero sets as u, but there exists no measurable
function f: X — R with v = fu. However, the constant function f = oo satisfies
v(E) = [, f(z)dpu(z) for each E € &.

Exercise 3.3.8. Let (X, S, ;1) be a measure and Gy, := {F € &: u(E) < oco}. Verify
the following assertions:
(a) On Gg, we obtain by d(E, F) := p(EAF) a semimetric.
(b) Let
[E] :={F € 6: u(FAF) =0}

denote the corresponding equivalence class of £ € G and & := &/ ~ denote the
set of equivalence classes. Then d([E], [F]) := u(FAF) defines a metric on Ggy.

(c) The map v: Gan — L (X, 6, ), E — xg is an isometry, i.e.,
d(E,F) = W(EAF) = |[x& — xrlh = lIxe — xrl3.

Exercise 3.3.9. Let (X, S, u) be a finite measure space and G := Aut(X, u) be its
automorphism group. Verify the following assertions:
(a) N:={g € G: (VE € Gan) u(gEAFE) = 0} is a normal subgroup of G, and if
7w G — U(L*(X, ), n(g9)f := fog™ ' is the canonical unitary representation of
G on L?(X,p), then ker u = N.

(b) On the quotient group G := G/N, we consider the coarsest topology for which
all functions -
fe: G =R, g— u(gEAFE)

are continuous. Show that G is a topological group and that 7 factors through

a topological embedding 7: G — U(L?*(X,u))s. Hint: Exercise and
Lemma [[.2.6]

Exercise 3.3.10. We consider the group G := GL2(R) and the real projective line
P1(R) = {[v] :=Rov: 0 # v € R*}

of 1-dimensional linear subspaces of R%. We write [z : y] for the line R (z) Show
that:

(a) We endow P;(R) with the quotient topology with respect to the map
q: R*\ {0} = P;(R),v > [v]. Show that P;(R) is homeomorphic to S'. Hint:
Consider the squaring map on T C C.
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(b) The map R — P1(R),xz — [z : 1] is injective and its complement consists of
the single point oo := [1 : 0] (the horizontal line). We thus identify P;(R)
with the one-point compactification of R. These are the so-called homogeneous
coordinates on P1(R).

(¢) The natural action of SL2(R) on P1(R) by g.[v] := [gv] is given in the coordinates

of (b) by
ar +b a b
g.x =og(x) = for ¢g= e d)-

cx+d

(d) There exists a unique Radon measure p with total mass 7 on P;(R) which is
invariant under the group O2(R). Hint: Identify P;(R) with the compact group
SOz (R)/{£1} & T.

(e) Show that, in homogeneous coordinates, we have du(x) = 1_‘7_22.
Hint: (C?Sx —em z) .0 = —tanz, and the image of Lebesgue measure on
sinz  cosz

3 dx
| = 7/2,7/2[ under tan is Thes
(f) Show that the action of SL2(R) on P; (R) preserves the measure class of p. Hint:

Show that o4(x) := Z;fj_'s satisfies oy (z) = m and derive the formula
d((7,)-1) 1422 i
5 — 9 = 1) = .
(09)(x) dlzb (CE) (a _ C$)2 + (b _ dx)Q? (09)(00) C2 + d2

(g) The density function also has the following metric interpretation with respect
to the euclidean norm on R?:

(o) (@) = W9l

[lv]l?
The corresponding unitary representations of SL2(R) on L?(P1(R), i) defined by

T (9)f 1= 8(09) 2 (0g). f
(cf. Example form the so-called spherical principal series.
Exercise 3.3.11. Let (m,H) be a non-degenerate representation of the involutive
semigroup (S, *) and v € H. Show that the following assertions are equivalent:
(a) v is a cyclic vector for 7(5).
(b) v is a cyclic vector for the von Neumann algebra 7 (S)".

(c) v is separating for the von Neumann algebra =(S)’, i.., the map
w(S) — H, A — Av is injective.
Hint: To see that (c) implies (a), consider the projection P onto (7(S)v)*, which is
an element of m(S5)".

Exercise 3.3.12. Let 7" be the centered Gaussian measure on R" with variance 1.
Show that the unitary representation

(my (W) ) (@) == /6(y) () flw —y) = e~ 2 fx—vy)

of R™ on L*(R",y™) is equivalent to the translation representation of R™ on L?(R™, dz).
Hint: Exercise B.3.41
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Exercise 3.3.13. Show that, for a measure space (X, 8, i), we have L*(X, &, u) =
{0} if and only if, u(&) C {0, c0}.

Exercise 3.3.14. Let (X, S, i) be a measure space and &5 C & be the set of those
elements E € G for which either p|sng or plenge is o-finite. Show that

a) Gy is a o-subalgebra of &.

f
(b) &y is generated by the p-finite subsets of &.
(c) L*(X,8,p) = L*(X, 6, pls, )

Exercise 3.3.15. (Cyclic elements in L*(X, &, 1)) Let (X, &, ) be a semifinite mea-
sure space and A := L*®(X,6,u) C B(L*(X,6,pu)) acting by the multiplication
operators My (h) = fh (Proposition . Show that a function h € L*(X, &, u) is
A-cyclic if and only if X := {h = 0} contains no subsets of positive finite measure,
i.e., L*(Xo,6|x,, 1) = {0}. Hint: If Xo = () and L*(X,S,u) > fLAh, then every
subset E := {n < |f| < n+ 1} is of finite measure and Axz = L*(E, S|z, u)Lh.
Conclude that u(E) = 0 and hence that f = 0.

Exercise 3.3.16. (o-finiteness and cyclicity) Let (X, &, ) be a measure space for
which L?(X, &, i) contains a cyclic element for L°°(X, &, ). Show that there exists
a o-finite subset X1 € & with L*(X, 6, u) = L*(X1,6 N X1, ).
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Chapter 4

Reproducing Kernel Spaces

In Chapter [3| we have seen how Hilbert spaces and continuous unitary repre-
sentations can be constructed on L?-spaces. An L?-space of a measure space
(X, 6, 1) has the serious disadvantage that its elements are not functions on
X, they are only equivalence classes of functions modulo those vanishing on
p-zero sets. However, many important classes of unitary representations can be
realized in spaces of continuous functions. In particular for infinite dimensional
Lie groups, this is the preferred point of view because measure theory on infi-
nite dimensional spaces has serious defects that one can avoid by using other
methods.

In this chapter we introduce the concept of a reproducing kernel Hilbert
space. These are Hilbert spaces H of functions on a set X for which all point
evaluations H — C, f — f(z), are continuous linear functionals. Representing
these functions according to the Fréchet—Riesz Theorem by an element K, € H,
we obtain a function

K: XxX—=C, K(zy) :=Ky(z)

called the reproducing kernel of H. Typical questions arising in this context
are: Which functions on X x X are reproducing kernels and, if we have a group
action on X, how can we construct unitary representations on reproducing kernel
spaces.

Throughout this chapter K is either R or C.

4.1 Hilbert Spaces with Continuous Point
Evaluations
Definition 4.1.1. Let X be a set.

(a) Consider a Hilbert space H which is contained in the space KX of K-
valued functions on X. We say that H has continuous point evaluations if, for

61



62 CHAPTER 4. REPRODUCING KERNEL SPACES

each x € X, the linear functional
evg: H—=K, f— f(z)

is continuous. In view of the Fréchet—Riesz Theorem, this implies the existence
of some K, € H with

flx)=(f,K,;) for feH,zelX.
The corresponding function
K: XxX =K, K(z,y):=Kyx)

is called the reproducing kernel of H. As we shall see below, H is uniquely
determined by K, so that we shall denote it by Hx to emphasize this fact and
call it the reproducing kernel Hilbert space (RKHS) associated to K.

(b) A function K: X x X — K is called a positive definite kernel if, for
each finite subset {1,...,z,} € X, the matrix (K (z;,z;)) ., is positive
semidefinite. For a function K: X x X — K we write K*(x,y) := K(y,z) and
say that K is hermitian (or symmetric for K =R) if K* = K.

We write P(X,K) for the set of positive definite kernels on the set X.

ij=1,...,

Remark 4.1.2. (a) Over K = C, the positive definiteness of a kernel K already
follows from the requirement that for all choices x1,...,x, € X and ¢y,...,¢c, €
C we have

n
Z cicpK(xj,2) >0
J.k=1

because this implies that K is hermitian (Exercise [4.1.1)).
For K = R, the requirement of the kernel to be hermitian is not redundant.

Indeed, the matrix
0 1
(Kij)ij=12 = (_1 0) )

considered as a kernel on the two element set X = {1,2}, satisfies

2
Z cicpK(xj,2p) =0
jk=1

for z1,...,2, € X and ¢y, ...,c, € R, but K is not hermitian.
(b) For any positive definite kernel K € P(X) and z,y € P(X), the positive
definiteness of the hermitian matrix

<K(fc7 z) Kz, y))

K(y,z) K(y,y)

implies in particular that

K (2,y)* < K(z,2)K(y,y) (4.1)
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In the following we call a subset S of a Hilbert space H total if it spans a
dense subspace.

Theorem 4.1.3. (Characterization Theorem) The following assertions hold for
a function K: X x X — K:

(a) If K is the reproducing kernel of the Hilbert space H C KX with continuous
point evaluations, then the following assertions hold:

(1) K is positive definite.
(2) {K,: xz € X} is total in H.
(3) K(z,y) = >_;csej(x)ej(y) for any orthonormal basis (e;);es of H.

(b) If K is positive definite, then H% := span{K,: x € X} C KX carries a
unique positive definite hermitian form satisfying

(Ky, Ky) = K(z,y) for z,yeX. (4.2)
The completion Hx of H9 permits an injection
v Hg = KX o) (z) = (v, K,)

whose image is a Hilbert space with reproducing kernel K that we identify
with Hg .

(c) K is positive definite if and only if there exists a Hilbert space H C KX
with reproducing kernel K.

Proof. (a)(1) That K is hermitian follows from

K(y,z) = Ku(y) = (Ko, Ky) = (Ky, Kz) = K(2,9).

For ¢ € K™ we further have

ZcijckK(x]’?'rk) = chk<sz7ij> = H ch}sz
gk k

Jik

2
> 0.

This proves (1).

(2) If f € H is orthogonal to each K, then f(z) =0 for each x € X implies
f =0. Therefore {K,: © € X} spans a dense subspace.

(3) If (e5)jes is an ONB of H, then we have for each y € X the relation

Ky =Y (Kyeje; =Y eiy)e;,
jes jes

and therefore

K(z,y) = K, (@) =) e;(y)e;(@).

jeJ
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(b) We want to put

<ZCijj,deka> = ZdeikK(J}k,xj), (43)
J k

3.k

so that we have to show that this is well-defined.
Solet f =30 ¢jKy; and h = 7 dp Ky, € HY. Then we obtain for the
right hand side

chij(xk,xj) = chdka‘Tj (mk) = Zdikf(.’)’;k) (44)
3.k 3.k k

This expression does not depend on the representation of f as a linear combi-
nation of the K. Similarly, we see that the right hand side does not depend
on the representation of h as a linear combination of the K,,. Therefore

(i) = cjdiK (zp, ;)
7.k

is well-defined. Since K is positive definite, we thus obtain a positive semidefi-
nite hermitian form on H% . From (4.4) we obtain for h = K, the relation

(f,K,)=f(x) for ze€X, fecHl.
If (f, f) =0, then the Cauchy—Schwarz inequality yields

[f(@)]* = {f, Ko)|* < K(2,2)(f, f) =0,

so that f = 0. Therefore 1Y, is a pre-Hilbert space.
Now let Hx be the completion of H%. Then

v Hi — KX, t(v)(x) = (v, Kz)

is an injective linear map because the set { K, : z € X} is total in H%, hence also
in Hg. The subspace Hix = «(Hg) C KX is a Hilbert space with continuous
point evaluations and reproducing kernel K.

(c) follows (a) and (b). O

Lemma 4.1.4. (Uniqueness Lemma for Reproducing Kernel Spaces) If H C
KX is a Hilbert space with continuous point evaluations and reproducing kernel
K, then H = Hg.

Proof. Since K is the reproducing kernel of H, it contains the subspace H% :=
span{K,: x € X} of Hx, and the inclusion n: H}; — H is isometric because the
scalar products coincide on the pairs (K, K,). Now 1 extends to an isometric
embedding 7: Hx — H, and since HY% is also dense in H, we see that 7 is
surjective. For f € Hx we now have

n()x) = @), Koy = (f, Ko)nuyx = f(2),
so that 7(f) = f, and we conclude that Hx = H. O
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Definition 4.1.5. The preceding lemma justifies the notation Hg for the
unique Hilbert subspace of KX with continuous point evaluations and repro-
ducing kernel K. We call it the reproducing kernel Hilbert space defined by K.

Lemma 4.1.6. If Hx C KX is a reproducing kernel space and S C X a subset
with
K(z,x) <C for z€S,

then
[f(@)| < VCIfll  for z€S feHk.

In particular, convergence in Hy implies uniform convergence on S.

Proof. For f € Hi and z € S, we have

@) = [, o)l < IFI - 1Kl = IFIV(Ke, Ka) = [ fIIVE (@, 2) < VO £.
O

Proposition 4.1.7. Let X be a topological space and K a positive definite
kernel. Then the following assertions hold:

(a) The map v: X — Hi,v(x) = K, is continuous if and only if K is con-
tinuous.

(b) Hx C C(X), i.e., Hx consists of continuous functions.

Proof. (a) If v is continuous, then K(z,y) = (y(y),~v(x)) is obviously continu-
ous. If, conversely, K is continuous, then the continuity of v follows from the
continuity of

Ky — Ky||> = K(z,2) + K(y,y) — K(z,y) — K(y,z).

(b) Since the scalar product is a continuous function H x H — K, the
continuity of each f € Hyx now follows from f(z) = (f, K,) = (f,v(x)) and the
continuity of . O

Exercises for Section [4.1]
Exercise 4.1.1. Show that, if A € M, (C) satisfies 2" Az > 0 for every z € C", then
A" = A

Exercise 4.1.2. Let X be a non-empty set and 7' C X x X be a subset containing
the diagonal. Then the characteristic function xr of T is a positive definite kernel if
and only if T is an equivalence relation.

Exercise 4.1.3. Show that if K is a positive definite kernel and ¢ > 0, then H.x = Hxk
as subspaces of K¥X. Explain how their scalar products are related.

Exercise 4.1.4. Let X = {1,...,n} and A = (a;;) € M, (K) be positive semidefinite.
We identify K¥ canonically with K. Show that, if we consider A as a positive definite
kernel on X, then Ha C K" coincides with the column space of A. In particular

dim H 4 = rank A.
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Exercise 4.1.5. Show that a hermitian kernel K: X x X — K is positive definite if
and only if, for every finite sequence x1,...,z, € X, we have

det(K (zi,x5))1<ij<n > 0.

4.2 Basic Properties of Positive Definite
Kernels

The key advantage of Hilbert spaces with continuous point evaluations is that
they can be completely encoded in the function K, which is a much less com-
plex object than an infinite dimensional Hilbert space. Before we discuss some
important examples of positive definite kernels, we take a closer look at the
closure properties of the set P(X) of all positive definite kernels under several
operations.

Proposition 4.2.1. (Permanence properties of positive definite kernels) The
set P(X) of positive definite kernels on X x X has the following properties:

(a) P(X) is a convex cone in KX*X e, K ,Q¢cP(X) and X\ € R, imply

K+QeP(X) and MK eP(X).

(b) The cone P(X) is closed under pointwise limits. In particular, if (K;)jes
is a family of positive definite kernels on X and all sums K(z,y) =
ZjEJ K(x,y) exist, then K is also positive definite.

c 1 18 a positive measure on (J, an Nieg s a family of positive

If i it J, 6 d (Kj)jer i il it
definite kernels such that for x,y € X the functions j — K;(z,y) are
measurable and the functions j — K,;(x,x) are integrable, then

wa:L&mwwm

1s also positive definite.

(d) (Schur) P(X) is closed under pointwise multiplication: If K,Q € P(X),
then the kernel

(KQ)('Tv y) = K(.%‘, y)Q($7 y)
1s also positive definite.
(e) If K € P(X), then K and Re K € P(X).
Proof. A hermitian kernel K is positive definite if

S(K) =Y K(x;z;)ei; >0
k=1

holds for z1,...,x, € X and cq,...,¢c, € K.
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(a) follows from S(K + Q) = S(K) + S(Q) and S(AK) = AS(K).

(b) follows from S(K;) — S(K) if K; — K holds pointwise on X x X and
the fact that the set of positive semidefinite (n x n)-matrices is closed. For
K =3, K; we likewise have S(K) = >, ; S(K;) > 0.

(c) To see that the functions j — Kj(x,y) are integrable, we first observe
that the positive definiteness of the kernels K; implies that

15, y)| < /(w003 K (.9)

(Remark ) and since the functions j — /K ;(x, x) are square integrable by

assumption, the product \/ K (z, 33 \/ K(y,y) is integrable. Now the assertion
follows from S(K) = [, S J 1u(7) > 0, because p is a positive measure.

(d) We have to show that the pointwise product C' = (a;,b;) of two positive
semidefinite matrices A and B is positive semidefinite.

On the K-Hilbert space H := K", the operator defined by B is orthogonally

diagonalizable with non-negative eigenvalues. Let fi,...,f, be an ONB of
eigenvectors for B and Aq,..., A, be the corresponding eigenvalues. Then
Bo=) (v.f;)Bf; = ZA fidi = Y Nidiv- fi =3 Nidifjv
j=1 j=1 j=1

(where we use matrix products) implies B = 3, A;f;f/, and since the \; are
non-negative, it suffices to prove the assertion for the special case B = vv* for
some v € K", i.e., bj; = v;0x. Then we obtain for d € K"

> djdieir =Y didgoiTrae = Y (djv;)drvgag, > 0,
j N

ik

and thus C is positive semidefinite.

(e) Since K is hermitian, we have K(z,y) = K(y,z), and this kernel is
positive definite. In view of (a), this implies that Re K = 1(K + K) is also
positive definite. O

Corollary 4.2.2. If f(z) := ZZOZO anz™ is a power series with a, > 0 converg-
ing for |z| < r and K € P(X) is a positive definite kernel with |K (z,y)| < r for
x,y € X, then the kernel

(f o K)(x.y) = F(K Zan

18 positive definite.

Proof. This follows from Proposition b) because Proposition 4.2.1{(d) im-
plies that the kernels K (x,y)™ are positive definite. O
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4.3 Realization as Reproducing Kernel Spaces

At this point we know how to get new positive definite kernels from given ones,
but we should also have a more effective means to recognize positive definite
kernels quickly.

Remark 4.3.1. For any map v: X — H of a set X into a Hilbert space H, the
kernel K (x,y) := (y(y),v(x)) is positive definite because it clearly is hermitian,
and for z1,...,z, € X and ¢q,...,c, € K, we have

" 2
Z ¢ Ky (25, xr) Z cicr(Y(zr),y(x;)) = H Z@v(xk)H > 0.
i=1

3,5=1 1,5=1

Definition 4.3.2. Let H be a Hilbert space. A triple (X,~,H) consisting of a
set X and a map v: X — H is called a realization triple if v(X) spans a dense
subspace of #. Then K (z,y) := (y(y),y(z)) is called the corresponding positive
definite kernel.

Theorem 4.3.3. (Realization Theorem) For every positive definite kernel K
on X the following assertions hold:

(a) If (X,~,H) is a realization triple, then the map
Oy H = M, 0,(0)(2) = (v,7(2))
is a unitary operator with ®,(vy(z)) = K, for every x € X.
(b) The map v: X — Hg,x — K, defines a realization triple (X,~,Hk).

(¢c) For two realization triples (X, 1, H1) and (X, 72, Ha) there exists a unique
unitary operator ¢: Hi — Ho with w oy = 7a.

Proof. (a) Clearly, ®., defines a map H — K*, and for y € Y we have

O\ (v(w)(x) = (v(y),v(2)) = K(z,y) = Ky(z), hence @,(y(y)) = K.

We conclude that ®., maps the dense subspace H° := span~(X) onto HY%.
The relation (y(y),v(z)) = K(z,y) = (K, K,) further implies that ®.|xo is
isometric. Since its image is dense in Hx, the map ® |40 extends to a unitary

operator &)7: H — Hg, For v € H, we then have
B, (v)(x) = (B,(v), Ky) = (v, 83(K,)) = (v, 8 (KL)) = (v,7(2)),

so that </ISAY =,

(b) follows from the density of H% in Hx and the relation (K, K,) =
K(z,y) for z,y € X.

(c) Let ®;: H; — Hi, j = 1,2, be the two unitary operators obtained from
(a) which satisfy ®;(y;(z)) = K, for x € X. Then U := &5 0 ®1: H; — Ha is
unitary with U o3 = 7s. O
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Definition 4.3.4. (a) For a positive definite kernel K: X x X — C, the real-
ization triple (X, v, Hx) with v(x) = K,, used in the previous proof, is called
the canonical realization triple.

(b) For a realization triple (X,~,H), the corresponding unitary map

O H = Hrg with @,(y(z) =K, for zeX,
is called a realization of H as a reproducing kernel space.

Examples 4.3.5. (a) If H is a Hilbert space, then the kernel

K(z,y) = (y, )

on H is positive definite (Remark . A corresponding realization is given
by the map v = idy. In particular, H = Hx C K*.

(b) The kernel K(z,y) := (x,y) = (y,z) is also positive definite (Propo-
sition [4.2.1e)). To identify the corresponding Hilbert space, we consider the
dual space H’ of continuous linear functionals on H. According to the Fréchet—
Riesz Theorem, every element of H’ has the form v, (z) := (z,v) for a uniquely
determined v € H, and the map

yiH—=H, vy

is an antilinear isometry. In particular, H' also is a Hilbert space, and the scalar
product on H’ (which is determined uniquely by the norm via polarization) is
given by

(Vs Ya) = (2,y) = K(z,y).
Therefore v: H — H’' yields a realization of the kernel K, which leads to
Hi = H.

(c) If (ej)jes is an orthonormal basis in H, then the map
yiJ—=H, j—=ej

has total range, and K (i, j) := 0;; = (e;, ¢;) is the corresponding positive defi-
nite kernel on J. The element v € H then corresponds to the function

P (v): J =K, j— (v,ej)
of its coefficients in the expansion v = ZjeJ<U’ ej)e;, and the map
S H— (LK), v ((v,e5)er

is an isomorphism of Hilbert spaces. We conclude that Hx = ¢?(J,K) C K’ is
the corresponding reproducing kernel space.

(d) Let (X,6,u) be a measure space, Gy == {E € &: u(F) < oo} and
H = L*(X, p). Then the map

V:Gﬁn%Lz(XHU/L EHXE
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has total range because the step functions form a dense subspace of L?(X, ).
We thus obtain a realization

O L(X, 1) = Hix CCO™, &, (f)(E) = (f,xp) = /Efd“’

of L?(X, u) as a reproducing kernel space on &g, whose kernel is given by
K(E,F) = (xr,xg) = p(ENF).

(e) If H is a complex Hilbert space, then the kernel K(z,w) := e*") is also
positive definite (Corollary . The corresponding Hilbert space Hyx C C*
is called the (symmetric) Fock space F(H) of H. As we shall see below, it plays
an important role in representations theory, and in particular in Quantum Field
Theory (cf. Section [L.F)).

We also note that the same argument shows that for each A\ > 0, the kernel
eM#w) g positive definite.

(f) Let H be a Hilbert space and D := {z € H: ||z|| < 1} be the open unit
ball. For each s > 0, we find with Corollary that the kernel

K(ow) = (1— ()= = 3 (7)) vt

n=0

= n!
:ZS(S‘H)“?‘IESJr”_l)( ,w)"
n=0 :

is positive definite.
We shall see below how these kernels can be used to obtain interesting unitary
representations of various Lie groups.

Exercises for Section [4.3

Exercise 4.3.1. Let Hx C K% be a reproducing kernel Hilbert space and Hx =
®j€JHj be a direct Hilbert space sum. Show that there exist positive definite kernels
K’ € P(X) with K = dies K7 and H; = Hyj for j € J Hint: Consider H; as a
Hilbert space with continuous point evaluations and let K7 be its reproducing kernel.

Exercise 4.3.2. Let X = [a,b] be a compact interval in R and K: [a,b]> — C be a
continuous function. Then K is positive definite if and only if

/ / c(x)c(y)K (z,y)drdy >0 for each ¢ € C([a,b],C).

Exercise 4.3.3. Show that for a € C with Rea > 0 and z € C, the following integral
exists and verify the formula:
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where +/a refers to the canonical branch of the square root on the right half plane
with /1 = 1. Hint: Assume first that a,z € R. Then use a dominated convergence
argument to verify that the integral depends holomorphically on 2z and a.

ax?

Exercise 4.3.4. Fix a > 0 and define v: C — L*(R,dz) by v(2)(z) := €**~*2. Show

that .,
(=) (w)) = @e*@w

and that y(C) is total in L*(R). Use this to derive an isomorphism ®. of L*(R,dz)
with a reproducing kernel space of holomorphic functions on C.

Exercise 4.3.5. Define
v:Cy:={2€C: Imz >0} = L*(Ry,dz), ~(2)(z)=e "

Show that

() w)) = = = K (5 w)

and that (Cy ) is total in L*(R). Use this to derive an isomorphism ®., of L*(R., dz)
with the reproducing kernel space Hx of holomorphic functions on C;. This is the
Hardy space of the upper half plane. Hint: The totality of v(C,) follows easily once

we have that v(C4)"” = L®(R4) (cf. Corollary|3.1.13).

Exercise 4.3.6. Let (X,S, ) be a probability space. Show that on X = &, the
kernel
K(E,F) = p(ENF) — p(E)u(F)

is positive definite. Hint: Consider the hyperplane {f € L*(X,p): [y fdu = 0}.

Exercise 4.3.7. Show that on X := [0,1], the kernel K(z,y) := min(z,y) — zy is
positive definite.

Exercise 4.3.8. On the interval [0,1] C R, we consider # = L*([0,1],dx) and the
map
v:[0,1] = H, (@) = X[0,4]-
Show that:
(a) K(z,y) = (v(y),7(z)) = min(z,y).
(b) im(y) is total in H. Hint: The subspace spanned by im(7y) contains all Rie-
mannian step functions (those corresponding to finite partitions of [0, 1] into

subintervals). From this one derives that its closure contains all continuous
functions and then use the density of continuous functions in L?.

(¢) The reproducing kernel space Hx consists of continuous functions and we have
a unitary map

By L2(0.0) > Hoe, B(D@) = [ 0t

The space H r is also denoted H. ([0, 1]). It is the Sobolev space of all continuous
functions on [0, 1], vanishing in 0 whose derivatives are L2-functions.

Exercise 4.3.9. Show that on X :=]0,00[ the kernel K(z,y) := le_y is positive
definite. Hint: Consider the elements ey (z) := e~ ** in L*(Ry,dz).
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Exercise 4.3.10. Let X be a topological space and Y C X be a dense subspace. Show
that, if K: X x X — C is a continuous positive definite kernel, then the restriction
map

riHr = CY, fe fly
induces a unitary isomorphism onto the reproducing kernel space Hqg with Q :=

Klyxy.

Exercise 4.3.11. Let X be aset and K € P(X,C) be a positive definite kernel. Show
that
(a) H7 = Hx and that the map o: Hx — Hz, f — f is anti-unitary.

(b) The map o(f) = f preserves Hx = Hx and acts isometrically on this space if
and only if K is real-valued.

Exercise 4.3.12. Show that every Hilbert space H can be realized as a closed subspace
of some space L*(X, S, u), where (X, &, 1) is a probability space. Hint: Let (e;);es
be an ONB and consider the Gaussian measure space (X, S, p) = (R7, B(R)®7, 7).
Now map e; to the coordinate function ;.

Exercise 4.3.13. (Kolmogoroff’s Theorem) Let K: X x X — R be a positive definite
kernel. Show that:

(a) There exists a probability space (2, S, u) and real-valued random variables F;,
x € X, such that the common distribution of every finite subset Fy,, ..., Fy, is
Gaussian with expectation value 0, and the covariance satisfies

/FEFyd,u:K(ayy) for z,ye€ X.
Q

(b) Consider the measurable map
Q=R W(g)(x) = Fu(q)

and show that the measure v := W, on R¥ satisfies (a) with respect to the
coordinate functions on R¥.

4.4 Representations on Reproducing Kernel
Spaces

Next we explain how group actions on a space X lead to unitary representa-
tions on reproducing kernel spaces on X and discuss a variety of examples in
Section below. A key advantage of this general setup is that it specializes
to many interesting settings. In Section [£.6] below, we shall see in particular
how cyclic continuous unitary representations are encoded in positive definite
functions (GNS Theorem).

Remark 4.4.1. (a) For K € P(X) and f: X — C, the kernel

Q(z,y) == f(z)K(z,y)f(y)
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is also positive definite. In fact, it is the product of K with the kernel f(z)f(y)
whose positive definiteness follows from Remark applied to the function

y=fX—->C=%H

and Proposition d).
(b) If K € P(X) and ¢: Y — X is a function, then the kernel

P K:Y xY =C, (2,y) = K(e(2), 0(y))
is also positive definite. This is a direct consequence of the definitions.

Lemma 4.4.2. For ¢ € Sx, the group of bijections of X and the function
0: X — K*, we consider the linear operator

(Uf)(@) = 0(2)f (¢~ ()

on KX. Let K € P(X,K) be a positive definite kernel. Then the corresponding
reproducing kernel Hilbert space Hy is invariant under U and Uy := Uly,e 18
a unitary operator if and only if K satisfies the invariance condition

K(p(x),p(y)) = 0(p(2)) K (z,y)0(0(y)) for z,y€X, (4.5)

which is equivalent to

UK, =0(o(z)) Kgyu@y for welX. (4.6)

Proof. First we observe that the condition

(UK. )(y) = 0(y)K (¢ (y),2) = 0(p(x))  K(y,p(2))
for all x,y € X holds if and only if

0(p(y)K (y,7) = 0(p(@)  K(p(y),p(x)) for z,y€ X.

This is equivalent to (4.5)).
Suppose first that Hy is U-invariant and that we thus obtain a unitary

operator Ug on Hg. For f € Hi and x € X we then have

0(2)(f, Kp1(a)) = 0(2) (™ () = (U f)(2) = Uk f, Ku) = (f,U ' Ky),
which leads to

Uﬁle = 9($)K¢71(w)

Replacing x by ¢(x), we obtain (4.6)).
Suppose, conversely, that (4.6) holds. Then U preserves the pre-Hilbert
space Hx and
71 _
(UK., UKy) =0(p(x))  0(e() ™ (Ko@), Kow)) = K(y,2) = (Kq, Ky).

Therefore U |H(1)< is unitary, hence extends to a unitary operator Ux on Hyg. For
f € Hxi we then have

Uk (@) = Uk f, Kz) = (U Ko) = 0@)(f, K1) = 0(x) f(07" (2))-
This shows that Ux = Ul O
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Definition 4.4.3. Let 6: G x X — X, (g9,2) — 04(z) = g.« be an action of G
on the set X. We call a function J: G — (K*)X a cocycle if

Jgh = Jg - g«Jn  for g, ,heG,

where (g.f)(2) = f(g~L.a).
Clearly, the group G acts by automorphisms on the group (K*)¥ via a, f :=
foo™l = (0,)* f. We may therefore form the semidirect product

(K)* %o G with  (f.9)(f.g") = (- (09)f", 99").
In this context the cocycle condition is equivalent to the map
G— (K) %G, g (Jg9)
being a group homomorphism.

Remark 4.4.4. The cocycle condition implies in particular that J; = J2, so
that J; = 1. This in turn implies that

Jyt = gudy1, Jo(x) ' =J,a(g7 ) for geG,xzeX. (4.7)

Proposition 4.4.5. Let 0: G x X — X be a group action and J: G — (K*)X
be a cocycle, i.e.,
Jgh =Jg-g«Jn for g, heG.
Then
(m(9)f)(@) = Jg(x) f(g~ ), 7(9)f =Ty~ g:f, (4.8)
defines a representation of G on the space KX of all K-valued functions on X .
In addition, let K € P(X,K) be a positive definite kernel and Hyx C KX be
the corresponding reproducing kernel Hilbert space. Then Hy is invariant under

m(G) and Tk (g) := 7(9)|u, defines a unitary representation of G on Hx if and
only if K satisfies the invariance condition

K(g.z,9.y) = Jy(g.0)K(z,y)Jg(9.y) for ge€G axyelX, (4.9)

which is equivalent to

T(9) Ky = Jg-1(2)Kyp for geG,zeX. (4.10)
If these conditions are satisfied, we further have:

(a) If X is a topological space, G a topological group, and o, K is continuous,
and the maps G — K*,g — Jy(x), € X, are continuous, then the
representation (nx,Hi) of G is continuous.

(b) Any G-invariant closed subspace K C Hg is a reproducing kernel space
Hqg whose kernel Q) satisfies

Qg9.x,9.y) = Jg(9.2)Q(x,y)Jy(g.y) for geG,z,yeX. (4.11)
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Proof. The first part follows immediately from Lemma and (4.6).
(a) We apply Lemma to the total subset F := {K,: 2z € X}. For
z,y € X we have

(m(9) Ky, Ki) = (m(9) Ky) (2) = Jg-1(y) Kg.y(x) = Jy-1(y) K (2, 9.y),

which depends continuously on g. Therefore the representation (7x,Hg) is
continuous.

(b) Since the inclusion K — Hk is continuous, K has continuous point evalu-
ations, hence is a reproducing kernel space Hqg (Lemma . By assumption,
Hqg = K is invariant under the unitary G-action defined by

(7 (9)f) (@) = Jy(2) f (g™ 2),
so that (4.11]) follows from the first part of the proof. O

Definition 4.4.6. If (4.9)) is satisfied, the cocycle J is called a multiplier for
the kernel K.

Remark 4.4.7. The preceding proposition applies in particular if the kernel K
is G-invariant, i.e.,

K(g.x,gy) = K(z,y) for g¢geGz,yeX.

Then we may use the cocycle J = 1 and obtain a unitary representation of G
on Hx by
(m(g9)f)(x) = fg~tx), feHkg,xzeX, g€eQG.

Exercises for Section [4.4]

Exercise 4.4.1. Let K: X x X — C be a positive definite kernel and §: X — C* a
function. Determine necessary and sufficient conditions on 6 such that

0(z)K(z,9)0(y) = K(z,y) for x,yeX.
Hint: Consider the subset X; := {z € X: K(z,z) > 0} and its complement Xo

separately.

Exercise 4.4.2. Let K,Q € P(X,C) be positive definite kernels on X and
f: X — C*. Show that
my: Hxk = Hg, [f—0f

defines a unitary map if and only if

Q(z,y) = 0(x)K(z,y)0(y) for =z,yeX.
Exercise 4.4.3. Let (V.| - ||) be a normed space,
P(V):={[v]:=Rv: 0#v eV}
be the space of one-dimensional subspace of V' (the projective space). Show that
(a) g.[v] := [gv] defines an action of GL(V') on P(V).

(b) J: GL(V) x P(V) — R*, Jy([v]) := “’%;HUH is a cocycle with respect to this
action.
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4.5 Some Examples

Let H be a complex Hilbert space. We consider the kernel K(z,w) := e{*®
corresponding to the Fock space F(H) := Hx C C*. Fock spaces play a cen-
tral role in operator theory and mathematical physics, in particular in Quantum
Field Theory (QFT). In this section we discuss several interesting unitary rep-
resentations of groups on F(H).

Since our approach is based on reproducing kernels, we start with groups
acting on H, and then discuss the cocycles that are needed to make the kernel
invariant under the group action.

4.5.1 The Schrodinger Representation of the Heisenberg
Group

The simplest group acting on H is the group of translations. For v € H, we write
Ty(x) := x + v for the corresponding translation. We want to associate to 7, a
unitary operator on the Hilbert space Hg. Since the kernel K(z,w) = elsw) g
not translation invariant, this requires a multiplier 6, : H — C* for the kernel
K, ie.,

K(z4+v,w+v)=0,(z+v)K(z,w)0,(w+v), z,v,wéeH. (4.12)
To find this multiplier, we observe that

K(Z +v,w+ U) _ 6<z+v,w+v> — e(z,v)e(z,w)e(v,'w)e(v,v)

_ e(z,v)—‘—%(v,v)K(Z’ w)e(v,w>+%(v,v).

Therefore
0,(2) == ezt (ve) _ (20)—3(v0)

satisfies (4.12)). Hence

(R@))() = 0u(2)f (2 =) = =40 £z — )

defines a unitary operator on Hy (cf. Lemma [4.4.2).
However, this assignment does not define a unitary representation (#,+) —
U(Hx ) because we have in the group (C*)* x Sx the relation

(01)77-1))(011177-111) = (91) : (Tv)*9w77-v+w) 7é (9v+w77-v+w)

because

(Gv . (TU)*QU,)(Z) _ e(z,v)f%(v,v)e(zfv,w)fé(w,w)

(z,04+w) — % (v+w,v+w) ,—(v,w)+ 3 ((v,w)+(w,v))

=€

— 9v+w (2)6% (w,v)—(v,w)) _ 9v+w (Z)e—i Im{v,w) )

(&
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This leads us to the Heisenberg group of H, which is given by
Heis(H) =R xH and (¢t0v)(s,w):= (t + s — Im(v, w),v + w).
It is easy to verify that this defines a group structure on R x H with
(0,)(0, w) = <71m(v,w>,v+w>.

Proposition 4.5.1. The group Heis(H) is a topological group with respect to
the product topology on R x H, where H is endowed with the norm topology,
o(t,v)(z) := z+ v defines a continuous action of Heis(H) on H and

Tty (2) = €10, (2) = e+ =00
s a continuous cocycle. Further,
(7(t,0)f)(2) i= €"0,(2) f(z = v) = T30 f(z )
defines a continuous unitary representation of Heis(H) on F(H).

Proof. The continuity of the group operations on Heis(#) is clear and the con-
tinuity of the action on H is trivial.
From the preceding calculations we know that the map

Heis(H) — (C)* x Sx, (t,v) — (e"0,,7,)

is a homomorphism, and this implies that J is a cocycle. Its continuity is
clear, and therefore Proposition [4.4.5]implies that 7 defines a continuous unitary
representation of Heis(H) on Hx = F(H). O

Remark 4.5.2. (a) If 0: H — H is an antilinear isometric involution, then
HO ={veH: o) =0}
is a real form of H, i.e., a closed real subspace for which
H=H" DiH°

is orthogonal with respect to the real scalar product (z,y) := Re(z, y). To verify
this claim, we recall the relation

(z,w) = (o(w),0(2))

from Exercise For z,w € H? it implies that (z,w) € R, and for z €
H?, w € iHT = H ™7 we obtain (z,w) € iR, so that (z,w) = 0.

This observation has the interesting consequence that {0} x H? is a subgroup
of the Heisenberg group Heis(H) and that

(m(v) f) () = 0, (2) f(z —v) = VD200 f(z — p)
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defines a unitary representation of H? on the Fock space F (). We shall see
later that F(#) is isomorphic to the reproducing kernel space on H? defined by
the real-valued kernel K (z,w) = e(*%),

(b) For a real Hilbert space H, the situation is simpler. Then we have the
relation 0,4, = 0, - (7)«0w, so that

(w(0) ) (@) = 0, (2) f (x = v) = ™72 f (2 —v).

defines a unitary representation of the additive group (H, +) on the reproducing
kernel space Hy with kernel K (z,w) = e(*®),

4.5.2 The Fock Representation of the Unitary Group

Proposition 4.5.3. Let H be a complex Hilbert space and F(H) := Hx C C
be the Fock space on H with the reproducing kernel K(z,w) = el=w) - Further,
let Fop(H) C F(H) denote the subspace of those functions in F(H) which are
homogeneous of degree m, i.e., f(Az) = X" f(2) for A € C, z € H. Then the
following assertions hold:

(i) The action ((g)f)(v) := f(g~'v) defines a continuous unitary represen-
tation of U(H)s on F(H). The closed subspaces Fn(H) are invariant
under this action and their reproducing kernel is given by K™(z,w) =

#(z, w)™.

(i) Let (ej)jes be an orthonormal basis of H. Then the functions

Pm(z) = 2™ = H 27 for  zji=(z,¢;),me N(()J),
JjeJ

form a complete orthogonal system in F(H) and ||pm|* = m! := [ my!.
Here N(()J) C N{ denotes the subset of finitely supported tuples.

Proof. (i) Since the action of U(#H)s on H given by (g,v) — gv is continuous
(Exercise , it follows from the invariance of K under this action that
(m(9)f)(v) = f(g~'v) defines a continuous unitary action of U(H)s on F(H)
(Proposition . It is clear that the subspaces F,,(H) are invariant under
this action.

Next we consider the action of the subgroup T := T1 C U(H) on F(H). For
m € 7, let

FH)m ={feFH): VteT)(VzeH)f(tz) =t"f(2)}

be the common eigenspace corresponding to the character t1 — ¢t~ of T

(cf. Example [2.2.11)). According to the discussion in Example [2.2.11| and Theo-
rem [1.3.14] we have an orthogonal decomposition

‘F(H) = é\amel‘/—;(%)m~
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In view of Exercise we have a corresponding decomposition K =3, K™
of the reproducing kernel Then K € F(H), is the projection of K, to the
subspace F(H),, which leads with the discussion in Example [2.2.11] to

m 1 o —imt it 1 R 1 —imt /it n
K'(y) = o /. € K. (e'"y) dt = o ngome (e"y,z)™ dit
_ i i /27r ieit(n_m) <y’ l‘}n dt = #<ya$>m, for m € Ny
=0 2r Jo  n! 0, for m < 0.

We conclude that K™ (z,w) = -1 (z,w)™ for m € Ny and that F(H),, = 0 for
m < 0. We also see that F(H),, C F(H) for all m € Ny and therefore obtain
Fm(H) = F(H)y, for each m € N because the inclusion F,,(H) C F(H), is
trivial.

(ii) We consider the topological product group T := T and note that Ty-
chonov’s Theorem implies that this group is compact with respect to the product
topology. Next we observe that the natural homomorphism

a: T — U(H), Oé((tj)jeJ) szej = thzjej

JjEJ JjeJ

(the action of T' by diagonal matrices) defines a continuous unitary representa-
tion. In view of the continuity criterion Lemma this follows from the fact
that the functions T' — C,t = (¢;)es = {(a(t)e, er) = dpxty are continuous for
all k,¢ € J. Next we use (i) to conclude that 7o« is a continuous unitary repre-
sentation of T on F(H). Since T is compact abelian, the Fundamental Theorem
on Unitary Representations of Compact Groups (Theorem shows that
the eigenfunctions of T' form a total subset of F(H). So we have to determine
these eigenfunctions.

Each continuous character x: T — T is of the form xm(z) = HjeJ z;nj
for m € Z/) where Z(/) C Z7 denotes the subset of all functions with finite
support, i.e., the free abelian group on J (Exercise . Accordingly, we have

—

FH) =D, 0T H)m:

where
FH)m ={f € F(H): (vt € T)m(a(t)f = foa() ™ = x-m(t)/}
(cf. Example . Then we have a corresponding decomposition
K= Y K™
mez()

of the reproducing kernel (Exercise [4.3.1). To determine the kernels K™, we
first observe that, in view of (i), F(H)m € F(H)m holds for 3, ;m; = m.
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In a similar fashion as for the circle group T (cf. Example [2.2.11} Exer-
cise [2.2.6)), we obtain an orthogonal projection

P F(H)m = FH)mr  Panl(f)(2) = /T Xen(0)£(0(8)12) djar (1).

In particular, we obtain
K™(2) = Pu(KI)(2) = /T X (K ((t) 1 2) dar (1)
= o | et a1z dr 0

To evaluate this expression, we recall the multinomial formula

|
(.’1’,‘1 + e +xn)k = Z k xa’ ]}a = x?l .. .x%n’ k = L’
« « arla!

lee| =k

where |a| := a3 + -+ + «,. We thus obtain for z,w € H with the Cauchy
Product Formula

m
a(t)z,w)™ = tiziw; ) = M) pm mpm
JRiWj
m
jed mGNé‘]),|m|:m

with uniform convergence in ¢ € T'. This leads to K*(z) = 0 for m ¢ N((]J), and

for m € NE)J) we get

KE() = o (1) mam = e = (2]

m! \m m!

This shows that F(H)m = Cpm and Theorem (3) implies that ||pml? =
m!. O

Remark 4.5.4. At this point we have unitary representations of the Heisenberg
group Heis() and the unitary group U(#) on the Fock space F (7). These two
representations are compatible in the following sense.

For each g € U(H), we obtain a topological automorphism of Heis(#) by
a(g)(t,v) := (¢, gv), and we thus obtain a homomorphism

a: U(H) — Aut(Heis(H)),

defining a continuous action of U(H)s on Heis(H) (cf. Exercise|1.2.3)). Therefore
we obtain a topological semidirect product group

Heis(H) x4 U(H).
In view of the relation
(n(g)m(t,0)f)(z) = e+ =07z (g7 )
= R T e £z - gu)) = (n(t, g0)(9))(2),



4.5. SOME EXAMPLES 81

we have
(g)m(t,v)m(g)~" = m(t, gu),
so that the representations of Heis(#) and U(H) on the Fock space combine

to a continuous unitary representation 7 (t,v, g) := w(t,v)w(g) of the semidirect
product group.

4.5.3 Hilbert Spaces on the Unit Disc

Example 4.5.5. Let D := {z € C: |z| < 1} denote the unit disc, and consider
for a real m > 0 the reproducing kernel Hilbert space H,, := Him with kernel

K™ (z,w):=(1—-zw)™ ™

(cf. Example . Since all functions K" = K™(-,w) are holomorphic, the
dense subspace HY.,. consists of holomorphic functions. Further, the function
z +— K™(z, z) is bounded on every compact subset of D, so that Lemma m
implies that convergence in H,, implies uniform convergence on every compact
subset of D. This shows that H,, € O(D). For m = 2, the Hilbert space H,
is called the Bergman space of D and, for m = 1, the Hardy space of D (cf.
Example below).

Since the kernel H,, is invariant under the action of T by scalar multiplica-
tion,

K™(tz,tw) = K™ (z,w),

we obtain a continuous unitary representation of T on H,,, given by (7(¢) f)(w) :
f(tw) (Proposition 4.4.5). From the Fundamental Theorem on Unitary Repre-
sentations of Compact Groups (Theorem we now derive that #,, is an
orthogonal direct sum of the T-eigenspaces H,, n, corresponding to the char-
acters xn,(t) := t", and in Example we have seen that the orthogonal
projection on H,, , is given by

Pu(f)(z) = / () dt,

T

where dt refers to the invariant probability measure on T. Applying this to the
functions K' leads to

Po(K™)(2) = /t‘"(l — tzw) M dt = i (_;71>(—1)k/1rtk_"zkwk dt

T k=0

() D )

We conclude that H, ., = Cp,(2) for p,(z) = 2™ and n > 0, and H,, , = {0}
otherwise. Further, Exercise implies that
mm+1)---(m+n-—1)

K™ (z,w) = ' 2"
n!
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is the reproducing kernel of H,, n, so that

n!
m(m+1)---(m+n-—1)
Example 4.5.6. (The Hardy space) On O(D) we consider

Ipall* =

) 1 27 ;
117 = tim o [ 15 di € [0,cx).
a1 2T Jo

To evaluate this expression, let f(z) = ZZOZO an,z"™ denote the Taylor series of
f in 0 which converges uniformly on each compact subset of D. Hence we can
interchange integration and summation and obtain

1 27

2m
27 | ‘2 dt = Z anam / ptme it(n—m) Z |an|2 2n.
T Jo

n,m=0

Applying the Monotone Convergence Theorem to the sequences (|ay,|?r*")en €
1 (Np), we see that (|a,|?)nen € £1(Np) if and only if || f|| < oo, and that in this
case || f||* = Y_o”, |an|*. Therefore

Hy:={f € O(D): ||If| < oo} = ¢*(Ny,C)

is a Hilbert space and the polynomials form a dense subspace of H;. Moreover,
the monomials p,(z) = 2™ form an orthonormal basis of ;. We put

an pn Zzinzl_zw

n=0

(cf. Theorem a)). Then, for w € D, the functions K} (z) = == =
> w"z™ are contained in H1, and for f(2) =Y >0 a,z", we get
n=0 n=0

oo
f7K1 Zanpnaw pn Zanwn:f(w
n=0

This proves that 7, has continuous point evaluations and that its reproducing
kernel is given by K! (cf. Exercise above).

The space H; is called the Hardy space of D and K' is called the Cauchy
kernel. This is justified by the following observation. For each holomorphic
function f on D extending continuously to the boundary, we obtain the simpler

formula for the norm:
1 27 )
2 ity|2
= — dt.
11 = 5= [ 1)

We see in particular that such a function is contained in H; and thus

1 [ J— 1 [ it
f& =18k = o [ eI ar= o [T
_ ) a1 f(©)
T omi ), et—z ¢ ldt_2m'7|{<|_1 ¢(—z

dg,
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where the latter integral denotes a complex line integral. This means that the
fact that K is the reproducing kernel for H; is equivalent to Cauchy’s integral

formula
foy— /()

2 flga (-2

dc.

Now we turn to the representations of the group SU; 1(C) on the spaces
H,, € O(D). We have already seen how the spaces H,, decompose under the
unitary representation of the group T, but the spaces H,, carry for m € N a
unitary representation of the larger group

b
G :=5U;,1(C) := {g = (Cbl -

) € GLy(C): a,b e C,lal* — |b]* = 1}.
We claim that B
04(2) == g.z == (az + b)(bz +a)!

defines a continuous action of G on D by biholomorphic maps. Note that this
expression is always defined because |z| < 1 and |b| < |a| implies that bz+a # 0.
That o4(z) € D for z € D follows from

laz + b2 = |a|?|z|* + (abz + @bZ) + |b]* < |b]?|2|* + (abz +abZ) + |a* = |bz +al*.

The relations 01(z) = z and 04y = 0404 are easily verified (see Exercise [4.5.4]).
To see that this action is transitive, we note that for |z| < 1,

! (i f)eSUl,l(C)

T VIEP

satisfies ¢g.0 = z.

To obtain a unitary action of G on H,,,, we have to see how the corresponding
kernel K™ transforms under the action of G. For the kernel Q(z,w) =1 — zw
an easy calculation shows that

_ . (az+b) (@@ +b)  (bz+a)(a+bw) — (az + b)(@w + b)
Qlozgw) =1 = T o+ a) (b + @) (a + bw)

(laf? = P —=w) _ _ Qzw)

(bz +@)(a + bw) (bz +@)(a + bw)

Finally, we note that, B
Jg(2) :==a—bz

defines a cocycle for the action of G on D, which can be verified by direct
calculation, and

Baz—i—b _abz+a]* —baz — b 1
bz+a bz+a Cbzta

Jolg-2) =a—

so that we obtain for
J"(g,2) = Jg(2)™™
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the relation
K™(g.z,9.w) = J"(g,9.2) K™ (2,w)J™(g, g.w),

and Proposition show that, for m € N,

(Tm(9))(2) = T™(g,2) f(g7"2) = (@ = b2) "™ f (ZZ__bi’)

defines a continuous unitary representation of G = SU; 1(C) on H™.

Remark 4.5.7. From Example we recall the positive definite kernels
K°(z,w) :=(1—zw)"*% s>0,

on the open unit disc D C C. We have seen in Example [£.5.0] that, for s € N, we
have a unitary representation of SU; 1(C) on the corresponding Hilbert space.
The reason for restricting to integral values of s is that otherwise we don’t have
a corresponding cocycle. However, for Q(z,w) = 1 — zw, we have

) — Q(sz) _ 7@(2,11))
Q(9-2,9-w) (bz+a@)(a+bw) |a]2(1+ (b/@)z)(1+ (b/a)w)

Qz,w),

and therefore
(9.2, g.w) = 0y(2) K (2, )0, (w)

for B
04(2) := lal*(1 + (b/a)z)®,

where, in view of |b] < |al, the right hand side can be defined by a power series
converging in D.

One can show that these considerations lead to a projective unitary repre-
sentation of SU; 1(C) on H, by

(ms(9)f)(2) = 0y(97".2) f(g™"2).

Exercises for Section [4.5]

Exercise 4.5.1. Let V be a real vector space and w: V x V — R be a bilinear map.

(a) Show that on R x V we obtain a group structure by
(tv)(s,w) == (t+ s+ w(v,w),v+w).

This group is called the Heisenberg group Heis(V,w).

More generally, we obtain for any two abelian groups V' and Z and any biadditive
map w: V x V — Z a group structure on Z x V by

(t,v)(s,w) = (t+ s + w(v,w),v + w).

(b) Let H be a complex Hilbert space. How do we have to choose V' and w to obtain
an isomorphism Heis(V,w) = Heis(H)?
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(c) Verify that Z(Heis(V,w)) = R x rad(ws), where
ws(v,w) == w(v,w) —w(w,v) and rad(ws):={v e V:ws(v,V)={0}}.

(d) Show that for V = R? with w(z,y) = x1y2, the Heisenberg group H(V,w) is
isomorphic to the matrix group

1 =z =z
H:—{ 0 1 y :xyy,zeR}.
0 0 1

Exercise 4.5.2. Let G = HjEJ G; be a product of abelian topological groups and
p;: G — G; be the projection maps. Show that the map

S: PG =G (xg)es = [[(xs0p))
jed jeJ
is an isomorphism of abelian groups.

Exercise 4.5.3. On R™ we consider the vector space Py of all homogeneous polyno-
mials of degree k:

p(z) = Z cax®, ca ERzY =2t xp™, ol =a1+ -+ anm.
|a|=k

We associate to such a polynomial p a differential operator by

p@) = > cad®, 0" :=07t .05, 0, i=

|e|=k

8m,' ’
Show that the Fischer inner product

(p,q) :== (p(9)q)(0)

defines on Py, the structure of a real Hilbert space with continuous point evaluations.
Show further that its kernel is given by

K(ey) = (o) = 5 (D)
j=1

Hint: Show that the monomials p, (z) = ® form an orthogonal subset with (pa, pa) =
a! and conclude with Theorem that K(z,y) = Z|a\=m e A

al

Exercise 4.5.4. We consider the group G := GL3(C) and the complex projective line
(the Riemann sphere)

P1(C) = {[v] :=Cv: 0 #£ v € C*}
of 1-dimensional linear subspaces of C2. We write [z : y] for the line C <§> Show

that:

(a) The map C — P1(C),z — [z : 1] is injective and its complement consists of
the single point oo := [1 : 0] (the horizontal line). We thus identify IP;(C) with
the one-point compactification C of C. These are the so-called homogeneous
coordinates on Py (C).
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(b) The natural action of GL2(C) on P (C) by g.[v] := [gv] is given in the coordinates

of (b) by
(2) : az+b P a b
g-z=0g4(2) = ——— for g={_ ]

(c) On C? we consider the indefinite hermitian form

B(z,w) := z1w1 — 2w = w” ((1) 01) z.
We define
U11(C) := {g € GL2(C): (Vz,w € C?) B(gz, gw) = B(z,w)}.

Show that g € U;y,1(C) is equivalent to

-1 _ (1 0 (1 0
9 =V -1)% \o —1)-
Show further that the above relation is equivalent to

detg €T, d=adetg and c=bdetg.

In particular, we obtain |a|® — |b]* = 1.

(d) The hermitian form j is negative definite on the subspace [z1 : 22] if and only if
|z1| < |22], i.e., [21 ¢ 22] = [z : 1] for |2| < 1. Conclude that g.z := %Z*b defines

cz+d
an action of Uy,1(C) on the open unit disc D in C.

4.6 Positive Definite Functions

It was one of our first observations in Section[I.3] that any unitary representation
decomposes as a direct sum of cyclic ones. The main point of this section is to
describe the bridge between cyclic representations and positive definite kernels
on the group G which are invariant under right translations. Such kernels are
determined by the function ¢ := Ky via K(g,h) = ¢(gh™!), and ¢ is said to be
positive definite if K has this property. We shall see that any cyclic represen-
tation of G is equivalent to one in a reproducing kernel subspace H, C C(G)
corresponding to a continuous positive definite function ¢, and characterize the
irreducible ones geometrically by the condition that ¢ is an extreme points in
the set S(G) of states of G, the set of normalized positive definite functions
on G.

Definition 4.6.1. (a) A function ¢: S — C on an involutive semigroup (S, *)
is called positive definite if the kernel

K,: Sx8—=C, Kg(s,t):=p(st")

is positive definite. We then write H, = Hg, C C* for the corresponding
reproducing kernel Hilbert space.
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(b) If G is a group, then (G, ng) is an involutive semigroup, so that a function
p: G — C is positive definite if the kernel

K,:GxG—C, Ky(st):=p(st™)

is positive definite.
A kernel K: G x G — C is called right invariant if

K(zg,yg) = K(x,y) holds for g,z,y € G.

For any such kernel K, the function ¢ := K7 satisfies

K(z,y) = K(zy~ ", 1) = o(zy ).

Conversely, for every function ¢: G — C, the kernel K (z,y) := ¢(zy~!) is right
invariant. Therefore the right invariant positive definite kernels on G correspond
to positive definite functions.

(c) For a topological group G, we write P(G) for the set of continuous
positive definite functions on G. The subset

5(G) = {e € P(G): p(1) = 1}

is called the set of states of G.

Clearly, P(G) is a convex cone and S(G) C P(G) is a convex subset with
P(G) = R:S(G). The extreme points of S(G) are called pure states of G.

Recall from Proposition that H, C C(G) for each continuous positive
definite function ¢ € P(G).

(d) If A is an involutive algebra, then a linear functional f: A — C is said
to be positive if it is a positive definite function on the involutive semigroup
((A,-), %), i.e., if the sesquilinear kernel

K(a,b) := f(ab™)

is positive definite, resp., a positive semidefinite hermitian form. Clearly, this is
equivalent to f(aa*) > 0 for every a € A.

Remark 4.6.2. If (7, H) is a unitary representation of the involutive semigroup
(S, %) and v € H, then the function

78S = C, s~ (n(s)v,v)
is positive definite because
K(s,t) :==n"(st*) = (w(s)7(t*)v,v) = (7w(t*)v, 7(s")v),

and the positive definiteness of this kernel follows from Remark The

corresponding realization map is

v:S—=H, ~(s)=mn(s")v
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(Theorem [4.3.3)). If v is a cyclic vector, then this map has total range, so that
O H—=Hr, Py (w)(s):=(w,n(s")v) = (n(s)w,v)
is an isomorphism of Hilbert spaces. In view of

Py (m(t)w)(s) = (w(st)w,v) = Do (w)(st),
this map intertwines the representation 7 of .S on H with the representation of

S on Hg by (s.f)(z) := f(xs).

Definition 4.6.3. In the following we write a cyclic unitary representation
(m,H) with cyclic vector v as a triple (7, H,v).

Proposition 4.6.4. (GNS (Gelfand-Naimark-Segal) Theorem) Let G be a
topological group.

(a) For every continuous unitary representation (w,H) of G and v € H,

m(g) := (m(g)v,v)
s a continuous positive definite function.

(b) Conversely, for every continuous positive definite function p: G — C,
the reproducing kernel space H, C C(G,C) with the kernel K(g,h) =
©(gh™Y) carries a continuous unitary representation of G, given by

(mo(9))(2) = [(zg),
satisfying
e(9) = (mo(9)p,)  for ge€G.
(¢) A continuous unitary representation (w,H) of G is cyclic if and only if it
is equivalent to some (m,,H,) with ¢ € P(G).

(d) For two cyclic unitary representations (w;, H;,v;), j = 1,2 of G, there

exists a unitary intertwining operator T': Hy — Hao with T'(vy) = vy if and

1 v _ U2
only if m' = w57,

Proof. (a) follows immediately from Remark
(b) We first observe that the kernel K is invariant under right multiplications:

K(zg,yg) = ¢(xg(yg)~") = K(z,y), z,y,9 €G,

so that we obtain a continuous unitary representation (7,,H,) of G (Proposi-
tion [4.4.5)). Finally, we note that K (x,g) = ¢(zg~') leads to K, = ¢ 0 py-1, so
that

(mo(9)p, ) = (T (9)p, K1) = (mo(9)9) (1) = ¢(g).

(c) To see that (m,, H,) is cyclic, we show that ¢ is a cyclic vector. In fact,
if f € H, is orthogonal to m,(G)y, then we have

flg) = (w(9)/)(1) = (x(g)f, ) = (f.m(g) " ) =0,
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for each g € G, and therefore f = 0.

If, conversely, (m, H, v) is a cyclic continuous unitary representation of G and
v € H a cyclic vector, then ¢ := ¥ € P(G) by (a), and Remark implies
that the map

Dy H =My, Py(w)(g) = (r(9)w,v)

is a unitary intertwining operator. We conclude that (7,1, v) = (74, He, @)-

(d) I T': Hy — Ho is a unitary intertwining operator with I'(vy) = vg, then
we have for each g € G the relation

T3 (9) = (ma(g)vz, v2) = (T(mi(g)v1), T(v1)) = (mi(g)or, v1) = " (9)-

Suppose, conversely, that ¢ := )" = m52. Then we obtain with Remark
unitary intertwining operators

Ij:H; = H, with Tj(v;) =e.

Then F;l ol'y: H1 — Hs is a unitary intertwining operator mapping v; to
V2. O

Proposition 4.6.5. Let (7, H,v) be a cyclic representation, where v is a unit
vector. Then 7 is irreducible if and only if T is an extreme point of the convex
set S(G), i.e., a pure state.

Proof. (a) If 1 = w1 @y is a proper direct sum decomposition and H = H; B Ho,
accordingly, then the cyclicity of v = v1 + v implies that v; # 0 for j = 1,2.
Then

1)2

¥ = ¥t _1_77112 — HUlHZ H2 4 H 2”2” ”27

and since 1 = ||[v]|? = ||v1]|? + [|Jv2]|?, the function 7V is not an extreme point in
S(G). This shows that 7 is irreducible if 7 is an extreme point of S(G).
(b) Suppose, conversely, that

v:)\1<,01+/\2(pg, 0<)\j,)\1+)\2:1 QDjGS(G).

I

Let (m;,H;,v;), j = 1,2, be cyclic representations of G with Ajp; = 7r . Then
the unit vector w := (vl,vz) € Hy & Ho satisfies 7 = 7%, so that the cychc
representation (w,H,v) is equivalent to the cyclic subrepresentation of L :=
Hi ® Ho generated by w (Proposition . We may therefore assume that
v=wand H C K.

If 7 is irreducible, then the fact that the projections P;: H — H; are non-
zero intertwining operators implies that 0 # P/ P; € C1 by Schur’s Lemma. In
view of

Aj = vl = |1Pw))?* = (P} Pyw, w),
1
we obtain PfP; = A;1. Then ®; = )\-72P~: H — H; is unitary and maps w to

the unit vector w; := )\ v] This implies that
¥ = Wi = )\;171'”1' _

for j = 1,2, and therefore 7% = 7% is an extreme point of S(G). O
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Examples 4.6.6. On reproducing kernel spaces, cyclic representations arise
naturally from transitive actions of G on X. So let us assume that G acts
transitively on the set X and pick a point g € X.

For a positive definite kernel K on X we then study unitary representations
of G on Hg of the form

for which we have

ﬂ-(g)Ka: = Jg*1 (x)Kga:

(cf. Proposition |4.4.5)). The latter relation implies in particular that m(g)K, €
CKy,. As {K;:xz € X} is total in Hg, it follows that K, is a cyclic vector
for (m, Hx).

The corresponding positive definite function is given by

o(g) = <7T(g)K$07KQTU> = Jgf1(x0)Kg.$0 (z0) = Jgfl(xO)K(xoug'xO)'

We now evaluate this expression for several classes of cyclic unitary repre-
sentations of this type:

(a) For G = Heis(H) and K(z,y) = e!®¥ on H (Subsection [4.5.1)), we put
xo := 0. Now Jiy .y (z) = eite(@) =2l Jeads to

Plt,v) = Tty (0)K(0,g.0) = e~ 3 IMI7,

(b) For the transitive action of G = U(H) on X = {z € H: ||z| = 1} (cf.

Exercise [4.6.2), we consider the invariant kernel K(x,y) = (z,y)" (Proposi-
53

tion . Then J, =1 for every g leads to

o(g) = K(z0,9-70) = (20, 9-70)" = (%0, 9-T0)"

If 29 = ey is the first element in an orthonormal bases ej, e, ..., then ¢(g) =
g11" is obtained from the left upper entry of the matrix representing g.

(c) For the transitive action of G = SU; 1(C) on X = D and the kernel
K(z,w) = (1 —2zw)~™, m € Ny (Subsection , we obtain for xyp = 0 and
the cocycle Ji"(2) == (a — bz)~™ the corresponding positive definite function

e(g) = J7* (0)K(0,9.0) =a ™ =gin ~ ™.

Note that this is similar to (b), but that the sign of m is different.

Exercises for Section [4.6

Exercise 4.6.1. Let C C V be a convex cone in the real vector space V and o € V*
with a(c) > 0 for 0 # ¢ € C. Show that

S:={ceC:alc) =1}

satisfies:
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(a) C= R+S
(b) x € S is an extreme point of S if and only if Ryx is an extremal ray of C.

Exercise 4.6.2. Show that for a euclidean space V', the group O(V') of linear surjective
isometries acts transitively on the sphere

S(V)={veV: vl =1}
Hint: For a unit vector v € S(V'), consider the map
ou(x) == — 2(z,v)v.
Show that o, € O(V) and that for =,y € S(V) there exists a v € S with o,(z) = y.

Exercise 4.6.3. Let 0: G x X — X,(g,2) — g.z be a transitive continuous ac-
tion of the topological group G on the topological space X. Fix z¢p € X and let
K :={g € G: g.xo = x0} be the stabilizer subgroup of zo. Show that:

(a) We obtain a continuous bijective map n: G/K — X,gK — g.xo.

(b) Suppose that n has a continuous local section, i.e., o has a neighborhood U
for which there exists a continuous map 7: U — G with 7(y).zo =y for y € U.
Then 7 is open, hence a homeomorphism.

(c) Let G := Rgq be the group (R,+), endowed with the discrete topology and
X := R, endowed with the canonical topology. Then o(z,y) := x + y defines a
continuous transitive action of G on X for which the orbit map 7 is continuous
and bijective but not open.
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Chapter 5

Spectral Measures and
Integrals

We have already seen in Chapter [1] that forming direct sums of Hilbert spaces
and decomposing a given Hilbert space as an orthogonal direct sum of closed
subspaces is an important technique in representation theory. However, this
technique only leads to a complete understanding of those representations which
are direct sums of irreducible ones, i.e., H = H4 in the notation of Section
In this chapter we develop the concept of a projection valued measure, which
provides a continuous analog of direct sum decompositions of Hilbert spaces.
In particular, it can be used to study the structure of representations without
irreducible subrepresentations. The general idea is that a representation may be
composed from irreducible ones in the same way as a measure space is composed
from its points, which need not have positive measure.

5.1 Spectral Measures
Definition 5.1.1. Let H be a Hilbert space and
Py :={P € B(H): P = P?> = P*}

be the set of all orthogonal projections on H. Further, let (X, &) be a mea-
surable space. A map P: & — Py is called a spectral measure or a projection
valued measure if

(SM1) P(X) =1 and P(D) = 0,
(SM2) If (Ej)jen is a disjoint sequence in &, then

oo

p( Uz, Ej)y = ZP(Ej)v for each v e H.
j=1

93
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In this sense we have

in the strong operator topology, and
(SM3) P(ENF)=P(E)P(F) for E,F € 6.
Remark 5.1.2. On Py we define an order structure by
P<@ if P=PQ.

Note that this implies that P = P* = Q*P* = QP, so that P commutes with
Q. The relation P < @ is equivalent to im(P) C im(Q).
For P < @ and v € H, we have

|Pv—Qu||*> = (Pv, Pv)—2Re(Pv,Qu) + (Qu,Qu)
= (Pv,v) — 2(Pv,v) + (Qu,v)
= (Qu,v) — (Pv,v). (5.1)

We conclude that, if (P,) is a monotone sequence of projections, then
P, — P in the strong operator topology if equivalent to (P,v,v) — (Pv,v) for
every v € H.

Since Py, C B(H) is bounded, it even suffices that this relation holds for all
elements v in a dense subspace (cf. Exercise [1.2.8]).

Remark 5.1.3. (a) If (X, &) is a measurable space, then & is an abelian
involutive semigroup with respect to the operations

A-B:=ANB and A*:=A.

The set X is a neutral element. Condition (SM3) implies that every spectral
measure is in particular a representation of this involutive semigroup (&, x) with
identity.

(b) The axiomatics in our definition of a spectral measure are not free of
redundancy. One can show that (SM3) follows from (SM1) and (SM2) and that
the requirement P(f)) = 0 in (SM1) can also be omitted (cf. [Ne09]).

(c) For each spectral measure P on (X, &) and each v € H,

PY(E) := (P(E)v,v) = | P(E)v|?

defines a positive measure on (X, &) with total mass ||v||?. In particular, it is a
probability measure if v is a unit vector.

(d) In practice, the verification of (SM2) can be simplified as follows. Sup-
pose that we know already that (SM2) holds for finite sums. Then Y " | P(E,) =
lim, oo P( UZ:l Ek) , so that we are dealing with an increasing sequence of pro-
jections. In view of Remark it therefore suffices to show that PV(UJ;2, E;) =
Z‘;’;l PV(E;) for every v in a dense subspace.
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The following lemma describes a typical situation where spectral measures
arise.

Lemma 5.1.4. (a) Let (X, S, u) be a measure space and H := L*(X, ). For
E € & we define an operator on H by P(E)f := xgf. Then P defines a
projection valued measure on H.

If, in addition, p is finite, then v =1 is a cyclic vector for P and P¥ = u.
(b) For v € H, the induced spectral measure on the cyclic subspace H, :=

span P(6)v C H is unitarily equivalent to the canonical spectral measure
on L?(X, PY), given by multiplication with characteristic functions.

Proof. (a) From Lemma we recall the homomorphism of C*-algebras
p: L(X, p) = B(L*(X, ), p(h)f = hf.

For each E € &, the characteristic function y g satisfies xg = X% = X%, so that
P(E) = p(xg) € Py. We also obtain for finitely many pairwise disjoint sets
FEq, ..., E, the relation

XE\U--UE, = XE;, T "+ XE,.,

so that P is finitely additive.

Clearly, P(X) = 1 and P(0) = 0. Now let (E;);en be a disjoint sequence
in X and f € H. We put Fy := Ule E; and F := U;)il E;. Then xr, — Xr
pointwise, so that the finite additivity of P together with Lemma (iv) imply
that P(Fy) = My, — M, = P(F). This proves (SM2). Finally (SM3) follows

XFy,
from

P(ENF)=p(xenr) = p(xexr) = p(xe)p(xr) = P(E)P(F).

If p is finite, then 1 is cyclic for L (X, u), and since span{xg: E € &} is
dense in L>*°(X, u), the function 1 is also cyclic for P.
(b) For E,F € &, we have

(P(E)v, P(F)v) = (P(F)P(E)v,v) = (P(EN F)v,v)

PY(ENF) = (XE, XF)L2(X,P")-

This means that the two maps v1(E) := P(E)v and 72(F) := xp define two
realization triples (S, 71, H,) and (S, y2, L?(X, P?)) of the same positive definite
kernel K(E, F) = P'(ENF). The Realization Theorem therefore implies
the existence of a unique unitary operator

M, — L*(X,P") with T(P(E)v)=xg for FEc6.
Then

Lo P(F)(P(E)v) =T(P(ENF)v) = Xrne = XrXE = XrL (P(E)v)
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implies that
FoP(F)=xp-I' for Fe6.

This means that I' intertwines the spectral measure P on H, with the canonical
spectral measure on L2(X, P?). O

Lemma 5.1.5. (Direct sum of spectral measures) Let H = &, H; be a direct
sum of Hilbert spaces, (X, 8) be a measurable space and Pj: & — Py, j € J,
be spectral measures. Then

P(E)v:= (Pj(E)v;) for v=(vj)jes €H
defines a spectral measure P: &G — Pyy.

Proof. Clearly, P(E)* = P(E) = P(E)?, so that each P(E) is indeed an
orthogonal projection. Further, P(X) = 1, P(§) = 0, and P(ENF) =
P(E)P(F). For any disjoint sequence (F,)nen of Borel subsets of X, we thus
obtain P(E,)P(E,,) = 0 for n # m. Clearly, (SM2) holds for any v € H,,
j € J, and, in view of Remark d) this implies (SM2) for P. O

Remark 5.1.6. (Decomposition into cyclic spectral measures) If P is a spec-
tral measure on (X, &), then we can always decompose H as an orthogonal
direct sum H = @je JH; of P-invariant subspaces on which the correspond-
ing spectral measure P;(E) := P(E)|3,; € Py, is cyclic with cyclic vector v,
(Proposition|1.3.10). In view of Lemma b), we then have H; = L*(Pvi, X)
with P;(E)f = x(E)f. In this sense every spectral measure is a direct sum of
canonical spectral measures on L2-spaces of finite measure spaces.

Conversely, Lemma shows that, for any family (u;);es of finite mea-

sures on (X, &), we obtain on @, ,L*(X, uj) a canonical spectral measure.

jes

5.2 Spectral Integrals for Measurable Functions

Proposition 5.2.1. Let P: & — Py be a spectral measure on (X,6). Then
there exists a unique continuous linear map

P: L®(X,8) — B(H)

with ﬁ(XE) = P(E) for E € &. This map is called the spectral integral and we
also write

P(f) = /X f(2) dP(x). (5.2)
This map satisfies
(i) P(f)* = P(f), P(fg) = P(f)P(g) and |[P(f)| < |fl for f.g €

L>(X,8). In particular, (ﬁ,%) is a representation of the commutative
C*-algebra L™= (X, 6) of all bounded measurable functions on (X, S).
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(ii) If (fn) is a bounded sequence in L*°(X,&) for which f, — [ holds
pointwise on the complement of a subset N € & with P(N) = 0, then
P(fn) = P(f) in the strong operator topology.

Proof. (i) Decomposing H as a direct sum of cyclic subspaces (Remark[5.1.6), we
may w.l.o.g. assume that H = L%(X, u) for a finite measure g and P(E)f = xgf
(Lemma [5.1.5). In this case (i) follows from Lemma [3.1.3]

The uniqueness of the spectral integral follows from the density of the sub-
space span{xg: E € &} of step functions in L>(X, S).

(ii) If the spectral measure is cyclic, hence equivalent to the canonical one
on some L2(X, PY), this follows from Lemma iv). Since every spectral
measure is a direct sum of cyclic ones (P, H;)jes, it follows that 13( fa)v —
P(f)v on the dense subspace >_jes Hj. Now the boundedness of (P(fs))nen
implies that this relation holds for every v € H. O

Remark 5.2.2. If P is a spectral measure on (X, &), then we obtain for each
v € H a measure PY on (X, &). For each measurable function f € L*(X,5),
we then obtain the relations

(B(f o) = /X f(x)dP? (x) (5.3)
1Bl = /X 1 (@)2 dP? (z). (5.4)

between usual integrals with respect to the measure P¥ and the spectral integrals
with respect to P. Note that justifies the notation .

If f = xg is a characteristic function, then reproduces simply the
definition of the measure PV, which implies the first relation for step functions
because both sides of are linear in f. Since both sides define continuous
linear functionals on L (X, &)

| [ t@ap@)] < [ 1r@)ldPt@) < 171P 00 = 1o
X X

(cf. Proposition [5.2.1]), and step functions form a dense subspace, both sides of
(5.3)) coincide on all of L*>°(X,&). The second relation now follows from ([5.3)):

IP(f)oll® = (P(f)*P(f)v,v) = (P(|f]*)v,v) = / |f(z)[? dP"(x).
X

Remark 5.2.3. An important but subtle point of the theory of non-discrete
spectral measures is the measurement of multiplicities. For a discrete spectral
measure P: & = 2% — Py, ie., P(E) =, . P({z}) for E € &, the multi-
plicity of € X can simply be measured by dim #H, for H, := P({z})H and P
leads to an orthogonal decomposition

H = BrexHa.
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For non-discrete spectral measures the situation is more complicated. One way
to deal with this problem is to decompose H into cyclic subspaces

H, :=span{P(E)v: E € &} = L*(X, P").

On this space the representation of the involutive semigroup (&,idg) is multi-
plicity free because (P(&)|3,) = L>(X, P?) (Proposition is commuta-
tive. Now H is a direct sum of such spaces H,, so that one may count multiplic-
ities by comparing the measures PV. This problem is studied systematically in
Halmos’ nice book [Hab7] which is still one of the best reference for these issues.
[Nel69] also contains an excellent exposition of separable spectral multiplicity
theory and its applications).

5.3 Existence of Spectral Measures

The main result on the existence of spectral measures is the following theorem.
The first part is an immediate consequence of Lemma The main point is
the existence in part (ii).
We recall from Appendix that for every commutative Banach *-algebra
A, the set ~
A :=Hom(A,C)\ {0}

of non-zero continuous x-homomorphisms y: A — C, is a locally compact space
with respect to the topology of pointwise convergence on A.

Definition 5.3.1. If X is a locally compact space, then we call a Borel spectral
measure P on X regular if all the measures P are regular.

Theorem 5.3.2. (Spectral Theorem for commutative Banach-x-algebras) Let
A be a commutative Banach-x-algebra. Then the following assertions hold:

-~

(i) If P: B(A) — Py is a regular Borel spectral measure on the locally com-
pact space A and a(x) := x(a) for a € A, x € A, then

7p(a) = P@) = /Ax(a) dP(x)

A

defines a non-degenerate representation of A on H.

(ii) If (m,H) is a non-degenerate representation of A, then there exists a
unique reqular spectral measure P on A with m = 7p.

-~

Proof. (i) Since the Gelfand transform G: A — Cy(A),a — a is a (contractive)
homomorphism of Banach-x-algebras (Appendix and the same holds for
the spectral integral P: L>(A) — B(H) (Proposition , the composition
mpi=PoG: A— B(H) is a representation of the Banach--algebra A.

To see that the representation (7wp,H) is non-degenerate, we may w.l.o.g.
assume that the spectral measure is cyclic (Remark , which implies that
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H = L2 Vzl\ w) for some finite regular measure p on A and PE)f = xef
(Lemmal5.1.4). Since G ( ) is dense in Cy (.A) by the Stone—Weierstral Theorem
(Remark|A.3.2) and C.. (A) is dense in L? (.A i) by Proposmon 2} the relation
mp(a)l = @ implies that 1 is a cyclic vector for (wp, L (A ). Hence 7p is non-
degenerate.

(ii)E| First we show that we may assume that A = Cy(X) for some locally
compact space X. So let B := 7(A). Then B is a commutative C*-algebra and
m: A — Bis a morphism of Banach-x-algebras with dense range. In view of the
Gelfand Representation Theorem (Theorem [A-31)), B = Cy(Y) for some locally
compact space Y. For y € Y and d,(f) := f(y), we have 7*(d,) :=d,om € A
because 7*(d,) # O follows from the fact that = has dense range. The so

obtained map 7*: Y — A is continuous because for each a € A, the function
y — 7 (6y)(a) = m(a)(y) is continuous. Moreover, it extends to an injective
continuous map

7*:Y U{0} = Hom(B,C) — AU {0} = Hom(A, C)

of compact spaces which therefore is a topological embedding. This implies that

7*(Y)U{0} is a compact subset of AU{0} so that YV = 7*(Y) is a closed subset
of A. We may therefore assume that Y is a closed subset of .A so that 7 obtains
the simple form 7(a) = a|y. If Pp is a regular Borel spectral measure on Y
with Pg(f) = f for f € B C B(#), then Pa(E) := Pg(ENY) is a regular Borel
spectral measure on A (cf. Exercise (d)), and for a € A we have

P4(@) = Pp(aly) = (a).

Replacing A by B, we may thus assume that A = Cy(X) holds for some locally
compact space X.

Uniqueness: Next we show the uniqueness of the spectral measure. Let P
and () be regular spectral measures with the desired properties. For v € H we
then obtain two positive measures P¥ and Q¥ on A with

L300 P"00 = (P@)0.0) = (wlap.v) = [ 3(0) Q")
for a € A. In view of the Riesz Representation Theorem, the regularity assump-
tion implies P” = Q. Since each P(F) is uniquely determined by the numbers
PY(E) = (P(E)v,v), v € H, the uniqueness of P follows.

Existence: Now we prove the existence. To this end, we decompose the rep-
resentation (m, H) into cyclic representations (7, H;),j € J (Proposition.
If we have for each j € J a spectral measure P? with values on B(#;) and

13j oG = 7, then Lemma implies that
P(E)v:= (Pj(E)v;) for v=(vj)jes€H

IThis part of the proof draws heavily from the theory of commutative Banach *-algebras
developed in Appendix@ Readers which are not familiary with this theory should consider
it as a sketch of a proof which gives a good impression of the main ideas behind this existence
result.
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defines a spectral measure. We may thus assume that the representation of
A = Cy(X) is cyclic. Let v € H be a cyclic vector, so that 7(A)v is dense in
H. Then

7 Co(X) = C, [ (n(f)o,v)

is a positive functional, and the Riesz Representation Theorem provides a unique
regular Borel measure P on X with

()= [ F0 APt feCo(X),

Next we show that H = L2?(X,P?). To this end, we consider the map
O: Cp(X) = H,a— 7w(a)v. Then

(®(a), 2(b)) = ((a)v, w(b)v) = (w(ab*)v,v)

— 1 (ab) = /X a(@)b(@) dP" (z) = (a,b) 2 x.po).

Hence the map L?(X, P¥) > a — 7(a)v € H is well defined and, since Cy(X) is
dense in L?(X, P?) (Proposition [3.3.2), it extends to an isometric embedding

®: L*(X,P) = H,
which is surjective because m(A)v is dense. For each a € A we have
(m(a)v,v) = (a, 1) L2(x pv) = (®(a), B(1)) = (m(a)v, B(1)),
so that ®(1) = v.
Let p: L®(X) — B(L*(X,P")) denote the multiplication representation
from Lemma [3.1.3] For a,b € A we then have
m(a)®(b) = 7(a)w(b)v = w(ab)v = ®(ab) = P(p(a)d).

In view of the density of Cy(X) in L?(X, P¥), ® is an intertwining operator for
the representations p and 7 of A. We may thus assume that H = L?(X, PY).

Finally, let P(E)f = xgf denote the spectral measure on L?(X, P") from
Lemma For a € A = Cy(X), we now have ﬁ(a) = p(a). Tt remains to
show that, for f € L?(X, P"), the measures

B PI(E) = (P(BVLS) = (xef f) = [ 5@ dP'(a)
are regular, but this is a consequence of the following Lemma O
Lemma 5.3.3. If i is a reqular Borel measure on the locally compact space X

and f € L2(X, ), then the finite measure pg(E) = [, |f(x)|* du(z) is also
reqular.
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Proof. Let E C X be a Borel set. We have to show that F is outer regular.
We may assume p(F) < oo because otherwise there is nothing to show. Let
e > 0. For n € N we consider the sets F,, := {z € X: |f(z)] > n}. Then
pr(X\ F,) — pp(X) = || f|3 implies that p¢(F,) <eforn>N.. If V2D Eis
an open subset with u(V) < pu(E) + 7z, then we obtain for n = N:

pr(V\E) = ps(VOF)\E) +pp(V\Fo) \ E)
< pp(F) + pp (VN Fo) \ E) < e + %nQ = 2.

This proves the outer regularity of F.
To see that each open subset U C X is inner regular, we argue similarly. [

The proof of the preceding theorem directly implies the following:

Corollary 5.3.4. A representation (m,H) of a commutative Banach--algebra
A is cyclic with cyclic vector v if and only if there exists a finite Radon measure
w on the locally compact space A such that (w,H,v) is unitarily equivalent to
the representation (7@“ LQ(./zl\, 1, 1) with m,(a)f =a- f.

Lemma 5.3.5. Let (m,H) be a non-degenerate representation of the commu-

tative Banach-x-algebra A and P: & = B(A) — Py the corresponding regular
Borel spectral measure with P(a) = w(a) for a € A. Then

Proof. Clearly P(&)” is a von Neumann algebra in B(#), hence in particular
norm closed. Since it contains all operators P(E), E € &, it contains the
operators P(f) for all measurable step functions f: A — C. As these form a

-~

dense subspace of L>(A), we see that
n(A) = P({a: a € A}) C P(Co(A)) € P(L¥(A)) C P()".

To prove the converse inclusion, we have to show that each P(F) is contained
in 7(A)", i.e., that it commutes with 7(4)". In view of Exercise[A.3.5] the unital
C*-algebra 7(A)’ is spanned by its unitary elements, so that it suffices to show
that P(E) commutes with all unitary elements u € 7(A)’. For any such unitary
element

P.(E) :== uP(E)u™!
defines a regular spectral measure with the property that, for a € A, we have
P,(@) = uP@u"" = ur(a)u™" = 7(a).

Therefore the uniqueness of the spectral measure representing 7w implies that
P, = P, i.e., that each P(F) commutes with u. O
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5.4 Applications to locally compact abelian groups

Any locally compact group G carries a left invariant Radon measure p¢, called
the Haar measure of GG. It is unique up to positive multiples. For G = R", this
is (any positive multiple of) Lebesgue measure and if G is discrete, the Haar
measure is simply the counting measure on G. With this measure, we can define
a Banach-*-algebra L'(G) := L'(G, ) by the convolution product

(F+9)e) = [ Fwat D duct) = [ fenat ) ducts). (69
If G is abelian, the involution on L!(G) is simply given by

@) =T 0. (5.6)

Suppose that G is locally compact and abelian. Then each character x € G
defines a homomorphism

Iy: LYG) = C, T\ / f(9)x(g) duc(yg),
and it turns out that we thus obtain a bijection
r:G— L/l(E)

(cf. Appendix. The Spectral Theorem for commutative Banach-*-algebras
now applies to L*(G), and this leads to a one-to-one correspondence between
continuous unitary representations (m,H) of G and regular spectral measures
on the locally compact space G. In particular, every unitary representation of
G is given in terms of such a spectral measure P as

7p(g) = P(9)-

Combining this discussion with Theorem from the appendix, resp., with
Corollary we obtain:

Corollary 5.4.1. (Cyclic representations of locally compact abelian groups)
A representation (w,H) of an abelian locally compact group G is cyclic if and
only if there exists a finite Radon measure y on G such that (m,H) is equiva-
lent to the cyclic representation <7TM,L2(G, 1), 1), gwen by 7, (¢9)f =g-f. In
particular, all these representations are continuous and cyclic.

Theorem 5.4.2. (Bochner’s Theorem) A continuous function ¢ on the locally
compact abelian group G is positive definite if and only if there exists a finite
Radon measure p on G with ¢ = [i, where

Alg) == /G x(@) d(x)

is the Fourier transform of the measure p. Then p is uniquely determined by ¢.
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Proof. We have already seen in Proposition[£.6.4]that ¢ is positive definite if and
only if ¢ = 7% holds for a continuous cyclic unitary representation (m, H,v). In
view of Corollary - any such representation is equivalent to a representation
of the form (m,, G, 1), where y is a regular Borel measure on G and mu(9)f =9f.
Now the assertion follows from

(@)1, 1) = (§.1) = /G 3(x) du(x) = Ag).

To see that p is unique, we note that, for f € C.(G), we obtain with Fubini’s
Theorem the relation

/f 9) duc (g //f (x) duce(9)
/ / F(9)x(9) duic(9) dux)
- /éfx(f)du(x): et

Therefore the function ¢ determines the p-integral of all functions in G(C.(Q)),
hence of all functions in Cy(G), and this determines the Radon measure p
uniquely. O

The following theorem shows how spectral measures lead to unitary rep-
resentations of the group (R,+) and vice versa. It may be considered as a
classification of unitary one-parameter groups in terms of spectral measures on
R which provides important structural information.

Theorem 5.4.3. Let P: B(R) — Py be a spectral measure. Then

— P(eitidry — eite z).
r(t) = P(eitide) /X iP(z)

defines a continuous unitary representation w: R — U(H). Conversely, every
continuous unitary representation of R is of this form.

Proof. Since R — U(L*°(X,C)),t + e*19% is a homomorphism into the unitary
group of the C*-algebra L R,(C) and t, — t implies e?"* — €% pointwise,
it follows from Proposition 1| that 7(¢) := P(e*id®) defines a continuous
unitary representation of R.

If, conversely, (7, H) is a continuous unitary representation of R, then Theo-

rem [A.6.25implies the existence of a spectral measure P on R with 7(t) = P(f)

for ¢ € R. Identifying the locally compact character group R with R in such a
way that t(z) = e"* (Example |A.6.24), the assertion follows. O

Exercises for Chapter

Exercise 5.4.1. Let P and @ be two commuting projections in Py. Show that PQ
is the orthogonal projection onto the closed subspace im(P) Nim(Q).
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Exercise 5.4.2. (One-parameter groups of U(H))

(1) Let A = A* € B(H) be a bounded hermitian operator. Then ya(t) := €4
defines a norm-continuous unitary representation of (R, +).

(2) Let P: (X,6) — B(H) be a spectral measure and f: X — R a measurable
function. Then ys(t) := P(e'*f) = IS e@ dpP(z) is a continuous unitary
representation of (R,+). Show that 7y is norm-continuous if and only if f is
essentially bounded.

Exercise 5.4.3. Two representations (7;,Hs), 7 = 1,2, of an involutive semigroup
(S, *) are called disjoint if Bs(H1,H2) = {0}.

Show that a family (7;, H;) cs of representations of (S, ) is pairwise disjoint and
multiplicity free if and only if their direct sum 7 := @;esm; is multiplicity free.

Exercise 5.4.4. Let (m,H) be a non-degenerate representation of the involutive semi-
group (S, ) on the separable Hilbert space H which is multiplicity free in the sene that
7(S)" is commutative. Show that (m,H) is cyclic. Hint: Write H as a direct sum of
at most countably many cyclic representations (7j, H;,v;) with cyclic unit vectors
(vj)jes and find ¢; > 0 such that v := 37, ;cjv; converges in H. Now show that
v is a separating vector for m(S)" and use Exercise Note that the orthogonal
projections P; onto H; are contained in 7(S)’.

Exercise 5.4.5. Let A C B(H) be a commutative von Neumann algebra, where # is
separable. Show that the following assertions are equivalent

(a) A is maximal commutative, i.e., A" = A.

(b) The representation of A on H is multiplicity free, i.e., A" is commutative.

(c) The representation of A on H is cyclic.

Hint: Use Exercisefor (b) = (c) and for (b) = (a) observe that A’ is commutative
if and only if A" C A” = A. For (¢) = (b) use Corollary to identify the cyclic
representations as some LQ(.,Zl\, 1), and then Lemma see that in this case
the commutant is the commutative algebra L™(A, ) = L=(A, 1) C B(L*(A, 1))

(Proposition [3.1.8)). -
Exercise 5.4.6. Let X = {z1,...,2,} be a finite set and & = 2% be the o-algebra
of all subsets of X. Show that:

(i) Spectral measures P: & — Py are in one-to-one correspondence with n-tuples
(Hi1,...,Hn) of closed subspaces of H for which H = H1 ® ... D H, is an
orthogonal direct sum. For the corresponding orthogonal projections P;: H —
‘H; C H this means that

1= ZPj and Pjpk = (Sjkpj,
j=1

i.e., the P; form a resolution of the identity.

(ii) Two spectral measures P: & — Py and Q: & — Px are unitarily equivalent if
and only if the Hilbert spaces P({z;}) and Q({z;}) are isomorphic (=have the
same Hilbert dimension) for j =1,...,n.

Exercise 5.4.7. Let H = C" and A € B(H) be a normal operator.
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(i) Describe the unique spectral measure P: 2574 — Py with A = fSpecA AdP(X)
(the spectral itegral) in terms of the eigenspaces of A.

(ii) Describe the spectral integral in terms of the decomposition of H into A-eigenspaces.

(iii) Which property of A corresponds to the multiplicity freeness of the spectral
measure?

(iv) When are two normal operators A, B € B(H) unitarily equivalent?

Exercise 5.4.8. (A glimpse of spectral multiplicity theory) Let (X, &) be a measur-
able space and p1, pu2: © — Ry be finite measures. We put p := p1 + p2 and want to
compare the L%-spaces of 1, g2 and p. Show that:

(i) We have an isometric embedding
n: (X, p) = L2 (X, ) @ L2(X, ), f o (£, ).

(ii) Suppose that u; = p;p with density functions p; (their existence follows from the
Radon-Nikodym Theorem). Then the adjoint map n*: L*(X, u1)® L*(X, p2) —
LZ(X, u) has the form n*(fi, f2) := p1fi + p2f2. Conclude that LQ(X, u) =
p1L*(X, ) + p2L*(X, p2).

(iii) The summation map n* has non-trivial kernel if and only if there exists an
E € & with p1(E) > 0 and p2(E) > 0. If this is not the case, then we call the
two measures orthogonal: p1Lpus. Hint: For any such E verify (—p2xE, p1XE) €
kern* and if, conversely, (f1, f2) € kern* with f1 # 0, consider E := {f1 # 0}.

(iv) If w1 Llpso, then the canonical spectral measure on L? (X, 1) ® L*(X, p2) is mul-
tiplicity free. Hint: 7 is a unitary equivalence with L?(X, ).

(v) If g1 and po are equivalent, then P(&) = L*™(X, u) ® M2(C), i.e., we have a
representation of “multiplicity 2”.

One can show that in general one has a mixture of the situation under (iv) and

(v).
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Chapter 6

Stone’s Theorem

In this chapter we discuss the connection between a strongly continuous unitary
one-parameter group (Uy)icr, i.e., a continuous unitary representation of R and
its infinitesimal generator defined by

d

Av = —i%h:o

Ut’U

whenever the right hand side exists for v € H. Although this is only the case on
a dense subspace D C H, the operator A: D — H determines the one-parameter
group (Uy)ter uniquely, hence deserves to be called its infinitesimal generator.
We shall see that it is self-adjoint in a sense that has to be made precise for
operators not defined on all of #.

6.1 Unbounded operators

Before we can study the infinitesimal generator of a unitary one-parameter
group, we have to develop some concepts related to “unbounded” operators,
i.e., operators not defined on all of H.

Definition 6.1.1. (a) Let H; and H2 be Hilbert spaces. An (unbounded)
operator from H; to Hs is a linear map A from a subspace D(A) C Hy, called
the domain of A, to Ha.

(b) The operator A is called densely defined if D(A) is a dense subspace of
Hi. It is called closed if its graph T'(A) := {(z, Az): = € D(A)} is a closed
subset of H1 x Ho. We write

N(A) :=ker(A) CD(A) and R(A):=im(A) C Hs

for kernel and range of A.

(c) If A and B are operators from H; to Hsg, then B is called an extension
of Aif D(A) C D(B) and Blpa) = A. We write A C B if B is an extension
of A. The operator A is called closable if it has a closed extension, i.e., if the

107



108 CHAPTER 6. STONE’S THEOREM

closure I'(A4) of the graph of A is the graph of a linear operator which we then
call A.

(d) Suppose that A is a densely defined operator from H; to He. We define
the adjoint operator A* from Hsy to Hy as follows. We put

D(A*) ={w € Ha: (Fu € H1)(Yv € D(A)) (Av,w) = (v,u)}.

Then A*w := u € H; satisfies (Av,w) = (v, A*w) for all v € D(A). Since
D(A) is dense, this relation determines A*w uniquely. We thus obtain a linear
operator A*: D(A*) — H; whose domain consists of those elements w € Ho for
which the linear functional

— (Av,w), D(A)—C

is continuous.

Note that A C B trivially implies B* C A*.

(e) An operator A is called symmetric if it is densely defined with A C A*,
and selfadjoint if A* = A. We say that A is essentially selfadjoint if it is closable
and A is selfadjoint.

Proposition 6.1.2. For a densely defined operator A from Hy to Ho the fol-
lowing assertions hold:

(i) For the unitary operator V: Ho & H1 — H1 & Ha, V(z,y) = (—y, ), we
have
D(A%) = V(D(A)") = V(I(4)) .
(ii) A* is closed.
(iii) A* is densely defined if and only if A is closable, and in this case
A*=A" and A=A

(iv) If D(A) = H1, then the following are equivalent:

(1) A is bounded.

(2) A is closed.

(3) D(A*) C Hy is dense.
)

Proof. (i) We endow H; X Hs with its natural Hilbert space structure given by

((a,0), (', b)) = (a,a’) + (b, )

for a,a’ € Hq and b,V € Ha. Then (y,z) € T'(A*) if and only if (Av,y) = (v, 2)
for all v € D(A), i.e. if (—z,y) € T(A)*.
(ii) follows 1mmed1ately from (i) because orthogonal subspace are closed.
(iii) From (i) we know that

D(A) = T(A)H = VI I(A)*
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Therefore an element of the form (0,w) is contained in I'(A) if and only if
(w,0) LT'(A*), which is equivalent to w € D(A*)+. That any such element w is
0 means that A is closable, so that D(A*) is dense if and only if A is closable.

Assume that this is the case. Then I'(A) = I'(A) has the same orthogonal
space as I'(A), so that

D(A%) = V(D(A)7) = V(D(A)H) =T(A),

where the last equality follows from (i). This proves that A" = A
We also obtain

P(A) = T(A) = D(A) 4 = V1T = 1(A™),

where the last equality follows by applying (i) to the operator A* from Hs to
Hy and V~1(v,w) = (w,—v). This proves A** = A.

(iv) The equivalence between (1) and (2) is the Closed Graph Theorem
([Ru73, Thm. 2.15]). It is also clear that (1) implies (3). So it remains to show
that (3) implies (2). In view of (iii), we see that A has a closed extension A.
But A is defined on H;, hence A = A, so that the graph of A is closed. O

Examples 6.1.3. (a) Let (X, &, ) be a measure space and f: X — C be
a measurable function. On the Hilbert space H = L?(X, u) we consider the
operator My with

D(My) :={h € L*(X,n): fh € L*(X,n)} and Msh= fh.

To see that D(Mjy) is dense, let X,, := {z € X: |f(z)] < n}. Then
xx, L?(X,p) € D(My), and for h € L*(X, i) we have

M—mﬂ%%gWWWM%O

n

Therefore D(My) is dense. For g, h € D(My) we have
(Myg,h) = /X fohdp = (g, Mzh).
For g € H the map
DMy = C. s (Myhig) = [ fhadu

is continuous if and only if fg € L?(X, u). Therefore D(M7) = D(My) implies
that M} = M. In particular, My is selfadjoint if f(X) C R.

(b) Let H = ¢%(N,C) with the canonical ONB (e,)nen. For a sequence
(An)nen of complex numbers we define an operator T on H by

D(T) :=span{e,: n € N} and Tv = (A,vy).
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Then T is densely defined. We can also calculate its adjoint.
The condition that the map

D(T) »C, y= (Ty,v) =Y Antnvn
neN

is continuous, is equivalent to Y. |An|? - |vn]|? < co. Therefore

neN
D(T*) = {v = () €H: > Palloal < oo} and  T*(vy) = Ovvn).
neN

This shows that T is symmetric if and only if all numbers A,, are real. Applying
the same argument to T (which is also densely defined), we see that T = T**
is given by the same formula as 7"

T (v) = (Apvn).

(c) An important special case arises for the operator on H = L?(R) given by
@N@) =fr) and DQ)={f e ®): [ |f(e)?do < oc).
R

(d) We consider the Hilbert space H = L?(R) and the operator P with
D(P) := CHR) (continuously differentiable functions with compact support)
and Pf = if’. Then P is densely defined (Exercise) and, for f,h € D(P), we
have

(Pr) = [ if (@) do = | f@)T) dz = (f. Ph).
R R
according to the Product Rule, because, for sufficiently large R, we have

R
L@ o= [ iRy (@) do = i (RATR) ~ if (~RAF) = .

—R

Therefore P is symmetric. In this case it is slightly harder to calculate the
domain of its closure. Again, one can show that P* = P**, so that P* is a
selfadjoint extension of P.

Proposition 6.1.4. For any symmetric operator T on H with domain D(T),
the following assertions hold:

() T2 + ial]? = |T2]? + |Je|P for = € D(T).

(ii) T is closed if and only if R(T 4 11) is closed.

(i) T + 41 is injective.

(iv) If R(T +41) = H, then T has no proper symmetric extension.
)

(v) Statements (i)-(iv) remain correct if we replace i by —i.
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Proof. (i) follows from
T2 + ix||* = T2 + |2|* - i(T2,2) + ilw, Tx) = |Tz|* + [«

(ii) In view of (i), the map R(T +i1) — I'(T), (T +il)x — (z,Tz) is isometric.
Therefore R(T + i1) is closed, resp., complete if and only if this holds for the
graph of 7. This implies (ii).

(iii) follows from (i).

(iv) Let Th be a symmetric extension of 7. Then T3 + i1 is an extension of
T +41. In view of the bijectivity of T'+ i1, we obtain 7} = T.

(v) is clear. O

Lemma 6.1.5. (Range-Kernel Lemma) For a densely defined operator T on H
we have

N(T*) = R(T)* .

In particular,
N(T*+21) =R(T + A1)~ for XeC.

Proof. In view of (T'+ A1)* = T* + A1 (verify!), the second part follows from
the first one.

An element y € H is contained in R(T)* if and only if, for all v € D(T), we
have (T'v,y) = 0. This is equivalent to y € D(T*) and T*y = 0. O

Proposition 6.1.6. For a symmetric operator T on H, the following are equiv-
alent:

(i) T is selfadjoint.

)
(ii) T is closed and T* £1i1 are both injective.
(iii) T is closed and T £ 141 both have dense range.
v)

(i

Proof. (i) = (ii): According to Proposition [6.1.2(ii), the closedness of T follows
from T' = T*. Since T is symmetric, the injectivity of T* £ 41 = T £ il is a
consequence of Proposition iii).
(ii) = (iii) follows from Lemma
(iii) = (iv) follows from Proposition i), (v).

(iv) = (i): In view of T C T™, we only have to show that D(T*) D(T).
Let y € D(T*). With (iv) we find z € D(T) with (T™* + 1)y (T +il)x
Then T' C T* implies (T 4+ il)y = (T* + il)x, hence y = = € D(T) because
T* 441 is injective which in turn follows from the density of R(T —i1) and the
Range-Kernel Lemma [6.1.5 O

R(T +i1) = H.

Corollary 6.1.7. For a symmetric operator T’ on H, the follows are equivalent:

(i) T is essentially selfadjoint.
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(ii) T* +41 are injective.
(iii) T 41 have dense range.

Proof. (i) = (ii): If T is essentially selfadjoint, then its closure T is selfad-
joint, so that T* = T~ = T (Proposition iii)). Hence (ii) follows from
Proposition [6.1.6{ii).

(ii) = (iii) follows from the Range-Kernel Lemma

(iii) = (i): Our assumption implies in particular that the range of T 4 il
is dense. Moreover, T" C T™ and the closedness of T imply T CT* = T

(Prog)sition 6.1.2)), so that T is also symmetric. Now Proposition implies
that T is selfadjoint. O

’ The Spectral Integral for unbounded measurable functions ‘

Proposition 6.1.8. Let P be a spectral measure on (X,6) and f: X — C a
measurable function. Then the following assertions hold for

D(f):={veH: feL*X,P"))}.

(i) D(f) is a dense subspace of H, and there exists a unique linear operator

)

(N): D) = H  with (P(flo,v) = /X f(x) dP¥(z)

forv e D(f). If f is bounded, then D(f) =H.

(ii) D(f) = D(f) and P(f)* = P(f).
(iil) If f(X) C T, then P(f) is unitary, and if f(X) C R, then P(f) is selfad-
joint.
Proof. Decomposing into cyclic subspaces for P, we see with Lemma b)

that H = @jEJLz(X, ;) with finite measures p1; on (X, &) and P(E)(f;)jes =

(xef;)jes for (f;) € H.
(i), (i) Write v = (v;) with v; € L2(X, 1;). Then

PUE) =3 PO (E) =3 [ (@) duy(a)
implies that
/X /(@) dP”<x>=j€ZJ /X (@) 2l () 2 dp ().

Therefore v € D(f) is equivalent to fv; € L*(X, u;) for every j and | fol|? =
djed | fvjll3 < oo. Hence P(f): D(f) — H is the direct sum of the corre-
sponding multiplication operators Ms(h) = fh on the subspaces L?(X, ;) (cf.
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Examples 6.1.3{(a)). Now Exercise and Examples imply that ]3( f)is

densely defined and closed with IS(f)* = P(f).
In view of the Polarization Identity, the operator P(f) is uniquely determined
by the numbers

Pl =Y. [ 1@los@P diste) = [ f@)dP @), ve D).
jeg’X X
(iii) If f(X) C T, then all multiplication operators Ay on L?(X, ;) are
unitary, so that P(f) is also unitary. If f(X) C R, then f = £, (i) and (ii)
imply that P(f) is selfadjoint. O

Theorem 6.1.9. (Spectral Theorem for Selfadjoint Operators) If P: B(R) —
H is a spectral measure on R, then P(idr) is a selfadjoint operator, and for each
selfadjoint operator A on H there exists a unique regular Borel spectral measure
P on R such that A = P(idg).

Proof. (Sketch) The first part follows from Proposition [6.1.8(iii). The second
part is more difficult. The main idea is to use the Cayley transform to transform
A into a unitary operator C(A) := (A —i1)(A+i1)~! and then use the spectral
measure of C'(A) on the circle T to obtain a spectral measure on R by the map
c:R — T,c(t) = (t —4)(t + i)~ L. For the detailed proof we refer to [Ru73l
Thm. 13.30] (see also [Ne09)]). O

6.2 Infinitesimal generators of unitary
one-parameter groups

In this section we address the problem we prove Stone’s Theorem about uni-
tary one-parameter groups and their infinitesimal generators, which are (up to
multiplication with ¢) the, possibly unbounded, selfadjoint operators.

Definition 6.2.1. Let H be a Hilbert space and (U;)icr be a strongly con-
tinuous unitary one-parameter group, i.e., a continuous unitary representation
U: R — U(H). We define an unbounded operator A: D(A) — H by

1 . .1
D(A) = {v € H: }gl(l) Z(Utv — v) exists } and  Av := lim — (U — v).

t—0 1t

This operator is called the infinitesimal generator of U and the elements of the
space D(A) are called differentiable vectors for U.

Lemma 6.2.2. For a continuous unitary one-parameter group (U;)ier, the fol-
lowing assertions hold:

(a) The operator A is hermitian in the sense that

(Av,w) = (v, Aw)  for v,w € D(A).
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(b) For everyt € R and v € D(A), we have Uy € D(A) and Uy Av = AUv.

(¢) For v € D(A), the curve v(t) := Ugv is the unique solution of the initial
value problem

v(0)=v and A (t)=1iAv(t), teR. (6.1)

Proof. (a) For v,w € D(A) we have

d , d .
(Av,w) = %|t=0 — (U, w) = $|t=0<v,zU,tw> = (v, Aw).
(b) For v € D(A), we have
Jim (T, Up) = Tim - (U,Upv — Uyw) = Uy lim ~(U — U, (i Av)
hli%h( t+hV tv_hl—r%h(thv_ )= thlg%)h( nv = v) = Un(idv).

In view of Upyp, = UpUy, the existence of this limit implies that Uyv € D(A) with
AU = U Av, so that the curve y(t) := Uzv solves the initial value problem
E1).

(c) Suppose that v: R — H satisfies the initial value problem (6.1]), which
means implicitly that v(R) C D(A), so that Avy(t) makes sense. For w € D(A)
and B(t) := U_4v(t) we then have

(Bt +h) = B(1))

= U (O 1) = 9(8) = A%(0)) + iU Ar(8) + 3 (U~ U ()

==

Since (Us)ser is a bounded family of operators, we obtain

tim U (3 (100 4 B) = 1() — iA5(1)) =0,
and therefore
lim %(B(H—h)—ﬂ(t)) = iU_tAy(t)+—iAU_4y(t) = iU_; Ay(t)+—iU_t Ay(t) = 0.

Therefore the curve j is differentiable with 8/ = 0, and this implies that § is
constant. We thus obtain for every ¢t € R from S(t) = 5(0) = v the relation
~(t) = Upv. O

Remark 6.2.3. (a) If A is a bounded hermitian operator, then U; := e®4
defines a norm-continuous unitary one-parameter group with infinitesimal gen-
erator A. In fact, the estimate

o0
, , 1
et =1 —itAl <3 —ferflAf" = e AT =1 — 4]

n=2



6.2. INFINITESIMAL GENERATORS 115

implies that
U;—1

lim — - =

t—0 1t

A

holds in the norm topology.

(b) Given a symmetric operator A: D(A) — H, there is no guarantee that
a solution to the initial value problem exists for every v € D(A). As we
shall see below, this requires extra conditions on A.

(c) If D(A) = H, then the symmetry implies that A C A*, so that Propo-
sition iV) implies that A is bounded. The curves (t) := "4y are the
unique solutions of the initial value problem

v(0)=v and ~'(t) =i4y(t), teR,
so that Lemma c) implies that U; = e**4 for t € R.

The preceding remark shows that A is unbounded if and only if there exists
non-differentiable vectors in H, i.e., D(A) # H. Here is a typical example where
this happens.

Example 6.2.4. On H = L%*(R) we consider the continuous one-parameter

group given by (U, f)(z) = f(z+t) (Example|3.3.6). Then, for every f € CL(R),
the limit

1 ,
lim —(Uf = f) = f

exists uniformly on R and since the support of f is compact, the limit exists in
particular in L2(R). Therefore f € D(A) and Af = —if’. That A is unbounded
follows immediately by applying it to functions f, € C(R) with f,(z) = e™*
for z € [0, 1]

Theorem 6.2.5. (Stone’s Theorem for One-Parameter Groups, 1932) Let (U;)ter
be a strongly continuous unitary one-parameter group and A: D := D(A) - H
be its infinitesimal generator. Then the following assertions hold:

(i) The space D of differentiable vectors is dense in H.

(ii) If Dy C D is dense and U-invariant, then Alp, is essentially selfadjoint
and its closure coincides with A.

(iii) A s selfadjoint.

(iv) If (Vi)ter is another strongly continuous unitary one-parameter group with

the same generator A, then Uy = V; for every t € R.

Proof. (i) This is done by a mollifying argument. Let v € H and T > 0. We

consider the element vy := fOT Uivdt. The integral exists because (U;)ier is
strongly is strongly continuous, which further implies that

1 I
H—vT —vH = H—/ U —vdtH < sup ||[Uw—v|| =0 for T —0.
T T Jo 0<t<T
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Therefore it suffices to show that vz € D. The relation

T T T T
Uyor —vp = Ut/ Usvds — / Usvds = / UUpwds — / Usvds
0 0 0 0

T+t T
:/ Usvds—/ Usvds
t 0
T+t t T
:/ Usvds—/ Usvds—/ Usvds
T T 0

t t
= UT/ Usvds —/ Usvds = Upvy — vy = (Ur — 1)y
0 0
implies that, for T" > 0, we have
1 o1
}gl(l) ;(Uth —vp) = (Ur—1) }gr(l) TUt = (Ur — 1)w.

(ii) We have already seen that A is symmetric (Lemma [6.2.2)), and therefore
Ap := A|p, is also symmetric. In view of the criterior for essential selfadjointness
(Corollary, we have to show that the operators Ag+ il have dense range.
If the range of Ay -+ i1l is not dense, there exists a vector 0 # v € R(Ag +i1)*.
As Dy is dense, there exists a w € Dy with (v, w) # 0. Then the differentiable
function f(t) := (Uyw, v) satisfies

f(t) = i(AUw, v) = i{(A + 1) Uyw, v) + (Uyw,v) = (Uyw,v) = f(t),

which leads to f(t) = f(0)e’, contradicting |f(t)| < |lv|/||w|. We likewise see
that R(Ag — 1) is dense. This shows that Ay is a selfadjoint operator.
We postpone the proof of the relation A = Ay until we have proved (iii).
(iil) From (ii) it follows that A is essentially selfadjoint, so it remains to show
that A is closed. In Lemma we have seen that, for v € D(A), the curve
~(t) := Upv is differentiable with derivative 4/(t) = UyiAv, which is continuous.
The Fundamental Theorem of Calculus thus leads to the relation

t
Uw—v= / UsiAv ds.
0

To see that A is closed, let (v,) € D(A) be a sequence for which (v,, Av,) —
(v,w) in H ® H. We then obtain for each ¢ € R the relation

t t
Uw—v= lim Uy, —v, = lim UsiAv, ds = / Usiw ds
and thus iAv = %‘tont’U = 4w. We conclude that v € D(A) with Av = w.

(i) (continued) Now we show that Ay = A. We know from above that Ay is
selfadjoint and that A is selfadjoint, hence in particular closed. Thus Ay C A
implies Ay C A, so that
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(cf. Definition [6.1.1)(d)).

(iv) For v € D(A), the curve y(t) = Vv satisfies y(0) = v and v/(t) = i Ay(¢),
so that Lemma, (c) implies V;v = Uyv. As V; and U, are bounded operators
and D(A) is dense, it follows that V; = Uy for every ¢ € R. O

Lemma 6.2.6. Let (Up)icr be a continuous unitary one-parameter group and
A be its infinitesimal generator. Suppose that H = ®jesH; is an orthogonal
decomposition into U-invariant subspaces and that U} = Utlp;. Then A =

®jesAj is the direct sum of the infinitesimal generators A; of (U} )ier, i.e.,

D(A) = {(v;) € H: (V) v; € D(4y), S [ Ajosl3 < oo} > H,  Ary) = (A70),
jeJg

Proof. Let v = (v;)jes € H. Then v € D(A) clearly implies that v; € D(A;)

for every j € J and that Av = (A;v;). This means that that A C B := ®jesA4;.

Since the operators A; are selfadjoint by Stone’s Theorem, Exercise shows

that B is selfadjoint. We therefore have B = B* C A* = A,andthus A = B. O

Example 6.2.7. (a) Let (X, &, 1) be a measure space and consider the uni-
tary one-parameter group given by U;h = €'/ h for some measurable function
f: X — R. We claim that its infinitesimal generator A coincides with the mul-
tiplication operator My from Example To this end, let X, := {|f] < n}
and consider the subspace

Do :={h € L*(X,p): (Gn € N)f|x\x, = 0}.

Then, for each h € Dy, the curve t — U;h is analytic, given by the convergent
exponential series, and we obtain Ah = fh = Myh. Since Dy is invariant under
U, Theorem implies that A = Ay for Ag := My|p,. As M; is closed, this
leads to A C My, and since it is selfadjoint, we obtain My = M} C A* = A,
which proves equality.

(b) Now let P: & — Py be a spectral measure on (X, &) and f: X — Rbea
measurable function. Then U := ﬁ(e”f ) is a continuous unitary one-parameter
group by Proposition (ii).

We write H = @jcsL?(X,p;) as a direct sum of L?-spaces on which
P(E)(v;) = (xgv;) (Remark [5.1.6). Then U; = (U}), where U/h = e/fh
for h € L*(X, puj). Now Lemma
Uis @jesMy = P(f).

Corollary 6.2.8. For every seladjoint operator A on a Hilbert space H, there
exists a unique continuous unitary one-parameter group (Up)ier with infinitesi-
mal generator A.

.6/ implies that the infinitesimal generator of

Proof. We know already from Stone’s Theorem that (Uy)ier is determined by
A, so it only remains to show existence.

From the Spectral Theorem for selfadjoint operators (Theorem 7 we
first obtain a regular spectral measure on (R,B(R)) with A = ]S(idR). We now
put R

Ut = P(eitidk).
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Proposition ii) then implies that U is a continuous unitary one-parameter

group and Example (b) shows that A = ﬁ(idR) is its infinitesimal generator.
O

6.3 Invariant subspaces and analytic vectors

Remark 6.3.1. (a) If A is bounded, then a closed subspace K of the Hilbert
space H is A-invariant if and only if it is invariant under the corresponding
one-parameter group (Uy)er, defined by U, = ™4,

In fact, AKX C K implies A"KC C K for every n € N, and therefore

— 1
Uv = Z ﬁ(it)”A"v ek

n=0

for every v € K and t € R. Conversely, for v € I, we have
L1
Av = —ilim = (U —v) € K.
t—0 ¢

(b) If A is unbounded, the situation is more subtle. What remains true is
that the invariance of K under (U;) implies that

AD(A)NK) C K. (6.2)

However, this condition does not imply that K is invariant under the opera-
tors Us.

A prototypical example is obtained by H = L2(R), (U, f)(z) = f(z —t) with
Af = if' for f € CLR), and K := L?([0,1]). For every f € K ND(A) and
g € L*(R) vanishing on [—¢, 1 + €] for some &€ > 0 we obtain

(Uif,9) =0 for |t|<e

and therefore (Af, g) = 0. This implies that Af € L%([0,1]). On the other hand
U, L*([0,1]) = L3([t,1+1]) shows that K is not invariant under the operators U;.

The problem of deciding whether a closed subspace K C H is invariant
under (U;) is a serious problem in many applications and it obviously is of
central importance in representation theory. The preceding remark shows that
the necessary invariance condition under A|p(a)nk is not sufficient.

Definition 6.3.2. We have already seen that D(A) is the space of those vectors
v for which the curve Uy is continuously differentiable. For k € NU {oco,w} we
write DF(A) for the set of all elements v € H for which the curve

Yo(t): R—=H, 7 (t):=Uw

is of class C*. The elements of D*(A) are called C*-vectors. For k = oo they
are called smooth vectors and for k = w analytic vectors.
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Definition 6.3.3. If T" and S are unbounded operators from H; to Hs and
a € C, then we define

(1) T by D(aT) :=D(T) and (aT)v = aTv if a # 0, and 0T := 0.
(2) DT+ S) :=D(T)ND(S) with (T'+ S)v :=Tv + Sv for v e D(T + 5).
(3) If S is an unbounded Operator from Ha to Hs, then we define

D(ST) =T '(D(S)) and (ST)v:=S(Tv).

Remark 6.3.4. For k € N, any v € D¥(A) is contained in D(A), so that v/ (t) =
iAUw = U(iAv). We conclude that Av € DF~1(A). Iterating this procedure,
we see inductively that D¥(A) C D(AF). Conversely, every v € D(AF) is a Ck-
vector. In fact, for k = 1 this is clear, and for k£ > 1, the relation v, (t) = U, (iAv)
implies inductively that v/ is C*~1, so that ~, is C*. Therefore

D*(A) =D(A¥) for keN.

Since this holds for any k£ € N, we also obtain
e}
D>(A) = (] D(4).
k=1

Clearly, D¥(A) C D*>*(A), and for v € D¥(A) Taylor's Theorem implies
that, for some € > 0, we have

— " — ("
o= =3 200 =5 D ar o i<
n=0

n=0
Conversely, if v € D>*°(A) satisfies

o0 €n
Z E”AHU” < oo for some &> 0,

n=0

then the Taylor series of 7, in 0 converges for [t| < e to an analytic curve 7
solving the initial value problem

n(0) =v,  7'(t) =1iAn(t),

so that Lemma c¢) implies that n(t) = ~,(¢). This implies that -, is
analytic in a 0-neighborhood. From ~,(t + h) = Uy, (h), it now follows that ~,
is analytic. This leads to the characterization

D) = {veH: (F>0 Y %HA”UH <o}

n=0

In particular, this space is determined completely in terms of the unbounded
operator A.
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The following proposition shows that the problem of passing from
“A-invariance” of a subspace to the invariance under the corresponding unitary
one-parameter group is due to the difference between smoothness and analytic-
ity which is absolutely crucial in the context of unbounded operators.

Proposition 6.3.5. Let (Uy)icr be a strongly continuous unitary one-parameter
group with infinitesimal generator A. Let IC C H be a closed subspace for which
KND¥(A) is dense in K and Av € K for every v € KNDY(A). Then K is
invariant under (Ut)ier.

Proof. Let v € KND¥(A) and € > 0 be such that

o0

En
> — 4™ < co.

n=0

We have seen in Remark that, for |t| < e, we have

o (it)"
Ut’U = Z TA”U
n=0
As K is closed and A™v € K for every n € N, it follows that Uy € K. Now we
consider the closed subset

J:={teR: Uw e K}.

The preceding argument shows that J is a neighborhood of 0. Applying the
same argument to the vectors Us;v € D¥(A), s € J, we see that J is open.
Therefore the connectedness of R implies that J = R, so that U;v € K for every
t € R. As KND¥(A) is dense in K and each U, is continuous, we obtained
UK C K fort € R. O

Exercises for Chapter [6]

Exercise 6.3.1. Let A;: D(A;) — H; be unbounded operators on the Hilbert spaces
H; and H := @, ;H;. We define the unbounded operator A := @;csA4; on H by

D(A) == {(Uj) €M: (Vh)v; € D(A), Y lA4u5 < 00} = H, Av) = (45v).
jeJ
Then the following assertions hold:
(i) A is closed if and only if each A; is closed.
(i)
(iii) A* = @]’GJA;.
) A is selfadjoint if and only if each A; is selfadjoint.

A is densely defined if and only if each A; is densely defined.

(iv

Exercise 6.3.2. Let A: D(A) — H2 be a densely defined unbounded operator from
Hi to H2 and B: H1 — H2 be a bounded operator. Show that

(A+B)"=A"+ B".
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Exercise 6.3.3. On H# = L?*(T) we consider the unitary one-parameter group given
by . .

(Uef)(e") = f(e'F7).
Show that the domain of its infinitesimal generator A can be described in terms of
Fourier series as

D(A) = {Zanen: Zn2|an|2 < oo}, where e, (t) = €.

nez n

Hint: Consider the dense Us-invariant subspace Dy := span{e,: n € Z} and use
Exercise [6.1.3

Exercise 6.3.4. (A symmetric operator which is not essentially selfadjoint) In H =
L?(T) we consider the subspace

Do :=span{en(z) =2z":n€Z} and Dy:={f € Do: f(1)=0}.

On Dy we consider the operators Ao f :=if’ and A; := Ao|p,. Show that:
(i) Ao is essentially selfadjoint.
(ii) A; is symmetric.

(iii) The function f(e™) :=t, for 0 < t < 27, is contained in the domain of A}. Hint:
Verify that (=i, f) € T'(A;)*.

(iv) For n # 0, the Fourier coefficients of f are of the form a, = £. Conclude that

f & D(Ap), so that AT D Af is a proper extension and A; is not essentially
selfadjoint.

Exercise 6.3.5. Consider on H := £? = ¢2(N) the selfadjoint operator

A(zn) := (nzyn), D(A):= {x €r: z:nQ|a:n|2 < oo}

Describe the subspaces Dk(A) of C*-vectors of A, resp., the corresponding unitary
one-parameter group U; = e for k € NU {o0,w}.

Exercise 6.3.6. Let H be a Hilbert space, a < b real numbers, and 7: [a,b] — H be
a function. Show the following assertions by reducing them to the case H = R:
(i) If v is differentiable and v = 0, then v is constant.
(ii) If a: [a,b] — H is continuous, then ~(t) := f; a(s)ds is differentiable with
/
v = a.

iii) If v is continuously differentiable, then v(¢) = vy(a) + Y~ (s) ds.
v y g v Y
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Chapter 7

Representations in Spaces
of Polynomials

In this section we take a closer look at representation of unitary and orthogonal
groups in spaces of polynomials. We start in with an elementary but useful
criterion for irreducibility in Section [7.1] This criterion implies easily that the
representation of the unitary group U(H) in the space F4(H) of polynomials of

degree d is irreducible. As a consequence, F(H) = @Zozofd(?'-l) describes the
decomposition of the Fock space into irreducible representations of U(H).

If H = C" is finite dimensional, then F4(C™) coincides with the space Py of
homogeneous polynomials of degree d, so that our argument shows that U,,(C)
acts irreducibly on this space. The situation becomes more complicated for
the action of the orthogonal group O,,(R) on the space of polynomials of a fixed
degree d on R™. In Section [7.2] we show how the theory of harmonic polynomials
can be used to understand how the space Py(R™) decomposes under SO, (R).
This decomposition further leads to the decomposition of the representation of
SO, (R) on L3(S"~1).

7.1 A Criterion for Irreducibility

The following criterion for irreducibility is often quite useful.

Proposition 7.1.1. (Subgroup criterion for irreducibility) Let G be a group,
K C G be a subgroup and suppose that the unitary representation (w,H) of G
is generated by a subspace F on which K acts irreducibly. Let (p, F) denote
the corresponding representation of K. If the multiplicity of p in w|k is 1, i.e.,
dim By (F,H) =1, then m is irreducible.

Proof. Our assumption dim B (F,H) = 1 implies that Bx(F,F*) = {0},
so that the decomposition H = F @ F* is invariant under the commutant
BK(H) = W(K)/.

123
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Let £ C H be a closed non-zero G-invariant subspace and P: H — £ be the
orthogonal projection. Since P commutes with 7(K), we have P(F) C F. Since
‘H is generated, as a unitary G-representation, by F, the representation of G on
€ is generated by P(F), which implies that P(F) # {0}. As F is irreducible
under K, this leads to P(F) = F. We conclude that F C &, so that H = &
follows from the fact that F generates H. This proves that the representation
(m,H) is irreducible. O

Since one-dimensional representations are irreducible, we obtain in particular
the following specialization.

Corollary 7.1.2. (Irreducibility criterion for cyclic representations) Let (7, H)
be a unitary representation of the group G, K C G a subgroup and x: K — T
be a character. If the G-representation on H is generated by the subspace

HEX = (v e H: (Vk € K) n(k)v = x(k)v}
and dim HEX = 1, then (m, H) is irreducible.

Example 7.1.3. Let H be a complex Hilbert space. We have already seen in
Proposition that the unitary group U(H) has a continuous unitary repre-
sentation 7(g)f := f o g~' on the subspace F;(H) consisting of homogeneous
functions of degree d in the Fock space F(#). Recall that Fy4(#) is a reproduc-
ing kernel Hilbert space with kernel

1
K (z,w) = a(z,w)‘i.

Fix an ONB (e;),es of H and write
T:={UcUH): (Vj € J)Uej € Te;} =T’

for the corresponding “diagonal” subgroup. According to Proposition ii),
the functions

pm(z) =" = H Z;njv zj = <Zaej>7 |m| = da
jed

form an orthogonal basis of T-eigenvectors corresponding to different characters.

Since the kernel K% is invariant under U(H), we have UK? = Kg  for
v € H. As U(H) acts transitively on the unit sphere S(H) (cf. Exercise |4.6.2)
and K¢, = Xng, for any 0 # v € H, the element K¢ € F4(H) is a U(H)-cyclic
vector.

Therefore Corollary , applied with K = T and F = Cng for some
j € J, shows that the representation of U(H) on F,,(H) is irreducible.

Remark 7.1.4. (a) The subgroup T1 acts on () by multiples of the identity
7(tl) = t~71.

(b) If dimH = n is finite, then U,(C) = TSU,(C) and (a) imply that the
representation of SU,(C) on Fy4(C") is irreducible.
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For n = 2, we thus obtain a sequence 7y, d € Ny, of irreducible unitary rep-
resentations on the spaces F,(C?) of dimension d+ 1 (cf. Proposition ii)),
and one can show that, up to equivalence, these are all the irreducible represen-
tations of the group SU3(C).

7.2 The Fock space F(R")

On R™ we consider the kernel K (z,y) = e{®¥ . Since this is the restriction of
the corresponding kernel on the complex Hilbert space C™, the kernel K is also
positive definite (cf. Example e)) and we write F(R") := Hx C CR" for
the corresponding reproducing kernel Hilbert space, called the Fock space on
R™.

Lemma 7.2.1. The restriction map
R: F(C") = FR™), [ flgn
18 unitary.

Proof. We write K(z,w) = e/**) for the corresponding kernel on C". We
consider the map N
v:RT = F(CY), ~(z):=K,.

We claim that v(R™) is total in F(C"), i.e., that every function f € F(C")
vanishing on R™ vanishes on C™.

Let (e1,...,e,) be the canonical ONB of R™, resp., C*. Then Proposi-
tion m(u) implies that, for every f € F(C"), the expansion of f with respect
to the orthogonal basis py, converges in F(C™) and takes the form

f(z) = Z emz™,

so that it corresponds to the Taylor series of f in 0. In particular, all functions
in F(C™) are analytic. If f vanishes on R™, then all its Taylor coefficients vanish
(they can be obtained by real partial derivatives), and this implies that every
cm Vvanishes, i.e., f =0.

We conclude that v(R™) is total in F(C"), so that (R™,~, F(C™)) is a real-
ization triple for the Fock kernel K, and thus

R: F(C") = F(R™), (Rf)(x) = (f,v(2)) = f(z)
is unitary by the Realization Theorem O

Clearly, the Fock kernel K is invariant under the action of the orthogonal
group G := 0, (R), so that we obtain a unitary representation

(m(9)f)(z) = flg~'z)
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of O, (R) on F(R™) (Proposition |4.4.5)). It leaves the subspaces F4(R™) of func-
tions homogeneous of degree d invariant. We have already seen in Example
that the representations of U, (C) on the subspaces Fy4(C") = F4(R™) are irre-
ducible. The restriction of these representations to SO, (R), resp., O, (R) are
in general not irreducible. The main goal of this section is to understand how
these finite dimensional representations decompose into irreducible ones.
In the following we write Py, = Fp(R™) for the subspace of homogeneous
polynomials of degree /.
Lemma 7.2.2. For{>1, let
0
0j = —: Py — Po_
J al'j 4 —1
be the partial derivatives and
Mj =My, Peo1 = Pe, (M;f)(x) =z, f(x5)
be the multiplication operators. Then
M; :5'j and 8;:MJ
Proof. Let K*(z,y) = ;(z,y)" be the reproducing kernel of P;. Then
4 1 —
£ pot— ¢ o— -
(05K, K1) = (0;K,)(y) = 71\ @) ;= m(yﬁv)é 'z

= MK (@) = (MK~ KE) = (Ko, MK,

This implies the assertion because the subset {K‘: x € R} is total in Pp. O

From Lemma we immediately obtain:
Proposition 7.2.3. Let A = 7", 07 be the Laplacian and

M,» = zn:Mf
j=1

be the multiplication with r? := Z?Zl x? Then the operators
A:Ppro—Pe and M2: Py — Poyo
are mutual adjoints for £ € Ny.

Lemma 7.2.4. Let w; be the representation of O, (R) on Py. Then
me(g) o A=Aoma(g) for g€ Ou,(R).
Proof. From
(m(9) M2 f)(w) = (M2 f)(g™ ) = llg~ @l f(g™ )
= 22 f(g7"2) = (My2 (n(9)F) ) )
we derive mp12(g) o M2 = M,2 o my(g) for g € O, (R). With Proposition

we now get

Aompya(g)™h = M omeia(g)" = me(g)" o M2 = me(g) ™ 0 A O
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7.2.1 Harmonic Polynomials and Spherical Harmonics

We consider the space P = @,2,Pr = P(R™) C F(R™) of complex-valued
polynomial functions on R"™. We write

He:={f €Pe: Af =0}

for the subspace of harmonic polynomials of degree £ and note that Hg = Py
and Hi = Ps.

Lemma 7.2.5. For { > 2, we have

dim P, = (“”Il) and  dimH, — (”";2) + (“”;3).
n — n — n —

Proof. In Py the monomials

m

x :x?ll"'l‘m"

n

m=(my,...,my), ml=mi+...4+m, ==~

form a basis. The number of possibilities to write £ as a sum of n elements of
Ny coincides with the number of possibilities to delete n — 1 elements from a set
with £ 4+ n — 1 elements. This implies the first formula.

Now let f € P,. We write

0
@)=Y e ann), (7.1)

4 k—2 Lk
T T
Af:Z(k_Z)lfk(ml’ 7xn*1)+zi7(Afk)(xl7 7$n71)
k=2 k=0
-2 xk -2 $k
= *Tkarz(CEh JTp—1) + *T,L(Afk:)(fﬂl,  Tn—1) (7.2)
k=0 k=0
Therefore Af = 0 is equivalent to
frao=—-Afr for k=0,...,0-—2. (7.3)

If, conversely, fo € Py(R"" 1) and f; € Py_1(R"!) and we definef) for k =
2,...,¢ inductively by (7.3), then (7.1) defines a harmonic polynomial f of
degree ¢. This proves the second formula. O

Lemma 7.2.6. The space Hy is invariant under the action of O, (R) on Py.

Proof. In view of Lemma the Laplacian A intertwines the representation
of 0,(R) on P, with the representation on Py_5. In particular, the kernel H,
of A on Py is invariant. O
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Proposition 7.2.7. For n > 3, the representation of SO, (R) on H, is irre-
ducible.

Proof. Let G = SO, (R) and e,, € R™ be the last basis vector. We consider the
subgroup
H:={h€G: he, =¢,}

and identify H with the group SO,,_1(R) by considering the restriction of h € H
to the (n— 1)-dimensional subspace e = R"~1. We now verify the assumptions
of Corollary for the trivial character y = 1.

Let f € H, be fixed by H. We write

f= Z—xj fi(wy,...,wp_1)  with f; € Pp_j(R™1).

Since this expansion is unique and compatible with the action of H, we see with
he, = e, for h € H that H fixes fy,..., f¢. In view of the assumption n > 3,
we have n — 1 > 2 and the group H = SO,,_1(R) acts transitively on the unit
sphere S"~! = {z € R"!: ||z| = 1}. Therefore f; is constant on S"~!, so that
its homogeneity implies that f;(z) = c|lz||*~7 for some ¢ € C.

If ¢ is odd, then fy = 0 follows from the smoothness of foE| The proof of
Lemma [7.2.5] shows that frio = —Afg. Therefore fo; = 0 for every j and
f2j+1 is determined by fi. Since f; is a multiple of [|z[|*~!, it follows that the
dimension of the space H}' of H-fixed vectors in H, is bounded by 1. If £ is
even, we argue similarly

Now let f = K! , where K.(y) = 7(y,z)*. Then f(y) = %ys € Ps is
H-invariant and this carries over to P(f), where P: Py — H, is the orthogonal
projection. On the other hand 7(g)f = ngn and thus

n(G)f = {K;: |lz]| = 1}.

In view of K§, = MK, this set is total in P;. Consequently P(f) is G-cyclic
in H,. Now the assertion follows from Corollary [7.1.2] O

Remark 7.2.8. For the special case n = 3, we get

it (1) 4 (7) <21

Therefore H, carries a 2¢ + 1-dimensional irreducible unitary representation of
SO3(R). One can show that every irreducible unitary representation of SO3(R)
is equivalent to one of these.

Remark 7.2.9. We consider the case n = 2 in the situation of Proposition|7.2.7
For n = 2 we obtain for ¢ > 2 that dimH, = 2 (Lemma [7.2.5)). This also holds
for £ = 1. A basis for this space is obtained by

f@y) = (@+iy)* and f(z,y) = (z —iy)".

Tt suffices to consider the restriction to a one-dimensional line, where h(zx) := |z|¢ satisfies
RO (z) = L sgn(z) for 0 # x.
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One readily verifies that these functions are eigenfunctions of SO3(R). They are
exchanged by the reflection in the z-axis. This shows that the representation of
O2(R) on H, is irreducible, whereas the restriction to SO2(R) decomposes into
two summands. In particular, Proposition [7.2.7] does not extend to n = 2.

We have already seen some irreducible subrepresentations for SO, (R) on
P(R™). We now use them to obtain the complete decomposition.

Lemma 7.2.10. Let
D := M7.2A: Pe — Py

Then Py = Hy ® im D is an orthogonal O, (R)-invariant decomposition.

Proof. In view of Proposition the operator D := M, 2 A is selfadjoint. We
thus have an orthogonal decomposition

Py =kerD @ im D.

Further, D commutes with the action of O, (R) (Corollary ??). Therefore the
subspaces ker D and im D are O,,(R)-invariant. As the operator M, is injective,
we obtain ker D = H,. O

Lemma 7.2.11. For{ > 2, the map A: im D — Py_s is bijective and commutes
with Oy (R).

Proof. That A commutes with the actions of O, (R) follows from Lemma ?7?. As
(ker A)N'Py = Hy, the intersection of ker A with im D is trivial (Lemma [7.2.10)).
Further,

dim(im D) = dim P, — dim H,
l+n—1 l+n—2 {+n—3
-(50) -0 -00n)
l+n—2 £4+n—3
:< n—1 >_< n—2 )

- (“"3> — dim P,_,.

n—1

Counting dimensions, it follows that the map A: im D — Py_o is also bijective.
O

We now combine the results obtained so far:
Theorem 7.2.12. Let n > 3. Under SO, (R), the space Py decomposes as

[¢/2]
P = @T2jH€—2j g'HeEBfHe—z@-..@{

Jj=0

Py =Ho, forle?2Z
P =Hy, forle2Z+1.
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Proof. Combining Lemmas [7.2.10] and [7.2.11], we see that

Po=He D1 Po_s 2 He & Poo.
Now the assertion follows by induction. O

Remark 7.2.13. Considering the space P = P(R™) of all polynomials and
H = &7, H, the subspace of harmonic polynomians, the decomposition in the
preceding theorem can also be formulated as the assertion that the multiplica-
tion map

CrlloH —P, fRhw—f-h

is a linear bijection.

7.2.2 The representation of SO,(R) on L*(S"!)

The following elementary lemma provides a very direct way to describe the
surface measure on the sphere in terms of Lebesgue measure.

Lemma 7.2.14. (The invariant measure on S"‘l) Let B™ C R"™ be the closed
unit ball. Then

[ 1@ duw) = [ el () do

defines an O, (R)-invariant measure on S*~1.

With Proposition |3.3.4] we now obtain a continuous unitary representation of
0,(R) on L2(S"~1) := L3(S"~1, ). Using the results of the preceding subsec-
tion, we can now describe how this representation decomposes into irreducible
ones. To this end, we write ), C C(S"‘l) for the space of restrictions of the
space Hy of harmonic polynomials of degree ¢ to the sphere. The elements of
this space are called spherical harmonics of degree €.

Theorem 7.2.15. For n > 3, the representation of SO, (R) on L?>(S"1) de-
composes as follows into irreducible subrepresentations:

—

2/qn—1\ __
L7(8") = @€6N03}e-

Proof. Since the restriction map C(R") — C(S"~!) commutes with the action
of SO, (R), the subspaces )y of L?(S*~!) are irreducible under SO,,(R) (The-
orem [7.2.12)). With Lemma we see that dimH,41 > dimH,. Therefore
the subrepresentation on ), are pairwise inequivalent and therefore orthogonal
(Corollary [2.2.4).

Since the algebra P of polynomials separates the points of S”~! and is in-
variant under conjugation, the Stone—Weierstrafl Theorem implies that the re-
striction map R: P — C(S""!) has dense range. This implies that its range is
also dense in L?(S"~!) (cf. Proposition [3.3.2)).
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From Theorem [7.2.12] and the following remarks, we recall that

-

T
7=0 ¢=0

oo

2,

As the functions 7% restrict to constant functions on the sphere, we derive that

RP) =S W
=0

which shows that > ,° ), is dense in L?(S"~!). This completes the proof. [

Remark 7.2.16. For n = 2, the group SO2(R) = T acts on S! by rotations.
Therefore the decomposition of L?(S!) = L?(T) is given by expansion in Fourier

series (cf. Example [2.2.11)).

For a more detailed discussion of spherical harmonics on S? and the connec-
tion to Legendre polynomials and functions, we refer to [BtD85, §I1.10].

Exercises for Chapter [7]

Exercise 7.2.1. Let V,, =P, ((C2) be the space of homogeneous polynomials of degree
n on C? with reproducing kernel K (z,w) = <Z’:1> and recall the unitary representation

of SU3(C) on this space by (m(g)f)(z) = f(g~'.z). The same formula defines a
representation of SL2(C) which is not unitary. We want to calculate the complex
linear extension (dm)c: sl2(C) = suz(C)c — gl(Va) of the derived representation.
Show that:

(a) For X = (8 (1]), we have (dm)c(X) = —2’2%~

0 0
(b) For Y = <1 O)’ we have (dm)c(Y) = _218%2'

1 0
(¢c) For H = (0 71) we have (dm)c(H) = —210%1 —1—228%2.

(d) (dm)c(Z2)* = (dm)e(Z7) for Z € slao(C).

(e) Find the matrices for these operators in the basis consisting of monomials.

Exercise 7.2.2. We identify C" with R?", so that the scalar product on C" takes the
form

((p,q), 0, d")) = (p,0) + (g, 4") +i({g,p") — (0. q)).

Recall the unitary representation of the Heisenberg group
Heis(R*") :=R x R*",  (t,q,p)(t',q,p) := (t +t' —(p.d) = a0)q+dp +p’)
on F(C™) by

(n(t,0,p))(2) = &t =3 U0 £z — g — i),

We want to calculate the derived representation on functions in H°°. Show that:
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(a) For Z := (1,0,0), we have dn(Z) = 1.
(b) For Q; = (0,¢e;,0), we have dn(Q;) = z; — %.
J
(¢) For P; =(0,0,¢;), we have dn(P;) = —iz; — z%
(d) Verify the commutator relations:

[ijpk]:25.jkz7 [Q]'an]:[Pjvpk’]:Ov [Q]WZ}:[PJVZ]:O'



Chapter 8

Unitary Representations of
Lie Groups

In this final chapter we briefly discuss some specific aspects of unitary repre-
sentations of Lie groups. We shall develop the concepts in such a way that
everything remains true for infinite dimensional Lie groups.

8.1 Infinite dimensional Lie groups

The main difference between finite and infinite dimensional Lie groups are the
corresponding categories of smooth manifolds. In principle, one could develop
a theory of smooth manifolds for which the model spaces are general (real)
topological vector spaces, but in this general context one runs into difficulties,
such as the non-validity of the Fundamental Theorem of Calculus. It turns out
that a sufficiently general context is provided by model spaces which are locally
convex in the sense that 0 has a neighborhood basis consisting of convex sets.

Definition 8.1.1. (a) Let E and F be locally convex spaces, U C F open and
f: U — F amap. Then the derivative of f at x in the direction h is defined as

d 1
Af(@)(h) 1= (Onf)(w) i= |, + th) = Jim 2 (f(ar + th) — ()
whenever it exists. The function f is called differentiable at x if df (x)(h) exists
for all h € E. Tt is called continuously differentiable, if it is differentiable at all
points of U and
df: U X E— F, (z,h)— df(x)(h)

is a continuous map. This implies that the maps df(z) are linear (cf. |[GN|
Lemma 2.2.14]). The map f is called a Ck-map, k € NU{oo}, if it is continuous,
the iterated directional derivatives

& f(x)(ha, .. hy) == (Ony -+ On, ()

133
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exist for all integers 1 < j < k, 2 € U and hy,...,h; € E, and all maps
d?f: U x B/ — F are continuous. As usual, C>°-maps are called smooth.

(b) If E and F are complex locally convex spaces, then f is called complex
analytic if it is continuous and for each € U there exists a 0-neighborhood V'
with 4V C U and continuous homogeneous polynomials 8 : E — F' of degree
k such that, for each h € V| we have

fla+h) =" Br(h),
k=0

as a pointwise limit. The map f is called holomorphic if it is C' and, for each
x € U, the map df(z): E — F is complex linear. If F' is sequentially complete,
then f is holomorphic if and only if it is complex analytic ([BS71, Ths. 3.1,
6.4]).

(c¢) If F and F are real locally convex spaces, then we call a map f: U — F,
U C F open, real analytic or a C¥-map, if for each point x € U there exists
an open neighborhood V' C E¢ and a holomorphic map fc: V — F¢ with
felunv = flunv. The advantage of this definition, which differs from the one
in [BST1], is that it also works nicely for non-complete spaces. Any analytic
map is smooth, and the corresponding chain rule holds without any condition
on the underlying spaces, which is the key to the definition of analytic manifolds
(see [GI02] for details).

Once the concept of a smooth map between open subsets of locally convex
spaces and the Chain Rule are established (cf. [Ne06], [GN]), it is clear how to
define a locally convex smooth manifold. A (locally convexr) Lie group G is a
group equipped with a smooth manifold structure modeled on a locally convex
space for which the group multiplication and the inversion are smooth maps.
We write 1 € G for the identity element. Then each x € T1(G) corresponds to
a unique left invariant vector field z; with z;(1) = . The space of left invariant
vector fields is closed under the Lie bracket of vector fields, hence inherits a
Lie algebra structure. In this sense we obtain on g := T1(G) a continuous Lie
bracket which is uniquely determined by [z, y] = [z}, y](1) for z,y € g. We shall
also use the functorial notation L(G) := (g, [-,-]) for the Lie algebra of G. The
adjoint representation Ad: G — Aut(g) of G on g is defined by Ad(g) := T1(cy),
where ¢,(z) = grg~! is the conjugation map. The adjoint action is smooth and
each Ad(g) is a topological isomorphism of g. If g is a Fréchet, resp., a Banach
space, then G is called a Fréchet-, resp., a Banach—Lie group.

A smooth map exps: g = G is called an exponential function if each curve
vz (t) := expg(tz) is a one-parameter group with +.(0) = xz. The Lie group
G is said to be locally exponential if it has an exponential function for which
there is an open 0-neighborhood U in g mapped diffeomorphically by exp, onto
an open subset of G. If, in addition, G is an analytic Lie group (an analytic
manifold with analytic group operations) and the exponential function is an
analytic diffeomorphism in a 0-neighborhood, then G is called a BCH-Lie group
(for Baker—Campbell-Hausdorff). The class of BCH-Lie groups contains in
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particular all Banach—Lie groups, which includes the class of finite dimensional
Lie groups ([Ne06l, Prop. IV.1.2]).

Not every Lie group G has an exponential function and it is still an open
problem to show the existence of an exponential function if the model space,
resp., the Lie algebra g, is a complete space.

We refer to [Ne06] and |[GN| for more details on the following classes of
examples of infinite dimensional Lie groups.

Example 8.1.2. (a) For a unital Banach algebra .4, the unit group A* is a

Banach—Lie group with Lie algebra (A, [-,-]) and exponential function
x ,..n
x
expx = Z i
n=0

If A is a C*-algebra, then its unitary group U(A) is a Banach—Lie group
with Lie algebra
uA) ={r e A: 2" = —z}.
(b) If K is a Lie group and M a compact smooth manifold, then G :=
C®(M,K) is a Fréchet-Lie group with Lie algebra g := C*(M,¢). If
expy: € — K is an exponential function for K, then

expg: 9 — G, & expg o€

is an exponential function of G.

(c) If M is a compact smooth manifold, then G := Diff (M) is a Fréchet—Lie
group with Lie algebra V(M), the Lie algebra of smooth vector fields on M and
exponential function

exp: V(M) — Diff(M), exp(X) = & (time-1-flow).

If dim M > 0, then this Lie group is not locally exponential, so that one cannot
obtain charts from the exponential function. One can also show that it is not
analytic.

8.2 The derived representation

Let G be a Lie group with Lie algebra g = L(G) and exponential function
exp: g — G. To study unitary representations of GG, we have to specify smooth-
ness properties of the representation to make the passage between group and
Lie algebra work.

Definition 8.2.1. Let (m,) be a unitary representation of G. We call an
element v € H a smooth vector if the orbit map

7 G—=H, g~ 7m(g)v

is a smooth map. The space of smooth vectors is denoted H°.
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If G is an analytic Lie group, we call v an analytic vector if the orbit map
7 G—=H, g— (g

is analytic. For BCH-Lie groups G, this is equivalent to the analyticity of the
map w¥ oexp: g — H. Note that the latter condition also makes sense if G is
not analytic.

The representation (7, ) is said to be smooth if H* is dense and it is called
analytic if the smaller subspace H* is dense.

Definition 8.2.2. (The derived representation) For v € H*> and x € g we put
d
dr(z)v := £|t=07r(exp tx)v

and consider

dm(z): H™ — H
as an unbounded operator on H.
Proposition 8.2.3. (The derived representation)

(i) The subspace H™ is invariant under m(G) and

dn(Ad(g)z) = n(g)ar(z)m(g)~t for ge G, xzcaqg.

(i) dm(z)H™ C H™.
(i) dr: g — End(H®>®) is a representation of g on H™.

(iv) If w is smooth, i.e., H* is dense, then the operators idm(x) are essentially
selfadjoint.

(v) If G is locally exponential and connected, then any smooth unitary repre-
sentation of G is uniquely determined by its derived representation.

The representation (dm, H) is called the derived representation of (m, H).

Proof. (i) For v € H*> and g € G, the function 7¥ 0 p, = 779V p (h) = hg, is
also smooth. Therefore m(g)v is also a smooth vector. We further have

m(g)m(exptz)m(g~" v = m(g(expta)g™")v = m(exp(Ad(g)tx))v,

so that (i) follows by taking derivatives in ¢ = 0.
(ii) and (iii): We consider the embedding

n:H*® = C=(G,H), nw):=7" 7"(g9)=mn(g)v.

Then we obtain for the left invariant vector field z;(g) = gz on G that

(t;7%)(g) = %‘tzow(g)w(exp tx)v = w(g)dn(z)v.
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Since the function x;7¥ is also smooth, dr(z)v is a smooth vector by (ii). We

also obtain the relation
J)lﬂ'v — 7_(_dﬂ'(m)v

which leads to

ﬂ_dTF([IﬁU])’U _ [axy]nr” _ xlylﬂv o yzxzﬂv _ Wdﬂ(m)dﬂ(y)v—d‘n’(x)dw(y)v.

Evaluating in g = 1, we obtain

dr([z,y))v = [dn(z), dn(y)]v,

which proves (iii).

(iv) Since —idm(z) is the restriction of the infinitesimal generator of the uni-
tary one-parameter group m(exp tx) to the dense subspace H> and this subspace
is invariant under 7(exptz) by (i), this follows from Stone’s Theorem [6.2.5(ii).

(v) follows from (iv) and the uniqueness assertion in Stone’s Theorem which
ensures that the restriction of 7 to each one-parameter group exp(Rz) is uniquely
determined by the derived representation dw. The assertion now follows from
G = (exp g), which holds for any locally exponential connected Lie group G be-
cause the subgroup (exp g) generated by the image of the exponential function
is open. O

Definition 8.2.4. Let g be a real Lie algebra and D be a complex pre-Hilbert
space. Then a homomorphism p: g — gl(D) of Lie algebras is called a unitary
representation if the operators p(z), z € g, are skew-symmetric, i.e.,

(p(x)v,w) = —(v,p(x)w) for x€g,v,weD.

Although the preceding proposition shows that (for connected locally expo-
nential Lie groups) smooth unitary representations can be recovered from their
derived representation, it is a difficult problem to determine which unitary rep-
resentation p: g — End(D) can actually be integrated in the sense that it is
obtained by restricting the derived representation of a smooth group represen-
tation (m, ) on the completion H = D to the dense subspace D C H>. For
the group G = R, the corresponding problem is to determine which symmetric
operator A: D — D C H is essentially self-adjoint, because this means that
its closure A generates a unitary one-parameter group in the sense of Stone’s
Theorem

Theorem 8.2.5. (Nelson’s Criterion) Let G be a finite dimensional simply
connected Lie group. If p: g — End(D) is a representation of g on the pre-
Hilbert space D by skew-symmetric operators and D consists of analytic vectors
for each operator p(x), then there exists a unique unitary representation (mw, H)
of G on H, for which D C HY and p(x) = dr(x)|p for every x € g.

Nelson’s Criterion is also valid for Banach—Lie groups (cf. [Nelll, Thm. 6.8]).
Applying Nelson’s criterion to G = R, it provides the following criterion for
essential selfadjointness:
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Corollary 8.2.6. If A: D — H is a symmetric operator for which the subspace
DY(A) of analytic vectors is dense, then A is essentially selfadjoint.

The following criterion ([Merll]) is sometimes more useful because it does
not require the a priori existence of analytic vectors:

Theorem 8.2.7. (Merigon’s Criterion) Let G be a simply connected Banach—
Lie group. If p: g — End(D) is a representation of g on the pre-Hilbert space
D by operators for which the following conditions are satisfied:

(i) ip(x) is essentially selfadjoint for every x € g. In particular, we obtain a
unitary one-parameter group UF := e*(*) by Stone’s Theorem.

(ii) D is invariant under every UF, x € g, t € R.
(iii) UFp(y)(UT)" = ple*!®y) for z,y € g.

Then there exists a smooth unitary representation (w,H) of G on H for which
D CH™ and p(x) = dn(x)|p for every x € g.

Theorem 8.2.8. (Nelson, 1959) Every continuous unitary representation of a
finite dimensional Lie group G is analytic, i.e., the subspace H” of analytic
vectors is dense.

Proof. (Sketch) The idea is to use a mollifying technique. One can show that
the fundamental solutions (p;)¢~¢ of a suitable variant of the heat equation on
G are L'-functions with respect to Haar measureﬂ Moreover, they are analytic
and the map G — L'(G), g — p; o A, is analytic. Therefore the operators

m(p)v = /G pe(g)m(g)vdg

are well-defined. Now the relation
w(yrlpo = [ pyrthayda = [ phgm(ayodg = wlor o d)o

implies that all vectors in the range of 7(p;) are analytic. The density of H¥
now follows from
}51(1) m(pe)v = v. O

It is much easier to show that the space H® of smooth vectors is dense
(Garding’s Theorem). One simply follows the argument in the preceding proof,
where p,, € C°(G) is a sequence of compactly supported smooth functions with
fG pn(g)dg =1 and supp(p,) — 1 in the sense that, for every 1-neighborhood
U of 1 there exists an N € N with supp(p,) C U for n > N. Then w(p,)v — v
for every v € H and w(p,)v € H™®.

IFor G = R, one obtains functions of the form p; = %e 4t , where ¢ is a constant

ensuring that [p, pt(z)dz = 1.
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8.3 Bounded representations

The Lie theoretic tools work particularly well for unitary representations that
behave like finite dimensional ones. These representations are called bounded:

Definition 8.3.1. A unitary representation (7, #) of a topological group G is
called bounded or norm continuous if m: G — U(H) is continuous with respect
to the operator norm

The boundedness of a unitary representation has particularly strong conse-
quences for Lie groups:

Proposition 8.3.2. For a unitary representation (7w, H) of a locally exponential
Lie group G, the following are equivalent:

(i) 7 is bounded.

(ii) m: G — U(H) is a smooth homomorphism of Lie groups, where U(H)
carries the Lie group structure defined by the norm topology.

(iii) H> = H and the derived representation dm: g — B(H) is a continuous
representation by bounded operators.

Proof. (i) = (ii): For x € g, let m,(t) := w(exp tx) denote the corresponding one-
parameter group. Since it is norm-continuous, combining Exercise[5.4.2| with the
Spectral Theorem for selfadjoint operators (Theorem 7 it follows that the
operator L(7m)z = %’tzoﬂ(exp tx) is bounded and satisfies 7(expz) = e(™®,
With the same arguments as for finite dimensional Lie groups (Trotter Product
Formula and Commutator Formula) one then shows that
L(m): g — u(H) is a homomorphism of Lie algebras. Since expg and expy s,
are local homeomorphisms in 0, the relation m o expg = expy g o L(7) implies
that L(w) is continuous in 0, hence a continuous linear map. As continuous
linear maps are smooth, we use that exp; and expyy are local diffeomor-
phisms in 0 to see that the same relation shows that 7 is smooth in an identity
neighborhood. But this implies the smoothness of .

(ii) = (iii) follows from the fact that L(w) = Ty (7): g — u(H) is a continuous
homomorphism of Lie algebras and L(7)x = dn(z) for = € g.

(iii) = (ii): From the uniqueness assertion in Stone’s Theorem it follows that
ed7(®) = r(expz) for every z € g. Now the same argument as above implies
that 7 is smooth.

(ii) = (i) is trivial. O

For bounded representations of Lie algebras, their integrability is simply a
covering issue, as for finite dimensional representations.

Theorem 8.3.3. Let p: g — B(H) be a representation of g by bounded skew-
hermitian operators and G a 1-connected locally exponential Lie group with Lie
algebra g. Then the following assertions hold:
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(a) There exists a unique bounded representation (w,H) of G on H with p =
dm.

(b) We have the equality p(g)’ = n(G)’ of commutants.

(¢) A closed subspace of H is invariant under p(g) if and only if it is invariant
under 7(G).

Proof. (a) The existence of 7 follows from basic Lie theory. The representation
7 is uniquely determined by the relation 7(exp z) = e”(®) for z € g.
(b) Since G is generated by exp g, 7(G) C p(g)” follows from

(oo}

1
m(expz) = @) = Z Ep(x)" eplg) for =xeg.

n=0

The relation p(g) C m(G)"” follows from the existence of the norm limit

1
p(x) = lim = (w(exptz) — 1) € 7(G)".
t—0 ¢
This shows that p(g)” = m(G)”, and hence also that p(g)’ = 7n(G)’.
(c) follows immediately from (b) because the closed invariant subspace are
in one-to-one correspondence with the hermitian projections in the commutant

(Lemma [1.3.1)). O

Among the finite dimensional connected Lie groups, the compact ones are
the only groups for which all irreducible unitary representations are bounded.
They are actually finite dimensional, hence can be dealt with completely in the
realm of finite dimensional Lie theory.

Remark 8.3.4. If G is a connected finite dimensional Lie group and (7, H)
a faithful bounded representation, then one can show that G = K x R” is
a direct product group, where K is compactﬂ Therefore the existence of
bounded unitary representations has strong structural consequences for finite
dimensional Lie groups. In particular, they only occur for compact and abelian
groups (and their products). This is drastically different for infinite dimensional
Lie groups such as the Banach-Lie group U(#), where the underlying topology
is defined by the operator norm.

8.4 Compact Lie groups—Weyl’s Unitary Trick

The preceding theorem implies in particular, that, for a simply connected com-
pact Lie group G, the irreducible unitary representations correspond precisely

2Roughly the argument proceeds as follows. First we observe that |[dm(z)|| defines an
Ad(G)-invariant norm on g, and this in turn implies that the closure of Ad(G) in GL(g) is
compact, i.e., g is a compact Lie algebra ([HiNel2, Sect. 12.1]). Now the assertion follows
from the Structure Theorem for Groups with Compact Lie Algebra ([HiNel2) Thm. 12.1.18]).
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to the homomorphisms p: g — u,(C). To classify such representations, one
passes to complex Lie algebras by observing that

pc: gc = g ®r C — u,(C)c = gl,(C)

is a complex linear representation of g¢ (which actually is a semisimple complex
Lie algebra).

If, conversely, pc: gc — ¢l,(C) is a complex linear representation of gc,
then p := pclg: g — gl,(C) is a representation of g, but it need not be unitary.
However, it integrates to a representation 7: G — GL,(C) of the compact
simply connected Lie group G. This representation can be made unitary by
replacing the canonical scalar product (-, -)cn on C" by

(v, w) = /G (n(g)v,w(g)w)er dg, (8.1)

where dg stands for the invariant probability measure of G, the Haar measure on
G. The right invariance of dg implies that the scalar product is invariant,
so that we obtain a unitary representation. This procedure is called Weyl’s
unitary trick. It leads to the following theorem:

Theorem 8.4.1. (Weyl’s Unitary Trick) Let G be a 1-connected compact Lie
group. If (w,H) is a finite dimensional unitary representation of G, then w
is bounded and (dm)c: gc — gl(H) is a complex linear representation of the
semisimple Lie algebra gc.

If, conversely, (p,V) is a finite dimensional representation of gc, then there
exists a positive definite hermitian form on V' for which the operators p(x),
x € g, are skew-symmetric and p|y integrates to a unitary representation (w, V)

of G.

At this point, the classification of unitary representations of G has been
translated into the completely algebraic finite dimensional representation the-
ory of the semisimple complex Lie algebra gc. This is solved by the Cartan—
Weyl Theorem, parametrizing the irreducible representations of the semisimple
complex Lie algebra gc by their “highest weights.”

For non-compact Lie groups, the theory of unitary representations goes much
beyond a completely algebraic theory. We have seen in Chapter [6] how it looks
for the one-dimensional Lie group G = R. In this case the problem is completely
analytical and solved by the theory of spectral measures and selfadjoint opera-
tors. If G is non-commutative, then we have to study unitary representations of
non-abelian Lie algebras by unbounded operators, and this is still an important
challenge, in particular for infinite dimensional Lie groups.

End of Lecture
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Appendix A

Complementary material

A.1 Locally Compact Spaces

Proposition A.1.1. For a topological space X, the following are equivalent:
(i) X is quasicompact, i.e., every open cover has a finite subcover.

(ii) For each family (A;)icr of closed subsets of X with ();,c; Ai = 0, there
exists a finite subset ' C I with (\;cp Ai = 0.

Proof. (i) < (ii) follows by taking complements: The condition (),.; A; = 0
means that the family (AS);c; of complements is an open covering of X because
X = 0° = ;e A7, Similarly, (;cp Ai = 0 means that (Af);cr is a finite
subcovering. O

Definition A.1.2. A separated topological space X is called locally compact if
each point x € X has a compact neighborhood.

Lemma A.1.3. If X is locally compact and x € X, then each neighborhood U
of x contains a compact neighborhood of x.

Proof. Let K be a compact neighborhood of x € X. Since it suffices to show
that U N K contains a compact neighborhood of x, we may w.l.o.g. assume that
X is compact. Replacing U by its interior, we may further assume that U is
open, so that its complement U€ is compact.

We argue by contradiction and assume that U does not contain any compact
neighborhood of z. Then the family F of all intersections C N U¢, where C is a
compact neighborhood of x, contains only non-empty sets and is stable under
finite intersections. We thus obtain a family of closed subsets of the compact
space U° for which all finite intersections are non-empty, and therefore Propo-
sition implies that its intersection () (C N U®) contains a point 3. Then
y € U¢ implies = # y, and since X is separated, there exist open neighborhoods
U, of x and U, of y with U, N U, = (. Then Uy is a compact neighborhood of
x, which leads to the contradiction y € Uy NU* to y € Uy. O

143
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Definition A.1.4. A subset A of a topological space X is said to be relatively
compact if A is compact.

Lemma A.1.5. Let X be locally compact, K C X compact and U O K open.
Then there exists a compact subset V. C X with

Kcvicvcu.

Proof. For each € K we choose a compact neighborhood V, C U
(Lemma [A.1.3). Then there exist finitely many x1,...,z, with K C (J;_; V)
and we put V :=J_, V,, CU. O

Proposition A.1.6. (Urysohn’s Theorem) Let X be locally compact, K C X
compact and U DO K be an open subset. Then there exists a continuous function
h: X — R with

h‘K =1 and h‘X\U =0.

Proof. We put U(1) := U. With Lemma we find an open, relatively
compact subset U(0) with K C U(0) C U(0) C U(1). Iterating this procedure
leads to a subset U(%) with

—_— 1 1
C — ) C — ) C .
T eu(3) <o) v
Continuing like this, we find for each dyadic number e [0,1] an open, rela-

271.
tively compact subset U(2%) with

U(Qﬁn) gU(k;l) for k=0,...,2" —1.

Let D:={X:k=0,...,2",n € N} for the set of dyadic numbers in [0, 1]. For
r € [0, 1], we put
Ury:== J U).
s<r,seD
For r = 2% this is consistent with the previous definition. For ¢t < ¢’ we now

find r = 2% <r' = k’;;l inD with t <r <7’ <1, so that we obtain

Ult)CU(r)CU((r) CU{).
We also put U(t) =0 for t <0 and U(t) = X for ¢t > 1. Finally, we define
fz):=mf{t e R: 2z e U(t)}.

Then f(K) C {0} and f(X \ U) C {1}.

We claim that f is continuous. So let g € X, f(x¢) = top and £ > 0. We
put V := U(to +¢) \ U(to — ) and note that this is a neighborhood of z.
From z € V C U(tp + €) we derive f(z) < to+e. If f(x) < to — €, then also
xz € U(to—e) CU(tp — €), which is a contradiction. Therefore |f(z)— f(zo)| <e
holds on V', and this implies that f is continuous. Finally, we put h:=1—f. O
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Exercises for Section [A.1]

Exercise A.1.1. (One point compactification) Let X be a locally compact space.
Show that:

(i) There exists a compact topology on the set X, := X U{w}, where w is a symbol
of a point not contained in X. Hint: A subset O C X,, is open if it either is an
open subset of X or w € O and X \ O is compact.

(ii) The inclusion map nx: X — X, is a homeomorphism onto an open subset of
Xo.

(iii) If Y is a compact space and f: X — Y a continuous map which is a homeomor-
phism onto the complement of a point in Y, then there exists a homeomorphism
F: X, —Y with Fonx = f.

The space X, is called the Alexandroff compactification or the one point com-
pactification of XEI

Exercise A.1.2. (Stereographic projection) We consider the n-dimensional sphere
S™ = {(z0,z1,...,2n) e R 2l 42l + - 422 =1},

We call the unit vector eg := (1,0,...,0) the north pole of the sphere and —eg the
south pole. We then have the corresponding stereographic projection maps

P4 U+ = Sn\{eo}%Rny (y07y)’_> Y

l—yo

and

2 U_ =S"\{- R"™, , .
@ \{—eo} — (o y)H1+y0y

Show that these maps are homeomorphisms with inverse maps

fzl5 -1 2z )

—1
w3t (@) = (* ,
+ l2llZ + 1" T+ [«[3

Exercise A.1.3. Show that the one-point compactification of R™ is homeomorphic
to the n-dimensional sphere S™. Hint: Exercise

Exercise A.1.4. Show that the one-point compactification of an open interval ]a, b[C
R is homeomorphic to S'.

Exercise A.1.5. Let X be a locally compact space and Y C X be a subset. Show
that Y is locally compact with respect to the subspace topology if and only if there
exists an open subset O C X and a closed subset A with Y = O N A. Hint: If Y is
locally compact, write it as a union of compact subsets of the form O; NY, O; open
in X, where O; NY has compact closure, contained in Y. Then put O :=|J,_; O; and
A:=YnNO.

icl

Exercise A.1.6. Let f: X — Y be a continuous proper map between locally compact
spaces, i.e., inverse image of compact subsets are compact. Show that

(a) fis a closed map, i.e., maps closed subsets to closed subsets.

(b) If f is injective, then it is a topological embedding onto a closed subset.

! Alexandroff, Pavel (1896-1982)
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(c) There is a well-defined homomorphism f*: Co(Y) — Co(X) of C*-algebras,
defined by f*h :=ho f.

(d) For each regular Borel measure p on X, the push-forward measure f.p on Y,
defined by (fup)(E) := u(f~*(E)) is regular. Hint: To verify outer regularity,
pick an open O D f~Y(E) with (O \ f*(E)) < &. Then U := f(0O°)° is an
open subset of Y containing E and 0 = FH(U) satisfies f71(E) C O C 0,
which leads to (f.u)(U\ E) < e.

A.2 The Stone—Weierstral3 Theorem

Definition A.2.1. (a) Let M be a set and A C KM be a set of functions
M — K. We say that A separates the points of M if for two points = # y in X
there exists some f € A with f(x) # f(y).

(b) A linear subspace A C KM is called an algebra if it is closed under
pointwise multiplication.

Theorem A.2.2. (Dini’s Theorem) E| Let X be a compact space and (fn)nen
be a monotone sequence of functions in C(X,R). If (fn)nen converges pointwise
to some f € C(X,R), then the convergence is uniform, i.e., ||fn — flloo = 0.

Proof. Idea: First we find for each € X and each € > 0 a neighborhood U,
and an n, € N with |f(z) — fn(y)| < € for y € U, and n > n,. Then X is
covered by finitely many such U, and the monotony is used.

Here are the details: Replacing f, by f — f, or f, — f, we may w.l.o.g.
assume that f =0 and f, > fp41 > 0 for n € N. For € > 0 and € X we now
find an n, € N with

(Vn>n,)  0< f(z) <

<
3
The continuity of f and f,, yields a neighborhood U, of z with

(Vy €Us) | fu, (@) = fu, (v)

€
< —.
3

We thus obtain

Now we choose x1,...,2, € X such that the U,, cover X and put ng :=
max{ng,,...,Ny, ;. Then, by monotony of the sequence,

0 < fno(x) < fnmj(z) <e for xzelU,,

and thus
(Vn>ng)(Ver € X) 0< fro(z) < fro(z) <e.

This completes the proof. O

Lemma A.2.3. There exists an increasing sequence of real polynomials py,
which converges in [0, 1] uniformly to the square root function x — \/x.

2Dini, Ulisse (1845-1918)
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Proof. 1dea: We start with p; := 0 and construct p,, inductively by the rule

pri1(2) 1= pale) + 5 (2~ pa()?) (A1)

Then we show that this sequence is monotone and bounded. The iteration
procedure produces an equation for the limit which turns out to be y/z. Then
we apply Dini’s Theorem.

Details: We prove by induction that that

(Vn e N)(Vz € [0,1]) 0<pu(z) <z <1

In fact,

1

\/E*pn+l(m) = f*pn(x) - i(x *pn(x)z)

(W= pala) (1= 2 (VE+ pala)

and p,(z) < /z yields

(re01) 0 Z(Vitpa@) <VE<I

Therefore the definition of p,11 yields p, < pn41 on [0,1], so that our claim
follows by induction. Therefore the sequence (py,)nen is increasing on [0, 1] and
bounded, hence converges pointwise to some function f: [0,1] — [0, 1]. Passing
in to the limit on both sides, we obtain the relation f(x)? = wx, which
proves that f(x) = /x. Now Dini’s Theorem implies that the convergence
pn, — f is uniform. O

Theorem A.2.4. (Stone-Weierstrafi) E|E| Let X be a compact space and A C
C(X,R) be a point separating subalgebra containing the constant functions.
Then A is dense in C(X,R) w.r.t. || - ||oo-

Proof. Let B := A denote the closure of A in the Banach space
(CX,R), - lloo)-

Then B also contains the constant functions, separates the points and is a sub-
algebra (Exercise [A.2.1)). We have to show that B = C(X,R).

Here is the idea of the proof. First we use Lemma to see that for
fyg € B, also |f], min(f, g) and max(f, g) are contained in B. Then we use the
point separation property to approximate general continuous functions locally
by elements of B. Now the compactness of X permits to complete the proof.

3Stone, Marshall (1903-1989)
4Weierstral, Karl (1815-1897)
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Here are the details: Let (p,)nen be the sequence of polynomials from

Lemma [A.2.3] For f € B, we consider the functions pn(%), which also be-

long to B. In view of Lemma[A.2.3] they converge uniformly to ﬁ = H}L,

|
lleo
so that | f] € B.
Now let f,g € B. Then B contains the functions

min(f,9) = 3(f+9~1f —g) and max(f,g) = 5(f +9+1f - g

Next let z # y in X and r,s € R. According to our assumption, there exists a
function g € B with g(x) # g(y). For

we then have h(z) =r and h(y) = s.
Claim: For f € C(X,R), x € X and ¢ > 0, there exists a function g, € B
with
f(@) = go(2) and (Vy € X) gu(y) < f(y) +e
To verify this claim, pick for each z € X a function h, € B with h,(z) = f(x)
and h.(z) < f(z) + 5. Then there exists a neighborhood U, of z with

(vy € Uz) hz(y) S f(y) + €.

Since X is compact, it is covered by finitely many U,,,...,U,, of these neigh-
borhoods. Then g, := min{h,,,...,h,, } is the desired function.

Now we complete the proof by showing that B = C(X,R). So let f €
C(X,R) and € > 0. For each z € X, pick g, € B with

(Vy € X) f(z) =gu(x) and g.(y) < f(y) +e.

Then the continuity of f and g, yield neighborhoods U, of x with

VyEUw : gz(y)Zf(y)_E

Now the compactness of X implies the existence of finitely many points x1, ..., xx
such that X C U,, U---UU,,. We now put ¢, := max{gs,,..., 9z, } € B. Then

VyeX o fly)—e<wely) < fly) +e
This implies that || f — ¢ellco < € and since € was arbitrary, f € B. O

Corollary A.2.5. Let X be a compact space and A C C(X,C) be a point
separating subalgebra containing the constant functions which is invariant under
complezx conjugation, i.e., f € A implies f € A. Then A is dense in C(X,C)
w.r.t | oo

Proof. Let Ag := AN C(X,R). Since A is conjugation invariant, we have
A = Ag ®iAg. This implies that Ar contains the real constants and separates
the points of X. Now Theorem implies that Ag is dense in C(X,R), and
therefore A is dense in C'(X,C) = C(X,R) 4+ iC(X,R). O
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Exercises for Section [A.2]

Exercise A.2.1. If X is a compact topological space and A C C'(X,R) is a subalgebra,
then its closure also is a subalgebra. Hint: If f,, — f and g,, — g uniformly, then also
fot+gn — f+9,Afrn = Af and frgn — fg uniformly.

Exercise A.2.2. Let [a,b] C R be a compact interval. Show that the space
A= {f|[u7b] : (Jag,...,an € Ryn €N) f(x) = Zaifbi}
i=0

of polynomial functions on [a,b] is dense in C([a, b], R) with respect to || - ||co-

Exercise A.2.3. Let K C R” be a compact subset. Show that the space A consisting
of all restrictions of polynomial functions

f(.'E): Z a‘&ma7 GQER, x&:xllll”'m%n7

a€eNY
to K is dense in C'(K,R) with respect to || - ||oo-

Exercise A.2.4. Let S' = {z € C: |z| = 1} and
A= {f|S1 : (3ao,...,an € C,n eN) f(z) = Zanz"}.

Show that A is not dense in C(S',C). Hint: Consider the function f(z) := 2~ on
S! and try to approximate it by elements f, of A; then consider the complex path
integrals flz\:l fn(2) dz. Why does the Stone—Weierstrafl Theorem not apply?

Exercise A.2.5. For a locally compact space X, we consider the Banach space Co(X)
of all continuous functions f: X — C vanishing at infinity, i.e., with the property that
for each € > 0 there exists a compact subset C. C X with |f(z)| < e for z &€ C-..
Suppose that A C Cp(X) is a complex subalgebra satisfying

(a) A is invariant under conjugation.

(b) A has no zeros, i.e., for each € X there exists an f € A with f(z) # 0.

(c) A separates the points of X.

Show that A is dense in Co(X) with respect to || - [|oo. Hint: Let X, be the one-
point compactification of X. Then each function f € Co(X) extends to a continuous
function f on X, by f(w) := 0, and this leads to bijection

Ci(Xy) ={feC(Xu): flw) =0} = Co(X), [ flx-
Use the Stone—Weierstra3 Theorem to show that the algebra

A:=Cl+{a:ac A}

is dense in C'(X,,) and show that if fon+Al o ffor A, €C, f€ Co(X), fn € A, then
An — 0 and f, — f.
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A.3 Commutative C'*-algebras
Let A be a commutative Banach-x-algebra. We write
A := Hom(A,C) \ {0},

where Hom(A, C) denotes the set of all morphisms of Banach-x-algebras, i.e.,
continuous linear functionals y: A — C with the additional property that

x(ab) = x(a)x(b) and x(a*)=x(a) for a,be A (A.2)

Thinking of C as a one-dimensional Hilbert space, we have C = B(C), so
that Hom(A, C) can also be considered as the set of one-dimensional (involutive)
representations of the Banach-x-algebra A.

Since the set Hom(A, C) is defined by the equations (A.2), it is a weak-*-
closed subset of the topological dual space A’. One can also show that ||x|| <1
for any x € Hom(A,C) (Exercise [A.3.1), so that Hom(A,C) is also bounded,
hence weak-*-compact by the Banach—Alaoglu Theorem (cf. [Ru73]). Therefore
Ais a locally compact space.

Since A C CA carries the weak--topology, i.e., the topology of pointwise
convergence, each element a € A defines a continuous function

a: A= C, aly) = x(a).

Since @ extends to a continuous function on the compact space Hom(A, (C)
vanishing in the O-functional, we have @ € Cy(A) (Exercise [A.3.2)), with

a0 = [x(a)l < lIxllllall < llall

(cf. Exercise [A.3.1). We thus obtain a map

-~

G:A— Co(A), aw—a,
called the Gelfand transform. For a,b € A and x € A we have

G(ab)(x) = x(ab) = x(a)x(b) = G(a)(x)G(b)(x)
and
G(a*)(x) = x(a*) = x(a) = G(a)* (),

so that G is a morphism of Banach-x-algebras, i.e., a continuous homomorphism
compatible with the involution.

Theorem A.3.1. (Gelfand Representation Theorem) If A is a commutative
C*-algebra, then the Gelfand transform

-~

G: A— Cy(A)

18 an isometric isomorphism.



A.3. COMMUTATIVE C*-ALGEBRAS 151

For a proof we refer to [Ru73, Thm. 11.18].

Remark A.3.2. (a) If A is already of the form A = Cy(X) for a locally compact
space, then one can show that the natural map

n: X = A, n@)(f) = f(z)

is a homeomorphism, so that we can recover the space X as A.

(b) The image G(A) of the Gelfand transform is a s-subalgebra of Cp(A)
separating the points of A and for each xy € A, there exists an element a € A
with @(yx) # 0. Therefore the Stone—Weierstrafl Theorem for locally compact
spaces (Exercise implies that G(A) is dense in Cp(A).

Corollary A.3.3. If A is a unital C*-algebra and dim A > 1, then there exist
non-zero commuting elements a,b € A with ab = 0.

Proof. Since A # C1, there exists an element © € A\ C1. Writing © = y + iz
with y* = y and z* = z, it follows immediately that A contains a hermitian
element a € A\ C1. Let B C A be the closed unital subalgebra of A generated
by a. Then B is commutative and larger than C1, hence isomorphic to Cy(X) for
some locally compact space X (Theorem . Then X contains at least two
points z # gy, and Urysohn’s Theorem implies the existence of non-zero
elements a,b € C.(X) C Cp(X) = B with ab = 0. O

Exercises for Section [A.3

Exercise A.3.1. ¢ Let A be a Banach algebra and x: A — C be an algebra homo-
morphism. Show that:

(a) x extends to the unital Banach algebra A4 := A x C with the multiplication
(a,t)(a’,t") := (ad’ +ta’ +t'a,tt")
(cf. Exercise|1.1.15)).
(b) If A is unital and x # 0, then
x(1)=1 and x(A*)CC*.

Conclude further that x(B1(1)) € C* and derive that x is continuous with
Xl < 1.

Exercise A.3.2. Suppose that Y is a compact space yo € Y and X := Y \ {yo}.
Show that the restriction map yields an isometric isomorphism of C*-algebras:

r: Cu(Y,C) == {f € C(Y,C): f(yo) = 0} = Co(X,C).

Exercise A.3.3. Let A be a C'*-algebra. Show that:

(i) If a = a" € A is a hermitian element, then ||a"| = ||a||™ holds for each n € N.
Hint: Consider the commutative C*-subalgebra generated by a.
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(ii) If B is a Banach-*-algebra and a:: B — A a continuous morphism of Banach-x-
algebras, then ||a|| < 1. Hint: Let C := ||a|| and derive with (i) for b € B the
relation

la(®)[|*" = [la(6b™)[[™ = [la((bb")™)|| < C|(B")"[| < Cb]*".
Finally, use that C*/™ — 1.
Exercise A.3.4. Let A be a C*-algebra. We call a hermitian element a = a* € A

positive if @ = b? for some hermitian element b = b* € A. Show that:

(a) Every positive Element a € A has a positive square root. Hint: Consider the
commutative C*-subalgebra B generated by b and recall that B = Co(X) for
some locally compact space.

(b) If Co(X), X alocally compact space, is generated as a C*-algebra by some f > 0,
then it is also generated by f?. Hint: Use the Stone-Weierstra$ Theorem.

(c) If bis a positive square root of a, then there exists a commutative C*-subalgebra
of A containing a and b in which b is positive. Hint: Write b = ¢ and consider
the C*-algebra generated by c.

(d) Every positive Element a € A has a unique positive square root. Hint: Use (b)
and (c) to see that any positive square root of a is contained in the C*-algebra
generated by a; then consider the special case A = Co(X).

Exercise A.3.5. Let A be a unital C*-algebra and a = a* € A with ||a|| < 1. Show

that
© /1
b:=+v1—a?:= 2 ) (=1)"a*"
a nz:% (n>( )V"a
is hermitian and satisfies b = 1 — a?. Show further that

u:=a+1iy1—a?e€ U(A)

and conclude that A = span U(A). Hint: To verify b> = 1 — a?, it suffices to consider
the commutative C*-algebra generated by a.

A.4 Discrete Decomposability for Compact Groups

Let (m,7) be a continuous unitary representation of the compact group G and
pc be a normalized Haar measure on G. We assume that H # {0} and want
to show that H = Hg4, i.e., that H decomposes as a direct sum of irreducible
representations. This will follow, as soon as we can show that 7 contains a non-
zero finite dimensional G-invariant subspace because every finite dimensional
representation is a direct sum of irreducible ones (Proposition .

If 0 # A = A* € Bg(H) is a non-zero compact intertwining operator,
t/llen the Spectral Theorem for compact hermitian operators implies that H =
@D crHa(A) is the orthogonal direct sum of the eigenspaces

Ha(A) :=ker(A — A1)

and if A # 0, then dimH,(A) < oo. Since A is non-zero, it has a non-zero
eigenvalue A, and therefore H(A) is a finite dimensional subspace of H which
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is G-invariant (Exercise |[1.3.11)). It therefore remains to construct a non-zero
hermitian compact element of Bg(H).

Proposition A.4.1. For each A € B(H), there exists a unique operator Ag €
B (H) with the property that

(Agv,w) = /G<7T(g)A7T(g)71v,w> dpg  for  v,w e H.

Moreover, (Ag)* = (A*)g and if A is compact, then Ag is also compact.

We also write this operator as an operator-valued integral
| @)n(9) duc = Ac.
Proof. On H we consider the sesquilinear form defined by
F(v,w) := /G<7r(g)A7r(g)‘1v,w> dpc(9)-
Then
|F (v, w)| < /G I7(9)Am(g) " l[vllllw] duc(g)
= /G [Alll[ol[l[wll duc(g) = [[Alll[vlllwl,

and we conclude the existence of a unique bounded operator Ag € B(H) with
Fv,w) = (Agv,w) for wv,weH

(Exercise in Functional Analysis). To see that Ag commutes with each 7(g),
we calculate

(m(9)Acm(9) " v,w) = / (m(g)m(h)Am(h) "7 (g) " v, w) duc(h)
G

= /G<7r(gh)A7r(gh)71v,w> dug(h)

= /G<7r(h)A7r(h)*1v,w> duc(h) = (Agv, w).
Next we note that

(4e) 0.} = (0. Acu) = [ (v.7(9)An(9) ") dua(g)
G
= [ o)A w(0) v} disale) = ((A%)av.w).

Finally, we assume that A is compact, i.e., the image of the closed unit ball
B C H is relatively compact. We have to show that the same holds for Ag.
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Since G is compact, the set B’ := 7(G)AB C 7(G)AB is also compact because
the action G x H — H, (g,v) — m(g)v is continuous (Exercise[1.2.3)). The closed
convex hull K := conv(B’) is also compact (Exercise .

We claim that Ag(B) C K, and this will imply that Ag is compact. So let
v € H and ¢ € R with Re(v,z) < ¢ for all x € K. Then we obtain for w € B:

Re(v, Agw) = Re/G<v,7T(9)A7T(9)’1w> duc(g)

- / Re(v, 7(g) An(g) " w) dpc(g) < / cduclg) = c.
G

G

Since
K ={xeH: (YveH)Re(v,z) <supRe(v, K)}

by the Hahn-Banach Separation Theorem, it follows that Agw € K, and thus
AgBCK. O

Combining the preceding proposition with the discussion above, we obtain:

Proposition A.4.2. If (m,H) is a non-zero continuous unitary representa-
tion of the compact group G, then H contains a non-zero finite dimensional
G-invariant subspace.

Proof. We have to show the existence of a non-zero compact hermitian inter-
twining operator. So let vy € H be a unit vector and consider the orthogonal
projection P(v) := (v,vo)vg onto Cvg. Then dim(im(P)) = 1 implies that P
is compact, and since it is an orthogonal projection, we also have P* = P.
Therefore

Pa(v) == /G (m(g)Pr(g) Yo dpucs(g) = / (n(9)~ 0, vo)m(g)v0 dpic(s)

G

from Proposition is a compact hermitian operator. To see that it is non-
zero, we simply observe that

(Pavo, vo) = /G (m(9)™ 20, v0) (w(g)v0, v0) dpic(g)

= [ lirtg)en,wo) P duct) > 0
G

follows from (7 (1)vg, vg) > 0 and the defining property of the Haar measure u¢.
O

Theorem A.4.3. (Fundamental Theorem on Unitary Representations of Com-
pact Groups—Abstract Peter—Weyl Theorem) If (mw, H) is a continuous unitary
representation of the compact group G, then (m,H) is a direct sum of irreducible
representations and all irreducible representations of G are finite dimensional.



A.5. THE FOURIER TRANSFORM ON RY 155

Proof. Writing H = Hq®H, for the decomposition into discrete and continuous
part (Proposition 7 we use Proposition to see that if H. # {0}, then
it contains a finite dimensional invariant subspace, contradicting the definition
of H. (Proposition [1.3.12)). Therefore H. = {0} and thus H = Hg, so that
the first part follows from Proposition 2:2.5] Applying Proposition [A:4.2] to an
irreducible representation (7, H) of G, we thus get dimH < co. O

Exercises for Section [A.4]

Exercise A.4.1. Show that if B is a compact subset of a Banach space F, then its
closed convex hull K := conv(B) is also compact. Hint: Since we are dealing with
metric spaces, it suffices to show precompactness, i.e., that for each € > 0, there exists
a finite subset F' C K with K C B.(F) := F+B:(0). Since B is compact, there exists a
finite subset Fg C B with B C B.(Fp). Then conv(B) C conv(Fg)+ B:(0), and since
conv(Fg) is compact (why?), conv(Fg) C B.(F) for a finite subset F' C conv(Fp).
This leads to conv(B) C F + Ba.(0), which implies implies K C F + B<2.(0).

Exercise A.4.2. Let H be a complex Hilbert space and G C U(H)s be a closed
subgroup. Show that G is compact if and only if H can be written as an orthogonal

direct sum H = P, ,H; of finite dimensional G-invariant subspaces. Hint: Use
Tychonov’s Theorem and Exercise to see that for any family of finite dimensional

Hilbert spaces (H;);e., the topological group [];. ; U(H;)s is compact.

A.5 The Fourier transform on R"

For f € L'(R"), we define its Fourier transform by

~

F& = | fla)e'®" da.

R™

The Dominated Convergence Theorem immediately implies that f: R” - R is
a continuous function satisfying

1 Flloe < 1£111.

The Banach space L'(R") is a Banach-*-algebra with respect to the involu-
tion

ff(x):=f(-z), zeR"

and the convolution product

(f1* f2)(z) := . fi(y) f2(z —y) dy

which satisfies

11 fall < 1Al N1 £2ll

(an easy application of Fubini’s Theorem).
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With Fubini’s Theorem, we obtain for f;, fo € L'(R"):

(Fu # F2TE) = /1/(h Vol — )6 dy da
%<€y — )&= do d
- f1 / f2 x ) T ay
[ e [ e dedy

B fa(0) dy
= hi(©F(€)
and we also note that
?: F for fe L'(R™).
Therefore the Fourier transform
FiLMRY) = (CoR™), | -lloo)s S ]
is a morphism of Banach-x-algebras.

Proposition A.5.1. (Riemann-Lebesgue Lemma) For each f € L'(R") the
Fourier transform f vanishes at infinity, i.e., f € Co(R™).

Proof. For each 0 # 2 € R™ we obtain with e™¥" = —1 and the translation
invariance of Lebesgue measure the relation

fla) = 2%/ e f(y) dy

1 ; 1 iz, y— "o T
= 5/ ") f(y) dy — 5/ VT £ (y) dy
1 ) 1 . 71'
—— i(x,y) _Z i{@,y)
5 /ne Fy)dy /"e f<y+ ||$||2x) dy
1 ) T
I i{z,y) _ —
5 /ne [f(y) f(y+ |I$H2z>] dy

This implies that
1
< —
Far<s [

Now the assertion follows from the continuity of the map

fly) — f(y + ﬁx) ’ dy.

R™ — LY(R"), 2~ A\ f

in 0 (Exercise) and lim; W =0. O
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Proposition A.5.2. F(LY(R")) is dense in Co(R™) bzgl. || - ||co-

Proof. We know already that A := F(L'(R™)) is a conjugation invariant subal-
gebra of Cy(R™). According to the Stone—Weierstrafl Theorem for non-compact
spaces (Exercise , we have to see that .4 has no common zeros and that
it separates the points of R™. This is verified in (a) and (b) below.

(a) Let zp € R™ and B be the ball of radius 1 around zg. Then f(x) :=
x(x)e %0 is an element of L'(R™) and

o~

fzo) = /B dx = vol(B) > 0.

Therefore A has no common zeros.

(b) For zg # yo € R™, we pick a € R such that zg := a(zg — yo) satisfies
ei(ro—v0.20) oL 1 Then there exists a ball B with center z such that e*(#o—v0:2) £
1 for every z € B. Then the L'-function

(@) = xa(a)(e o) ey

has a Fourier transform satisfying

~ ~

Flao) — Flo) :/(e—i(xoﬂc) _ e ilu)y (oite0.e) _ giwoe)y g
B

_ / |e?(w0:2) _ i (0,2} |2 g > (. -
B

A.6 The Group Algebra of a Locally Compact
Group

A.6.1 Haar measure on locally compact groups
In this section G always denotes a locally compact group.
Definition A.6.1. (a) A positive Radon measure p on G is called left invariant
if
| ta0) duta) = | 1@ du@) for fecu@roe
We likewise define right invariance by

/fwwmmw:/fmwwu>fm feC.(G)ged.
G G

(b) A positive left invariant Radon measure p on G is called a (left) Haar
integral, resp., a (left) Haar measure, if 0 # f > 0 for f € C.(G) implies

| f@dut) >
G

In the following we shall denote Haar measures on G by ug.
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Remark A.6.2. One can show that every locally compact group G possesses
a Haar measure and that for two Haar measures p and p’ there exists a A > 0
with ¢/ = Ap ([Neu90], [HiNe91]).

If G is compact and p a Haar measure on G, then u(G) is finite positive,
so that we obtain a unique Haar probability measure on G. We call this Haar
measure normalized.

Example A.6.3. (a) If G is a discrete group, then C..(G) is the space of finitely
supported functions on G, and the counting measure

[ fin=3 100
G geG

is a Haar measure on G. If, in addition, G is finite, then

1
/Gfdu = |G|g;f(g)

is a normalized Haar measure.
(b) For G = Z we obtain in particular a Haar measure by

/fdﬂz =" f(n).
z neZ

(¢) On G = R", the Riemann, resp., Lebesgue integral defines a Haar mea-
sure by

fdug = f(z) de.
]Rn R‘I‘L

(d) On the circle group G =T,

1 27 .
fdur = — fle™) dt
/T 27 Jo
is a Haar measure.
(e) If G = (R*, ") is the multiplicative group of real numbers, then

fdp = ﬂ dx
RX rx |7]
is a Haar measure on GG. Note that a continuous function with compact support
on R* vanishes in a neighborhood of 0, so that the integral is defined.

Lemma A.6.4. If g is a Haar measure on G and h € C(G) with [, fhdpg =
0 for all f € C.(G), then h = 0.

Proof. Let g € G. Then there exists a function f € C.(G) with 0 < f and
f(g) > 0 (Urysohn’s Theorem). Now fh € C.(G) satisfies fh-h = f|h|? > 0,
so that [, f|h|* dug = 0 implies f|h|*> = 0, and therefore h(g) = 0. O
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Proposition A.6.5. Let ue be a Haar measure on G. Then there exists a
continuous homomorphism

Ag: G — (RY,)  with (pg)upc = Aalg)'ue  for geG.

Proof. Since left and right multiplications on G commute, the Radon measure
(pg)«tic is also left invariant and satisfies

[ £dlos)na) = [ £opyduc >0
G G

for 0 # f > 0 (cf. (3.2)). Therefore (pg).pc is a left Haar measure, and hence
there exists Ag(g) €]0, 00 with (pg).«pc = Ac(g) 'ue (Remark [A.6.2).
Let 0 # f € C.(G) with f > 0. To see that

i ),
———— [ (fopy)duc

fG fduc Ja 7
depends continuously on g, we note that for a fixed g € G, we actually in-
tegrate only over supp(f)g~—!. For any compact neighborhood K of go, the
subset supp(f)K ! of G is compact (it is the image of the compact product set
supp(f) x K under the continuous map (z,y) + xy~1), and for any g € K we
have

Ac(g)™

1
A 9‘1=7/ fopg)duc,
o9) Jo fdue supp(f)K*I( o) duia

so that the continuity in g¢ follows as in the proof of Proposition [3.3.4 That
Ag is a homomorphism is an immediate consequence of the definition:
(Pgn )i = (Pnpg)«tic = (pn)+(Pg)«tic
= Ac(9) " (on) ke = Aa(9) T A () e
O
Definition A.6.6. The function Ag is called the modular factor of G. Clearly,
it does not depend on the choice of the Haar measure ug. A locally compact

group G is called unimodular if Ag = 1, i.e., each left invariant Haar measure
is also right invariant, hence biinvariant.

Proposition A.6.7. A locally compact group G is unimodular if it satisfies one
of the following conditions:

(a) G is compact.
(b) G is abelian.
(¢) Its commutator group (G,G) is dense.

Proof. (a) In this case Ag(G) is a compact subgroup of R, hence equal to {1}.
(b) Follows from the fact that p, = Ay for any g € G.
(c) Since R is abelian, (G,G) C ker Ag. If (G, G) is dense, the continuity
of Ag implies that Ag = 1. O
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Lemma A.6.8. Let G be a locally compact group, pug o Haar measure and Ag
be the modular factor. Then we have for f € LY(G, ug) the following formulas:

a) Jo f(xg) duc(z) = o F(@) dug ().
(b) AG' - pe is a right invariant measure on G.
) Jo @) duc(x) = [ f( ~dpc(x).

Proof. (a) is the definition of the modular factor.

(b) Using (a), we obtain (pg)«pc = Ac(9) g Since we also have (p,)Ag =
Ac(g9) " Ag, (b) follows.

(c) Let I(f):= [, f(z~")Aq(z)~" dug(x). Then (b) implies that

For ) /f 1Y Ag (@)~ dua(a) /f ((29) ) Do (x) ! dpc(x)
:/Gf(x_l)Ac;(:c)_1 dpc(z) =1(f),

so that I is left invariant. For 0 < f # 0 in C.(G) we also have I(f) > 0, so that
I is a Haar integral. In view of the Uniqueness of Haar measure, there exists a
C > 0 with

/f ) Ag(x)! dpa(z) C/f ) duc(z) for  feCuG).

It remains to show that C' = 1. We apply the preceding relation to the compactly
supported function f(x) := f(z71)Ag(z)~! to find

C/f ) duc (z /f A (2)Ag(z) ™ dug(« /f ) duc(z

which leads to C = 1/C, and hence to C' = 1. O

Proposition A.6.9. Let G be a locally compact group and ue a (left) Haar
measure on G. On L*(G) := L*(G, ug) we have two continuous unitary repre-
sentations of G. The left regular representation

m(g)f = foA"

and the right regular representation

=VAc(9)f o py-

Proof. The continuity of the left regular representation follows from Corol-
lary For the right regular representation we apply Proposition to
the left action of G on G defined by o4(z) :=zg~! = pg—12. Then

Blg.x) = T (@) = S

() = Aclg)

is a continuous function on G x G, which implies the continuity of .. O
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Corollary A.6.10. For a locally compact group G, the left reqular representa-
tion is injective. In particular, G has a faithful continuous unitary representa-
tion.

Proof. For g # 1, pick disjoint open neighborhoods U of 1 and V of g with
gU C V. Let 0 < f € C.(G) be non-zero with supp(f) C U. Then

/"fgylm ) dpc () = 0

because supp(m;(g) f) = gsupp(f) C gU C V intersects U trivially. On the other
hand the definition of Haar measure implies || f|l2 > 0, so that m;(g) # 1. O

A.6.2 The Convolution Product

Let G be a locally compact group and ug be a left Haar measure on G. For
fyg € C.(G) we define we define the convolution product

= [ et D die) = [ fana ) diew). (43
G

This integral is defined because the first integrand is supported by the compact
set supp(f). Using the modular factor Ag, we define an involution on C.(G)
by

fr(@) = Ag(a) ™ fla™). (A4)

Lemma A.6.11. For f,g € C.(G), we have

(i) f*xg € C.(G) with supp(f * g) C supp(f)supp(g) and convolution is
associative.

1+ gl < 112 llgll-

(i)
) 1 = N f 1l
)
)

(i
(iv) (f*g)"=g"*f"

(v) Forz € G and f € C.(G) we put \pf :== foA;! and ppf := fops. Then
(a) Xo(f +9) = Aaf) x g, pa(f % 9) = f % pay,

(b) pa(f) *g=f*Ac(z)~ (As-19).

(©) (Naf)* = Ac(@)paf* and (pof)* = Ac(z) ' Aaf*.

(@) [Aaflls = lIfllh and [lpaflls = Ac(@) 7 HIf]1-

(vi) For f € C.(G), the map G — LY (G, uc),z — A:(f) is continuous.

Proof. (i) The continuity of fx*g follows from the continuity of the integrand and
the fact that we actually integrate over a compact subset of G. If (f*g)(z) # 0,
then there exists a y € G with f(y)g(y~'z) # 0. Then y € supp(f) and
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y~ 'z € supp(g), so that = € supp(f)supp(g). In particular, f * g has compact

support if f and g have.
For the associativity of the convolution product, we calculate

((F * 9) % h)( //f h(y~'2) duc(y) du(2)
- / 1) / g)h(y~ =12 du(y) duc(z)
G G
- /G FE)g W) (=1 2) dua (=) = (f * (g % ) ().

(ii) We have
1 *g(o)] < / F@)lol2)] duc(y)
G

and therefore
1 *glh < /G /G F@llg™ )] dua(y) duc(z)
Fubini / W) / 9(y~"0)| duc() duc(y)

= [ 151 | lo(@)] dua(e) duc(s) = sl [ 17| duc (s

= llgllall £l

Here the application of Fubini’s Theorem is justified by the fact that both
integrals extend over sets of finite measure, so that the assumption of o-finiteness
is satisfied for the corresponding restricted measures.

(iii) In view of Lemma we have
£ = [ Al duote) = [ 1@ duta) = Il
(iv) As in (iii), we get
(f )" (@) /f (o) duc(y)
= Ao(e)™! [ TE0el ) duc(y
= [ 5 Ac 0T ducty)
= [ a6 duot) = "+ )(a)

(v) (a) follows immediately from (A.3)).
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(b) follows from

(o / Fea)g(="y) duc(z) / 1z y) dyics(2)
= Ag(2)7H(f * Ae-19)(y).

(c) follows from

M) (W) = Baly) " Fla~ly™h) = Ag () Ag(yz) fla= 1y~
=Ac(@)f*(yz) = Ac(z)(p2f") (W),
which in turn implies
(p2f)* = Ag(z) A f*

(d) follows from the left invariance of pg.
(vi) Let f € C.(G). In view of

Ihef = Ao flls = /G Fatg) — (2" g)] duclg).

the assertion follows from the continuity of the integrand and the fact that we
actually integrate over a compact subset of G. O

Let L'(G) := LY(G, ug) denote the completion of C.(G) with respect to ||-||1.
The preceding lemma implies that the convolution product and the involution
extend to continuous maps on L!(G), turning it into a Banach-+-algebra. We
also extend the left translations A, and the maps Ag(g)py to isometries of

LY(G).

Proposition A.6.12. Let (m,H) be a continuous unitary representation of the
locally compact group G. For f € LY(G) and v,w € H, we define by

Hv,w) = /f g)v,w) duc(g) (A.5)

an operator 7(f) € B(H), which we also denote symbolically by

/f 9) duc(s).

It has the following properties:

@) MO <1

(ii) The continuous linear extension m: L*(G) — B(H) defines a representa-
tion of the Banach-x-algebra L*(Q), i.e., it is a homomorphism of algebras

satisfying w(f)* = n(f*) for f € L}(G).
(iii) For x € G and f € LY(G) we have 7(x)n(f) = n(A\of) and n(f)7(x) =
Ag(@)m(paf)-
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(iv) The representation m of L'(G) on H is non-degenerate.

(v) Wgél)glG))’ = 7(Q)" and, in particular, 7(G) C 7 (L*(Q))" and 7(L}(G)) C

(vi) The representations of G and L'(G) have the same closed invariant sub-
spaces. In particular, one is irreducible if and only if the other has this

property.
Proof. (i) First we observe that the sesquilinear map

(v, w) n—>/ fg)m(g)v,w) duc(g)
is continuous:
| [ t@)e@ ) du(o)] < [ 1@lir@ellul ducle) = 1ol

Hence there exists a unique operator 7(f) € B(H) satlsfymg (i) and ( -
(ii) In view of (i), m defines a continuous linear map L'(G) — B(H). It
remains to verify

m(fxg) =7(f)w(g) and w(f)" ==(f").
Since C.(G) is dense in L!(G), it suffices to verify these relations for f,g €
C.(G). For v,w € H, we have

(m(f * g)o, w) = /G /G F)gly 2) (@), w) duc(y) duc(z)
Fubini / 1y / () ()0, w) dpic(z) dpc(y)

- [, 1w J o
:/Gf y /Gg z)(m(z)v, 7y~ Hw) duc(z) duc(y)
:/f (m(g)v,m(y~Hw) dpc(y)
/ 7
(f)m

m(yx)v, w) duc(x) duc(y)

(y)(m g)v,w) duc(y)

(9)v, w).
This proves that 7(f g) =n(f)m(g). We further have

w :/ A (@) f =), 7(@)w) dpic()
/ Mgz o, w) duc ()
/f Jv,w) dpc ()

yw),
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which implies 7(f)* = w(f*).
(iii) Since A, defines an isometry of L!(G), it suffices to assume that f €
C.(@G). For v,w € H, we have

(@) Fyo, w) = (n(f)v, / e “)wy du(y)

/f m(zy)v, w) duc(y /faf y)(m(y)v,w) dpc(y)
(m(Aa v, w).

From this relation and (ii) we further derive

(m(f)m(2))" = m(a™)r(f*) = 1(Ae-1 f1) = m(Dc (@) (2 f)") = De(@)m(pa f)",

and this proves (iii).

(iv) To see that the representation of L!(G) is non-degenerate, we show
that for every 0 # v € H there exists an f € C.(G) with ||x(f)v —v| < e.
To find such an f, let U be a 1-neighborhood in G with ||7(g)v — v|| < e for
g € U. Urysohn’s Lemma implies the existence of 0 # f € C.(G) with 0 < f
and supp(f) € U. Then [ f(g)duc(g) > 0, and after multiplication with a
suitable scalar, we may w.l.o.g. assume that [, f(g) duc(g) = 1. Then

Ity =l = | [ som(avdnato) = [ fladucto)]

= H/Gf(g)(ﬂ(g)v—v)duc(g)H
< [ r@linto)o - vl duato) < < [ f6)dualo) =

(v) First we show that 7(L'(G)) C m(G)". Solet A € n(G)'. For f € L}(G)
and v,w € ‘H we then have

(o) = (x( o 4"w) = [ F0)mla)o. 4w) di (o)
/f )(Ar(g)v,w) dpic (g /f 9)Av, w) duc(g) = (w(f)Av,w),

which implies that An(f) = 7(f)
Next we show that 7(G) C (Ll(G))” If Aerm(LY(Q)), then

m(9)An(f) = m(g)n(/)A=7(A f)A = An(Ag f) = Am(g)7(f)

for each f € L'(G), and since the representation of L'(G) on #H is non-
degenerate, it follows that m(g)A = Aw(g).

From 7(LY(G)) C 7(G)"”, we now get m(G)" = W(G)’ C n(LYQ)), and
likewise we derive from 7(G) C w(LY(G))" that 7(L'(G)) C 7(G), so that we
have equality.

(vi) Since the closed invariant subspaces correspond to the orthogonal pro-

jections in the commutant (Lemma [1.3.1)), this follows from (v). O
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We have just seen how to “integrate” a continuous unitary representation
of G to a representation of the Banach-*-algebra L!(G). Thinking of 7(f) =
Jo f(x)m(x) dug(x), this means a “smearing” of the unitary operators m(x). If
the group G is not discrete, then G is not contained in L'(G) (as d-functions),
so that it is not obvious how to recover the unitary representation of G from
the corresponding representation of L!(G). However, since the representation
of L'(G) is non-degenerate, the operators (z), x € G, are uniquely determined
by the relation 7(z)7(f) = m(A\.f) for f € L*(G). To make systematic use of
such relations, we now introduce the concept of a multiplier of an involutive
semigroup.

A.6.3 Unitary Multiplier Actions on Semigroups

Definition A.6.13. Let (S, *) be an involutive semigroup. A multiplier of S is
a pair (A, p) of maps A, p: S — S satisfying the following conditions:

aA(b) = p(a)b, A(ab) = A(a)b, and  p(ab) = ap(b).

We write M (.S) for the set of all multipliers of S and turn it into an involutive
semigroup by

A p) (N, p) = (Ao X,p op) and (A, p)" = (p", \"),
where A*(a) := A(a*)* and p*(a) = p(a*)*. We write

U(M(S)) :==A{(X,p) € M(S): (A, p)(A, p)" = (A p)" (A, p) =1}
for the unitary group of M(S).

Remark A.6.14. (a) The assignment ng: S — M(S),a — (A, pa) defines a
morphism of involutive semigroups which is surjective if and only if S has an
identity. Its image is an involutive semigroup ideal in M (S), i.e.,

M(S)ns(S) Sns(S) and  ng(S)M(S) C ns(S).
(b) The map
M(S) xS =5, ((Ap),s)— A(s)
defines a left action of the semigroup M (S) on S, and
Sx M(S) > 8, (5,(0) = pl5)
defines a right action of M(S) on S.

Example A.6.15. (a) The C*-algebra (C*(X),| - ||so) of bounded continuous
functions on a locally compact space acts via the multipliers

A= p(f)h = fh
on the commutative C*-algebra Cp(X).
(b) Let H be a complex Hilbert space and K (H) be the C*-algebra of com-

pact operators on H. Then we obtain for each A € B(H) a multiplier (A, pa)
on K(H).
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Lemma A.6.16. Let G be a locally compact group and (L'(G),*) be its con-
volution algebra. Then, for each g € G, the pair

m(g) == (Ag, Ac(g) py-1)

is a unitary multiplier of L*(G) and m: G — U(M(LY(G))) is a group homo-
morphism.

Proof. That each m(g) is a multiplier of the involutive semigroup L!(G) follows

from Lemma [A.6.11[v)(a),(b). We further obtain from Lemma [A.6.11|(v)(c)
that

Ay = Ac(9)pg
so that

m(g)* = (Aalg N py-1,25) = (Ag-1,Aa(g)pg) =m(g™") =m(g)~",

which shows that m(g) is unitary. That m is multiplicative is an immediate
consequence of the definitions. O

Proposition A.6.17. For each non-degenerate representation (7w, H) of S there
exists a unique unitary representation (7, H) of U(M(S)), determined by

m(g)m(s) =7(gs) for g¢geUDM(S)),seS. (A.6)

Proof. Every non-degenerate representation of S is a direct sum of cyclic ones
(Proposition [1.3.10)), which in turn are (up to unitary equivalence) of the form
(g, Hy) (Remark [4.6.2). We therefore may assume that (7,H) = (7, H,).
The reproducing kernel K of H, is K(s,t) := ¢(st*), and it is invariant under
the right action of any g = (X, pg) € U(M(S)):

K(pg(s), pg()) = ¢(pg(s)pg(8)*) = @(pg(5)py (")) = ¢lpg(s)A " (£))
= p(sAgAg (1)) = p(st™) = K(s,1).

Hence 7, (g)(f) := f o py defines a unitary representation (7, H,) of U(M(S))
satisfying (A.6). That this condition determines 7, uniquely follows from the
non-degeneracy of the cyclic representation (m,,H,) (Proposition |1.3.10). O

A.6.4 Intermezzo on Banach Space-Valued Integrals

Let X be a compact space, 4+ a Radon probability measure on X, F a Banach
space and f: X — FE a continuous function. We want to define the F-valued

integral [y f(z)du(z).

Lemma A.6.18. There exists at most one element I € E with

M) = /X A f(z))du(z)  for each X € E'.
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Proof. This is an immediate consequence of the fact that £’ separates the points
of E. O

We define a linear functional
B ScC T = / AF (@) du(z)
X

and observe that the integral exists because the integrand is a continuous func-
tion on X. We also observe that

II~(A)IS/XI/\(f(ﬂc))ldu(x)S/XH/\H'IIf(x)Ildu(fﬂ):H/\H'/X\If(fﬂ)lldu(x),

so that T € E” with

17 < /X 1 (@)l dpu(z).

We recall the isometric embedding
ng: E— E", n)(\) = \v).

A Banach space F is said to be reflezive if ng is surjective, but this is not the
case for each Banach space. A typical examples is c¢g with ¢f = (¢1)" = .
However, we want to show that I = 5(I) for some I € E, which means that I
satisfies the condition in Lemma [A.6.18

Let K := conv(f(X)) and recall from Exercise that K is a compact
subset of E with respect to the norm topology. Write F,, for the space F,
endowed with the weak topology, i.e., the coarsest topology for which all ele-
ments A € E are continuous. Then the identity £ — E,, is continuous and E,,
is Hausdorff, which implies that K is also compact with respect to the weak
topology. The embedding n: E,, — E” is clearly continuous with respect to
the weak-*-topology on E’ (with respect to E’) and the weak topology on E,
because for each A € E’ the map E,, — C,v — n(v)(\) = A(v) is continuous.
Therefore the image n(K) C E” is weak-*-compact.

Finally we show that I € n(K). In fact, for each A € E’ we have

I = /X Af(x)) dpu(z) < (sup A(K)) u(X) = sup A(K) = supn(K)(A),

so that the Hahn-Banach Separation Theorem and the weak-x-closedness of
n(K) imply that

I e n(K).
This proves the following theorem:

Theorem A.6.19. Let X be a compact space, pn a Radon measure on X, E a
Banach space and f: X — E a continuous function. Then there exists a unique
element I € E with

)\(I):/X)\(f(m))du(x) for AeE.
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Proof. It only remains to argue that the requirement that p(X) = 1 can be
dropped. If u(X) = 0, we anyway have I = 0, and if u(X) > 0, then we simply
replace p by ﬁx)“ and f by p(X)f, and apply the preceding arguments. [

We denote the element I also by

[ 1@ duta)
X
We have already seen that

| [ s@au] < [ 1s@lduto) (A7)

Remark A.6.20. If A: E — F is a continuous linear map between Banach

spaces, then
A/ fl@)du(zx /Af ) dp(x

For each A € F' we have

A [ t@ @) = o) ([ @ duta) = [ (o Ar@)dne)

= ( /X Af(@) du(x) ).

so that the assertion follows from Lemma [A.6.18

A.6.5 Recovering the Representation of G
Proposition A.6.21. For f,h € C.(G) we have

foh= /f h) dpc(z)

as an L' (G)-valued integral.

Proof. Let K C G be a compact subset containing
supp(f) - supp(h) 2 supp(f * h).
Since supp(f) is compact and the map
G—CK), zm f(x) :(h)|k

is continuous (see the proof of Proposition [3.3.4) Theorem |A.6.19| implies the
existence of a C'(K)-valued integral

I—/f B\ dpici ().



170 APPENDIX A. COMPLEMENTARY MATERIAL

If A: C(K) — LYG) is the canonical inclusion, defined by extending a
function f: K — C by 0 on G\ K, then

AT = /G F(2) Ao (B) dncs ()

follows from the fact that A, (h) vanishes outside of K. Since point evaluations
on C(K) are continuous, we have for each y € K:

I(y) = /G F(@) Aa(l) () diice() = (f * ) (9),

hence I = (f * h)|k, and finally AI = f x h follows from supp(f *h) C K. O

Theorem A.6.22. Let G be a locally compact group. Then there exists for each
non-degenerate representation (m,H) of the Banach-x-algebra L*(G) a unique
unitary representation (wg, H) with the property that

ma(g)n(f) =n(Ngf) for ge€G, feLYG)

The representation (rg,H) is continuous, and for f € L*(G) we have
w(f) = [ famo(e) duca).

so that T coincides with the representation of L*(G) defined by mg.

Proof. Since we have the homomorphism
m: G — UM(LNQ)), g+ (A, Ac(9)  pg-1)

from Example the existence of wg follows from Proposition
To see that mg is continuous, let v € H and f € C.(G). Then the map

G = H, g ma(g)r(fo = T(A )0

is continuous because the map G — L'(G),g — A\,f is continuous (Lemma
IA.6.11{(vi)). Since the elements of the form 7 (f)v span a dense subspace, the
continuity of 7 follows from Lemma [1.2.6

To see that integration of 7 yields the given representation 7, it suffices to
show that for f,h € C.(G) and v € H we have

because the elements of the form w(h)v, h € C.(G), v € H, form a dense subset
of H. For v,w € H we obtain a continuous linear functional

w: LYG) = C, [ (n(f)v,w).
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Applying, Proposition|A.6.21|to this functional, we get with Proposition[A.6.12|iii):
(w(r(hyo,w) = (x(f * B, w) = (] + h) ‘/f w(rsh) duc(2)

/f m(\sh)o.w) @) = [ f(@){mc (@)m(h)o. w) duc (o)
a(f)m(h)v, w).
This proves that 7(f)m(h) = na(f)n(h). O

A.6.6 Representations of Abelian Locally Compact Groups

Proposition A.6.23. For an abelian locally compact group G, the following
assertions hold:

(a) LY(G) is a commutative Banach-x-algebra.

(b) The map
1 G LHGY. a0 = [ fain(@) duc(o

maps the character group G bijectively onto LY(G):

Proof. (a) It suffices to show that the convolution product is commutative on
the dense subalgebra C.(G). Since the modular factor Ag of G is trivial (Propo-

sition , we have
=/ﬂ@ﬂ’wa /f h(ye) duc (x)
/fxy 2) dua () = (h* f)(y).

(b) Since each character y € G is a bounded measurable function, it defines
an element in L'(G)’. If 7, (g) = x(g)1 is the one-dimensional irreducible rep-
resentation of G, defined by the character x, then the corresponding integrated
representation of L!(G) is given by

/7 D)1 dpa(x) = n() ()1,

so that () : L'(G) — C defines a non-zero algebra homomorphism because it
is a non-degenerate representation.

If, conversely, v: L'(G) — C is a non-zero continuous homomorphism of
Banach-#-algebras, then 7(f) := (f)1 defines a one dimensional non-degenerate
representation of L!(G), and the corresponding representation of G is given by
a continuous character x with m, = . This implies that v = n(x). O
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In the following we endow the character group G always with the locally
compact topology for which 7 is a homeomorphism. This is the coarsest topology
for which all functions

Fiéosc, XH/f 2) dpc(x)

are continuous, and, by definition, all these functions vanish at infinity, i.e.,
f € Co(G). The function f is called the Fourier transform of f.

Example A.6.24. For G = R" we have already seen that each element of G
is of the form x,(y) = €*(*¥) for some x € R™. Therefore the Fourier transform
can be written as

fly) = L T@)e el d,

From Lebesgue’s Dominated Convergence Theorem it follows immediately
that all the functions f are continuous with respect to the standard topology of
R™. Therefore the bijection

t:R* >R - X,

is continuous. Further, the Riemann-Lebesgue Lemma (Proposition im-
plies that all functions f vanish at infinity, and this implies that ¢ extends to a
continuous map

Lot (R™), — (R™), = Hom(L'(R"),C)
of the one-point compactifications. As ¢, is a bijection and R, is compact, it
follows that ¢, and hence also ¢, is a homeomorphism.

Theorem A.6.25. (Spectral Theorem for locally compact abelian groups) Let
G be a locally compact abelian group and G = L*(G)" be its character group.

Then, for each regular spectral measure P on the locally compact space @, the
unitary representation

mp: G — U(H), 7TP(g) = P(§)7 /g\(X) = X(g)7

is continuous. If, conversely, (w,H) is a continuous unitary representation of
G on H, then there exists a unique reqular spectral measure P with m = 7wp.

Proof. First we use the spectral measure P to define a non-degenerate repre-
sentation wp of L(G) by wp(f) := P(f) (Theorem [5.3.2). Then we clearly
have

mp(9)p(f) = P@)P(f) = P(Gf), g€G,[feLG).

Next we observe that for each character y € G we have
(100 = [ @) dicla / Flo™ 0)x(a) dnc(@)
= [ r@ix(on) duct@) = o) | )@ duc(@) = 300700



A.6. THE GROUP ALGEBRA OF A LOCALLY COMPACT GROUP 173

We thus obtain

~

mp(9)mp(f) = P(Gf) = P(Af)) = mp(Agf),

so that mp: G — U(H) is the unique continuous unitary representation of G on
H corresponding to the representation of L!(G) (Theorem . In particu-
lar, wp is continuous. It follows in particular that 7p is continuous.

If, conversely, (w,H) is a continuous unitary representation of G and
m: LY(G) — B(H) the corresponding non-degenerate representation of L(G),
then we use Theorem to obtain a regular spectral measure P on G = L} (G
with 7(f) = P(f), f € L*(G). Then

~

w(g)7(f) = 7\ f) = P@GF) = PG)P(f) = P@)r(f)
implies that P(g) = 7(g) holds for each g € G (Theorem [A.6.22). O

Definition A.6.26. Let P be a regular spectral measure on G. 1t (U;)ier are
open subsets of G with P(U;) = 0, then the same holds for U := J,.; U;. In
fact, since P is inner regular, it suffices to observe that for each compact subset
C C U we have P(C) = 0, but this follows from the fact that C' is covered by
finitely many U;. We conclude that there exists a maximal open subset U C G

with P(U) = 0, and its complement
supp(P) :==U*®

is called the support of P, resp., the support of the corresponding representation.
It is the smallest closed subset A of G with P(A) = 1.

Exercises for Section [A.6l

Exercise A.6.1. Let A = dX denote Lebesgue measure on the space M,,(R) =
R"’ of real (n x n)-matrices. Show that a Haar measure on GL,,(R) is given by

1
dpcr, ®)(9) = Wd)\(g).

Hint: Calculate the determinant of the linear maps \y: M,(R) = M,(R),z —
gx.

Exercise A.6.2. Let G = Aff1(R) =2 R x R* denote the affine group of R,
where (b, a) corresponds to the affine map ¢ o(x) := ax + b. This group is

sometimes called the ax + b-group. Show that a Haar measure on this group is
obtained by

da
/Gf(b,a)d,ug(b,a) .—/]R . f(b,a)de.

Show further that Ag(b,a) = |a|~!, which implies that G is not unimodular.



174 APPENDIX A. COMPLEMENTARY MATERIAL

Exercise A.6.3. Let X be a locally compact space, u a positive Radon measure
on X, H a Hilbert space and f € C.(X, H) be a compactly supported continuous
function.

(a) Prove the existence of the H-valued integral

1= /X /(@) du(e),

i.e., the existence of an element I € H with

(v, I) = / (v, f(x))du(z) for wveH.
X
Hint: Verify that the right hand side of the above expression is defined

and show that it defines a continuous linear functional on .

(b) Show that, if i is a probability measure, then
I € conv(f(X)).

Hint: Use the Hahn—Banach Separation Theorem.

Exercise A.6.4. Let G be a locally compact group. Show that the convolution
product on C.(G) satisfies

1f * Plloo < MIf1lx - [1Plloo-

Conclude that convolution extends to a continuous bilinear map
LY (G, pa) x Co(G) = Co(G).

Conclude that for f € L*(G, ug) and h € C.(G), the convolution product f * h
can be represented by a continuous function in Cy(G).

Exercise A.6.5. Let G be a compact group. Show that every left or right
invariant closed subspace of L?(G) consists of continuous functions. Hint: Use

Exercise and express the integrated representation of L'(G) on L*(G) in
terms of the convolution product.

Exercise A.6.6. Let m: G — U(H) be a unitary representation of the locally
compact group G on ‘H which is norm-continuous, i.e., continuous with respect
to the norm topology on U(#). Show that there exists an f € C.(G) for which
the operator 7(f) is invertible.
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