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Introduction

In the basic Analysis courses one encounters metric spaces as an extremely use-
ful abstract concept which is used to prove central theorems and to formulate
basic principles. A typical example is the Banach Contraction Principle, an ab-
stract theorem on contractions on complete metric spaces, that is used to prove
the Inverse Function Theorem and the existence of local solutions of ordinary
differential equations with a Lipschitz continuous right hand side.

For the formulation of the contraction principle, the metric is indispens-
able, but for many other concepts, such as convergence and limits, the specific
metric is not needed at all, it suffices to use the concepts of open subsets and
neighborhoods. Therefore the context of topological spaces, where everything
is formulated in terms of open subsets alone, is certainly more natural in many
situations. In particular, the appropriate version of the Mazimal Value The-
orem is that every real-valued function on a compact topological space has a
maximal value. No metric is needed to formulate and prove it. Another basic
result on real-valued functions is the Intermediate Value Theorem, which finds
its optimal formulation in the topological context, where it reduces to the simple
observation that intervals of real numbers are connected and continuous images
of connected spaces are connected. All these concepts, and many others, will
be developed in this course.

As will soon become apparent, topology goes far beyond metric spaces in
that it can also be used to find a natural home for non-uniform convergence of
sequences of functions, such as pointwise convergence, which cannot be formu-
lated as convergence in a metric space (Chapter 3).

A new issue showing up in the context of topological spaces is that in some
topological spaces where points have “too many” neighborhoods, the concept
of a convergent sequence is no longer sufficient to characterize continuity of a
function, and this leads us to the convergence of filters and nets (Chapter 3).

In the second half of this course we shall be concerned with developing tools
that are needed in other fields, such as Functional Analysis, Spectral Theory and
Differential Geometry. Typical tools of this kind are Tychonov’s Theorem on the
compactness of product spaces (Chapter 4), the Stone—Weierstrass Theorem and
Ascoli’s Theorem on compact sets in spaces of continuous functions (Chapter 5).
We finally take a closer look at coverings of topological spaces, the fundamental
group and the existence of simply connected covering spaces. These are concepts
that arise already in analysis on open subsets of R™ or the complex plane, where
the contractibility of loops is an important property (Chapter 6).
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Chapter 1

Basic Concepts

In this first chapter, we introduce some of the most basic concepts in topology.
We start with the axiomatics of topological spaces, discuss continuous maps and
the concept of connectedness.

1.1 Topological Spaces

1.1.1 Open Sets

We start with the definition of a topological space and then discuss some typical
classes of examples.

Definition 1.1.1. Let X be a set. A topology on X is a subset 7 C P(X), i.e.,
a set of subsets of X, satisfying the following axioms:

(O1) The union of any family of sets in 7 belongs to 7. Applying this to the
empty family, we obtain in particular @) € 7.

(O2) The intersection of any finite family of sets in 7 belongs to 7. Applying
this to the empty family, we obtain in particular X € 7.

If 7 is a topology on X, then the pair (X, 7) is called a topological space and
the elements of 7 are called open subsets. Often it will be clear from the context
what 7 is. By abuse of language, we then call X a topological space, not writing
7 explicitly. Elements of topological spaces are called points.

Examples 1.1.2. (a) For each set X, 7 = {X, 0} defines a topology on X. It is
called the indiscrete or chaotic topology. Since () and X are contained in every
topology on X, this is the minimal topology on X.

(b) Similarly, there is a maximal topology on X. It is given by 7 := P(X).
It is called the discrete topology. For this topology all subsets are open.

I Metric spaces were introduced by Maurice Fréchet in 1906 and topological spaces were
introduced in 1914 by Felix Hausdorff (1868-1942). As so often in the history of mathematics,
the more abstract and powerful concept was introduced later, when it was clear what the
essential features of the theory are.
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To see more examples of topological spaces, we recall the concept of a metric
space.

Definition 1.1.3. (a) Let X be a set. A function d: X x X — R := [0, 00][ is
called a metric if

(M1) d(z,y) =0 z=yforz,y € X.

(M2) d(z,y) = d(y, z) for x,y € X (Symmetry).
(M3) d(x,z) < d(z,y) + d(y, 2) for x,y,z € X (Triangle Inequality).
If, instead of (M1), only the weaker condition

(M1’) d(z,z) =0for z € X,

holds, then d is called a semimetric. If d is a (semi-)metric on X, then the pair
(X,d) is called a (semi-)metric space.
(b) Let (X, d) be a semimetric space. For r > 0, the set

B.(p) :=={qe€ X:d(p,q) <r}

is called the (open) ball of radius v around p. A subset O C X is said to be
open if for each x € O there exists an € > 0 with B.(z) C O.

Lemma 1.1.4. If (X, d) is a semimetric space, then the set T4 of open subsets
of X is a topology.

Proof. To verify (0O1), let (O;);c; be a family of open subsets of X and z €
O := U;c; Oi. Then there exists a j € I with 2 € O; and, since O; is open,
there exists an ¢ > 0 with B.(x) C O;. Then B.(z) C O, and since = € O was
arbitrary, O is open. This proves (O1).

To verify (02), we first note that X itself is open because it contains all balls.
Now let I be a finite non-empty set and 2 € U := (,.; Oy, then 2 € O; for each
i, so that there exists an &; > 0 with B.,(x) C O;. Then ¢ := min{e;: i € I}
is positive, Be(z) C U, and since 2 € U was arbitrary, U is open. This proves
(02), and therefore (X, 74) is a topological space. O

Clearly, the topology 7; depends on the semimetric. The following examples
illustrate this point.

Examples 1.1.5. (a) On a set X, the metric defined by

1 forx=y
d(z,y) =
(@) {0 otherwise,

is called the discrete metric. Each subset of the metric space (X, d) is open, so
that 74 = P(X) is the discrete topology (Exercise 1.1.10).

(b) If X has two different elements, then the indiscrete topology on X is not
of the form 74 for some metric d on X. Why? In particular, not every topology
comes from a metric.
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(¢) On X = R the discrete metric and the standard metric d(x,y) := |z —y|
define different topologies coming from a metric. In fact, the one-point subset
{0} is not open for the standard metric, so that 74 is not the discrete topology.

Examples 1.1.6. (of metric spaces) (a) X = C" with the metrics

n n 1/2
ta) = o=l o) = (ko)

i=1 i=1

or
doo(z,y) := max{|z; —y;|: i=1,...,n}.

(b) The space X := C([a,b],R) of continuous real-valued functions on a
bounded closed interval [a,b] C R with the metrics

doo(f.9) = sup{| f(z) — 9(2): @ € [a,B]}
d(f.g) = / (@) - g(x)|x

(Exercise 1.1.6).
(c) Typical examples of semimetric spaces which are not metric are

(1) X =R? with d(z,y) = |21 — 1],

(2) X =C([0,2],R) with d(f,h) = fol | f(xz)—h(z)| dz. In this case d(f,h) =0
is equivalent to f(x) = h(z) for z € [0,1] (Exercise 1.1.6).

We know already that all metric spaces carry a natural topology. It is also
clear that every subset of a metric space inherits a natural metric, hence a
topology. This is also true for subsets of topological spaces:

Definition 1.1.7. If (X, 7) is a topological space and Y C X a subset, then
v ={UNY:U¢€r}

is a topology on Y, called the subspace topology (cf. Exercise 1.1.5).

1.1.2 Closed Sets and Neighborhoods

Definition 1.1.8. Let (X, 7) be a topological space.

(a) A subset A C X is called closed if its complement A¢ := X \ A is open.

(b) A subset U C X containing x € X is called a neighborhood of x if
there exists an open subset O with x € O C U. We write i(z) for the set of
neighborhoods of .

(c) (X, 1) is called a Hausdorff space or hausdorff or separated, if for x # y €
X there exist disjoint open subsets O, and O, with x € O, and y € O,,.
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Remark 1.1.9. (a) The discrete topology on a set X is always hausdorff.
However, the indiscrete topology is hausdorff if and only if | X| < 1.

(b) Neighborhoods of a point are not necessarily open. All supersets of any
neighborhood are neighborhoods.

Lemma 1.1.10. The set of closed subsets of a topological space (X, T) satisfies
the following conditions:

(C1) The intersection of any family of closed subsets of X is closed. In partic-
ular, X is closed.

(C2) The union of any finite family of closed subsets of X is closed. In partic-
ular, ) is closed.

Proof. This follows immediately from (O1) and (O2) by taking complements and
using de Morgan’s Rules: (J;c; O:)¢ = N;c; OF and (N;c; 04)¢ = U;e; 05 O

Lemma 1.1.11. In a semimetric space (X,d), we have:
(i) The sets By(z), x € X, r > 0, are open.

(ii) The sets B<,(x) :={y € X: d(z,y) < r} are closed.
(iii) (X, d) is hausdorff if and only if d is a metric.

Proof. (i) Let y € B,.(z), so that d(z,y) < r. We claim that, for s := r—d(x,y),
the ball Bs(y) is contained in B,(x). In fact, this follows from the triangle
inequality, which asserts for z € B4(y) that

d(z,2) < d(z,y) +d(y,2) <d(z,y) +s=r.

Since y was arbitrary in B,(x), the set B,(z) is open.

(ii) Let y € B<,(x)¢, so that d(z,y) > r. We claim that, for s := d(z,y) —r,
the ball B,(y) is contained in B<,(z)°. In fact, this follows from the triangle
inequality, which asserts for z € B4(y) that

d(l‘,Z) > d(lL’,y) - d(yVZ) > d(xay) —Ss=T

Since y € B<,(x)¢ was arbitrary, it follows that B<,(x)¢ is an open set.

(iii) If d is not a metric, then there exist two different points  # y € X
with d(z,y) = 0. Then y € B,.(z) for each > 0 implies that every open subset
containing x also contains y, and therefore X is not hausdorff.

If, conversely, d is a metric and = # y, then we pick a positive r < %d(m, Y).
Then the triangle inequality implies that the two balls B,.(z) and B,(y) are
disjoint: For z € B,(x) N B,-(y), we obtain a contradiction

d(z,y) < d(z,z) +d(z,y) < 2r < d(z,y).

Since the balls B,(x) and B, (y) are open by (i), X is hausdorff. O
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Definition 1.1.12. Let (X, 7) be a topological space. For E C X the set
E = ﬂ{F CX:ECF and F closed}

is called the closure of E/ and the subset E is called dense in E. Clearly, E is
closed if and only if £ = E.
This is the smallest closed subset of X containing E. The subset

E°:= fJUCX:UCE and U open}

is called the interior of E. This is the largest open subset of X contained in E.
Elements of E° are called interior points of E. The set

OF :=FE\ E°
is called the boundary of E.

Lemma 1.1.13. For a topological space (X,7), a subset E C X and z € X,
the following assertions hold:

(i) € E° < [(3U € U(z)) U C E] & E € U(z).
(i) 2 € Fo (VU € UWx)) UNE £ < E° ¢ 4(x),
(i) € E & (VU € U(z)) UNE # 0 and U N E° #£ ().

Proof. (i) That x € E° is equivalent to the existence of an open subset O of
E containing x, which is equivalent to the existence of a neighborhood of =
contained in E and also equivalent to E being a neighborhood of .

(ii) That x € E means that each closed subset containing E also contains z,
which is equivalent to the non-existence of an open subset O containing z and
intersecting FE trivially. This in turn is equivalent to the assertion that each
neighborhood of z intersects E. Clearly, this also means that the complement
E€ is not a neighborhood of x.

(iii) follows by combining (i) and (ii) because € OF means that z € E, but
not r € E°. O

Exercises for Section 1.1

Exercise 1.1.1. (a) Show that all metrics d on a finite set define the discrete
topology.
(b) Show that all finite Hausdorff spaces are discrete.

Exercise 1.1.2. Find an example of a countable metric space (X, d) for which
the topology 74 is not discrete.

For the next exercise, we need the concept of a seminormed space.

Definition 1.1.14. Let V be a K-vector space (K € {R,C}). A function
p: V. — Ry is called a seminorm if
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(N1) p(Az) = |[A|p(z) for A € K, z € V, and

(N2) p(z +y) < p(x) + p(y) for z,y € V (Subadditivity).
If, in addition,

(N3) p(z) >0for 0#£x €V,

then p is called a norm. If p is a (semi-)norm on V', then the pair (V, p) is called
a (semi-)normed space.

Exercise 1.1.3. Show that if (V,p) is a (semi-)normed space, then d(z,y) :=
p(x — y) is a (semi-)metric which is a metric if and only if p is a norm.

Exercise 1.1.4. Show that a subset M of a topological space X is open if and
only if it is a neighborhood of all points x € M.

Exercise 1.1.5. Let Y be a subset of a topological space (X, 7). Show that
Tly ={0ONY: O € 7} defines a topology on Y.

Exercise 1.1.6. Let a < b < ¢ be real numbers. Show that

b
d(f,g) == / (@) - g(x)|do

defines a semimetric on the space C([a, ], R) of continuous real-valued functions
on [a,c]. Show also that d(f,g) = 0 is equivalent to f = g on [a, b], and that d
is a metric if and only if b = c.

Exercise 1.1.7. Let (X, d) be a metric space and Y C X be a subset. Show
that the subspace topology 74y on Y coincides with the topology defined by
the restricted metric dy := d|y xy.

Exercise 1.1.8. (Hausdorfl’s neighborhood axioms) Let (X, 7) be a topological
space. Show that the collected {U(z) of neighborhoods of a point 2 € X satisfies:

(N1) {z} € U(z) and X € U(x).

(N2) U € U(z) and V D U implies V' € i(x).
(N3) Uy, Uy € U(z) implies Uy NUs € U(x).
(N4)

N4) Each U € $i(x) contains a V' € i(z) with the property that U € U(y) for
eachy e V.

Exercise 1.1.9. Let X be a set and suppose that we have for each x € X a
subset U(x) C P(X), such that the conditions (N1)-(N4) from Exercise 1.1.9 are
satisfied. We then call a subset O C X open if O € U(x) holds for each z € O.
Show that the set 7 of open subsets of X defines a topology on X for which
U(z) is the set of all neighborhoods of z.

Exercise 1.1.10. Show that the following assertions are equivalent for a metric
space (X, d):
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(a) The topological space (X, 74) is discrete.
(b) The points in X form 74-open subsets.
(c) For each p € X there exists an ¢ > 0 with B.(p) = {p}.

Exercise 1.1.11. For each norm || - || on R", the metric d(z,y) := ||z — y||
defines the same topology. Hint: Use that each norm is equivalent to ||z|/ =
max{|z;|: ¢ =1,...,n} (cf. Analysis II).

Exercise 1.1.12. (The cofinite topology) Let X be a set and
T:=0U{ACX: |A° < oo}.
Show that 7 defines a topology on X. When is this topology hausdorff?

Exercise 1.1.13. (p-adic metric) Let p be a prime number. For ¢ € Q* we
define |g|, := p™" if we can write ¢ = p" ¢, where a € Z,0 # b € Z are not
multiples of p. Note that this determines a unique n € Z. We also put |0|, := 0.
Show that

d(z,y) = |z —ylp

defines a metric on Q for which the sequence (p™),en converges to 0.

Exercise 1.1.14. Show that for a subset E of the topological space X, we have

E°=(E°)° and (E%)°=F".

1.2 Continuous Maps

After introducing the concept of a topological space as a pair (X, 7) of a set X
with a distinguished collection of subsets called open, we now explain what the
corresponding structure preserving maps are. They are called continuous maps,
resp., functions.

Definition 1.2.1. Let (X, 7x) and (Y, 7y) be topological spaces.

(a) Amap f: X — Y is called continuous if for each open subset O C Y the
inverse image f~!(O) is an open subset of X.

We write C'(X,Y) for the set of continuous maps f: X — Y.

(b) A continuous map f: X — Y is called a homeomorphism or topological
isomorphism if there exists a continuous map ¢: Y — X with

fog:idy and gOfZIdX

(¢) Amap f: X — Y is said to be open if for each open subset O C X, the
image f(O) is an open subset of Y. We similarly define closed maps f: X — Y
as those mapping closed subsets of X to closed subsets of Y.

Proposition 1.2.2. If f: X - Y and g : Y — Z are continuous maps, then
their composition go f : X — Z is continuous.
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Proof. For any open subset O C Z, the set (go f)71(0) = f~1(g7(0)) is open
in X because g~1(0) is open in Y. O

Lemma 1.2.3. (a) If f: X — Z is a continuous map and Y C X a subset,
then fly:Y — Z is continuous with respect to the subspace topology on'Y .

() If f: X — Z is a map and Y C Z is a subset containing f(X), then
f is continuous if and only if the corestriction f1¥: X — Y is continuous with
respect to the subspace topology on Y.

Proof. (a) If O C Z is open, then (f|y)~}(O) = f~}(O) NY is open in the
subspace topology. Therefore f|y is continuous.
(b) For a subset O C Z, we have

fFHo) =1 onY) = (M) onY).

This implies that f is continuous if and only if the corestriction f¥ is continuous.
O

Presently, we only have a global concept of continuity. To define also what
it means that a function is continuous in a point, we use the concept of a
neighborhood.

Definition 1.2.4. Let X and Y be topological spaces and z € X. A function
f: X — Y is said to be continuous in x if for each neighborhood V of f(x)
there exists a neighborhood U of x with f(U) C V. Note that this condition is
equivalent to f~!(V) being a neighborhood of z.

Remark 1.2.5. If (X,dx) and (Y,dy) are metric spaces, then a map
f+ X — Y is continuous in « € X if and only if

(Ve > 035> 0) f(Bs(e)) C Be(f(w)).

This follows easily from the observation that V' C Y is a neighborhood of f(x)
if and only if it contains some ball B.(f(x)) and U C X is a neighborhood of x
if and only if it contains some ball Bs(x) (Exercise 1.2.1).

Lemma 1.2.6. Let f: X — Y and g: Y — Z be maps between topological
spaces. If f is continuous in x and g is continuous in f(x), then the composition
go f is continuous in x.

Proof. Let V be a neighborhood of g(f(x)) in Z. Then the continuity of g
in f(z) implies the existence of a neighborhood V' of f(x) with g(V’) C V.
Further, the continuity of f in z implies the existence of a neighborhood U of
x in X with f(U) C V', and then (go f)(U) C g(V’') C V. Therefore g o f is

continuous in x. O

Proposition 1.2.7. For a map f: X — Y between topological spaces, the fol-
lowing are equivalent:

(1) f is continuous.
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(2) f is continuous in each x € X.

(3) Inverse images of closed subsets of Y under f are closed.

(4) For each subset M C X, we have f(M) C f(M).

Proof. (1) = (2): Let V C Y be a neighborhood of f(z). Then the continuity
of f implies that U := f~1(V) is an open subset of X containing x, hence a
neighborhood of x with f(U) C V.

(2) = (1): Let O CY be open and = € f~1(0O). Since f is continuous in z,
f~1(0) is a neighborhood of x, and since z is arbitrary, the set f~1(O) is open.

(1) & (3): If A C Y is closed, then f~1(A) = f~1(A°)¢ implies that all
these subsets of X are closed if and only if all sets f~1(A¢) are open, which is
equivalent to the continuity of f.

(3) = (4): The inverse image f~1( f(M)) is a closed subset of X containing
M, hence also M.

(4) = (3): If ACY isclosed and M := f~1(A), then f(M) C f(M) C A
implies that M C M, i.e., M is closed. O
Proposition 1.2.8. For a continuous map f: X — Y, the following are equiv-
alent:

1) f is a homeomorphism.

3

(
(2) f is bijective and f~1: Y — X is continuous.
(3) f is bijective and open.

(

)
)
)
)

4) f is bijective and closed.

Proof. (1) & (2): Let g: Y — X be continuous with fog =idy and gof =idx.
Then f is bijective, and f~! = g is continuous.

If, conversely, f is bijective and ! is continuous, then we see with g := f~*
that f is a homeomorphism.

(2) & (3): For O C X we have f(O) = (f~*)~(O). That this set if open
for each open subset O C X is equivalent to f being open and to f~! being
continuous.

(2) & (4): For A C X we have f(A) = (f~1)71(A). That this set if closed
for each closed subset A C X is equivalent to f being closed and to f~! being
continuous (Proposition 1.2.7). O

Definition 1.2.9. (a) A sequence (z,)nen in the topological space X is said
to converge to p, written,

lim =z, =p or z,—p,
n—oo

if for each neighborhood U € 4(p) there exists a number ny € N with z, € U
for n > ny.
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(b) A topological space X is said to be first countable if there exists for
each p € X a sequence (Up)nen of neighborhoods of p such that each neigh-
borhood V of p contains some U,,. Then the sequence (U,)nen is called a basis
of meighborhoods of p and the U, are called basic neighborhoods. Note that by
replacing U,, by U} := U; N...NU,, we even obtain a decreasing sequence of
basic neighborhoods of p.

Proposition 1.2.10. (a) If f: X — Y is a continuous map between topological
spaces, then
Tn = p= f(x,) — f(p) for eachpe X. (1.1)

(b) If, conversely, X is first countable and for each sequence x,, — p we have
f(zn) — f(p), then f is continuous.

Proof. (a) Suppose first that f is continuous in p and that z, — p in X. Let
V be a neighborhood of f(p) in Y. Then there exists a neighborhood U of p in
X with f(U) C V. Pick ny € N with x,, € U for n > ny. Then f(z,) € V for
n > ny implies that f(z,) — f(p).

(b) Now assume that X is first countable and for each sequence z,, — p we
have f(x,) — f(p). To show that f is continuous in p, pick a neighborhood V
of f(p) and a decreasing sequence (U, )nen of basic neighborhoods of p.

If f is not continuous in p, then f(U,) € V for each n, so that we find
x, € U, with f(z,) € V. Then z,, — p follows from the fact that for each
neighborhood U of p there exists an n with U,, C U, and then z,, € U,, C U, C
U holds for m > n. On the other hand f(x,) /4 f(p), by construction. O

Example 1.2.11. We shall see later that there exists a topology (the topology
of pointwise convergence) on the set X of measurable functions f: [0,1] — [0, 1]
for which f,, — f for a sequence in X if and only if f,(z) — f(z) for each
x € ]0,1]. In view of Lebesgue’s Theorem of Dominated Convergence, the map

I: X - R, f|—>/1f(x)dx
0

is sequentially continuous, i.e., f, — f pointwise implies I(f,) — I(f) (here
we use that |f,| < 1). However, I is not a continuous map because I(f) = 0
holds for each function f which is non-zero at most in finitely many places, but
the constant function 1 is contained in the closure of this set (Exercise 2.2.10).
This shows that I is not continuous because the continuity of I would imply

I(M) C I(M) for any subset M C X.

Exercises for Section 1.2

Exercise 1.2.1. Verify the assertion of Remark 1.2.5 about the continuity of a
function between metric spaces.

Exercise 1.2.2. Show that, if f: X — Y is a continuous function into a discrete
space Y, then the sets f~1(y), y € Y, form a partition of X by open closed
subsets.
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Exercise 1.2.3. Let d; and dy be two metrics on the set X and write B(x)
for the balls with respect to dj, j = 1,2. Show that d; and dy define the same
topology on X if and only if for each p € X and £ > 0 there exists a § > 0 with

Bj(p) € BZ(p)
and for each p € X and € > 0 there exists a § > 0 with
B3(p) € BL(p).

Exercise 1.2.4. (Equivalent bounded metrics) Let (X,d) be a metric space.
Show that:

(a) The function f: Ry — [0,1], f(¢) = ﬁt is continuous with continuous
inverse g(t) := t&;. Moreover, f is subadditive, i.e., f(z+y) < f(z)+f(y)
for z,y € Ry.

d(z,y) - . .
(b) d'(x,y) := % is a metric on X with sup, ,cx d'(z,y) < 1.
(¢) d' and d induce the same topology on X.

Exercise 1.2.5. (Stereographic projection) We consider the n-dimensional sphere

S™ = {(xo,x1,...,2,) € R 22 423 4 ... 422 =1}

We call the unit vector eg := (1,0,...,0) the north pole of the sphere and —eg
the south pole. We then have the corresponding stereographic projection maps

oy Up i =S"\{eo} = R",  (yo,y) —

Yy
1—yo

and
o U :=8"\{—eo} = R", (y0,9) —

1+yoy.

Show that these maps are homeomorphisms with inverse maps

[zlf -1 2 )
2l + 171+ [|=]3/°

px'(@) = (£

1.3 Connectedness

Definition 1.3.1. (a) A topological space X is said to be connected if for each
decomposition X = O;UO, into two disjoint open subsets O; and O, one of
the sets O; is empty.

(b) A continuous map v : [0,1] — X is called a path and its image ([0, 1])
an arc. The space X is called arcwise connected, if for x,y € X there exists a
path v:[0,1] — X with y(0) = z and (1) = y. We call v a path from x to y.

Lemma 1.3.2. A topological space X is connected if and only if all continuous
functions f: X — {0,1} are constant, where {0,1} carries the discrete topology.
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From the Intermediate Value Theorem we thus immediately get:

Proposition 1.3.3. A subset I C R is connected if and only if it is an interval,
ie., v,z €I and x <y < z impliesy € I.

Proof. According to the Intermediate Value Theorem, continuous functions

f: I — {0,1} on an interval are constant, so that intervals are connected. If,
conversely, I C R is not an interval, then there exist t < y < z € Rwithz,z € T
and y & I. Then Iy := IN] — oo, y[ and I := IN]y, oo[ are non-empty disjoint
open subsets of I with I = I} U I, and therefore I is not connected. O

Proposition 1.3.4. If f: X — Y is a continuous map and X is (arcwise)
connected, then f(X) is (arcwise) connected.

Proof. (a) First we assume that X is connected. Let h: f(X) — {0,1} be a
continuous function. Then ho f: X — {0,1} is a continuous function, hence
constant, and therefore h is also constant. This proves that f(X) is connected.

(b) If X is arcwise connected and a,b € f(X), then there exist points z,y €
X with f(x) = a and f(y) = b. Since X is arcwise connected, there exists a
path a: [0,1] — X with a(0) = z and (1) =y. Then foa: [0,1] — f(X)isa
path from a to b. O

Proposition 1.3.5. Arcwise connected spaces are connected.

Proof. Let z,y € X and f: X — {0,1} be a continuous function. Since X
is arcwise connected, there exists a path «a: [0,1] — X with «(0) = = and
a(l) = y. Then foa:[0,1] — {0,1} is continuous, hence constant by the
Intermediate Value Theorem. Therefore f(z) = f(y), and since z and y were
arbitrary elements of X, the function f is constant. O

Proposition 1.3.6. Let (Y;);er be a family of (arcwise) connected subsets of
the topological space X with (,c;Yi # 0. Then U,c;Y: is (arcwise) connected.

Proof. Pick x € [;c; Y; and let YV := |, Vi

(a) First we assume that each Y; is connected. Let f: Y — {0,1} be a
continuous function and assume w.l.o.g. that f(z) = 0. Then the restriction to
each Y; is also continuous, so that the connectedness of Y; implies that f|y, = 0.
This implies that f = 0, and hence that Y is connected (Lemma 1.3.2).

(b) Let y, z € Y and choose i, j € I withy € Y; and z € Y. Then there exists
a path «a: [0,1] — Y; with «(0) = y and «(1) = z and a path §: [0,1] — Y;
with 8(0) = 2 and (1) = z. Then

o a(2t) foro0<t<?i
(ax B)(t) = {g(zt —1) fori<t §21

defines a path a * : [0,1] — Y connecting y to z. Therefore Y is arcwise
connected. O
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Definition 1.3.7. Let X be a topological space.

(a) For x € X, the connected component Cy, of x is X is the union of all
connected subsets of X containing x. Its connectedness follows from Proposi-
tion 1.3.6.

(b) For z € X, the arc-component A, of x is X is the union of all arcwise
connected subsets of X containing z. Its arcwise connectedness follows from
Proposition 1.3.6.

Remark 1.3.8. (a) Clearly, 4, C C, follows from Proposition 1.3.5.

(b) The connected components of a topological space X form a partition
of X.

In fact, if C; and Cy are two connected components which intersect non-
trivially, then Proposition 1.3.4 implies that C, U C, is connected, so that the
maximality of C,, resp., C, yields C, = C.

(c) A similar argument shows that the arc-components of a topological space
X form a partition of X.

Proposition 1.3.9. Let X be a topological space in which every point x has
an arcwise connected neighborhood U,. Then the arc-components of X are open
and coincide with the connected components.

Proof. Clearly, U, C A, because U, is arcwise connected. Therefore A, is a
neighborhood of z. For any other y € A,, we have A, = A, (Remark 1.3.8), so
that A, also is a neighborhood of y, and hence A, is open.

Since arcwise connected spaces are connected (Proposition 1.3.5), A, C C,.
IfyeCy\ Ay, then A, C C, \ A, follows from A, N A, = 0, and therefore

yeC\ Ay

is a union of open subsets, hence an open subset of C'.. Since C} is connected
and A, # 0, we obtain C, \ 4, =0, i.e., C;, = A,. O

Definition 1.3.10. A topological space X is called an n-dimensional manifold
if each x € X has an open neighborhood U homeomorphic to an open subset of
R™.

Remark 1.3.11. (a) The preceding proposition applies in particular to each
open subset U C R".

(b) From (a) we immediately derive that Proposition 1.3.9 also applies to
n-dimensional manifolds.

Exercises for Section 1.3

Exercise 1.3.1. Show that if Y is a connected subset of the topological space
X, then its closure Y is also connected.
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Exercise 1.3.2. For a continuous function f: ]0,1] — R, we consider its graph

I(f) = A{(z f(2)): 0 <z <1}
Show that:
(a) T'(f) is an arcwise connected subset of R2.

(b) T'(f) =T(f) U ({0} x Iy), where Iy C R is the set of all those points y for
which there exists a sequence z,, — 0 in ]0,1] with f(z,) — y.

(¢) T(f) is connected.

(d) For f(z) :=sin(1/x), the set I'(f) is not arcwise connected.
(e) T'(f) is arcwise connected if and only if || < 1.

Exercise 1.3.3. Show that the connected components of a topological space
are closed.

Exercise 1.3.4. Find an example of an arc-component of a topological space
which is not closed.

Exercise 1.3.5. A topological space X is called locally (arcwise) connected, if
each neighborhood U of a point = contains a connected (an arcwise connected)
neighborhood V of z.

Show that in a locally connected space the connected components are open
and in a locally arcwise connected space the arc-components are open and co-
incide with the connected components.

Exercise 1.3.6. In R? we consider the set
X = ([0,1] x {1}) U ({% ne N} x [0,1]) U ({0} x 0.1)).
Show that X is arcwise connected but not locally arcwise connected.
Exercise 1.3.7. Show that the topological spaces
I=100,1] and S':={(z,y)eR®:2%>+4>=1}

are not homeomorphic. Hint: Consider the connectedness properties if one point
is removed.

1.4 Separation Axioms

We have already seen that metric spaces are always hausdorff, but that in general
topological spaces are not. Since the axioms of a topological space are very weak,
they permit topologies, such as the indiscrete topology, which cannot distinguish
the points in X. In almost all situations occurring in mathematical practice,
the occurring topological spaces do have additional separation properties.
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Definition 1.4.1. (The separation axioms) Let (X,7) be a topological
space. We distinguish the following separation properties T5,:

(To) X is called a Ty-space if for any two points x # y, there exists an open
subset containing only one of them.

(T1) X is called a T7-space if for any two points x # y, there exists an open set
O, not containing .

(Tz) X is called a Ty-space, or hausdorff, if for any two points x # y, there
exist disjoint open subsets O, containing x and O, containing y. This is
the same as the Hausdorff property.

(T5) A Ti-space is called a Ts-space, or regular, if for any point 2 and a closed
subset A not containing z there exist disjoint open subsets O, containing
x and O4 containing A.

(Ty) A Ti-space is called a Ty-space, or normal, if for any two disjoint closed
subsets Aq, A there exist disjoint open subsets O; containing A4;, j = 1, 2.

Remark 1.4.2. (a) The Ty-axiom simply means that the points of X deter-
mined by the collection of open subsets in which they lie.

(b) The Ti-axion is equivalent to the condition that all points are closed. It
states that the complement {y}¢ of each point is a neighborhood of each of its
points, i.e., an open set.

Proposition 1.4.3. A Hausdorff space X is reqular if and only if each neigh-
borhood U of a point contains a closed one.

Proof. Suppose first that X is regular, let x € X and V € {(z) be an open
neighborhood of z. Then {z} and V¢ are disjoint closed subsets, so that there
exist disjoint open subsets Uy, Uz of X with x € U; and V¢ C Uy. Then U is
a closed neighborhood of = contained in V.

Suppose, conversely, that each neighborhood of a point x contains a closed
one, and that A C X is a closed subset not containing x. Then A€ is an open
neighborhood of x, hence contains a closed neighborhood U. Then U° and U®
are disjoint open subsets with 2 € UY and A C U°. O

Exercises for Section 1.4

Exercise 1.4.1. For a non-empty subset A of the metric space (X,d), we
consider the function

da(x) = inf{d(z,a): a € A}.
Show that:
(i) |da(z) —da(y)| < d(z,y) for z,y € X. In particular, d4 is continuous.
(ii) da(z) =0 if and only if z € A.

(iii) Every metric space (X, d) is normal. Hint: For two disjoint closed subsets
A, B C X, consider the function f:=ds — dp.
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Chapter 2

Generating Topologies

In this chapter we discuss several methods to obtain new topologies from old
ones. To this end, we start with a discussion of how topologies are generated
by subsets of P(X) and then turn to the two key constructions: initial and final
topologies. Two of the most important applications are product and quotient
topologies.

2.1 Bases and Subbases of a Topology

Definition 2.1.1. Let X be a set. If 7 and ¢ are topologies on X, we say that
(1) 7 is finer than o if o C 7 (as subsets of P(X)).

(2) 7 is coarser than o if 7 C 0.

Lemma 2.1.2. If (1;)icr are topologies on X, then (\,c; 7 is a topology on X.
It is the finest topology which is coarser that all the topologies T;.

Proof. To see that T := N7 is a topology, let (O;) e be a family of elements
of 7. To verify (O1), put O := UjEJ Oj. Since O; € 7; for each i, the same
holds for O, and therefore O € 7. To verify (02), assume J is finite and put
O .= ﬂjGJ Oj. Since O; € 7; for each 4, the same holds for O, and therefore
Oer. O

Definition 2.1.3. If A C P(X), then
T = (A)top == ﬂ{o’: A C o,0 is a topology}

is a topology on X. It is the coarsest topology on X containing A. It is called
the topology generated by A.

Conversely, a set A C P(X) is called a subbasis of a topology 7 if 7 is
generated by A. The set A is called a basis of the topology 7 if each O € 7 is a
union of elements of A.

19
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Lemma 2.1.4. A subset A C 7 is a subbasis of the topology T if and only if T
consists of all unions of finite intersections of elements of A.

Proof. Let o be the set of all unions of finite intersections of elements of A. We
claim that o is a topology. Clearly, o is stable under arbitrary unions, so that
we only have to show that it is also stable under finite intersections. The whole
space X is contained in o because X is the intersection of the empty family in
A. So let Oy,...,0, be elements of 0. We write each O; as O; = | A
where each A; ; is a finite intersection of elements of 4. Then

ﬂOz = ﬂ U AiJ = U Ale m"'ﬂAan
=1

1=1j€J; Ji€Ji

jeJ; L1000

is a union of finite intersections of elements of A, hence in o.
We conclude that A is subbasis of 7 if and only if 7 = o, which is the
assertion of the lemma. O

If we know a subbasis for a topology, we can simplify the verification of
continuity of a map:

Lemma 2.1.5. If f : (X,7x) — (Y,7y) is a map between topological spaces
and B a subbasis of Ty, then f is continuous if and only if for each B € B, the
inverse image f~(B) is open.

Proof. The set
forx ={ACY: f7YA) e 1x}

is easily seen to be a topology on Y (Exercise 2.1.2). Now f is continuous if
and only if f,7x O 7y, and since B generates Ty, this happens if and only if

Exercises for Section 2.1

Exercise 2.1.1. A subset A C P(X) is a basis for a topology on X if and only
if

(1) UA=X and
(2) foreach x € ANB, A,B € A, there existsa C € Awithz e C C ANB.

Exercise 2.1.2. (a) Let f: X — Y be a map and 7x be a topology on X.
Show that

firx ={U CY: fﬁl(U) €71x}

is a topology on Y.
(b) For a family of maps f;: X; — Y and topologies 7; on X;, show that the
corresponding final topology is (), (fi)« = {U C Y: (Vi) f; ' (U) € 73}
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2.2 Initial and Final Topologies

If f: X - Y is a map and 7x is a topology on X, then the topology
feTx = {A cY: f_l(A> S Tx}

is called the pushforward of Tx by f (cf. Exercise 2.1.2). Similarly, we obtain
for each topology 7y on Y a topology

frry o=y = (F7H0): O € Ty )iop

on X, called the pullback of 7v by f. The main point of initial and final topolo-
gies is to extend these concepts to families of maps.

Definition 2.2.1. Let X be a set and (Y;, 7;);er be topological spaces.
(a) Let f;: X — Y; be maps. Then the topology

7= (f; 1 (7:),i € Diop

generated by all inverse images ffl(Oi), O; € 7, is called the initial topology
defined by the family (f;,Y;)icr-
(b) Let f;: Y; — X be maps. Then the topology

r={UCX: (Viefi ' (U)en}= ﬂ fixTi
iel
is called the final topology on X defined by the family (f;,Y;)ics. That 7 is

indeed a topology is due to the fact that the assignment U +— fi_l(U ) preserves
arbitrary intersections and unions (Exercise 2.1.2).

Lemma 2.2.2. The initial topology T defined by the family f;: X —Y;, i €1,
of maps is the coarsest topology for which all maps f; are continuous. It has the
following universal property: If Z is a topological space, then a map h: Z — X
18 continuous if and only if all maps fioh: Z —'Y; are continuous.

Proof. Apply Lemma 2.1.5 to the subbasis {f; *(0;): O; CY; open} of 7. [

Lemma 2.2.3. The final topology defined by the family f;:Y; — X, i € I,
is the finest topology for which all maps f; are continuous. It has the follow-
ing universal property: If Z is a topological space, then a map h: X — Z is
continuous if and only if all maps ho f;, i € I, are continuous.

Proof. For an open subset O C Z, the inverse image h=1(0) C X is open if
and only if for each i € I, the set f; *(h=1(0)) = (ho f;)~(O) is open in Y;.
Therefore h is continuous if and only if each map h o f; is continuous. O

Example 2.2.4. Let (X, 7) be a topological space and Y C X be a subset. We
write ty: Y — X for the canonical embedding, mapping each y € Y to itself.
Then the initial topology on Y with respect to ¢y coincides with the subspace
topology

v ={;'(U)=UNY: U<}
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Definition 2.2.5. (Quotient topology) (a) Let ~ be an equivalence relation
on the topological space X, [X] := X/ ~= {[z]: € X} be the set of equivalence
classes, and ¢: X — [X],x — [z] the quotient map. Then the final topology on
[X] defined by ¢: X — [X] is called the quotient topology.

(b) According to Definition 2.2.1, a subset U C [X] is open if and only its
inverse image ¢~!(U) is an open subset of X and Lemma 2.2.3 implies that a
map h: [X] — Z to a topological space Z is continuous if and only if hog X — Z
is continuous.

(¢) An important special cases arises if S C X is a subset and we define the
equivalence relation ~ in such a way that S = [z] for each z € S and [y] = {y}
for each y € S°. Then the quotient space is also denoted X/S := X/ ~. It is
obtained by collapsing the subset S to a point.

Example 2.2.6. We endow the set S := ({1} xR)U({2} x R) with the subspace
topology of R? and define an equivalence relation on S by

(L)~ (2,y) < w=y#0,

so that all classes except [1,0] and [2,0] contain 2 points. The topological
quotient space

M =8/ ~={[1,z]: z € R} U{[2,0]} = {[2,2]: = € R} U{[L,0]}

is the union of a real line with an extra point, but the two points [1, 0] and [2, 0]
have no disjoint open neighborhoods.

The subsets U; := {[j,z]: x € R}, j = 1,2, of M are open, because their
inverse images are the open subsets X \ {(1,0)}, resp., X \ {(2,0)}. Moreover,
the maps

(pj:Uj_)Ra [j,id'—)l',

are homeomorphisms. That ¢; is continuous follows from the continuity of the
map X — R, (j,2) — z and Definition 2.2.5(b). The continuity of the inverse
follows from the continuity of the maps R — X,z — (j,2) and the continuity
of the quotient map ¢: X — X/ ~.

Definition 2.2.7. (Product topology) Let (X;);er be a family of topolog-
ical spaces and X := [[,.; X; be their product set. We think of its elements
as all tuples (z;);er with z; € X;, or, equivalently, as the set of all maps
w: I — U;ep Xi with z; := x(i) € X; for each i € I.

We have for each i € I a projection map

Di: X — Xi, (%‘)je] = X;.

The initial topology on X with respect to this family p;: X — X is called the
product topology and X, endowed with this topology, it called the topological
product space.

Remark 2.2.8. The sets p{l(Oi), O; C X; open, clearly form a subbasis of the
product topology, and therefore the sets [],.; Qi, where Q; C X; is open and
only finitely many @); are different from X, form a basis (cf. Exercise 2.1.1).
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Example 2.2.9. Typical examples of product spaces are R™ and C". More
generally, one can shows that for any finite collection (X1,dy),..., (X, d,) of
metric spaces, the metrics

n

di(x,y) == Zdj(xj,yj) and  doo(z,y) := max{d;(z;,y;): j=1,...,n}

j=1
define the product topology on X := H?zl X, (Exercise 2.2.4).
From Lemma 2.2.3, we immediately obtain:

Proposition 2.2.10. A map f = (f;) : Y — [[;c; Xi to a product space
1s continuous if and only if all component maps f; = p;of : Y — X; are
continuous.

Example 2.2.11. (The topology of pointwise convergence) Let X be
a set and Y be a topological space. We identify the set F(X,Y) of all maps
X — Y with the product space Y X = [I.cx Y. Then the product topology on
Y X yields a topology on F(X,Y), called the topology of pointwise convergence.
We shall see later, when we discuss convergence in topological spaces, why this
makes sense.

It is the coarsest topology on F(X,Y’) for which all evaluation maps

evy: F(X,)Y) =Y, [~ flx)
are continuous because these maps correspond to the projections YX — Y.

Example 2.2.12. (Coproducts) If (X;);cs is a family of topological spaces,
then their coproduct is defined as the disjoint union

Ix=U._ x
el
iel
endowed with the final topology 7, defined by the inclusion maps f;: X; — X.
Then a subset O C X is open if and only if f;'(O) = O N X; is open for
every ¢ and a map h: X — Z is continuous if and only if all restrictions h
ho f;: X; — Z are continuous.

Exercises for Section 2.2

Exercise 2.2.1. Let X1,..., X, be topological spaces. Show that the sets of
the form
Uy x...xU,, U;CX,; open,

form a basis for the product topology on X; x ... x X,, and for A; C X,
1 < i < n, we have

n n

n 0 n
[[4=][% and (HA,-) “TJ A
1= 1= i=1 i=1
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Exercise 2.2.2. Let X and Y be topological spaces and x € X. Show that the
maps
Jo Y = X XY,y (2,y)

are continuous, and the corestriction
jirdely Sy < )
is a homeomorphism.

Exercise 2.2.3. Let (X,d) be a semimetric space. We define an equivalence
relation on X by
z~y e d(x,y) =0.

Then we obtain on [X] = X/ ~ a metric by d([z], [y]) := d(z,y) (Why?). Show
that the topology defined on [X] by this metric coincides with the quotient
topology obtained from the topology 75 on X, defined by the semimetric d and
the quotient map ¢: X — [X].

Exercise 2.2.4. Let (X;,d;), i = 1,...,n, be metric spaces. Show that the
metric s

d(z,y) := Zdi(xi,yi) and  doo(z,y) := max{d;(z;,y;): i =1,...,n}
i=1

both induce the product topology on X :=[]"_; X;.

Exercise 2.2.5. Let (X;,d;);en be a sequence of metric spaces and X :=
;e Xi their topological product. Show that the product topology coincides
with the topology on X induced by the metric

=1 di(m,y)
d(z,y) := ; 201 4 di (x4, v:)

(cf. Exercise 1.2.4).
Show further that a sequence (z(™), ey in X = []

only if all component sequences (mgn))neN converge.

sen Xi converges if and

Exercise 2.2.6. Let (X, 7) be a topological space, ~ be an equivalence relation
on X, qg: X — [X] := X/ ~ be the quotient map, and endow [X]| with the
quotient topology. Show that, if f: X — Y is a continuous map satisfying

x~y = flz)=f(y) Va,y € X,
then there exists a unique continuous map f: [X] — Y with f = foq.

Exercise 2.2.7. Show that for each topological space X and n € N, the diagonal
Ax: X - X" :1_[)(7 e (x,2,...,2)
i=1

is continuous.
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Exercise 2.2.8. Let X7, X5 and Y7,Y5 be non-empty topological spaces and
fi: X; — Y; be maps. Show that the product map

Jixfor X1 xXo =Y XY
is continuous if and only if both maps f; and fy are continuous.

Exercise 2.2.9. Let (X,d) be a metric space and C(X,d) C X" be the set of
Cauchy sequences. Show that:

(a) d(z,y) :=limy, o0 d(Zn, yn) defines a semimetric on C(X, d), where we write
x = (Zp)nen for a sequence in X. Let X := C(X,d)/ ~ denote the
corresponding quotient metric space (Exercise 2.2.3).

(b) The map 7: X — X, assigning to 2 € X the constant sequence 7(z) =
(x,z,...) is an isometric embedding, i.e., d(n(z),n(y)) = d(x,y) for z,y €
X.

(¢) n(X) is dense in X.

(d) (X,d) is complete. Hint: For a Cauchy sequence (z)ren in X, pick yj, € X
with d(n(yx),zr) < ¢ and show that y := (yx)ren is Cauchy.

Exercise 2.2.10. (a) On the set X := [0,1]I%1 of all functions f: [0,1] —
[0, 1], we consider the product topology. Show that each neighborhood U of the
constant function 1 contains a function fy; which is non-zero at only finitely
many places.

(b) Let Y C X be the subset of all measurable functions, endowed with the
subspace topology. Show that the integration map

I:Y - R, f»—>/1f(:c)dx
0

is discontinuous. Recall from Example 1.2.11 that this map is sequentially
continuous, so that Y is not first countable.

2.3 Topological Groups

Now that the product topology is available, we can define the concept of a
topological group:

Definition 2.3.1. A topological group is a pair (G,7) of a group G and a
(Hausdorff) topology 7 for which the group operations
mg:GxG—G, (z,y)—a2zy and ng:G—G, z+—a !

are continuous if G x G carries the product topology.
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Remark 2.3.2. For a group G with a topology 7, the continuity of m¢g and ng
already follows from the continuity of the single map

0:GxG—G, (g,h)—ght.

In fact, if ¢ is continuous, then the inversion ng(g) = g~ = ¢(1,9) is the
composition of ¢ and the continuous map G — G x G,g — (1,g) (Proposi-
tion 2.2.10). The continuity of ng further implies that the product map

idg xne: GxG— G xG, (g,h)— (g.h7")
is continuous (Exercise 2.2.8), and therefore mg = ¢ o (idg Xn¢) is continuous.

Example 2.3.3. (1) G = (R", +) is an abelian topological group.

(2) (C*,-) is an abelian topological group and the circle group
T:={ze€ C*: |z| = 1} is a compact subgroup.

(3) The group GL,,(R) of invertible (n x n)-matrices is a topological group
with respect to matrix multiplication. The continuity of the inversion follows
from Cramer’s Rule, which provides an explicit formula for the inverse in terms
of determinants, resp., rational functions.

(4) All subgroups of topological groups are topological groups with respect
to the subspace topology.

(5) Every group G is a topological group with respect to the discrete topol-

ogy.

Exercises for Section 2.3

Exercise 2.3.1. If (G;)ier is a family of topological groups, then the product
group G := [[,.; G is a topological group with respect to the product topology.

Exercise 2.3.2. Show that the n-dimensional torus
T" := {(21,...,2n) € C": (V)) |2;] = 1}
is a topological group with respect to pointwise multiplication

(21, oy zn) (W1, . wy) = (21w, . . ., ZpWny)-



Chapter 3

Convergence in Topological
Spaces

In Section 1.2 we defined continuity of functions between topological spaces
without using the concept of convergence of sequences. For maps between met-
ric spaces, it is often convenient to work with sequential continuity (which is
actually equivalent) and which means that z,, — x implies f(x,) — f(z). For
topological spaces, simple examples, such as Example 1.2.11, demonstrate that
the concept of a convergent sequence is not enough to catch all aspects of con-
vergence and in particular not to test continuity. As we shall see below, this
is due to the fact that the neighborhood filter () of a point need not have a
countable basis.

We shall discuss two concepts of convergence in topological spaces. The most
direct one, based on filters, rests on the characterization of continuity in terms
of neighborhoods. It has many conceptual advantages because it only refers to
subsets of the topological spaces under consideration.

There also is a generalization of the concept of a (convergent) sequence,
called a (convergent) net. We shall only deal very briefly with this concept,
based on replacing the domain N for sequences by a directed set (I, <). This
introduces subtle extra structure which creates many pitfalls and traps because
it invites unjustified arguments, in particular, when it comes to subnets.

3.1 Filters

3.1.1 Convergence of Filters and Continuity

Definition 3.1.1. Let X be a set. A set F C P(X) of subsets of X is called a
filter basis if the following conditions are satisfied:

(FB1) F #0.
(FB2) Each set F' € F is non-empty.

27
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(FB3) A\ Be F=(3CeF)CCANB.

Definition 3.1.2. (a) Let X be a set. A set F C P(X) of subsets of X is called
a filter if the following conditions are satisfied:

(F1) F#0.

(F2) Each set F' € F is non-empty.
(F3) A Be F=ANBEF.
(F4) Ae F,BD A= BeF.

(b) If G, F are filters on X, then G is said to be finer than F if 7 C G. Then
F is called coarser than G.

A filter U is called an ultrafilter if there is no finer filter different from i.

(c) If F is a filter basis, then

F:={ACX:(3BeF)ADB}

is a filter. It is called the filter generated by F and F is called a basis for the
filter F.

Remark 3.1.3. (F2) and (F3) imply in particular that all finite intersections
of elements of a filter are non-empty and belong to F.

Example 3.1.4. Let x be a point in the topological space X.

(a) The set 4U(z) of all neighborhoods of X is a filter. It is called the neigh-
borhood filter of x.

(b) The set i, of all subsets of X containing x is an ultrafilter which is finer
than $(z).

Definition 3.1.5. Let X be a topological space and x € X. We say that a
filter F on X converges to x if it is finer than the the neighborhood filter $4(x),
i.e., F contains each neighborhood of x. R
A filterbasis F is said to converge to «x if the associated filter F converges to
x, i.e., each neighborhood U of = contains an element of F.
We then write
F—x or x€limF.

The notation x = lim F means, in addition, that F converges only to x and not
to some other point.

Remark 3.1.6. If X is separated, then each filter F on X converges at most
to one point (Exercise 3.1.3).

Definition 3.1.7. Let f: X — Y be a map and F be a filter on X. Then we
write
f(F)={BCY:(3AecF) f(A) C B}
for the filter of all supersets of images of elements of F (Exercise 3.1.1).
Note that for a filter basis F the set of all images of f(A), A € F, is again a
filter basis. In this sense f(F) is the filter generated by the filter basis obtained
by applying f to the elements of F.
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Proposition 3.1.8. A map f: X — Y between topological spaces is continuous
if and only if
f(W(z)) — f(z) for each =€ X.

Proof. Assume first that f is continuous and let z € X. If V € U(f(z)) is a
neighborhood of f(z), then the continuity implies the existence of a neighbor-
hood U of x with f(U) C V. This implies that V' € f(8(x)). Since V was
arbitrary, it follows that f(4(z)) is finer than U(f(z)), i.e., f(h(x)) — f(x).
Suppose, conversely, that f(4U(z)) — f(z) holds for each z € X. Then
each neighborhood V' of f(x) is contained in f(4(x)), so that there exists some
neighborhood U of z with f(U) C V, and this means that f is continuous in z.
Since = was arbitrary, f is continuous (Proposition 1.2.7). O

3.1.2 Ultrafilters

We now turn to arguments leading to the existence of ultrafilters. The main
point of ultrafilters in this notes is that they are a natural means to prove
Tychonov’s Theorem.

Definition 3.1.9. A relation < on a set M is called a partial ordered set if:
(P1) Vae M) a<a (Reflexivity).

(P2) (Va,by,ce M) a<b, b<c¢ = a<c (Transitivity).

(P3) Va,be M) a<b, b<a = a=a. (Antisymmetry)

A pair (M, <) of a set with a partial order is called a partially order set.

A subset K of a partially ordered set (M, <) is called a chain if either a < b
or b < a holds for a,b € K. This means that all pairs of elements of K are
comparable w.r.t. <.

An element m € M is called an upper bound of the subset S if s < m holds
for all s € S. An element m € M is said to be mazimal if m < z, x € M,
implies x = m.

Lemma 3.1.10. (Zorn’s Lemma) If each chain K in the partially orderer set
(M, <) possesses an upper bound, then there exists for each a € M a mazimal
element b € M with a <b.

Proof. Since it is equivalent to the Axiom of Choice, which asserts the seemingly
obvious fact that for a family (X;);es of non-empty sets the product set [, X;
is non-empty, we may consider Zorn’s Lemma as a set theoretic axiom. O

Proposition 3.1.11. FEach Filter F on X is contained in some ultrafilter.

Proof. We order the set § of all filters F on X by set inclusion as subsets of
P(X). We claim that each chain & C § has an upper bound. To verify this
claim, we show that

M:=|JR:={ACX:(3Fcr) AcF}
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is an upper bound of K. To show that M is a filter, we note that the only
non-trivial requirement is (F3). For F; and Fy € M there exist Fi, Fa € K with
F; € F;. Since R is a chain, we may w.l.o.g. assume that F; C F5. Then we
have F; € F, for i = 1,2 and thus F} N Fy € Fo, C M.

Now Zorn’s Lemma applies to the ordered set of filters on X and this implies
the proposition. O

Lemma 3.1.12. Let F be a filter on X and A C X with A° & F. Then there
exists a filter G on X containing A which is finer than F.

Proof. We define G as the set of all supersets of the intersections of elements of
F with A:
G={BCX:(IFeF)FNnACB}.

To see that G is a filter, we show that
FNA:={FNA:FeF}

is a filter basis and that G is the filter generated by F N A. Clearly, F N A is
non-empty. If F N A = (), then FF C A€ leads to A° € F, contradicting our
hypothesis. This proves (FB1) and (FB2). Finally, it is clear that F N A is
stable under intersections, which implies (FB3). Therefore §N A is a filter basis
and hence G = (F N A) is a filter. This filter contains A, and since each F' € F
is a superset of F'N A, it also contains F. O

Proposition 3.1.13. A filter F on X is an ultrafilter if and only if for each
A C X we either have A € F of A¢ € F.

Proof. First assume that F is an ultrafilter. If A° ¢ F, then Lemma 3.1.12 im-
plies the existence of a finer filter G O F containing A. Since F is an ultrafilter,
G = F implies that A € F.

If, conversely, F contains for each subset A C X either A itself or A¢, then
each finer filter G O F which is properly larger contains for some subset A C X
both A and A¢, but then we obtain the contradiction § = ANA¢ € G. Therefore
F is maximal, i.e., an ultrafilter. U

Proposition 3.1.14. If F is an ultrafilter on X and f: X — Y a map, then
f(F) is an ultrafilter on'Y.

Proof. In view of Proposition 3.1.13, we have to show that for each subset B C Y
we either have B € f(F) or B¢ € f(F). Since F is an ultrafilter, it either
contains f~1(B) or f~Y(B)¢ = f~1(B°). If f~Y(B) € F, then B D f(f~%(B))
implies that B € f(F), and likewise we argue for the other case. O

Exercises for Section 3.1

Exercise 3.1.1. Show that for a map f: X — Y and a filter F on X, the
subset

f(F)={BCY:(3AecF) f(A) C B}
of P(Y) is a filter.
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Exercise 3.1.2. Consider the two element set X = {x,y}, endowed with the
indiscrete topology. Show that F = {{z}, {z,y}} is a filter on X converging to
x and y. This shows that limits of filters need not be unique.

Exercise 3.1.3. Show that if X is separated, then each filter F on X converges
at most to one point.

Exercise 3.1.4. Let X be a finite set. Show that for each ultrafilter &/ on X
there exists a point z € X withif = {AC X: z € A}.

Exercise 3.1.5. Let X be a topological space and M C X a subset. Show that
x € M if and only if there exists a filter basis F in M with F — =z.

3.2 Nets

Definition 3.2.1. (a) A partially ordered set (I,<) is called directed if for
a,b € I there exists an element ¢ € I with a,b < c.

(b) A map z: (I,<) — X of a directed set (I, <) to some set X is called a
net in X. A net is mostly denoted (z;);cr, where the order on I is not explicitly
mentioned.

(c) If X is a topological space, (x;);er a net in X and p € X, then we say
that (x;) converges to p if for each neighborhood U of p there exists an index
iy € I with z; € U for j > iyy. We then write

r; —p or li}nxi =p.

Example 3.2.2. The ordered set (N, <) of natural numbers is directed, so
that every sequence (x,)nen is in particular a net. Specializing the concept of
convergence of nets, we find that for a sequence (z,) in a topological space X,
the relation

lim z, =p
n—oo

is equivalent to: For each neighborhood U of p there exists an ny € N with
z, € U for m > ny.

For the case of metric spaces, this is easily seen to be equivalent with the
usual definition of convergence of sequences in metric spaces, when it is applied
to the corresponding topology 74.

Proposition 3.2.3. A map f: X — Y between topological spaces is continu-
ous in p € X if and only if for each net (x;);cr in X with x; — p we have

f(zi) = fp).

Proof. (a) Suppose first that f is continuous in p and that z; — p in X. Let V
be a neighborhood of f(p) in Y. Then there exists a neighborhood U of p in X
with f(U) C V. Pick iy € I with z; € U for i > iy. Then f(x;) € V fori > iy
implies that f(z;) — f(p).

(b) Now assume that for each net ; — p we have f(x;) — f(p). To show that
f is continuous in p, we argue by contradiction. If f is not continuous in p, there
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exists a neighborhood V of f(p) for which f=!(V) is not a neighborhood of p.
We therefore find for each U € {(p) an element xyy € U with f(zy) € V. For the
directed set (1, <) := (LU(p), 2) we then obtain a net (ry)yes(p) converging to p
(by construction), for which f(xy) does not converge to f(p). This contradicts
our assumption, hence proves that f is continuous in p. O

Proposition 3.2.4. A topological space (X, T) is hausdorff if and only if any
two limit points of a convergent net are equal.

Proof. Suppose first that X is hausdorff, p,q € X, and that (z;);cs is a net in
X with ; — p,q. Let O, and O, be disjoint open subsets containing p, resp.,
q. If ; € O, for i > i, and z; € Q, for i > iy, we arrive at a contradiction for
any 7 with ¢ > i, 4.

Next we assume that X is not hausdorff and that p,q € X are points with
the property that if (A, B) is a pair of open sets of X with p € A and ¢ € B,
then AN B # (. Let

I-={(A,B)eTxT1:p€ A,q€ B},
ordered by
(A,B)<(C,D) <= ADC and BDD.

Then (7, <) is a directed set. For each (A, B) € I we now pick z(4,5) € AN B
and obtain a net in X. We claim that this net converges to p and gq.

In fact, let U be an open neighborhood of p and pick any open neighborhood
V of q. Then (U, V) € I and (A, B) > (U, V) implies (4, g) € A C U. Therefore
T(a,B) — p- By symmetry, we also have z(4,5) — ¢. O

Exercises for Section 3.2

Exercise 3.2.1. Let (x;);er be a net in the topological space X.
For each i € I, let F; := {x;: j > i}. Show that the F; form a filter basis F
on X for which z; — p is equivalent to F — p.

Exercise 3.2.2. Let (d;);c; be a family of semimetrics on the set X and 7 :=
(;cs Ta; be the topology defined by this family. Show that:

(a) The diagonal mapping 7: X — [[;c;(X,74,),2 +— (2)icr is a homeomor-
phism onto its image.

(b) A mnet (z;)jes converges in (X, 7) to some p € X if and only if d;(z;,p) — 0
holds for each i € I.

(¢) (X,7) is Hausdorff if and only if for 2 # y there exists an ¢ with d;(x, y) # 0.
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Compactness

As we know from the basic Analysis course, compactness is a key property for
existence theorems to hold. A typical example is the Maximal Value Theorem,
asserting that a real-valued continuous function on a compact metric space has a
maximal value. In this chapter we shall see that the metric structure is irrelevant
for these conclusions. This provides in particular the freedom to form arbitrary
products of compact spaces. The central result is Tychonov’s Theorem, that a
product space is compact if and only if all factors are.

4.1 Compact Spaces

Definition 4.1.1. A topological space X is said to be quasicompact if each open
covering of X has a finite subcovering, i.e., if (U;);¢cs is a family of open sets of
X with {J;c; Us = X, then there exists a finite subset ' C I with {J;cp U; = X.

A topological space X is said to be compact if it is quasicompact and sepa-
rated.

Lemma 4.1.2. A subset C of a topological space X is quasicompact with respect
to the subspace topology if and only if every covering of C' by open subsets of X
has a finite subcovering, i.e., if the family (U;);cr of open subsets of X satisfies
Uicr Ui 2 K, then there exists a finite subset F' C I with K C|J;cp Us.

Lemma 4.1.3. (a) If X is separated and C C X (quasi)compact, then C is
closed.
(b) If X is compact and C C X s closed, then C is compact.

Proof. (a) Let z € C°. For each ¢ € C' we then have ¢ # z, and since X is
separated, there exists an open subset U, of X and an open subset V. of X with
c €Uy x€V,and U, NV, =0. Then we obtain an open covering (U, N C)cco
of C. Let U, NC,...,U., NC be a finite subcovering and V := (\;__; V,,. Then
V intersects |J;_, U, 2 C trivially, and therefore z ¢ C. This proves that C is
closed.

33
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(b) Let (U;);er be an open covering of C' and pick open subsets O; C X with
O; N C = U;. Then the open subset C¢, together with the O;, i € I, form an
open covering in X. Hence there exists a finite subcovering, and this implies
the existence of a finite subset F' C I with C' C | J,.p Us. O

Proposition 4.1.4. If X is quasicompact and f: X — Y is continuous, then
f(X) is quasicompact.

Proof. Let (U;);er be a covering of f(X) by open subsets of Y. Then (f~*(U;))ier
is an open covering of X, so that there exists a finite subset F' C I with
X C Usep /7HU;). Then

fxycYrotwy) < Yus

ieF ieF
In view of Lemma 4.1.2, this implies that f(X) is quasicompact. O

Corollary 4.1.5. (Maximal Value Theorem) If X is compact and f: X — R
a continuous function, then f is bounded and has a mazimal value.

Proof. Since R is separated, Proposition 4.1.4, combined with Lemma 4.1.3(a)
implies that f(X) C R is a compact subset, hence bounded and closed. In
particular, it has a maximal element. O

Lemma 4.1.6. If f : X — Y is injective and continuous and Y is separated,
then X is separated.

Proof. Let x # y be two points in X. Then f(z) # f(y) implies the existence of
two disjoint open subsets U, C Y and U, C Y with f(z) € U, and f(y) € U,,.
Then the two sets f~(U,) and f~'(U,) are open and disjoint with z € f~(U,)
and y € f~1(U,). Therefore X is separated. O

Proposition 4.1.7. If f : X — Y 1is a bijective continuous map and X is
quasicompact and Y is separated, then f is a homeomorphism.

Proof. From Lemma 4.1.6 we derive that X is separated, hence compact. Let
A C X be a closed subset. Then A is compact by Lemma 4.1.3. Therefore
f(A) CY is quasicompact, and since Y is separated, it is compact, hence closed
by Lemma 4.1.3. Since f is continuous, A C X is closed if and only if f(4) CY
is closed, so that Proposition 1.2.8 implies that f is a homeomorphism. O

Example 4.1.8. Let A be a compact space and ~ be an equivalence relation on
A. Then the quotient space X := A/ ~ is quasicompact by Proposition 4.1.4.
If f: A/ ~— Y is a continuous bijective map and Y is separated, then Propo-
sition 4.1.7 applies and shows that f: A/ ~— Y is a homeomorphism.

Typical examples, where these arguments apply are:

(a) A=10,1], Y =S! C C and f([z]) = €*™*®. This means that we obtain
the circle by identifying the two endpoints 0 and 1 of the unit interval.

(b) A =10,12, Y = T? C C? and f([z,y]) = (™%, e?™¥). This means
that we obtain the 2-torus T? by identifying certain boundary points in the unit
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square A. We thus obtain T? by a glueing construction from A. It is instructive
to visualize this construction with paper.

Exercises for Section 4.1

Exercise 4.1.1. If (X,d) is a metric space and C C X is a compact subset,
then C is bounded and closed. Here boundedness of a subset S C X means that

diam(S) := sup{d(z,y): z,y € S} < oo.

Exercise 4.1.2. Let (,),en be a sequence in the topological space X. Show
that, if lim,_,o, T, = x, then the set {x,: n € N} U{z} is compact.

Exercise 4.1.3. (The cofinite topology) Let X be a set and
T:={0}U{AC X:|A° < o}

be the cofinite topology introduced in Exercise 1.1.12. Show that (X, 7) is
quasicompact.

Exercise 4.1.4. Let X and Y be Hausdorff spaces. For a compact subset
K C X and an open subset O C Y, we write

W(K,0) = {f € C(X,Y): f(K) C O}.

The topology on C(X,Y) generated by these sets is called the compact open
topology. Show that:

(a) If f: Z — X is a continuous map, then
[ C0X)Y) - C(Z,X), g—ygof

is continuous with respect to the compact open topology on C(X,Y),
resp., C(Z, X).

(b) If f: Y — Z is a continuous map, then
[ CX)Y) = C(X,Z), g foyg

is continuous with respect to the compact open topology on C(X,Y),
resp., C(X, Z).

Exercise 4.1.5. On the compact space X := [a,b], —00 < a < b < 00, we
consider the equivalence relation defined by x ~ y if either x = y or x = a and
y = b. Show that

(a) The quotient space X/ ~ is Hausdorff and compact. Hint: Proposition 4.1.7.

(b) X/ ~ is homeomorphic to the circle S!. Hint: Consider the function
f1 X[ s 81, f(f]) 1= e2mitt=e) o),
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Exercise 4.1.6. Let (f,)nen be a sequence of K-valued continuous functions
on the topological space X (K € {R,C}) and f: X — K a function with

”fn - f”oo — 0,

i.e., the sequence f, converges uniformly to f. Show that f is continuous.
Conclude in particular that for a compact space X, the space (C(X,K), | -|) is
a Banach space.

4.2 Tychonov’s Theorem

Before we turn to Tychonov’s Theorem, we need the following characterization
of compactness in terms of convergence of ultrafilters.

Proposition 4.2.1. For a topological space X, the following are equivalent:
(i) X is quasicompact.

(ii) For each family (A;)ier of closed subsets of X with (\;,c; A; = 0, there exists
a finite subset F C I with (\;cp A = 0.

(iii) Ewery ultrafilter on X converges.

Proof. (i) < (ii) follows by taking complements: The condition (,.; A; = 0
means that the family (AS);cr of complements is an open covering of X because
X = 0° = ;e A, Similarly, (;cp Ai = 0 means that (Af);cr is a finite
subcovering.

(ii) = (iii): Let F be an ultrafilter on X. If Ay,..., A, € F are closed
subsets, then A := (_, A; € F (Remark 3.1.3), hence in particular A # 0.
Therefore (ii) implies that the intersection of all closed subsets in F is not
empty. Let x be an element in this intersection and U be an open neighborhood
of xz. Then X\U is a closed subset of X, hence not contained in F because it does
not contain x. Since F is an ultrafilter, we obtain U € F (Proposition 3.1.14),
and since U was arbitrary, this shows that 7 — .

(iii) = (ii): Let (A;)ier be a family of closed subsets of X and assume that
all finite intersections of the sets A; are non-empty. Let

B::{ﬂAi:FQI,|F|<oo}

ieF

be the filter basis of finite intersections of the A;. Clearly, B is intersection
stable and satisfies (FB1) and (FB2), hence is a filter basis. Let F := B be the
filter generated by B and U be an ultrafilter containing F. Then there exists
an element x € X with &/ — z. Let ¢ € I and U be a neighborhood of . Then
A;, U € U implies that A; NU € U, so that A; N U # 0 by (F2). Therefore

A; intersects each neighborhood of x, which leads to x € A; = A;, so that
T e ﬂie] A;. O
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Lemma 4.2.2. A topological product space X = [],.; X; of non-empty spaces

1s separated if and only if each X; is separated.

icl

Proof. Exercise 4.2.1. O

Theorem 4.2.3. (Tychonov’s Theorem) If (X;);cr is a family of non-empty
topological spaces, then the topological product space X = [[;c;X; is
(quasi)compact if and only if each factor X; is (quasi)compact.

Proof. Let p;: X — X; denote the projection maps. If X is quasicompact, then
the continuity of the projection maps p; implies that X; = p;(X) is quasicompact
(Proposition 4.1.4). If, in addition, X is compact, then X is separated, so that
Lemma 4.2.2 implies that each X; is separated, and we thus obtain that each
X; is compact.

Suppose, conversely, that each space X; is quasicompact and let F be an
ultrafilter in X. Then each p;(F) is an ultrafilter in X; (Proposition 3.1.14),
hence convergent to some element x; (Proposition 4.2.1). We claim that F
converges to x := (z;);er. In fact, if U is an open neighborhood of z, then there
exists a finite subset F' C I and open neighborhoods U; of x; in X; with

i€F icFe

(Remark 2.2.8). Pick A; € F with p;(A;) € U;. Then A := (,cp 4 € F
satisfies p;(A) C U, for each i € F, and this implies that A C U. Now U € F
is a consequence of (F4), and we conclude that F — z. We have thus shown
that every ultrafilter on X converges, and this implies that X is quasicompact
(Proposition 4.2.1).

If, in addition, each X; is compact, then Lemma 4.2.2 implies that the
quasicompact space X is separated, hence compact. O

Exercises for Section 4.2

Exercise 4.2.1. Show that a topological product space X = [],.; X; of non-

empty spaces X; is separated if and only if each X; is separated.

el

Exercise 4.2.2. (The Cantor Set as a product space) We consider the compact
product space {0, 1}, where {0, 1} carries the discrete topology. The image C
of the function

F 01N SR, f(z) = zzg—z

n=1

is called the Cantor set. Show that:
(a) f is continuous and injective.

(b) f:{0,1} — C is a homeomorphism and C is compact.
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(¢) C =penCn, where

-2 o]

each (), is a union of 2™ closed intervals of length 3%, and C),41 arises

from C,, by deleting in each interval of C,, the open middle third.

Exercise 4.2.3. Let X and Y be topological spaces, and A C X and B C Y be
compact subsets. Show that for each open subset O C X X Y containing A x B
there exist open subsets U C X and V C Y with

AxBCUxV CO.

4.3 Compact Metric Spaces

In this section we discuss compactness for metric spaces. In particular, we shall
see various characterizations that shed some new light on the concept.

Definition 4.3.1. Let (X, d) be a metric space and S C X be a subset. For
r > 0 we put

B.(S) := U B.(s)={re X:(3s€ S) d(z,s) <r}.
seS

The metric space (X, d) is said to be precompact if for each € > 0 there exists
a finite subset F' C X with X = B.(F). Then F is called an e-net in X.

Lemma 4.3.2. For a metric space (X,d), the following are equivalent:
(1) Ewvery sequence (xy)nen in X possesses a Cauchy subsequence.
(2) X is precompact.

Proof. (1) = (2): We argue indirectly. Assume that there exists an ¢ > 0
such that for no finite subsets F' C X, the relation X = B.(F) holds. We
now construct inductively a sequence having no Cauchy subsequence. Pick
an arbitrary element xz; € X. Since X # B.(z1), there exists an element
x2 € Be(x1). Now X # B.({x1,z2}), so that we find

x3 € X \ Be({z1,z2}).
Proceeding inductively, we thus obtain a sequence (x,,) with
Tpy1 € X\ Be({z1,. .., 20})

for each n € N. Then d(z,Z,) > € holds for n # m, so that the sequence (z,,)
contains no Cauchy subsequence.
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(2) = (1): Let (xn)nen be a sequence in X. For each n € N the precom-
pactness implies the existence of a finite subset E, C X with X = By-x(FE,).
We choose inductively y, € Ej, such that
N; :={m € N: x,,, € By-1(y1)} is infinite,

Ny :={m € Ny: x,;, € By-2(y2)} is infinite, etc., so that for each k € N, the set
Nit1:={m € Ng: x,,, € By—s-1(yg41)} is infinite.

Now we select a subsequence (z,, )reny with n1 € Nj, ny € Ny with ny > ny,

etc., such that ng4; > ng and ngy1 € Nggp. Then

Ad(@ny Trgyy) < d(@nys Yi) + d(Yrs Tnyyy) < 9=k y 9=k — 9—k+1
and thus
A(Tpys Tyy,) 27K p27F po7h ol <o7R P2 oy o> 1

because of the triangle inequality. Therefore (z,, )ren is a Cauchy subsequence.
O

Proposition 4.3.3. For a metric space (X,d), the following are equivalent:
(1) X is compact.

(2) X is sequentially compact, i.e., each sequence in X possesses a convergent
subsequence.

(3) X is complete and precompact.

Proof. (1) = (2): Let (z,) be a sequence in X and A, := {&,,,: m > n}. Then
each finite intersection of elements of the sequence (A, )nen I8 a non-empty
because A, O A, 1, and all sets are non-empty. Therefore the characterization
of compactness in Proposition 4.2.1 implies the existence of an z € (1, cyy An-
Hence we find inductively for each k € N a natural number n(k) > n(k—1) with
d(Zpr), ) < %: In view of x € Aj, there exists n(1) € N with d(xy1),z) < 1;
then = € A, implies the existence of n(2) > n(1) with d(z,2),z) < 3 etc. This
leads to limy o0 Zpk) = , 50 that the sequence (z,) possesses a convergent
subsequence.

(2) = (3): (2) implies that every Cauchy sequence in X has a convergent
subsequence, hence is convergent (Exercise). Therefore X is complete and the
precompactness of X follows from Lemma 4.3.2.

(3) = (1): This implication is also proved indirectly. Assume that there
exists an open covering (U;);e; of X without a finite subcovering. We put
en = 27", Since X is precompact, there exists a finite subset F,, C X with
X =B, (Ep).

Since (U;);es has no finite subcover, there exists an element zy € E; for
which the ball B, (x1) is not covered by finitely many U;. Otherwise each ball
B, (x), x € E, is covered by finitely many U;, and then the collection of these
U; form a finite subcover of X. Since

B€1(x1): U B€1(‘r1)mBE2(x)
reFo
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also is a finite union, the same argument as above implies the existence of an
x9 € Ea, so that the set B, (z1) N Be,(z2) is not covered by finitely many Uj.
Inductively, we thus obtain a sequence (z,) with x,, € E,, for which no set of
the form ﬂ?zl B, (x;) can be covered by finitely many U;. In particular, these
sets are non-empty, and the triangle equality leads to

d(l‘n, xn-‘rl) <én+ En+1 S 2571 = 27n+1.

The triangle inequality further yields
AT, Tpyp) <27"THA 4270 4.00) <272

Therefore (z,,) is a Cauchy sequence, hence, by assumption, convergent to some
reX.

Since (U;);¢r is an open covering of X, there exists some ig € I with x € U,,.
As Uj, is open, we have B (x) C U;, for some ¢ > 0. For 273 < ¢ we obtain
with

d(arn, @) = lm d(an, @) <27 < g and e, + g < 2% —¢

the relation

B., (zn) C B:(z) CUj,.
This contradicts the fact that ﬂ?=1 B.,(z;) € B.,(%,) cannot be covered by
finitely many U;. O

-
c

Corollary 4.3.4. For a subset X of a complete metric space Y, the following
are equivalent:

(1) X is relatively compact, i.e., X is compact.
(2) X is precompact.

Proof. (1) = (2): Let (x,,)nen be a sequence in X. Since X is compact, Propo-
sition 4.3.3 implies the existence of a subsequence (7, )ren, converging in X.
This subsequence is in particular a Cauchy sequence. Therefore the precom-
pactness of X follows by Lemma 4.3.2.

(2) = (1): According to Proposition 4.3.3, it suffices to verify the sequential
compactness of X. Let (z,)nen be a sequence in X. Then there exists for
each n € N a y, € X with d(z,,y,) < % Since X is precompact, there exists
a Cauchy subsequence (yn, )ren, and this sequence converges in the complete
space Y to some element y. Now y € X, and d(zy,,Yn,) < n,;l implies that
limg— 00 Zn, = y. We have thus found a convergent subsequence of (z,,)nen. O

Exercises for Section 4.3

Exercise 4.3.1. Let (X,d) be a compact metric space. Show that:
(1) X is separable, i.e., X contains a countable dense subset.

(2) I Y is a metric space and f: X — Y is continuous, then f is wuniformly
continuous, i.e., for each € > 0 there exists a § > 0 with f(Bs(z)) C B.(f(x))
for each z € X.
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4.4 Locally Compact Spaces

Definition 4.4.1. A separated topological space X is called locally compact if
each point x € X has a compact neighborhood.

Lemma 4.4.2. If X is locally compact and x € X, then each neighborhood U
of x contains a compact neighborhood of x.

Proof. Let K be a compact neighborhood of x € X. Since it suffices to show
that U N K contains a compact neighborhood of x, we may w.l.o.g. assume that
X is compact. Replacing U by its interior, we may further assume that U is
open, so that its complement U*€ is compact.

We argue by contradiction and assume that U does not contain any compact
neighborhood of z. Then the family F of all intersections C N U, where C is a
compact neighborhood of z, contains only non-empty sets and is stable under
finite intersections. We thus obtain a family of closed subsets of the compact
space U€ for which all finite intersections are non-empty, and therefore Propo-
sition 4.2.1 implies that its intersection (), (C N U€) contains a point y. Then
y € U implies x # y, and since X is separated, there exist open neighborhoods
U, of x and U, of y with U, N U, = . Then U is a compact neighborhood of
x, which leads to the contradiction y € Uy NU“ to y € Uy. O

Definition 4.4.3. A subset A of a topological space X is said to be relatively
compact if A is compact.

Lemma 4.4.4. Let X be locally compact, K C X compact and U O K open.
Then there exists a compact subset V- C X with

Kcvlcvcu.

Proof. For each # € K we choose a compact neighborhood V, C U
(Lemma 4.4.2). Then there exist finitely many x1,...,z, with K C J;_, V)
and we put V :=J, V,, CU.

Proposition 4.4.5. (Urysohn’s Theorem) Let X be locally compact, K C X
compact and U O K be an open subset. Then there exists a continuous function
h: X — R with

Proof. We put U(1) := U. With Lemma 4.4.4, we find an open, relatively
compact subset U(0) with K C U(0) C U(0) C U(1). Iterating this procedure
leads to a subset U (%) with

— 1 1
C — ) C —) C .
v <ol s
Continuing like this, we find for each dyadic number Ly [0,1] an open, rela-

272
tively compact subset U(2%) with

U(Qﬁn) gU(k;;1> for k=0,....2"—1.
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Let D := {% k=0,...,2" n € N} for the set of dyadic numbers in [0, 1]. For
r € [0, 1], we put

Ur):== J U).

s<r,se€D
For r = 2% this is consistent with the previous definition. For ¢ < ¢’ we now
find r = 2% <r' = k;l inD with ¢t <r < <, so that we obtain

Ut)cU(r) CU@F) CU().
We also put U(t) =0 for t <0 and U(¢) = X for t > 1. Finally, we define
flx):=inf{t e R:z e U(t)}.

Then £(K) C {0} and £(X \U) C {1}.

We claim that f is continuous. So let g € X, f(xo) = to and € > 0. We
put V := U(tg + ¢) \ U(to — ) and note that this is a neighborhood of z.
From z € V C U(tp + €) we derive f(z) < to+e. If f(r) < to — &, then also
x € U(to—e) C U(to — €), which is a contradiction. Therefore |f(z)— f(xo)| < e
holds on V', and this implies that f is continuous. Finally, we put h:=1—f. O

Exercises for Section 4.4

Exercise 4.4.1. Let X, Y and Z be locally compact spaces and endow C'(X,Y)
and C(Y, Z) with the compact open topology (Exercise 4.4). Show that the
composition map

CY,2)xC(X,Y)—=C(X,Z), (f,g)— fog

is continuous. Hint: If fog € W(K,O), K C X compact and O C Z open, then
there exists a compact neighborhood C of K in Y with f(C) C O (Lemma 4.4.4).

Exercise 4.4.2. (One point compactification) Let X be a locally compact
space. Show that:

(i) There exists a compact topology on the set X, := X U{w}, where w is a
symbol of a point not contained in X. Hint: A subset O C X, is open if
it either is an open subset of X or w € O and X \ O is compact.

(ii) The inclusion map nx: X — X, is a homeomorphism onto an open subset
of X,,.

(iii) If Y is a compact space and f: X — Y a continuous map which is a
homeomorphism onto the complement of a point in Y, then there exists a
homeomorphism F': X, — Y with Fonyx = f.

The space X, is called the Alexandroff compactification or the one point
compactification of X.!

1 Alexandroff, Pavel (1896-1982)
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Exercise 4.4.3. Show that the one-point compactification of R" is diffeomor-
phic to the n-dimensional sphere S™. Hint: Exercise 1.2.5.

Exercise 4.4.4. Show that the one-point compactification of an open interval
Ja, b[C R is homeomorphic to S*.

Exercise 4.4.5. Let X be a locally compact space and Y C X be a subset.
Show that Y is locally compact with respect to the subspace topology if and
only if there exists an open subset O C X and a closed subset A with Y = ONA.
Hint: If Y is locally compact, write it as a union of compact subsets of the form
0;NY, O; open in X, where O; NY has compact closure, contained in Y. Then
put O :=J;c; 0s and A:=Y NO.

Exercise 4.4.6. Show that a locally compact space is regular, i.e., a T3-space.
Hint:Urysohn’s Theorem.

Exercise 4.4.7. Let X be a compact space and A C X be a compact subset.
The space X/A is defined as the topological quotient space X/ ~, defined by
the equivalence relation x ~ y if either x = y or z,y € A. This means that we
are collapsing A to a point. Show that:

(i) X/A is compact. Hint: The main point is to see that X/A is hausdorff
(Lemma 4.4.4, Proposition 4.1.7).

(ii) X /A is homeomorphic to the one-point compactification of the locally com-
pact space X \ A.

Exercise 4.4.8. Let (V] - ||) be a normed space and B := {v € R": |jv|| < 1}
be the closed unit ball. Show that:

(i) The map ;
f:V—-B v
L+ o]
is a homeomorphism whose inverse is given by g(w) := 1_Tﬂ’w”.

(ii) If dimV = n < oo, then the quotient space B/dB is homeomorphic to the
n-dimensional sphere S™. Hint: Exercise 4.4.7 and 4.4.3.
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Chapter 5

Applications to Function
Spaces

In this chapter we prove two important theorems on spaces of continuous func-
tions on compact spaces: the abstract version of the Weierstraf3 Approximation
Theorem about dense subspaces in C(X,R) and Ascoli’s Theorem which pro-
vides a characterization of (relative) compactness of subsets of the Banach space
C(X,R).

5.1 The Stone—Weierstrall Theorem

Definition 5.1.1. (a) Let M be a set and A € KM be a set of functions
M — K. We say that A separates the points of M if for two points z # y in X
there exists some f € A with f(z) # f(y).

(b) A linear subspace A C KM is called an algebra if it is closed under
pointwise multiplication.

Theorem 5.1.2. (Dini’s Theorem) ! Let X be a compact space and (f,)nen be
a monotone sequence of functions in C(X,R). If (fn)nen converges pointwise
to some f € C(X,R), then the convergence is uniform, i.e., || fn, — flloc — 0.

Proof. 1dea: First we find for each z € X and each € > 0 a neighborhood U,
and an n, € N with |f(z) — fn(y)| < € for y € U, and n > n,. Then X is
covered by finitely many such U, and the monotony is used.

Here are the details: Replacing f, by f — f. or f, — f, we may w.l.o.g.
assume that f =0 and f, > f,41 > 0 for n € N. For € > 0 and x € X we now
find an n, € N with

(Vn>ng)  0< fn(2) <

w| ™

IDini, Ulisse (1845-1918)

45
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The continuity of f and f,, yields a neighborhood U, of z with

€
(¥ € U) fon(0) = fun)] < 5.

We thus obtain

Now we choose x1,...,7, € X such that the U,, cover X and put ng :=

max{ng,,...,Nz, }. Then, by monotony of the sequence,

0< funl@) < fu, (@) <e for el
and thus
(Vn>ng)(Ver € X) 0< fu(z) < fro(z) <e.
This completes the proof. O

Lemma 5.1.3. There exists an increasing sequence of real polynomials p,, which
converges in [0, 1] uniformly to the square root function x — +/x.
Proof. Idea: We start with p; := 0 and construct p, inductively by the rule
1
Pnt1(2) = pn(z) + §($ - pn(CL‘)Q). (5.1)

Then we show that this sequence is monotone and bounded. The iteration
procedure produces an equation for the limit which turns out to be y/z. Then
we apply Dini’s Theorem.

Details: We prove by induction that that

(Vn e N)(Vz € [0,1]) 0<py(z) <Va <1

In fact,

V= pal) — 3 (¢~ pae)?)

(Vi = pul@) (1= 5 (VE+ (@)

\f - anrl(x)

and p,(z) < /x yields

(rel01) 0 Z(Vitpa) <VE<L

Therefore the definition of p,11 yields p, < pn41 on [0,1], so that our claim
follows by induction. Therefore the sequence (p,,)nen is increasing on [0, 1] and
bounded, hence converges pointwise to some function f: [0,1] — [0, 1]. Passing
in (5.1) to the limit on both sides, we obtain the relation f(x)? = x, which
proves that f(z) = /2. Now Dini’s Theorem 5.1.2 implies that the convergence
pn, — [ is uniform. U
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Theorem 5.1.4. (Stone-Weierstraf) 2 3 Let X be a compact space and A C
C(X,R) be a point separating subalgebra containing the constant functions.
Then A is dense in C(X,R) w.r.t. || | co-

Proof. Let B := A denote the closure of A in the Banach space
(CX,R), - llos)-

Then B also contains the constant functions, separates the points and is a sub-
algebra (Exercise 5.1.1). We have to show that B = C(X,R).

Here is the idea of the proof. First we use Lemma 5.1.3 to see that for
f,g9 € B, also |f], min(f, g) and max(f, g) are contained in B. Then we use the
point separation property to approximate general continuous functions locally
by elements of B. Now the compactness of X permits to complete the proof.

Here are the details: Let (pn)nen be the sequence of polynomials from

Lemma 5.1.3. For f € B, we consider the functions p, (ﬁ), which also belong

to B. In view of Lemma 5.1.3, they converge uniformly to 4/ P {

NF12 — Nfllee?
that |f| € B.
Now let f,g € B. Then

min(f,9) = 3(f+ 9~ 1f ~g) and max(f,g) = 5(f +9+1f )

so that the preceding argument implies that min(f, g), max(f,g) € B.
Next let  # y in X and r, s € R. According to our assumption, there exists
a function g € B with g(x) # g(y). For

we then have h(z) =r and h(y) = s.
Claim: For f € C(X,R), z € X and € > 0, there exists a function g, € B
with
f(@) =go(x) and (VyeX) ga(y) < fly)+e

To verify this claim, pick for each z € X a function h, € B with h,(z) = f(x)
and h.(z) < f(z) + 5. Then there exists a neighborhood U, of z with

(Vy e U.) hi(y) < f(y) +e

Since X is compact, it is covered by finitely many U,,,...,U,, of these neigh-
borhoods. Then g, := min{h,,,...,h,, } is the desired function.

Now we complete the proof by showing that B = C(X,R). So let f €
C(X,R) and € > 0. For each z € X, pick g, € B with

(Vy e X) f(z) =gz(z) and g.(y) < f(y) +e.

2Stone, Marshall (1903-1989)
3Weierstral, Karl (1815-1897)
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Then the continuity of f and g, yield neighborhoods U, of x with

VyeUm : gz(y)Zf(y)—E

Now the compactness of X implies the existence of finitely many points x1, ..., xx
such that X CU,, U---UU,,. We now put ¢, := max{gy,,.--, 9z, } € B. Then

VyeX : fy)—e<wey) < fly) +e
This implies that || f — ¢c|lo < € and since € was arbitrary, f € B. O

Corollary 5.1.5. Let X be a compact space and A C C(X,C) be a point
separating subalgebra containing the constant functions which is invariant under
complex conjugation, i.e., f € A implies f € A. Then A is dense in C(X,C)
w.rt. | | co-

Proof. Let Ag := AN C(X,R). Since A is conjugation invariant, we have
A = Agr ® iAgr. This implies that Ar contains the real constants and separates
the points of X. Now Theorem 5.1.4 implies that Ag is dense in C'(X,R), and
therefore A is dense in C'(X,C) = C(X,R) 4+ iC(X,R). O

Exercises for Section 5.1

Exercise 5.1.1. If X is a compact topological space and A C C(X,R) is a
subalgebra, then its closure also is a subalgebra. Hint: If f, — f and g, — ¢
uniformly, then also f, + g, — f + ¢, A\fn — Af and f,g, — fg uniformly.

Exercise 5.1.2. Let [a,b] C R be a compact interval. Show that the space
A= {f\[a,b]: (3ag,...,an € R,neN) f(x) = Zaixi}
i=0

of polynomial functions on [a, b] is dense in C([a, b],R) with respect to || - ||co-

Exercise 5.1.3. Let K C R"™ be a compact subset. Show that the space A
consisting of all restrictions of polynomial functions

f(x):Zaaxa, ag €ER, %=z,

to K is dense in C'(X,R) with respect to || - ||oo-
Exercise 5.1.4. Let S' = {z € C: |z| = 1} and

A= {f|§12 (Jag,...,a, € C,n € N) f(2) :jz_%anz"}.

Show that A is not dense in C(S',C). Hint: Consider the function f(z) := 27}
on S! and try to approximate it by elements f,, of A; then consider the complex
path integrals lelzl fn(z)dz. Why does the Stone-Weierstral Theorem not

apply?
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Exercise 5.1.5. For a locally compact space X, we consider the Banach space
Co(X) of all continuous functions f: X — C vanishing at infinity, i.e., with
the property that for each € > 0 there exists a compact subset C. C X with
|f(x)] < e for x ¢ C.. Suppose that A C Cp(X) is a complex subalgebra
satisfying

(a) A is invariant under conjugation.
(b) A has no zeros, i.e., for each x € X there exists an f € A with f(x) # 0.
(c¢) A separates the points of X.

Show that A is dense in Co(X') with respect to ||+ ||oo. Hint: Let X, be the one-
point compactification of X (Exercise 4.4.3). Then each function f € Cy(X)

extends to a continuous function f on X, by f(w) := 0, and this leads to
bijection

Ci(Xy) :={f € C(Xy): f(w) =0} = Co(X), [ flx.
Use the Stone-Weierstral Theorem to show that the algebra
A:=Cl+{a:ac A}

is dense in C(X,,) and show that if fn—l—/\l — ffor A €C, f € Co(X), fn € A,
then A\, — 0 and f, — f.

5.2 Ascoli’s Theorem

Throughout this section K may be either R or C.

Theorem 5.2.1. (Ascoli’s Theorem) Let X be a compact space, C(X,K) be the
Banach space of all continuous functions f: X — K, endowed with the sup-norm

[f1l := sup{|f(2)[: v € X}
and M C C(X,K) a subset. Then M is relatively compact if and only if
(a) M is pointwise bounded, i.e., sup{|f(z)|: f € M} < oo for each z € X.

(b) M is equicontinuous, i.e., for each ¢ > 0 and each v € X there exists a
netghborhood U, with

[f(@) = fy)l<e for feMyecU,.

Proof. First we observe that, in view of the completeness of the Banach space
C(X,K) and Corollary 4.3.4, M is precompact if and only if it is relatively
compact.

Step 1: First we assume that M is relatively compact. For each z € X the

evaluation map
evy: C(X,K) =K, f— f(x)
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is continuous, hence maps the relatively compact subset M into a relatively
compact subset of K, and this implies that ev, (M) is bounded.

Since M is precompact, there exists, for any € > 0, finitely many elements
f17~-~7fn € M with

M C | Beys(£y)-
j=1
For x € X we now find a neighborhood U, with

Ifi(z) = fi(y)| < for yeU,j=1,...,n.

Wl M

For f € M we now pick j with ||f — f;|lcc < &/3 and obtain for y € U,:

(@)= F@)] < 1£@) = £5@)|+1f5@) = LW +1f0) - F@) < S+5+5 =<
Therefore M is equicontinuous.

Step 2: Now we assume that (a) and (b) are satisfied. Let (f,)nen be
a sequence in M. To see that M is relatively compact, we have to prove the
existence of a subsequence converging uniformly to some element of C'(X,K)
(Lemma 4.3.2).

Fix k € N. Then there exists for each x € X an open neighborhood V,* with

J@) - fWl <3 for feMyeVk

Then (V}*).cx is an open covering of X, and the compactness of X implies the
existence of a finite subcover. This leads to points z,..., 2% in X and neigh-

borhoods ij = V;L,’“j7 j =1,...,my, of these points, such that X C Uﬁkl V;k

and
1

|f(x)—f(xf)\<% for feMazcVFi=1,...,m,.
We order the countable set {z¥ : k € N,i =1,...,m;} as follows to a sequence
(ym)m€N3 . L ) )
LYy By BTy Ty

For each y,, the set {fn(ym) : n € N} C K is bounded, hence contains a
subsequence (fl), converging in y;. This sequence has a subsequence (f2),
converging in ys, etc. The sequence (f),en is a subsequence of the original
sequence, converging on the set {y,, : m € N} = {xf keNj=1,...,mg}. To
simplify notation, we may now assume that the sequence f,, converges pointwise
on this set.

Next we show that the sequence (f,,) converges pointwise. Pick z € X. In
view of the completeness of K, it suffices to show that the sequence (fy,(x))nen
is Cauchy. So let € > 0. Then there exists a k € N with % < ¢ and some xf

with x € ij7 so that

o) = fulaf)l < 7 for meN.
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Since the sequence (fn(:v?))neN converges, there exists an ng € N, such that

1
| fu@h) = fur(ah)] < z for n,n’ > no.

Then

(@) = Fa@)I + 1 fal@5) = fur @] + | fur (25) = fiv ()]

Let F(z) := limy o0 fn(z). It remains to show that f,, converges uniformly to
F. Let € > 0 and choose k£ € N with % < e. We pick ng € N so large that

|[fa(af) = F(af)] < for n>mngi=1,... my.

| =

Since each element z € X is contained in one of the sets V;*,

<e,

> w

|fa(2) = F(2)] < |fal@) = ful@])| + | fula?) = F@)| + |[F(af) - F(z)| <

because |F(zF) — F(x)| = limy—oo | fn(2F) — fu(x)| < £. This proves that f,
converges uniformly to F', and the proof is complete. O
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CHAPTER 5. APPLICATIONS TO FUNCTION SPACES



Chapter 6

Covering Theory

In this appendix we provide the main results on coverings of topological spaces
needed in particular to calculate fundamental groups and to prove the existence
of simply connected covering spaces.

6.1 The Fundamental Group

To define the notion of a simply connected space, we first have to define its fun-
damental group. The elements of this group are homotopy classes of loops. The
present section develops this concept and provides some of its basic properties.

Definition 6.1.1. Let X be a topological space, I := [0,1], and zg,z; € X.

We write
P(X,z0) :={y€C(,X): v(0) = 20}
and

P(X,zg,21) :={y € P(X,x0): v(1) = z1}.

We call two paths ag, a1 € P(X,xzg,21) homotopic, written ag ~ «q, if there
exists a continuous map

H:IxI—-X with Hy=qay Hi=a
(for Hy(s) := H(t,s)) and
(VteI) H(t,0) =z, H(t,1)=u11.

It is easy to show that ~ is an equivalence relation (Exercise 6.1.2), called
homotopy. The homotopy class of « is denoted by [a].
We write Q(X,x9) := P(X,x0,xg), for the set of loops based at xg. For
a € P(X,x9,21) and 8 € P(X, 1, 2z2) we define a product o+ in P(X, zq, x2)
by
| a2t) for 0
(axB)(t) = {5(2t —1) fori

53
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Lemma 6.1.2. If p: [0,1] — [0,1] is a continuous map with ¢(0) = 0 and
©(1) =1, then for each o € P(X,xg,x1) we have o ~ a0 .

Proof. Use H(t,s) := a(ts+ (1 —t)p(s)). O
Proposition 6.1.3. The following assertions hold:

(1) a1 ~ ag and By ~ Bo implies aq * B1 ~ a2 * Ba, so that we obtain a well-
defined product
[a] « [B8] == [o 3]

of homotopy classes.
(2) If x also denotes the constant map I — {x} C X, then

[xo] % [a] = [a] = [a] x [x1] for « € P(X,x0,z1).

(3) (Associativity) [a x B] * [y] = [o] * [B x 1] for a € P(X xo,21),
B € P(X,x1,x2) and v € P(X, x2,x3).

(4) (Inverse) For a € P(X,xzo,x1) and @(t) := a(l —t) we have
o]  [a] = [20].

(5) (Functoriality) For any continuous map ¢: X — Y anda € P(X,xg,21),0 €
P(X,x1,x2), we have

(poa)x(pof)=po(axp),
and o ~ 3 implies p o ~ o 3.

Proof. (1) If H* is a homotopy from «; to as and H” a homotopy from f; to
(B2, then we put

| H"(t,2s) for0<s<4i
Hit,s) = {Hﬂ(t,zs— 1) forl<s<1
(cf. Exercise 6.1.1).
(2) For the first assertion we use Lemma 6.1.2 and
_ [0 for0<t<4i
zoxa=aop for (t):= {2t—1 for % <t<1
For the second, we have
2t for0<t<1
— — Sts3
axxy=aop for p(t): {1 for l<t<1.

(3) We have (ax3)xv = (ax* (B%7)) o for
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(4)

a(2s) for s < 1t
— 1— 1
H(t,s) =< a(l—1) for 17t < s < 1t
— 1
a(2s—1) for s > 4+t
(5) is trivial. O

Definition 6.1.4. From the preceding definition, we derive in particular that
the set
7T1(X, (E()) = Q(X,xo)/ ~

of homotopy classes of loops in xg carries a natural group structure, given by

[[B] = [ax 5]

(Exercise). This group is called the fundamental group of X with respect to xg.

A pathwise connected space X is called simply connected if w1 (X, zo) van-
ishes for some 2y € X (which implies that is trivial for each z¢y € X; Exer-
cise 6.1.4).

Lemma 6.1.5. (Functoriality of the fundamental group) If f: X — Y is a
continuous map with f(xg) = yo, then

71 (f,x0): (X, z0) = 71 (Y,90), [7]+— [f o]

18 a group homomorphism. Moreover, we have

7T1(idX71'0) :idﬂl(X,azo) and 71'1(ng71‘0) :71'1(f,g($0)) Oﬁl(g,g(fﬁo))-
Proof. This follows directly from Proposition 6.1.3(5). O

Remark 6.1.6. The map
o1 m(X,20) x (P(X,20)/ ~) — P(X,20)/ ~, ([a],[8]) = [a* 5] = [a]  [5]

defines an action of the group m (X, o) on the set P(X,x0)/ ~ of homotopy
classes of paths starting in xy (Proposition 6.1.3).

Remark 6.1.7. (a) Suppose that the topological space X is contractible, i.e.,
there exists a continuous map H: I x X — X and xp € X with
H(0,z) = = and H(l,z) = x¢ for x € X. Then m(X,z0) = {[zo]} is triv-
ial (Exercise).
(b) m (X XY, (x0,y0)) = m (X, z0) X m1(Y,y0) (Exercise).
(c) m(R™,0) = {0} because R" is contractible.

More generally, if the open subset Q2 C R"™ is starlike with respect to g,
then H(t,x) := x + t(x — xo) yields a contraction to zp, and we conclude that

7T1(Q,$0) = {1}

The following lemma implies in particular, that fundamental groups of topo-
logical groups are always abelian.
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Lemma 6.1.8. Let G be a topological group and consider the identity element
1 as a base point. Then the path space P(G,1) also carries a natural group
structure given by the pointwise product (« - §)(t) := a(t)B(t) and we have

(1) a~dao, B~ 0 impliesa-p ~ o -3, so that we obtain a well-defined
product
[a] - [B] :=[a - 7]
of homotopy classes, defining a group structure on P(G,1)/ ~.
(2) a~p <> a- B ~1, the constant map.
(3) (Commutativity) (o] - [6] = [8] - [] for a, 5 € Q(G,1).
(4) (Consistency) [a] - [B] = [a] * [8] for a € Q(G,1), 5 € P(G,1).

Proof. (1) follows by composing homotopies with the multiplication map mg.
(2) follows from (1) by multiplication with 371

3)
[[8] = [ax1][1+ 5] = [(ax 1)1+ B)] = [(1+ f)(ax 1)] = [L xSl x1] = [f][a].

(4) [o][8] = [(ax1)(1 + B)] = [ax 5] = [o] = [5]. 0

As a consequence of (4), we can calculate the product of homotopy classes
as a pointwise product of representatives and obtain:

Proposition 6.1.9. (Hilton’s Lemma) For each topological group G, the fun-
damental group 7 (G) := m1 (G, 1) is abelian.

Proof. We only have to combine (3) and (4) in Lemma 6.1.8 for loops a, 5 €
QG 1). O
Exercises for Section 6.1

Exercise 6.1.1. If f: X — Y is a map between topological spaces and X =
X3 U...UX, holds with closed subsets X1, ..., X,, then f is continuous if and
only if all restrictions f|x, are continuous.

Exercise 6.1.2. Show that the homotopy relation on P(X,zg,x1) is an equiv-
alence relation. Hint: Exercise 6.1.1 helps to glue homotopies.

Exercise 6.1.3. Show that for n > 1 the sphere S™ is simply connected. For
the proof, proceed along the following steps:

(a) Let v : [0,1] — S™ be continuous. Then there exists an m € N such that
lv(t) = ()| < 5 for [t =] < ;..

(b) Define & : [0,1] — R™*! as the piecewise affine curve with a(£) =
Y(£) for k = 0,...,m. Then a(t) = m&(t) defines a continuous curve
a:[0,1] — S™

(c) a ~ ~. Hint: Consider H(t,s) := %
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(d) « is not surjective. The image of « is the central projection of a polygonal
arc on the sphere.

(e) If B € Q(S™,yo) is not surjective, then 5 ~ yo (it is homotopic to a
constant map). Hint: Let p € S™ \ im 8. Using stereographic projection, where
p corresponds to the point at infinity, show that S™\ {p} is homeomorphic to
R"™, hence contractible.

(£) m1(S™, y0) = {[yo]} for n > 2 and yo € S™.

Exercise 6.1.4. Let X be a topological space, xg,z1 € X and « € P(X, zg, z1)
a path from x¢ to ;. Show that the map

C:m(X,z1) = m(X,20), [] = [axy*a]

is an isomorphism of groups. In this sense the fundamental group does not
depend on the base point if X is arcwise connected.

Exercise 6.1.5. Let 0: G x X — X be a continuous action of the topological
group G on the topological space X and zg € X. Then the orbit map o*°: G —
X, g — o(g,x0) defines a group homomorphism

m1(07): 1 (GQ) — 71 (X, o).

Show that the image of this homomorphism is central, i.e., lies in the center of
71(X, 2p). Hint: Mimic the argument in the proof of Lemma 6.1.8.

6.2 Coverings

In this section we discuss the concept of a covering map. One of its main
applications is that it provides a means to calculate fundamental groups in
terms of suitable coverings.

Definition 6.2.1. Let X and Y be topological spaces. A continuous map
q: X — Y is called a covering if each y € Y has an open neighborhood U such
that ¢~!(U) is a non-empty disjoint union of open subsets (V;);cr, such that for
each ¢ € I the restriction g|y,: V; — U is a homeomorphism. We call any such
U an elementary open subset of X.

Note that this condition implies in particular that ¢ is surjective and that
the fibers of ¢ are discrete subsets of X.

Examples 6.2.2.
(a
(b
(c
(d

The exponential function exp: C — C*, z — ¢€? is a covering map.

The map ¢: R — T,z — €@ is a covering.

k

The power maps pg: C* — C*, z — 2% are coverings.

)
)
)
) If ¢: G — H is a surjective continuous open homomorphism of topological
groups with discrete kernel, then ¢ is a covering (Exercise 6.2.2). All the

examples (a)-(c) are of this type.
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Lemma 6.2.3. (Lebesgue number) ! Let (X,d) be a compact metric space

and (U;)icr an open cover. Then there exists a positive number X > 0, called
a Lebesgue number of the covering, such that any subset S C X with diameter
< X is contained in some U;.

Proof. Let us assume that such a number \ does not exist. Then there exists
for each n € N a subset S,, of diameter < % which is not contained in some Uj;.
Pick a point s, € S,,. Then the sequence (s,) has a subsequence converging to
some s € X (Proposition 4.3.3). Then s is contained in some U;, and since U;
is open, there exists an € > 0 with U.(s) C U;. If n € N is such that 1 < £ and
d(sn,s) < 5, we arrive at the contradiction S,, C U, /5(sn) C Uc(s) C U;. O

Remark 6.2.4. (1) If (U;);ec; is an open cover of the unit interval [0, 1]
there exists an m > 0 such that all subsets of the form [f
k=0,...,n— 1, are contained in some Uj;.
(2) If (U;)ies is an open cover of the unit square [0,1]%, then there exists an
n > 0 such that all subsets of the form
{k: k—i—l} y [j J+1
n' n n’ n

then
1

}, kj=0,...n—1,

are contained in some Uj.

Theorem 6.2.5. (The Path Lifting Property) Let g: X — Y be a covering map
and v: [0,1] = Y a path. Let o € X be such that q(zo) = v(0). Then there
exists a unique path 7: [0,1] — X such that

goy=v and 75(0) = xo.

Proof. Cover Y by elementary open set U;,i € I. By Remark 6.2.4, applied
to the open covering of I by the sets v~ 1(U;), there exists an n € N such that
all sets 7([%, %]), k =0,...,n—1, are contained in some U;. We now use
induction to construct 7. Let Vy C qil(Uo) be an open subset containing x( for
which ¢ly, is a homeomorphism onto Uy and define 7 on [O l] by

F(t) = (alvy) ™ o (1)

Assume that we have already constructed a continuous lift 7 of v on the interval

[0, ﬂ and that k£ < n. Then we pick an elementary open subset U; containing
v([£, 2]) and an open subset Vi, C X containing 5(%) for which gy, is a

homeomorphism onto U;. We then define 7 for ¢ € [’“ w] by

3(t) = (alv) " o (B).

We thus obtain the required lift ¥ of v on [0, niﬂ]

If 5: [0,1] — X is any continuous lift of v with 5(0) = o, then 5([0, 1])
is a connected subset of ¢~!(Up) containing zg, hence contained in Vj, showing
that 5 coincides with 4 on [O, %] Applying the same argument at each step of
the induction, we obtain ¥ = 7, so that the lift 7 is unique. O

'Lebesgue, Henri (1875-1941)
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Theorem 6.2.6. (The Covering Homotopy Theorem) Let I := [0,1] and
g: X — Y be a covering map and H: I> — Y be a homotopy with fized end-
points of the paths v := Hy and n := Hy. For any lift ¥ of v there exists a
unique lift G: I? — X of H with Gy = 7. Then 7 := G is the unique lift of n
starting in the same point as v and G is a homotopy from 7 to 1. In particular,
lifts of homotopic curves in'Y starting in the same point are homotopic in X .

Proof. Using the Path Lifting Property (Theorem 6.2.5), we find for each t € T
a unique continuous lift I — X, s +— G(s,t), starting in 7(¢) with ¢(G(s,t)) =
H(s,t). It remains to show that the map G: I? — X obtained in this way is
continuous.

So let s € I. Using Remark 6.2.4, we find a natural number n such that for

each connected neighborhood W of s of diameter < % and each 7 =0,...,n, the
set H (WS X [%, %]) is contained in some elementary subset Uy of Y. Assuming

that G is continuous in Wy x {%}, G maps this set into a connected subset of
q 1 (Uy), hence into some open subset Vj for which g|y;, is a homeomorphism
onto U. But then the lift G on W x [%, %} must be contained in V%, so that
it is of the form (g|y, ) !0 H, hence continuous. This means that G is continuous
on Wy x [%, %] Now an inductive argument shows that G is continuous on
W, x I and hence on the whole square I2.

Since the fibers of ¢ are discrete and the curves s — H(s,0) and s — H(s, 1)
are constant, the curves G(s,0) and G(s,1) are also constant. Therefore 7 is
the unique lift of 7 starting in 5(0) = G(0,0) = G(1,0) and G is a homotopy
with fixed endpoints from 7 to 7. O

Corollary 6.2.7. If g: X — Y is a covering with q(xo) = yo, then the corre-
sponding group homomorphism

m1(¢; o) : T(X, o) — (Y 50), 7] = [g07]
18 1njective.

Proof. If v, n are loops in g with [g o] = [¢ o 5], then the Covering Homotopy
Theorem 6.2.6 implies that v and 1 are homotopic. Therefore [y] = [n] shows
that 71 (g, x0) is injective. O

Corollary 6.2.8. If Y is simply connected and X is arcwise connected, then
each covering map q: X — Y is a homeomorphism.

Proof. Since ¢ is an open continuous map, it remains to show that ¢ is injective.
So pick zp € X and yo € Y with g(zo) = yo. If x € X also satisfies ¢(x) = ypo,
then there exists a path o € P(X,zo,z) from xg to . Now ¢ o « is a loop
in Y, hence contractible because Y is simply connected. Now the Covering
Homotopy Theorem implies that the unique lift a of ¢ o « starting in z( is a
loop, and therefore that xg = x. This proves that ¢ is injective. O

The following theorem provides a more powerful tool, from which the pre-
ceding corollary easily follows. We recall that a topological space X is called
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locally arcwise connected if each neighborhood U of a point € X contains some
arcwise connected neighborhood V' of x (cf. Exercise 1.3.6).

Theorem 6.2.9. (The Lifting Theorem) Assume that ¢: X — Y is a covering
map with q(zo) = yo, that W is arcwise connected and locally arcwise connected,
and that f: W =Y is a given map with f(wo) = yo. Then a continuous map
g: W — X with

g(wo) =z9 and qog=f (6.1)

exists if and only if

m1(f, wo) (m1 (W, wo)) C m1(g, w0)(m1(X, w0)), i.e. im(m1(f, wo)) € im(m1(g,x0)).

(6.2)
If g exists, then it is uniquely determined by (6.1). Condition (6.2) is in partic-
ular satisfied if W is simply connected.

Proof. If g exists, then f = g o g implies that the image of the homomorphism
m1(f, wo) = m1(q, zp) o m1 (g, wo) is contained in the image of 71 (q, xo).

Let us, conversely, assume that this condition is satisfied. To define g, let
w € W and a,,: I — W be a path from wg to w. Then foay: I — Y is a path
which has a continuous lift §,,: I — X starting in xg. We claim that §,(1)
does not depend on the choice of the path a,,. Indeed, if o, is another path
from wy to w, then au, * o/, is a loop in wp, so that (f o ay) * (f o) is a
loop in yg. In view of (6.2), the homotopy class of this loop is contained in the
image of 7 (q,x0), so that it has a lift n: I — X which is a loop in (. Since
the reverse of the second half 77|[%,1] of n is a lift of f o al,, starting in xg, it is
B.,, or, more precisely

t

ﬁ;u(t):n(l—§> for 0<t<I.

We thus obtain )
B =n(3) = Aul).

We now put g(w) := (3,,(1), and it remains to see that g is continuous. This
is where we shall use the assumption that W is locally arcwise connected. Let
w € W and put y := f(w). Further, let U C Y be an elementary neighborhood
of y and V' be an arcwise connected neighborhood of w in W such that f(V) C U.
Fix a path a,, from wq to w as before. For any point w’ € W we choose a path
Yo from w to w’ in V', so that ., * 7y, is a path from wg to w’. Let U C X be
an open subset of X for which ¢|7 is a homeomorphism onto U and g(w) € U.
Then the uniqueness of lifts implies that

Buwr = Buw * ((Q|ﬁ)71 o(fo ’Y’w'))'

We conclude that

g(w') = (glg) 7 (f(w")) € U,

hence that g|y is continuous.
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We finally show that ¢ is unique. In fact, if h: W — X is another lift of f
satisfying h(wg) = g, then the set S := {w € W: g(w) = h(w)} is non-empty
and closed. We claim that it is also open. In fact, let wy € S and U be a
connected open elementary neighborhood of f(w;) and V' an arcwise connected
neighborhood of wy with f(V) C U. If U C ¢~ (U) is the open subset on which ¢
is a homeomorphism containing g(w;) = h(wy), then the arcwise connectedness
of V implies that g(V),h(V) C U, and hence that V C S. Therefore S is
open, closed and non-empty, so that the connectedness of W yields S = W, i.e.,
g=h. O

Corollary 6.2.10. (Uniqueness of Simply Connected Coverings) Suppose that
Y s locally arcwise connected. If g1: X1 — Y and g2: Xo — Y are two sim-
ply connected arcwise connected coverings, then there exists a homeomorphism
p: X7 — Xo withgaop =q.

Proof. Since Y is locally arcwise connected, both covering spaces X; and Xs
also have this property. Pick points 1 € X;, z2 € Xy with y := q1(z1) =
g2(z2). According to the Lifting Theorem 6.2.9, there exists a unique lift

p: X1 — Xy of ¢1 with p(x1) = x9. We likewise obtain a unique lift

¥: X9 — X of go with ¢(z2) = 1. Then pop: X1 — X is a lift of idy
fixing x1, so that the uniqueness of lifts implies that ¢ o 1) = idx,. The same
argument yields ¢ o ¢ = idx,, so that ¢ is a homeomorphism with the required
properties. O

Definition 6.2.11. A topological space X is called semilocally simply connected
if each point 2o € X has a neighborhood U such that each loop « € Q(U, xg) is
homotopic to [zg] in X, i.e., the natural homomorphism

m(iv): m (U, x0) = m(X,z0), [7] = [iv o]
induced by the inclusion map iy: U — X is trivial.

Theorem 6.2.12. Let Y be arcwise connected and locally arcwise connected.
Then Y has a simply connected covering space if and only if Y is semilocally
simply connected.

Proof. If q: X — Y is a simply connected covering space and U C Y is a
pathwise connected elementary open subset. Then each loop « in U lifts to a
loop 7 in X, and since ¥ is homotopic to a constant map in X, the same holds
for the loop y =qo7in Y.

Conversely, let us assume that Y is semilocally simply connected. We choose
a base point yg € Y and let

Y := P(Y,y0)/ ~

be the set of homotopy classes of paths starting in y3. We shall topologize Y in
such a way that the map

¢:Y =Y, [—=n(1)
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defines a simply connected covering of Y.

Let B denote the set of all arcwise connected open subsets U C Y for which
each loop in U is contractible in Y and note that our assumptions on Y imply
that B is a basis for the topology of Y, i.e., each open subset is a union of
elements of B. If v € P(Y, yo) satisfies v(1) € U € B, let

Uy :=={lnl € ¢ *(U): 38 € C,U)) n~~xp}.

We shall now verify several properties of these definitions, culminating in the
proof of the theorem.

(1) [n] € Uy = Upy = Upyy.

To prove this, let [(] € Up,;. Then ¢ ~ 7+ 8 for some path §in U. Further
n ~ 7 (' for some path 8" in U. Now ¢ ~ v '+ 8, and ' x 3 is a path in
U, so that [¢] € Up,). This proves Uy, € U}, We also have v ~ 1 * 3, so that
[v] € Uy, and the first part implies that Uy, C Up,).

(2) ¢ maps Up,) injectively onto U.

That ¢(U},)) = U is clear since U and Y are arcwise connected. To show
that that it is one-to-one, let [1], [1'] € U},j, which we know from (1) is the same
as Up,. Suppose 1(1) = n'(1). Since [n'] € Uy, we have ' ~ 1 * a for some
loop a in U. But then « is contractible in Y, so that n’ ~ n, i.e., ['] = [n].

(3) UV eB, ’y(l) € U CV, implies U["/] - Vv[v]

This is trivial.

(4) The sets U}, for U € B and [y] € Y form a basis of a topology on Y.

Suppose [v] € Uy N Vi) Let W C U NV be in B with (1) € W. Then
[ € Wiy) € Uiy 0 Vi) = Upyy O V-

(5) ¢ is open and continuous.

We have already seen in (2) that q(Uf,)) = U, and these sets form a basis
of the topology on 57, resp., Y. Therefore ¢ is an open map. We also have for
U € B the relation

') = U Up,

y(HeUu
which is open. Hence ¢ is continuous.

(6) gluy,, is a homeomorphism.

This is because it is bijective, continuous and open.

At this point we have shown that ¢: Y — Y is a covering map. It remains
to see that Y is arcwise connected and simply connected.
(7) Let H: I x I — Y be a continuous map with H(¢,0) = yo. Then
hi(s) := H(t,s) defines a path in Y starting in yo. Let h(t) := [h] € Y.
Then h is a path in Y covering the path ¢ — hy(1) = H(t,1) in Y. We claim
that h is continuous. Let to € I. We shall prove continuity at to. Let U € B
be a neighborhood of hy,(1). Then there exists an interval Iy C I which is a
neighborhood of ¢y with h(1) € U for t € Iy. Then a(s) := H(tg + s(t — tg),1)
is a continuous curve in U with a(0) = ht, (1) and a(1) = he(1), so that hs, * «
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is curve with the same endpoint as h;. Applying Exercise 6.2.1 to the restric-
tion of H to the interval between ¢y, and t, we see that hy ~ hy, * a, so that
h(t) = [h] € Uln,,) for t € Iy. Since q|UWO] is a homeomorphism, & is continuous
in to.
(8) Y is arcwise connected.

For [y] € Y put hy(s) := v(st). By (7), this yields a path 3(t) = [h¢] in ¥
from o := [yo] (the class of the constant path) to the point [v].
(9) Y is simply connected.

Let a € Q(f/,ﬂo) be a loop in ¥ and o := ¢ o @ its image in Y. Let
hi(s) := a(st). Then we have the path h(t) = [k in Y from (7). This path
covers a since hy(1) = a(t). Further, h(0) = §o is the constant path. Also,

by definition, h(1) = [a]. From the uniqueness of lifts we derive that h = & is
closed, so that [a] = [yo]. Therefore the homomorphism

(g, 90): (Y, %0) — (Y, yo)

vanishes. Since it is also injective (Corollary 6.2.7), 7 ()7,7570) is trivial, i.e., Y
is simply connected. O

Definition 6.2.13. Let ¢g: X — Y be a covering. A homeomorphism
p: X — X is called a deck transformation of the covering if g o ¢ = ¢q. This
means that ¢ permutes the elements in the fibers of q. We write Deck(X, ¢) for
the group of deck transformations.

Example 6.2.14. For the covering map exp: C — C*, the deck transforma-
tions have the form
o(z) = z+2min, n € Z.

Proposition 6.2.15. Let q: Y > Y be a simply connected covering of the
locally arcwise connected space Y. Pick 5o € Y and put yo := q(y0). For each
[v] € m1(Y,90) we write @p,) € Deck(Y, q) for the unique lift of idx mapping o
to the endpoint 5(1) of the lift 5 of v starting in §o. Then the map

[OF 7T1(}/, yO) — DeCk(i;v Q)v (I)([FY]) = P

s an isomorphism of groups.

Proof. For v,m € Q(Y,y0), the composition ¢, o @, is a deck transformation
mapping o to the endpoint of ¢[,) o n) which coincides with the endpoint of the
lift of n starting in 7(1). Hence it also is the endpoint of the lift of the loop
v *n. This leads to @[, © P[] = @[ysy], S0 that @ is a group homomorphism.

To see that @ is injective, we note that op,) = idy implies that §(1) = o,
so that 7 is a loop, and hence that [y] = [yo].

For the surjectivity, let ¢ be a deck transformation and y := ¢(gp). If ais a
path from g to y, then v := goa is a loop in yo with o = 7, so that ¢, (y0) = ¥,
and the uniqueness of lifts (Theorem 6.2.9) implies that ¢ = @y}
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Example 6.2.16. With Example 6.2.14 and the simple connectedness of C we
derive that

7 (C*,1) = Deck(C, exp) = Z.
Exercises for Section 6.2

Exercise 6.2.1. Let F': I? — X be a continuous map with F(0,s) = zo for
s € I and define

~v(t) := F(t,0), n(t):=F(t,1), «at):=F(1,t), tel.

Show that v * o ~ n. Hint: Consider the map

(2t, s) for 0<t<4,s<1-2t,
G:I* - 1%, G(t,s):=¢ (1,2t—1) fori<t<1ls<2t-1,
(t+ 155, 5) else

and show that it is continuous. Take a look at the boundary values of F' o G.

Exercise 6.2.2. Let ¢: G — H be an morphism of topological groups with
discrete kernel I'. Show that:

(1) If V C G is an open 1-neighborhood with (V~='V)NT = {1} and ¢ is open,
then ¢ly: V — ¢(V) is a homeomorphism.

(2) If g is open and surjective, then ¢ is a covering,.
(3) If ¢ is open and H is connected, then ¢ is surjective, hence a covering.

Exercise 6.2.3. A map f: X — Y between topological spaces is called a local
homeomorphism if each point x € X has an open neighborhood U such that
flu: U — f(U) is a homeomorphism onto an open subset of Y.

(1) Show that each covering map is a local homeomorphism.

(2) Find a surjective local homeomorphism which is not a covering. Can you
also find an example where X is connected?

Exercise 6.2.4. Let X be a topological space. The cone over X is the space
C(X) = (X x[0,1])/(X x {1}).
Show that C(X) is always contractible.
Exercise 6.2.5. In the euclidean plane R?, we write
Cr(m) :={z € R?: ||z —mls =1}
for the circle of radius r and center m. Consider the union
1
X = —,0).
U Cvl/n( n 5 0)
neN

Show that X is arcwise connected but not semilocally simply connected. Hint:
Consider the point (0,0) € X.



