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• Theodor Bröcker, Lineare Algebra und analytische Geometrie: Ein Lehrbuch für Physiker
und Mathematiker, Chapter 7

• Otto Forster, Analysis 3: Integralrechnung im Rn mit Anwendungen

• Henri Cartan, Differential forms

• Harley Flanders, Differential forms with applications to the physical sciences
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• Jean A. Dieudonné, Treatise on Analysis 1
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Chapter 1

Tensors and differential forms

1.1 Vector spaces

1.1.1 Notation and conventions

Vector spaces and related structures play an important role in physics because they arise
whenever physical systems are linearised, i.e. approximated by linear structures. Linearity
is a very strong tool. Non-linear systems such as general relativity or the fluid dynamics
governed by Navier Stokes equation are very difficult to handle.

In this section, we consider finite dimensional vector spaces over the field k = R or k = C and
linear maps between them. Vectors x ∈ V are characterised uniquely by their coefficients
with respect to a basis B = {e1, ...en} of V

x =
n∑
i=1

xiei. (1.1)

The set of linear maps φ : V → W between vector spaces V and W over k, denoted
Hom(V,W ), also has the structure of a vector space with scalar multiplication and vector
space addition given by

(φ+ ψ)(v) = φ(v) + ψ(v) (tφ)(v) = tφ(v) ∀ψ, φ ∈ Hom(V,W ), t ∈ k. (1.2)

A linear map φ ∈ Hom(V,W ) is called a homomorphism of vector spaces. It is called

• monomorphism if it is injective: φ(x) = φ(y) implies x = y

• epimorphism if it is surjective: ∀x ∈W there exists a y ∈ V such that Φ(y) = x

• isomorphism if it is bijective, i.e. injective and surjective. If an isomorphism between
V and W exists, dim(V ) = dim(W ) and we write V ∼= W

• endomorphism if V = W . We denote the space of endomorphisms of V by End(V )

• automorphism if it is a bijective endomorphism. We denote the space of automorphisms
of V by Aut(V ).

7



8 CHAPTER 1. TENSORS AND DIFFERENTIAL FORMS

Linear maps φ ∈ Hom(V,W ) are characterised uniquely by their matrix elements with respect
to a basis B = {e1, ..., en} of V and a basis B′ = {f1, ..., fm} of W

φ(ei) =
n∑
i=1

φ j
i fj . (1.3)

The matrix Aφ = (φi j) is called the representing matrix of the linear map φ with respect
to B and B′. The transformation of the coefficients of a vector x ∈ V under a linear map
φ ∈ Hom(V,W ) is given by

x′ = φ(x) =
m∑
j=1

x′jfj x′j =
n∑
i=1

φ j
i x

i. (1.4)

1.1.2 Constructions with vector spaces

We will now consider the basic constructions that allow us to create new vector spaces from
given ones. The first is the quotient of a vector space V by a linear subspace U . It allows
one to turn a linear map into an injective linear map.

Definition 1.1.1: (Quotients of vector spaces)

Let U be a linear subspace of V . This is a subset U ⊂ V that contains the null vector and
is closed under the addition of vectors and under multiplication with k and therefore has the
structure of a vector space.

We set v ∼ w is there exists an u ∈ U such that w = u + v. Then ∼ defines an equivalence
relation on V , i. e. it satisfies

1. reflexivity: w ∼ w for all w ∈ V

2. symmetry: v ∼ w ⇒ w ∼ v for all v,w ∈ V

3. transitivity: u ∼ v, v ∼ w ⇒ u ∼ w for all u,v,w ∈ V .

The quotient V/U is the set of equivalence classes [v] = v + U = {w ∈ V | w ∼ v}. It has
the structure of a vector space with null vector [0] = 0 +U = U and with addition and scalar
multiplication

[v] + [w] = [v + w] t[v] = [tv] ∀v,w ∈ V, t ∈ R.

Remark 1.1.2: It is important to show that the addition and scalar multiplication of
equivalence classes are well-defined, i.e. that the result does not depend on the choice of
the representative. In other words, we have to show that [v] = [v′] implies t[v] = t[v′] and
[v] = [v′], [w] = [w′] implies [v + w] = [v′ + w′].

If [v] = [v′], we have v − v′ ∈ U . As U is a linear subspace of V this implies t(v − v′) =
tv − tv′ ∈ U for all t ∈ R and therefore [tv] = [tv′].

If [v] = [v′] and [w] = [w′], we have v−v′ ∈ U , w−w′ ∈ U . As U is a linear subspace of V ,
this implies (v−v′)+(w−w′) = (v+w)−(v′+w′) ∈ U . Hence, we have [v+w] = [v′+w′].
The vector space addition and scalar multiplication on V/U are therefore well-defined and
V/U has the structure of a vector space with null vector [0] = U .

——————————————————————————————————————
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1.1. Vector spaces 9

Example 1.1.3: We consider the vector space V = R2 and the linear subspace U =
Span(x) = {tx | t ∈ R}, where x ∈ R2\{0}. Then, an equivalence class [y] = {y+tx | t ∈ R}
is a line through y ∈ R2 with “velocity vector” x. The quotient space R2/U is the set of lines
through points y ∈ R2. The sum [y + z] of two lines [y], [z] is a line through y + z and the
scalar multiplication of a line [y] with t ∈ R is the line [ty] through ty.

Example 1.1.4: Consider a linear map φ ∈ Hom(V,W ). Then ker(φ) = {v ∈ V | φ(v) = 0}
is a linear subspace of V . We can define a linear map φ̃ : V/ker(φ)→W by setting

φ̃([v]) = φ(v) ∀v ∈ V.

This map is well defined since [v] = [v′] if and only if there exists a u ∈ ker(φ) such
that v′ = v + u. In this case, we have φ(v′) = φ(v) + φ(u) = φ(v). It is linear since
φ̃([v]+[w]) = φ̃([v+w]) = φ(v+w) = φ(v)+φ(w) = φ̃([v])+ φ̃([w]) and φ̃(t[v]) = φ̃([tv]) =
φ(tv) = tφ(v) = tφ̃([v]). The quotient construction therefore allows one to construct an
injective map φ′ ∈ Hom(V/ker(φ),W ) from a linear map φ ∈ Hom(V,W ).

Exercise 1: Show that for any vector space V and any linear map φ ∈ End(V ), we have
V ∼= ker(φ)⊕ Im(φ). Show that V/ker(φ) ∼= Im(φ).

Hint: Choose a basis B1 = {e1, .., ek}, ei = φ(gi) of Im(φ) and complete it to a basis
B = B1 ∪ {f1, ..., fn−k} of V . By subtracting suitable linear combinations from the basis
vectors f1, ..., fn, you can construct vectors that lie in ker(φ).

We now consider the dual of a vector space. Dual vector spaces play an important role in
physics. Among others, they encode the relations between particles and anti-particles. In
particle physics, elementary particles are given by representations of certain Lie algebras on
vector spaces. The duals of those vector spaces correspond to the associated anti-particles.

Definition 1.1.5: (Dual of a vector space, dual basis)

1. The dual of a vector space V over k, denoted V ∗, is the space Hom(V, k) of linear forms
on V , i.e. of linear maps

α : V → k α(tx + sy) = tα(x) + sα(y) ∀t, s ∈ k,x,y ∈ V. (1.5)

We have dim(V ) = dim(V ∗) and (V ∗)∗ ∼= V for any finite dimensional vector space V .

2. For any basis B = {e1, ..., en} of V there is a dual basis B∗ = {e1, ..., en} of V ∗ char-
acterised by ei(ej) = δij . Any element of V ∗ can be expressed as linear combination of
the basis elements as

α =
n∑
i=1

αie
i αi ∈ k. (1.6)

The choice of a basis and its dual gives rise to an isomorphism φ : V → V ∗ defined by

v =
n∑
i=1

viei 7→ φ(v) =
n∑

i,j=1

δijviej =
n∑
i=1

viei.

——————————————————————————————————————
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Remark 1.1.6: Note that the identification between a vector space and its dual is not
canonical, as it makes use of the choice of a basis and depends on this choice. With a
different choice of a basis one obtains a different isomorphism φ : V → V ∗.

Note also that (V ∗)∗ ∼= V does in general not hold for infinite dimensional vector spaces.
This is due to the fact that there is no good isomorphism V → V ∗.

Definition 1.1.7: (Dual of a linear map)

For any linear map φ ∈ Hom(V,W ) there is a dual linear map φ∗ ∈ Hom(W ∗, V ∗) defined by

φ∗(α) = α ◦ φ ∀α ∈W ∗. (1.7)

If the transformation of a basis B and of the coefficients under a linear map φ ∈ Hom(V,W )
are given by, respectively, (1.3) and (1.4), the transformation of the dual basis B∗ and of the
coefficients under the dual φ∗ takes the form

φ∗(f j) =
n∑
i=1

φ j
i f

i φ∗(α)i =
n∑
j=1

φ j
i αj . (1.8)

The representing matrix Aφ∗ of the dual map φ∗ is the transpose of the representing matrix
of φ: Aφ∗ = ATφ .

Lemma 1.1.8: The duals φ∗ of linear maps φ ∈ Hom(V,W ) satisfy the relations:

(idV )∗ = idV ∗ (1.9)
(tφ+ sψ)∗ = tφ∗ + sψ∗ ∀φ, ψ ∈ Hom(V,W ), t, s ∈ R
(φ ◦ ψ)∗ = ψ∗ ◦ φ∗ ∀ψ ∈ Hom(V,W ), φ ∈ Hom(W,U)

Remark 1.1.9: (Covariant and contravariant quantities, Einstein summation convention)

1. Under a linear map φ ∈ End(V ), quantities with lower indices such as the the basis
vectors ei ∈ B and the coefficients with respect to the dual basis B∗ transform as in
(1.3), (1.8)

ei 7→
n∑
j=1

φ j
i ej αi 7→

n∑
j=1

φ j
i αj .

They are said to transform contravariantly or to be contravariant quantities. Quantities
with upper indices such as the coefficients with respect to a basis B or the basis vectors
ei ∈ B∗ of the dual basis, transform as in (1.4), (1.8).

ei 7→
n∑
j=1

φ i
j e

j xi 7→
n∑
j=1

φ i
j x

j .

They are said to transform covariantly or to be covariant quantities.

2. In physics the sum symbols are often omitted and quantities are expressed in Einstein
summation convention: all indices that occur twice in an expression, once as an
upper and once as a lower index, are summed over. Equations (1.1), (1.3), (1.6) and
(1.8) then take the form

x = xiei φ(ei) = φ j
i ej α = αie

i φ∗(ei) = φ i
j e

j . (1.10)

——————————————————————————————————————
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Exercise 2: (Harmonic oscillator)

1. We consider the classical harmonic oscillator with equations of motion

ẍ+ ω2x = 0 x : R→ R, t 7→ x(t). (1.11)

Show or recall that the space of solutions of this equation is a two-dimensional vector space
V over R with basis

e1(t) = sin(ωt) e2(t) = cos(ωt). (1.12)

Show that the maps δ,−δ̇ : V → R

δ : f 7→ f(0) − δ̇ : f 7→ ḟ(0). (1.13)

form a basis of the dual vector space V ∗ and that this is a dual basis of B = {e1, e2}. We
will see later that they are the restriction of the delta distribution and its derivative to the
space of solutions of (1.11).

2. Show that the maps

Φθ : f → fθ fθ(t) = f(t+ θ) (1.14)

are elements of Aut(V ). Calculate the representing matrix of Φπ/(2ω) and Φπ/(4ω) with respect
to the basis (1.12). Express the basis dual to B = {Φπ/4ω(e1),Φπ/4ω(e2)} in terms of e1 = −δ̇
and e2 = δ. Describe the dual of the maps Φθ with respect to the dual basis (1.13).

Hint:

cos(α+ β) = cosα cosβ − sinα sinβ sin(α+ β) = cosα sinβ + cosβ sinα. (1.15)

Exercise 3: (Spin 1/2 particle)

We consider the quantum mechanical spin 1/2 particle, which is described by a two-dimensional
vector space over C with basis

e1 =
(

1
0

)
e2 =

(
0
1

)
(1.16)

We consider the set of hermitian, traceless matrices, i.e. matrices A ∈ M(2,C) with A† =
ĀT = A, Tr (A) = 0. Show that these matrices form a vector space W and that a basis of W
is given by

Jx = 1
2

(
0 i
−i 0

)
Jy = 1

2

(
0 −1
−1 0

)
Jz = 1

2

(
1 0
0 −1

)
. (1.17)

The matrix element Mx,y(A) of a matrix A ∈M(2,C) with respect to vectors x = αe1 +βe2,
y = γe1 + δe2, α, β, γ, δ ∈ C is defined as

Mx,y(A) = yT ·A · x =
(
γ̄ δ̄

)
·A ·

(
α
β

)
. (1.18)

The expectation value Ex(A) of a matrix A ∈ M(2,C) with respect to the vector x =
αe1 + βe2 ∈ C2, α, β ∈ C, is the matrix element Mx,x

Ex(A) = Mx,x(A) = xT ·A · x =
(
ᾱ β̄

)
·A ·

(
α
β

)
. (1.19)
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12 CHAPTER 1. TENSORS AND DIFFERENTIAL FORMS

Show that for any x,y ∈ C2, the expectation value Ex : A 7→ Ex(A) and the real and
imaginary part of the matrix elements Mx,y : A 7→ Ex,y(A) are elements of W ∗. Determine
vectors x,y, z such that the expectation values Ex, Ey, Ez form a dual basis for {Jx, Jy, Jz}.

Hint: Show first that for x = (α, β)T , α, β ∈ C, we have

Ex(Jx) = −Im(ᾱβ) Ex(Jy) = −Re(ᾱβ) Ex(Jz) = 1
2(|α|2 − |β|2).

We will now investigate constructions that allow us to build a new vector space out of two
given ones. The first is the direct sum of two vector spaces. It allows one to combine families
of linear maps φi : Vi →Wi, i = 1, ..., n into a single linear map φ = φ1⊕...⊕φi : V1⊕...⊕Vn →
W1 ⊕ ...⊕Wn.

Definition 1.1.10: (Direct sum of vector spaces)

The direct sum V ⊕W of two vector spaces V and W is the set of tuples {(x,y) | x ∈ V,y ∈
W}, equipped with the vector space addition and scalar multiplication

(x1,y1) + (x2,y2) = (x1 + x2,y1 + y2) t · (x,y) = (tx, ty) (1.20)

for all x,x1,x2 ∈ V , y,y1,y2 ∈ W and t ∈ k. If BV = {e1, .., en} is a basis of V and
BW = {f1, ..., fm} a basis of W , a basis of V ⊕W is given by

BV⊕W = {(ei, 0) | ei ∈ BV } ∪ {(0, fj) | fj ∈ BW }. (1.21)

The maps ıV : V → V ⊕W , ıW : W → V ⊕W

ıV (v) = (v, 0) ıW (w) = (0,w) ∀v ∈ V,w ∈W

are called the canonical injections of V and W into V ⊕W . In the following we often omit
the tuple notation and write x + y for ıV (v) + ıW (w) = (x,y).

The direct sum of two linear maps φ ∈ Hom(V, V ′), ψ ∈ Hom(W,W ′) is the linear map
φ⊕ ψ ∈ Hom(V ⊕W,V ′ ⊕W ′) defined by

φ⊕ ψ(v,w) = (φ(v), ψ(w)) ∀v ∈ V,w ∈W.

An alternative but equivalent definition of the direct sum is via a universality property.

Definition 1.1.11: The direct sum of two vector spaces V,W over k is a vector space,
denoted V ⊕W together with two linear maps ıV : V → V ⊕W , iW : W → V ⊕W such
that for any pair of linear maps β : V → X, γ : W → X there exists a unique bilinear map
φβ,γ : V ⊕W → X such that φβ,γ ◦ ıV = β, φβ,γ ◦ iW = γ.

1.1.3 (Multi)linear forms

Definition 1.1.12: (Multilinear forms)

1. A n-linear form on a vector space V is a map α : V × ...× V → k that is linear in all
arguments

α(.., ty + sz, ...) = t α(...,y, ...) + s α(..., z, ...) ∀t, s ∈ k,xi,y, z ∈ V.

2. For n = 2, the form is called bilinear. The representing matrix of a bilinear form α :
V × V → k with respect to a basis B = {e1, ..., en} of V is the matrix Aα = (αij)i,j=1,...,n

with αij = α(ei, ej). A bilinear form α : V × V → k is called

——————————————————————————————————————
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• non-degenerate if α(x,y) = 0 ∀y ∈ V implies x = 0 ⇔ det(Aα) 6= 0.

• symmetric if α(x,y) = α(y,x) ∀x,y ∈ V ⇔ Aα = ATα .

• anti-symmetric if α(x,y) = −α(y,x) ∀x,y ∈ V ⇔ Aα = −ATα
• positive definite if α(x,x) > 0 ∀x ∈ V \ {0} ⇔

∑n
i,j=1 x

ixjαij > 0 ∀x,∈ V \ {0}.

• positive semi-definite if α(x,x) ≥ 0 ∀x ∈ V \ {0} ⇔
∑n

i,j=1 x
ixjαij ≥ 0 ∀x,∈ V \ {0}.

• scalar product over R if k = R and α is non-degenerate, positive definite and symmetric.

Exercise 4: Prove that the identities for the representing matrix in the second part of Def.
1.1.12 are equivalent to the corresponding conditions on the bilinear form.

There is a related concept which for vector spaces over C which plays an important role in
quantum mechanics.

Definition 1.1.13: (Hermitian forms)

Let V be a vector space over C. A map α : V × V → C is called hermitian if it is linear in
the second argument, anti-linear in the first argument and switching its arguments results in
complex conjugation:

α(x,y) = α(y,x) ∀x,y ∈ V
α(ty + sz,x) = t̄ α(y,x) + s̄ α(z,x)
α(x, ty + sz) = t α(x,y) + s α(x, z) ∀x,y, z ∈ V, t, s ∈ C.

If, additionally, α is positive definite: α(x,x) > 0 ∀x ∈ V \ {0}, it is called a hermitian
product or scalar product over C.

Example 1.1.14: (Non-degenerate 2-forms)

1. The Euclidean or standard scalar product gE on Rn given by gE(x,y) =
∑n

i=1 x
iyi for

all x,y ∈ Rn, is a symmetric, non-degenerate and positive definite bilinear form on Rn.

2. The Minkowski metric gM on Rn which is given by gM (x,y) = −x0y0 +
∑n−1

i=1 x
iyi for

all x,y ∈ Rn is a symmetric and non-degenerate form on Rn, but not positive definite.

3. The standard hermitian product on Cn given by α(x,y) =
∑n

i=1 x̄
iyi for all x,y ∈ Cn

is a hermitian form on Cn.

4. The components of the cross or wedge product of vectors x,y ∈ R3 define an antisym-
metric bilinear form α : R3 × R3 → R on R3

αi(x,y) = (x ∧ y)i where (x ∧ y = (x2y3 − y2x3, x3y1 − x1y3, x1y2 − x2y1).

Example 1.1.15: (Hermitian form on the space of matrices)

We consider the space of matrices M(n,C) as an n2-dimensional vector space over C. The
trace of a matrix A = (aij)i,j=1,...,n ∈ M(n,C) is given by Tr (A) =

∑n
i=1 aii. The hermitian

conjugate A† of A is the matrix A† = ĀT , where ¯ denotes complex conjugation. We define
a map α : M(n,C)×M(n,C)→ C by setting

α(A,B) = Tr
(
A† ·B

)
∀A,B ∈M(2,C)

Then α defines a hermitian product on the space of matrices M(2,C).
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Proof: Exercise

Exercise 5: Show that the map α : M(2,C)× (2,C)→ C defined by

α(A,B) = Tr
(
A†B

)
∀A,B ∈M(2,C).

is anti-linear in the first and linear in the second argument as well as positive definite and
therefore defines a hermitian product on M(2,C). Prove the Cauchy Schwartz inequality

|α(A,B)| ≤
√
α(A,A)

√
α(B,B).

Lemma 1.1.16: A non-degenerate bilinear form α induces two isomorphisms Φ1,Φ2 : V →
V ∗ between V and V ∗

Φ1(x) = α(x, ·) : V → k Φ2(x) = α(·,x) : V → k. (1.22)

The maps coincide (up to a minus sign) if and only if α is symmetric (antisymmetric).

Exercise 6: (Orthonormal basis)

1. Show that for any symmetric or hermitian bilinear form α there exists a basis B =
{e1, ..., en} of V such that α(ei, ej) = εiδij with εi ∈ {0, 1,−1}. Hint: Express α in terms of
coefficients with respect to a general basis B̃ = {ẽ1, ..., ẽn} of V . What does the fact that α
is symmetric or hermitian imply for the matrix formed by its coefficients? Use results from
linear algebra to show that the matrix can be diagonalised and that this corresponds to a
basis transformation.

2. Show that if α is also non-degenerate, we have εi ∈ {±1}. The associated basis is called
orthonormal basis for α, and the coefficients εi are called eigenvalues. The signature of α is
the number of negative eigenvalues.

Proof: Exercise.

Exercise 7: (Orthogonal complement)

The orthogonal complement U⊥α of a subspace U ⊂ V with respect to a non-degenerate
bilinear or hermitian form α on V is the set

U⊥α = {y ∈ V : α(y,x) = 0 ∀x ∈ U}. (1.23)

For U = Span(x) = {tx | t ∈ R} we write U⊥α = x⊥α .

1. Show that U⊥α is a linear subspace of V .

2. Show that for linear subspaces W ⊂ U ⊂ V , we have V ⊥α ⊂W⊥α .

3. Show that for a scalar product or hermitian product α, U∩U⊥α = {0} and V = U⊕U⊥α .

4. Show that for a scalar product α and any vector x ∈ V \ {0}, we have dim(x⊥α) =
dim(V )− 1 and x is not contained in x⊥α .

5. Give an example in which α is symmetric and non-degenerate and x ∈ x⊥α , x 6= 0.
Hint: think of lightlike vectors.

6. Show: For two subspaces U,W ⊂ V , U ∩W = {0}, we have (U ⊕W )⊥α = U⊥α ∩W⊥α .
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1.2 Tensors

As we have seen in the previous section, the direct sum of vector spaces allowed us to combine
families of linear maps between different vector spaces into a single linear map between their
direct sum. The notion of a dual vector space allowed us to understand the vector space
structure of linear forms. We will now consider tensor products of vector spaces. Just as the
direct sum of vector spaces allows one to combine families of linear maps into a single linear
map, tensor products allow one to view multilinear maps between certain vector spaces as
linear maps between their tensor products.

Tensor products play an important role in physics as they arise whenever several physical
systems are coupled to a single system. Examples are multi-particle systems, coupled har-
monic oscillators and, finally, the Fock space arising in second quantisation. Tensors and
tensor fields also play an important role in general relativity.

Definition 1.2.1: (Tensor product of vector spaces)

The tensor product of two vector spaces V , W over k is a vector space V ⊗W over k together
with a linear map κ : V ×W → V ⊗W , (v, w) 7→ v ⊗ w that has the universality property:
For any bilinear map β : V ×W → X there exists exactly one linear map φβ : V ⊗W → X
such that β = φβ ◦ κ. The elements of the vector space V ⊗W are called tensors.

Lemma 1.2.2: The universality property defines the tensor product consistently and up
to a unique isomorphism.

Proof:

Existence:

Any (multi)linear map between vector spaces is given uniquely by its values on a basis. We
select a vector space of dimension dim(V ) · dim(W ), which we denote V ⊗W , and a basis
denoted B = {ei ⊗ fj | i = 1, ...,dim(V ), j = 1, ...,dim(W )}. Furthermore, we choose a
basis BV = {e1, ..., en} of V and a basis BW = {f1, ..., fm} of W and define a bilinear map
κ : V ×W → V ⊗W by its values on a basis. We set κ(ei, fj) = ei ⊗ fj . For general vectors
x =

∑n
i=1 x

iei, z =
∑m

j=1 y
jfj , we then have

κ(x,y) =
n∑
i=1

m∑
j=1

xiyjei ⊗ fj .

Uniqueness:

Suppose there were two such maps κ : V × W → V ⊗ W , κ̃ : V × W → V ⊗̃W , both
having the universality property. Then for any linear map α : V ×W → X, we have two
maps φα : V ⊗ W → X, φ̃α : V ⊗̃W → X such that α = φα ◦ κ = φ̃α ◦ κ̃′. If we take
α = κ, we obtain a map φ̃κ : V ⊗̃W → V ⊗W satisfying φ̃κ ◦ κ̃ = κ . If we set α = κ̃, we
obtain a map φκ̃ : V ⊗W → V ⊗̃W satisfying φκ̃ ◦ κ = κ̃. This implies for the composition
φ̃κ ◦ φκ̃ ◦ κ = κ : V ×W → V ⊗W and φκ̃ ◦ φ̃κ ◦ κ̃ = κ̃ : V ×W → V ⊗̃W . Hence, we have
φ̃κ ◦ φκ̃ = idV⊗W , φκ̃ ◦ φ̃κ = idV ⊗̃W , which implies that φ̃κ and φκ are isomorphisms. 2

Definition 1.2.1 gives a precise definition of the tensor product. However, it is not very useful
in concrete calculations. For those, it is advantageous to use the following identities instead.
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Lemma 1.2.3: (Properties of the tensor product)

1. The tensor product is bilinear. With v ⊗w = κ(v,w), we have

(v1 + v2)⊗w = v1 ⊗w + v2 ⊗w ∀v1,v2 ∈ V,w ∈W (1.24)
v ⊗ (w1 + w2) = v ⊗w1 + v ⊗w2 ∀v ∈ V,w1,w2 ∈W (1.25)
t(v ⊗w) = (tv)⊗w = v ⊗ (tw) ∀v ∈ V,w ∈W, t ∈ k. (1.26)

2. There are canonical isomorphisms

R : V ⊗W →W ⊗ V, v ⊗w 7→ w ⊗ v

A : U ⊗ (V ⊗W )→ (U ⊗ V )⊗W, u⊗ (v ⊗w)→ (u⊗ v)⊗w

KL : k ⊗ V → V, t⊗ v 7→ tv

KR : V ⊗ k → V,v ⊗ t 7→ tv.

3. A basis of V ⊗W is given by the set BV⊗W = {ei⊗ fj | i = 1, ..., n, j = 1, ...,m}, where
B = {e1, ..., en} is a basis of V and B′ = {f1, ..., fm} a basis of W . This basis is called
the tensor product basis. With respect to this basis, a general element x ∈ V ⊗W can
be expressed as a sum

x =
n∑
i=1

m∑
j=1

xijei ⊗ fj . (1.27)

Remark 1.2.4: Note that although elements of the form v ⊗w with v ∈ V,w ∈ W span
the tensor product V ⊗W , not every element of V ⊗W is of this form.

Example 1.2.5:

1. Rn⊗Rm ∼= Rm·n. An isomorphism is given by ei⊗ej 7→ e(m−1)i+j , where B = {e1, ..., ek}
is the canonical basis of Rk.

2. We can view C as a two-dimensional vector space over R with basis B = {1, i}. Then,
the tensor product VC := V ⊗ C for a vector space V over R is called complexification
of V . With the definition a · (v ⊗ z) := v ⊗ (az) for a, z ∈ C, v ∈ V , VC becomes a
vector space over C.

3. Let X,Y be finite sets and F(X), F(Y ) the set of functions on X and Y with values
in k = R or k = C. Clearly, F(X) and F(Y ) have the structure of vector spaces
with respect to the pointwise addition of functions and multiplication by k. The tensor
product F(X) ⊗ F(Y ) is canonically isomorphic to the space of functions on X × Y .
The isomorphism φ : F(X)⊗F(Y )→ F(X × Y ) is given by

φ(f ⊗ g)(x, y) = f(x)g(y) ∀x ∈ X, y ∈ Y, f ∈ F(X), g ∈ F(Y ).

We consider the BX = {δx | x ∈ X} of F(X), BY = {δy | y ∈ Y } of F(Y ) where δx, δy
are the Kronecker delta functions

δx(z) =

{
1 z = x

0 z 6= x
.

——————————————————————————————————————
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Clearly, we have for any f ∈ F(X), f =
∑

x∈X f(x)δx and similarly for Y . In terms of
these bases, the isomorphism φ takes the form

φ(δx ⊗ δy) = δ(x,y) δ(x,y)(v, w) =

{
1 x = v and y = w

0 otherwise.

Its inverse is given by

φ−1 : F(X × Y )→ F(X)⊗F(Y ), δ(x,y) 7→ δx ⊗ δy.

As the linear maps between vector spaces also form a vector space, we can consider the tensor
product of vector spaces of linear maps. We obtain the following lemma.

Lemma 1.2.6: (Tensor product of linear maps, functoriality)

For vector spaces U, V,W,Z over k the tensor product Hom(U, V ) ⊗ Hom(W,Z) is canoni-
cally isomorphic to Hom(U ⊗W,V ⊗ Z). The isomorphism τ : Hom(U, V ) ⊗ Hom(W,Z) →
Hom(U ⊗W,V ⊗ Z) is given by

τ(ψ ⊗ φ)(u⊗ v) = ψ(u)⊗ φ(v) ∀ψ ∈ Hom(U, V ), φ ∈ Hom(W,Z),u ∈ U,v ∈ V.

In terms of the maps κV⊗Z : V × Z → V ⊗ Z, κU⊗W : U ×W → U ⊗W introduced in Def.
1.2.1, we have

κV⊗Z ◦ (ψ, φ) = (ψ ⊗ φ) ◦ κU⊗W ∀ψ ∈ Hom(U, V ), φ ∈ Hom(W,Z). (1.28)

We say the tensor product is functorial.

Lemma 1.2.7: (Transformation behaviour of coefficients)

If we characterise ψ ∈ Hom(U, V ), φ ∈ Hom(W,Z) by their matrix coefficients with respect
to bases BU = {e1, ..., en}, BV = {f1, ..., fm},BW = {g1, ..., gp}, BZ = {h1, ..., hs}

ψ(ei) =
m∑
j=1

ψ j
i fj φ(gk) =

s∑
l=1

φ l
k hl, (1.29)

the matrix coefficients of the tensor product ψ ⊗ φ with respect to the bases BU⊗W =
{ei⊗ gk | i = 1, ..., n, k = 1, ..., p} and BV⊗Z = {fj ⊗hl | j = 1, ...,m, l = 1, ..., s} are given by

(ψ ⊗ φ)(ei ⊗ gk) =
m∑
j=1

s∑
l=1

ψ j
i φ

l
k fj ⊗ hl (1.30)

Alternatively, we can characterise the linear map ψ ⊗ φ by its action on the coefficients. For

x =
n∑
i=1

p∑
k=1

xikei ⊗ gk (φ⊗ ψ)(x) =
m∑
j=1

s∑
l=1

x′jlfj ⊗ hl, (1.31)

we have

x′jl =
n∑
i=1

p∑
k=1

ψ j
i φ

l
k x

ik.
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Exercise 8: (Two spin 1/2 particles)

We consider a system of two spin 1/2 particles as in Example 3. The vector space associated
with the combined system is the tensor product C2⊗C2 ∼= C4. A basis of C2⊗C2, the tensor
product basis, is given by

B = {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2} (1.32)

with e1, e2 as in (1.16). We consider the total spin or total angular momentum

J2
tot :=

3∑
a=1

(1⊗ Ja + Ja ⊗ 1)(1⊗ Ja + Ja ⊗ 1) =
3∑

a=1

J2
a ⊗ 1 + 1⊗ J2

a + 2Ja ⊗ Ja ∈ End(C2 ⊗ C2)

and the total spin or total angular momentum in the z-direction

J totz = 1⊗ Jz + Jz ⊗ 1 ∈ End(C2 ⊗ C2).

Determine the matrix coefficients of J2
tot and J totz with respect to the tensor product basis.

Show that another basis of C2 ⊗ C2 is given by

B′ = {e1 ⊗ e1, e2 ⊗ e2,
1√
2
(e1 ⊗ e2 − e2 ⊗ e1), 1√

2
(e1 ⊗ e2 + e2 ⊗ e1)}. (1.33)

Determine the matrix coefficients of J2
tot and J totz with respect to this basis.

After defining the tensor product, we are now ready to investigate the relation between
tensors and multilinear forms. We start by considering the relation between tensor products
and dual vector spaces.

Theorem 1.2.8: (Tensor products and duals)

1. For vector spaces V,W over k, the tensor product of their duals is canonically isomorphic
to the dual of their tensor product: V ∗ ⊗W ∗ ∼= (V ⊗W )∗. The isomorphism is given by

τ : α⊗ β 7→ τ(α⊗ β) τ(α⊗ β)(v ⊗w) = α(v)β(w) ∀v ∈ V,w ∈W. (1.34)

2. For vector spaces V,W over k, we have V ∗ ⊗W ∼= Hom(V,W ). The isomorphism is

µ :α⊗w 7→ µ(α⊗w) µ(α⊗w)(v) = α(v)w ∀v ∈ V,w ∈W. (1.35)

Corollary 1.2.9: The n-fold tensor product V ∗ ⊗ ...⊗ V ∗ can be identified with the space
of n-forms α : V × ...× V → k. The identification is given by

µ(α1 ⊗ ...⊗ αn)(v1, ...,vn) = α1(v1) · · ·αn(vn) ∀v1, ...,vn ∈ V, α1, ..., αn ∈ V ∗. (1.36)

In the following, we will often omit the isomorphisms µ, τ in theorem 1.2.8 and write α ⊗
β(v ⊗w) = α(v)β(w) for (1.34) and (α⊗w)(v) = α(v)w for (1.35).

These relations between the tensor product of vector spaces, their duals and multilinear
forms extend to multiple tensor products of vector spaces and their duals. To define this, we
introduce the tensor algebra.
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Definition 1.2.10: (Tensor algebra)

1. For a vector space V and r, s ≥ 0, we define the tensor space of type (r,s)⊗
r,s

V := V ⊗ ...⊗ V︸ ︷︷ ︸
r×

⊗V ∗ ⊗ ...⊗ V ∗︸ ︷︷ ︸
s×

⊗
0,0

V = k. (1.37)

elements of
⊗

r,s V are called homogeneous tensors of type (r,s).

2. The tensor algebra T (V ) is the direct sum

T (V ) =
⊕
r,s≥0

⊗
r,s

V. (1.38)

We define a multiplication ⊗ : T (V ) ⊗ T (V ) → T (V ) via its action on the homogeneous
tensors and extend it bilinearly to T (V ). For u1 ⊗ ... ⊗ ur ⊗ α1 ⊗ ... ⊗ αs ∈

⊗
r,s V and

x1 ⊗ ...⊗ xp ⊗ β1 ⊗ ...⊗ βq ∈
⊗

p,q V we set

(u1 ⊗ ...⊗ ur ⊗ α1 ⊗ ...⊗ αs)⊗ (x1 ⊗ ...⊗ xp ⊗ β1 ⊗ ...⊗ βq) (1.39)

:= u1 ⊗ ...⊗ ur ⊗ x1 ⊗ ...⊗ xp ⊗ α1 ⊗ ...⊗ αs ⊗ β1 ⊗ ...⊗ βp ∈
⊗

r+p,s+q

V. (1.40)

Remark 1.2.11: With the multiplication defined in (1.2.10), the tensor algebra becomes
an associative, graded algebra.

• associative means (a⊗ b)⊗ c = a⊗ (b⊗ c) for all a, b, c ∈ T (V ).

• graded means that T (V ) can be expressed as a direct sum of homogeneous spaces as in
(1.38) and the multiplication adds their degrees ⊗ :

⊗
r,s V ×

⊗
p,q V →

⊗
r+p,s+q V .

Remark 1.2.12: The tensor algebra plays an important role in quantum field theory. The
Fock spaces constructed in the formalism of second quantisation are tensor algebras of certain
vector spaces.

Remark 1.2.13: (Interpretation of (r, s)-tensors)

Together, Theorem 1.2.8 and Definition 1.2.10 imply that we can interpret an (r, s) tensor
v1 ⊗ ...⊗ vr ⊗ α1 ⊗ ...⊗ αs ∈

⊗
r,s V as

• a multilinear map

V × ...× V︸ ︷︷ ︸
s×

→
⊗
r,0

V

(x1, ...,xs) 7→ α1(x1) · · ·αs(xs)v1 ⊗ ...⊗ vr

• a multilinear map

V ∗ × ...× V ∗︸ ︷︷ ︸
r×

→
⊗
0,s

V

(β1, ..., βr) 7→ β1(v1) · · ·βr(vr)α1 ⊗ ...⊗ αs
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• a linear map ⊗
s,0

V →
⊗
r,0

V

x1 ⊗ ...⊗ xs 7→ α1(x1) · · ·αs(xs)v1 ⊗ ...⊗ vr

• a linear map ⊗
0,r

→
⊗
0,s

V

β1 ⊗ ...⊗ βr 7→ β1(v1) · · ·βr(vr)α1 ⊗ ...⊗ αs

• a linear form on
⊗

s,r V ⊗
s,r

V → k

x1 ⊗ ...⊗ xs ⊗ β1 ⊗ ...⊗ βr 7→ α1(x1) · · ·αs(xs)β1(v1) · · ·βr(vr).

Example 1.2.14: Vectors are (1, 0)-tensors. Linear forms are (0, 1)-tensors. Linear maps
are (1, 1)-tensors. Bilinear forms are (0, 2)-tensors.

Lemma 1.2.15: (Coefficients and transformation behaviour)

1. With respect to a basis B = {e1, ..., en} of V and dual basis B∗ = {e1, ..., en}, a general
element in

⊗
r,s V can be expressed as

x =
n∑

i1,...,ir,j1,...,js=1

xi1...isj1...js
ei1 ⊗ ...⊗ eir ⊗ ej1 ⊗ ...⊗ ejs (1.41)

The upper indices are called covariant indices and lower indices contravariant indices.

2. We consider linear maps φ1, .., φr, ψ1, ...ψs ∈ End(V ) with matrix elements

φk(ei) =
n∑
j=1

(φk)
j
i ej ψl(ei) =

n∑
j=1

(ψl)
j
i ej (1.42)

Then, the transformation of a (r, s) tensor under φ1 ⊗ ...⊗ φr ⊗ ψ1 ⊗ ...⊗ ψs is given by

φ1 ⊗ ...⊗ φr ⊗ ψ1 ⊗ ...⊗ ψs(ei1 ⊗ ...⊗ eir ⊗ ej1 ⊗ ...⊗ ejs) = (1.43)
n∑

k1,...,kr,l1,...ls=1

(φ1) k1
i1
· · · (φr) kr

ir
(ψ1) j1

l1
· · · (ψs) js

ls
ek1 ⊗ ...⊗ ekr ⊗ el1 ⊗ ...⊗ els .

and the coefficients transform according to

xi1...isj1...js
7→

n∑
k1,...,kr,l1,...ls=1

(φ1) k1
i1
· · · (φr) kr

ir
(ψ1) j1

l1
· · · (ψs) js

ls
xl1...lsk1...kr

(1.44)
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Definition 1.2.16: (Trace and contraction of tensors)

The trace is the canonical linear map Tr : End(V ) ∼= V ⊗ V ∗ → k

Tr : v ⊗ α 7→ α(v) ∀v ∈ V, α ∈ V ∗. (1.45)

When expressed in terms of the coefficients with respect to a basis B = {e1, ..., en} of V and
its dual basis B∗ = {e1, ..., en}, the trace coincides with the matrix trace.

Tr

 n∑
i,j=1

xijei ⊗ ej
 =

n∑
i=1

xii (1.46)

Exercise 9:

Suppose that the following quantities denote the coefficients of a (r, s)-tensor, i.e. an element
of
⊗

r,s V , with respect to a basis B = {e1, ..., en} of V and its dual B∗ = {e1, ..., en}

gij xijmn yijik zijk. (1.47)

Determine (r, s) for each of them and give expressions for the five maps in remark 1.2.13 in
terms of B and B∗ and in terms of the coefficients. Use Einstein summation convention.

Example:

wkij is the coefficient of a (1,2)-tensor. The associated map ϕ : V × V → V is given by

ϕ(ei, ej) = wkijek, ϕ(x,y)k = wkijx
iyj .

The associated map φ : V ∗ → V ∗ ⊗ V ∗ is given by

φ(ek) = wkije
i ⊗ ej φ(α)ij = wkijαk.

The associated map ψ : V ⊗ V → V is given by

ψ(ei ⊗ ej) = wkijek ψ(x⊗ y)k = wkijx
iyj .

1.3 Alternating forms and exterior algebra

We will now consider a special type of multilinear forms, namely the ones that are alternating
or anti-symmetric, and we will construct the associated dual object.

Definition 1.3.1: (Alternating or exterior k-form)

An alternating (or exterior) k-form on V is a k-form on V such that

σα(v1, ...,vk) = α(vσ(1), ...,vσ(k)) = sig(σ)α(v1, ...,vk) ∀v1, ...,vk ∈ V, σ ∈ S(k),

where the sign sig(σ) of the permutation σ ∈ S(k) is sig(σ) = (−1)n, where n is the number
of elementary transpositions, i.e. exchanges of neighbouring elements needed to obtain σ or,
equivalently, the number of pairs (i, j), i, j ∈ {1, ..., k} with i < j and σ(i) > σ(j). Explicitly,

sig(σ) = Πi<j
i− j

σ(i)− σ(j)
. (1.48)

The alternating k-forms on V form a vector space which we denote by Altk(V ). The vector
space Alt(V ) of alternating forms on V is the direct sum Alt(V ) =

⊕∞
k=0 Altk(V ).
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Example 1.3.2: For σ ∈ S(3), σ : (1, 2, 3) 7→ (3, 1, 2) sig(σ) = 1, since there are two pairs,
(1, 3) and (2, 3), whose order is inverted by sigma and two elementary transpositions are
needed to obtain sigma

(1, 2, 3) 7→ (1, 3, 2) 7→ (3, 1, 2).

For σ ∈ S(4), σ : (1, 2, 3, 4) 7→ (2, 4, 1, 3), we have sig(σ) = −1 since there are three pairs,
(1, 2), (1, 4) and (3, 4), with i < j and σ(i) > σ(j) and three elementary transpositions are
needed to obtain σ

(1, 2, 3, 4) 7→ (1, 2, 4, 3) 7→ (2, 1, 4, 3) 7→ (2, 4, 1, 3).

Example 1.3.3: We have Alt1(V ) = V ∗. Alternating one-forms are one-forms. Alternating
two-forms are antisymmetric bilinear forms on V .

Lemma 1.3.4: (Properties of Altk(V ))

1. An alternating k-form vanishes on (v1, ...,vk) if are v1, ...,vk linearly dependent.

2. This implies in particular that it is antisymmetric

α(v1, ...,vj , ...,vi, ...vn) = −α(v1, ...,vi, ...,vj , ...,vn). (1.49)

3. Altk(V ) = {0} for all k > dim(V ).

As we have seen in the previous section, there is a duality between n-forms on V and tensor
products ⊗nV , that allows us to interpret n-forms as elements of

⊗n V ∗ and led to the
definition of the tensor algebra. We would now like to specialise this definition to alternating
k-forms and construct an object that takes the role of tensor algebra for alternating forms.
This object is the exterior algebra of a vector space V . To define it, we have to introduce the
alternator.

Definition 1.3.5: (Alternator, k-fold exterior product of V )

The alternator is the bilinear map

ak :
⊗
k,0

V →
⊗
k,0

V (1.50)

v1 ⊗ ....⊗ vk 7→ ak(v1 ⊗ ...⊗ vk) = 1
k!

∑
σ∈S(k)

sig(σ) vσ(1) ⊗ ...⊗ vσ(k). (1.51)

Its image Im(ak) ⊂ ⊗k,0V is called the k-fold exterior product and denoted ΛkV .

Lemma 1.3.6: The alternator is a projector from
⊗

k,0 V onto its image ΛkV : ak◦ak = ak.

Proof: Exercise.

Lemma 1.3.7: Altk(V ) = Λk(V ∗). ΛkV has properties analogous to those in Lemma 1.3.4:

1. x ∈ Λk(V ) ⇒ x(α1, ..., αk) = 0 if α1, ..., αk linearly dependent.

2. ΛkV = {0} for k > dim(V ).
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Definition 1.3.8: (Exterior algebra, wedge product)

1. The exterior algebra or Grassmann algebra is the vector space given as the direct sum

ΛV =
dim(V )⊕
k=0

ΛkV. (1.52)

2. The wedge product ∧ : ΛkV × ΛlV → Λk+lV is the unique bilinear map that satisfies

ak(x) ∧ al(y) = (k+l)!
k!l! ak+l(x⊗ y) ∀x ∈ ΛkV,y ∈ ΛlV. (1.53)

3. By extending the wedge product bilinearly to ΛV , we obtain a bilinear map ∧ : ΛV ×
ΛV → ΛV . This gives ΛV the structure of an associative, graded algebra.

Remark 1.3.9: Equation (1.53) defines the wedge product consistently and uniquely.

Lemma 1.3.10: (Properties of the wedge product)

The wedge product is

1. bilinear:
α∧ (tβ + sγ) = tα∧ β + sα∧ γ, (tβ + sγ)∧ α = tβ ∧ α+ sγ ∧ α ∀t, s ∈ k, α, β, γ ∈ ΛV

2. associative: (α ∧ β) ∧ γ = α ∧ (β ∧ γ) for all α, β, γ ∈ ΛV

3. graded anti-commutative (skew): For α ∈ ΛkV, β ∈ ΛlV : α ∧ β = (−1)klβ ∧ α.

4. natural: φ∗(α ∧ β) = φ∗(α) ∧ φ∗(β) for all φ ∈ End(V ), α, β ∈ Λ(V ∗) = Alt(V ).

5. related to the determinant:

α1 ∧ ... ∧ αk(v1, ..., vk) = det (αi(vj))i,j∈{1,...,k} ∀α1, ..., αk ∈ Λ1V ∗ (1.54)

6. given by the identity

x1 ∧ ... ∧ xl =
(k1 + ...+ kl)!
k1!k2! · · · kl!

ak1+...+kl(x1 ⊗ ...⊗ xl) xi ∈ ΛkiV. (1.55)

Theorem 1.3.11: (Basis of ΛkV )

For any basis B = {e1, ..., en} of V , a basis of ΛkV is given by the ordered k-fold wedge
products of elements in B

BΛkV = {ei1 ∧ ei2 ... ∧ eik , 0 < i1 < i2 < ... < ik ≤ n}. (1.56)

This implies dim(ΛkV ) =
(
n
k

)
= n!

k!(n−k)! . In particular, ΛnV is one-dimensional and

spanned by e1 ∧ e2 ∧ ... ∧ en.

Exercise 10: (Transformation under linear maps)

Show that for any linear map φ ∈ End(V ) with det(φ) = 1 and associated matrix Aφ =
(φi j)i,j∈{1,...,n}, we have

φ∗(e1) ∧ ... ∧ φ∗(en)(v1, ...,vn) = e1 ∧ ... ∧ en(φ(v1), ..., φ(vn)) = det(Aφ). (1.57)
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The fact that the dimension of ΛkV is dim(ΛkV ) = n!
k!(n−k)! = dim(Λn−kV ) suggests that

there should be an identification between the vector spaces ΛkV and Λn−kV . Note, however,
that this identification is not canonical, since it requires additional structure, namely a non-
degenerate symmetric (or hermitian) bilinear form on V .

Lemma 1.3.12: (Hodge operator)

1. Consider a vector space V over k and let α be a non-degenerate symmetric or hermitian
bilinear form on V . We obtain a symmetric, non-degenerate bilinear form on ΛkV by
choosing a basis B = {e1, ..., en} of V and setting

α̃ : ΛkV × ΛkV → R α̃(ei1 ∧ ... ∧ eik , ej1 ∧ ... ∧ ejk) = α(ei1 , ej1) · · ·α(eik , ejk)
for 0 < i1 < i2 < ... < ik ≤ n, 0 < j1 < j2 < ... < jn ≤ n.

By Exercise 6 there exists a basis in which α(ei, ej) = εiδij with εi ∈ {±1}. For this
basis, we have

α̃(ei1 ∧ ... ∧ eik , ej1 ∧ ... ∧ ejk) = εi1 · · · εikδi1,j1 · · · δik,jk (1.58)
for 0 < i1 < i2 < ... < ik ≤ n, 0 < j1 < j2 < ... < jn ≤ n.

2. There is a unique bilinear map ∗α : ΛkV → Λn−kV the Hodge operator or Hodge star
that satisfies x∧ (∗αy) = α̃(x,y)e1 ∧ ...∧ en for all x,y ∈ ΛkV . It is given by its values
on a basis of ΛkV

∗α(ei1 ∧ ... ∧ eik) = (−1)sgn(σ)εi1 · · · εikej1 ∧ ... ∧ ejn−k ,

where 0 < i1 < i2 < ... < ik ≤ n, 0 < j1 < ... < jn−k ≤ n, {i1, ..., ik} ∪ {j1, ..., jn−k} =
{1, ..., n} and σ ∈ Sn is the permutation

σ > (i1, ..., ik, j1, ..., jn−k)→ (1, ..., n).

The Hodge operator satisfies

(a) ∗α(e1 ∧ ... ∧ en) = (−1)ε1...εn , ∗α1 = e1 ∧ ... ∧ en
(b) For all x ∈ ΛkV , y ∈ Λn−kV : α̃(x, ∗αy) = (−1)k(n−k)α̃(∗αx,y)

(c) For all x ∈ ΛkV : ∗α(∗αx) = (−1)k(n−k)+ε1···εnx.

Example 1.3.13: (Angular momentum, wedge product)

We consider R3 with the standard scalar product α = gE . For vectors x =
∑3

i=1 x
iei,

p =
∑n

i=1 p
iei, we set

l =
3∑
i=1

liei = ∗α(x ∧ p). (1.59)

Then, the components of l =
∑3

i=1 l
iei are given by

l1 = x2p3 − p2x3 l2 = x3p1 − x1p3 l3 = x1p2 − x2p1. (1.60)

We recover the usual expression for the angular momentum. This also explains the use of
the symbol ∧ for the wedge or cross product of two vectors in R3.
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We now consider the transformation of l under the linear map φ : R3 → R3, y → −y. While
the vectors x and p transform as x → −x, p → −p, we have x ∧ p → x ∧ p. with the
definition l′ = ∗α(φ(x) ∧ φ(p)), we find l′ = l. This is due to the fact that the bilinear form
α is not invariant under the linear map φ, as can be shown using Exercise 10.

The angular momentum therefore does not transform as a usual vector under the map φ.
One says that l transforms as a pseudovector or axial vector. Similarly, one can define a
pseudoscalar s by setting s = ∗αx ∧ p ∧ k, where x,p,k are three linearly independent
vectors in R3. Under the map φ, s transforms as s→ s′ = ∗α(x′ ∧ p′ ∧ k′) = −s.

We generalise this observation to the following definition and lemma

Definition 1.3.14: (Pseudovector, pseudoscalar)

Let V be a vector space of odd dimension over R, α a non-degenerate bilinear form as in
Lemma 1.3.12 with associated orthonormal basis B = {e1, ..., en} and exterior algebra ΛV .
Then:

• elements of Λ0V = k are called scalars

• elements of Λ1V = V are called vectors

• elements of Λn−1V ∼= V are called pseudovectors

• elements of ΛnV ∼= k are called pseudoscalars.

Lemma 1.3.15: An oriented vector space V is a vector space V over R together with the
choice of an ordered basis B. Two ordered bases are said to induce the same orientation if they
are related by a linear map φ ∈ Aut(V ) with positive determinant. A linear map φ ∈ Aut(V )
is called orientation preserving if detφ > 0 and orientation reversing if detφ < 0.

Let V be a vector space over R of odd dimension. Under an orientation reversing linear map
φ ∈ Aut(φ), detφ = −1 with matrix coefficients φ(ei) =

∑n
j=1 φ

j
i ej scalars, pseudoscalars,

vectors and pseudovectors transform according to

• scalars s ∈ Λ0V : s→ s

• vectors x =
∑n

i=1 x
iei ∈ Λ1V : xi → φ i

j x
j

• pseudovectors y =
∑n

i=1 y
ie1 ∧ ...êi... ∧ en: yi → −φ i

j y
j

• pseudoscalars r · e1 ∧ ... ∧ en ∈ ΛnV : r → −r.

Definition 1.3.14 and Lemma 1.3.15 solve the puzzle about the transformation behaviour of
pseudovectors and pseudoscalars. They are not really vectors or scalars, but, respectively, the
tuple of coefficients of n − 1-forms and n-forms. In odd-dimensional spaces, an orientation
reversing map changes the sign of the form which spans the space of n-forms and leaves
invariant the sign of the basis vectors which span the space of n− 1-forms. This explains the
resulting transformation behaviour of the coefficients.
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1.4 Vector fields and differential forms

Definition 1.4.1: (Submanifolds of Rn)

A subset M ⊂ Rn is called a submanifold of dimension k of Rn if for all points ∀p ∈M there
exist open neighbourhoods U ⊂ Rn and functions f1, ..., fn−k : U → R ∈ C∞(Rn) such that

1. M ∩ U = {x ∈ U : f1(x) = ... = fn−k(x) = 0}.

2. The gradients gradf1(p),... ,gradfn(p) are linearly independent, where gradf =
∑n

i=1 ∂ifei.

Example 1.4.2: (Submanifolds of Rn)

1. Any open subset U ⊂ Rn is a n-dimensional submanifold of Rn.

2. Linear subspaces V ⊂ Rn are submanifolds of Rn.

3. The (n−1)-sphere Sn−1 = {x =
∑n

i=1 x
iei ∈ Rn |

∑n
i=1(xi)2 = 1} is a n−1-dimensional

submanifold of Rn.

4. The (n − 1)-dimensional hyperbolic space Hn−1 = {x =
∑n−1

i=0 x
iei ∈ Rn | − (x0)2 +∑n−1

i=1 (xi)2 = −1} is a n− 1-dimensional submanifold of Rn.

Definition 1.4.3: (Tangent vector, tangent space)

A vector v ∈ Rn is called a tangent vector in p at a submanifold M ⊂ Rn if there exists a
smooth curve c :]− ε, ε[→M , c(0) = p, ċ(0) = v.

The tangent space on M at p is the set TpM = {v ∈ Rn | v tangent vector at M in p}. It is
a k-dimensional linear subspace of Rn. The dual vector space T ∗pM is called the cotangent
space on M at p.

The set TM =
⋃
p∈M TpM is called tangent bundle, the set T ∗M =

⋃
p∈M (TpM)∗ the cotan-

gent bundle of M . The tangent bundle TM and the cotangent bundle T ∗M are equipped
with canonical projections πM : TM → M , v ∈ TpM 7→ p ∈ M and π̃M : T ∗M → M ,
α ∈ (TMp )∗ 7→ p ∈M .

Example 1.4.4:

1. For open subsets U ⊂ Rn, we have TpU = Rn for all p ∈ U .

2. If V ⊂ Rn is linear subspace, we have TpV = V for all p ∈ V .

3. For all p ∈ Sn−1 the tangent space in p is given by TpS
n−1 = p⊥ = {x ∈ Rn :∑n

i=1 x
ipi = 0}.

4. For all p ∈ Hn−1, we have TpHn−1 = p⊥ = {x ∈ Rn : x0p0 −
∑n−1

i=1 x
ipi = 0}.

Proof: The first two examples are trivial. In the case of Sn−1, curves c :] − ε, ε[→ M with
c(0) = p must satisfy

∑n
i=1 ci(t)

2 = 1. This implies

d

dt
|t=0

(
n∑
i=1

ci(t)2

)
= 2

n∑
i=1

ċi(0)ci(0) = 2
n∑
i=1

ċi(0)pi = 0

and therefore ċ(0) ∈ p⊥. The proof for Hn−1 is analogous. 2
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Definition 1.4.5: (Vector fields, tensor fields and differential forms)

1. We consider a submanifold M ⊂ Rn. A vector field on M is a map

Y :M → TM p 7→ Y (p) ∈ TpM.

The set of all vector fields on M , denoted Vec(M), is a vector space over R with respect
to pointwise addition and multiplication by R.

2. A (r, s)-tensor field on M is a map

g : M →
⊗
r,s

TM p 7→ g(p) ∈
⊗
r,s

TpM.

The set of all tensor fields on M is a vector space over R with respect to pointwise
addition and multiplication by R.

3. A differential form of order k on M (or k-form on M) is a map

ω : M →
⋃
p∈M

Λk(T ∗pM) p 7→ ω(p) ∈ ΛkT ∗p (M).

The set of all k-forms on M , denoted Ωk(M), is a vector space on M with respect to
pointwise addition and multiplication by R. 0-forms are functions on M .

In the following we will mostly restrict attention to submanifolds U ⊂ Rn that are open
subsets. However, most of the statements that follow generalise to the situation where U is
a general submanifold of Rn or, generally, a manifold.

Lemma 1.4.6: (Expression in coordinates)

Let U ⊂ Rn be an open subset and x1, ..., xn be the canonical coordinates on Rn with respect
to its standard basis B = {e1, ..., en}. We denote by B∗ = {e1, ..., en} the dual basis. The
basis vector fields associated with these coordinates are

∂i :U → TU p 7→ ∂i(p) = ei ∀p ∈ U, i ∈ {1, ..., n}. (1.61)

The associated basis one-forms are

dxi :U → T ∗U p 7→ dxi(p) = ei ∀p ∈ U, i ∈ {1, ..., n}. (1.62)

1. A vector field on U can be expressed as a linear combination of the basis vector fields
with coefficients that are functions on U

Y =
n∑
i=1

yi∂i yi : U → R. (1.63)

A vector field is called continuous, differentiable, smooth etc. if all coefficient functions
are continuous, differentiable, smooth etc. We denote by Vec(U) the vector space of
smooth vector fields on U .
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2. A k-form ω : U → ΛkT ∗U on U can be expressed as:

ω =
∑

1≤i1<...<ik≤n
fi1...ikdx

i1 ∧ ... ∧ dxik fi1...ik : U → R. (1.64)

A k-form ω is called continuous, differentiable, smooth etc. if all coefficient functions
fi1...ik : U → R are continuous, differentiable, smooth etc. We denote by Ωk(U) the
vector space of smooth k-forms on U .

3. A (r, s)-tensor field g : U →
⊗

r,s TM can be expressed in terms of the basis vector
fields and the basis of one-forms as

g =
n∑

i1,...,ir,j1,...,js=1

gi1···irj1···js∂i1 ⊗ ...⊗ ∂ir ⊗ dx
j1 ⊗ ...⊗ dxjs gi1···irj1···js : U → R.

A (r, s)-tensor field is called continuous, differentiable, smooth etc. if all coefficient
functions gi1···irj1···js : U → R are continuous, differentiable, smooth etc.

Definition 1.4.7: (Action of a vector field on a function)

The action of a smooth vector field X ∈ Vec(U) on functions f ∈ C∞(U) defines a map
C∞(U)→ C∞(U), f →X.f given by

X.f(p) :=
d

dt
|t=0f(p+ tX(p)). (1.65)

For X =
∑n

i=1 x
i∂i, xi ∈ C∞(U), we have

Xf(p) =
n∑
i=1

xi(p)∂if(p). (1.66)

In particular, the basis vector fields ∂i act by partial derivatives ∂i.f(p) = d
dt |t=0f(p+ tei).

We can thus interpret vector fields as differential operators on the vector space C∞(M) of
smooth functions on a manifold M . Moreover, the preceding definitions imply that we can
think of a vector field as something that attaches an element of a vector space V to every point
of a submanifold M ⊂ Rn and of a differential form as something that attaches an element
of the dual vector space V ∗ to each point of M . All structures that we have encountered in
the previous sections - duality, exterior algebra - will give rise to corresponding structures for
vector fields and differential forms. These structures are obtained by defining them pointwise.

Definition 1.4.8: (Operations on k-forms)

1. Sum of k-forms and products with functions: For k-forms ω, α ∈ Ωk(U) and functions
f ∈ C∞(U), the sum ω+α ∈ Ωk(U) and the product f ·ω ∈ Ωk(U) are defined pointwise

(ω + α)(p) = ω(p) + α(p) (fω)(p) = f(p)ω(p) ∀p ∈ U. (1.67)

2. Wedge product: The wedge product of differential forms ω ∈ Ωk(U), α ∈ Ωl(U), is the
(k + l)-form ω ∧ α ∈ Ωk+l defined pointwise as

(ω ∧ α)(p) = ω(p) ∧ α(p) ∀p ∈ U. (1.68)

——————————————————————————————————————
C. Meusburger Concepts and Methods of Mathematical Physics, DRAFT August 12, 2011



1.4. Vector fields and differential forms 29

Remark 1.4.9: All properties and identities we derived previously for the exterior algebra
hold pointwise. In particular, the wedge product satisfies identities analogous to the ones in
Lemma 1.3.10.

To generalise the Hodge star to k-forms, we need additional structure, namely an assignment
of a non-degenerate symmetric bilinear form on TpU to every point p ∈ U . This turns U
into a pseudo-Riemannian manifold or, if the form is positive definite, into a Riemannian
manifold.

Definition 1.4.10: (Riemannian and pseudo-Riemannian manifold)

A submanifold M ⊂ Rn is called a pseudo-Riemannian manifold if it is equipped with a
smooth symmetric non-degenerate (0, 2)-tensor field, i.e. a smooth map

g : M → T ∗pM ⊗ T ∗pM p 7→ g(p) ∈ T ∗pM ⊗ T ∗pM (1.69)

that assigns to every point p ∈ M a symmetric, non-degenerate bilinear form g(p) on TpM .
The (0, 2)-tensor field g is called a pseudo-Riemannian metric on M . If g(p) is positive
definite for all p ∈M , g is called a Riemannian metric on M and M is called a Riemannian
manifold.

In local coordinates the metric g takes the form

g =
n∑

i,j=1

gijdx
i ⊗ dxj gij = gji : M → R smooth. (1.70)

Definition 1.4.11: (Hodge operator)

Let U ⊂ Rn be an open subset of Rn, g a pseudo-Riemannian metric on U . Then there exist
vector fields E1, ..., En ∈ Vec(U), the orthonormal basis for g, such that E1(p), ..., En(p) are
linearly independent for all p ∈ U and

gp(Ei(p), Ej(p)) = εiδij εi ∈ {±1} ∀p ∈ U.

In terms of the basis vector fields ∂1, ..., ∂n ∈ Vec(U), these vector fields are given by coefficient
functions U j

i ∈ C∞(U)

Ei =
n∑
j=1

U j
i ∂j

such that the matrix U j
i (p) is invertible for all p ∈ U . We denote by (U−1) j

i ∈ C∞(U) the
components of its inverse, i.e. the functions characterised by the condition

∑n
j=1 U

j
i (U−1) k

j =
δki . Then the one-forms dXi defined by

dXi =
n∑
j=1

(U−1) i
j dx

j

are dual to the vector fields Ei: dXj(Ei) = δji . We define a non-degenerate symmetric bilinear
form g̃ on Ωk(U) by setting

ḡ(dXi, dXj) = εiδ
ij (1.71)

g̃(dXi1 ∧ ... ∧ dXik , dXj1 ∧ ... ∧ dXjk) = ḡ(dXi1 , dXj1) · · · ḡ(dXik , dXjk)
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for i1 < i2 < ... < ik, j1 < ... < jk, ik, jk ∈ {1, ..., n}. The Hodge operator is the unique map
∗g : Ωk(U)→ Ωn−k(U) defined by

ω ∧ ∗gη = g̃(ω, η) · dx1 ∧ ... ∧ dxn. (1.72)

In terms of the one-forms dXi, we have

∗g(dXi1 ∧ . . . ∧ dXik) = (−1)sgn(σ)εi1 · · · εikdX
j1 ∧ . . . ∧ dXjn−k ,

where 0 < i1 < · · · < ik ≤ n, 0 < j1 < · · · < jn−k ≤ n, {i1, ..., ik} ∪ {j1, ..., jn−k} = {1, ..., n}
and sgn(σ) is the sign of the permutation

σ : (i1, ..., ik, j1, ..., jn−k) 7→ (1, ..., n).

Remark 1.4.12: The properties and identities in Lemma 1.3.12 generalise to this situation.
What is different is that the orthonormal basis of g(p) changes with p ∈ U . The vector fields
Ei that diagonalise g and the associated one-forms dXi are therefore not a constant linear
combination of the basis vector fields ∂i and one-forms dxi, but a linear combination with
coefficients that are functions on U .

It remains to investigate how differential forms behave under functions that map the manifold
M or the open subset U ⊂ Rn to other manifolds. The concept which characterises their
behaviour under such transformations is the pull-back.

Definition 1.4.13: (Pull-back of differential forms)

Let U ⊂ Rn, V ⊂ Rm be open subsets and let ω ∈ Ωk(U) be a k-form that is given by

ω =
∑

1≤i1<...<ik≤n
fi1...ik dx

i1 ∧ ... ∧ dxin . (1.73)

Suppose there exists a continuously differentiable map φ = (φ1, ..., φn) : V ⊂ Rm → U ⊂ Rn.
Then, the pull-back of ω with φ is the differential form φ∗ω ∈ Ωk(V ) defined by

φ∗ω(p)(v1, ...,vn) = ω(φ(p)) (dpφv1, ..., dpφvn) ∀v1, ...,vn ∈ TpU,

where dpφ is the matrix dpφ = (∂iφj(p))ij . In local coordinates, we have

φ∗ω =
∑

1≤i1<...<ik≤n
fi1...ik ◦ φ dφi1 ∧ ... ∧ dφik dφi =

n∑
j=1

∂jφ
i dxj (1.74)

Lemma 1.4.14: (Properties of the pull-back)

The pull-back of differential forms

1. is linear: φ∗(tω1 + sω2) = tφ∗ω1 + sφ∗ω2 for all ω1, ω2 ∈ Ωk(U), t, s ∈ R

2. commutes with the wedge product: φ∗(ω ∧ σ) = (φ∗ω) ∧ (φ∗σ)
for all ω ∈ Ωk(M), σ ∈ Ωl(M)

3. satisfies (φ ◦ ψ)∗ω = ψ∗(φ∗ω).
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After generalising the structures encountered for alternating forms and the exterior algebra to
differential forms, we will now investigate the new structures which arise from the dependence
on the points p ∈M . The first is the exterior differential of a differential form.

Definition 1.4.15: (Exterior Differential)

Let U ⊂ Rn be an open subset of Rn. The exterior differential is a map d : Ω(U) → Ω(U),
d(Ωk(U)) ⊂ Ωk+1(U), defined by

dω =
∑

1≤i1<...<ik≤n
dfi1....ik ∧ dx

i1 ∧ ... ∧ dxik =
∑

1≤i1<...<ik≤n,j 6=i1,...,ik

∂jfi1...ik dx
j ∧ dxi1 ∧ ... ∧ dxik

for ω =
∑

1≤i1<...<ik≤n
fi1....ik ∧ dx

i1 ∧ ... ∧ dxik ∈ Ωk(U) fi1···ik ∈ C
∞(U). (1.75)

Remark 1.4.16: Note that this definition is independent of the choice of coordinates. The
exterior differential depends only on the k-form ω itself and is therefore well-defined.

Lemma 1.4.17: (Properties of exterior differential)

The exterior differential

1. is linear: d(tω1 + sω2) = tdω1 + sdω2 ∀ω1, ω2 ∈ Ωk(U), t, s ∈ R

2. is graded anti-commutative (skew)

d(ω ∧ σ) = (dω) ∧ σ + (−1)kω ∧ dσ ∀ω ∈ Ωk(U), σ ∈ Ωl(U)

3. satisfies d2ω = d(dω) = 0

4. Commutes with the pull-back: For any continuously differentiable map φ = (φ1, ..., φn) :
V ⊂ Rm → U ⊂ Rn, we have d(φ∗ω) = φ∗(dω) for all ω ∈ Ωk(U).

Proof: Exercise.

Remark 1.4.18: The compatibility between exterior differential and pull-back d(φ∗)ω =
Φ∗(dω) and the identity d2ω = 0 arise from the fact that the exterior derivative and differential
forms are antisymmetric. Roughly speaking, the antisymmetry of differential forms and of
the exterior derivative kills all second order derivatives which arise when one applies the
exterior differential to the pull-back or to the differential form dω.

Exercise 11:

1. Show that the exterior differential is well-defined and independent of the choice of co-
ordinates. Consider first its transformation under a linear map φ : Rn → Rn and show
that d(φ∗)ω = Φ∗(dω) in that case. Prove now the identity d(φ∗)ω = Φ∗(dω) for a general
(continuously differentiable) map φ = (φ1, ..., φn) : V ⊂ Rm → U ⊂ Rn.

2. We consider an open subset U ⊂ Rn and attempt to define a symmetric exterior differential
by setting

df =
n∑
i=1

∂ifdx
i ∀f ∈ C∞(U) (1.76)

dω =
n∑
j=1

1
2∂jf

i(dxi ⊗ dxj + dxj ⊗ dxi) for ω =
n∑
i=1

fidx
i ∈ Ω1(U).
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Show that this differential does not satisfy d2f = 0 for all f ∈ C∞(U). Investigate how it
changes under the pull-back. Does the identity d(φ∗ω) = φ∗(dω) hold for ω?

Example 1.4.19: (Gradient, divergence, curl)

1. The exterior differential of a function f ∈ Ω0(U) is the gradient

df =
n∑
i=1

∂if dx
i =

n∑
i=1

(gradf)i dxi ∀f ∈ Ω0(U) (1.77)

Note that the gradient defined in this way is a one-form. In order to obtain a gradient
which is a vector field on U , we need an identification (TpU)∗ ∼= TpU for all p ∈ U .
Such an identification is obtained via a Riemannian metric or via the choice of a basis
of TpU and a dual basis of (TpU)∗ for all p ∈ U .

2. The exterior differential of a one-form ω ∈ Ω1(U) is the curl:

dω = 1
2

n∑
i,j=1

(∂ifj − ∂jfi)dxi ∧ dxj ∀ω =
n∑
i=1

fi dx
i ∈ Ω1(U) (1.78)

For U ⊂ R3, we can set dω = g1 dx
2 ∧ dx3 + g2 dx

3 ∧ dx1 + g3 dx
1 ∧ dx2 and recover the

familiar expression for the curl:

gi = (~∇×~f)i = ε jk
i (∂jfk − ∂kfj),

where ε jk
i is the totally antisymmetric tensor with ε 23

1 = 1.

3. The exterior differential of a n− 1-form is related to the divergence div~f =
∑n

i=1 ∂ifi.
We consider a (n− 1)-form

ω =
n∑
i=1

(−1)i−1fi dx
1 ∧ dx2 ∧ ... ∧ d̂xi ∧ ... ∧ dxn = ∗gE

(
n∑
i=1

fi dx
i

)

where ∗gE is the Hodge operator associated with the Euclidean metric gE on Rn. The
differential of ω is given by

dω =

(
n∑
i=1

∂ifi

)
· dx1 ∧ ... ∧ dxn = div~f · dx1 ∧ · · · ∧ dxn ∈ Ωn(U) (1.79)

Exercise 12: Consider an open subset U ⊂ R3.

1. Show that for a function f ∈ C∞(U), the identity d2f = 0 can be reformulated as

~∇× (gradf) = 0.

2. Show that for a one-form ω =
∑3

i=1 fi dx
i, the identity d2ω = 0 can be reformulated as

div(~∇× ~f) = 0.
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Lemma 1.4.20: (Co-differential)

Let U ⊂ Rn be an open subset of Rn, g a pseudo-Riemannian metric of signature s ≤ n with
associated Hodge star ∗g. Then, the co-differential δ = − ∗g ◦d ◦ ∗g : Ωk+1(U)→ Ωk(U) has
properties analogous to the ones in lemma 1.4.17. In particular: δ2 = ∗g ◦d◦∗g ◦∗g ◦d◦∗g = 0

Definition 1.4.21: (closed, exact)

A k-form ω ∈ Ωk(U) is called closed if dω = 0. It is called exact if there exists a (k− 1)-form
θ ∈ Ωk−1(U) such that ω = dθ.

Clearly, due to the identity d2 = 0, all exact differential forms on an open subset U ⊂ Rn

are closed. The answer to the question if the converse is also true is in general negative.
However, it can be shown that for subsets U ⊂ Rn which are star-shaped, every closed form
is exact. This is the content of Poincaré’s lemma.

Theorem 1.4.22: (Poincaré lemma)

Let U ⊂ Rn be open and star-shaped, i.e. such that there exists a point p ∈ U such that for
any q ∈ U , the segment [p, q] = {(1− t)p+ tq | t ∈ [0, 1]} lies in U : [p, q] ⊂ U . Let ω ∈ Ωk(U)
be closed. Then ω is exact.

Remark 1.4.23: Do not confuse star-shaped with convex. Star-shaped means that there
exists a point p ∈ U such that the segments connecting it to any other point in U lie in U .
Convex means that this is the case for all points p ∈ U . Convex therefore implies star-shaped,
but not the other way around.

Exercise 13: (Uniqueness of the exterior differential)

The exterior differential d is a linear map d : Ωk(U) → Ωk+1(U) that satisfies d2 = 0. In
this exercise, we investigate how unique such a structure is. Given the structures we have
introduced so far, we attempt to construct other linear maps d̃ : Ωk(U) → Ωk+1(U) that
differ from d non-trivially and satisfy d̃2 = 0.

1. As a first guess, we could consider modifying d by multiplying it with a function f ∈ Ω0(M).
Show that the map df : Ωk(M) → Ωk+1(M), ω 7→ f · dω does not satisfy d2

f = 0 unless f is
constant. Multiplying d by a function therefore does not yield a new differential.

2. As a second guess, we could consider modifying d by using a one-form θ ∈ Ω1(U). As we
need a map d : Ωk(U)→ Ωk+1(U), the canonical way of implementing this would be to define

dθ(ω) := dω + θ ∧ ω ∀ω ∈ Ωk(U). (1.80)

Show that we have d2
θ = 0 if and only if θ is closed. Given a closed θ ∈ Ω1(U), we call the

associated map dθ : Ωk(U)→ Ωk+1(U) the covariant derivative with respect to θ.

3. We now consider a vector space V with basis B = {e1, .., en} and one-forms ω ∈ Ωk(U, V )
which take values in the vector space V . With respect to the basis B = {e1, .., en}, such
vector space valued one-forms can be expressed as

ω =
n∑
a=1

ωa e
a with ωa ∈ Ωk(U) ∀a ∈ {1, ..., n}. (1.81)

To define a covariant derivative, we use one-forms θ ∈ Ω1(U,End(V )) which take values in the
vector space End(V ) of endomorphisms of V . With respect to the basis B, such one-forms
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can be expressed as

θ(ea) =
n∑
b=1

θ b
a eb with θ b

a ∈ Ω1(U) ∀a, b ∈ {1, ..., n}. (1.82)

We define the covariant derivative with respect to θ as

dθωa = dωa +
n∑
b=1

θ b
a ∧ ωb. (1.83)

Show that d2
θωa = 0 for all ω ∈ Ωk(U, V ), a = 1, ..., n, if and only if θ is flat:

dθ b
a +

n∑
c=1

θ c
a ∧ θ b

c = 0. (1.84)

Remark 1.4.24: Such generalised derivatives play an important role in gauge and field the-
ories. The one-forms θ used to construct the generalised derivatives dθ corresponds to gauge
fields. One-forms θ ∈ ω1(U) correspond to abelian gauge theories such as electromagnetism.
One-forms θ ∈ Ω1(U,End(V )) with values in the set of endomorphisms End(V ) correspond
to non-abelian gauge theories.

We will now investigate the interaction of vector fields and differential forms. As we have
seen in the context of (multi)linear forms, we can interpret a bilinear form or (0, 2)-tensor
g ∈ V ∗ ⊗ V ∗ on a vector space V as a bilinear map g : V × V → R or as a linear map
g : V → V ∗. In the context of vector fields and differential forms, we consider (0, 2)-
tensor fields on an open subset U ⊂ Rn, which assign to every point p ∈ U a bilinear form
ω(p) : TpU × TpU → R. An example are the (pseudo-) Riemannian metrics in Definition
1.4.10, which correspond to symmetric non-degenerate (0,2)-tensor fields.

We will now investigate what structures are obtained from anti-symmetric non-degenerate
(0,2)-tensor fields or 2-forms on U . One finds that every non-degenerate 2-form on U gives
rise to a map Vec(U) × Vec(U) → C∞(U) and to an identification of Vec(U) and Ω1(U).
If one combines these structures with the exterior differential of functions f ∈ C∞(U), one
obtains a map C∞(U)× C∞(U)→ C∞(U). If the 2-form is also closed, this map is a Poisson
bracket.

Lemma 1.4.25: (Identification of vector fields and forms: the Poisson bracket)

Let U ⊂ Rn be open and ω ∈ Ω2(U) a closed, non-degenerate 2-form on U . Such a 2-form
is also called a symplectic form on U . The non-degenerate 2-form ω induces an isomorphism
between Vec(U) and Ω1(U)

Φω : Vec(U)→ Ω1(U) X 7→ ω(X, ·). (1.85)

It therefore gives rise to a map

X· : C∞(U)→ Vec(U) f 7→Xf = Φ−1
ω (df) (1.86)

and a map

{ , } : C∞(U)× C∞(U)→ C∞(U) (1.87)
(f, g) 7→ {f, g} = df(Xg) = −dg(Xf ) = ω(Xf ,Xg)

The latter has the properties of a Poisson bracket.
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1. It is bilinear: {tf + sg, h} = t{f, h}+ s{g, h} for all f, g, h ∈ C∞(U), t, s ∈ R.

2. It is antisymmetric: {f, g} = −{g, f} for all f, g ∈ C∞U .

3. It satisfies the Leibnitz identity or, in other words, it is a derivation:

{f · g, h} = f · {g, h}+ g · {f, h} ∀f, g, h ∈ C∞(U).

4. It satisfies the Jacobi identity:

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0 ∀f, g, h ∈ C∞(U).

If U is star-shaped, there exists a one form θ such that ω = dθ. Such a one-form is called a
symplectic potential.

Proof: The bilinearity and antisymmetry follow from the fact that all maps involved in
the definition are linear and from the antisymmetry of the two-form ω. The Leibnitz identity
follows from the identity d(f · g) = f · dg + g · df . The Jacobi identity follows from the fact
that ω is closed and the existence of the symplectic potential from Poincaré’s lemma. 2

Remark 1.4.26: The Poisson bracket is well known from classical mechanics. There it
often arises from a canonical symplectic form associated with the action that characterises a
physical system. The functions in C∞(U) correspond to the functions on phase space.

1.5 Electrodynamics and the theory of differential forms

An electrodynamical system is described by two fields:

• the electrical field ~E : R4 → R3 which assigns to each point ~x in space and each time t
the value of the electrical field ~E(t, x) ∈ R3 at ~x at time t .

• the magnetic field ~B : R4 → R3 which assigns to each point ~x in space and each time t
the value ~B(t, x) ∈ R3 of the magnetic field at ~x at time t.

together with two densities that describe the behaviour of the electrical charges:

• the charge density ρ : R4 → R which assigns to each point ~x in space and each time t
the density ρ(t, ~x) of the electrical charge at ~x at time t.

• the current density ~ : R4 → R3 which assigns to each point ~x in space and each time t
the density ~(t, ~x) of the electrical current at ~x at time t.

The behaviour of the electromagnetic system is described by the Maxwell equations.

Definition 1.5.1: (Maxwell equations)

We consider an electrical field ~E : R4 → R3, a magnetic field ~B : R4 → R a charge density
ρ : R4 → R and a current density ~ : R4 → R3. In units in which the speed of light, the
dielectric and the magnetic constant are one: ε0 = µ0 = c = 1, the Maxwell equations read

div ~E = ρ div ~B = 0 (1.88)
~∇× ~E = −∂t ~B ~∇× ~B =~ + ∂t ~E. (1.89)
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The Maxwell equation div ~B = 0 is often paraphrased as the absence of magnetic sources,
while ~∇× ~E = −∂t ~B is known as Faraday’s law. The equation div ~E = ρ is often referred to
as Gauss’ law and ~∇× ~B =~ + ∂t ~E as Ampère’s law.

In addition to the Maxwell equations, we have the charge conservation law

∂tρ+ div~ = 0. (1.90)

Remark 1.5.2: The Maxwell equations (1.88) can be viewed as consistency conditions on
the electrical and magnetic field ~E(t, ·), ~B(t, ·) at a given time t. The charge conservation
law describes the time evolution of the charge density, and the Maxwell equations (1.89) the
time evolution of the electrical and magnetic field.

If the electrical field ~E(t, ·), the magnetic field ~B(t, ·) and the charge and current densities
ρ(t, ·),~(t, ·) are known for a given time t, the Maxwell equations uniquely determine their
values for all t′ > t.

We will now show that the Maxwell equations can be reformulated in terms of differential
forms and that this formulation is useful for understanding their properties. We consider the
vector space R4 with Basis B = {e0, e1, e2, e3} and a symmetric non-degenerate bilinear form
g, the Minkowski metric, characterised by

g(e0, e0) = −1 g(ei, ei) = 1 for i = 1, 2, 3 g(eµ, eν) = 0 µ, ν ∈ {0, 1, 2, 3}, µ 6= ν.

We denote by ∗ the associated Hodge star and by δ = ∗ ◦ d ◦ ∗ the associated co-differential.
To keep the convention most widespread in physics, we will label indices with Greek letters
if they take values µ, ν, ... ∈ {0, 1, 2, 3} and reserve Latin indices i, j, k, ... ∈ {1, 2, 3} for the
spatial indices. The time coordinate t therefore corresponds to x0.

By combining the components of the electrical and magnetic field into a two-form and the
current and charge density into a one-form, we obtain the following definition.

Definition 1.5.3: (Electrodynamics in formulation with forms)

The field strength tensor is the two-form F ∈ Ω2(R4)

F = −
3∑
i=1

Ei dx
0 ∧ dxi +B1 dx

2 ∧ dx3 +B2 dx
3 ∧ dx1 +B3 dx

1 ∧ dx2.

Its Hodge dual is the two-form ∗F ∈ Ω2(R4), often referred to as dual field strength tensor

∗F = −
3∑
i=1

Bi dx
0 ∧ dxi − E1 dx

2 ∧ dx3 − E2 dx
3 ∧ dx1 − E3 dx

1 ∧ dx2. (1.91)

The four-current J ∈ Ω1(R4) is the one-form

J = −ρ dx0 + j1 dx
1 + j2 dx

2 + j3 dx
3. (1.92)

with Hodge dual ∗J ∈ Ω3(R4)

∗ J = ρ dx1 ∧ dx2 ∧ dx3 − j1 dx0 ∧ dx2 ∧ dx3 − j2 dx0 ∧ dx3 ∧ dx1 − j3 dx0 ∧ dx1 ∧ dx2.
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Remark 1.5.4: Note that the electrical fields

E =
n∑
i=1

Ei dx
i

and the magnetic field

B =
n∑

j,k=1

εijkB
i dxj ∧ dxk

enter the expression for the field strength tensor in a different way. This is related to the fact
that the magnetic field B is a pseudovector, i.e. a two-form, while the electrical field E is a
vector or one-form.

Lemma 1.5.5: (Maxwell equations and charge conservation)

In terms of field strength tensor and four-current, the Maxwell equations take the form

dF = 0 δF = ∗d ∗ F = J. (1.93)

The charge conservation law is given by

δJ = ∗d ∗ J = 0. (1.94)

Proof:

We have

dF =
(

div ~B
)
dx1 ∧ dx2 ∧ dx3 + (∂0B1 + ∂2E3 − ∂3E2) dx0 ∧ dx2 ∧ dx3

+ (∂0B2 + ∂3E1 − ∂1E3) dx0 ∧ dx3 ∧ dx1 + (∂0B3 + ∂2E1 − ∂1E2) dx0 ∧ dx1 ∧ dx2.

dF = 0 is therefore equivalent to the absence of magnetic sources and Faraday’s law

dF = 0 ⇔ div ~B = 0, ∂0B + ~∇× ~E = 0. (1.95)

Similarly, we can determine the co-differential δF = ∗d ∗ F . This yields

∗d ∗ F =− div ~E dx0 + (−∂0E1 + ∂2B3 − ∂3B2) dx1 + (−∂0E2 + ∂3B1 − ∂1B3) dx2

+ (−∂0E3 + ∂1B2 − ∂2B1) dx3.

The equation δF = ∗d ∗ F = 0 is therefore equivalent to Gauss law and Ampère’s law

δF = ∗d ∗ F = J ⇔ div ~E = ρ, ~∇× ~B − ∂t ~E =~. (1.96)

Finally, we determine the co-differential δJ and find that the equation δJ = 0 is equivalent
to the current conservation law

δJ = ∗d ∗ J = 0 ⇔ ∂0ρ+ div~ = 0. (1.97)

We will now use Poincaré’s lemma to obtain the gauge potentials of electrodynamics. These
are the vector potential ~A : R4 → R3 and the scalar potential φ : R4 → R from which the
electrical and magnetic field are obtained as

~B = ~∇× ~A ~E = gradφ− ∂0
~A, (1.98)

or, equivalently, in coordinates,

Bi = ε jk
i ∂jAk ei = ∂iφ− ∂0Ai.
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Lemma 1.5.6: (Poincaré’s lemma ⇒ existence of gauge potentials)

As dF = 0 and R4 star-shaped, Poincaré’s lemma implies the existence of a one-form A ∈
Ω1(R4), the gauge potential, such that F = dA. With the definition

A = −φdx0 +
3∑
i=1

Aidx
i = −φdx0 +A1 dx

1 +A2 dx
2 +A3 dx

3, (1.99)

where φ is the scalar potential and Ai are the components of the vector potential, the equation
F = dA reproduces (1.98)

F = dA ⇔ ~B = ~∇× ~A ~E = gradφ− ∂0
~A. (1.100)

Remark 1.5.7: Note that the gauge potential A is defined only up to addition of an exact
one-form dχ ∈ Ω1(R4), χ ∈ Ω0(R4). As d2 = 0, we have: d(A + dχ) = dA + d2χ = dA. A
transformation A 7→ A+dχ corresponds to a transformation of the scalar and vector potential

φ 7→ φ− ∂0χ ~A 7→ ~A+ gradχ (1.101)

and is called a gauge transformation. It can be used to bring the potentials ~A and φ into a
form that is suited to the problem under consideration. This is called fixing a gauge.

Exercise 14: (Covariant formulation of electrodynamics in local coordinates)

We express the gauge potential, the field strength tensor and the four-current current using
Einstein’s summation convention

A = Aµdx
µ F = 1

2Fµνdx
µ ∧ dxν J = jµdx

µ, (1.102)

where all indices µ, ν, ... run from 0 to 3. We set gµν = g(eµ, eν) and denote by gµν its inverse
gµνg

νρ = δρµ.

1. Show that in these coordinates the equation F = dA takes the form

Fµν = ∂µAν − ∂µAν (1.103)

and the equation dF = 0 reads

∂µFνρ + ∂ρFµν + ∂νFρµ = 0. (1.104)

2. Let now εµνρσ be the totally antisymmetric tensor in four indices with the convention
ε0123 = 1. Note that the totally antisymmetric tensor with four indices satisfies

εµνρσε
µν
τκ = 2(gρτgσκ − gρκgστ ).

We denote the components of ∗F by ∗F = 1
2Fµνdx

µ ∧ dxν . Show that the components
of ∗F are given by

Fρσ = 1
2ερστκg

τµgκνFµν = 1
2ερστκF

τκ F τκ = gτµgκνFµν (1.105)

and that the equation δF = J reads

∂ρFρσ = jσ with ∂ρ = gµρ∂µ. (1.106)
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3. Show that the charge conservation law takes the form

∂σjσ = 0 with ∂ρ = gµρ∂µ. (1.107)

Exercise 15: (Gauge fixing)

1. Coulomb gauge and static Maxwell equations

Show that one can use the gauge freedom A 7→ A + dχ to impose the Coulomb gauge
condition

div ~A = 0. (1.108)

Show that the residual gauge freedom is A 7→ A + dχ, where χ satisfies the Laplace
equation ∆χ =

∑3
i=1 ∂

2
i χ = 0.

We now consider the electrostatic and magnetostatic case of the Maxwell equations,
i.e. a situation where the fields and the charge density are independent of time ∂0

~E =
∂0
~B = 0, ∂0ρ = 0. Show that the Maxwell equations take the form

div ~E = ρ div ~B = 0 (1.109)
~∇× ~E = 0 ~∇× ~B =~ (1.110)

and tat the charge conservation law becomes div~ = 0. Show that if A satisfies the
condition of the Coulomb gauge, the Maxwell equations can be re-formulated as

∆φ = −ρ ∆ ~A =
3∑
i=1

∂2
i
~A = −~. (1.111)

The potentials φ, ~A are thus solutions of the inhomogeneous Laplace equation.

2. Lorentz gauge and electromagnetic waves

Show that the gauge freedom A 7→ A+dχ can also be used to impose the Lorentz gauge

div ~A+ ∂0φ = 0 (1.112)

and that the residual gauge freedom of this gauge are gauge transformations A 7→ A+dχ
where χ satisfies the wave equation 2χ = ∂2

0χ−∆χ = 0.

We now consider the Maxwell equations without sources, i.e. a situation with vanishing
charge and current density ρ =~ = 0, in which the Maxwell equations take the form

div ~E = 0 div ~B = 0 (1.113)
~∇× ~E = −∂0

~B ~∇× ~B = ∂0
~E. (1.114)

Show that in the Lorentz gauge the Maxwell equations

div ~E = 0 ~∇× ~B = ∂0
~E. (1.115)

can be expressed as

2φ = 0 2A = 0, (1.116)

while the other two Maxwell equations are satisfied automatically. The potentials φ, ~A
are therefore solutions of the wave equation - they correspond to electromagnetic waves,
non-trivial electrical and magnetic fields in the absence of sources and currents.

Hint: Prove and then use the identities
~∇×gradF = 0 ~∇×(~∇×~G) = grad(div ~G)−2~G. (1.117)
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Chapter 2

Groups and Algebras

2.1 Groups, algebras and Lie algebras

Groups and algebras play a fundamental role in physics because they are the mathematical
structures which describe symmetries and observables of physical systems.

Classical symmetries such as rotation or translation symmetry in classical mechanics and
Lorentz symmetry in special relativity are described by groups. This is due to the fact the
composition of two symmetries should yield another symmetry, that each symmetry should
have an inverse and that there should be a neutral or trivial symmetry. This leads to the
definition of a group.

One distinguishes ”continuous” symmetries (such as rotations, Lorentz transformations or
translations), which correspond to Lie groups, and discrete symmetries such as permutations
or time reversal. The former can be differentiated, which leads to the concept of Lie algebras.
Lie algebras correspond to infinitesimal symmetries of physical systems and are associated
with additive quantum numbers in the quantum theory.

(Associative) algebras, often equipped with additional structures, describe observables of
physical systems. Examples are the Poisson algebras which correspond to phase spaces of
classical physical systems theory and algebras of observables in the quantum theory.

Definition 2.1.1: (Associative unital algebra, subalgebra, abelian algebra)

1. An (associative) algebra is a vector space A over k = R or k = C together with a
bilinear map ◦ : A×A→ A, the multiplication, that is associative (a ◦ b) ◦ c = a ◦ (b ◦ c)
for all a, b, c ∈ A. If there exists an element e such that e ◦ a = a ◦ e = a ∀a ∈ A, this
element is called the unit and A is called a unital algebra.

2. A (unital) subalgebra of a unital associative algebra A is a linear subspace B ⊂ A that
is a (unital) algebra, i.e. that is closed under the multiplication: b ◦ b′ ∈ B ∀b, b′ ∈ B
(and that contains the unit: e ∈ B). An algebra is called abelian or commutative if
a ◦ b = b ◦ a for all a, b ∈ A.

Remark 2.1.2: If a unit exists, it is unique.

Example 2.1.3: (Associative algebras)

41
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1. The endomorphisms End(V ) of a vector space V with the composition ◦ form an asso-
ciative algebra.

2. The smooth functions on a submanifold of Rn form an associative unital algebra C∞(M)
with pointwise multiplication, pointwise addition and multiplication with R. This al-
gebra is abelian.

3. The tensor algebra T (V ) and the exterior algebra Λ(V ) of a finite-dimensional vector
space V are associative algebras with multiplication given by respectively, the tensor
product and the wedge product.

4. The matrices M(n, k) with the usual addition, multiplication by k and matrix multi-
plication form an associative unital algebra.

Definition 2.1.4: (Group)

A group is a set G with an operation ◦ : G×G→ G such that

1. The group multiplication ◦ is associative (u ◦ v) ◦ w = u ◦ (v ◦ w) for all u, v, w ∈ G.

2. There exists an element e, the unit, such that u ◦ e = e ◦ u = u for all u ∈ G.

3. Any element g ∈ G has an inverse g−1 satisfying g ◦ g−1 = g−1 ◦ g = e.

A subset H ⊂ G is called a subgroup of G if it is a group, i.e. if e ∈ H, h ◦ h′ ∈ H for all
h, h′ ∈ H and h−1 ∈ H for all h ∈ H.

Example 2.1.5: (Groups)

1. The permutations S(k) of the set {1, ..., k} form a group.

2. For any (finite dimensional) vector space V , the set Aut(V ) forms a group with the
composition as group multiplication.

3. (Z,+) and (R \ {0}, ·) are groups.

4. The set GL(n, k) of invertible n × n matrices over k with the matrix multiplication is
a group.

5. The set SL(2,Z) = {M ∈ M(2,Z) | detM = 1} of 2× 2 matrices with integer entries
and determinant 1 forms a group with respect to the matrix multiplication. This is
called the modular group.

Definition 2.1.6: (Lie algebra, Lie subalgebra)

A Lie algebra g is a vector space g over k together with a bilinear map [ , ] : g × g → g, the
Lie bracket, that

1. is antisymmetric: [x,y] = −[y,x] for all x,y ∈ g.

2. satisfies the Jacobi identity: [[x,y], z] + [[z,x],y] + [[y, z],x] = 0 for all x,y, z ∈ g.
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The coefficients of [ , ] with respect to a basis B = {e1, ..., en} of g are called the structure
constants of g

[ei, ej ] =
n∑
k=1

f k
ij ek. (2.1)

A Lie subalgebra of g is a linear subspace k ⊂ g which is closed under the Lie bracket, i.e.
[x,y] ∈ k for all x,y ∈ k. A Lie algebra is called abelian if its Lie bracket vanishes [x,y] = 0
for all x,y ∈ g.

Example 2.1.7: (Lie algebras)

1. For a submanifold M ⊂ Rn, the set C∞(M) of smooth functions on M with pointwise
addition, multiplication by R and a Poisson bracket is an (infinite dimensional) Lie
algebra.

2. Every vector space V can be made into a Lie algebra if it is given the trivial Lie algebra
structure [v,w] = 0 for all v,w ∈ V .

3. The vector space R3 with the wedge product as Lie bracket [ , ] = ∧, (x∧y)a = εabcx
byc

is a Lie algebra.

4. Any associative algebra becomes a Lie algebra when equipped with the commutator as
a Lie bracket [a, b] = a ◦ b − b ◦ a for a, b ∈ A. In particular, this implies that the set
of matrices M(n,R) and M(n,C) with the usual matrix commutator are Lie algebras.
These Lie algebras are called gl(n,R) and gl(n,C).

5. The subset sl(n,C) = {M ∈ M(n, k) | Tr (M) =
∑n

i=1mii = 0} ⊂ gl(n, k) of matrices
with vanishing trace form a Lie subalgebra of M(n, k).

Exercise 16: Show that the examples given in Examples 2.1.3, 2.1.5, 2.1.7 are associative
unital algebras, groups and Lie algebras. Think of other examples of groups, algebras and
Lie algebras.

Exercise 17: (Structure constants)

Show that a bilinear map Φ : V ×V → V defines a Lie bracket on V if and only its coefficients
with respect to a basis B = {e1, ..., en} satisfy

φ(ei, ej) =
n∑
k=1

φ k
ij ek φ k

ij = −φ k
ji ,

n∑
k=1

(φ k
ij φ

h
kl + φ k

li φ
h
kj + φ k

jl φ
h
ki ) = 0 (2.2)

Lemma 2.1.8: (Vector fields Vec(U) form a Lie algebra)

Let U ⊂ Rn be an open subset and Vec(U) the vector space of vector fields on U . The Lie
bracket of two smooth vector fields X =

∑n
i=1 x

i∂i, Y =
∑n

i=1 y
i∂i with xi, yi ∈ C∞(U) is

the vector field

[X,Y ] =
n∑

i,j=1

(xj∂jyi − yj∂jxi)∂i. (2.3)

It satisfies

X.Y .f − Y .X.f = [X,Y ].f ∀f ∈ C∞(U),X,Y ∈ Vec(U). (2.4)

With this Lie bracket, the vector space Vec(U) becomes a Lie algebra.
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Proof: It is clear from (2.3) that the bracket [ , ] : Vec(U) × Vec(U) → Vec(U) is bilinear
and antisymmetric. Identity (2.4) is obtained by direct calculation

X.Y .f − Y .X.f =
n∑
j=1

xj∂j

(
n∑
i=1

yi∂if

)
−

n∑
j=1

yj∂j

(
n∑
i=1

xi∂if

)
=

n∑
i,j=1

(xj∂iyi − yj∂jxi)∂if.

The Jacobi identity follows by direct calculation from (2.3) or (2.4)

[[X,Y ],Z]f = X.Y .Z.f − Y .X.Z.f −Z.X.Y .f + Z.Y .X.f (2.5)
[[Z,X],Y ]f = Z.X.Y .f −X.Z.Y .f − Y .Z.X.f + Y .X.Z.f

[[Y ,Z],X]f = Y .Z.X.f −Z.Y .X.f −X.Y .Z.f + X.Z.Y .f

2

Definition 2.1.9: (Homomorphisms, endomorphisms, isomorphisms and automorphisms)

• A Homomorphism of (associative) algebras A, B is a linear map Φ ∈ Hom(A,B) that
is compatible with the multiplication: for all a, a′ ∈ A: φ(a ◦ a′) = φ(a) ◦ φ(a′). A
homomorphism of algebras is called, respectively, an endomorphism, isomorphism or
automorphism of algebras if it is an endomorphism, isomorphism and automorphism of
vector spaces. If there exists an algebra isomorphism between algebras A and B, A and
B are called isomorphic. The vector space of algebra endomorphisms of an algebra A
is a subalgebra of the algebra End(A) (with composition ◦ as multiplication).

• A homomorphism of Lie algebras h, k is a linear map φ ∈ Hom(h, k) that is compat-
ible with the Lie brackets: [φ(x), φ(y)] = φ([x,y]) for all x,y ∈ h. It is called an
an endomorphism, isomorphism or automorphism of Lie algebras if it is an endomor-
phism, isomorphism and automorphism of vector spaces. If there exists an isomorphism
between Lie algebras h and k, h and k are called isomorphic. The vector space of Lie al-
gebra endomorphisms of a Lie algebra h is Lie subalgebra End(h) with the commutator
as the Lie bracket.

• A group homomorphism is a map ρ : G → H between groups G,H that is compatible
with the group multiplication: ρ(u · v) = ρ(u) · ρ(v) ∀u, v ∈ G. It is called an endomor-
phism if H = G, an isomorphism if φ(u) = φ(v) implies u = v and an automorphism if
it is an isomorphism and G = H. If there exists a group isomorphism between groups
G and H, G and H are called isomorphic. The set of group automorphisms of a group
G forms a group with group multiplication given by composition and idG as unit.

Lemma 2.1.10: (Adjoint action)

1. For any group G and any g ∈ G the map Gg : G → G, h 7→ g ◦ h ◦ g−1 is a group
automorphism. Cg is called the adjoint action of G on itself. The map C : G→ Aut(G),
g 7→ Cg is a group homomorphism from G to the group of group automorphisms of G.

2. For a Lie algebra g and any x ∈ g, the map adx : g → g, y 7→ [x,y] is a Lie algebra
endomorphism. This Lie algebra endomorphism is called the adjoint action of g on
itself. In terms of the structure constants, it is given by

adei(ej) =
n∑
k=1

fkijek.
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The map g → End(g), x 7→ adx is a Lie algebra homomorphism from g to the Lie
algebra of Lie algebra endomorphisms of g.

2.2 Lie algebras and matrix Lie groups

An important role in physics is played by the so-called matrix (Lie) groups which we now
define.

Definition 2.2.1: (Matrix Lie group)

1. A matrix Lie group, or classical Lie group, G is a closed subgroup of the group GL(n, k)
of invertible matrices with respect to the matrix multiplication.

2. The tangent space TgG at a point g in a matrix Lie group G is the subvector space of
M(n, k) defined as

TgG = {c′(0) ∈M(n, k) | c :]− ε, ε[→ G differentiable with c(0) = g}.

Theorem 2.2.2: The tangent space g = TeG to a matrix Lie group at the identity element
is a Lie algebra with Lie bracket

[x,y] =
d2

dsdt

∣∣∣∣
s=t=0

cx(t)cy(s)(cx(t))−1 = x · y − y · x (2.6)

where x,y ∈ TeG and cx :] − ε, ε[→ G, cy :] − ε, ε[→ G are smooth curves in G with
cx(0) = cy(0) = e and derivatives ċx(0) = x, ċy(0) = y.

Proof:

1. For all g ∈ G, the map Cg ◦ cy :] − ε, ε[→ G, s 7→ g · cy(s) · g−1 defines a path in G with
Cg ◦ cy(0) = e, Cg ◦ ċy(0) ∈ TeG. For each g ∈ G, we obtain a linear map

Adg : TeG→ TeG x 7→ d
dt |t=0Cg ◦ cx(t) ∀x ∈ g, g ∈ G. (2.7)

2. This implies that for all t ∈ R d
ds |s=0cx(t) · cy(s) · cx(t)−1 ∈ TeG. As cx is a smooth curve

in G, the derivative

d

dt

∣∣∣∣
t=0

cx(t)ċy(0)cx(t)−1 =
d2

dsdt

∣∣∣∣
t=s=0

cx(t)cy(s)(cx(t))−1 (2.8)

is again an element of g = TeG. Using the product rule, we find

d2

dsdt

∣∣∣∣
t=s=0

cx(t)cy(s)(cx(t))−1 = x · y − y · x. (2.9)

The third example in Lemma 2.1.7 states that d2

dsdt |t=0 cx(t)cy(s)(cx(t))−1 has the properties
of a Lie bracket. 2

Corollary 2.2.3: The map Ad : G → Aut(g), g 7→ Adg where Adg(x) = gxg−1 for all
g ∈ G, x ∈ g defines a group homomorphism G→ Aut(g), the adjoint action of G on its Lie
algebra g.
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Example 2.2.4: (SO(3) and so(3))

We consider the rotation group SO(3), i.e. the group of 3 × 3 matrices M with real entries
that satisfy MT = M−1 and detM = 1. This is a submanifold of M(3,R). Any rotation
matrix can be expressed as a product of the three matrices

c1(s) =

 1 0 0
0 cos s sin s
0 − sin s cos s

 c2(t) =

 cos t 0 − sin t
0 1 0

sin t 0 cos t

 c3(u) =

 cosu − sinu 0
sinu cosu 0

0 0 1


with t, s, u ∈ [−π, π[. When viewed as functions of the parameters t, s, u these matrices define
paths in SO(3) with c1(0) = c2(0) = c3(0) = e. Their derivatives at t = 0, s = 0, u = 0 are

J1 = ċ1(0) =

 0 0 0
0 0 1
0 −1 0

 J2 = ċ2(0) =

 0 0 −1
0 0 0
1 0 0

 J3 = ċ3(0) =

 0 −1 0
1 0 0
0 0 0

 .

Their Lie brackets are

[J1, J2] = J1J2 − J2J1 = J3 [J3, J1] = J3J1 − J1J3 = J2 [J2, J3] = J2J3 − J3J2 = J1.

We find that the Lie algebra TeSO(3) is the Lie algebra so(3) of anti-symmetric, traceless
3× 3 matrices. The elements J1, J2, J3 form a basis of so(3).

Exercise 18: (SU(2) and su(2))

1. Consider the group SU(2) of unitary 2 × 2 matrices with unit determinant, i.e. matrices
M ∈ M(2,C) satisfying M † = M̄T = M−1, det(M) = 1. Show that any element of SU(2)
can be expressed as

M =
(

a b
−b̄ ā

)
a, b ∈ C, |a|2 + |b|2 = 1. (2.10)

Show that any matrix of the form (2.10) can be parametrised as

M =
(

cosαeiβ sinαei(β+γ)

− sinαe−i(β+γ) cosαe−iβ

)
α, β, γ ∈ [−π, π[. (2.11)

2. Show that if c :]− ε, ε[→M(2,C)

c(t) =
(

a(t) b(t)
−b̄(t) ā(t)

)
a, b :]− ε, ε[→ C smooth

defines a smooth path in SU(2) with c(0) = e, we have

a(0) = 1 b(0) = 0 Re(ȧ(0)) = 0.

Conclude that the Lie algebra su(2) is the set of anti-hermitian, traceless matrices in M(2,C).
Show that they form a real linear subspace of M(2,C).

3. Show that the following define smooth paths Mi :]− π, π[→ SU(2) with Mi(0) = e

M1(s) =
(

cos s sin s
− sin s cos s

)
M2(u) =

(
cosu i sinu
i sinu cosu

)
M3(t) =

(
eit 0
0 e−it

)
.
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Show that the derivatives of these paths are given by

K1 = Ṁ1(0) =
(

0 1
−1 0

)
K2 = Ṁ2(0) =

(
0 i
i 0

)
K3 = Ṁ3(0) =

(
i 0
0 −i

)
and that they form a basis of the set of traceless, anti-hermitian matrices in M(2,C). Show
that their Lie bracket is given by

[K1,K2] = K3 [K3,K1] = K2 [K2,K3] = K1. (2.12)

3. Define a linear map Φ : su(2) → so(3) by setting Φ(K1) = J1, Φ(K2) = J2, Φ(K3) = J3

where J1, J2, J3 are the matrices in Example 2.2.4. Show that this map is a Lie algebra
isomorphism and therefore so(3) ∼= su(2) as Lie algebras.

Remark: As they can be expressed as Lie algebras with structure constants in R, both
so(3) and su(2) are Lie algebras over R. Note that this does not mean that the matrices
corresponding to these elements are matrices with entries in R. The anti-hermitian matrices
are only a real liner subspace, but not a complex linear subspace of M(n,C).

Remark: As a submanifold of R4 ∼= C2, the group SU(2) is diffeomorphic to the three-sphere
S3. The identification is given by

M =
(

cosαeiβ sinαei(β+γ)

− sinαe−i(β+γ) cosαe−iβ

)
7→ (cosα, sinα cosβ, sinα sinβ cos γ, sinα sinβ sin γ)

α, β ∈ [−π, π[, γ ∈ [0, 2π[.

Theorem 2.2.5: (Exponential map)

Let g be a Lie algebra that is a Lie subalgebra of the Lie algebra gl(n, k). Then, the series

exp(M) =
∞∑
k=0

Mk

k!
(2.13)

converges absolutely for all M ∈ M(n, k) and hence defines a map exp : g → M(n, k). The
image exp(g) is a matrix Lie group.

Proof:

1. We first need to show that the exponential map exp : M(n, k) → M(n, k) is well-
defined, i.e. that the series converges absolutely. For this, we consider the norm ||M || =√

Tr (M †M) =
√∑n

i,j=1 |mij |2 introduced in Exercise 1.1.15. Using the Cauchy Schwartz

inequality |Tr
(
A†B

)
| ≤ ||A||||B||, one can show by induction that ||Mk|| ≤ ||M ||k for all

k ∈ N. This implies

n∑
k=0

Mk

k!
≤

n∑
k=0

||M ||k

k!
(2.14)

As
∑∞

n=0
xk

k! converges for all x ∈ R, the series
∑n

k=0
Mk

k! converges absolutely, and the
exponential map for matrices is well-defined.
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2. We now need to show that the image of exp has the structure of a group. For this, we
note that exp(0) = 1n, where 1n is the n× n unit matrix. Furthermore, we have

exp(M) · exp(−M) =
∞∑

k,l=0

(−1)l
Mk

k!
M l

l!
(2.15)

After a change of variables s = k + l and reordering the sum (which can be done because it
converges absolutely), we obtain

exp(M) exp(−M) =
∞∑
s=0

M s

s!

(
s∑
l=0

s!
l!(s− l)!

(−1)l
)

=
∞∑
s=0

M s

s!

(
s∑
l=0

(−1)l
(
s
l

))
(2.16)

Using the binomial formula (x+ y)s =
∑s

l=0

(
s
l

)
xlys−l, we find

exp(M) · exp(−M) =
∞∑
s=0

M s

s!
(1 + (−1))s = 1n. (2.17)

This proves the existence of inverses. It remains to show that the image of exp is closed
under the multiplication, i.e. if g = exp(M), h = exp(N) there exists a P ∈ g such that
g · h = exp(P ). This can be shown using the formula of Baker Campbell and Hausdorff, who
showed that such a P exists and gave an explicit expression for P in terms of M and N

P =
∞∑
n=1

(−1)n

n!

∞∑
k1,j1,...,kn,jn=0
ki+ji>0 ∀i=1,...,n

1
(
∑n

l=1(kl + jl)) k1!j1! · · · kn!jn!
[Mk1N j1Mk2N j2 · · ·MknN jn ]

[Mk1N j1Mk2N j2 · · ·MknN jn ] := [M, [M, ..., [M︸ ︷︷ ︸
k1×

, [N, [N, ..., [N︸ ︷︷ ︸
j1×

, ... [M, [M, ...[M︸ ︷︷ ︸
kn×

, [N, [N, ...N ]]]...]︸ ︷︷ ︸
jn×

.

Note that this multiple commutator vanishes f jn > 1 or jn = 0 and kn > 1. 2

Remark 2.2.6: If g ⊂ M(n, k) is a Lie subalgebra, the Lie algebra of the Lie group G =
exp(g) is TeG = g. This follows from the fact that for all g ∈ exp(g), there exists a M ∈ g

such that g = exp(M) and the paths cM :] − ε, ε[→ G, cM (t) = exp(tM) satisfy cM (0) = e,
ċM (0) = M . However, given a matrix Lie group G ⊂M(n, k) with Lie algebra g = TeG, the
exponential map exp : g → G is not necessarily surjective. In general, its image is either G
or a proper subgroup of G.

Example 2.2.7: (sl(n, k) and SL(n, k))

We consider the set sl(n, k) of matrices with vanishing trace and entries in k. We claim that
the image of this Lie algebra under the exponential map exp : M(n,K) → GL(n, k) is the
subgroup SL(n, k) = {g ∈ GL(n, k) | det(M) = 1}. To show this, we prove the identity

det(exp(K)) = eTr(K) ∀K ∈M(n, k). (2.18)

We set M = tK, t ∈ R, K = (kij)i,j=1,...,n ∈M(n, k) and note that

d

dt
eTr(tK) = Tr (K) eTr(K).
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Using the formula for the determinant, we obtain

d

dt
det etK =

d

dt

∑
σ∈Sn

(−1)sgn(σ)(etK)1σ(1) · · · (etK)nσ(n)

=
n∑

l,m=1

∑
σ∈Sn

klm(etK)mσ(l)

(etK)lσ(l)
(−1)sgn(σ)(etK)1σ(1) · · · (etK)nσ(n).

From the antisymmetry of the determinant it follows that all terms except the ones with
m = l vanish. This yields

d

dt
det etK =

n∑
l=1

∑
σ∈Sn

kll(etK)lσ(l)

(etK)lσ(l)
(−1)sgn(σ)(etK)1σ(1) · · · (etK)nσ(n) = det etKTr (K) .

Hence, we have

d

dt
ln
(
det etK

)
=

Tr (K) · det etK

det etK
= Tr (K) =

Tr (K) · etTr(K)

etTr(K)
=

d

dt
ln
(
etTr(K)

)
.

This implies det etK = C · etTr(K), where C ∈ C constant. As we have det e0 = det(1n) = 1 =
e0, the contant is c = 1, which proves identity (2.18).

Using (2.18), one then finds that the image of a traceless matrix under the exponential
map is a matrix with unit determinant. This implies that exp(sl(n, k)) is either SL(n, k) a
proper subgroup of SL(n, k). To show that it is the whole group, one can select a set of
multiplicative generators of SL(n, k), i.e. a set of matrices such that any element of SL(n, k)
can be expressed as a product in these generators and show that these generators can be
obtained via the exponential map. (See Exercise 19) 2.

Exercise 19: (M(n,R) and GL(n,R))

We consider the set GL(n,R) of invertible matrices in M(n,R), i.e. matrices M ∈ M(n,R)
with detM 6= 0. As this is an open subset of M(n,R), it is a submanifold of M(n,R) and
therefore a Lie group.

1. To determine TeGL(n,R), we consider the matrices Eij whose only non-zero entry is a
1 in row i and column j: (Eij)kl = δi,kδj,l . Show that for i 6= j, Mij(t) = 1n + tEij is
invertible with M−1

ij (t) = 1 − tEij . Show that for all i = 1, ..., n, Mii(t) = 1n + (et − 1)Eii
is invertible with M−1

ii (t) = 1n + (e−t − 1)Eii. Conclude that the matrices Mij define paths
Mij :]− ε, ε[→ GL(n,R) with Mij(0) = 1n, Ṁij(0) = Eij for all i, j = 1, ..., n. Show that the
elements Ṁij(0) = Eij form a basis of M(n,R) and therefore TeG = M(n,R).

Hint: Show first that E2
ij = 0 for i 6= j, E2

ii = Eii.

2. We now consider the exponential map exp : M(n,R)→M(n,R). Use the identity

det(eM ) = exp(Tr (M))

to conclude that exp(M(n,R)) is a subgroup of the group of invertible matrices M ∈ GL(n, k)
with det(M) > 0. Although TeGL(n,R) = M(n,R), the image of the exponential map
exp : M(n,R)→M(n,R) is therefore not GL(n,R) but only a subgroup of it.
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Example 2.2.8: Some common matrix groups and their Lie algebras

We denote by M(n, k) the matrices of dimension n × n with entries in k = R or k = C and
write diag(p, q) for the diagonal matrix with the first p entries equal to 1 and the remaining
q entries equal to −1. Some common Lie groups arising in physics and the associated Lie
algebras can be listed as follows.

Matrix Lie group G Lie algebra g = TeG

GL(n, k) general linear group gl(n, k) = M(n, k)
invertible matrices in M(n, k)
SL(n, k) special linear group sl(n, k) traceless matrices
matrices in GL(n, k) with det = 1 matrices in M(n, k) with tr = 0
preserves determinant:
det(AB) = det(B) ∀A ∈ SL(n, k), B ∈M(n, k)
U(n) unitary group u(n) anti-hermitian matrices
matrices M ∈M(n,C) with M † = M−1 matrices m ∈M(n,C) with m† = −m
preserves standard hermitian form on Cn

SU(n) special unitary group su(n) traceless anti-hermitian
matrices M ∈ U(n) with detM = 1 matrices m ∈ u(n) with Tr (m) = 0
preserves standard hermitian form on Cn

and determinant
O(n) orthogonal group o(n) anti-symmetric
matrices M ∈M(n,R) with MT = M−1 matrices m ∈M(n,R) with mT = −m
preserves standard scalar product on Rn

SO(n) special orthogonal group so(n) traceless antisymmetric
matrices M ∈ O(n) with detM = 1 matrices m ∈ o(n) with Tr (m) = 0
preserves standard scalar product on Rn

and determinant
O(p, q) matrices M ∈M(n,R) o(p, q)
with MT · diag(p, q) ·M = diag(p, q)
preserves bilinear form diag(p, q) on Rn

SO(p, q) so(p, q)
matrices M ∈ O(p, q) with detM = 1 matrices m ∈ o(p, q) with Tr (m) = 0
preserves bilinear form diag(p, q) on Rn

and determinant

2.3 Representations

2.3.1 Representations and maps between them

Definition 2.3.1: (Representations)

1. A representation of an (associative, unital) algebra A is an algebra homomorphism
ρ : A→ End(V ) from A into the algebra of endomorphisms of a vector space V .

2. A representation of a Lie algebra g is a Lie algebra homomorphism from g into the Lie
algebra End(V ) with the commutator as Lie bracket.
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3. A representation of a group G is a group homomorphism from G into the group of
automorphisms Aut(V ) of a vector space V .

The dimension of a representation is the dimension of the associated vector space.

Generally, the vector space on which a group, algebra or Lie algebra is represented can be
either finite dimensional or infinite-dimensional. In the infinite dimensional case, one often
needs additional assumptions such as continuity. In this chapter, we will assume that all
representations are representations on finite dimensional vector spaces.

Lemma 2.3.2: (Adjoint representations)

1. Every matrix Lie group G has a representation on its Lie algebra g, the adjoint repre-
sentation Ad : G→ Aut(g), given by

Ad(g)x = g · x · g−1 ∀g ∈ G,x ∈ g. (2.19)

2. Every Lie algebra g has a representation on itself, the adjoint representation ad : g →
End(g), given by

ad(x)y = [x,y] ∀x,y ∈ g. (2.20)

In terms of a basis B = {e1, ..., en} of g with structure constants [ei, ej ] =
∑n

k=1 f
k

ij ek,
the adjoint representation is given by the matrix

ad(x)y =
n∑

j,k=1

ad(x) k
j y

jek with ad(x) k
j =

n∑
i=1

xif k
ij .

Lemma 2.3.3: (Representations of matrix Lie groups ⇒ representations of Lie algebras)

Let G be a matrix Lie group with Lie algebra g = TeG and let ρG : G → Aut(V ) be a
representation of G on a vector space V over k. Then, a representation ρg : g → End(V ) of
the Lie algebra g on V is given by

ρg(x)v =
d

dt

∣∣∣∣
t=0

ρG(cx(t))v ∀v ∈ V,x ∈ g, (2.21)

where cx :]− ε, ε[→ G is a smooth path in G with cx(0) = e and ċx(0) = x.

Proof: By definition, for all x ∈ g there exists a path cx :]−ε, ε[→ G with c(0) = e, ċ(0) = x.
For al v ∈ V , the derivative

d

dt

∣∣∣∣
t=0

ρG(cx(t))v

does not depend on the choice of the path but only on its derivative ċx(0) = x. We can
therefore define a map ρg : g→ End(V ) by setting

ρg(x)v =
d

dt

∣∣∣∣
t=0

ρG(cx(t))v ∀v ∈ V,x ∈ g.

For all x,y ∈ g with associated paths cx :] − ε, ε[→ G, cy :] − ε, ε[→ G, cx(0) = cy(0) = e,
ċx(0) = x, ċy(0) = y and all v ∈ V , we have

ρg([x,y])v =
d

dtds

∣∣∣∣
t=s=0

ρG(cx(t)·cy(s)·cx(t))v = ρg(x)ρg(y)v−ρg(y)ρg(x)v = [ρg(x), ρg(y)]v,

which implies that the map ρg : g→ End(V ) is a representation of g on V . 2
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Exercise 20: Show that the following matrices define a representation of the permutation
group S(3) on R3

ρ(π12) =

 0 1 0
1 0 0
0 0 1

 ρ(π13) =

 0 0 1
0 1 0
1 0 0

 ρ(π23) =

 1 0 0
0 0 1
0 1 0

 , (2.22)

where πij : (1, ..., i, ...j, ...n)→ (1, ..., j, ..., i, ...n) ∈ S(n) denote the elementary exchanges

πij(k) = k ∀k 6= i, j πij(i) = j πij(j) = i.

Exercise 21: (The Heisenberg algebra has no finite-dimensional representations)

We consider the associative algebra generated by two elements X,P and a unit e with commu-
tator [X,P ] = e. This is an infinite-dimensional vector space with basis {ekl = P k ◦X l | k, l ∈
N0}, where P 0 ◦X l = X l, P k ◦X0 = P k, P 0 ◦X0 = e. Its algebra multiplication law is given
by the relation

X ◦ P − P ◦X = e. (2.23)

Show that this algebra does not have a non-trivial finite dimensional representation, i.e. a
non-trivial representation by matrices.

Hint: Suppose it has a matrix representation and use the trace to obtain a contradiction.

In physics, one often restricts attention to unitary representations of groups on vector spaces
V which carry a hermitian product 〈 , 〉. These are the representations ρ : G→ End(V ) which
leave the hermitian product invariant. The motivation for this is that a physical symmetry
represented on the Hilbert space should leave transition amplitudes invariant, i.e. preserve
the absolute value of the hermitian form.

|〈ρ(g)x, ρ(g)y〉| = |〈x,y〉| ∀x,y ∈ V, g ∈ G

Wigner’s theorem states that such a representation is either unitary

〈ρ(g)x, ρ(g)y〉 = 〈x,y〉 ∀x,y ∈ V, g ∈ G

or anti-unitary
〈ρ(g)x, ρ(g)y〉 = 〈x,y〉 ∀x,y ∈ V, g ∈ G.

This provides a motivation for the investigation of unitary representations. We start with a
definition.

Definition 2.3.4: (Unitarity)

A representation ρ : G → End(V ) of a group G on a vector space V over C with hermitian
product 〈 , 〉 : V × V → C is called unitary if

〈ρ(g)v, ρ(g)w〉 = 〈v,w〉 ∀v,w ∈ V, g ∈ G. (2.24)

This is equivalent to the statement that for any basis B = {e1, ..., en}, the representing
matrices ρ(g), g ∈ G are unitary: ρ(g)† = ρ(g)−1.

Lemma 2.3.5:
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1. A unitary representation ρG : G → Aut(V ) of a matrix Lie group G on a complex
vector space V induces a representation ρg : g→ End(V ) of the associated Lie algebra
g = TeG by anti-hermitian matrices.

2. The elements ix with x ∈ g are represented by hermitian matrices. Consequently,
for each x ∈ g there exists a basis with respect to which ρ(ix) is diagonal with real
eigenvalues and ρ(x) is diagonal with imaginary eigenvalues.

Remark 2.3.6:

1. Note that in this lemma g is considered as a real Lie algebra, i.e. a Lie algebra over
R. Linear combinations of elements in g with complex coefficients are not necessarily
anti-hermitian nor are they necessarily diagonalisable.

2. Although all representing matrices ρ(ix), ρ(x) for x ∈ g can be diagonalised, in general
this cannot be achieved simultaneously for all x ∈ g. Different elements x ∈ g are
diagonalised by different choices of bases. For two elements x,y ∈ g, the representation
matrices can be diagonalised simultaneously if and only if ρ(x) and ρ(y) commute.

Proof: Suppose ρ : G→ Aut(V ) is a unitary representation of G on a complex vector space
V . Then according to Lemma 2.3.3, the associated representation ρg : g → End(V ) of g on
V is given by

ρg(x)v =
d

dt

∣∣∣∣
t=0

ρG(cx(t))v ∀v ∈ V,x ∈ g,

where cx :] − ε, ε[→ G is a smooth path with c(0) = e, ċ(0) = x. To show that ρg is anti-
hermitian, we differentiate the product ρG◦cx·ρ†G◦cx, which by unitarity of the representations
is equal to 1

d

dt

∣∣∣∣
t=0

ρG(cx(t)) · ρ†G(cx(t))︸ ︷︷ ︸
=1 for all t∈]−ε,ε[

= ρg(x) + ρg(x)† = 0.

This shows that ρg(x) is anti-hermitian for all x ∈ g. 2

As we have seen in the previous sections, a homomorphism of vector spaces V , W is a
linear map between V and W , i.e. a map that is compatible with the structure of a vector
space. A homomorphism of algebras A, B is a vector space homomorphism φ : A→ B that,
additionally, is compatible with the algebra multiplication φ(a ·b) = φ(a) ·φ(b) for all a, b ∈ A.
Similarly, a homomorphisms of groups G,H is a map φ : G→ H that is compatible with the
group structure: φ(u · v) = φ(u) · φ(v) for all u, v ∈ G.

This provides a motivation for studying homomorphisms of representations or intertwiners.
These are maps between the representation spaces that are compatible with the action of the
groups, algebras or Lie algebras represented on them.

Definition 2.3.7: (Intertwiners - homomorphisms of representations)

An intertwiner between two representations ρV : X → End(V ), ρW : X → End(W ), where
X is either an associative algebra, a group or a Lie algebra, is a vector space homomorphism
φ ∈ Hom(V,W ) that is compatible with the action of X on V and W

ρW (x)φ(v) = φ(ρV (x)v) ∀v ∈ V, x ∈ X. (2.25)

Two representations ρV : X → End(V ), ρW : X → End(W ) are called isomorphic, if there
exists an intertwiner between them that is an isomorphism of vector spaces.
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2.3.2 (Ir)reducibility

Definition 2.3.8: (Reducibility and irreducibility)

1. A representation ρV : X → End(V ), where X is either an associative algebra, a group
or a Lie algebra, is called irreducible if there is no proper linear subspace W ⊂ V ,
W 6= {0}, V that is invariant under the action of X

ρ(X)W ⊂W ⇒ W = 0 or W = V. (2.26)

Otherwise, the representation is called reducible.

2. A reducible representation ρV : X → End(V ) is called fully reducible if there exist
vector spaces V1, ..., Vn ⊂ V , Vi ∩ Vi = {0} for i 6= j such that

(a) Vi is invariant under the action of X: ρ(X)Vi ⊂ Vi
(b) ρVi = ρV

∣∣
Vi

is irreducible

(c) V = V1 ⊕ ...⊕ Vn.

This is equivalent to the existence of a basis of V in which the representation matrix
takes a block diagonal form and all blocks correspond to irreducible representations.

Example 2.3.9: (Spin 1/2 system)

The matrices in Example 2.2.4 define an irreducible representation of su(2) on R3 which
agrees with the adjoint representation.

Example 2.3.10: The representation ρ : su(2) → End(C4) given by the representation
matrices

ρ(K1) =
(
K1 0
0 0

)
ρ(K2) =

(
K2 0
0 0

)
ρ(K3) =

(
K3 0
0 0

)
, (2.27)

where Ki, i = 1, 2, 3 are the matrices from Example 18 is reducible because the subspace
Span({e3, e4}) is invariant.

Lemma 2.3.11: (Schur’s lemma)

An intertwiner between two irreducible representations of a Lie algebra g, an algebra A or a
group G is either an isomorphism or zero.

Proof:

Suppose Φ : V → W is an intertwiner between representations ρV : X → End(V ) and
ρW : X → End(W ) and consider the kernel ker(Φ) = {v ∈ V : Φ(v) = 0}. Because Φ is
linear, this is a subspace of V . Because Φ is compatible with the representation ρV , it is
an invariant subspace of V . As ρV is irreducible, this implies ker(Φ) = V or ker(Φ) = {0}.
In the first case, Φ is zero, in the second case, it is injective. Similarly, the image Im(Φ) =
{w ∈ W : ∃v ∈ V : w = Φ(v)} is a subspace of W since Φ is linear. It is invariant under ρW
because Φ is an intertwiner. This implies Im(Φ) = {0} or Im(Φ) = W . In the first case, Φ
vanishes. In the second case, Φ is surjective. Hence, Φ is either zero or an isomorphism. 2
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Corollary 2.3.12: (Schur’s lemma 2)

Let ρV : X → End(V ) be an irreducible representation of an algebra, a Lie algebra or a group
on a finite dimensional vector space V over C. Then, any self-intertwiner Φ ∈ End(V ) is a
multiple of the identity, i.e. there exists λ ∈ C such that Φ(v) = λv for all v ∈ V .

Proof: As V is a finite-dimensional vector space over C, Φ has at least one eigenvector
with eigenvalue λ ∈ C. This implies that ker(Φ− λ1dim(V )) 6= {0}. But Φ− λ1dim(V ) is also
an intertwiner. Schur’s lemma then implies Φ− λ1dim(V ) = 0. 2

Corollary 2.3.13: (Schur’s lemma 3)

Let ρV : X → End(V ) be an irreducible representation of an algebra, a Lie algebra or a group
on a n-dimensional vector space V over C. A matrix M ∈ M(n,C) that commutes with all
representation matrices (ρV (X) j

i )i,j=1,...,n with respect to a basis B = {e1, ..., en} of V is a
multiple of the identity matrix 1n.

Proof: Any element M ∈M(n,C) defines an endomorphism Φ ∈ End(V ) via the choice of
a basis B = {e1, ..., en} and the identity

Φ(ei) =
n∑
j=1

M j
i ej . (2.28)

If M commutes with all representation matrices (ρV (x) j
i )i,j=1,...,n, x ∈ X, Φ is a self-

intertwiner of ρV . Corollary 2.3.12 then implies that Φ is a multiple of the identity and
M therefore a multiple of the identity matrix. 2

Remark 2.3.14: Although Lemma 2.3.11 and Corollaries 2.3.12, 2.3.13 can all be found
under the name “Schur’s lemma” in the literature, they are not equivalent. Lemma 2.3.11 is
stronger than Corollary 2.3.12 which is in turn stronger than Corollary 2.3.13.

Remark 2.3.15: Corollary 2.3.13 is useful to determine if a given representation is irre-
ducible. If it is possible to find a matrix that is not proportional to the identity matrix and
commutes with all representation matrices, the representation is reducible.

2.3.3 (Semi)simple Lie algebras, Casimir operators and Killing form

The question if the adjoint representation of a Lie algebra on itself is reducible leads to the
notion of simple and semisimple Lie algebras, which play a prominent role in the classification
of Lie algebras. They also are very important in the classification of their representations.

Definition 2.3.16: (Ideal, simple, semisimple)

An ideal of a Lie algebra is a linear subspace i ⊂ g such that [x,y] ∈ i for all x ∈ g and y ∈ i.
A Lie algebra is called simple if it is not abelian and it has no non-trivial ideals, i.e. it has
no ideals i 6= {0}, g. A Lie algebra is called semisimple if it is the direct sum of simple Lie
algebras, i.e. there exist simple Lie subalgebras gi ⊂ g, i = 1, ..., k, such that g = g1⊕ ...⊕ gk
as a vector space and the Lie bracket takes the form

[x,y]g = 0 for x ∈ gi,y ∈ gj , i 6= j [x,y]g = [x,y]gi for x,y ∈ gi. (2.29)
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Corollary 2.3.17:

The adjoint representation of a Lie algebra g is irreducible if and only if g is simple.

Theorem 2.3.18: A Lie algebra is semisimple if and only if it has no non-trivial abelian
ideals.

Proof: The proof can be found in many textbooks on Lie algebras.

We now construct a class of Lie algebras which are neither simple nor semisimple, the Lie
algebras associated with semi-direct product groups.

Example 2.3.19: (Semidirect products)

1. Let G be a matrix Lie group with Lie algebra g = TeG and denote by [ , ]g the Lie
bracket on g. Let ρG : G→ Aut(V ) be a representation of G on a vector space V over
k and ρg : g→ End(V ) the associated representation of g.

We consider the set G × V = {(g,v) | g ∈ G,v ∈ V } and define a multiplication
· : (G× V )× (G× V )→ (G× V ) by setting

(g,v) · (h,w) = (gh,v + ρG(g)w) ∀g, h ∈ G,v,w ∈ V.

Then, the set G× V with the multiplication · is a group, called the semidirect product
of G and V and denoted Gn V .

2. Its Lie algebra, denoted g n V , is the set g × V = {(x,v) | x ∈ g,v ∈ V } with the
vector space structure of the direct sum

(x,v) + (y,w) = (x + y,v + w) t(x,v) = (tx, tv) ∀x,y ∈ g,v,w ∈ V, t ∈ k.

and with Lie bracket

[(x,v), (y,w)] = ([x,y]g, ρg(x)w − ρg(y)v) ∀x,y ∈ g,v,w ∈ V.

3. This Lie algebra is neither simple nor semi-simple. The linear subspaces V = {(0,v) | v ∈
V } ⊂ g n V and g = {(x, 0) | x ∈ g} are ideals of g

[(x,v), (0,w)] = (0, ρg(x)w) ∀x ∈ g,v,w ∈ V
[(x,v), (y, 0)] = ([x,y]g, 0) ∀x,y ∈ g,v ∈ V.

This implies that g n V cannot be simple, unless G is the trivial Lie group: G = {e}
or V is the trivial vector space of dimension 0: V = {0}. Moreover, one finds that the
vector space V ⊂ g n V is an abelian ideal of g n V

[(0,v), (0,w)] = 0 ∀v,w ∈ V.

By Theorem 2.3.18, a semisimple Lie algebra cannot have any non-trivial abelian ideals,
which implies that the semidirect product g n V cannot be semisimple. 2

Remark 2.3.20: Many groups that are important in physics are semidirect products. Ex-
amples are the Euclidean group SO(3) n R3 and the Poincaré group SO(3, 1) n R4.
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Exercise 22: (Semidirect products)

1. Let G be a matrix Lie group with Lie algebra g = TeG and denote by [ , ]g the Lie
bracket on g. Let ρG : G → Aut(V ) be a representation of G on a vector space V
over k and ρg : g → End(V ) the associated representation of g. We consider the set
G× V = {(g,v) | g ∈ G,v ∈ V } with multiplication law

(g,v) · (h,w) = (gh,v + ρG(g)w) ∀g, h ∈ G,v,w ∈ V.

Show that this multiplication law gives G×V the structure of a group, which we denote
by GnV . Give the unit element of the group. What is the inverse of an element (g,v)
with g ∈ G, v ∈ V ?

2. Consider smooth paths c(x,v) :]− ε, ε[→ Gn V with cx,v(0) = e parametrised as

cx,v(t) = (gx(t),v(t)) g(t) ∈ G, cv(t) ∈ V,

where gx :] − ε, ε[→ G is a smooth path in G with gx(0) = eG, ġx(0) = x and cv :
] − ε, ε[→ V is a smooth path in V with cv(0) = 0, ċv(0) = v. Express the product
cx,v(t) ·cy,w(s) ·cx,v(t)−1 in terms of the paths gx, gy :]−ε, ε[→ G and cv, cw :]−ε, ε[→ V .
Show that its derivative at t = s = 0 is given by

d2

dsdt

∣∣∣∣
t=s=0

cx,v(t) · cy,w(s) · cx,v(t)−1 = ([x,y]g, ρg(x)w − ρg(y)v).

Show by direct calculation that

[(x,v), (y,w)] := ([x,y]g, ρg(x)w − ρg(y)v) ∀x,y ∈ g,v,w ∈ V.

defines a Lie bracket on the vector space g⊕ V .

An important tool in the classification of Lie algebras and in the investigation of their prop-
erties is the Killing form, a canonical symmetric bilinear form on a Lie algebra.

Definition 2.3.21: (Killing form)

The Killing form of a finite dimensional Lie algebra g over k is the bilinear form κ : g×g→ k
defined by

κ(x,y) = Tr
(
adx ◦ ady

)
(2.30)

where adx : y 7→ [x,y] is the adjoint representation. In terms of a basis B = {e1, .., en} of g

and the associated structure constants it takes the form

κij = κ(ei, ej) =
n∑

k,l=1

f k
il f

l
jk. (2.31)

Example 2.3.22: (Killing form of su(2))

In terms of the generators Ji, i = 1, 2, 3 in example 3, the Killing form of su(2) takes the
form κ(Ji, Jj) = δij .
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Lemma 2.3.23: (Properties of the Killing form)

The Killing-form is

1. bilinear

2. symmetric: κ(x,y) = κ(y,x) for all a,y ∈ g

3. ad-invariant: κ([y,x], z) + κ(x, [y, z]) = 0 for all x,y, z ∈ g.

Proof: Exercise.

Exercise 23:

1. Consider the Killing form κ on a Lie algebra g defined by

κ(x,y) = Tr
(
adx ◦ ady

)
∀x,y ∈ g,

where for x ∈ g, adx : g→ g is the bilinear map defined by

adx(y) = [x,y] ∀y ∈ g.

Let B = {e1, ..., en} be a basis of g with structure constants [ei, ej ] =
∑n

k=1 f
k

ij ek. Use
the expression for the adjoint action in terms of the structure constants

adx(ej) =
n∑
k=1

(adx) k
j ek (adx) k

j =
n∑
i=1

xif k
ij

to show that κ takes the form

κ(x,y) =
n∑

k,l=1

xiyjf k
li f

l
kj =

n∑
k,l=1

xiyjf k
il f

l
jk.

2. Show that κ is bilinear and use the conjugation invariance of the trace to show that κ
is symmetric. Use the Jacobi identity to show

ad[x,y](z) = adx ◦ ady(z)− ady ◦ adx(z) ∀x,y, z ∈ g.

Use this to demonstrate that κ is ad-invariant.

Theorem 2.3.24: (Killing form)

1. If g is a simple, finite dimensional Lie algebra over C, the Killing form is unique up to
scalar multiplication: Any bilinear form on g with the properties in Lemma 2.3.23 is of
the form ακ with α ∈ C \ {0}.

2. The Killing form of a finite dimensional Lie algebra g over C is non-degenerate if and
only if g is semisimple.
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Proof:

1. The first statement follows from Schur’s lemma. If β : g × g → k is a bilinear form with
the properties of Lemma 2.3.23, then its representing matrix βij = β(ei, ej) with respect to
a basis B = {e1, ..., en} is symmetric and commutes with all matrices (adx) k

i . By Schur’s
lemma, it is therefore a multiple of the identity.

2. The second statement can be proved as follows: To show that the Killing form is non-
degenerate if g is semisimple, we express g as a direct sum g = g1⊕...⊕gk, where gi, k = i, .., k
are simple subalgebras and [gi, gj ] = 0 for i 6= j. We select bases Bi = {ei1, ..., eisi} of gi. Then
the representing matrix (κij)i,k=1,...,n of κ with respect to the basis B =

⋃k
i=1Bi takes a block

diagonal form with blocks corresponding to the restrictions κi = κ
∣∣
gi

. As gi is simple, κi is
a multiple of the identity matrix κi = λi1si with λi 6= 0. Hence, the matrix (κij)i,k=1,...,n is
diagonal with eigenvalues λi 6= 0. This implies that κ is non-degenerate.

3. To show that g is semisimple if its Killing form is non-degenerate, we suppose that i ⊂ g

is an ideal in g. Then i⊥ = {x ∈ g | κ(x,y) = 0 ∀y ∈ i} is also an ideal of g since
κ([y,x], z) = −κ(x, [y, z]) = 0 if x ∈ i⊥, z ∈ g, y ∈ i. Hence g = i ⊕ i⊥, where both i, i⊥

are ideals and therefore subalgebras of g. If they are both simple, the proof is complete.
Otherwise, one of them, say i contains an ideal j ⊂ i. We then repeat the argument and find
i = j ⊕ j⊥, where the orthogonal complement is taken with respect to the restriction of the
Killing form to i. After a finite number of steps, we obtain a decomposition of g as a direct
sum of simple subalgebras. 2

Definition 2.3.25: (Quadratic Casimir)

The quadratic Casimir for a finite-dimensional simple matrix Lie algebra g with basis B =
{e1, ..., en} is the matrix

C =
n∑

i,j=1

κijei · ej where κij = κ(ei, ej) κijκ
jk = δji , (2.32)

where κ is the Killing form and the product is the matrix multiplication. Note that the
quadratic Casimir is not an element of the Lie algebra g.

Example 2.3.26: (Quadratic Casimir for su(2))

The quadratic Casimir of su(2) is given by

J2 = J2
1 + J2

2 + J2
3 , (2.33)

where Ji are the generators of su(2) in example 3.

Lemma 2.3.27: The quadratic Casimir is independent of the choice of basis and its matrix
commutator with all elements of g vanishes.

Proof:

When expressed in terms of structure constants, the ad-invariance of the Killing form reads

n∑
j=1

κijf
j

kl + κljf
j

ki = 0, (2.34)
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which implies for its inverse

n∑
j=1

κijf l
jk + κjlf i

jk = 0. (2.35)

The Lie bracket of the quadratic Casimir element with an element of the basis is given by

[C, ek] =
n∑

i,j,l=1

κij(f l
jkeiel + f l

ik elej) =
n∑

i,j,l=1

eiel(κijf l
jk + κjlf i

jk) = 0. (2.36)

Under a change of basis e′i =
∑n

j=1 a
j
i ej , A ∈ GL(n, k) the Killing form changes according

to

κ′ij = κ(e′i, e
′
j) =

n∑
k,l=1

A k
i A

l
j κ(ek, el) =

n∑
k,l=1

A k
i A

l
j κkl.

Its inverse therefore transforms according to

κ′ij =
n∑

k,l=1

(A−1) i
k (A−1) j

l κ
kl.

The quadratic Casimir is therefore invariant and does not depend on the choice of basis

C ′ =
n∑

i,j=1

κ′ije′ie
′
j =

n∑
i,j,k,l,m,n=1

(A−1) i
k (A−1) j

l κ
klA m

i A n
j en · em =

n∑
i,j,k,l,m,n=1

δmk δ
n
l κ

klemen

=
n∑

k,l=1

κklekel = C.

2

Corollary 2.3.28: In any finite-dimensional, irreducible representation of a simple Lie
algebra on a vector space over C, the matrix representing the quadratic Casimir element is a
multiple of the identity.

Proof: This follows from Schur’s lemma (version 3) 2

Example 2.3.29: (Irreducible unitary representations of su(2))

We determine the finite-dimensional irreducible unitary representations of su(2). Let ρ :
su(2) → End(V ) be a representation of su(2) on a vector space V over C with hermitian
product 〈 , 〉. The Lie algebra su(2) has a basis B = {J1, J2, J3} with Lie bracket

[Ji, Jj ] = i
3∑

k=1

ε k
ij Jk. (2.37)

Unitarity of the representation means that the adjoint of the action of the generators Ji on
V agrees with the action of Ji

ρ(Ji)† = ρ(Ji) or, equivalently 〈ρ(x)w, v〉 = 〈w, ρ(x)v〉 ∀v, w ∈ V. (2.38)
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1. We introduce the new basis

J± = J1 ± iJ2 Jz = J3 (2.39)

in which the Lie bracket and unitarity condition take the form

[Jz, J±] = ±J± [J+, J−] = 2Jz ρ(Jz)† = ρ(Jz), ρ(J±)† = ρ(J∓). (2.40)

2. We now consider a maximal abelian and semisimple Lie subalgebra of su(2), also called
Cartan subalgebra of su(2), i.e. a maximal set of matrices that can be diagonalised simul-
taneously. The Lie bracket implies that this maximal abelian subalgebra can only be one-
dimensional. We select it to be the one-dimensional subspace spanned by Jz. As ρ(Jz) is
hermitian, it can be diagonalised over C with real eigenvalues. Hence, we obtain a basis
BV = {v1, ..., vn} of V spanned by eigenvectors

ρ(Jz)vk = λkvk λk ∈ R. (2.41)

We now note the identity

ρ(Jz)ρ(J±)kv = (λ± k)ρ(J±)kv, (2.42)

which can be proved by induction using the Lie bracket of the generators J± and Jz:

ρ(Jz)ρ(J±)v = ρ(J±)ρ(Jz)v ± ρ(J±)v = (λ± 1)ρ(J±)v. (2.43)

Identity (2.42) implies that for any eigenvector v of ρ(Jz) with eigenvalue λ, ρ(J±)v is either
an eigenvector with eigenvalue λ ± 1 or vanishes. Suppose now that the basis is ordered
such that λn is the biggest eigenvalue or highest weight of ρ(Jz). Then ρ(J+)vn = 0, and we
obtain a sequence of eigenvectors wk = ρ(Jk−)vn satisfying ρ(Jz)wk = (λn − k)wk. As the
representation is finite dimensional, there exists a s ∈ N such that ρ(J−)kvn = 0 for k > s,
ρ(Js−)vn 6= 0.

3. We will now show that the vectors ρ(Jk−)vn for 0 ≤ k ≤ s form a basis of V . That
they are linearly independent follows from the fact that they are eigenvectors with different
eigenvalues. To show that they span V , we use the identity

ρ(J+)wk = (2kλn − k(k − 1))wk−1, (2.44)

which can be proved by induction:

ρ(J+)w1 = ρ(J+)ρ(J−)vn = 2Jzvn = 2λnvn = 2λnw0

ρ(J+)wk+1 = ρ(J−)ρ(J+)wk + 2Jzwk = (2kλn − k(k − 1))ρ(J−)wk−1 + 2(λn − k)wk
= (2kλn − k(k − 1) + 2(λn − k))wk = (2(k + 1)λn − (k + 1)k)wk

ws ws − 1 ws − 2 · · · w1 w0

•
J+

)) •
J−

ii
J+

** •
J−

jj
J+ ,, • · · · •
J−

jj
J+

)) •
J−

ll

J+
(( •

J−

hh

Hence, we have

ρ(Jz)wk = (λn − k)wk ρ(J−)wk = wk+1 ρ(J+)wk = (2kλn − k(k − 1))wk−1, (2.45)
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which implies that Span(w0, ..., ws) is an invariant subspace of V . As ρ is irreducible,
Span(w0, ..., ws) = V and dim(V ) = s + 1. the irreducible representations are labelled by
their dimension s ∈ N.

4. Normalisation of eigenstates. From the basis {w0, ..., ws} of V , we construct an orthonor-
mal basis, whose elements we denote by |j,m〉 with j = λn ∈ Z/2, m ∈ {−j,−j+1, ..., j−1, j}.
Supposing vn = |j, j〉 is normalised such that 〈j, j|j, j〉 = 1, we find

〈wk+1|wk+1〉 = 〈wk|ρ(J+)wk+1〉 = 2jk − k(k − 1)〈wk|wk〉 (2.46)

This implies after some further calculations that the action of su(2) on the normalised states
is given by

Jz|j,m〉 = m|j,m〉 J±|j,m〉 =
√
j(j + 1)−m(m± 1) |j,m± 1〉 (2.47)

5. Finally, we determine the eigenvalues of the quadratic Casimir ρ(J2) of su(2)

J2 = J2
1 + J2

2 + J2
3 = J2

z + 1
2(J+J− + J−J+). (2.48)

In any irreducible, finite dimensional representation ρ(J2) must be proportional to the unit
matrix, ρ(J2) = τ1 with a proportionality constant τ that characterises the representation.
This implies

ρ(J2)w0 = ρ(Jz)2w0 + 1
2ρ(J+)ρ(J−)w0 = λ2

nw0 + 1
2ρ(J+)w1 = λn(λn + 1)w0 (2.49)

ρ(J2)ws = ρ(Jz)2ws + 1
2ρ(J−)ρ(J+)ws = (λn − s)2ws + sλn − 1

2s(s− 1)ws (2.50)

We have

τ = λ2
n + λn = (λn − s)2 + sλn − 1

2s(s− 1) ⇒ λn = 1
2s. (2.51)

and find that the eigenvalues of ρ(Jz) are s
2 ,

s
2 − 1, ...,− s

2 + 1,− s
2 .

In physics, Lie algebra symmetries such as the su(2) symmetry in this example correspond
to observables. Therefore, their eigenvalues in a representation are quantum numbers. The
eigenvalues j of the Casimir operator J2, which correspond to the absolute value of the
angular momentum or spin vector are called the principal angular momentum or spin quantum
number. The eigenvalues m of Jz, which correspond to the z-component of the angular
momentum, are referred to as magnetic quantum numbers.

2.4 Duals, direct sums and tensor products of representations

2.4.1 Groups and Lie groups

Given a representation of a Lie algebra on a vector space V , one can construct new represen-
tations using the associated vector spaces investigated in Chapter 1 - the dual V ∗, the direct
sum V ⊕W and tensor product V ⊗W . We obtain the following definition.

Definition 2.4.1: (Representations of Lie algebras - constructions)

——————————————————————————————————————
C. Meusburger Concepts and Methods of Mathematical Physics, DRAFT August 12, 2011



2.4. Duals, direct sums and tensor products of representations 63

1. Dual of a representation: The dual of the representation ρV on a on vector spaces V is
the representation ρV ∗ : g→ End(V ∗) on the dual vector space V ∗ defined via

ρV ∗(x)α = α ◦ ρV (−x) ∀α ∈ V ∗,x ∈ g (2.52)

or, in terms of a basis BV = {e1, ..., en} and its dual

ρV ∗(x)ei =
n∑
k=1

(ρV (−x)) i
k e

k ∀x ∈ g. (2.53)

2. Direct sum of representations: The direct sum of the representations ρV : g→ End(V ),
ρW : g→ End(W ) is the representation ρV⊕W : g→ End(V ⊕W ) on the direct sum of
the associated vector spaces defined by

ρV⊕W (x)(v + w) = ρV (x)v + ρW (x)w ∀x ∈ g, v ∈ V ⊂ V ⊕W,w ∈W ⊂ V ⊕W.

3. Tensor product of representations: The tensor product of the representations ρV : g→
End(V ), ρW : g → End(W ) is the representation ρV⊗W : g → End(V ⊗W ) on the
tensor product of the associated vector spaces defined by

ρV⊗W (x)(v ⊗ w) = (ρV (x)v)⊗ w + v ⊗ (ρW (x)w) ∀x ∈ g, v ∈ V,w ∈W. (2.54)

Remark 2.4.2: In particle physics, elementary particles are described by irreducible repre-
sentations of Lie algebras. Examples are quarks, electrons, neutrinos etc. The duals of these
representations describe the associated anti-particle. Composite particles such as the hadrons
(including the proton and the neutron) and the mesons are described by tensor products of
irreducible representations.

It can be shown that for a semisimple Lie algebra, the tensor product of irreducible, finite
dimensional representations is always fully reducible, i.e. decomposable into irreducible rep-
resentations. An irreducible representation that arises in such a decomposition is called a
multiplet or, if the dimension of the representation is one, a singlet. More precisely, one
speaks of a doublet if the associated irreducible representation has dimension two, a triplet
if it has dimension three, a quadruplet for dimension four etc. The composite particles which
correspond to such multiplets have similar masses and similar behaviour with respect to the
fundamental interactions modelled by these representations.

The construction of a representations on dual vector spaces and tensor products of vector
spaces for Lie algebras can be performed analogously for groups if we replace g↔ G, End(·)↔
Aut(·), −x ∈ g↔ g−1 ∈ G and sums with products in (2.54) in Def. 2.4.1.

This is corresponds to the concepts of additive and multiplicative quantum numbers. Additive
quantum numbers are eigenvalues of Lie algebra elements in representations on a Hilbert space.
If one considers two copies of a quantum mechanical system, which corresponds to taking the
tensor product of two representations, the corresponding eigenvalue in the tensor product of
the representations is the sum of the eigenvalues in the individual representations.

Multiplicative quantum numbers are eigenvalues of group elements in a representation of a
group on a Hilbert space. When considering two copies of the system, i.e. taking the tensor
product, the corresponding eigenvalue in the tensor product of the representations is the
product of the eigenvalues in the individual representations.
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Definition 2.4.3: (Representations of groups - constructions)

1. Dual of a representation: The dual of the representation ρV : G→ Aut(V ) on a vector
space V is the representation ρV ∗ : G→ Aut(V ∗) on the dual vector space V ∗ defined
via

ρV ∗(g)α = α ◦ ρV (g−1) ∀α ∈ V ∗, g ∈ G (2.55)

or, in terms of a basis BV = {e1, ..., en} and its dual,

ρV ∗(g)ei =
n∑
k=1

(ρV (g−1)) i
k e

k ∀g ∈ G. (2.56)

2. Direct sum of representations: The direct sum of the representations ρV : G→ Aut(V ),
ρW : G → Aut(W ) is the representation ρV⊕W : G → Aut(V ⊕W ) on the direct sum
of the associated vector spaces defined by

ρV⊕W (g)(v + w) = ρV (g)v + ρW (g)w ∀g ∈ G, v ∈ V ⊂ V ⊕W,w ∈W ⊂ V ⊕W.

3. Tensor product of representations: The tensor product of the representations ρV : G→
Aut(V ), ρW : G → Aut(W ) is the representation ρV⊗W : G → Aut(V ⊗W ) on the
tensor product of the associated vector spaces defined by

ρV⊗W (g)(v ⊗ w) = (ρV (g)v)⊗ (ρW (g)w) ∀g ∈ G, v ∈ V,w ∈W. (2.57)

Exercise 24:

1. Show that the maps ρV⊗W : G→ Aut(V ⊗W ), ρV ∗ : G→ Aut(V ∗) defined by

ρV⊗W (g)(v ⊗ w) = (ρV (g)v)⊗ (ρW (g)w) ∀g ∈ G, v ∈ V,w ∈W (2.58)

ρV ∗(g)α = α ◦ ρV (g−1) ∀α ∈ V ∗, g ∈ G

and the maps ρV⊗W : g→ End(V ⊗W ), ρV ∗ : g→ End(V ∗) defined by

ρV⊗W (x)(v ⊗ w) = ρV (x)v ⊗ w + v ⊗ ρW (w)w ∀x ∈ g, v ∈ V,w ∈W (2.59)
ρV ∗(x)α = α ◦ ρV (−x) ∀x ∈ g, α ∈ V ∗

are indeed representations of G and g on V ⊗W and V ∗ if ρV and ρW are representations
of G and g on V and W . Why are the minus sign in (2.59) and the inverse in (2.58)
needed?

2. Suppose now that G is a Lie group with Lie algebra g = TeG. Show that expression
(2.59) for the representations of g on V ⊗W and V ∗ follows from (2.58).

Hint: Consider a path cx :]− ε, ε[→ G with cx(0) = e, ċx(0) = x and differentiate.
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2.4.2 Hopf algebras

We are now ready to investigate the case of associative unital algebras. Clearly, one can
construct the direct sum of two representations just as for Lie algebras and groups.

Definition 2.4.4: (Representations of associative algebras - direct sums)

Let A be an associative algebra and ρV : A → End(V ), ρW : A → End(W ) representations
of A on vector spaces V , W over k. Then the direct sum of the representations ρV , ρW is the
representation ρV⊕W : A→ End(V ⊕W ) on the direct sum V ⊕W defined by

ρV⊕W (a)(v + w) = ρV (a)v + ρW (a)w ∀a ∈ A,v ∈ V ⊂ V ⊕W,w ∈W ⊂ V ⊕W.

However, when attempting to construct a representation on A on duals or on tensor products
of representation spaces, one encounters difficulties. As inverses do not need to exist for
elements of an associative algebra A, we cannot use equation (2.55) to define a representation
on the dual. Using equation (2.52) instead would not be sufficient to guarantee that the
resulting map ρV ∗ : A → End(V ∗) is an algebra homomorphism satisfying ρ∗V (a · b) =
ρV ∗(a) · ρV ∗(b) for all a, b ∈ A.

Similar difficulties arise for the tensor product of the representations. Setting ρV⊗W (a)(v ⊗
w) = ρV (a)v⊗ρW (a)w for all a ∈ A leads to a contradiction because for a linear combination
a =

∑m
j=1 λjaj , aj ∈ A, λj ∈ k we would obtain

ρV⊗W (a)(v ⊗ w) =
n∑

i,j=1

λiλjρV (ai)v ⊗ ρW (aj)w 6=
n∑
i=1

λiρV⊗W (ai)v ⊗ w.

Setting ρV⊗W (a)v⊗w = ρV (a)v⊗w+v⊗ρW (a)w as in the case of a Lie algebra would not be
sufficient to guarantee to compatibility with the multiplication ρV⊗W (a·b) = ρV⊗W (a)ρV⊗W (b).

Finally, we note that both a Lie group G and a Lie algebra g have a canonical representation,
the trivial representation on the field k which is given by

ρk(g) = 1 ∀g ∈ G ρk(x) = 0 ∀x ∈ g.

This again is not the case for an associative unital algebra since such a representation would
have to satisfy ρk(e) = 1 for the unit and ρk(0) = 0 and there is no canonical way of achieving
this.

The structure of an associative unital algebra is therefore not sufficient for the existence of
representations on the duals and tensor products of representation spaces and for the existence
of a trivial representation on k. To obtain representations on the duals and tensor products of
representation spaces, an associative algebra needs to be equipped with additional structure.
To derive this structure, we note that we can formalise the definitions for the groups and Lie
algebras by introducing maps

SG : G→ G, g 7→ SG(g) = g−1 ∆G : G→ G⊗G, g 7→ ∆G(g) = g ⊗ g (2.60)
Sg : g→ g,x 7→ Sg(x) = −x ∆g : g→ g⊗ g,x 7→ ∆g(x) = 1⊗ x + x⊗ 1

In terms of these maps, we can unify the definitions of duals and tensor products of repre-
sentations for groups and Lie algebras as

ρV ∗(x)α = α ◦ ρV ◦ S(x) (2.61)
ρV⊗W (x)(v ⊗w) = (ρV ⊗ ρW ) ◦∆(x)(v ⊗w) ∀α ∈ V ∗,v ∈ V,w ∈W,
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where x is either an element of a group G or of a Lie algebra g, and S and ∆ are the maps
given by (2.60). Note that in order to yield representations, of groups and Lie algebras, the
maps S and ∆ must satisfy

S(x � y) = S(y) � S(x) ∆(x � y) = ∆(x) �∆(y),

where x � y = [x, y] for x, y ∈ g and x � y = x · y for x, y ∈ G. In other words, ∆ must
be a homomorphism of groups or Lie algebras and S an anti-endomorphism of groups or
Lie algebras. Note also that the fact that the map ∆ consistently defines representations on
multiple tensor products U ⊗V ⊗W is due to the fact that for both, the case of a group and
a Lie algebra, it satisfies the co-associativity condition

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

Moreover, we note that in both, the case of a group and the Lie algebra, the trivial represen-
tation on the field k is given by a map

εg : g→ k ε(x) = 0 ∀x ∈ g (2.62)
εG : G→ k ε(g) = 1 ∀g ∈ G.

Note that in order to give rise to representations, the map ε must be a homomorphism of
groups or Lie algebras, i.e. satisfy

ε(x � y) = ε(x) · ε(y),

where again x � y = [x, y] for x, y ∈ g and x � y = x · y for x, y ∈ G. Moreover, the
map ε which defines the trivial representations must be compatible with with the fact that
k⊗V ∼= V ∼= V ⊗k for all vector spaces V over k. More precisely, the canonical isomorphisms
φL : k⊗ V → V , t⊗ v 7→ tv and φR : V ⊗ k → V , v⊗ t 7→ tv should be intertwiners between
the representations on k ⊗ V , V ⊗ k constructed from a representation on V via the maps ε
and ∆ and the representation on V . This translates into the condition

(ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id,

which is satisfied trivially for both the case of the group and the Lie algebra.

Finally, we note that for both, groups and Lie algebras the evaluation maps evL : V ∗ ⊗ V →
k, α ⊗ v 7→ α(v) and evR : V ⊗ V ∗ → k, v ⊗ α 7→ α(v) are intertwiners between the
representations on V ⊗ V ∗ and V ∗ ⊗ V constructed via the maps ∆ and S and between the
trivial representation given by the map ε. The former are given by

ρV ∗⊗V (x)α⊗ v = (ρV ∗ ⊗ ρV )(∆(x))α⊗ v ρV⊗V ∗(x)v ⊗ α = (ρV ⊗ ρV ∗)(∆(x))v ⊗ α

where the representation ρV ∗ is defined as in (2.61), α ∈ V ∗ and v ∈ V . The require-
ment that the evaluation map is an intertwiner between these representations and the trivial
representation on k defined via the map ε translates into the condition

m ◦ (S ⊗ id) ◦∆(x) = m ◦ (id⊗ S) ◦∆(x) = ε(x)e,

where e is the unit (e=1 for groups and e = 0 for Lie algebras). The map m : x⊗ y 7→ x � y
is the group multiplication m : g ⊗ h 7→ g · h in the case of a group G and the Lie bracket
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m : x ⊗ y 7→ [x,y] in the case of a Lie algebra. Clearly, the maps (2.60) and (2.62) satisfy
this condition.

We can summarise this discussion as follows:

We consider a structure X which is either a group, a Lie algebra or an associative, unital
algebra with a multiplication map � : X ×X → X which is either the group multiplication,
or the Lie bracket or the multiplication of the associative algebra and with a unit e satisfying
e�x = x�e = x for all x ∈ X. Representations of X are X-homomorphisms ρV : X → End(V )
into the set of endomorphisms of a vector space V .

In order to construct

1. representations ρV⊗W : X → End(V ⊗W ) on the tensor products V ⊗W of represen-
tation spaces for all representations ρV : X → End(V ), ρW : X → End(W )

2. a trivial representation on the field k

such that the following consistency conditions are satisfied

1. The representations ρU⊗(V⊗W ), ρ(U⊗V )⊗W : X → End(U ⊗ V ⊗W ) are identical

2. The canonical isomorphisms k ⊗ V ∼= V , V ⊗ k ∼= V are intertwiners between the
representations ρk⊗V : X → End(k ⊗ V ), ρV⊗k : X → End(V ⊗ k) and ρV

we need X-homomorphisms ∆ : X → X ⊗X and ε : X → k and an anti-X-endomorphism
S : X → X that satisfy the following conditions

1. Co-associativity: (∆⊗ idX) ◦∆ = (idX ⊗∆) ◦∆.

2. Compatibility between ε and ∆: (ε⊗ idX) ◦∆ = (idX ⊗ ε) ◦∆ = idX

If additionally we require

3. The existence of representations ρV ∗ : X → End(V ∗) on the dual vector spaces V ∗ of all
representations ρV : X → End(V ).

such that

3. The evaluation maps evL : V ∗ ⊗ V → k, α ⊗ v 7→ α(v) and evR : V ⊗ V ∗ → k,
v⊗α 7→ α(v) are intertwiners between the representations ρV ∗⊗V : X → End(V ∗ ⊗ V ),
ρV⊗V ∗ : X]→ End(V ∗ ⊗ V ) and ρk : X → End(k)

we also need an anti-X-endomorphism S : X → X that is compatible with ∆, ε and �:
m ◦ (S ⊗ idX) ◦∆ = m ◦ (idX ⊗ S) ◦∆ = ε · e, where m : x ⊗ y → x � y corresponds to the
multiplication map and e is the unit.

By applying these requirements to an associative algebra, we obtain the definition of a Bial-
gebra and of a Hopf algebra.
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Definition 2.4.5: (Bialgebra, Hopf algebra)

A Bialgebra is an associative algebra (A,+, ·, •) with unit e that carries the following addi-
tional structure:

1. A co-product ∆ : A → A ⊗ A, which is an algebra homomorphism with respect to the
algebra structure on A and the algebra structure on A⊗A defined by (a⊗ b)• (c⊗d) =
ac ⊗ bd for all a, b, c, d ∈ A. It is required to satisfy the co-associativity condition
(∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆ : A→ A⊗A⊗A.

2. A co-unit ε : A → k, which is an algebra homomorphism with respect to the algebra
structure on A and the algebra structure on k and which is compatible with the co-
product

(ε⊗ idA) ◦∆ = (idA ⊗ ε) ◦∆ = idA

A is called a Hopf algebra if it is a bialgebra and there exists a bilinear map S : A → A,
the antipode, which is an anti-algebra homomorphism: S(a • b) = S(b) • S(a) ∀a, b ∈ A and
satisfies

m ◦ (S ⊗ idA) ◦∆(a) = m ◦ (idA ⊗ S) ◦∆(a) = ε(a) · e,

where m denotes the algebra multiplication m(a⊗ b) := a • b for all a, b ∈ A. In other words,
if we express ∆(a) in a basis {ei}i∈I of A, ∆(a) =

∑
i,j∈I cij(a)ei ⊗ ej , cij(a)∈k we have∑

i,j∈I
cij(a)S(ei) • ej =

∑
i,j∈I

cij(a)ei • S(ej) = ε(a)e.

The discussion above can be encoded in the following theorem.

Theorem 2.4.6: (Bialgebras and Hopf algebras - construction of representations)

Let A be a bialgebra and ρV : A → End(V ), ρW : A → End(W ) representations of A on
vector spaces V,W . Then

ρV⊗W (a)(v ⊗w) = (ρV ⊗ ρW ) ◦∆(a)(v ⊗w) ∀a ∈ A,v ∈ V,w ∈W.

defines a representation of A on the tensor product V ⊗W and co-unit defines a representation
of A on the field k

ρk(a) = ε(a) ∀a ∈ A.

If A is a Hopf algebra, a representation on the dual vector space V ∗ of V is given by

ρV ∗(a)α = α ◦ ρV (S(a)) ∀a ∈ A,α ∈ V ∗.

These representations satisfy ρ(U⊗V )⊗W = ρU⊗(V⊗W ) for all representation spaces U, V,W
and are such that the canonical isomorphisms k ⊗ V ∼= V , V ⊗ k ∼= V and the evaluation
maps V ⊗ V ∗ → k, V ∗ ⊗ V → k are intertwiners.

Proof: The idea of the proof is given in the discussion above. Reformulating it in a concise
way is left as an exercise. 2
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2.4.3 Tensor product decomposition

Example 2.4.7: (Tensor product for su(2), Clebsch Gordan coefficients)

We consider the tensor product of two representations ρV : su(2) → End(V ), ρW : su(2) →
End(W ). We characterise these representations by the dimensions dV , dW or, equivalently,
by the eigenvalue of the quadratic Casimir operator ρV (J2) = 1

2jV (jV + 1) · 1V , ρW (J2) =
1
2jW (jW + 1) · 1W with dV = 2jV + 1, dW = 2jW + 1.

A basis of V is then given by the eigenvectors of Jz: BV = {|jV ,mV 〉 | mV = −jV , ..., jV },
ρV (Jz)|jV ,mV 〉 = mV |jV ,mV 〉 and similarly for W BW = {|jW ,mW 〉 | mW = −jW , ..., jW },
ρW (Jz)|jW ,mW 〉 = mW |jV ,mW 〉.

1. Tensor product of representations

All elements of the tensor product basis |jV ,mV 〉 ⊗ |jW ,mW 〉 are eigenstates of ρV⊗W (Jz)

ρV⊗W (Jz)|jV ,mV 〉 ⊗ |jW ,mW 〉 =(ρV (Jz)|jV ,mV 〉)⊗ |jW ,mW 〉+ |jV ,mV 〉 ⊗ (ρW (Jz)|jW ,mW 〉)
=(mV +mW )|jV ,mV 〉 ⊗ |jW ,mW 〉

However, they are in general not eigenstates of the quadratic Casimir operator:

ρV⊗W (J2)|jV ,mV 〉 ⊗ |jW ,mW 〉 =

=
∑

i=x,y,z

(ρV (Ji)⊗ 1 + 1⊗ ρW (Ji))(ρV (Ji)⊗ 1 + 1⊗ ρW (Ji))|jV ,mV 〉 ⊗ |jW ,mW 〉 (2.63)

= 1
2(jV (jV + 1) + jW (jW + 1) + 2mWmV )|jV ,mV 〉 ⊗ |jW ,mW 〉

+ 1
2

√
jV (jV + 1)−mV (mV + 1)

√
jW (jW + 1)−mw(mw − 1)|jV ,mV + 1〉 ⊗ |jW ,mW − 1〉

+ 1
2

√
jV (jV + 1)−mV (mV − 1)

√
jW (jW + 1)−mw(mw + 1)|jV ,mV − 1〉 ⊗ |jW ,mW + 1〉

With Schur’s lemma, this implies that the representation ρV⊗W is reducible.

2. Tensor product decomposition

We now want to decompose the tensor product ρV⊗W into irreducible representations. In
other words, we want to find a basis of V ⊗W that consists of eigenvectors |J,M〉 of ρV⊗W (J2)
and ρV⊗W (Jz) satisfying

ρV⊗W (J2)|J,M〉 = 1
2J(J + 1)|J,M〉 ρV⊗W |J,M〉 = M |J,M〉 M =∈ {−J, ..., J}.

From the action of J2, one can see that the states in the tensor product basis are eigenstates of
J2 if and only if either mV = jV , mW = jW or mV = −jV , mW = −jW and the corresponding
eigenvalues are M = ±(jV + jW ), J = jV + jW .

As the states in the tensor product basis are eigenstates of ρV⊗W (Jz) with eigenvalues M =
mV + mW and mV ∈ {−jV , ..., jV − 1, JV }, mW ∈ {−jW , ..., jW − 1, JW }, we have M ∈
{−(jV + jW ), ..., jV + jW − 1, jV + jW }. Moreover, equation (2.63) implies

〈jV ,mV |⊗ 〈jWmW |ρV⊗W (J2)|jV ,mV 〉⊗ |jW ,mW 〉 = 1
2(jV (jV + 1) + jW (jW + 1) + 2mVmW )

and therefore

1
2(|jV −jW |)(|jV −jW |+1) ≤ 1

2(jV (jV +1)+jW (jW +1)+2mVmW ) ≤ 1
2(jV +jW )(jV +jW +1).

——————————————————————————————————————
C. Meusburger Concepts and Methods of Mathematical Physics, DRAFT August 12, 2011



70 CHAPTER 2. GROUPS AND ALGEBRAS

This implies that the expectation value of J2 in the representation ρV⊗W takes values in

〈J,M |ρV⊗W (J2)J,M〉 ∈ [1
2(|jV − jW |)(|jV − jW |+ 1), 1

2(jV + jW )(jV + jW + 1)],

and therefore J ∈ {−|jV − jW |,−|jV + jW |+ 1, ..., jV + jW − 1, jV + jW }. One can show that
each value J ∈ {−|jV − jW |,−|jV + jW |+ 1, ..., jV + jW − 1, jV + jW } arises exactly once and
the tensor product decomposition of the representations ρV and ρW is given by

V ⊗W =
jV +jW⊕

J=−|jV −jW |

VJ ,

where VJ are linear subspaces of V ⊗W which are invariant under the action ρV⊗W of su(2)
and carry an irreducible representation of su(2) of dimension dJ = 2J + 1.

3. Clebsch Gordan coefficients

We will now determine the basis transformation from the tensor product basis {|jV ,mV 〉 ⊗
|jW ,mW 〉} to the basis {|J,M〉}. As the states in the tensor product basis are eigenstates of
ρV⊗W (Jz), the eigenstate |J,M〉 must be given as a linear combination of vectors in

BJ,M = {|jV ,mV 〉 ⊗ |jW ,mW 〉 | mV ∈ {−jV , ..., jV },mW ∈ {−jW , ..., jW },mV +mW = M}.

This implies in particular that the eigenvalue of the quadratic Casimir operator in the tensor
product takes values 1

2J(J + 1) with

J ∈ {|jV − jW |, |jV + jW |+ 1, ..., jV + jW − 1, jV + jW }.

The coefficients in this linear combination are called Clebsch-Gordan coefficients and are
usually denoted 〈jV ,mV , jW ,mW |J,M〉.

|J,M〉 =
jV∑

mV =−jV

jW∑
mW=−jW

〈jV ,mV , jW ,mW |J,M〉 |jV ,mV 〉 ⊗ |jW ,mW 〉. (2.64)

Clearly, the Clebsch Gordan coefficients satisfy

〈jV ,mV , jW ,mW |J,M〉 = δM,mV +mW 〈jV ,mV , jW ,mW |J,mV +mW 〉
〈jV ,mV , jW ,mW |J,M〉 = 0 if J /∈ {|jV − jW |, |jV − jW |+ 1, ..., jV + jW }.

By applying ρV⊗W (J±) to both sides of the equation, we find the following recursion relation√
J(J + 1)−M(M ± 1)|J,M ± 1〉 =

√
jV (jV + 1)−mV (mV ∓ 1)〈jV ,mV ∓ 1, jW ,mW |J,M〉

+
√
jW (jW + 1)−mW (mW ∓ 1)〈jV ,mV , jW ,mW ∓ 1|J,M〉.

Together with a phase convention, namely that the Clebsch Gordan coefficients 〈jV , jV , jW , jV−
J |JJ〉 are real and positive for all J ∈ {|jV − jW |, |jV − jW |+ 1, ..., jV + jW }, this recursion
relation determines the Clebsch Gordan coefficients uniquely, and one finds that they are all
real.

We also note that the Clebsch-Gordan coefficients are a basis transformation between two
orthonormal bases of the representation space V ⊗W , the tensor product basis {|jV ,mV 〉 ⊗
|jW ,mW 〉} and the basis {|J,M〉}. They are therefore coefficients of a unitary matrix which,
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by the choice of the phase convention, has only real entries. The relation A†A = ATA = 1
for a unitary matrix with real entries is equivalent to the orthogonality relations for Clebsch-
Gordan coefficients

jV∑
mV =−jV

jW∑
mW=−jW

〈jV ,mV , jW ,mW |J,M〉〈jV ,mV , jW ,mW |J ′,M ′〉 = δJJ ′δMM ′

jV +jW∑
J=|jV −jW |

J∑
M=−J

〈jV ,mV , jW ,mW |J,M〉〈jV ,m′V , jW ,m′W |J,M〉 = δmV ,m′V δmW ,m′W
.
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Chapter 3

Special Relativity

3.1 Minkowski metric and Lorentz group

Definition 3.1.1: (Minkowski metric)

We consider the vector space R4 with standard basis B = {e0, e1, e2, e3}

e0 =


1
0
0
0

 e1 =


0
1
0
0

 e2 =


0
0
1
0

 e3 =


0
0
0
1

 .

The Minkowski metric is the non-degenerate bilinear form g : R4 × R4 → R of signature
(−1, 1, 1, 1) given by

g(e0, e0) = −1 g(ei, ei) = 1 ∀i ∈ {1, 2, 3} g(ei, ej) = 0 ∀i, j ∈ {0, 1, 2, 3}, i 6= j. (3.1)

In the following, we will use the notation Mg for the matrix with entries (Mg)ij = g(ei, ej).
We also write x · y for g(x,y) and x2 for g(x,x).

Definition 3.1.2: (Timelike, spacelike lightlike, future directed, past directed)

A vector x ∈ R4 is called timelike if g(x,x) < 0, lightlike if g(x,x) = 0, x 6= 0 and spacelike
if g(x,x) > 0. A timelike or lightlike vector x ∈M4 is called future directed (past directed) if
g(x, e0) < 0 (g(x, e0) > 0).

Exercise 25: (Cauchy Schwartz inequality for Lorentzian signature)

1. Show that for any two future directed, timelike vectors x,y ∈ R4, we have x · y < 0.
|x · y| ≥

√
|x2|

√
|y2| and |x · y| =

√
|x2|

√
|y2| if and only if x = αy, α ∈ R+.

2. Show that for any two spacelike vectors x,y ∈ R4, the Cauchy Schwartz inequality
holds in its usual form |x · y| ≤

√
x2
√

y2 and equality holds if and only if x,y are
linearly dependent x = αy, α ∈ R \ {0}.

3. Show that for any two lightlike vectors x,y ∈ R4, we have x · y ≤ 0 if and only if both
are future directed or both are past directed and x · y ≥ 0 if and only if one is past
directed and one future directed.
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Definition 3.1.3: (Lorentz group)

The Lorentz group SO(3, 1) is the group of matrices B ∈M(4,R) that preserve the Minkowski
metric

g(Bx, By) = g(x,y) ∀x,y ∈ R. (3.2)

Lemma 3.1.4: Any element of the Lorentz group can be expressed uniquely as

M±(R, ~w) =

 ±√1 + |~w|2 ±(RT ~w)T

~w

(√
1+|~w|2−1

|~w|2 ~w · ~wT + 13

)
·R

 (3.3)

=

 ±√1 + |~w|2 ±~wT

~w

(√
1+|~w|2−1

|~w|2 ~w · ~wT + 13

)  · ( 1 0
0 R

)

with R ∈ O(3), ~w ∈ R3, |~w|2 =
3∑
i=1

(wi)2.

1. An element of the Lorentz group parametrised as in (3.3) is called time orientation
preserving if it has m00 =

√
1 + |~w|2. Otherwise it is called time orientation reversing.

The element T = diag(−1, 1, 1, 1) is called time reversal.

2. An element of the Lorentz group parametrised as in (3.3) is called orientation preserving
if detR = 1, i.e. R ∈ SO(3). Otherwise it is called orientation reversing. The element
P = diag(1,−1,−1,−1) is called parity transformation.

3. The elements which are both orientation and time orientation preserving form a sub-
group SO+,↑(3, 1) ⊂ SO(3, 1) which is a connected component of SO(3, 1). This sub-
group is called the proper orthochronous Lorentz group.

4. An element M+(1, ~w) ∈ SO+,↑(3, 1) parametrised as in (3.3) with R = 1 is called a
boost in the direction of ~w. The parameter θ defined by |~w| = sinh θ is called the rapidity
of the boost.

5. An element M+(R, 0) ∈ SO+,↑(3, 1) parametrised as in (3.3) is called a rotation if ~w = 0
and R ∈ SO(3). The rotations form the subgroup SO(3) ⊂ SO+,↑(3, 1).

6. Any element L ∈ SO(3, 1) of the Lorentz group can be expressed uniquely as L =
T pP qBR, where p, q ∈ {0, 1}, T is the time reversal, P the parity transformation B a
boost and R ∈ SO(3) a rotation.

7. Any element L ∈ SO+,↑(3, 1) of the proper orthochronous Lorentz group can be ex-
pressed uniquely as a product L = BR, where B is a boost and R a rotation. This is
called the polar decomposition.

Proof: Exercise 2

Remark 3.1.5: The Lorentz group is not compact. In physics, this statement corresponds
to the fact that one cannot boost a massive particle to the velocity of light. By considering
the norm ||M || = Tr

(
M †M

)
=
√∑3

i,j=0m
2
ij and a sequence of boosts Bn = M+(1, n · e1) ∈
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SO+,↑(3, 1), one finds ||Bn||2 = 4
√

1 + n2. Hence, the sequence cannot have a convergent
subsequence, and the Lorentz group is non-compact. The non-compactness of the Lorentz
group has important consequences for its representation theory.

Exercise 26: (The Lorentz group, boosts and rotations)

1. Show that if x =
∑3

i=0 x
iei, y =

∑3
i=0 y

iei, the metric g(x,y) is given by

g(x,y) = xT ·Mg · y =
(
x0 x1 x2 x3

)
·


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·


y0

y1

y2

y3

 .

Show that a matrix B ∈M(4,R) is an element of the Lorentz group if and only if

MT ·Mg ·M = Mg. (3.4)

2. Consider a matrix M of the form

M =
(
m00 ~vT

~w S

)
with S ∈M(3,R), ~v, ~w ∈ R3,m00 ∈ R. (3.5)

Show that this matrix is an element of the Lorentz group if and only if

m2
00 = 1 + |~w|2 STS = 1 + ~v · ~vT −m00~v + ST ~w = 0 where |~w|2 =

3∑
i=1

(wi)2.

3. Consider the 3× 3-matrix

B = λ~w · ~wT + µ13 = λ

 w2
1 w1w2 w1w3

w1w2 w2
2 w2w3

w1w3 w2w3 w2
3

+ µ

 1 0 0
0 1 0
0 0 1

 ,

where ~w ∈ R3, λ, µ ∈ R. Show that it satisfies BTB = 1 if and only if µ = 1 and λ = 0
or µ = 1 and λ = − 2µ

|~w|2 . Hint: Use the associativity of the matrix multiplication to
show ~wT · (~w · ~wT ) = |~w|2 ~wT , (~w · ~wT ) · ~w = |~w|2 ~w

4. Set S = (λ~w · ~wT + µ13) ·R and show that the matrix M in (3.5) is an element of the
Lorentz group if and only if

R ∈ O(3) ~v = RT ~w λ =

√
|~w|2 + 1− 1
|~w|2

µ = 1 m00 =
√

1 + |~w|2. (3.6)

Exercise 27: (Orbits of the Lorentz group)

1. For a representation ρ : G→ End(V ) of a group G on a vector space V , the orbit of a vector
x ∈ V is the set Ox = {ρ(g)x ∈ V | g ∈ G}. Show that the orbits of the representations of
the proper orthochronous Lorentz group SO+,↑(3, 1) on R4 are given by:

1. {0}

2. O±T = {y ∈ R4 : y2
0 − y2

1 − y2
2 − y2

3 = T 2 , ±y0 > 0 T > 0}
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3. O±0 = {y ∈ R4 : y2
0 − y2

1 − y2
2 − y2

3 = 0 , ±y0 > 0}

4. OiT = {y ∈ R4 : y2
0 − y2

1 − y2
2 − y2

3 = −T 2 , T > 0}

Draw these orbits. The orbits O±T are called two shell hyperboloids. The orbits OiT are called
single shell hyperboloids. The orbits O+

0 and O−0 are called, respectively, future lightcone and
past lightcone.

2. Show that the tangent space to O±T in x ∈ O±T is given by x⊥ = {y ∈ R4 | g(x,y) = 0}.
Show that any tangent vector on O±T is spacelike.

3. We consider the intersectionO+
T ∩Span({e0, ~w}). Show that this is a hyperbola parametrised

by h(t) = cosh(t)e0 + sinh(t)~w. Show that for any x ∈ Span({e0, ~w}), the rapidity of the
boost M(~w,R = 1) is equal to the length of the segment from x to Mx on the hyperbola h.

Hint: The length of a curve c : [0, 1]→ R4, c(0) = x, c(1) = y is given by

l(c) =
∫ 1

0
dt
√
g(ċ(t), ċ(t)) (3.7)

Lemma 3.1.6: (Lorentz algebra)

The Lie algebra of the Lorentz group is a six-dimensional Lie algebra so(3, 1) over R, in which
the generators Bi, i = 1, 2, 3, corresponding to the boosts are given by

B1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 B2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 B3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 (3.8)

and the generators corresponding to rotations take the form

R1 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 R2 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 R3 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 . (3.9)

Its Lie bracket is given by

[Bi, Bj ] = εijkRk [Ri, Rj ] = −εijkRk [Bi, Rj ] = −εijkBk i, j, k ∈ {1, 2, 3}, (3.10)

where εijk is the totally antisymmetric tensor with ε123 = 1. The exponential map exp :
so(3, 1)→ SO+,↑(3, 1) is surjective. The Lorentz group has two quadratic Casimir operators,
which are given by

R2 +B2 =
3∑
i=1

R2
i +B2

i RB =
3∑
i=1

RiBi. (3.11)

Proof: To determine the Lie algebra of the Lorentz group, we parametrise elements of
SO+,↑(3, 1) as in (3.3). we consider the paths in SO+,↑(3, 1) which are given by

bi(t) = M+(1, t · ei) ri(t) = M+(Ri(t), 0) (3.12)
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R1(t) =

 1 0 0
0 cos t sin t
0 − sin t cos t

 R2(t) =

 cos(t) 0 − sin t
0 1 0

sin t 0 cos t

 R3(t) =

 cos t sin t 0
− sin t cos t 0

0 0 1

 .

Clearly, bi(0) = ri(0) = 1 for all i = 1, 2, 3. Setting Bi = d
dt |t=0bi(t) and Ri = d

dt |t=0bi(t), we
obtain (3.8) and (3.9). The Lie bracket then follows straightforwardly by calculating the com-
mutators of these generators. The Casimir operators can be determined by straightforward
calculation. 2

Exercise 28: (Lorentz group and SL(2,C))

1. Show that any hermitian matrix X ∈M(2,C) can be parametrised uniquely as

X = x0 · 12 +
3∑
i=1

xiσi =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
xi ∈ R, (3.13)

where σi, i = 1, 2, 3 are the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (3.14)

Conclude that the map φ : R4 → H(2,C)

x =
3∑
i=0

xiei 7→ φ(x) =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
from R4 into the real vector space of hermitian 2 × 2 matrices is bijective. Show that with
this parametrisation

det(φ(y)φ(x)) = x0y0 − x1y1 − x2y2 − x3y3 = −xy.

2. Show that for any L ∈ GL(2,C) and any X ∈ H(2,C), the matrix LXL† is hermitian.
Show that det(LXL†) = det(X) for all X ∈ H(2,C) implies det(L) = 1. Show that LXL† =
X for all X ∈ H(2,C) implies L = ±1.

3, Conclude that the the group

PSL(2,C) = SL(2,C)/{±1} =
{(

a b
c d

) ∣∣∣∣ a, b, c, d ∈ C, ad− bc = 1
}
/{±1}

is isomorphic to a subgroup of the Lorentz group SO(3, 1). Show that φ(Px) = det(φ(x)) ·
φ(x)−1 and that for all L ∈ SL(2,C) we have Tr

(
LXL†

)
> 0 if and only if Tr (X) > 0.

Conclude that the group PSL(2,C) is isomorphic to a subgroup of the proper orthochronous
Lorentz group SO+,↑(3, 1).

4. Show that the transformations

X(x) 7→ BX(x)B† B = exp(1
2n

iσi) ∈ SL(2,C), ~n ∈ R3

correspond to boosts acting on x ∈ R4 and the transformations

X(x) 7→ RX(x)R† R = exp(− i
2n

iσi) ∈ SL(2,C), ~n ∈ R3

correspond to rotations acting on x. Conclude that the proper orthochronous Lorentz group
SO+,↑(3, 1) is isomorphic to PSL(2,C).
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3.2 Minkowski space

Definition 3.2.1: (Affine space)

An affine space A over a vector space V is a set A together with a vector space V and a map
φ : A× V → A, (a,v) 7→ φ(a,v) such that

1. For all a ∈ A, the map φa = φ(a, ·) : V → A, v 7→ φ(a,v) is a bijection.

2. For all a ∈ A, v,w ∈ V , φ(φ(a,v),w) = φ(a,v + w). In other words: the map
φ : A× V → A gives rise to an action of the abelian group (V,+) on A.

Lemma 3.2.2: (Vector spaces and affine spaces)

1. Let A,B affine spaces over a vector space V with maps φA : A × V → A and φB :
B× V → B. Then there exists a bijection f : A→ B such that

φB(f(a),v) = f(φA(a,v)) ∀a ∈ A,v ∈ V. (3.15)

2. For any vector space V , V becomes an affine space over itself if we set φ : V × V → V ,
φ(v,w) = v + w for all v,w ∈ V .

Proof: Exercise.

Remark 3.2.3: (Affine spaces and vector spaces)

The first condition in Definition 3.2.1 tells us that the choice of an element a ∈ A allows us to
identify A and V via the map φ(a, ·) : V → A. As a consequence of this, any two affine spaces
over a vector space V can be identified via bijections defined as in (3.15). Note, however,
that this identification is not canonical.

The second statement in Lemma 3.2.2 then tells us that we can identify any affine space with
the set Rn or Cn viewed as an affine space over the vector space Rn or Cn. The fundamental
difference between a vector space and an affine space is that a vector space has a distinguished
element, the null vector, whereas an affine space does not. Roughly speaking: “an affine space
is a vector space who has forgotten about its origin”.

In the following, we omit the map φ : A× V → A and write a+ v for φ(a,v) for any a ∈ A,
v ∈ V . We write a− b for the unique element v ∈ V such that b = φ(a,v).

Remark 3.2.4: Via its identification with the underlying vector space and the identification
of the vector space with Rn, any affine space A over a vector space V , dim(V ) = n can be
viewed as a manifold isomorphic to Rn. The tangent space at any point a ∈ A is isomorphic
to V ∼= Rn.

Definition 3.2.5: (Affine subspaces, hyperplanes, lines)

Let A be an affine space over a vector space V . An affine subspace or k-dimensional affine
hyperplane of A is a subset B ⊂ A of the form

B = a+W = {a+ w | a ∈ A,w ∈W ⊂ V }

where W ⊂ V is a linear subspace of V of dimension k. An affine subspace is called straight
line if it is an affine hyperplane of dimension 1, i.e. W = Span({w}), w ∈ V \ {0}.
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The transformations which preserve the structure of a vector space V are linear maps f : V →
V . The transformations which preserve affine spaces are affine maps or affine transformations.

Definition 3.2.6: (Affine transformation)

Let A be an affine space over a vector space V . An affine transformation is a map f : A→ A
for which there exists an a ∈ A, M ∈ End(V ) and v ∈ V such that

f(b) = a+ v +M(b− a) ∀b ∈ A. (3.16)

Bijective linear transformations of a vector space V are characterised by the fact that they
map linear subspaces of dimension one to linear subspaces of dimension one. A similar
characterisation exists for bijective affine transformations.

Theorem 3.2.7: A map f : A→ A is called a collineation if for all a, b, c ∈ A which lie on a
straight line, f(a), f(b), f(c) lie on a straight line. A map f : A→ A is a bijective collineation
if and only if f is a bijective affine transformation, i.e. there exists an a ∈ A, M ∈ Aut(V ),
v ∈ V such that

f(b) = a+ v +M(b− a) ∀b ∈ A.

Remark 3.2.8: Note that for any affine transformation characterised as in (3.16), we have
f(a) = a+ v. Given another element c ∈ A, we can reexpress (3.16) as

f(b) = a+ v +M(b− a) = c+ v′ +M(b− c) v′ = M(c− a)− (c− a) + v ∀b ∈ A.

Hence it is possible to choose a fixed element a ∈ A and express all affine transformations with
respect to this element. With the choice of such an element a ∈ A an affine transformation
is then characterised uniquely by the associated linear map M ∈ End(V ) and the vector
v ∈ V . Hence, we can identify the set of affine transformations with the set of tuples (M,v),
M ∈ End(V ), v ∈ V .

We are now ready to investigate the structure of the set of bijective affine transformations
and find that they form a group.

Lemma 3.2.9: The affine bijections form a group with respect to their composition, namely
the semidirect product Aut(V ) n V . In other words: given an element a ∈ A and two
affine transformations f1, f2 : A → A characterised with respect to a ∈ A by linear maps
M1,M2 ∈ Aut(V ) and v1,v2 ∈ V , the composition f1 ◦ f2 : A→ A is given by

f1 ◦ f2(b) = a+ (M1M2)(b− a) + v1 +M1v2 ∀b ∈ A.

Denoting fi by a tuple (Mi,vi), we can express the multiplication law as

(M1,v1) ◦ (M2,v2) = (M1 ◦M2,v1 +M1v2).

Affine spaces can be equipped with additional structure if additional structures such as bi-
linear forms are present on the underlying vector spaces. Affine bijections then should be
restricted to those affine transformations which preserve this additional structure. If one
considers an affine space over the vector space R4 equipped with the Minkowski metric, one
obtains Minkowski space. The affine bijections which preserve the structure of Minkowski
space are the Poincaré transformations.
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Definition 3.2.10: (Minkowski space)

Minkowski space M4 is an affine space over the vector space R4 equipped with the Minkowski
metric. The Poincaré group is the set of bijective affine transformations which preserve the
Minkowski metric. It is the semidirect product P3 = SO(3, 1)nR4 with group multiplication

(L1,w1) ◦ (L2,w2) = (L1 · L2,w1 + L1w2) ∀L1, L2 ∈ SO(3, 1),w1,w2 ∈ R4. (3.17)

Straight lines and, more generally, paths c : R → M4 in Minkowski space can now be inves-
tigated with respect to their behaviour with respect to the Minkowski metric. In particular,
we have the following definitions.

Definition 3.2.11: (Worldline, eigentime, arclength, geodesic)

1. A smooth curve x : R → M4 is called future directed (past directed) if ẋ(t) is future
directed (past directed) for all t ∈ R.

2. It is called timelike (lightlike, spacelike) if for all t ∈ R the velocity vector ẋ(t) ∈ R4 is
timelike (lightlike, spacelike).

3. It is called geodesic if its image is a straight line in Minkowski space.

4. A future directed, timelike curve x : R → M4 is called a worldline. It is called
parametrised according to eigentime if ẋ(t)2 = −c2 for all t ∈ R, where c ∈ R+ is
a fixed constant. The vector

v(t) = c
ẋ(t)√
|ẋ(t)2|

is called four velocity of the worldline x at time t.

Remark 3.2.12:

Any smooth lightlike curve is a geodesic and either future directed or past directed.

3.3 The theory of special relativity

The axioms of special relativity are usually stated in the following form.

Axiom 1 Spacetime is homogeneous and isotropic

Axiom 2 Relativity: The laws of physics take the same form for all inertial observers. With
respect to inertial observers, particles which are not subject to forces move on straight lines
and with constant speed.

Axiom 3 There exists a universal velocity c ∈ R which is the same for all inertial observers
and cannot be reached by any massive observer.

One can show that, together and interpreted correctly, these axioms uniquely characterise
Minkowski space. We will not give the full derivation, but show how these axioms can be
recast in a mathematically precise form.

We start with the first axiom. The statement that spacetime is homogeneous means that it
is described by an affine space A4 over the vector space R4. Additionally, to give rise to a
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notion of lengths, angles and time, one requires that R4 is equipped with a non-degenerate
symmetric bilinear form g.

Spacetime transformations or symmetry transformations must form a subgroup of the group
of affine bijections GL(4,R) n R4. As time and space are homogenous, this subgroup must
contain all translations and therefore be of the form GnR4. The requirement that spacetime
is isotropic amounts to imposing that the rotation group SO(3) should be contained in the
group of symmetry transformations: SO(3) ⊂ G. Moreover, we require that spacetime
transformations are orientation and volume preserving. In other words: the group G should
be a subgroup G ⊂ SL(4,R). We can thus rephrase the first axiom as follows:

Axiom 1’ Time and space are described by an affine space A4 over the vector space R4 with
a non-degenerate, symmetric bilinear form g. Spacetime symmetries which relate different
observers form a subgroupGnR4 of the group of affine bijections with SO(3) ⊂ G ⊂ SL(4,R).

In order to give a precise formulation of the second axiom we must develop a notion of
inertial observer and of forces. Intuitively, it seems plausible to translate this statement into
the requirement that inertial observers and particles which are not subjected to forces should
be associated with certain lines in the affine space A4. The set of all inertial observers should
be invariant under spacetime symmetries, and any two inertial observers should be related by
a spacetime symmetry. (Otherwise, there would be several non-equivalent types of inertial
observers). This yields the following reformulation of Axiom 2:

Axiom 2’ 1: Inertial observers and the motion of massive particles not subjected to forces
are described by certain lines in A4. The set of inertial observers forms an orbit under the
action of the group of symmetry transformations S = G n R4. In other words: a line in A4

corresponds to an observer if and only if it is of the form a+w in A4, where a ∈ A4, w = Le0,
L ∈ G and e0 is a fixed vector in R4.

In order to determine precisely which subgroup G ⊂ SL(4,R) describes the spacetime sym-
metries between observers, we need to make more precise statements about the form of these
transformations. While the rotation group SO(3) is contained in G as a subgroup, G should
contain additional transformations, the velocity transformations, which relate observers mov-
ing with constant velocities with respect to each other.

We require that these velocity transformations are parametrised uniquely by velocity vectors
~v ∈ R3, that ~v = 0 corresponds to the identity and that the dependence on ~v is contin-
uous. This amounts to the statement that the group of symmetry transformations is a
six-dimensional Lie subgroup of G. Moreover, one requires that the velocity transformations
are compatible with rotations which encode the isotropy of spacetime and that velocity trans-
formations in a fixed direction form a subgroup of G. This leads to the following condition.

Axiom 2’ 2: The group of symmetry transformations is of the form G n R4 where G ⊂
SL(4,R) is a six-dimensional Lie group which contains SO(3). In addition to rotations, G
contains velocity transformations L(~v) ∈ G which satisfy

L(−~v) = L(~v)−1 R · L(~v) ·R−1 = L(R~v) ∀R ∈ SO(3).

Velocity transformations L(αw), α ∈ R in a fixed direction w ∈ R4 form a subgroup of G.

Axiom 3 can be reformulated as follows
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Axiom 3’ The set of all admissible velocity vectors ~v is the closed three-ball Bc(0) ⊂ R3. For
any v, v′ ∈ [−c, c] and any ~e ∈ S2 ⊂ R3, there exists a unique v′′ ∈ [−c, c] such that

L(v~e) · L(v′~e) = L(v′′~e).

It can be shown that together, Axioms 1, 2 and 3 fix the group G ⊂ SL(4,R) uniquely. They
imply G = SO+,↑(3, 1) and that the affine space which describes the spacetime is Minkowski
space M4. We can summarise the resulting description of space and time, i.e. the theory of
special relativity in the following postulates.

Postulate 1: (Spacetime and observers)

Space and time are described by Minkowski space M4. Each inertial observer corresponds to
a timelike straight line in Minkowski space. The admissible symmetry transformations which
relate different observers form the group of affine transformations SO(3, 1)+,↑ n R4, i.e. the
proper orthochronous Poincaré group.

Postulate 2: (Time and space as perceived by observers)

For an inertial observer whose motion is given by a timelike line a+Span(w), the velocity unit
vector is the unique future directed, timelike vector ŵ satisfying ŵ2 = −1 and Span(w) =
Span(ŵ).

The time interval elapsed between two events x, y ∈ M4 as perceived by this observer is
given by ∆tŵ(x, y) = |ŵ(x − y)|, where ŵ is the velocity unit vector of the observer. The
events x, y are perceived as simultaneous if ŵ(x − y) = 0. Event x occurs before event y if
ŵ(x− y) < 0 and after event y if ŵ(x− y) > 0. The set of events occurring simultaneously
with an event x ∈ M4 with respect to the observer given by ŵ is the affine plane x + ŵ⊥.
This gives rise to a foliation of spacetime by affine hyperplanes b + ŵ⊥, b ∈ a + Span(w)
through points on the observer’s worldline.

The relative position between two simultaneous events x, y ∈ a + ŵ⊥ as perceived by the
observer is the spacelike vector x− y.

Postulate 3: (Motion of massive particles and of light)

Point particles of mass m 6= 0 move on worldlines. The eigentime of the worldline coincides
with the time perceived by the particle, i.e. the time shown on a clock moving with the
particle. Particles with mass m 6= 0 that are not subjected to any forces moves on future
directed, timelike geodesics. Light moves along future directed, lightlike geodesics.

In order to formulate the fourth postulate, we need to introduce a notion of future and past.

Definition 3.3.1: (Future, past, lightcone)

The future I+(x) and past I−(x) of a point x ∈M4 are the sets

I±(x) = {y ∈M4 | (y − x)2 ≤ 0 , y − x future (past) directed}.

They are called the future (past) lightcone at x ∈M4.

The future (past) of a subset S ∈M4 is the set

I±(S) = {y ∈M4 | ∃x ∈ S : (x− y)2 ≤ 0 , y − x future (past) directed} =
⋃
x∈S

I±(x).
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Using this notion of future and past, we can state the fourth postulate as follows:

Postulate 4: (Causality)

Each physical event corresponds to a unique point in Minkowski space M4. An event x ∈M4

can influence an event y ∈M4 or a signal can be sent from x to y if and only if y lies in the
future of x. If x /∈ I+(y) and y /∈ I+(x), x and y are called causally disconnected and no
signal can be passed between them.

We now have to show that Postulate 2 gives rise to a sensible notion of time for each inertial
observer, which is compatible with the notion of past, future and causality introduced in
Postulate 4. This is guaranteed by the following lemma.

Lemma 3.3.2: For any inertial observer whose worldline is characterised by a velocity unit
vector ŵ and any events x, y, z ∈M4, we have:

1. x and y simultaneous implies y − x spacelike

2. x ∈ I+(y) implies that y happens before x with respect to the observer, x ∈ I−(y)
implies that x happens before y.

3. If x happens before y and y happens before z, then x happens before z.

Proof: Exercise.

This lemma shows that for a single observer, the assignment of time makes sense and is
compatible with the notion of past, future and causality. However, it is clear that it depends
on the observer. Time and space are no longer absolute as in Newtonian mechanics but
become observer-dependent.

In order to ensure that the notion of time is physically sensible, we now need to make sure
that assignments of time made by different observers are compatible and that the second
axiom holds. This is guaranteed by the content of the following lemma.

Lemma 3.3.3: (Relativity of simultaneity)

For any two inertial observers whose velocity unit vectors ŵ, v̂, ŵ 6= v̂ are not equal, there
exist events x, y such that x happens before y with respect to the observer characterised by
ŵ and y happens before x with respect to the observer characterised by v̂. Such events are
always causally disconnected.

Proof: Exercise. 2

Remark 3.3.4: Note that the existence of events whose order in time is reversed with
respect to two observers is not in contradiction with Axiom 2. As such events are always
causally disconnected, neither of them can affect the other. Although two observers could
disagree about which event happens before the other, they would agree on the fact that
neither of the two events can influence the other or, equivalently, that there is no light ray
emitted at event x and received at event y or vice versa. The fact that two observers assign
different times to events therefore does not mean that they perceive different laws of physics.

Exercise 29: (Relativity of simultaneity)
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1. Consider two inertial observers with velocity unit vectors ŵ, v̂, ŵ 6= v̂. Show that there
exist events x, y ∈M4 such that ŵ(x−y) < 0, v̂(x−y) > 0, i.e. events x, y ∈M4 such that x
happens before y with respect to the observer characterised by ŵ and x happens after y for
the observer characterised by v̂. Hint: it is sufficient to show that any two affine, spacelike
planes which are not parallel intersect.

2. Show that such events are always causally disconnected, i.e. that ŵ(x−y) < 0, v̂(x−y) > 0
implies x− y spacelike.

3. Show that the future of an event x ∈M4 is the set of points

I+(x) = {y ∈M4 | v̂(y − x) < 0 ∀v̂ ∈ R4, v̂2 = −1}, (3.18)

i.e. the set of events that happen after x for all inertial observers.

This lemma guarantees that the time measured by different observers is compatible with
the notion of causality and is sensible for all observers. However, the observer-dependence
of time and space has consequences for the measurement of time intervals and lengths. The
first consequence of the relativity of simultaneity is time dilatation - moving clocks slow down
with respect to resting ones.

Example 3.3.5: (Time dilatation)

Consider two inertial observers with velocity unit vectors ŵ, v̂ and two events x, y ∈ M4

which occur in the momentum rest frame of the observer characterised by ŵ, i.e. x− y = ŵ.
This could for instance be the ticking of a clock travelling with the observer. Then the time
interval between these events measured by this observer is

∆tŵ(x, y) = |x− y| =
√
−(x− y)2.

The time elapsed between these events with respect to the observer characterised by v̂ is
given by ∆tv̂(x, y) = |v̂(x− y)|. We have

x− y = −∆tv̂(x, y)v̂ + a,

where a = (x− y) + ((x− y) · v̂)v is a spacelike vector orthogonal to v̂: v̂ · a = 0 as shown
in figure ??. This implies

∆tŵ(x, y)2 = |x− y|2 = ∆tv̂(x, y)2 − a2 < ∆tv̂(x, y)2

Hence, we have ∆tv̂(x, y) > ∆tŵ(x, y). The observer who moves with respect to the clock
therefore measures a bigger time interval. Moved clocks are slowed.

To obtain an explicit formula, we note that the length of the vector a is given by a2 =
(|v̂ŵ|2 − 1)∆t2w(x, y). This implies

∆tv̂(x, y) = ∆tŵ(x, y)|v̂ŵ|

While the observer associated with ŵ measures a time interval ∆tŵ between the two events
x, y, the observer associated with v̂ measures a time interval ∆tv̂ = ∆tŵ ·|ŵv̂|. As ŵ, v̂ ∈ R4

are both timelike and future directed unit vectors, Exercise 25 implies ŵv̂ < 0, |ŵv̂| ≥ 1 and
|ŵv̂| > 1 if ŵ 6= v̂. Hence, we have ∆tv̂(x, y) > ∆tŵ(x, y).
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The second consequence of the relativity of simultaneity is the Lorentz contraction - moving
rods appear shortened.

Lemma 3.3.6: (Lorentz contraction)

Consider two inertial observers with velocity unit vectors ŵ, v̂ and a rod which is at rest
with respect to the observer ŵ. The worldlines of its ends are therefore of the form

e1(t) = tŵ + z1 e2(t) = tŵ + z2 z1, z2 ∈M4, ŵ · (z1 − z2) = 0 (3.19)

The relative position ~p of the ends of the rod as measured by observer ŵ is therefore given
by ~p = z1 − z2 and its length is (z1 − z2)2.

When the observer v̂ measures the relative position of the ends of the rod, the result is the
vector u between intersection of the worldlines associated with the ends of the rod with an
affine plane a+ v̂⊥ of events simultaneous with respect to v̂

u = z2 − z1 −
(z2 − z1) · v̂

v̂ŵ
ŵ

If we decompose the vector z1− z2 into a component a orthogonal to both v̂ and ŵ and into
a component c = α(v̂ + (v̂ŵ)ŵ) in the plane spanned by v̂, ŵ and orthogonal to ŵ but not
to v̂, we have

u = a + c− v̂c

v̂ŵ
ŵ.

The length of u is given by

u2 = a2 + c2 − (v̂c)2

(v̂ŵ)2
= a2 +

c2

(v̂ŵ)2
.

The observer v̂ therefore assigns to the rod the length l(v̂) with l(v̂)2 = u2 = a2 +c2/(v̂ŵ)2,
while the observer associated with ŵ measures its length as l(ŵ) = a2 + c2.

From Exercise 25, we have |ŵv̂| > 1 if v̂ 6= ŵ , which implies l(v̂) ≤ l(ŵ) and l(v̂) < l(ŵ) if
the vector c 6= 0. The rod therefore appears shortened for an observer who moves with respect
to the rod and whose velocity relative to the rod is not orthogonal to it. The shortening effect
is maximal if the observer moves parallel to the rod (a = 0).

Exercise 30:

1. Consider an observer with worldline

e(t) = tx + x0 with x0 ∈M4,x ∈ R4,x2 = −c2, e0 · x < 0

and a future directed geodesic y : R→M4. Use the time intervals and position vectors with
respect to observers to show that the relative velocity of y with respect to the observer with
worldline e is given by

~v(t) = −c ẏ(t) + (x̂ · ẏ(t))x̂
x̂ · ẏ(t)

.

Show that ~v(t)2 < c2 if y is timelike and ~v(t)2 = c2 if y is lightlike. Show that the velocity
four vector associated with y can be written as

ẏ(t) =
1√

1− ~v2(t)/c2
(c · e0 + ~v(t)),
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where ~v(t) is the velocity of y with respect to the observer with worldline e(t) = te0 + x0.

2. Show that for an inertial observer with four velocity x = 1√
1−~v2(t)/c2

(ce0 +~v), ~ve0 = 0 and

an internal observer with four velocity y = ce0, the formulas for time dilatation and Lorentz
contraction take the form

∆t′ =
∆t√

1− ~v2/c2
l′ = l

√
1− ~v2/c2.

Exercise 31: (Addition of velocities)

Consider two boosts in the e1 direction.

B(θ1) =


cosh θ1 sinh θ1 0 0
sinh θ1 cosh θ1 0 0

0 0 1 0
0 0 0 1

 B(θ2) =


cosh θ2 sinh θ2 0 0
sinh θ2 cosh θ2 0 0

0 0 1 0
0 0 0 1


Show that the product B1(θ1) · B(θ2) = B(θ2) · B(θ1) = B(θ3) is another boost in the
e1-direction with

θ3 = θ1 + θ2.

Show that the velocity of the observer with four velocity c·B(θ)e0 with respect to the observer
with four velocity c · e0 is given by ~v = v · e1, v = c · tanh θ. Show that the relativistic velocity
addition law takes the form

v3 =
v1 + v2

1 + v1v2/c
.

Example 3.3.7: (Appearance of the night sky)

We consider an inertial observer at a point x ∈M4 and his past lightcone

I−(x) = {x+ y ∈M4 | y2 = 0, e0 · y > 0},

which is the set of all lightrays sent out in Minkowski space which reach the observer at the
event x. The map

f : I−(x)→ S2, y = (|~y|, ~y) 7→ f(y) = (1, ~y/|~y|)

maps the backward lightcone to the two-sphere S2 and is invariant under y → αy, α ∈ R+.
It therefore induces a map from the set of past lightrays at x to S2. Each point p ∈ S2

corresponds to a point in the sky as seen by the observer.

By combining this map with the stereographic projection P : S2 → C ∪ {∞}

P (~k) =

{
k1−ik2

1−k3 k3 6= 1
∞ k3 = 1

∀~k ∈ S2

we obtain a map ρ = P ◦ f : R4 → C ∪ {∞}

ρ(y) =

{
y1−iy2
y0−y3 y0 6= y3

∞ y0 = y3

which is again invariant under rescalings y 7→ αy, α ∈ R+
0 and therefore induces a map from

the set of past lightrays to C∪∞. Note that by definition, the stereographic projection maps
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circles on S2 to circles or lines in C ∪ {∞}. More precisely, any circle in S2 which does not
contain the point (0, 0, 1) is mapped to a circle in C∪{∞} and any circle through (0, 0, 1) to
a line.

We will now use this map to see how the appearance of the night sky changes if a boost or
rotation is applied to the observer. For this, it is convenient to use the identification of R4

with the set of hermitian matrices as in Exercise 28

x ∈ R4 7→ φ(x) = x0 +
3∑
i=1

xiσi =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (3.20)

in which the Minkowski metric is given by x ·y = −det(φ(x) ·φ(y)). With this identification,
lightlike past oriented vectors are given by hermitian matrices M ∈ M(2,C), M † = M with
vanishing determinant.

Applying this map to the past lightcone, we obtain

φ(y) =
(

y0 + y3 y1 − iy2

y1 + iy2 y0 − y3

)
= (y0 − y3) ·

(
|z|2 z
z̄ 1

)
with z = ρ(y). (3.21)

As shown in Exercise 28, the proper orthochronous Lorentz group is isomorphic to PSL(2,C) =
SL(2,C)/{±1}, and the action of a Lorentz transformation L on v ∈ R4 agrees with the ac-
tion of the associated element L̃ ∈ SL(2,C) on the hermitian matrix φ(v)

L̃ · φ(v) · L̃† = φ(Lv) ∀v ∈ R4, L ∈ SO+,↑(3, 1).

We now consider the transformation of the hermitian matrix (3.21) associated with a back-
ward lightray under a Lorentz transformation given by a matrix L̃ ∈ SL(2,C)

L̃ =
(
a b
c d

)
∈ SL(2,C).

This yields

L · φ(y) · L† = (y0 − y3)|cz + d|2 ·

 ∣∣∣az+bcz+d

∣∣∣2 az+b
cz+d

āz̄+b̄
c̄z̄+d̄

1

 .

A Lorentz transformation acting on the past lightcone therefore corresponds to a Möbius
transformation acting on C ∪ {∞}

L̃ =
(
a b
c d

)
∈ SL(2,C) z 7→ az + b

cz + d
.

The defining characteristic of Möbius transformations is that they map circles and lines in
C∪{∞} to circles and lines in C∪{∞}. Due to the properties of the stereographic projection,
circles and lines in C∪{∞} correspond to circles on the night sky as perceived by the observer.
Lorentz transformations acting on the backward lightcone therefor map circles on the night
sky to circles in the night sky. This implies in particular that the Lorentz contraction is
invisible.
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Chapter 4

Topological Vector Spaces

4.1 Types of topological vector spaces

Infinite dimensional vector spaces play an important role in quantum mechanics . This
follows already from the fact that the Heisenberg algebra, which encodes two of the most
important observables in physics, namely the positions and momenta, has no non-trivial
finite-dimensional representations. One can show this by taking the trace, which leads to a
contradiction. In the infinite-dimensional case, this contradiction disappears, because there
are operators of which one cannot take the trace, i.e. whose trace is ill-defined.

Quantum mechanics therefore forces one to consider representations on infinite-dimensional
vector spaces. However, it turns out that the structure of a vector space alone is too weak.
To have the desired properties, infinite dimensional vector spaces need to be equipped with
additional structure, namely with a topology that is compatible with the structure of a vector
space. This leads to the notion of topological vector spaces.

Infinite dimensional vector spaces arising in physics are topological vector spaces, often with
further structures such as norms, semi-norms or hermitian products. In this chapter, we will
study different examples of such vector spaces which play an important role in physics and
and investigate their properties.

Throughout this chapter, we will make extensive use of the Lebesgue measure. All integrals
considered in the following are Lebesgue integrals. We will assume familiarity with Lebesgue
integration and elementary measure theory. A concise introduction is given in J. Dieudonné,
Treatise on Analysis 1.

4.1.1 Topological vector spaces, metric spaces and normed spaces

We start by introducing the notion of topological spaces and topological vector spaces.

Definition 4.1.1: (Topology, continuity)

A topology on a set E is a family T of subsets F ⊂ E, called open sets in E such that

1. ∅, X ∈ T

2. General unions of open sets are open sets: If Fi ∈ T ∀i ∈ I ⇒
⋃
i∈I Fi ∈ T
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3. Finite intersections of open sets are open sets: If Fi ∈ T , ∀i ∈ {1, ..., n} ⇒
⋂n
i=1 Fi ∈ T .

A set E with a topology is called a topological space.

A function f : E → G between topological spaces E and G is called continuous if for every
open set F ⊂ G the preimage f−1(F ) = {x ∈ E | f(x) ∈ F} is open.

Example 4.1.2: If X, Y are topological spaces with topologies TX , TY , then the direct
product X × Y is a topological space with topology TX×Y = {U × V | U ∈ TX , V ∈ TY }.

A topological vector space is a vector space whose topology is compatible with the vector
space structure:

Definition 4.1.3: (Topological vector space, isomorphisms of topological vector spaces)

A topological vector space E over k = R or k = C is a vector space E over k with a topology T
such that the vector space addition + : E×E → E and the scalar multiplication · : k×E → E
are continuous with respect to T . In other words: the preimage of each open set in E is open
with respect to the induced topologies on E × E and k × E (where k is equipped with the
standard topology).

When considering isomorphisms of topological vector spaces and their duals, one imposes that
these structures are compatible with the topology on E. In other words: they are required
to be continuous.

Definition 4.1.4: (Isomorphisms of topological vector spaces, continuous duals)

An isomorphism of topological vector spaces E, G is a bijective, linear map L : E → G that
is a homeomorphism, i.e. continuous with respect to the topologies on E, G and invertible
such that L−1 continuous with respect to the topologies on E, G.

The continuous dual E∗ of a topological vector space E over k is the set of continuous linear
functionals E → k, i.e. linear maps E → k which are continuous with respect to the topology
on E.

An important concept which allows one to classify topologies and hence topological vector
spaces is the notion of Hausdorff. It also plays a crucial role in the notion of manifolds.

Definition 4.1.5: (Neighbourhood, Hausdorff)

A topological vector space is called Hausdorff if for any two elements x, y ∈ E there exist
open sets Ux, Uy with x ∈ Ux, y ∈ Uy such that Ux ∩ Uy = ∅.

A subset V ⊂ E is called a neighbourhood of x ∈ E if there exists an open set U ⊂ V with
x ∈ U .

It turns out that in the finite-dimensional case the requirement that the topology is Hausdorff
is strong enough to determine the topology of a topological vector space completely. Note,
however, that this is not true for infinite dimensional topological vector spaces.

Lemma 4.1.6: On any finite-dimensional vector space V there is a unique topology, the
canonical topology, which is Hausdorff and turns V into a topological vector space.
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If V is a finite-dimensional topological vector space over k and B = {e1, ..., en} a basis of V ,
then the map φ : kn → V

(x1, ..., xn) 7→
n∑
i=1

xiei

is an isomorphism of topological vector spaces.

An important class of topologies are those defined by distance functions. This leads to the
concept of metric spaces.

Definition 4.1.7: (Metric space, distance function, metrisable space)

A metric space is a set E together with a distance function d : E × E → R that has the
following properties:

1. Positivity: d(x, y) ≥ 0 for all x, y ∈ E and d(x, y) = 0 implies x = y.

2. Symmetry: d(x, y) = d(y, x) for all x, y ∈ E

3. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E

Any metric space is a topological space. The topology T induced by the distance function is
the family of sets generated by r-balls Br(x) = {y ∈ E | d(y, x) < r}, r ∈ R, i.e. the family
of sets which can be expressed as general union or finite intersection of r-balls.

A topological vector space is called metrisable if its topology agrees with a topology induced
by a distance function on E.

Remark 4.1.8: Metric spaces and metrizable spaces are Hausdorff.

Example 4.1.9: Consider kn (k = R or k = C) with the standard basis B = {e1, ..., en}.
A distance function on kn is given by

d(x,y) =
n∑
i=1

|xi − yi| ∀x =
n∑
i=1

xiei,y =
n∑
i=1

yiei ∈ kn.

A special class of metric spaces are metric spaces whose distance function is induced by a
norm

Definition 4.1.10: (Norm, semi-norm)

A semi-norm on a vector space E over k is a map || || : E → R which

• is positive semi-definite ||x|| ≥ 0 for all x ∈ E

• satisfies ||λx|| = |λ|||x|| for all x ∈ E, λ ∈ k.

• satisfies the triangle inequality: ||x+ y|| ≤ ||x||+ ||y|| for al x, y ∈ E.

A norm on E is a semi-norm which is positive definite ||x|| > 0 for all x 6= 0.
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Lemma 4.1.11: (Normed vector spaces are metric spaces)

A norm || || : E → R on a vector space E over k = R or k = C defines a distance function
d : E × E → R on E via

d(x, y) = ||x− y|| ∀x, y ∈ E.
The distance function is translation invariant, i.e. satisfies d(x + z, y + z) = d(x, y) for all
x, y, z ∈ E and d(λx, λy) = |λ|d(x, y) for all x, y ∈ E, λ ∈ R.

Example 4.1.12: Consider kn (k = R or k = C) with the standard basis B = {e1, ..., en}.
A norm on kn is given by

||x|| =
n∑
i=1

|xi| ∀x =
n∑
i=1

xiei, x
i ∈ k.

The distance function induced by this norm is the one from example 4.2.1.

Example 4.1.13: Let f : V → k be a linear form on a vector space V over k. Then

||x|| = |f(x)| ∀x ∈ V

defines a norm on V .

The fact that normed vector spaces are metric spaces implies in particular that they are
equipped with a topology induced by the distance function. It turns out that this topology
is always compatible with the vector space structure and turns the vector space E into a
topological space.

Lemma 4.1.14: For any normed vector space E over k = R or k = C, the vector space
addition + : E × E → E, (x,y) 7→ x + y and the scalar multiplication ·λ : E → E, x 7→ λx
with λ ∈ k are uniformly continuous.

To classify norms on vector spaces, one needs a concept of equivalence of norms. It is natural
to call two norms on a vector space equivalent if they induce the same topology. One can
show that this is the case if and only if sequences that converge with respect to one norm
also converge with respect to the other norm. This leads to the following definition.

Definition 4.1.15: (Equivalence of norms)

Two norms || ||1, || ||2 : E → R on a vector space E are equivalent if there exist a, b > 0
such that

a||x||1 ≤ ||x||2 ≤ b||x||1 ∀x ∈ E.

Remark 4.1.16: One can show that on a finite-dimensional vector space, all norms are
equivalent. This is not the case for infinite-dimensional topological vector spaces. A counter
example is given in Example 4.1.29.

Exercise 32: Consider the vector space kn, where k = R or k = C, with standard basis
B = {e1, ..., en} and express vectors x ∈ kn with respect to this basis as x =

∑n
i=1 x

iei. Show
that the following norms are equivalent:

1. ||x|| =
√∑n

i=1 |xi|2

2. ||x|| =
∑n

i=1 |xi|

3. ||x|| = max{|xi| |i ∈ {1, ..., n}}.

——————————————————————————————————————
C. Meusburger Concepts and Methods of Mathematical Physics, DRAFT August 12, 2011



4.1. Types of topological vector spaces 93

4.1.2 Topological vector spaces with semi-norms

The existence of a semi-norm is not enough to turn a vector space into a metric space.
However, it is possible to construct normed vector spaces and hence metric spaces from
topological vector spaces with semi-norms by taking a quotient. This is similar to of a
situation in Example ??, in which quotients of vector spaces are used to turn linear maps
between vector spaces V and W into injective linear maps V/ker(φ) → W . Note, however,
that a norm is not a linear map, although the basic idea of the construction is similar.

Lemma 4.1.17: (Quotients of vector spaces with semi-norms)

If E is a topological vector space with a semi-norm || ||, the set N = {x ∈ E | ||x|| = 0}
is a linear subspace of E. The quotient space E/N is a normed vector space with norm
||[x]|| = ||x+N || := ||x||.

Proof: Exercise. 2

Exercise 33: Consider a topological vector space E over k = R or k = C with a semi-norm
|| ||. Show that the set N = {x ∈ E | ||x|| = 0} is a linear subspace of E. Consider the
quotient space E/N . Show that the definition

|| [x] || = ||x|| ∀x ∈ E

where [x] = x + N = {y ∈ E | ||y − x|| = 0} are the equivalence classes of elements x ∈ E
defines a norm on E/N .

Hint: Show first that this definition is consistent, i.e. that for x, y ∈ E with [x] = [y], we have
|| [x] || = || [y] ||. Then you know that this defines a map || || : E/N → k and you can show
that this map has the properties of a norm.

Another important situation in which semi-norms give rise to topological vector spaces are
vector spaces which carry a family of semi-norms. These vector spaces play an important
role in the theory of distributions.

Definition 4.1.18: (Topology defined by semi-norms, locally convex)

Let (|| ||α)α∈I , || ||α : E → R be a family of semi-norms on a vector space E. The family of
semi-norms induces a topology on E. In this topology, the class T of open sets is the class of
subsets U ⊂ E such that for all x ∈ U there exists a finite family of semi-norms (|| ||αi)i=1,...,n

and positive numbers (rj)j=1,...,n such that

K(x; (αj), (rj)) := {y ∈ E | ||y − x||αj < rj ∀j ∈ {1, ..., n}} ⊂ U.

This topology is compatible with the vector space structure and turns E into a topological
vector space.

A vector space E whose topology is given by a family of semi-norms is called a locally convex
vector space. A sequence {xn}n∈N, xn ∈ E in a locally convex vector space E is said to
converge towards an element x ∈ E with respect to a family of semi-norms if ||xn−x||α → 0
for all α ∈ I.

We will now show that the space of smooth functions with compact support (also often called
test functions in the physics literature) is an example of a locally convex vector space.
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Definition 4.1.19: (Smooth functions with compact support)

A smooth function with compact support on Rn is a smooth function ϕ : Rn → C whose
support Supp(ϕ) = {x ∈ Rn : ϕ(x) 6= 0} is compact. The set of functions with compact
support is denoted C∞c (Rn). With pointwise addition and multiplication by C it becomes an
infinite dimensional vector space.

A family of semi-norms on the space of smooth functions with compact support is obtained
by considering the supremum of general derivatives. The motivation for defining these semi-
norms is the wish to control derivatives of functions.

Lemma 4.1.20: (Semi-norms on C∞c (Rn))

We consider general multi-indices α = (j1, ..., jn) ∈ Nn, n ∈ N and set Dαf = ∂j1 · · · ∂jnf .
Then, a family of semi-norms (|| ||α)α∈NN is given by

||f ||α = supx∈Rn{|Dαf(x)|} f ∈ C∞c (Rn), α ∈ NN.

The space C∞c (Rn) with the topology induced by this family of semi-norms is a locally convex
vector space.

Proof: Exercise. 2

Remark 4.1.21: The locally convex vector space C∞c (Rn) is not metrizable.

We now define a notion of convergence on the vector space C∞c (Rn) equipped with this family
of semi-norms.

Definition 4.1.22: (Convergence in C∞c (Rn))

A sequence {ϕi}i∈N, ϕi ∈ C∞c (Rn) converges towards a function ϕ ∈ C∞c (Rn), ϕi
C∞c (Rn)−−−−−→ ϕ,

with respect to this family of semi-norms if

1. There exists a compact subset K ⊂ Rn such that Supp(ϕ) ⊂ K, Supp(ϕi) ⊂ K ∀i ∈ N

2. For all α = (j1, ..., jn) ∈ Nn, the sequence of derivatives Dαϕi = ∂j1 · · · ∂jnϕi converges
uniformly to Dαϕ = ∂j1 · · · ∂jnϕ. In other words: for any multi-index α ∈ Nn and any
ε > 0 there exists an iαε ∈ N such that for all x ∈ Rn, i > iε |Dαϕi(x)−Dαϕ(x)| < ε.

One can show that the requirement that a function f : C∞c (Rn)→ C is continuous in the sense
of Definition 4.1.3 if and only if f(ϕn) n→∞−−−→ f(ϕ) for all sequences {ϕn}n∈N, ϕn ∈ C∞c (Rn)

with ϕn
C∞c (Rn)−−−−−→ ϕ, ϕ ∈ C∞c (Rn). Using this notion of convergence, one finds that the

continuous dual of the topological vector space C∞c (Rn) is the vector space of distributions.

Definition 4.1.23: (Distribution)

A distribution is a linear map T : C∞c (Rn)→ C, ϕ 7→ T [ϕ] that is continuous with respect to
convergence in D(Rn):

ϕi
C∞c (Rn)−−−−−→ ϕ ⇒ T [ϕi]→ T [ϕ] (4.1)

The space of distributions on Rn, denoted D∗(Rn) is an infinite dimensional vector space
with respect to pointwise addition and multiplication by C.
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Lemma 4.1.24: (Topology on D∗(Rn), convergence of distributions)

The space of distributions D∗(Rn) becomes a locally convex topological vector space when
equipped with the topology defined by the family of semi-norms (||T ||ϕ)ϕ∈C∞c (Rn), ||T ||ϕ =
|T [φ]|.

A sequence {Ti}i∈N, Ti ∈ D∗(Rn) of distributions converges towards a distribution T ∈
D∗(Rn), Ti

D∗−−→ T if Ti[ϕ]→ T [ϕ] for all ϕ ∈ C∞c (Rn).

4.1.3 Banach spaces and Hilbert spaces

We return to normed topological vector spaces. A special class of normed topological vector
spaces are Banach spaces, which are characterised by the fact that they are complete with
respect to their norm.

Definition 4.1.25: (Banach space)

A Banach space is a normed vector space E over k = C or k = R which is complete with
respect to the norm || || : E → R, i.e. any Cauchy sequence {xn}n∈N, ||xn − xm|| < ε for all
n,m ≥ n0 converges towards an element x ∈ E.

A map Φ : E → F between Banach spaces (E, || ||E) and (F, || ||F ) is called continuous if
for all convergent sequences {xn}n∈N, xn ∈ E with ||xn − x||E → 0 the sequence of images
converges ||Φ(xn)− Φ(x)||F → 0.

For any Banach space, the continuous dual is also a Banach space:

Lemma 4.1.26: If E is a Banach space with norm || || then the continuous dual of E is a
Banach space with the operator norm || ||E∗ : E∗ → R, ||f ||E∗ = sup{|f(x)| | x ∈ E, ||x|| ≤ 1}.

Example 4.1.27: The space C(I) of continuous functions with values in R on a closed
interval I = [0, 1] with norm

||f || =
∫ b

a
|f(t)|dt (4.2)

is a normed space, but not a Banach space. The sequence {fn}n≥3

fn(t) =


1 0 ≤ t ≤ 1

2

0 1
2 + 1

n ≤ t ≤ 1
1− n(t− 1

2) 1
2 < t < 1

2 + 1
n

(4.3)

is a Cauchy sequence with respect to the norm (4.2), but does not converge towards a function
in C(I).

Example 4.1.28: We consider the set lp, 1 ≤ p < ∞ of absolutely p-summable series
x = {xn}n∈N, xn ∈ k, in k = R or k = C, i.e. series x = {xn}n∈N, xn ∈ k such that∑∞

n=1 |xk|p < ∞. These sets are vector spaces with respect to the addition and scalar
multiplication

{xn}n∈N + {yn}y∈N = {xn + yn}n∈N t{xn}n∈N = {txn}n∈N ∀t ∈ R.
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These vector spaces are Banach spaces when equipped with the norm

||x||p =

( ∞∑
n=1

|xk|p
)1/p

.

The space l∞ of bounded series x = {xn}n∈N, xn ∈ k, supn∈N{|xn|} < ∞ is a Banach space
with norm

||x||∞ = supn∈N{|xn|}.

Example 4.1.29: We consider the vector space l1∞ = l1 ∩ l∞ of sequences which are both
absolutely summable and bounded. The norms || ||1 and || ||∞ on l1∞ are not equivalent. This
can be seen by considering the sequences x = {xn}n∈N with x ∈]0, 1[. We have ||x||∞ = x
and

||x||1 =
∞∑
k=1

xk =
1

1− x
− 1 =

x

1− x
.

If we set xk = {(1− 1
k )n}n∈N for k ∈ N, k ≥ 2 we have ||xk||∞ = 1− 1

k
k→∞−−−→ 1 and

||xk||1 =
1− 1

k
1
k

= k − 1 k→∞−−−→∞.

This implies that the norms || ||∞ and || ||1 are not equivalent.

Exercise 34: (Banach spaces of series)

1. We consider the set l∞ of all bounded sequences in k = R or k = C, i.e. sequences
x = {xk}k∈N, xk ∈ k for which supk∈N{|xk|} < ∞. Show that l∞ is a vector space with
respect to pointwise addition {xk}k∈N + {yk}k∈N = {xk + yk}k∈N and scalar multiplication
α{xk}k∈N = {αxk}k∈N for α ∈ k. Show that

||x||∞ = supn∈N{|{xn}|} x = {xk}k∈N ∈ l∞

defines a norm on l∞ and turns l∞ into a Banach space.

2. For 1 ≤ p < ∞, we consider the set lp of p-summable sequences in k, i.e. the set of
sequences {xk}k∈N, xk ∈ k with

∑∞
k=1 |xk|p <∞. For {xk}k∈N ∈ lp, we define

||{xk}||p =

( ∞∑
k=1

|xk|p
)1/p

.

Sequences in l1 are called absolutely convergent sequences, sequences in l2 square summable
sequences.

Show that lp has the structure of a vector space with respect to pointwise addition {xk}k∈N +
{yk}k∈N = {xk + yk}k∈N and scalar multiplication α{xk}k∈N = {αxk}k∈N for α ∈ k. Show
that || ||p defines a norm on lp.

Hint: To prove the triangle inequality, proceed as follows

• Show that for all sequences {xk}k∈N, {yk}k∈N ∈ lp :

||{xk + yk}||pp =
∞∑
k=1

|xk + yk|p ≤
∞∑
k=1

|xk||xk + yk|p−1 +
n∑
k=1

|yk||xk + yk|p−1
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• Apply Hölder’s inequality

∞∑
k=1

|xkyk| ≤

( ∞∑
k=1

|xk|p
)1/p( ∞∑

k=1

|yk|q
)1/q

∀p, q ≥ 1,
1
p

+
1
q

= 1

to each of the summands to show

||{xk + yk}||pp =
∞∑
k=1

|xk + yk|p ≤ (||{xk}||p + ||{yk}||p)
||{xn + yn}||pp
||{xn + yn}||p

• Derive the triangle inequality.

One can show that (lp, || ||p) is a Banach space, i.e. complete with respect to the norm || ||p.

3. We now consider the continuous dual of the Banach spaces (lp, || ||p), 1 ≤ p ≤ ∞. We
start by considering the case p =∞. For sequences x = {xk}k∈N ∈ l∞, y = {yk}k∈N ∈ l1, we
set

L(x,y) =
∞∑
k=1

xkyk.

Show that that the series
∑∞

k=1 xkyk is absolutely convergent for all absolutely convergent
sequences y = {yk}k∈N ∈ l1 and bounded sequences x = {xk}k∈N hence defines linear maps
Lx = L(x, ·) : l1 → k and Ly = L(·,y) : l∞ → k . Hint: We have |xkyk| ≤ |yk|supk∈N{|xk|}.
Show that Lx : l1 → k is continuous for all x = {xk}k∈N ∈ l∞ and Ly : l∞ → k is continuous
for all y = {yk}k∈N ∈ l1. Conclude that the assignment x 7→ Lx defines a linear map from
l∞ into the continuous dual of l1 and that the assignment y 7→ Ly : l∞ → R defines a linear
map from l1 into the continuous dual of l∞.

4. We now consider the case 1 < p <∞. For sequences x = {xk}k∈N ∈ lp and y = {yk}k∈N ∈
lq with 1

p + 1
q = 1 we set

L(x,y) =
∞∑
k=1

xkyk

Use Hölder’s inequality to show that the series L(x,y) is absolutely convergent for all x =
{xk}k∈N ∈ lp and y = {yk}k∈N ∈ lq with 1

p + 1
q = 1. Show that it defines continuous linear

maps Lx = L(x, ·) : lq → k and Ly = L(·,y) : lp → k. Conclude that the assignment
x 7→ Lx defines a linear map from lp into the continuous dual of lq and that the assignment
y 7→ Ly : l∞ → R defines a linear map from lq into the continuous dual of lp.

Remark 4.1.30: One can show that the maps x → Lx define vector space isomorphisms
from l∞ into the continuous dual of l1 and from lp, 1 < p < ∞ into the continuous dual of
l
1+ 1

p−1 . The continuous duals of l1 and l∞ can therefore be identified, respectively, with the
vector spaces l∞ and l1, and the continuous dual of lp, 1 < p <∞ with l

1+ 1
p−1

An important set of Banach spaces are the Lebesgue spaces or Lp-spaces, which are related to
Lebesgue integrals. To construct these spaces, we need to introduce the concepts of functions
defined almost everywhere and of identities that hold almost everywhere. These are functions
that are defined or identities that old everywhere on Rn except in a set of points which is so
small that it cannot affect Lebesgue integrals. More precisely, these are functions that are
defined and identities that hold everywhere in Rn except on a set of Lebesgue measure zero.
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Definition 4.1.31: (Almost everywhere)

An identity I is said to hold almost everywhere if the set of points for which it does not hold
{p ∈ Rn | I not true in p} is of Lebesgue measure zero.

A function is said to be defined almost everywhere if it is defined on a subset U ⊂ Rn such
that Rn \U is of Lebesgue measure zero. If f is a function defined almost everywhere on Rn

which takes values in C we write f : Rn → C ∪ {∞}.

Two functions f, g : Rn → C ∪ {∞} are called equal almost everywhere if the set {x ∈ Rn :
f(x) 6= g(x)} is of Lebesgue measure zero.

Example 4.1.32: (Zero sets for the Lebesgue measure)

1. If A ⊂ B, A,B ⊂ Rn and B is a set of Lebesgue measure zero, A is a set of Lebesgue
measure zero.

2. Any set S ⊂ Rk contained in a k-dimensional subspace of Rn, k < n is a zero set for
the Lebesgue measure on Rn.

3. If {Ai}i∈N, Ai ∈ Rn are subsets of measure zero,
⋃∞
i=1Ai is a subset of measure zero

4. If f, g ∈ C0(Rn) and f = g almost everywhere, then f(x) = g(x) for all x ∈ Rn.

Using the notion of functions defined almost everywhere, we can define p-integrable and
bounded functions.

Definition 4.1.33: (p-integrable functions, locally integrable functions, bounded functions)

1. For 1 ≤ p <∞, Lp(Rn) is the set of functions f : Rn → C ∪ {∞}, for which

||f ||p =
(∫

Rn
dnx|f(x)|p

) 1
p

<∞. (4.4)

Functions in L1(Rn) are called integrable, functions in L2(Rn) square integrable and
functions in Lp(Rn) p-integrable.

2. A function f : Rn → C ∪ {∞} is called locally integrable if
∫
K |f(x)|dnx exists for all

compact K ⊂ Rn. The set of locally integrable functions is denoted L1
loc(Rn).

3. L∞(Rn) is the set of locally integrable functions f : Rn → C ∪ {∞} for which

||f ||∞ = inf{c ≥ 0 | |f | ≤ c almost everywhere on Rn} <∞. (4.5)

Elements of L∞(Rn) are called bounded almost everywhere or bounded.

Example 4.1.34: (Integrable, locally integrable, p-integrable)

1. The function f : Rn → R, f(x) = 1 for all x ∈ Rn is bounded and locally integrable,
but not p-integrable: f ∈ L1

loc(Rn), f ∈ L∞(Rn), f /∈ Lp(Rn) for all p ∈ [0,∞[.
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2. The function f : R→ R

f(x) =

{
x−α x ∈]0, 1[
0 x ≤ 0 or x ≥ 1

α ∈ R+ (4.6)

is not bounded: f /∈ L∞(R). It is in Lp(R), p ∈ [1,∞[ if and only if pα < 1. It is locally
integrable and integrable if and only if α < 1.

3. The function f : R→ R

f(x) =

{
x−α x ≥ 1
0 x < 1

α ∈ R+ (4.7)

is bounded and locally integrable: f ∈ L∞(Rn), f ∈ L1
loc(Rn). It is in Lp(Rn), p ∈ [1,∞[

if and only if pα > 1.

4. f ∈ C∞c (Rn) ⇒ f ∈ Lp(Rn) for all p ∈ [1,∞].

5. f ∈ C0(Rn), f bounded ⇒ f ∈ L1
loc(Rn).

Clearly, the sets Lp(Rn), 1 ≤ p ≤ ∞ are vector spaces with respect to pointwise addition
of functions and multiplication by C. Also, it is clear that || || : Lp(Rn) → R is positive
semi-definite and satisfies ||λf ||p = |λ|||f ||p. It can also be shown that it satisfies the triangle
inequality. However, it does not define a norm on Lp(Rn) because it fails to be positive-
definite.

Lemma 4.1.35: For 1 ≤ p ≤ ∞, the spaces Lp(Rn) with pointwise addition of functions
and multiplication by C are vector spaces. || · ||p defines a semi-norm on Lp(Rn). It satisfies
||f ||p = 0 if and only if f = 0 almost everywhere on Rn.

Hence, in order to obtain a normed vector space, we have to take the quotient of Lp with
respect to the linear subspace of functions which vanish almost everywhere on Rn as in lemma
4.1.17. This leads to the definition of Lp-spaces of Lebesgue spaces.

Definition 4.1.36: (Lp-spaces, Lebesgue spaces)

The Lp-space or Lebesgue space Lp(Rn), 1 ≤ p ≤ ∞, is the quotient vector space Lp(Rn)/N ,
N = {f : Rn → C∪{∞}, f = 0 almost everywhere on Rn}. Its elements are equivalence
classes [f ] = f +N with respect to the equivalence relation f ∼ g if f = g almost everywhere
on Rn or, equivalently, f − g ∈ N . The semi-norm || ||p on Lp(Rn) induces a norm on
Lp(Rn).

With this definition, one obtains a class of normed vector spaces (Lp(Rn), || ||p) which
additionally, are complete with respect to the norm || ||p and therefore Banach spaces.

Theorem 4.1.37: (Lebesgue spaces are Banach spaces)

For all 1 ≤ p ≤ ∞ the Lebesgue spaces Lp(Rn) with the Lp-norm || ||p : Lp(Rn) → R are
Banach spaces.

The vector space of equivalence classes C∞c (Rn)/N is dense in Lp(Rn), i.e. for any f ∈ Lp(Rn),
there exists a sequence {ϕn}n∈N, ϕ ∈ C∞c (Rn)/N with ||ϕn − f ||p

n→∞−−−→ 0
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Theorem 4.1.38: The continuous dual of the Banach spaces Lp(Rn) with 1 ≤ p ≤ ∞ is
isomorphic to the Banach space Lq(Rn), where 1

p + 1
q = 1. (For p =∞ interpret this equation

as q = 1.). The isomorphism φp : Lq(Rn)→ Lp(Rn)∗ is given by

f ∈ Lq(Rn) 7→ Lf : Lp(Rn)→ C, Lf (g) :=
∫

Rn
f(x)g(x)dnx.

A special class of Banach spaces are Hilbert spaces, which are Banach spaces E whose norm
is induced by a hermitian product on E.

Definition 4.1.39: (Scalar product, Hilbert space, Pre-Hilbert space)

A scalar product or hermitian product on a vector space E over k = R or k = C is a positive
definite hermitian form on E, i.e. a map 〈 , 〉 : E × E → C that satisfies

1. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉, 〈z,x + y〉 = 〈z,x〉+ 〈z,y〉 for all x,y, z ∈ E.

2. 〈λx,y〉 = λ〈x,y〉, 〈x, λy〉 = λ̄〈x,y〉 for all x,y ∈ E and λ ∈ C

3. 〈y,x〉 = 〈x,y〉 for all x,y ∈ E

4. 〈x,x〉 ≥ 0 for all x ∈ E, 〈x,x〉 = 0 if and only if x = 0

A vector space E together with a scalar product is called a Pre-Hilbert space. It is called
a Hilbert space if it is complete with respect to the norm ||x|| =

√
〈x,x〉, i.e. any Cauchy

sequence with respect to this norm converges towards an element of H.

One can show that all Hilbert spaces are Banach spaces, but not the other way around.

Lemma 4.1.40: If (E, 〈 , 〉) is a pre-Hilbert space, the map || · || : E → R+
0 , ||x|| =

√
〈x,x〉

defines a norm on E. If (E, 〈 , 〉) is a Hilbert space, (E, || · ||) is a Banach space.

Proof: Exercise. 2

Exercise 35: Let E with scalar product 〈 , 〉 : E × E → C be a Pre-Hilbert space and
denote by ||x|| =

√
〈x,x〉 the associated norm. Prove the following identities

1. Cauchy Schwartz inequality |〈x,y〉| ≤ ||x|| · ||y|| ∀x,y ∈ E

2. Triangle inequality: ||x + y|| ≤ ||x||+ ||y||

3. 〈x,y〉 = 1
2(||x + y||2 − ||x||2 − ||y||2)

4. ||x||2 + ||y||2 = 1
2 ||x + y||2 + 1

2 ||x− y||2

Hints: To prove the Cauchy Schwartz inequality, consider the cases ||x||, ||y|| 6= 0 and the
case where ||x|| = 0 or ||y|| = 0 separately. For ||y|| 6= 0, consider the norm squared of the
vector x − 〈x,y〉||y||2 y. To prove the triangle inequality, square both sides of the equation, and
use the Cauchy Schwartz inequality.

We will now consider some important examples of Hilbert spaces as well as an example of
Pre-Hilbert spaces, which is not a Hilbert space.
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Example 4.1.41: (Hilbert spaces)

1. The vector space Cn with scalar product 〈x,y〉 =
∑n

i=1 ȳixi is a Hilbert space

2. The vector space L2(Rn) is a is Hilbert space with the scalar product

〈f, g〉 =
∫

Rn
f̄(x)g(x)dnx. (4.8)

3. The space l2 = {{xn}n∈N |
∑∞

n=0 |xn|2 <∞} of square summable sequences is a Hilbert
space with the scalar product

〈x,y〉 =
∞∑
n=1

x̄nyn x = (xn)n∈N,y = (yn)n∈N. (4.9)

Remark 4.1.42: The Hilbert space of absolutely convergent series can be viewed as the
infinite-dimensional analogue of the vector spaces Cn. We will see later that any separa-
ble Hilbert space can be identified with this space via the choice of a (countably infinite)
orthonormal basis.

Example 4.1.43: (Pre-Hilbert space but not Hilbert space) We consider the space C(I)
from example 4.1.27 with scalar product

〈f, g〉 =
∫ b

a
f(t)g(t) (4.10)

and associated norm || || =
√
〈 , 〉. This is a pre-Hilbert space, but not a Hilbert space since

the sequence (4.3) given in example 4.1.27 is a Cauchy sequence but does not converge.

We will now investigate the continuous duals of Hilbert spaces. We start with the observation
that for the Hilbert spaces l2 of square summable series and the Hilbert space L2(Rn) of square
integrable functions, the continuous duals were determined already in the previous sections.
There, we found that these Hilbert spaces are self-dual, i.e. that their continuous dual is
isomorphic to the spaces itself l2∗ = l2, L2(Rn)∗ = L2(Rn). Riesz’s theorem asserts that that
this is a general pattern for all Hilbert spaces. Hilbert spaces are self-dual.

Theorem 4.1.44: (Continuous dual of Hilbert spaces, Riesz’s theorem)

Let E be a Hilbert space with hermitian product 〈 , 〉 : E × E → C. Then, the continuous
dual E∗ of E is isomorphic to E. More precisely, the linear map

R : E → E∗ , x 7→ 〈x, ·〉

is a continuous and bijective and satisfies ||Rx||E∗ = ||x||, where the norm || ||E∗ on E∗ is
given by ||f || = sup{|f(x)| | x ∈ E, ||x|| ≤ 1}.

4.1.4 Summary

In this section, we considered examples of topological vector spaces, which included locally
convex vector spaces associated with distributions, metric and metrizable spaces as well as
normed spaces, which as special cases included Banach and Hilbert spaces.
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The relation between these spaces is given by the following diagram:

Hilbert spaces Examples: l2, L2(Rn),Cn (4.11)
∩
Banach spaces Examples: lp, Lp(Rn), 1 ≤ p ≤ ∞
∩

Normed vector spaces Examples: C([a, b]) with norm ||f || =
∫ b

a
|f(t)|

∩
Metric vector spaces/metrizable vector spaces
∩
Locally convex vector spaces Examples: C∞c (Rn),D∗(Rn)
∩
Topological vector spaces.

We also investigated the continuous duals for three examples of topological vector spaces
which play an important role in mathematics and physics. The results are summarised in the
following table.

Example Structure Continuous dual
Lp(Rn), 1 ≤ p ≤ ∞ Banach space Lq(Rn), 1

p + 1
q = 1

lp, 1 ≤ p ≤ ∞ Banach space lq, 1
p + 1

q = 1
L2(Rn) Hilbert space L2(Rn)
l2 Hilbert space l2

C∞c (Rn) Locally convex vector space Distributions D∗(Rn)

This should be contrasted with the situation for finite-dimensional vector spaces

• Every finite dimensional vector space has a unique topology, the canonical topology,
that turns it into a topological vector space

• Any finite-dimensional vector space can be given the structure of a normed space, and
any two norms on a finite-dimensional vector space are equivalent.

• Every finite-dimensional vector space over C can be made into a Hilbert space via the
choice of a basis.

• The linear forms φ : V → k on a finite-dimensional vector space V over k = C or k = R
are continuous. The dual vector space V ∗ is isomorphic to V .

4.2 Distributions

In this section, we will give a more detailed investigation of smooth functions with compact
support and distributions. We recall the definitions from the previous section and start by
considering some examples of distributions.

——————————————————————————————————————
C. Meusburger Concepts and Methods of Mathematical Physics, DRAFT August 12, 2011



4.2. Distributions 103

Example 4.2.1: (Distributions)

1. A function f : Rn → C ∪ {∞} is called locally integrable, f ∈ L1(Rn) if
∫
K |f(x)|dnx

exists for all compact subsets K ⊂ Rn. The space of locally integrable functions on Rn

is denoted by L1(Rn). For any f ∈ L1, the the integral
∫

Rn f(x)ϕ(x)dnx exists for all
test functions ϕ ∈ C∞c (Rn), since∫

Rn
f(x)ϕ(x)dnx =

∫
Supp(ϕ)

f(x)ϕ(x)dnx ≤
∫

Supp(ϕ)
|f(x)||ϕ(x)|dnx

≤ Sup{|ϕ(x) | x ∈ Supp(ϕ)} ·
∫

supp(ϕ)
|f(x)|dnx <∞.

The linear map

Tf : ϕ 7→ Tf [ϕ] :=
∫

Rn
f(x)ϕ(x)dnx

is a distribution.

2. For any x ∈ Rn, the evaluation map δx : ϕ 7→ δx(ϕ) = ϕ(x) is a distribution

Definition 4.2.2: (Transformation of distributions)

The transformation T → φ∗T of a distribution T under a diffeomorphism φ : Rn → Rn is
defined by

(φ∗T )[ϕ ◦ φ · | det(dφ)|] = T [ϕ] ∀ϕ ∈ C∞c (Rn), T ∈ D∗(Rn).

Exercise 36: (Transformations of the δ-distribution)

We consider the delta distribution δx on Rn. Let φ = (φ1, ..., φn) : Rn → Rn be a diffeo-
morphism, i.e. a bijective map that is continuously differentiable and such that its inverse
φ−1 is continuously differentiable. This implies that its Jacobi matrix dφ = (∂iφj)i,j=1,...,n is
invertible everywhere and therefore det(dφ) 6= 0, det(dφ) = 1

det(dφ−1)
.

The transformation of the delta distribution δx → φ∗δx under the diffeomorphism φ is given
by the equation

(φ∗δx)[ϕ ◦ φ · | det(dφ)|] = δx[ϕ] ∀ϕ ∈ C∞c (Rn). (4.12)

1. In the physics literature, the evaluation of the delta distribution on a function ϕ ∈ C∞c (Rn)
is often expressed using an integral notation, in which δx is treated as if it was a function

δx[ϕ] =
∫

Rn
δx(y)ϕ(y)dny.

Use the transformation formula for integrals to show that in the integral notation formula
(4.12) takes the form∫

Rn
φ∗δx(y)f(φ(y))|det(dφ)(y)|dny =

∫
Rn
δx(v)f(v)dnv.

2. We consider the diffeomorphism φ : Rn → Rn, φ(y) = αy for all x ∈ Rn with α ∈ R \ {0}.
Show that the transformation of the delta distribution under φ is given by

φ∗δ0 =
1
|α|n

δ0
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or, equivalently, in physics notation, by

δ0(αx) =
1
|α|n

δ0(x).

3. Show that for a general diffeomorphism φ : Rn → Rn as above, one has

φ∗δ0[ϕ] =
1

|det(dφ)(φ−1(0))|
ϕ(φ−1(0)) ⇔ δ0(φ(x)) =

1
|det(dφ)|

δφ−1(0)(x).

As distributions are continuous linear forms on the vector space C∞c (Rn), i.e. form the con-
tinuous dual of the space of smooth functions with compact support, many operations on on
the space C∞c (Rn) can be transported to the space D∗(Rn) of distributions via the evaluation
map ev : D∗(Rn)× C∞c (Rn)→ C, ev(T, ϕ) = T [ϕ].

An example we encountered in the previous section was the notion of convergence of dis-
tributions. We will now show that the evaluation map can also be used to obtain a notion
of differentiation for distributions. For this, we first consider distributions associated with
differentiable functions f ∈ L1(R) ∩ C1(R) as in example 4.2.1. It is natural to impose that
the differential of such a distribution should be the distribution associated with the function
ḟ , if ḟ is in L1(R). For f ∈ L1(R) ∩ C1(R) such that ḟ ∈ L1(R) and ϕ ∈ C∞c (R), we obtain
by partial integration

Tḟ [ϕ] =
∫

R
ḟ(x) · ϕ(x) dx = −

∫
R
f(x) · ϕ̇(x) dx (4.13)

To generalise the differentiation of distributions to all distributions on R, we can therefore
define the derivative Ṫ of a distribution T as the distribution Ṫ : ϕ 7→ −T [ϕ̇] for all ϕ ∈
C∞c (R). Clearly, this is a continuous function of the test functions.

Note that the minus sign is essential in this definition to obtain agreement with (4.13). To
generalise this definition to distributions on Rn and to more general derivatives and linear
differential operators, we therefore need to find a suitable generalisation of this minus sign.
This generalisation is given by the concept of the adjoint of a linear differential operator.

Definition 4.2.3: (Adjoint of a linear differential operator)

Let L be a linear differential operator of order k on Rn, L =
∑
|α|≤k cαD

α, where α =
(j1, ..., jk) ∈ Nk is a multi-index of length |α| = k and cα ∈ C∞(Rn) with values in R. Then a
linear differential operator L∗ of order k is called adjoint to L if for all f ∈ Ck(Rn), g ∈ Ckc (Rn)∫

Rn
(L∗f)(x) · g(x)dnx =

∫
Rn
f(x) · (Lg)(x)dnx. (4.14)

Clearly, the definition of the adjoint generalises identity (4.13). Moreover, it has the following
important properties.

Lemma 4.2.4: (Properties of the adjoint)

Every linear differential operator of order k on Rn L =
∑
|α|≤k cαD

α, cα ∈ C∞(Rn) with
values in R, has a unique adjoint L∗. It satisfies

(λL)∗ = λL∗ ∀λ ∈ R (L1 + L2)∗ = L∗1 + L∗2 (L1 ◦ L2)∗ = L∗2 ◦ L∗1 (4.15)
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Using the concept of the adjoint, we can now define differentiation of distribution for general
differential operators on Rn.

Definition 4.2.5: (Differentiation of distributions, weak differentiation)

Let L be a linear differential operator of order k on Rn, T ∈ D∗(Rn). Then, the action of L
on T is defined by LT [ϕ] = T [L∗ϕ] for all ϕ ∈ C∞c (Rn).

Remark 4.2.6: Note that this definition is similar to the definition of the dual of a linear
map in in Def. 1.1.7, but that there is one important difference. In Def. 1.1.7, the dual φ∗ of
a linear map φ ∈ End(V ) was defined by

φ∗ : α 7→ φ∗(α) φ∗(α)(x) = α(φ(x)) ∀α ∈ V ∗,x ∈ V. (4.16)

If we set V = C∞c (Rn), V ∗ = D∗(Rn) and identified the linear map φ with a linear operator
L, Def. 1.1.7 would lead to the definition

LT [ϕ] = T [Lϕ] ∀ϕ ∈ C∞c (Rn). (4.17)

However, this would imply

(L ◦M)T [ϕ] = T [L ◦Mϕ] = LT [Mϕ] = M ◦ (LT )[ϕ] ∀ϕ ∈ C∞c (Rn). (4.18)

In order to obtain the familiar composition law (M ◦ L)T = M ◦ (LT ), we therefore have to
work with the adjoint instead.

Example 4.2.7: We consider the delta distribution δ0 : ϕ 7→ ϕ(0) for all ϕ ∈ D(R). Its
derivative is the distribution δ̇0 : ϕ 7→ −ϕ̇(0).

Example 4.2.8: We consider the Heavyside step function on R

θ(x) =

{
0 x < 0
1 x ≥ 0

. (4.19)

As it is discontinuous in x = 0, it is not differentiable as a function. However, as θ ∈ L1
loc(R),

it has an associated distribution Tθ : ϕ 7→
∫∞
−∞ θ(x)ϕ(x)dx, which is differentiable as a

distribution with Ṫθ = δ0

Ṫθ[ϕ] = −
∫ ∞
−∞

θ(x)ϕ̇(x)dx = −
∫ ∞

0
ϕ̇(x)dx = ϕ(0). (4.20)

Exercise 37: We consider the function f : R3 → R defined by

f(x) =

{
1
|x| x ∈ Rn \ {0}
0 x = 0

∀x ∈ R3.

This function is not differentiable in 0 as a function, but we can consider the associated
distribution T : ϕ 7→

∫
R3 ϕ(x)f(x)d3x. Determine the derivative of this distribution.

The action of a differential operator of order 0, for which α = ∅ and cα = f ∈ C∞(Rn), on a
distribution corresponds to the product of a distribution with a function f ∈ C∞(Rn).
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Definition 4.2.9: (Product of a distribution and a function)

For any distribution T : C∞c (Rn) → R and any function ψ ∈ C∞(Rn) the map Tψ : ϕ 7→
T [ψ · ϕ] is a distribution: Tψ ∈ D∗(Rn). It is called the product of T and ψ.

Remark 4.2.10: Although distributions can be multiplied by functions, the product of
distributions is a priori ill-defined. Giving a meaning to the product of distributions and
defining it consistently is a difficult task. It is related to the problem of renormalisation in
quantum field theory. One should therefore never naively multiply two distributions.

Lemma 4.2.11: The differential of distributions is continuous with respect to the conver-
gence of distributions. For a linear differential operator of order k on Rn L =

∑
|α|≤k cαD

α,
cα ∈ C∞(Rn) with values in R and any sequence of distributions {Tn}n∈N, Tn ∈ D∗(Rn) we
have

Tn
D∗(Rn)−−−−→ T ⇒ LTn

D∗(Rn)−−−−→ LT. (4.21)

The next concept we want to extend to distributions is the notion of translation in the ar-
gument of a function. Given a function ϕ ∈ C∞c (Rn), the translate of ϕ by x ∈ Rn is the
function txϕ(y) = ϕ(x− y) which is again an element of C∞c (Rn). The translation operator
tx : C∞c (Rn)→ C∞c (Rn), ϕ 7→ txϕ defines a linear map on C∞c (Rn). As the Lebesgue measure
on Rn is characterised by the property that it is invariant under translations, the transla-
tion and the associated translation operator play an important role in integration theory.
Extending the concept of translation to distributions leads to the concept of convolution.

Definition 4.2.12: (Convolution)

For ϕ ∈ C∞c (Rn), T ∈ D∗(Rn) the convolution of T and ϕ turns out to be a the function
T ∗ ϕ : Rn → C given by

T ∗ ϕ(x) = T [txϕ] ∀x ∈ Rn where txϕ(y) = ϕ(x− y). (4.22)

Example 4.2.13: For f ∈ L1
loc(Rn), Tf ∗ ϕ(x) =

∫
Rn f(y)ϕ(x− y)dny.

Example 4.2.14: We consider the delta distribution δ0 ∈ D∗(R). We have δ0 ∗ ϕ(x) =
δ0[txϕ] = ϕ(x) and therefore δ0 ∗ ϕ = ϕ for all ϕ ∈ C∞c (R). The delta distribution therefore
plays the role of the unit for the convolution.

The delta distribution and convolutions play an essential role in the solution of inhomoge-
neous differential equations. This is due to the fact that the convolution commutes with
differentiation in the following sense:

Theorem 4.2.15: (Properties of the convolution)

1. The convolution is linear in both arguments

(λT1 + µT2) ∗ ϕ = λT1 ∗ ϕ+ µT2 ∗ ϕ ∀λ, µ ∈ R, T1, T2 ∈ D∗(Rn), ϕ ∈ C∞c (Rn)
T ∗ (λϕ1 + µϕ2) = λT ∗ ϕ1 + µT ∗ ϕ2 ∀λ, µ ∈ R, T ∈ D∗(Rn), ϕ1, ϕ2 ∈ C∞c (Rn).

2. For all T ∈ D∗(Rn), ϕ ∈ C∞c (Rn): T ∗ϕ ∈ C∞(Rn) and ∂i(T ∗ϕ) = (∂iT )∗ϕ = T ∗ (∂iϕ)
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Theorem 4.2.16: Let L =
∑
|α|≤k cαD

α be a differential operator of order k with constant
coefficients cα ∈ C. Let E ∈ D∗(Rn) be an fundamental solution of L, i.e. a distribution
such that

LE = δ0. (4.23)

Then for any ρ ∈ C∞c (Rn), the function u = E∗ρ : Rn → C is a solution of the inhomogeneous
differential equation

Lu = ρ.

Proof: This is a direct consequence of the second property in Theorem 4.2.15 and the fact
that the delta function acts as a unit for the convolution. Together, they imply

Lu = L(E ∗ ρ) = (LE) ∗ ρ = δ0 ∗ ρ = ρ

. 2

Remark 4.2.17: In physics, fundamental solutions of differential operators are often called
Green’s functions. The act of determining a fundamental solution for a linear differential
operator with constant coefficients is sometimes called “solving the equations of motions
for elementary excitations”. The picture behind this is that the the differential operator
determines the equation of motion of a physical system without external forces. The delta
distribution has the interpretation of an external force or force field which acts only at a
given point in space and/or at a given time.

The solution for more general forces is then found using the superposition principle for lin-
ear differential equations, namely the fact that their solutions form an infinite dimensional
vector space and the fact that the delta distribution acts as a unit for the convolution. This
corresponds to taking the convolution of an elementary solution with the function ρ.

Example 4.2.18: (Elementary solutions for the elliptic Laplace operator)

We consider the elliptic Laplace operator ∆ =
∑n

i=1(∂i)2 on Rn. The elementary solutions
of the Laplace equation ∆E = δ0 in Rn are the Newton potentials Na : Rn{a} → R

Na(x) =

{
αn

1
||x−a||n−2 n 6= 2

1
2π ln ||x− a|| n = 2

,

where αn ∈ R+ is a normalisation constant related to the volume of the n− 1-sphere Sn−1.

Example 4.2.19: (Elementary solutions for the Helmholtz equation)

Using the ansatz f(x, t) = u(x)eiωt, u : R3 → C the hyperbolic wave equation on R3 × R(
∆− 1

c2

∂2

∂t2

)
f(x, t) = 0

leads to the elliptic Helmholtz operator ∆ + k2 and to the Helmholtz equation

(∆ + k2)u = 0 k = ω
c .

The elementary solutions of the Helmholtz operator are given by

E(x) = − 1
4π

cos(k||x||)
||x||

.
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4.3 Fourier transforms

In this section, we will investigate the Fourier transform as a continuous linear map on
different vector spaces. We start by considering the space L1(Rn).

Definition 4.3.1: (Fourier transform)

For f ∈ L1(Rn), the integral

f̂(y) =
1

(2π)n/2

∫
Rn
f(x)e−i〈x,y〉dnx 〈x,y〉 =

n∑
i=1

xiyi (4.24)

exists. The function f̂ : Rn → C, y 7→ f̂(y) is called the Fourier transform of f .

Example 4.3.2:

We determine the Fourier transform of the function f : Rn → R, f(x) = e−x
2/2.

f̂(y) = 1
(2π)n/2

∫
Rn
e−x

2/2e−ix·ydnx =
n∏
i=1

∫ ∞
−∞

1√
2π
e−x

2
i /2−ixiyidxi

=
n∏
i=1

∫ ∞
−∞

1√
2π
e−

1
2 (xi+iyi)

2−1
2y

2
i dxi = e−

1
2y2

(
1√
2π

∫ ∞
−∞

e−x
2/2dx

)n
= e−

1
2y2

. (4.25)

Example 4.3.3:

We determine the Fourier transform of the function f : R→ R, f(x) = e−|x|.

f̂(y) = 1√
2π

∫ ∞
−∞

e−|x|e−ixydx = 1√
2π

∫ ∞
0

e−|x|(e−ixy + eixy)dx

= 1√
2π

lim
R→∞

[
−e
−x(1+iy)

1 + iy
− e−x(1−iy)

1− iy

]x=R

x=0

=
√

2
π

1
1 + y2

(4.26)

Exercise 38: Show that for the characteristic function χ[−1,1] : R → R the Fourier trans-
form is given by

χ[−1,1](x) =

{
1 |x| ≤ 1
0 |x| > 1

⇒ χ̂[−1,1](x) =

√
2
π

sinx
x

(4.27)

Note that χ̂ is not in L1(R) although χ ∈ L1(R).

Lemma 4.3.4: (Properties of the Fourier transform)

The Fourier transform f̂ has the following properties:

1. It is continuous: f̂ ∈ C0(Rn) for all f ∈ L1(Rn).

2. It is linear: ̂αf + βg = αf̂ + βĝ for all α, β ∈ C, f, g ∈ L1(Rn).

3. It is bounded: ||f̂ ||∞ ≤ 1
(2π)n/2

||f ||1 for all f ∈ L1(Rn).

4. If f ∈ L1 vanishes almost everywhere, f̂ = 0.
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Corollary 4.3.5:

The Fourier transformation defines a linear, continuous map F : L1(Rn)→ C0(Rn).

Lemma 4.3.6: (Identities for the Fourier transform)

The Fourier transform satisfies the following identities

1. For all f ∈ L1(Rn) and g(x) = f(λx) almost everywhere, λ ≥ 0 ⇒ ĝ(y) = 1
λn f̂(y/λ).

2. For f ∈ L1(Rn) and g(x) = f(−x) almost everywhere ⇒ ĝ(y) = f̂(y).

3. For f ∈ L1(Rn), f̂x(y) = txf(y) = f̂(y)e−i〈x,y〉

4. For f ∈ C1
c (Rn) = {f ∈ C1(Rn) | {x ∈ Rn | f(x) 6= 0} compact}: (̂∂jf)(y) = iyj f̂(y).

5. If the function x 7→ xjf is integrable, f̂ is continuously differentiable with respect to
yj and (̂xjf) = i∂j f̂ .

6. For f, g ∈ L1(Rn), the functions f̂g and gf̂ are integrable and∫
Rn
f̂(x)g(x)dnx =

∫
Rn
f(y)ĝ(y)dny. (4.28)

7. For any f ∈ C∞c (Rn), the Fourier transform is integrable: f̂ ∈ L1(Rn).

Proof: Identities 1.), 2.), 3.), 4.) can be proved by substitution of integration variables and
are left as an exercise. 7.) follows from integration theory.

To prove 5.), we need to use integration theory to show that f̂ is differentiable and differen-
tiation commutes with the integral in the definition of the Fourier transformation. We then
obtain

∂j f̂(y) =
∂

∂yj

(
y 7→ 1

(2π)n/2

∫
Rn
f(x)e−i〈x,y〉dnx

)
=

−i
(2π)n/2

∫
Rn
xjf(x)e−i〈x,y〉dnx = −ix̂jf(y).

6.): As f̂ , ĝ are continuous and bounded, f̂g and ĝf are integrable. Using Fubini’s theorem
one obtains∫

Rn
f(x)ĝ(x)dnx =

1
(2π)n/2

∫
Rn

∫
Rn
f(x)g(y)e−i〈x,y〉dnxdny

=
1

(2π)n/2

∫
Rn

(∫
Rn
f(x)e−i〈x,y〉dnx

)
g(y)dny =

∫
Rn
f̂(y)g(y)dny

2

As in the case of distributions, one can define a convolution on the space L1(Rn). It turns
out that the Fourier transform has special properties with respect to the convolution, namely
that it transforms the convolution of functions to the product of convolutions. To see this,
we start by defining the convolution of functions in L1(Rn).
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Definition 4.3.7: (Convolution)

For f, g ∈ L1(Rn), the convolution of f and g is the function f ∗ g : Rn → C defined by

f ∗ g(y) =
∫

Rn
f(x)g(y − x)dnx. (4.29)

If g vanishes almost everywhere, f ∗ g = 0 = g ∗ f for all f ∈ L1(Rn). The convolution
therefore induces a bilinear map ∗ : L1(Rn)× L1(Rn)→ L1(Rn).

Remark 4.3.8: Note that this definition of the convolution coincides with the one for
distributions Tf : C∞c (Rn)→ C associated with a functions f ∈ L1(Rn). If Tf : C∞c (Rn)→ C
is the distribution associated with a function f ∈ L1(Rn) and g is a function g ∈ C∞c (Rn), we
have Tf ∗ g = f ∗ g.

Lemma 4.3.9: (Properties of the convolution)

The convolution induces a continuous bilinear map ∗ : L1(Rn)×L1(Rn)→ L1(Rn). It satisfies

1. ||f ∗ g||1 ≤ ||f ||1||g||1 for all f, g ∈ L1(Rn).

2. (̂f ∗ g) = (2π)n/2f̂ · ĝ for all f, g ∈ L1(Rn).

3. f ∗ g(x) = g ∗ f(x) ∀x ∈ Rn, f, g ∈ L1(Rn)

4. (f ∗ g) ∗ h = f ∗ (g ∗ h) ∀x ∈ Rn, f, g, h ∈ L1(Rn).

Proof: Exercise. 2

To work with a notion of Fourier transform that is defined for locally integrable functions
or as a continuous linear map from L1(Rn) to C0(Rn) will not be sufficient in the following.
Firstly, we would like to construct the inverse of a Fourier transform, which is complicated if
we view the Fourier transform as a continuous linear map F : L1(Rn) → C0(Rn). Secondly,
many applications of the Fourier transform such as its role in quantum mechanics involve
functions in L2(Rn), not L1(Rn). We will see in the following that it is possible to extend
the Fourier transform to L2(Rn) and that this is closely related to constructing its inverse.

As a first step, we note that the Fourier transform is injective in the following sense:

Theorem 4.3.10: (Uniqueness and Inversion of Fourier transform)

1. If f ∈ L1(Rn) such that f̂ ∈ L1(Rn), we have

f(x) =
1

(2π)n/2

∫
Rn
f̂(y)ei〈y,x〉 almost everywhere. (4.30)

2. For all f, g ∈ L1(Rn) with f̂ = ĝ, we have f(x) = g(x) for almost all x ∈ Rn.

Hence, the Fourier transformation is injective in the sense that two functions in L1(Rn) whose
Fourier transformations agree must be equal almost everywhere. However, the inversion
formula given in the preceding theorem is only valid for functions that are such that their
Fourier transform is also in L1(Rn). As the Fourier transform does not preserve the L1- norm
|| ||1, there is in general no guarantee that the Fourier transformation of a function in L1(Rn)
is in L1(Rn). However, it turns out that the Fourier transform preserves the L2-norm || ||2.

——————————————————————————————————————
C. Meusburger Concepts and Methods of Mathematical Physics, DRAFT August 12, 2011



4.4. Hilbert spaces 111

Theorem 4.3.11: For all f ∈ L1(Rn) ∩ L2(Rn), f̂ ∈ L2(Rn) and ||f ||2 = ||f̂ ||2.

Hence, the Fourier transformation is defined for functions in L1(Rn) and is injective for
those functions, but preserves the L2-norm. This suggests that in order to obtain a Fourier
transformation which is an isomorphism of Banach or Hilbert spaces, we should extend it to
L2(Rn). That this is possible is shown by Plancherel’s theorem, whose proof makes use of the
fact that the smooth functions with compact support and hence the intersection L1(Rn) ∩
L2(Rn) are dense in L2(Rn).

Corollary 4.3.12: (Plancherel’s theorem)

There exists a unique isomorphism F : L2(Rn)→ L2(Rn) such that

1. ||F(f)||L2 = ||f ||L2 for all f ∈ L2(Rn)

2. F(f) = f̂ for all f ∈ L1(Rn) ∩ L2(Rn)

3. F−1(f)(y) = 1
(2π)n/2

∫
Rn f(x)ei〈x,y〉dnx for all f ∈ L1(Rn) ∩ L2(Rn).

4.4 Hilbert spaces

We will now focus on Hilbert spaces, which play an important role in quantum mechanics.
Throughout this section, we denote by H a Hilbert space with scalar product or hermitian
product 〈 , 〉 : H×H → C.

Many of the constructions that are possible for finite-dimensional vector spaces such as pro-
jections on linear subspaces and decomposition of vectors with respect to a basis are also
possible for (separable) Hilbert spaces. We start by considering the projection on a closed
linear subspace.

Theorem 4.4.1: (Orthogonal projection on a closed subspace)

Let H be a Hilbert space and F ⊂ H a closed subspace of H, i.e. a linear subspace F ⊂ H
such that any Cauchy sequence with elements in F converges towards an element of F . Then
for each x ∈ H there exists a unique y ∈ F , the projection of x on F denoted y = PF (x),
such that ||x − y|| = d(x, F ) = inf{||x − z|| | z ∈ F}. The projection map PF : H → F ,
x 7→ PF (x) has the following properties:

1. It is linear and continuous.

2. It satisfies: PF ◦ PF = PF

3. 〈x− PF (x), z〉 = 0 for all z ∈ F .

4. Any element x ∈ H can be expressed uniquely as a sum of its projection on F and an
element of the orthogonal complement F⊥ = {y ∈ H | 〈z,y〉 = 0 ∀z ∈ F}.

x = PF (x) + z z ∈ F⊥. (4.31)

Proof:
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1. Uniqueness: To prove that y is unique, we select a sequence (xn)n∈N with ||xn − x|| →
d(x, F ) = inf{||x− z|| | z ∈ F}. The last identity in exercise (35) implies

||xn − xk||2 = 2(||x− xn||2 + ||x− xk||2)− 4 ||x1
2(xn + xm)||2︸ ︷︷ ︸
≥d(x,F )2

(4.32)

and therefore ||xn − xk||2 < ε2 if ||x − xk||2, ||x − xn||2 < d(x, F )2 + ε2

4 . This shows that
{xn}n∈N is a Cauchy sequence. As F is closed, this sequence converges to an element y ∈ F
with ||x − y|| = d(x, F ). For any element z ∈ F with ||x − z|| = d(x, F ), we obtain using
again the last identity in exercise (35)

||y − z||2 = 4d(x, F )2 − 4 ||x− 1
2(y + z)||︸ ︷︷ ︸

≥d(x,F )2

≤ 0 (4.33)

and therefore z = y. This shows that y = PF (x) is unique.

2. Let y = PF (x) for a general x ∈ H. Then, y ∈ F and d(y, F ) = 0 = ||y − y||. The
uniqueness of the projection then implies PF (y) = y and therefore PF ◦ PF = PF .

3. To prove that 〈x− PF (x), z〉 = 0 for all z ∈ F , we use the third identity in (35) and find
for all t ∈ R+

||x− (PF (x)− tz)||2 = t2||z||2 + d(x, F )2 − 2t〈x− PF (x), z〉 ≥ d(x, F )2, (4.34)

which implies t(〈x− PF (x), z〉− t
2 ||z||

2) ≤ 0 for all t ∈ R+. Hence, we must have 〈x− PF (x), z〉−
t
2 ||z||

2 ≤ 0 for all t ∈ R+. By letting t tend to zero, we obtain 〈x− PF (x), z〉 = 0. Set-
ting x = PF (x) + (x − PF (x)) for any x ∈ H therefore defines a unique decomposition
x = PF (x) + z with z ∈ F⊥.

4. To show linearity of PF : H → F , we use

〈x + y − PF (x + y), z〉 = 〈x + y − PF (x)− PF (y), z〉 = 0 ∀z ∈ F. (4.35)

This implies

〈PF (x + y)−PF (x)−PF (y), PF (x + y)−PF (x)−PF (y)〉 = ||PF (x + y)−PF (x)−PF (y)||2 = 0

and therefore PF (x+y) = PF (x)+PF (y). To show that PF is continuous, we take a sequence
(yn)n∈N with ||yn−y|| → 0. The decomposition y = PF (y)+y−PF (y) with y−PF (y) ∈ F⊥
implies

||y − yn||2 = ||PF (y)− PF (yn)||2 + ||y − PF (y)− yn + PF (yn)||2 ≥ ||PF (y)− PF (yn)||2

||y − yn|| → 0 therefore implies ||PF (y)− PF (yn)|| → 0 and hence continuity of PF . 2.

Corollary 4.4.2:

For any A ⊂ H Span(A) = {
∑n

i=1 λiai | λi ∈ k,ai ∈ A} is dense in H if and only if the
orthogonal complement A⊥ is trivial A⊥ = {x ∈ H | 〈x,a〉 = 0 ∀a ∈ A} = {0}.

Proof: Clearly, Span(A) is a closed subspace of H and A⊥ = Span(A)
⊥

. By theorem 4.4.1,
any element x ∈ H can be decomposed uniquely as x = P

Span(A)
(x) + z with z ∈ A⊥. If A⊥

is trivial, this implies x ∈ Span(A) and hence density of Span(A) in H.

Conversely, if Span(A) is dense in H, then for every element x ∈ A⊥ there exists a sequence
{xn}n∈N, xn ∈ Span(A) with xn → x. As we have 〈xn,x〉 = 0 for all n ∈ N, this implies
〈x,x〉 = 0. We have x = 0 and therefore A⊥ = {0}. 2
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Definition 4.4.3: (Separable Hilbert space)

A Hilbert space H is called separable if there exists a countably infinite set (xn)n∈N with
xn ∈ H for all n ∈ N and whose Span is dense in H: Span({xn | n ∈ N}) = H. In other
words, for every y ∈ H and every ε > 0 there exists a finite set of indices n1, ..., nk ∈ N and
coefficients α1, ..., αk ∈ C such that

||
k∑
i=1

αixni − y|| < ε. (4.36)

Example 4.4.4: (Separable Hilbert spaces)

1. The Hilbert space l2 of square summable series is separable.

2. L2(Rn) with the scalar product (4.8) is separable.

Example 4.4.5: (Non-separable Hilbert space)

The vector space

H = {f : R→ R | ∃c ∈ R+ :
∑
t∈I
|f(t)|2 < c for all finite I ⊂ R} 〈f, g〉 =

∑
t∈R

f(t)g(t)

is a Hilbert space but not separable.

Proof:

1. For all f ∈ H, the set I(f) = {t ∈ R | f(t) 6= 0} is countable. To demonstrate this, we
consider the sets In(f) = {t ∈ R : | |f(t)| ≥ 1

n}, n ∈ N. In must be finite, because otherwise
one could construct a sequence {ti}i∈N, ti ∈ N with

∑k
i=1 |f(ti)|2 ≥ k2

n → ∞ with k → ∞.
Clearly, I(f) =

⋃
n∈N In(f) and therefore I(f) is countable.

2. Suppose Span(A) ⊂ H is dense in H. As the functions gs : R→ R

gs(t) =

{
1 t = s

0 t 6= s

are elements of H for all s ∈ R, for all s ∈ R there must exist a sequence {fsn}n∈N, fn ∈
Span(A) with ||fsn−gs|| → 0. This implies |f sn(t)−gs(t)| → 0 for all t ∈ N and hence f sn(s) 6= 0
for n ≥ n0 for some n0 ∈ N.

Hence, for any s ∈ R, A must contain a function fs ∈ H with fs(s) 6= 0. This implies that A
cannot be a countable infinite set, since for every f ∈ H, I(f) is countable and a countable
unit of countable sets must be countable, whereas R is not countable. 2

Definition 4.4.6: (Hilbert basis)

A Hilbert basis of a Hilbert space H is a finite or countably infinite sequence (ei)i∈N, ei ∈ H,
of elements in H that are

1. orthonormal: 〈ei, ej〉 = δij for all i, j ∈ N

2. dense in H: Span({ei | i ∈ N}) = H.
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Lemma 4.4.7: A Hilbert space admits a Hilbert basis if and only if it is separable.

Proof: Clearly, if H admits a Hilbert basis, it is separable, and if H = {0} the statement is
trivial. We need to prove that if H 6= {0} is separable, it admits a Hilbert basis. This is the
infinite-dimensional counterpart of Gram Schmidt orthogonalisation.

If H is separable, there exists a dense set of elements B = {xn | n ∈ N}. Let i1 be i1 =
min{n ∈ N | xn 6= 0 xk = 0∀k < n} and set e1 = xi1/||xi1 ||. If xk ∈ Span({e1}) for all k ≥ i1,
we have H = Span({e1}) and the proof is complete. Otherwise, there exists an index i2 ∈ N,
i2 > i1 such that xi2 /∈ Span({e1}) and xk ∈ Span{{e1}} for all k ∈ [i1, i2[. Set

e2 =
xi2 − 〈xi2 , e1〉e1

||xi2 − 〈xi2 , e1〉e1||
(4.37)

If xk ∈ Span(e1, e2) for all k ≥ i2, we have H = Span({e1, e2}) and the proof is complete.
Otherwise, there exists an index i3 ∈ N, i3 > i2 such that xi3 /∈ Span({e1, e2}) and xk ∈
Span{e1, e2} for all k ∈ [i2, i3[. Set

e3 =
xi3 − 〈xi3 , e1〉e1 − 〈xi3 , e2〉e2

||xi3 − 〈xi2 , e1〉e1 − 〈xi3 , e2〉e2||
(4.38)

and continue in this way.

IfH is finite dimensional, the procedure stops after a finite number of steps. Otherwise, we ob-
tain a sequence (ei)i∈N with 〈ei, ej〉 = δij . In this case, we need to show that Span({ei | i ∈ N}) =
H. This follows with Corollary 4.4.2 if we can show that Span({ei | i ∈ N})⊥ = {0}. Consider
an element x with 〈x, e〉i = 0 for all i ∈ N. By construction of the elements ei, this implies
〈x,x〉n = 0 for all n ∈ N. As Span({xn | n ∈ N}) is dense in H, this implies x = 0. 2

Theorem 4.4.8: (Decomposition with respect to a Hilbert basis)

Let H be a separable Hilbert space with a Hilbert basis B = {ei | i ∈ N}. For any vector
x ∈ H we have the identities

x =
∞∑
i=1

〈ei,x〉ei (4.39)

||x||2 = 〈x,x〉 =
∞∑
i=1

|〈ei,x〉|2 (Parseval’s equation). (4.40)

In other words: The series Sn(x) =
∑n

i=1 〈ei,x〉ei and Rn(x) =
∑n

i=1 |〈ei,x〉|2 converge
absolutely towards x and ||x||2. If (ai)i∈N is a sequence such that

∑∞
i=1 |ai|2 < ∞, then

a =
∑∞

i=1 aiei exists (i.e. the series converges) and ai = 〈ei,a〉.

Proof:

As we can write x = x− Sn(x) + Sn(x) with 〈x− Sn(x), ek〉 = 0 for all k ≤ n, we have

||x||2 = ||x− Sn(x)||2 + ||Sn(x)||2 ⇒ ||Sn(x)||2 =
n∑
k=1

|〈x, ek〉| ≤ ||x||2. (4.41)

This implies that for all ε > 0 there exists an nε ∈ N such that

Rm(x)−Rn(x) = ||Sn(x)− Sm(x)||2 = ||
m∑

k=n+1

〈ek,x〉ek||2 =
m∑

k=n+1

|〈ek,x〉|2 < ε ∀n,m ≥ nε.
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Hence, the sequence (Sn(x))n∈N is a Cauchy sequence and converges towards a unique element
y ∈ H. For any ε > 0 there exists n ∈ N such that ||y − Sn(x)|| < ε. We then have

|〈y − x, ek〉| ≤ |〈y − Sn(x), ek〉|+ |〈x− Sn(x), ek〉| ≤ ||y − Sn(x)|| < ε ∀k ≤ n. (4.42)

With ε → 0, n → ∞, we therefore obtain |〈y − x, ek〉| = 0 for all k ∈ N. This implies
y − x ∈ Span(B)⊥ = Span(B)

⊥
. As B is dense in H, Corollary 4.4.2 implies x = y and

||x||2 = lim
n→∞

||Sn(x)||2 =
∞∑
k=1

|〈x, ei〉|2. (4.43)

Conversely, if (ai)i∈N is a sequence such that
∑∞

i=1 |ai|2 <∞, then for each ε > 0 there exists
nε such that

||
m∑

k=n+1

akek||2 =
m∑

k=n+1

|ak|2 < ε ∀n,m > nε. (4.44)

This implies that An =
∑n

k=0 akek is a Cauchy sequence and converges towards a unique
element a ∈ H. We have

|〈a, ei〉 − ai| ≤ |〈a−An, ei〉|+ |〈An, ei〉 − ai| ≤ ||a−An||
n→∞−−−→ 0 (4.45)

with n→∞, we therefore obtain 〈a, ei〉 = ai. 2

Corollary 4.4.9: For any separable Hilbert space H with scalar product 〈 , 〉, there is a
unitary isomorphism φ : H → l2, i.e. an isomorphism φ : H → l2 which preserves the scalar
product 〈φ(x), φ(y)〉l2 = 〈x,y〉 for all x,y ∈ H.

Proof: This is simply a rephrasing of Theorem 4.4.8. To obtain such a unitary isomorphism
φ : H → l2, one chooses a Hilbert basis B = {ei | i ∈ N} of H and sets φ(x) = {〈x, ei〉}i∈N.2

Remark 4.4.10: A Hilbert basis is the infinite-dimensional analogue of an orthonormal
basis for finite-dimensional vector spaces. The Hilbert space of absolutely convergent series in
Example 4.1.28 is the infinite-dimensional analogue of the vector spaces Rn and Cn. Theorem
4.4.8 can therefore be viewed as the infinite-dimensional analogue of the identification of
finite-dimensional vector spaces with Cn or Rn.

As in the finite dimensional case, this identification is not canonical because it requires the
choice of a basis. Moreover, in the infinite dimensional case, the vector space structure alone
is not enough for the identification. Instead, one needs the stricter requirement that the
vector space is a separable Hilbert space.
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Chapter 5

Quantum mechanics

5.1 Operators on Hilbert spaces

Definition 5.1.1: (Bounded operator, compact operator)

A linear operator O : B → B on a Banach space B is called bounded if there exists a c ∈ R+

such that ||Ov|| ≤ c||v|| ∀v ∈ B. It is called compact if O(U) is compact for every bounded
U ⊂ B.

Lemma 5.1.2: A linear operator O on a Banach space B is bounded if and only if it is
continuous, i. e. for all sequences {xn}n∈N , xn ∈ B with ||xn − x|| → 0 we have ||Oxn −
Ox|| → 0. The vector space of bounded linear operators on a Hilbert space B with norm
||O|| = sup{||Ox|| | x ∈ E, ||x|| = 1} is a Banach space. It will be denoted B(B) in the
following.

Proof: Let {xn}n∈N, xn ∈ B be a sequence with ||xn−x|| n→∞−−−→ 0, x ∈ H. If O is bounded,
we have ||Oxn −Ox|| ≤ c||xn − x|| n→∞−−−→ 0, hence O is continuous. If O is continuous, it is
continuous in 0 and there exists a δ > 0 such that ||Ox|| < 1 for all x ∈ B with ||x|| < δ.
This implies

||Oy|| =
∣∣∣∣∣∣∣∣ ||y||δ O

(
δy

||y||

)∣∣∣∣∣∣∣∣ =
||y||
δ

∣∣∣∣∣∣∣∣O( δy

||y||

)∣∣∣∣∣∣∣∣ ≤ ||y||δ ∀y ∈ H.

2

Example 5.1.3: (Bounded operators)

1. The identity operator on a Banach space B is bounded. It is compact if and only if B
is finite-dimensional.

2. If H is a Hilbert space, projectors on a closed subspace F ⊂ H are bounded.

Many of the linear operators which we will consider in the following will be bounded operators
defined on a Banach space B or a Hilbert space H. However, there are operators which are
important in physics and that are unbounded or not even defined on everywhere on B or
H. Examples are the momentum and position operators and the Hamiltonian operators of
systems whose energy is not bounded.
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Example 5.1.4: (Unbounded operators)

1. For H = L2(Rn), the position operator Xi(ψ)(x) = xi · ψ(x) and the momentum
operator Piψ(x) = i ∂

∂xi
ψ(x) are not bounded, and there exist elements ψ ∈ L2(Rn) for

which Xψ, Pψ /∈ L2(Rn).

2. Let α = (j1, ..., jn) ∈ Nn a multi-index, Dα = ∂j1 · · · ∂jn and D =
∑
|α|≤k cαD

α, cα ∈
C∞(Rn) a linear differential operator on the Hilbert space H = L2(Rn). Then D is in
general not bounded and there exist ψ ∈ L2(Rn) for which Dψ /∈ L2(Rn).

In both of the examples above, one finds that the unbounded operators become bounded and
map elements of the Hilbert space L2(Rn) to elements of L2(Rn) if one restricts attention
to the linear subspace C∞c (Rn) of smooth functions with compact support. However, note
that this space is not a Banach space. It is dense in L2(Rn) but not normed, since it is not
metrisable. One therefore has to give up the restriction to bounded linear operators defined
on the whole Hilbert or Banach space and to consider also operators which are only defined
on linear subspaces of a Banach space B or Hilbert space H. This leads to the notion of
domain and range.

Definition 5.1.5: (Domain, range, densely defined)

Let A be a linear operator acting on a Banach space B. The domain dA ⊂ B of A is the
linear subspace spanned by elements x ∈ B on which A is defined as a continuous linear map
A : dA → B. The range rA ⊂ B is the set rA = {x ∈ B | ∃y ∈ dA : x = Ay}. An operator A
is called densely defined if its domain dA is dense in B: dA = B.

Example 5.1.6: (Position and momentum operator)

We consider the Hilbert space H = L2(R). Let X : ψ 7→ Xψ, Xψ(x) = xψ(x) the position
operator and P : ψ 7→ Pψ, Pψ(x) = i ∂∂xψ(x) the momentum operator on L2(R). Then the
domains dX , dP are the linear subspaces of L2(Rn) defined by the conditions

dX = {ψ ∈ L2(R) |
∫ ∞
−∞

x2|ψ(x)|2dx <∞} (5.1)

dP = {ψ ∈ L2(R) |
∫ ∞
−∞

∣∣∣∣ ∂∂xψ(x)
∣∣∣∣2 dx <∞}.

Clearly, dX , dP 6= H since for ψ, φ ∈ L2(R)

ψ(x) =

{
0 x < 1

1√
x

x ≥ 1
φ(x) =

{
0 x ∈]−∞, 0] ∪ [1,∞[

1
x1/4 x ∈]0, 1[∫ ∞

−∞
x2|ψ(x)|2 =

∫ ∞
1

xdx =∞
∫ ∞
−∞

∣∣∣∣ ∂∂xφ(x)
∣∣∣∣2 dx =

∫ 1

0

1
16x5/2

dx =∞.

However, the operators X,P are densely defined. We have∫ ∞
−∞

x2|ϕ(x)|2dx <∞
∫ ∞
−∞

∣∣∣∣ ∂∂xϕ(x)
∣∣∣∣2 dx <∞ ∀ϕ ∈ C∞c (R).

As C∞c (R) is dense in L2(R), this implies dX , dP dense in H = L2(R).
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Remark 5.1.7: The domain of an operator is not a mathematical subtlety but an essential
part of the definition of a linear operator and has a physical meaning. One can show - for
instance by considering the momentum operator on the interval [0, 1] - that there are several
possibilities of extending a given operator to larger domains and these different extensions
differ in their spectrum. The domain is also important when one discusses the question if
two operators on a Hilbert space are equal: Two operators A : dA → rA, B : dB → rB are
equal A = B if they satisfy dA = dB and A = B on dA = dB.

The role of domain of an operator gives rise to another important distinction, namely that
of a self-adjoint operator on a Hilbert space from an hermitian operator.

Definition 5.1.8: (Adjoint, hermitian, self-adjoint operators)

Let A : dA → rA be a linear operator on a Hilbert space H whose domain dA ⊂ H is dense in
H. The adjoint of the operator A is the operator A† : dA† → rA† defined by

〈x, Ay〉 = 〈A†x,y〉 ∀y ∈ dA,x ∈ dA† (5.2)
where dA† = {x ∈ H | ∃z ∈ H : 〈x, Ay〉 = 〈z,y〉 ∀y ∈ dA}.

A linear operator A on H is called hermitian if dA ⊂ dA† and Ax = A†x for all x ∈ dA. It is
called self-adjoint if it is hermitian and dA = dA† .

Example 5.1.9:

1. For H = L2(R), the position and momentum operator are self-adjoint, but dX , dP 6= H.

2. An orthogonal projector P on a closed linear subspace F ⊂ H of a Hilbert space H has
dP = H and satisfies P † = P . Projection operators are self-adjoint. Conversely, any
linear continuous operator P on H with dP = H, P † = P and P ◦P = P is a projection
operator on a closed subspace F ⊂ H.

Remark 5.1.10:

1. The condition that dA is dense in H is needed for the uniqueness of the adjoint. If there
exists a z ∈ H such that 〈x, Ay〉 = 〈z,y〉 for all y ∈ dA, the fact that dA is dense in H
guarantees that z is unique.

2. The distinction between hermitian and self-adjoint is essential and physically meaning-
ful. The spectral theorem exists only for self-adjoint operators, and only self-adjoint
Hamiltonians give rise to a unitary time evolution.

3. In order to be interpreted as a physical observable, operators on a Hilbert space need
to be self-adjoint. Hermitian is not enough.

Theorem 5.1.11: (Hellinger Toeplitz)

If a linear operator A is defined everywhere on a Hilbert space H: dA = H and 〈Ax,y〉 =
〈x, Ay〉 for all x,y ∈ H, then A is bounded.

The Hellinger Toeplitz theorem implies that no unbounded operator that is a physical ob-
servable (and therefore self-adjoint) can be defined on the whole Hilbert space. This confirms
the importance of considering operators whose domain is not the whole Hilbert space.

We now return to the bounded operators that are defined on the whole Hilbert space. We
distinguish the following important cases.
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Definition 5.1.12: (Normal, unitary, positive operator)

A bounded linear operator A ∈ B(H) on a Hilbert space H is called normal if A†A = AA†. It
is called unitary, if it is invertible and A†A = AA† = 1. It is called positive, if it is self-adjoint
and 〈x, Ax〉 ≥ 0 for all x ∈ H.

Example 5.1.13:

1. If A is self-adjoint, it is normal.

2. For all operators A ∈ B(H), the operators AA†, A†A are positive.

3. If A is self-adjoint and U unitary, UAU † is self-adjoint.

4. If A is positive and U unitary UAU † is positive.

Exercise 39:

Let H be a Hilbert space. Show that if A ∈ B(H) is self-adjoint, then the exponential

exp(iA) =
∞∑
k=0

(iA)k

k!

exists and is unitary.

Hint:

1. Show that if A ∈ B(H) there exists a constant c > 0 such that

n∑
k=0

||ikAk||
k!

≤
n∑
k=0

ck

k!

where ||A|| = sup{||Ax|| | x ∈ H, ||x|| = 1}. The series
∑n

k=0
ikAk

k! therefore converges
absolutely towards on element exp(iA) =

∑∞
k=0

ikAk

k! ∈ B(H). Show that ||(iA)†|| = ||A|| and
therefore exp((iA)†) exists.

2. Show by reordering the series that

exp(iA) · exp((iA)†) = exp(iA) exp(−iA) = e.

Definition 5.1.14: (Hilbert Schmidt operator)

A Hilbert Schmidt operator on an infinite-dimensional separable Hilbert spaceH is an operator
O for which the series

∑∞
i=1 ||O ei||2 converges for a Hilbert basis {ei}i∈N. For a Hilbert

Schmidt operator O, the limit

||O||HS =

√√√√ ∞∑
i=1

||Oei||2 (5.3)

is called the Hilbert Schmidt norm of O (with respect to the Hilbert basis {ei}i∈N).

Lemma 5.1.15:

——————————————————————————————————————
C. Meusburger Concepts and Methods of Mathematical Physics, DRAFT August 12, 2011



5.1. Operators on Hilbert spaces 121

1. For a Hilbert Schmidt operator A, the Hilbert Schmidt norm does not depend on the
choice of the Hilbert basis. Its adjoint A† is also a Hilbert Schmidt operator and
||A||HS = ||A†||HS .

2. Hilbert Schmidt operators are compact.

3. Any sequence {Aij}i,j∈N, Aij ∈ C such that
∑∞

i,j=0 |Aij |2 <∞ defines a Hilbert Schmidt
operator. The adjoint of a Hilbert Schmidt operator defined this way is given by the
sequence {Bij}i,j∈N, Bij = Āji.

4. If A is a Hilbert Schmidt operator and B ∈ B(H), BA and AB are Hilbert Schmidt
operators.

Proof: 1. Let {fj | j ∈ N} be another Hilbert basis. Parseval’s equation implies

||A ei||2 =
∞∑
j=1

|〈Aei, fj〉|2 =
∞∑
j=1

|〈ei, A† fj〉|2 (5.4)

||A†fj ||2 =
∞∑
i=1

|〈ei, A† fj〉|2. (5.5)

Convergence of
∑m

i=0 ||Aei||2 is therefore equivalent to convergence of
∑n

i=1

∑m
j=1 |〈Aei, fj〉|2

and of the sum
∑∞

j=1 ||A†fj ||2. If either sum converges , the other converges, and we
have

∑∞
i=1 ||Aei|| =

∑∞
j=0 ||A†fj ||. Hence, A is a Hilbert Schmidt operator if and only if∑∞

i=1 ||Afi||2 < ∞ for all Hilbert bases. Moreover, A is a Hilbert Schmidt operator if and
only if A† is a Hilbert Schmidt operator. The square of the norm ||A||2HS =

∑∞
i=1 ||Aei||2 =

||A†||2HS is independent of the basis.

2. It is sufficient to prove that the closure A(B1) of the image of the unit ball B1 = {x ∈
H | ||x|| = 1} is compact for any Hilbert Schmidt operator A. We consider a sequence
{xn}n∈N, xn ∈ B1. Using Gram Schmidt orthogonalisation, we can construct a sequence
{yn}n∈N as in the proof of Lemma 4.4.7 which satisfies 〈yn,ym〉 = δnm. We can then
complete {yn}n∈N to a Hilbert basis {fi}i∈N. The convergence of the Hilbert Schmidt norm
implies ||Afn|| → 0 for n → ∞ and therefore ||Ayn|| → 0 for n → ∞. As the sequence xn
is given by taking finite linear combinations of the elements yn, this implies ||Oxn|| → 0
for n → ∞. The sequence ||Axn|| therefore converges towards 0 for n → ∞ and A(B1) is
compact.

3. We define a linear operator A on H by setting

Aei =
∞∑
j=1

Aijej . (5.6)

This is well-defined since Parseval’s equation implies

||Aei||2 =
∞∑
j=1

|〈ej , Aei〉|2 =
∞∑
j=1

|Aij |2 <∞. (5.7)

For general x ∈ H, we define

Ax =
∞∑

i,j=0

Aijx
iej where x =

∞∑
i=0

xiei,

∞∑
i=0

|xi|2 <∞. (5.8)
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which converges since

||Ax||2 =
∞∑

i,j=0

|Aij |2|xi|2 ≤

 ∞∑
i,j=1

|Aij |2
( ∞∑

k=1

|xk|2
)
<∞. (5.9)

Hence, A is well defined and
∞∑
i=1

||Aei||2 ≤
∞∑

i,j=1

|Aij |2 <∞.

Let the adjoint of A be given by a sequence {Bij}i,j∈N. By Parseval’s equation, we have
〈ej , Aei〉 = Aij , which implies 〈A†ej , ei〉 = 〈ei, A†ej〉 = 〈ej , Aei〉 = Aij = B̄ji.

4. If A is a Hilbert Schmidt operator, B ∈ B(H), then we have ||BAx|| ≤ ||B|| · ||Ax|| for all
x ∈ H, where ||B|| = sup{||Bx|| | x ∈ H, ||x|| = 1} <∞. This implies

∞∑
i=1

||BAei||2 ≤ ||B||2 ·
n∑
i=1

||Aei||2 <∞,

and therefore BA is a Hilbert Schmidt operator. To show that AB is a Hilbert Schmidt
operator, we recall that A† is a Hilbert Schmidt operator if and only if A is a Hilbert Schmidt
operator and B† is bounded. Hence, we have AB is a Hilbert Schmidt operator if and only
if B†A† is a Hilbert Schmidt operator, and the latter follows from the first statement.

2

Lemma 5.1.16:

1. The vector space l2,2 of doubly square summable sequences {Aij}i,j∈N becomes a Hilbert
space when equipped with the hermitian form

〈{Aij}, {Bij}〉l2,2 =
∞∑

i,j=1

B̄ijAij ∀{Aij}, {Bij} ∈ l2,2.

2. The vector space HHS of Hilbert Schmidt operators becomes a Hilbert space when
equipped with the hermitian product

〈A,B〉HS =
∞∑
i=1

〈ei, B†Aei〉 ∀A,B ∈ HHS .

3. A unitary isomorphism between l2,2 andHHS is given by the linear map {Aij}i,j∈N 7→ A,
where A is defined by

Aei =
∞∑
j=1

Aijej .

Remark 5.1.17: The relation between Hilbert Schmidt operators and doubly square sum-
mable sequences {Aij}i,j∈N mimics the relation between Hilbert spaces and the Hilbert space
of absolutely square summable sequences {xi}i∈N. Previously, we found that a choice of a
Hilbert basis provides an isomorphism between the Hilbert space and the Hilbert space l2 of
square summable sequences. In the case of a Hilbert Schmidt operator, the choice of a Hilbert
basis gives rise to an isomorphism between the Hilbert space of Hilbert Schmidt operators
and the Hilbert space of doubly square summable sequences {Aij}i,j∈N.
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Note, however, that Hilbert Schmidt operators can capture only a very small part of the
operators relevant to quantum physics. This is due to the fact that they are compact, which
is a very strong requirement. Most operators arising in quantum mechanics or the study of
infinite-dimensional Hilbert spaces are non-compact.

We will now generalise the concept of a trace to the infinite-dimensional case. However, we
note that unlike in the finite-dimensional case, the infinite dimensional version of the trace
does not exists for all operators. The convergence of the trace is guaranteed for a special
class of operators, which are called trace class.

Definition 5.1.18: (Trace class operator)

An operator A ∈ B(H) is called trace class or nuclear if it is a Hilbert Schmidt operator and

||A||1 = sup{|〈A,B〉HS | B Hilbert Schmidt , ||B|| ≤ 1} <∞.

Some important properties of trace class operators are given by the following lemma.

Lemma 5.1.19: The set of trace class operators is a linear subspace of B(H). If A ∈ B(H)
is trace class, we have

1. ||A†||1 = ||A||1 and A† is trace class.

2. ||A||HS ≤ ||A||1.

3. For all C ∈ B(H): AC and CA are trace class.

Proof:

1. We have 〈A,B〉HS = 〈A†, B†〉HS for all Hilbert Schmidt operators A,B and ||B†|| = ||B||.
This implies

||A†||1 =sup{|〈A†, B〉HS | B Hilbert Schmidt ||B|| ≤ 1}
=sup{|〈A,B〉HS | B Hilbert Schmidt ||B|| ≤ 1} = ||A||1.

2. We have

||A||2HS = 〈A,A〉HS ≤ ||A|| · sup{|〈A,B〉HS | B Hilbert Schmidt ||B|| ≤ 1} ≤ ||A||HS ||A||1.

3. Let A be trace class and C ∈ B(H). We have 〈CA,B〉HS = 〈A, c†B〉HS and C†B bounded
if C,B bounded. This implies

||CA||1 =sup{|〈CA,B〉HS | B Hilbert Schmidt ||B|| ≤ 1}
=sup{|〈A,C†B〉HS | B Hilbert Schmidt ||B|| ≤ 1} ≤ ||C†|| · ||A||1 <∞.

To show that AC trace class, we note that |〈A,B〉HS | = |〈B†, A†〉HS | and (AC)† = C†A†.
As ||A†||1 = ||A||1, the statement for CA proves the claim. 2

We are now ready to define the trace of a trace class operator.
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Definition 5.1.20: (Trace)

Let A be a trace class operator on a Hilbert space H and {ei}i∈N a Hilbert basis. The trace
of A is defined as

Tr (A) =
∞∑
i=1

〈ei, Aei〉. (5.10)

The series converges absolutely and is independent of the choice of basis.

Proof: Let Pn be the orthogonal projector on the closed subspace Span({e1, .., en}). And set
P̃n(ei) = λi(〈ei, Aei〉), where |〈ei, Aei〉| = λi〈ei, Aei〉, |λi| = 1. Then P̃n is a Hilbert Schmidt
operator and ||P̃n|| ≤ 1. This implies

n∑
i=1

|〈ei, Aei〉| = 〈P̃n, A〉HS ≤ sup{|〈A,B〉HS | B Hilbert Schmidt ||B|| ≤ 1} = ||A||1

for all n ∈ N. The series therefore converges absolutely. The proof of the independence of
the choice of basis is left as an exercise. 2

Lemma 5.1.21:

1. The trace is linear Tr (tA+ sB) = tTr (A) + sTr (B) for all t, s ∈ C, A,B trace class.

2. The trace satisfies Tr
(
AA†

)
= Tr

(
A†A

)
for all A trace class.

3. The trace satisfies Tr
(
UBU †

)
= Tr (B) for all B trace class and U unitary.

4. For all A trace class and B ∈ B(H), we have Tr (AB) = Tr (BA).

Proof: The first three properties are left as an exercise. To prove the last property, we first
consider a self-adjoint trace class operator A = A† and choose a Hilbert basis {ei}i∈N. Then
we have Aij = 〈ej , Aei〉 = Aji = 〈ei, Aej〉. Using Parseval’s equation, we find

Tr (AB) =
∞∑
i=1

〈ei, ABei〉 =
∞∑
i=1

〈Aei, Bei〉 =
∞∑

i,j=1

Aij〈ej , Bei〉 =
∞∑
j=1

〈ej , BAei〉 = Tr (BA) .

To prove this identity for general trace class operators A, we note that we can decompose
the Hilbert Schmidt operator A as A = 1

2(A + A†) + 1
2(A − A†) with 1

2(A + A†), i
2(A − A†)

self-adjoint. 2

Exercise 40:

1. Show that the trace is linear.

2. Let H be a Hilbert space with Hilbert basis B = {ei}i∈N and O ∈ B(H) a trace class
operator. Show that

Tr (O) =
∞∑
i=1

〈ei, Oei〉

is independent of the choice of the Hilbert basis.

3. Show that for all trace class A ∈ B(H) Tr
(
A†A

)
= Tr

(
AA†

)
and for all trace class

B ∈ B(H) and unitary U ∈ B(H), Tr
(
UBU †

)
= Tr (B).
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Lemma 5.1.22: An operator A ∈ B(H) on a Hilbert space H is a Hilbert-Schmidt operator
if and only if Tr

(
A†A

)
<∞.

Proof: Let {ei}i∈N be a Hilbert basis. We have

Tr
(
A†A

)
=
∞∑
i=1

〈ei, A†Aei〉 =
∞∑
i=1

||Aei||2 = ||A||2HS

Hence Tr
(
A†A

)
<∞ if and only if A is a Hilbert Schmidt operator. 2

We will now investigate the infinite dimensional analogue of eigenvalues, eigenvectors and
of the diagonalisation of matrices. The first important difference between the infinite-
dimensional and the finite-dimensional case is that in the infinite-dimensional one needs
to distinguish spectral values and eigenvalues. The former can be viewed as a generalisation
of the latter but are not associated with eigenvectors.

Definition 5.1.23: (Spectrum of a linear operator, eigenvalues)

Let O be a linear operator on a Hilbert space H. A number z ∈ C is said to be in the resolvent
set of O if O − z · 1 is invertible with a bounded inverse. The spectrum σ(O) of O is the set
of all z ∈ C which are not in the resolvent set of O.

An eigenvalue of O is a number z ∈ C such that there exists a vector x ∈ H \ {0} with
Ox = zx. The vector x is called an eigenvector of H with eigenvalue z. The set of all
eigenvectors of O for a given eigenvalue z ∈ C is a closed subspace of H, the eigenspace for
eigenvalue z.

Remark 5.1.24:

1. If O is a bounded linear operator on H, z ∈ C is in the resolvent set of O if and only if
O − z · 1 is invertible.

2. If dim(H) <∞, z ∈ σ(O) if and only if z is an eigenvalue of O.

3. If H is infinite-dimensional, there exist elements z ∈ σ(O) that are not eigenvalues. An
eigenvalue is often called a discrete eigenvalue in the physics literature. Elements of the
spectrum are called spectral values or continuous eigenvalues in the physics literature.

Remark 5.1.25: Spectral values or continuous eigenvalues usually correspond to situations,
where a (generalised) eigenvector can be found but is not an element of the Hilbert space.
An example is the position operator on L2(R) X : ψ 7→ Xψ with Xψ(x) = xψ(x). A
(generalised) eigenvector of this operator is a distribution δy, since we have Xδy(x) = yδy(x).
However, this distribution is not an element of the Hilbert space L2(R) and therefore not an
eigenvector. The position operator has no eigenvalues and eigenvectors. Its spectrum consists
of the entire real line, since X − λ1 is not invertible with a bounded inverse for any λ ∈ R.

As we have seen previously, for hermitian matrices, all eigenvalues are real numbers. A similar
statement holds for the spectra of hermitian operators.

Example 5.1.26: (Spectra of hermitian and positive operators)

1. A is hermitian if and only if A − z · 1 is invertible with bounded inverse for all z ∈ C
with Im(z) 6= 0. Hermitian operators have a real spectrum σ(A) ⊂ R.
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2. A hermitian operator A is positive if and only if σ(A) ⊂ R+
0 .

Exercise 41:

Show that the only possible eigenvalues of a projection operator are 0 and 1.

We are now ready to investigate the decomposition of Hilbert spaces into linear subspaces of
eigenvectors associated with eigenvalues. As it can be expected that spectral values which
are not eigenvalues are associated with complications, we start with the simplest situation,
namely the one of compact, normal operators. In this case, it turns out that there is at most
one spectral value which is not an eigenvalue.

Theorem 5.1.27: (Spectral decomposition for compact, normal operators)

Let A ∈ B(H) compact and normal. Then 0 ∈ σ(A) and σ(A) is either finite or of the form
σ(A) = {0, λ1, λ2, ...} where {λn}n∈N, λi ∈ C \ {0} is a sequence that converges to 0 with
n → ∞. For each λi, i ∈ N the eigenspace Ei = {x ∈ H | Ax = λix} is of finite dimension
0 < dim(Ei) <∞. The eigenspaces Ei are orthogonal: 〈x,y〉 = 0 for all x ∈ Ei, y ∈ Ej with
i 6= j. The operator A can be expressed in terms of the projection operators PEi on Ei as

A =
∞∑
i=1

λiPEi . (5.11)

Remark 5.1.28: In the physics literature identity (5.11) is often expressed in bra-ket no-
tation as

A =
∞∑
i=1

λi|ei〉〈ei|.

Corollary 5.1.29: (Spectrum of compact, positive operators)

If A is a compact, positive operator, it is in particular self-adjoint, which implies normal and
all eigenvalues are positive or zero. Hence, the spectrum of a compact, positive operator is
either finite with 0 ∈ σ(A) or takes the form σ(A) = {0, λ1, λ2, ...} where (λn)n∈N, λn ∈ R+ is
a sequence that converges to 0. The eigenspaces Ei, i ∈ N are orthogonal, and the operator
A is given by

A =
∞∑
i=1

λiPEi . (5.12)

Theorem 5.1.27 provides us with a rather straightforward generalisation of the diagonalisation
of complex matrices. However, its disadvantage is that it is only valid for a very specific class
of of operators- most operators relevant to physics are not compact. In particular, identity
operators, projectors on infinite-dimensional subspaces and Hamilton operators of systems
whose energy is not bounded are non-compact operators. We therefore need a generalisation
of this theorem. This forces us to deal with spectral values which are not eigenvalues and to
introduce the notion of a spectral measure.

Definition 5.1.30: (Spectral measure)

A Borel set in k = C or k = R is a subset E ⊂ k that can be expressed as a countable
union

⋃∞
i=1Ei or countable intersection

⋂∞
i=1Ei of open subsets of k, their complements and

countable unions and intersections thereof. We denote by Bor(k) the Borel sets in k.
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A spectral measure on k is a function P : E ∈ Bor(k)→ P (E) ∈ B(H) which assigns to each
Borel set in k a projection operator P (E) ∈ B(H) such that

1. P (∅) = 0

2. P (k) = 1

3. P (
⋃∞
i=1Ei) =

∑∞
i=1 P (Ei) for mutually disjoint Borel sets: Ei ⊂ k, Ei ∩Ej = ∅ ∀i 6= j.

Lemma 5.1.31: (Properties of spectral measures)

A spectral measure P : Bor(k)→ B(H) has the following properties

1. Monotonicity: E1 ⊂ E2 ⇒ P (E1) ≤ P (E2).

2. (Orthogonality): E1∩E2 = ∅⇒ P (E1)⊥P (E2), i.e. P (E2)◦P (E1) = P (E1)◦P (E2) = 0.

3. For all E1, E2 ∈ Bor(k): P (E1 ∩ E2) = P (E1)P (E2).

Proof: Exercise.

We will now use the concept of spectral measure to define integrals of operators. For this we
need the following lemma.

Lemma 5.1.32: Let P : Bor(k) → B(H) be a spectral measure. Then for all x,y ∈ H,
the function µx,y : Bor(k)→ C defined by µx,y(E) = 〈P (E)x,y〉 is a measure on k, i.e. it
satisfies

1. µx,y(∅) = 0

2. A ⊂
⋃∞
j=1Aj , Aj ∈ Bor(k) for all j ∈ N ⇒ µx,y(A) ≤

∑∞
i=1 µx,y(Aj).

Lemma 5.1.33: The measure µx,y is of bounded variation. For all E ∈ Bor(k) we have

||µx,y(E)|| = sup{
∞∑
n=1

|µ(Ei)| | E =
∞⋃
i=1

Ei , Ei ∈ Bor(k), Ei ∩ Ej = ∅ for i 6= j} ≤ ||x||||y||

In order to define the integral of operators associated with measures µx,y, x,y ∈ H we need
the notion of the generalised Lebesgue Stieltjes integral.

Definition 5.1.34: (Lebesgue Stieltjes integral)

Let µ be a measure of bounded variation on k, i.e. a measure µ on k for which there exists
a constant c ∈ R+ such that

||µ(E)|| = sup{
∞∑
n=1

|µ(Ei)| | E =
∞⋃
i=1

Ei , Ei ∈ Bor(k), Ei∩Ej = ∅ for i 6= j} ≤ c ∀E ∈ Bor(k).

Let f : k → R be a Borel function or measurable function, i.e. a function such that the
preimage f−1(T ) is a Borel set for all Borel sets T ⊂ R. Suppose that f is non-negative:
f ≥ 0 almost everywhere, and bounded, ||f ||∞ = supx∈k{|f(x)|} <∞. Then the generalised
Lebesgue Stieltjes integral of f over a Borel set E with respect to µ is defined as∫
E
fdµ := sup

{
n∑
i=1

inf{f(x) | x ∈ Ei}µ(Ei) | E =
∞⋃
i=1

Ei , Ei ∈ Bor(k), Ei ∩ Ej = ∅ for i 6= j

}
.
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If f : k → C is a complex valued, bounded Borel function, then the functions Re(f)± : k →
R+

0 , Im(f)± : k → R+
0 defined by

Re(f)+(z) = max{Re(f)(z), 0} Re(f)−(z) = −min{Re(f)(z), 0}
Im(f)+(z) = max{Im(f)(z), 0} Im(f)−(z) = −min{Im(f)(z), 0} ∀z ∈ k (5.13)

are non-negative, bounded Borel functions. The generalised Lebesgue Stieltjes integral of f
over a Borel set E is defined as∫

E
fdµ :=

∫
E

Re(f)+dµ−
∫
E

Re(f)−dµ+ i

∫
E

Im(f)+dµ− i
∫
E

Im(f)−dµ. (5.14)

Remark 5.1.35: The integral
∫
E fdµ is well defined. If f : k → R is non-negative, bounded

Borel function with ||f ||∞ = c and µ a measure of bounded variation, we have

0 ≤ inf{f(x) | x ∈ Ei}µ(Ei) ≤ c · µ(Ei) ∀Ei ∈ Bor(k)

and therefore∫
E
fdµ =sup

{
n∑
i=1

inf{f(x) | x ∈ Ei}µ(Ei) | E =
∞⋃
i=1

Ei , Ei ∈ Bor(k), Ei ∩ Ej = ∅ for i 6= j

}

≤c · sup

{ ∞∑
n=1

|µ(Ei)| | E =
∞⋃
i=1

Ei , Ei ∈ Bor(k), Ei ∩ Ej = ∅ for i 6= j

}
= c||µ|| <∞.

We can now use the Lebesgue Stieltjes integral for the measure µx,y to define a bounded
hermitian form on H and to obtain an associated operator via Riesz’s theorem.

Lemma 5.1.36: Let f : k → C be a bounded Borel function Then its integral with respect
to the measure µx,y exists and the map g : H × H → C g(x,y) =

∫
k fdµx,y defines a

bounded hermitian form on H. We have

|g(x,y)| ≤ ||x||||y||||f ||∞ ∀x,y ∈ H.

By Riesz’s theorem there exists a unique operator F ∈ B(H) with 〈Fx,y〉 =
∫

C fdµxy. we
denote this operator by F =:

∫
k f(z)dP (z).

This allows us to formulate the spectral theorem for self-adjoint operators.

Theorem 5.1.37: (Spectral decomposition for self-adjoint operators)

For a densely defined self-adjoint operator A on H there exists a unique spectral measure
PA : Bor(R)→ B(H) such that

A =
∫

R
x dPA(x).

Conversely, any operator defined by a spectral measure in this way is self-adjoint.

With the definition f(A) :=
∫

R f(x)dPA(x) for bounded Borel functions f : R→ C, we have
PA(E) = χE(A), where χE is the characteristic function of a Borel set E

χE(x) =

{
1 x ∈ E
0 x /∈ E

. (5.15)
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In many books on quantum mechanics, this theorem is presented in terms of spectral sequences
or resolutions of the identity. One can show that spectral sequences are equivalent to spectral
measures on R.

Definition 5.1.38: (Resolution of the identity )

A resolution of the identity is a function λ ∈ R → Pλ ∈ B(H) into the set of orthogonal
projection operators on H such that

1. λ ≤ µ ⇒ Pλ ≤ Pµ

2. limλ→−∞ Pλ, limλ→∞ Pλ exist and satisfy

P−∞ = lim
λ→−∞

Pλ = 0 P∞ := lim
λ→∞

Pλ = idH.

3. limε→0,ε>0 Pλ+ε = Pλ.

Here, all limits are taken with respect to the norm ||O|| = sup{||Ox|| | x ∈ H, ||x|| = 1} for
bounded operators on H. The resolution of the identity is called constant in a point x ∈ R if
there exists an interval ]a, b[⊂ R), a < x < b, such that Pay = Pby for all y ∈ H. Otherwise
it is called discontinuous in x ∈ R.

Exercise 42: Let P : Bor(R) → B(H) a spectral measure on the Borel sets of R. Show
that the function Pλ = P (] −∞, λ]), λ ∈ R defines a resolution of the identity. Show that
two spectral measures P,Q : Bor(R)→ B(H) give rise to the same resolution of the identity
satisfy P = Q.

5.2 Axioms of quantum mechanics

Axiom 1: The observables, i.e. the measurable quantities of a physical system, are in
one-to-one correspondence with self-adjoint operators on a separable Hilbert space. The
possible results of measurements of an observable are given by the spectrum of the associated
self-adjoint operator.

To formulate the second axiom of quantum mechanics, we have to introduce the notion of a
density operator and of a pure state.

Definition 5.2.1: (Density operator)

A density operator on a Hilbert space H is a trace class, positive operator ρ ∈ B(H) such
that ρ ◦O is trace class for all observables O.

Remark 5.2.2: Note that the fact that ρ is trace class implies directly that ρ ◦O is trace
class for all bounded operators O ∈ B(H) by Lemma 5.1.19.

Lemma 5.2.3: For any density operator ρ, the associated normalised density operator
ρ̂ = ρ/Tr (ρ) can be expressed as

ρ̂ :=
ρ

Tr (ρ)
=
∞∑
i=1

λiPei 0 ≤ λi ≤ 1,
∑
i

λi = 1, (5.16)

where {ei}i∈N is a Hilbert basis and Pei the projector on Span(ei),
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Proof: As ρ = ρ ◦ idH is trace class, which implies Tr (ρ) < ∞, the normalised density
operator ρ̂ = ρ/Tr (ρ) is well-defined. Moreover, ρ is compact, normal and a Hilbert-Schmidt
operator. Lemma 5.1.27 and Corollary 5.1.29 then imply that ρ can be expressed as ρ =∑∞

i=1 λjPEj where PEj is the projector on the finite-dimensional eigenspace Ej = {x ∈
H | ρ(x) = λjx} and λj ∈ C for all j ∈ N. As ρ is positive, we have λj ∈ R+ for all j ∈ N.

We have H =
⊕∞

i=1Ei ⊕ E⊥, where E⊥ = {x ∈ H | 〈x,y〉 = 0 for all y ∈
⊕∞

i=1Ei}. With
the choice of a Hilbert basis B0 of E⊥ and Hilbert bases Bi of Ei, we obtain a Hilbert basis
B = B0 ∪B1 ∪B2 ∪ ... = {ei}i∈N of H. With respect to this Hilbert basis, ρ takes the form

ρ =
∞∑
i=1

ρiiPei ρii ∈ R+
0 (5.17)

where Pei is the projector on Span({ei}). We have Tr (ρ) =
∑∞

i=1〈ei, ρei〉 =
∑∞

i=1 ρii < ∞.
This implies that the normalised density operator is given by

ρ̂ = ρ/Tr (ρ) =
∞∑
i=1

ρ̂iiPei with ρ̂ii = ρii/Tr (ρ) , 0 ≤ ρ̂ii ≤ 1. (5.18)

2

Example 5.2.4:

If H = Cn, any linear operator is bounded and automatically trace class. A density operator
is a hermitian matrix M ∈ M(n,C). Such a matrix can be diagonalised with eigenvalues
λi ∈ R+

0 . The normalised density operator is given as a matrix M̂ = M/Tr (M). It is a
hermitian matrix with eigenvalues λi ∈ [0, 1]. Diagonalising this operator yields the finite-
dimensional version of (5.16).

Definition 5.2.5: (Pure state)

A quantum mechanical system is said to be in a pure state if its normalised density operator
is of the form ρ̂ = Px, where Px is the projector on a closed, one-dimensional subspace
Span({x}) ⊂ H.

Using the notions of a density matrix and a pure state, we can formulate the second axiom
of quantum mechanics.

Axiom 2: Quantum mechanics generally only predicts the probabilities for outcomes of
measurements on quantum systems. The physical state of a quantum mechanical system at
a given time is given by a density operator ρ. The expectation value for the measurement of
an observable A is the average outcome of the measurements of the observable A in the limit
where infinitely many measurements of A are taken. It is given by

〈A〉 = Tr (ρ̂A) =
Tr (ρA)
Tr (ρ)

=
∑
i

λi〈ei, Aei〉. (5.19)

If α is an eigenvalue of the observable A, the probability that a measurement of A yields the
eigenvalue α is

p(A,α) = Tr (ρ̂PA,α) (5.20)
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where PA,α is the projector on the eigenspace of A for eigenvalue α. If α ∈ σ(A) is a spectral
value but not an eigenvalue, and [α− ε, α+ ε] ⊂ σ(A) does not contain any eigenvalues, the
probability that a measurement of A yields a result in [α− ε, α+ ε] is given by

pA,[α−ε,α+ε] = Tr
(
ρ̂ ·
∫ α+ε

α−ε
dPA

)
= Tr (ρ̂ · PA([α− ε, α+ ε])) (5.21)

where PA is the spectral measure associated with A.

A definite prediction for the outcome of a measurement of an observable A is possible if and
only if the density operator is of the form ρ̂ = PA,α, where PA,α is the projector on a subspace
of the eigenspace of eigenvalue α ∈ σ(A). In this case, the expectation value is 〈A〉 = α, the
probability of measuring α is p(A,α) = 1 and the variance vanishes 〈(A− 〈A〉)2〉 = 0. More
generally, if f is a polynomial with coefficients in C, we have

〈f(A)〉 − f(〈A〉) = 0

Exercise 43: (Expectation values)

Suppose that a quantum system is in a pure state with a normalised density operator ρ̂ = Px
that is a projector on a one-dimensional subspace Span({x}) with x ∈ H. Show that for all
observables A the expectation value 〈A〉 = Tr (ρ̂A) can be expressed in terms of the hermitian
product 〈 , 〉 on H as

〈A〉 = 〈x, Ax〉.

Axiom 3: (Preparation and measurements)

The density operator ρ for the description of a quantum mechanical system is given by the
experimental conditions under which the system was prepared. If the preparation of the
system involved the measurement of an observable A with outcome α ∈ σ(A), where α is an
eigenvalue of A, the normalised density operator after preparation satisfies

Tr (ρ̂PA,α) = 1, (5.22)

where PA,α is the projector on the eigenspace associated with eigenvalue α of A. If the
system before preparation is described by a density operator ρ1, the density operator after
preparation is given by

ρ2 = PA,αρ1PA,α ρ̂2 =
PA,αρ̂1PA,α

Tr (PA,αρ̂1PA,α)
. (5.23)

This postulate is also known under the name collapse of the wave function. After a measure-
ment of an observable A with outcome α ∈ σ(A) is performed, the wave function is said to
collapse to a linear combination of eigenvectors of O with eigenvalue α.

Note that the eigenspace of an observableA with eigenvalue α is not necessarily one-dimensional
and therefore does not specify a unique element of H. This corresponds to the fact that usu-
ally measurements of several observables are needed to determine the state of a physical
system. A set of observables that can be measured simultaneously and whose measurements
give all the information that can be gained about the state of the system is called a complete
set of commuting observables.
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Definition 5.2.6: (Complete set of commuting observables)

A complete set of commuting observables is a finite set of observables {Oi}i=1,...n which
commute [Oi, Oj ] = Oi ◦Oj −Oj ◦Oi = 0 ∀i, j ∈ {1, ..., n} and are such that the intersection
∩ni=1Eαi of the eigenspaces Eiαi of observable Oi with eigenvalue αi is a one-dimensional
subspace of H. In other words, there exists an x ∈ H such that

n⋂
i=1

Eiαi = Span(x).

Example 5.2.7: For the hydrogen atom (when the spins of electron and proton are ne-
glected), a complete set of commuting observables is given by the Hamiltonian H, the total
angular momentum J2 and the angular momentum Lz in the z-direction.

Remark 5.2.8: The requirement that the set is finite is motivated by the fact that otherwise
infinitely many measurements would be needed to determine the physical state of the system,
which would be impossible in practice. However, it is clear that this requirement of finiteness
must be dropped in quantum field theory.

There is no mathematical proof that a complete set of observables exists for all quantum me-
chanical system satisfying the axioms of quantum mechanics. However, a quantum mechanical
system without a complete set of commuting observables would be difficult to interpret. In
particular, it would not be possible to prepare such a system in a way that it is in a pure
state by performing a finite number of measurements.

Axiom 4: (Time development)

The time development of a quantum mechanical system is described by a unitary operator
Ut with continuous time dependence, the time evolution operator, which is determined by the
differential equation

U̇t = 1
i~HtUt U0 = idH. (5.24)

where Ht is the Hamiltonian at time t, which gives the energy of the system. The time
evolution of the physical state is given by

〈A〉t = Tr
(
Utρ̂U

†
tA
)
. (5.25)

Note that this time development of the system can be interpreted in two ways. The first
interpretation is that of a time development of the density operator, while the observables
remain constant and undergo no time evolution.

〈A〉t = Tr (ρ̂tA) ρt = UtρU
†
t . (5.26)

Note that as U is unitary, Tr
(
UtρU

†
t

)
= Tr (ρ) and therefore ρ̂t = Utρ̂U

†
t . Unitary opera-

tors preserve probability. In view of expression (5.16) for the density operator, this can be
interpreted as a time development of each projector Pi → UtPiU

†
t and hence as a time devel-

opment of the vectors in the Hilbert space x 7→ Utx for all x ∈ H. This is the Schrödinger
picture of time development.
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The second interpretation of formula (5.26) is due to the fact that the cyclic invariance of
the trace, one can rewrite (5.26) as

〈A〉t = Tr
(
PU †tAUt

)
= Tr (ρAt) At = U †tAUt. (5.27)

In this viewpoint, the density operators (and therefore the elements of H) remain constant
and undergo no time development. Instead, it is the observables of the system which develop
with time. This is called the Heisenberg picture of time development.

Exercise 44: (Time development)

Consider a quantum system with normalised density operator ρ̂, time evolution operator
Ut and Hamiltonian Ht. Let A be an observable. Show that the time development of the
expectation value 〈A〉t is given by

d

dt
〈A〉t = 1

i~〈[A,Ht]〉t.

Consider now a quantum system that is given by the Heisenberg algebra and equipped with
a Hamilton operator of the form

Ht =
P 2

2m
+ Vt(X),

where P is the momentum operator, X the position operator and Vt(X) a tie-dependent
function of X. Suppose that X and P satisfy the commutation relations of the Heisenberg
algebra [X,P ] = i~ 1. Show that the time development of the expectation values 〈X〉t, 〈P 〉t
is given by

d

dt
〈X〉t = 1

m〈P 〉t
d

dt
〈P 〉t = −〈V ′t (X)〉t where V ′t (x) =

d

dx
Vt(x).

Show that if we interpret the derivative Ft(x) := −V ′t (x) = − d
dxVt(x) as the force arising

from the time-dependent potential Vt, the expectation value of X satisfies

m
d2

dt2
〈X〉t = 〈F (X)〉t.

The “acceleration” of the expectation value of the position is therefore given by the expecta-
tion value of the force. This statement is known under the name of Ehrenfest’s theorem.

5.3 Quantum mechanics - the C∗-algebra viewpoint

The postulates of quantum mechanics introduced in the last section give a clear framework
for the formulation and interpretation of quantum theories. However, it has the disadvantage
that it is based on the notion of a Hilbert space. Hilbert spaces have no counterparts in
the classical theory and cannot be directly accessed by measurements. Measurements can
only be associated with observables of the theory. Only the observables have counterparts in
the classical theory and a clear physical interpretation. Moreover, the notion of states in a
Hilbert space becomes problematic in quantum field theory in curved spacetimes.
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This raises the question if it is possible to give a formulation of quantum mechanics based
on the algebra of observables alone, in which Hilbert spaces either do not appear at all or are
derived from the algebra of observables. The answer to this question is positive and given by
the theory of C∗-algebras.

Definition 5.3.1: (Banach algebra, C∗-algebra)

A (unital) Banach algebra is a (unital) associative algebra A that as a vector space has the
structure of a Banach space with norm || || and satisfies

1. ||x · y|| ≤ ||x|| · ||y|| for all x,y ∈ A

2. ||e|| = 1.

A (unital) C∗-algebra is a (unital) Banach algebra with an involution ∗ : A→ A, ∗2 = 1 that

1. is an anti-linear anti-algebra homomorphism

(xy)∗ = y∗x∗ (tx + sy)∗ = t̄x∗ + s̄y∗ ∀x,y ∈ A, t, s ∈ C. (5.28)

2. satisfies ||xx∗|| = ||x||2 for all x ∈ A.

A ∗-subalgebra of a C∗-algebra A is a subalgebra B ⊂ A which is closed with respect to the
norm || || and satisfies x∗ ∈ B for all x ∈ B.

Example 5.3.2: (C∗-algebras)

1. The space B(H) of bounded linear operators on a Hilbert space H with norm ||A|| =
sup{||Ax|| | x ∈ H, ||x|| = 1} is a Banach algebra. With the involution ∗ : O 7→ O† it
becomes a C∗-algebra.

2. Hilbert Schmidt operators form a C∗ − algebra without unit, where the norm is the
Hilbert Schmidt norm and the involution is the adjoint O∗ = O†

3. The space L1(Rn) with pointwise addition, multiplication by C, norm || · ||1 and the
convolution as product is a Banach algebra.

Exercise 45: Show that the properties of the involution in a C∗-algebra A imply

||e|| = 1 ||x∗|| = ||x|| ||x · y|| ≤ ||x||||y|| ∀x,y ∈ A. (5.29)

Definition 5.3.3: (Self adjoint, normal and unitary elements of a C∗-algebra)

An element x ∈ A of a C∗-algebra A is called hermitian or self adjoint if x∗ = x. It is called
normal if x∗x = xx∗. It is called unitary if xx∗ = e.

Exercise 46: Show that for all elements x ∈ A of a C∗-algebra A, the elements 1
2(x + x∗)

and 1
2i(x − x∗) are self-adjoint. Show that the unitary elements of A form a group. Show

that an element x ∈ A is normal if and only if 1
2(x + x∗), 1

2i(x− x∗) commute.

Definition 5.3.4: (Spectrum, regular value, spectral values)

Let A be a Banach algebra and x ∈ A. A complex number z ∈ C is a regular value of a if
x− z · e has an inverse. Otherwise it is called a spectral value. The spectrum σ(x) is the set
of spectral values of elements x ∈ A.
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Example 5.3.5: If A = B(H) is the set of bounded linear operators on a Hilbert space H,
this definition coincides with Definition 5.1.23.

Definition 5.3.6: (State)

A positive linear form of a unital C∗-algebra A is a linear form ψ ∈ A∗ such that ψ(xx∗) ≥ 0
for all x ∈ A. A state on A is a positive linear form on A that satisfies ψ(e) = e.

Exercise 47: Show that the set of states of a unital C∗-algebra A is convex, i.e. if ψ1, ψ2

are states of A, ψt = tψ1 + (1− t)ψ2 is a state of A for all t ∈ [0, 1].

Definition 5.3.7: (Pure state)

A state ψ of a unital C∗-algebra A is pure if ψ = tφ+ (1− t)η with t ∈ [0, 1] and states φ, η
implies t = 1 and ψ = φ or t01 and ψ = η.

Theorem 5.3.8: (Krein Mil’man)

Pure states exist for any unital C∗-algebra A and the set of states of A is the closed convex
hull of its pure states. In other words: Any state ψ of A can be expressed as

ψ =
n∑
i=1

λiψi λi ∈ [0, 1],
n∑
i=1

λi = 1, (5.30)

where ψi, i ∈ {1, .., n} are pure states. Pure states are characterised by λj = 1 for a single
j ∈ {1, ..., n} and λi = 0 for all i 6= j.

Definition 5.3.9: (Complete set of commuting observables)

A set of commuting observables of a a unital C∗-algebra A is a finite set of commuting self-
adjoint elements x1, ...,xn ∈ A, x∗i = xi, xixj = xjxi for all i, j ∈ {1, ..., n} . A complete set
of commuting observables of A is a finite set of commuting observables of A such that there
exists a set of pure states ψ1, ..., ψn whose convex hull is the set of states of A and which
satisfy

ψi(x2
j − ψi(xj)2e) = 0 ∀i, j ∈ {1, .., n}. (5.31)

Remark 5.3.10: As in the standard description, the requirement that the complete set
of commuting observables is finite is a condition that arises from physics. An infinite set of
commuting observables would imply that an infinite number of measurements is needed to
determine the physical state of the system. There is a priori no guarantee that such a set of
observables exists. However, it would be difficult to give a physical interpretation to a system
without a complete set of commuting observables.

Example 5.3.11: We consider the C∗-algebra B(H) of bounded linear operators on H. If
ρ is a density operator for B(H), then

ψρ : A 7→ ψρ(A) =
Tr (ρA)
Tr (ρ)

(5.32)

is a state. If ρ is a projector on a one-dimensional subspace of H, it is a pure state.

Proof: Exercise
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Example 5.3.12: We consider the C∗-algebra of matrices A = M(n,C) with norm ||M || =
Tr
(
M †M

)
=
√∑n

i,j=1 |mij |2 and involution M∗ = M †. Then, ψM : A 7→ Tr (AM) /Tr (M) is

a state for any hermitian matrix M ∈M(n,C). It is a pure state if and only if the eigenvalues
(λ1, ..., λn) of M are such that λi = 0 for all i 6= j, λj ∈ R \ {0} for exactly one j ∈ {1, ..., n}.

Exercise 48: Show that for a state ψ : A→ C, the map φ : A×A→ C, φ : (x,y) 7→ ψ(y∗x)
is a positive hermitian linear form on A, i.e. it satisfies

φ(x∗y) = φ(y∗x) |φ(y∗x)|2 ≤ |φ(x∗x)||φ(y∗y)| φ(x∗) = φ(x∗e) = φ(x)

|φ(ex)|≤φ(e)φ(x∗x) ∀x,y ∈ A.

Hint: consider the bilinear form ϕ : A× A→ C, (x,y) 7→ ψ(x + y,x + y) and show that it
takes values in R. Show also that it satisfies ϕ(xy, z) = ϕ(y,x∗z) for all x,y, z ∈ A.

Remark 5.3.13: By comparing with formula (5.19), we see that the choice of a density
operator on B(H) gives rise to a state on the C∗-algebra B(H). A state in the sense of this
section is a linear functional on a C∗-algebra of quantum observables that assigns to every
observable its expectation value. This expectation value is given by the density operator.

Hence, we can define expectation values without making use of Hilbert spaces. They are
given as positive linear functionals on the C∗-algebra which contains the observables. The
definition is elegant, but also worrying. It raises the question, if such expectation values
automatically give rise to representations on Hilbert spaces or if, instead, there is a whole
set of quantum systems which does not have a Hilbert space and which escaped the original
formulation. We will see in the following that the answer to this is the first alternative and the
two formulations of quantum mechanics are equivalent. For this, we introduce the concept
of a representation of a C∗-algebra.

Definition 5.3.14: (Representation of C∗-algebra)

A representation of a (unital) C∗-algebra A is an algebra homomorphism π : A→ B(H) into
the the set of bounded linear operators on a Hilbert space H which is continuous with respect
to the norm || || on A and the norm ||O|| = sup{||Ox|| | x ∈ H, ||x|| = 1} on B(H) such
that π(x∗) = π(x)† for all x ∈ A (and π(e) = e).

It can be shown that every state on a C∗-algebra A gives rise to a representation of A on a
Hilbert space. This is called the GNS construction.

Definition 5.3.15: (GNS pair)

Let ψ be a positive linear functional on a C∗-algebra A. A GNS pair for ψ is a pair (π,x),
where π is a representation of A on a Hilbert space H and x ∈ H a vector such that

• x is cyclic: {π(a)x | a ∈ A} = H

• ψ(a) = 〈x|π(a)x〉 for all a ∈ A.

Two GNS pairs (π,x), (π′,x′) are called equivalent if there exists a unitary operator U :
H → H′ such that x′ = Ux and U ◦ π(a) = π′(a) ◦ U for all a ∈ A. In other words: Two
GNS pairs are equivalent if they are related by a unitary intertwiner between the associated
representations.
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Theorem 5.3.16: Every positive linear functional ψ on a unital C∗-algebra A has a GNS
pair (π,x) and any two GNS pairs for ψ are equivalent. A positive linear functional on A is
a pure state if and only if the representation π is irreducible.

Proof: see p123 ff, p129 in Arveson: A Short Course on spectral theory. We only sketch the
idea of the proof.

As the C∗-algebra A is the only vector space available in this definition, it seems plausible
to construct the Hilbert space H from A. More precisely, one defines the Hilbert space H as
the quotient A/Nψ where Nψ = {a ∈ A | ψ(a∗a) = 0}. If we denote by [a] = a + Nψ the
equivalence class [a] = {a + y | y ∈ Nψ}, we can define the scalar product on H by setting
〈a+Nψ,y +Nψ〉 = ψ(y∗a), a,y ∈ A. The cyclic vector x is the equivalence class x = e+N .
The representation is given by π(a)(y +Nψ) = a · y +Nψ. The rest of the proof consists of
checking that these objects are well-defined and have the required properties. 2

Thus, we find that every state on a C∗-algebra gives rise to a representation of A on a Hilbert
space such that the state is realised as an expectation value in this representation. To show
that the formulation of quantum mechanics in terms of C∗-algebras is indeed equivalent to
the traditional formulation, it remains to show that states on A exist. This is the content of
the theorem by Gelfand-Naimark. For a proof see for example section 4.8. in Arveson: A
Short Course on spectral theory.

Theorem 5.3.17: (Gelfand-Naimark)

For every element a ∈ A, there is a state ψa : A→ C such that ψa(a∗a) = ||a||2. Every C∗-
algebra A can be represented as the algebra of bounded linear operators B(H) on a Hilbert
space H such that for any state ψ : A → C, 〈π(a)x|x〉 = ψ(a) and π(a∗)x = π(a)†x for all
x ∈ H.

Remark 5.3.18: Note that this theorem does not assert thatH is a separable Hilbert space.
It can be shown, however, that for a C∗-algebra which is generated as a C∗-algebra by a finite
or countably infinite set of elements, the Hilbert space is separable.

This shows that the two formulations of quantum mechanics - the one based on Hilbert spaces
and the one based on C∗-algebras - are indeed equivalent. The concept of a Hilbert space is
therefore not necessary as a starting point for the the formulation of a quantum theory. It
is possible to formulate the quantum theory based on the observables. In this formulation,
physical states appear as positive linear functionals of the observables and Hilbert spaces are
obtained from their representations.

5.4 Canonical Quantisation

After investigating the formulation of quantum mechanics from two different viewpoints, we
will now look at the construction of quantum theories from classical theories. It should be
noted that this construction - usually referred to as quantisation is in general neither an
algorithm nor an existence theorem. While it can often be shown that quantisations with the
required physical properties exist in specific cases, this existence is not guaranteed a priori or
in general. Moreover, the question of what constitutes an admissible quantum theory for a
given classical theory is subtle. We will see in the following that even in the simplest possible

——————————————————————————————————————
C. Meusburger Concepts and Methods of Mathematical Physics, DRAFT August 12, 2011



138 CHAPTER 5. QUANTUM MECHANICS

case - the two-dimensional Heisenberg algebra, which describes the motion of a particle in
one-dimensional space - the construction of a quantum theory and its existence is not as
straightforward as it seems.

We start our investigation with the classical theory. The classical observables which parametrise
the phase space form a Poisson algebra.

Definition 5.4.1: A Poisson algebra is an associative unital algebra A together with a
bilinear map { , } : A×A→ A, the Poisson bracket which

1. is antisymmetric: {f, g} = −{g, f} for all f, g ∈ A

2. satisfies the Leibnitz identity: {f · g, h} = f{g, h}+ g{f, h} for all f, g, h ∈ A

3. satisfies the Jacobi identity: {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0 ∀f, g, h ∈ A.

Remark 5.4.2: Any Poisson algebra (A,+, ·, { , }) is also a Lie algebra with Lie bracket
{ , } as well as a commutative associative algebra.

Example 5.4.3: For an open subset U ⊂ Rn, the vector space C∞(U) of smooth functions
with pointwise multiplication is a commutative associative algebra. If U ⊂ Rn is equipped
with a symplectic form ω ∈ Ω2(U), the vector space C∞(U) has the structure of a Poisson
algebra (see Lemma 1.4.25).

Example 5.4.4: For any submanifold U ⊂ Rn, the cotangent bundle T ∗U has the struc-
ture of a Poisson algebra. In terms of coordinate functions qi, i = 1, ...,dim(U) on U and
coordinates pi : TqU → R, i = 1, ...,dim(U) which are the one-forms dual to the basis vector
fields ∂i : q ∈ U → TqU , pi(∂j) = δij , the Poisson structure takes the form

{pi, qj} = δij {qi, qj} = {pi, pj} = 0 i, j ∈ {1, ...,dim(U)}.

The coordinates qi are called positions, the coordinates pi conjugate momenta.

It can be shown that any Poisson structure on a submanifold U ⊂ Rn of even dimension
which is given by a symplectic form looks like the Heisenberg algebra locally. This is the
content of Darboux’s theorem.

Lemma 5.4.5: (Darboux’s theorem)

Let ω ∈ Ω2(U) be a symplectic two-form on a submanifold U ⊂ Rn of even dimension
dim(U) = 2n. By Poincaré’s lemma, for any star-shaped neighbourhood V ⊂ U there exists
a one-form θ ∈ Ω1(V ), the symplectic potential, with ω = dθ. Then, there exists a set of
coordinates qi, pi : V → R such that

θ =
∑
i=1

qi dp
i,

and the Poisson structure on V takes the form

{pi, qj} = δij {qi, qj} = {pi, pj} = 0 i, j ∈ {1, ...,dim(U)}.

Such coordinates are called Darboux coordinates. The coordinates qi are called positions, the
coordinates pi conjugate momenta.
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Remark 5.4.6: Darboux’s theorem asserts that locally, all Poisson structures that are given
by symplectic forms look alike. This is a consequence of the antisymmetry of the Poisson
bracket or, equivalently, the antisymmetry of the symplectic form. In contrast, a symmetric
positive definite bilinear form on the tangent bundle TU of a submanifold U ⊂ Rn corresponds
to a Riemannian metric. It can be shown that such metrics can be brought into a standard
form given by the Riemannian coordinates. However, this does not lead to an analogue of
Darboux’s theorem since the second order derivatives and higher order derivatives of the
metric do not vanish.

Darboux’s theorem provides a strong motivation for the study of the Heisenberg Poisson
algebra.

Definition 5.4.7: (Heisenberg algebra)

The Heisenberg algebra Hn is the Poisson algebra C∞(T ∗Rn) with coordinates qi on Rn and
conjugate coordinates pi on TqRn ∼= Rn and Poisson bracket

{pi, pj} = {qi, qj} = 0 ∀i, j = 1, ..., n {pj , qi} = δij . (5.33)

The algebra Pol(pi, qi) of polynomials in the coordinates pi, qj is a Poisson subalgebra of Hn,
i.e. it is a subalgebra with respect to the associative algebra structure and {Pol(pi, qi),Pol(pi, qi)} ⊂
Pol(pi, qi).

We will now investigate the canonical quantisation of the Heisenberg algebra, which - at least
locally - tells us something about the quantisation of physical phase spaces. It should be
noted that canonical quantisation is not an algorithm or a theorem. Rather, it has the status
of an idea or a principle. As we will see in the following, one needs to be precise in defining
what quantisation means as well as in its implementation, and there is no guarantee that a
mathematical object with the desired properties exists.

The basic idea or principle of canonical quantisation is the following: A Poisson algebra com-
bines the structure of a (commutative, unital) algebra with the structure of a Lie algebra.
The compatibility of these structures is given by the Leibnitz identity. In canonical quantisa-
tion this Poisson algebra is to be replaced by an (non-commutative) associative algebra such
that both, the multiplicative structure and the Lie algebra structure of the Poisson algebra
are obtained from its multiplication (the latter via the commutator).

In physics, this principle is often states as the requirement that there should be a one-to-one
correspondence between multiplicative generators of these algebras (classical and quantum
observables) and a relation between the Poisson bracket of the Poisson algebra and the
commutator of the associative algebra

{ , } → 1
i~ [ , ]

Moreover, in order to obtain self-adjoint and unitary operators, one demands that the asso-
ciative algebra has the structure of a C∗-algebra and is represented on a Hilbert space. This
is referred to as canonical quantisation. To make this notion precise, we use the following
definition.

Definition 5.4.8: (Perfect quantisation)

A perfect quantisation of a commutative Poisson algebra A is a vector space homomorphism
Q : A→ Â into an associative, unital C∗-algebra Â ⊂ B(H) of operators on a Hilbert space
H such that:
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1. Q is a Lie algebra homomorphism between the Lie algebras (A, { , }) and (Â, { , }~),
where the Lie bracket on Â is given by {x,y}~ = 1

i~ [x,y] = 1
i~(x ◦ y − y ◦ x). In other

words:

Q({f, g}) = 1
i~ [Q(f), Q(g)] = 1

i~(Q(f) ◦Q(g)−Q(g) ◦Q(f)) ∀f, g ∈ A. (5.34)

2. The unit of the Poisson algebra is mapped to the unit of the C∗-algebra: Q(1) = e.

3. Q induces an irreducible representation of A via the inclusion Q(A) ⊂ B(H).

In the following, we will often omit the map Q and write f̂ instead of Q(f) for all f ∈ A.

Remark 5.4.9: It is often useful to modify this definition to allow also unbounded operators
with domains that are dense in H.

We will now show that a perfect quantisation does not exist for the Heisenberg Poisson
algebra. We consider the simplest case, namely the Heisenberg algebra H1 of dimension two.
As a first step, we obtain the following lemma.

Lemma 5.4.10: In any perfect quantisation Q of the Heisenberg algebra H1, one has

q̂2 = q̂2 p̂2 = p̂2 q̂p = 1
2(p̂q̂ + q̂p̂). (5.35)

Proof:

As {q2, q} = 0, we have [q̂2, q̂] = 0. Condition (5.34) together with the condition that the
representation on the Hilbert space H is irreducible implies that the operator q̂2 ∈ B(H) is
a function A(q̂), which depends only on q̂ but not on p̂. As {p, q2} = −2q, we have

[p̂, A(q̂)] = −i~Ȧ(q̂) = −2i~q̂.

This implies that q̂2 = A(q̂) is of the form q̂2 = q̂2 − 2e−, where e− is a hermitian operator
which does not depend on q̂, p̂.

An analogous argument for p, p̂ implies p̂2 = p̂2 +2e+, where e+ is a hermitian operator which
does not depend on p̂, q̂. The identity {q2, p2} = 4pq implies

4i~p̂q = [q̂2, p̂2] = [q̂2, p̂2]− 4[e−, e+] = 2i~(q̂p̂+ p̂q̂)− 4i~h,

where i~h = [e−, e+] is a hermitian operator which does not depend on p̂, q̂. One can then
show that the operators e±, h satisfy

[e−, e+] = i~ h [h, e±] = ±2i~ e±.

This is the Lie bracket of sl(2,C) that we encountered in the section on Lie algebras. However,
there we found that the corresponding operators (matrices) were anti-hermitian. One can
show that sl(2,C) does not have a non-trivial representation in which these commutation
relations hold for hermitian operators. Hence, the operators e±, h must be trivial, and we
have

q̂2 = q̂2 p̂2 = p̂2 q̂p = 1
2(p̂q̂ + q̂p̂).

2
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This lemma determines the quantisation map Q for polynomials of order one and two in
the variables p, q. We can now use the correspondence between commutators and Poisson
brackets to determine the quantisation map for polynomials of higher order. However, when
doing this one obtains contradictions and finds that it is not possible to extend the perfect
quantisation in this way. This is known as the Gronewold van Hove paradox.

Theorem 5.4.11: (Gronewold van Hove paradox)

A perfect quantisation does not exist for any Lie subalgebra of the Heisenberg algebra H1

which contains polynomials in p and q of degree greater than two.

Proof:

Using the correspondence between Poisson bracket and commutator, we show that

q̂3 = q̂3 p̂3 = p̂3 q̂2p = 1
2(q̂2p̂+ p̂q̂2) q̂p2 = 1

2(p̂2q̂ + q̂p̂2)

By induction, it then follows that for any real polynomial P

P̂ (q) = P (q̂) P̂ (p) = P (p̂) P̂ (q)p = 1
2(P (q̂)p̂+ p̂P (q̂)) P̂ (p)q = 1

2(P (p̂)q̂ + q̂P (p̂)).

This leads to a contradiction with the Poisson bracket.

{q3, p3} = 3{q2p, p2q}.

Applying the correspondence to the left-hand side yields

[q̂3, p̂3] = i~(9q̂2p̂2 − 18i~p̂q̂ − 6~2)

while the right-hand side gives

3[q̂2p̂, p̂2q̂] = i~(9p̂2q̂2 − 18i~p̂q̂ − 3~2)

This contradicts the identity Q({f, g}) = 1
i~(Q(g) ◦Q(g) = Q(g) ◦Q(f)). 2

Exercise 49: 1. Use the correspondence principle {̂f, g} = 1
i~ [f̂ , ĝ] and the Poisson bracket

of the Heisenberg Poisson algebra

{p, p} = {q, q} = 0 {p, q} = 1.

to show that the quadratic relations

q̂2 = q̂2 p̂2 = p̂2 q̂p = 1
2(p̂q̂ + q̂p̂).

imply

P̂ (q) = P (q̂) P̂ (p) = P (p̂) P̂ (q)p = 1
2(P (q̂)p̂+ p̂P (q̂)) P̂ (p)q = 1

2(P (p̂)q̂ + q̂P (p̂)).

for all polynomials P with real coefficients.

2. Determine the commutators [q̂3, p̂3], [q̂2p̂, p̂2q̂] and the associated Poisson brackets {q3, p3},
{q2p, p2q}. Show that this leads to a contradiction with the correspondence principle.
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Remark 5.4.12: Roughly speaking, what goes wrong when one tries to construct a perfect
quantisation that contains higher order polynomials in the variables p, q is that each identity
of the form {f(p, q), g(p, q)} = h(p, q), where f, g, h are polynomials in p and q corresponds
to several identities in the associative algebra. These identities are related by commuting the
variables q̂, p̂. As the commutator of p̂ and q̂ is not trivial, this leads to a contradiction.

The essence of the Gronewold van Hove paradox is that demanding the existence of a perfect
quantisation is too rigid for most physical systems. Instead of imposing that the identity

Q({f, g}) = 1
i~ [Q(f), Q(g)] = 1

i~(Q(f) ◦Q(g)−Q(g) ◦Q(f)) (5.36)

holds for all f, g ∈ A, one usually only demands that this condition holds only for a linear
subspace A′ ⊂ A, which forms a Lie subalgebra of A and which is such that elements of A′

generate A multiplicatively. In other words: {A′, A′} ⊂ A′ and polynomials in A′ should be
dense in A.

Definition 5.4.13: (Quantisation)

An (imperfect) quantisation of a commutative Poisson algebra A is a vector space homomor-
phism Q : A→ Â into an associative, unital C∗-algebra Â ⊂ B(H) of operators on a Hilbert
space H such that:

1. The unit of the Poisson algebra is mapped to the unit of the C∗-algebra: Q(1) = e.

2. Q induces an irreducible representation of A via Q(A) ⊂ B(H).

3. There exists a linear subspace A′ ⊂ A which is a Lie subalgebra with respect to the
Poisson bracket {A′, A′} ⊂ A′ and is such that the polynomials Pol(BA′) in the elements
of a Basis BA′ of A′ are dense in A. The restriction of quantisation map to A′, Q|A′ :
A′ → Q(A′), is a Lie algebra isomorphism from A′ to a Lie subalgebra Q(A′) ⊂ Â

Q({f, g}) = 1
i~ [Q(f), Q(g)] = 1

i~(Q(f) ◦Q(g)−Q(g) ◦Q(f)) ∀f, g ∈ A′. (5.37)

Remark 5.4.14: If the correspondence requirement is weakened in this way, quantisations
can be shown to exist for most physical systems. Note however, that for higher order polyno-
mials in the elements of the basis BA′ , the correspondence condition only holds in a weakened
form

[Q(f), Q(g)] = i~Q({f, g}) +O(~2) (5.38)

where O(~2) denotes linear combinations involving elements of Â which are preceded by
factors ~k with k ≥ 2.
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