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Notation for categories

• Ab = Z-Mod - category of abelian groups and group homomorphisms between them,

• AlgF - category of algebras over a field F and algebra homomorphisms,

• BG - category with a single object • and HomBG(•, •) = G for a group G,

• Cat - category of small categories and functors between them,

• CAlgF - category of commutative algebras over F and algebra homomorphisms,

• cHaus - category of compact Hausdorff spaces and continuous maps between them,

• CRing - category of commutative rings and ring homomorphisms,

• Field - category of fields and field homomorphisms,

• Grpd - category of groupoids and functors between them,

• G-Set = SetBG - category of (left) G-sets and G-equivariant maps for a group G,

• Int - category of integral domains and injective ring homomorphisms between them,

• Kan - full subcategory of SSet with Kan complexes as objects,

• O(X) for a topological space X - poset category with open subsets U ⊂ X as objects and
the partial ordering relation �=⊂,

• R-Mod - category of modules over a ring R and R-linear maps,

• Rel - category of sets and relations,

• RepF(G) = F[G]-Mod = VectBGF - category of representations of G over F and intertwiners,

• Set - category of sets and maps,

• SSet = Set∆op

-category of simplicial sets and simplicial maps,

• sSet = Set∆op
inj -category of semisimplicial sets and semisimplicial maps,

• Top - category of topological spaces and continuous maps,

• Top∗ - category of pointed topological spaces and basepoint preserving continuous maps,

• Ring - category of unital rings and unital ring homomorphisms,

• VectF = F-Mod - category of vector spaces over a field F and F-linear maps

• CJ = Fun(J , C) - category of functors F : J → C and natural transformations,

• ∆ - simplex category

• ∆inj - subcategory of ∆ with the same objects and injective monotonic maps as morphisms
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1 Background on categories

In this section we summarise the required background on categories, functors and natural
transformations. We also recall important constructions with categories such as (co)products,
adjoints and the Yoneda Lemma.

1.1 Categories, functors and natural transformations

The concept of a category encodes many examples of mathematical structures and structure
preserving maps between them, but it goes beyond them and replaces structure preserving maps
by the more abstract notion of a morphism. The crucial features are that morphisms have a
fixed source and target, can be composed and can be identity morphisms. This generalises the
notions of domain and codomain of structure preserving maps, of their composition and of the
structure preserving identity maps.

Definition 1.1.1: A category C consists of:

• a class Ob C of objects,

• for each pair of objects X, Y ∈ Ob C a class HomC(X, Y ) of morphisms,

• for each triple of objects X, Y, Z a composition map

◦ : HomC(Y, Z)× HomC(X, Y )→ HomC(X,Z),

such that the following axioms are satisfied:

(C1) The classes HomC(X, Y ) of morphisms are pairwise disjoint,

(C2) The composition is associative: f ◦(g◦h) = (f ◦g)◦h for all morphisms h ∈ HomC(W,X),
g ∈ HomC(X, Y ), f ∈ HomC(Y, Z),

(C3) For every object X there is a morphism 1X ∈ HomC(X,X), the identity morphism
on X, with 1X ◦ f = f and g ◦ 1X = g for all f ∈ HomC(W,X), g ∈ HomC(X, Y ).

Instead of f ∈ HomC(X, Y ), we also write f : X → Y . The object X is called the source of f ,
and the object Y the target of f . A morphism f : X → X is called an endomorphism.

A morphism f : X → Y is called an isomorphism, if there is a morphism g : Y → X with
g ◦ f = 1X and f ◦ g = 1Y . In this case, we call the objects X and Y isomorphic.

Often, one requires that the morphisms between fixed objects form not only a class, but a set.
This is the case in essentially all familiar categories from algebra and topology. Nevertheless,
it is sometimes necessary to relax this condition. In contrast, requiring that the objects of a
category form a set is very restrictive and excludes many familiar and important categories.

Definition 1.1.2: A category C is called

• locally small, if HomC(X, Y ) is a set for all objects X, Y ∈ ObC,
• small, if it is locally small and ObC is a set.
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The following examples of categories are all locally small, but none of them is small.

Example 1.1.3:

1. The category Set: objects are sets, morphisms are maps. The composition is the composi-
tion of maps, and identity morphisms are identity maps. Isomorphisms are bijective maps.

2. The category Top of topological spaces: objects are topological spaces, morphisms are
continuous maps, isomorphisms are homeomorphisms.

3. The category Top∗ of pointed topological spaces: Objects are pairs (X, x) of a
topological space X and a point x ∈ X, morphisms f : (X, x) → (Y, y) are continuous
maps f : X → Y with f(x) = y.

4. The category Top(2) of pairs of topological spaces: Objects are pairs (X,A) of
a topological space X and a subspace A ⊂ X, morphisms f : (X,A) → (Y,B) are
continuous maps f : X → Y with f(A) ⊂ B. Isomorphisms are homeomorphisms
f : X → Y with f(A) = B.

5. Many examples of categories we will use in the following are categories of algebraic struc-
tures. This includes the following:

• the category VectF of vector spaces over a field F:
objects: vector spaces over F, morphisms: F-linear maps,

• the category VectfinF of finite dimensional vector spaces over a field F:
objects: finite-dimensional vector spaces over F, morphisms: F-linear maps,

• the category Grp of groups:
objects: groups, morphisms: group homomorphisms,

• the category Ab of abelian groups:
objects: abelian groups, morphisms: group homomorphisms,

• the category Ring of unital rings:
objects: unital rings, morphisms: unital ring homomorphisms,

• the category Field of fields:
objects: fields, morphisms: field homomorphisms,

• the category AlgF of algebras over a field F:
objects: algebras over F, morphisms: algebra homomorphisms,

• the categories R-Mod and Mod-R of left and right modules over a ring R:
objects: R-left or right modules, morphisms: R-left or right module homomorphisms.

• the category R-Mod-S of (R, S)-bimodules:
objects: (R, S)-bimodules, morphisms: (R, S)-bimodule homomorphisms.

In all of the categories in Example 1.1.3 the morphisms are maps. A category for which this is
the case is called a concrete category. A category that is not concrete is the category of sets
and relations in Exercise 1. Further examples of non-concrete categories arise from some of the
basic categorical concepts and constructions in the next example.
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Example 1.1.4:

1. A small category C in which all morphisms are isomorphisms is called a groupoid.

2. A category with a single object is a monoid and a groupoid with a single object a group.

Group elements are identified with endomorphisms of the object, and the composition of
morphisms is the group multiplication.

More generally, for any object X in a groupoid C, the set EndC(X) = HomC(X,X) with
the composition ◦ : EndC(X)× EndC(X)→ EndC(X) is a group.

3. For every category C, there is an opposite category Cop, which has the same objects as
C, whose morphisms are given by HomCop(X, Y ) = HomC(Y,X) and in which the order
of the composition is reversed.

4. The cartesian product of categories C,D is the category C ×D with pairs (C,D) of ob-
jects in C and D as objects, with HomC×D((C,D), (C ′, D′)) = HomC(C,C

′)×HomD(D,D′)
and the composition of morphisms (h, k) ◦ (f, g) = (h ◦ f, k ◦ g).

5. A subcategory of a category C is a category D, such that Ob(D) ⊂ Ob(C) is a
subclass, HomD(D,D′) ⊂ HomC(D,D

′) for all objects D,D′ in D and the composi-
tion of morphisms of D coincides with their composition in C. A subcategory D of
C is called a full subcategory if HomD(D,D′) = HomC(D,D

′) for all objects D,D′ in D.

6. Quotient categories: Let C be a category with an equivalence relation ∼X,Y on each
morphism set HomC(X, Y ) that is compatible with the composition of morphisms:
f ∼X,Y g and h ∼Y,Z k implies h ◦ f ∼X,Z k ◦ g.

Then one obtains a category C ′, the quotient category of C, with the same objects as
C and equivalence classes of morphisms in C as morphisms.

The composition of morphisms in C ′ is given by [h] ◦ [f ] = [h ◦ f ], and the identity mor-
phisms by [1X ]. Isomorphisms in C ′ are equivalence classes of morphisms f ∈ HomC(X, Y )
for which there exists a morphism g ∈ HomC(Y,X) with f ◦g ∼Y,Y 1Y and g ◦f ∼X,X 1X .

The construction in the last example plays an important role in classification problems, in
particular in topology. Classifying the objects of a category C usually means classifying them
up to isomorphism - giving a list of objects in C such that every object in C is isomorphic to
exactly one object in this list.

This is possible in some contexts - for instance for the category VectfinF of finite dimensional
vector spaces over F. In this case the list contains the vector spaces Fn with n ∈ N0. However, it
is often too difficult to solve this problem in full generality. In this case, it is sometimes simpler
to consider instead a quotient category C ′ and to attempt a partial classification.

If two objects are isomorphic in C, they are by definition isomorphic in C ′, as any isomorphism
f : X → Y with inverse g : Y → X yields [g] ◦ [f ] = [g ◦ f ] = [1X ] and [f ] ◦ [g] = [f ◦ g] = [1Y ].
However, the converse does not hold - the category C ′ yields a weaker classification than C.

To relate different categories, one must not only relate their objects but also their morphisms,
in a way that is compatible with source and target objects, the composition of morphisms and
the identity morphisms. This leads to the concept of a functor.
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Definition 1.1.5: Let C,D be categories. A functor F : C → D consists of:

• an assignment of an object F (C) in D to every object C in C,
• for each pair of objects C,C ′ in C, a map

HomC(C,C
′)→ HomD(F (C), F (C ′)), f 7→ F (f),

that is compatible with the composition of morphisms and with the identity morphisms

F (g ◦ f) = F (g) ◦ F (f) ∀f ∈ HomC(C,C
′), g ∈ HomC(C

′, C ′′)

F (1C) = 1F (C) ∀C ∈ Ob C.

• A functor F : C → C is called an endofunctor.

• A functor F : Cop → D is sometimes called a contravariant functor from C to D.

• The composite of two functors F : B → C, G : C → D is the functor GF : B → D given
by the assignment B 7→ GF (B) for all objects B in B and the maps

HomB(B,B′)→ HomD(GF (B), GF (B′)), f 7→ G(F (f)).

Example 1.1.6:

1. For any category C, the identity functor idC : C → C that assigns each object and
morphism in C to itself is an endofunctor of C.

2. The forgetful functor VectF → Ab assigns to each vector space the underlying abelian
group and to each linear map the associated group homomorphism. There are analogous
forgetful functors VectF → Set, Ring → Set, Grp → Set, Top→ Set that assign to each
vector space, ring, group, topological space the underlying set and to each morphism the
underlying map.

3. Vector space duals define a functor ∗ : VectF → VectopF that assigns to
• a vector space V its dual V ∗,
• a linear map f : V → W its adjoint f ∗ : W ∗ → V ∗, α 7→ α ◦ f .

4. A group G defines a category BG with a single object, the delooping of G, with
elements of G as morphisms, and with the multiplication of G as the composition.

• Functors F : BG → Set correspond to G-sets X = F (•) with the group action
� : G×X → X, g � x = F (g)(x).

• Functors F : BG → VectF correspond to representations of G over F, with the
representation space V = F (•) and ρ = F (g) : G→ AutFV .

5. Let φ : R→ S a ring homomorphism. The restriction functor Res : S-Mod→ R-Mod

• sends an S-module (M,�) to the R-module (M,�φ) with the pulled back module
structure r �φ m = φ(r) �m.
• sends every S-linear map f : M →M ′ to itself.

6. Tensor products: Let R be a ring, M an R-right module and N an R-left module.

• The functor M⊗R− : R-Mod→ Ab assigns to
- an R-left module N the abelian group M⊗RN ,
- an R-linear map f : N→N ′ the group homomorphism idM⊗f :M⊗RN→M⊗RN ′.
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• The functor −⊗RN : Rop-Mod→ Ab assigns to
- an R-right module M the abelian group M⊗RN ,
- an R-linear map f : M→M ′ the group homomorphism f⊗idN :M⊗RN→M⊗RN ′.
• The functor ⊗R : Rop-Mod×R-Mod→ Ab assigns to
- an R-right module M and an R-left module N the abelian group M⊗RN ,
- an Rop-linear map f : M → M ′ and R-linear map g : N → N ′ the group homomor-

phism f⊗g : M⊗RN →M ′⊗RN ′.

Note that for commutative rings R, any R-left module is an (R,R)-bimodule and these
functors can be defined to take values in R-Mod instead of Ab.

7. Hom-functors: Let C be a category and C an object in C.
• The functor Hom(C,−) : C → Set assigns to
- an object C ′ the set HomC(C,C

′),
- a morphism f : C ′ → C ′′ the map Hom(C, f) : HomC(C,C

′)→ HomC(C,C
′′), g 7→ f ◦g.

• The functor Hom(−, C) : Cop → Set assigns to
- an object C ′ the set HomC(C

′, C),
- a morphism f : C ′ → C ′′ the map Hom(f, C) : HomC(C

′′, C)→ HomC(C
′, C), g 7→ g◦f .

8. The path component functor π0 : Top→ Set assigns to
• a topological space X the set π0(X) of its path components,
• a continuous map f : X → Y the map π0(f) : π0(X)→ π0(Y ), P (x) 7→ P (f(x)).

9. The fundamental group defines a functor π1 : Top∗ → Grp that assigns to
• a pointed topological space (x,X) its fundamental group π1(x,X),
• a morphism f : (x,X) → (y, Y ) of pointed topological spaces the group homomor-

phism π1(f) : π1(x,X)→ π1(y, Y ), [γ] 7→ [f ◦ γ].

10. Abelisation: The abelisation functor F : Grp→ Ab assigns to
• a group G the abelian group F (G) = G/[G,G], where [G,G] is the normal subgroup

generated by the set of all elements ghg−1h−1 for g, h ∈ G,
• a group homomorphism f : G → H the induced group homomorphism F (f) :
G/[G,G]→ H/[H,H], g + [G,G] 7→ f(g) + [H,H].

There is another structure that relates functors. As a functor F : C → D involves maps between
the sets HomC(C,C

′) and HomD(F (C), F (C ′)), a structure that relates two functors F,G : C →
D must in particular relate the sets HomD(F (C), F (C ′)) and HomD(G(C), G(C ′)). The simplest
way to do this is to assign to each object C in C a morphism ηC : F (C) → G(C) in D. One
then requires compatibility with the images F (f) and G(f) for all morphisms f : C → C ′ in C.

Definition 1.1.7: A natural transformation η : F ⇒ G between functors F,G : C → D
is an assignment of a morphism ηC : F (C)→ G(C) in D to every object C in C such that the
following diagram commutes for all morphisms f : C → C ′ in C

F (C)

F (f)

��

ηC // G(C)

G(f)

��
F (C ′)

ηC′ // G(C ′).

A natural isomorphism is a natural transformation η : F ⇒ G, for which all morphisms
ηX : F (X)→ G(X) are isomorphisms. Two functors that are related by a natural isomorphism
are called naturally isomorphic.
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Example 1.1.8:

1. For any functor F : C → D the identity natural transformation idF : F ⇒ F with
component morphisms (idF )X = 1F (X) : F (X)→ F (X) is a natural isomorphism.

2. Consider the functors id : VectF → VectF and ∗∗ : VectF → VectF. Then there is a canon-
ical natural transformation can : id ⇒ ∗∗, whose component morphisms ηV : V → V ∗∗

assign to a vector v ∈ V the unique vector v∗∗ ∈ V ∗∗ with v∗∗(α) = α(v) for all α ∈ V ∗.
It is a natural isomorphism if and only if V is finite-dimensional.

3. Consider the category CRing of commutative unital rings and unital ring homomorphisms
and the category Grp of groups and group homomorphisms.

Let F : CRing→ Grp the functor that assigns to
• a commutative unital ring k the group GLn(k) of invertible n× n-matrices in k,
• a unital ring homomorphism f : k → l the group homomorphism

GLn(f) : GLn(k)→ GLn(l), M = (mij)i,j=1,...,n 7→ f(M) = (f(mij))i,j=1,..,n.

Let G : CRing→ Grp be the functor that assigns to
• a commutative unital ring k the group G(k) = k× of units in k,
• a unital ring homomorphism f : k → l the induced group homomorphism

G(f) = f |k× : k× → l×.

The determinant defines a natural transformation det : F → G with component mor-
phisms detk : GLn(k) ⇒ k×, because the following diagram commutes for every unital
ring homomorphism f : k → l

GLn(k)

GLn(f)

��

detk // k×

f |k×
��

GLn(l)
detl // l×.

4. Let G be a group and BG its delooping. Then functors F : BG → Set are G-sets by
Example 1.1.6, 4. Natural transformations between them are G-equivariant maps.

A natural transformation η : F ⇒ F ′ has a single component η• : F (•) → F ′(•). The
naturality condition states that η•(g � x) = g �′ η•(x) for all g ∈ G, x ∈ X.

Similarly, by Example 1.1.6, 4. functors F : BG → VectF are representations of G over
F, and natural transformations between them are homomorphisms of representations.

Remark 1.1.9:

1. For any small category C and category D, the functors F : C → D and natural transfor-
mations between them form a category, denoted Fun(C,D) or DC, the functor category.

The composite of natural transformations η : F ⇒ G and κ : G⇒ H is the natural trans-
formation κ◦η : F ⇒ H with component morphisms (κ◦η)X = κX ◦ηX : F (X)→ H(X)
and the identity morphisms are the identity natural transformations 1F = idF : F ⇒ F .

If C is a category that is not small, the functor category DC is defined analogously, but
no longer locally small.
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2. Natural transformations can be composed with functors.

If F, F ′ : C → D are functors and η : F ⇒ F ′ a natural transformation, then for any
functor G : B → C one obtains a natural transformation ηG : FG⇒ F ′G with component
morphisms (ηG)B = ηG(B) : FG(B)→ F ′G(B). Similarly, any functor E : D → E defines
a natural transformation Eη : EF ⇒ EF ′ with (Eη)C = E(ηC) : EF (C)→ EF ′(C).

The notions of natural transformations and natural isomorphisms are particularly important
as they allow one to generalise the notion of an inverse map and of a bijection to functors. An
inverse of a functor F : C → D is by definition a functor G : D → C with GF = idC and
FG = idD, and an isomorphism of categories is a functor F : C → D with an inverse.

However, it turns out that there are very few examples of functors with an inverse. A more
useful generalisation is obtained by weakening this requirement. Instead of requiring FG = idD
and GF = idC, one requires only that these functors are naturally isomorphic to the identity
functors. This leads to the concept of an equivalence of categories.

Definition 1.1.10: A functor F : C → D is called an equivalence of categories if there is
a functor G : D → C and natural isomorphisms κ : GF ⇒ idC and η : FG⇒ idD. In this case,
the categories C and D are called equivalent.

Sometimes it is easier to use a more direct characterisation of an equivalences of categories
in terms of its behaviour on objects and morphisms. This is the categorical equivalent of the
statement that a map between sets is an isomorphism if and only if it is injective and surjective.
The proof of the following lemma makes use of the axiom of choice and can be found for instance
in [K], Chapter XI, Prop XI.1.5.

Lemma 1.1.11: A functor F : C → D is an equivalence of categories if and only if it is:

1. essentially surjective:
for every object D in D there is an object C of C such that D is isomorphic to F (C).

2. fully faithful:
all maps HomC(C,C

′)→ HomD(F (C), F (C ′)), f 7→ F (f) are bijections.

Example 1.1.12:

1. The category VectfinF of finite-dimensional vector spaces over F is equivalent to the
category C, whose objects are non-negative integers n ∈ N0, whose morphisms f : n→ m
are m× n-matrices with entries in F and with the matrix multiplication as composition.

2. The category Setfin of finite sets is equivalent to the category Ordfin, whose objects are
finite ordinal numbers [n] = {0, 1, ..., n − 1} for all n ∈ N0 and whose morphisms
f : [m] → [n] are maps f : {0, 1, ...,m − 1} → {0, 1, ..., n − 1} with the composition of
maps as the composition of morphisms.

1.2 Universal properties and adjoint functors

Many concepts and constructions from algebra or topology can be generalised straightforwardly
to categories. This works, whenever it is possible to characterise them in terms of universal
properties involving only the morphisms in the category.
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These universal properties are associated with adjoint functors, pairs of functors F : C → D
and G : D → C that define natural bijections between morphism spaces in the two categories
HomC(C,G(D)) ∼= HomD(F (C), D). These natural bijections encode the universal properties.

In particular, there are concepts of a categorical product and coproduct that generalise cartesian
products and disjoint unions of sets and products and sums of topological spaces. We treat
products and coproducts as an example that illustrates the use of universal properties. Many
more examples of universal properties are given in the following chapters.

Definition 1.2.1: Let C be a category and (Ci)i∈I a family of objects in C.
1. A product of the family (Ci)i∈I is an object Πi∈ICi in C together with a family of

morphisms πi : Πj∈ICj → Ci, such that for all families of morphisms fi : W → Ci there
is a unique morphism f : W → Πi∈ICi such that the diagram

W

fi ##

∃!f // Πj∈ICj

πi
��
Ci

(1)

commutes for all i ∈ I. This is called the universal property of the product.

2. A coproduct of the family (Ci)i∈I is an object qi∈ICi in C with a family (ιi)i∈I of
morphisms ιi : Ci → qj∈ICj, such that for every family (fi)i∈I of morphisms fi : Ci → Y
there is a unique morphism f : qi∈ICi → Y such that the diagram

Y qj∈ICj
∃!foo

Ci

ιi

OO

fi

cc (2)

commutes for all i ∈ I. This is called the universal property of the coproduct.

Remark 1.2.2: Products or coproducts do not necessarily exist for a given family of objects
(Ci)i∈I in a category C, but if they exist, they are unique up to unique isomorphism:

If (Πi∈ICi, (πi)i∈I) and (Π′i∈ICi, (π
′
i)i∈I) are two products for a family of objects (Ci)i∈I in C,

then there is a unique morphism π′ : Π′i∈ICi → Πi∈ICi with πi ◦ π′ = π′i for all i ∈ I, and this
morphism is an isomorphism.

By the universal property of the product Πi∈ICi applied to the family fi := π′i : Π′i∈ICi → Ci,
there is a unique morphism π′ : Π′i∈ICi → Πi∈ICi such that πi ◦ π′ = π′i for all i ∈ I . Similarly,
the universal property of Π′i∈ICi implies that for the family of morphisms πi : Πi∈ICi → Ci
there is a unique morphism π : Πi∈ICi → Π′i∈ICi with π′i ◦ π = πi for all i ∈ I. It follows
that π′ ◦ π : Πi∈ICi → Πi∈ICi is a morphism with πi ◦ π ◦ π′ = π′i ◦ π = πi for all i ∈ I.
As the identity morphism on Πi∈ICi is another morphism with this property, the uniqueness
implies π′ ◦ π = 1Πi∈ICi . By the same argument one obtains π ◦ π′ = 1Π′i∈ICi

and hence π′ is an
isomorphism with inverse π.
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Π′i∈ICi
π′ //

π′i %%

1Π′
i∈ICi

''
Πi∈ICi

πi

��

π // Π′i∈ICi

π′iyy
Ci.

Πi∈ICi
π //

πi
%%

1Πi∈ICi

''
Π′i∈ICi

π′i
��

π′ // Πi∈ICi

πi
yy

Ci.

Example 1.2.3:

1. The cartesian product of sets is a product in Set, and the disjoint union of sets is
a coproduct in Set. The product of topological spaces is a product in Top and the
topological sum is a coproduct in Top. In Set and Top, products and coproducts exist
for all families of objects.

2. The direct sum of vector spaces is a coproduct and the direct product of vector spaces
a product in VectF. More generally, direct sums and products of R-left (right) modules
over a unital ring R are coproducts and products in R-Mod (Mod-R). Again, products
and coproducts exist for all families of objects in R-Mod (Mod-R).

3. The wedge sum is a coproduct in the category Top∗ of pointed topological spaces. It
exists for all families of pointed topological spaces.

4. The direct product of groups is a product in Grp and the free product of groups is a
coproduct in Grp. They exist for all families of groups.

In particular, we can consider categorical products and coproducts over empty index sets I. By
definition, a categorical product for an empty family of objects is an object T = Π∅ such that
for every object C in C there is a unique morphism tC : C → T . Similarly, a coproduct over
an empty index set I is an object I := q∅ in C such that for every object C in C, there is a
unique morphism iC : I → C. Such objects are called terminal and initial objects in C. Initial
and terminal objects need not exist in every category C, but if they exist they are unique up
to unique isomorphism by the universal property of the products and coproducts.

An object that is both, terminal and initial, is called a zero object or null object. If it exists,
it is unique up to unique isomorphism. It also gives rise to a distinguished morphism, the zero
morphism 0 = iC′ ◦ tC : C → C ′, between any two objects C,C ′ in C.

Definition 1.2.4: Let C be a category. An object X in a category C is called:

1. A final or terminal object in C is an object T in C such that for every object C in C
there is a unique morphism tC : C → T .

2. A cofinal or initial object in C is an object I in C such that for every object C in C
there is a unique morphism iC : I → C,

3. A null object or zero object in C is an object 0 in C that is both final and initial: for
every object C in C there are a unique morphisms tC : C → 0 and iC : 0→ C.

4. If C has a zero object, then the morphism 0 = iC′ ◦ tC : C → 0→ C ′ is called the trivial
morphism or zero morphism from C to C ′.

14



Example 1.2.5:

1. The empty set is an initial object in Set and the empty topological space an initial object
in Top. Any set with one element is a final object in Set and any one point space a final
object in Top. The categories Set and Top do not have null objects.

2. The null vector space {0} is a null object in the category VectF. More generally, for any
ring R, the trivial R-module {0} is a null object in R-Mod (Mod-R).

3. The trivial group G = {e} is a null object in Grp and in Ab.

4. The ring Z is an initial object in the category Ring, since for every unital ring R, there
is exactly one ring homomorphism f : Z→ R, namely the one determined by f(0) = 0R
and f(1) = 1R. The zero ring R = {0} with 0 = 1 is a final object in Ring, but not an
initial one. The category Ring has no zero object.

5. The category Field does not have initial or final objects. As any ring homomorphism
f : F→ K between fields is injective, an initial object in Field would be a subfield of all
other fields, and every field would be a subfield of a final field. Either of them would imply
that each field has the same characteristic as an initial or final field, a contradiction.

Universal properties of algebraic constructions such as products and coproducts, freely gener-
ated modules or abelisation of groups, are encoded in adjoint functors. These are pairs of func-
tors F : C → D and G : D → C that yield natural bijections HomC(C,G(D)) ∼= HomD(F (C), D)
between the morphism spaces in the two categories. These bijections state the universal prop-
erties of the constructions.

Definition 1.2.6: A functor F : C → D is called left adjoint to a functor G : D → C
and G right adjoint to F , F a G, if the functors Hom(F (−),−) : Cop × D → Set and
Hom(−, G(−)) : Cop ×D → Set are naturally isomorphic.

In other words, there is a family of bijections φC,D : HomC(C,G(D)) → HomD(F (C), D),
indexed by objects C in C and D in D, such that the diagram

HomC(C,G(D))

φC,D
��

Hom(f,G(g))

h7→G(g)◦h◦f
// HomC(C

′, G(D′))

φC′,D′

��
HomD(F (C), D)

Hom(F (f),g)

h7→g◦h◦F (f)
// HomD(F (C ′), D′).

(3)

commutes for all morphisms f : C ′ → C in C and g : D → D′ in D.

Example 1.2.7:

1. Forgetful functors and freely generated modules:
For a ring R, the forgetful functor G : R-Mod → Set is right adjoint to the functor
F : Set→ R-Mod that assigns to

• a set A the free R-module F (A) = 〈A〉R generated by A,
• a map f : A→ B the R-linear map F (f) : 〈A〉R → 〈B〉R with F (f) ◦ ιA = ιB ◦ f .
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Proof:
For every map f : A→M from a set A into an R-module M , there is a unique R-linear
map 〈f〉R : 〈A〉R → M with 〈f〉R ◦ ιA = f for the inclusion ιA : A → 〈A〉R, a 7→ a. This
defines bijections

φA,M : HomSet(A,G(M))→ HomR−Mod(F (A),M), f 7→ 〈f〉R.

For all maps f : A′ → A, h : A→M and R-linear maps g : M →M ′ we have

g ◦ 〈h〉R ◦ F (f) ◦ ιA′ = g ◦ 〈h〉R ◦ ιA ◦ f = g ◦ h ◦ f = 〈g ◦ h ◦ f〉R ◦ ιA′ .

This implies 〈g ◦ h ◦ f〉R = g ◦ 〈h〉R ◦ F (f). 2

2. Discrete and indiscrete topology:
The forgetful functor F : Top → Set is left adjoint to the indiscrete topology functor
I : Set→ Top that assigns to
• a set X the topological space (X,Oind) with the indiscrete topology,
• a map f : X → Y the continuous map f : (X,Oind)→ (Y,Oind).

The forgetful functor F : Top → Set is right adjoint to the discrete topology functor
D : Set→ Top that assigns
• to a set X the topological space (X,Odisc) with the discrete topology,
• to a map f : X → Y the continuous map f : (X,Odisc)→ (Y,Odisc).

The bijections between the Hom-Sets are

Φ(W,O),X : HomTop((W,O), (X,Oind))→ HomSet(W,X), f 7→ f

ΦX,(W,O) : HomSet(X,W )→ HomTop((X,Odisc), (W,O)), f 7→ f.

The statement that these are bijections expresses the fact that any map f : W → X from
a topological space (W,O) into a set X becomes continuous when X is equipped with the
indiscrete topology and any map f : X → W becomes continuous when X is equipped
with the discrete topology. The naturality condition in (3) follows directly.

3. Forgetful functors without left or right adjoints:
The forgetful functor V : Field→ Set has no right or left adjoint. If it had a left adjoint
F : Set→ Field or a right adjoint G : Set→ Field there would be bijections

Φ∅,K : HomSet(∅,K)→ HomField(F (∅),F). ΦF,{x} : HomField(F, G({x}))→ HomSet(F, {x})

for any field F. This would imply that F (∅) is an initial object in Field, a subfield of any
other field F, and that G({x}) is a terminal object in Field, a field containing any field F
as a subfield. This would require charF = charF (∅) = charG({x}) for all fields F.

4. Inclusion functor and abelisation: The inclusion functor G : Ab → Grp is right
adjoint to the abelisation functor F : Grp→ Ab from Example 1.1.6, 10. (Exercise 3).

5. Products, coproducts and diagonal functors:
• Let C be a category and I a set such that products and coproducts in C exist for all
families of objects indexed by I.

• Let CI be the category with families (Ci)i∈I of objects in C as objects and families
(fi : Ci → C ′i)i∈I of morphisms in C as morphisms, with componentwise composition.
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• Let ∆ : C → CI be the diagonal functor that assigns to an object C and a morphism
f : C → C ′ in C the constant families (C)i∈I and (f)i∈I .

• Let ΠI : CI → C be the product functor that assigns to a family (Ci)i∈I the product
Πi∈ICi and to a family (fi)i∈I : (Ci)i∈I → (C ′i)i∈I the morphism Πi∈Ifi : Πi∈ICi → Πi∈IC

′
i

with π′i ◦ (Πi∈Ifi) = fi ◦ πi induced by the universal property of the product.

• Let qI : CI → C be the coproduct functor that assigns to a family (Ci)i∈I the coproduct
qi∈ICi and to a family (fi)i∈I : (Ci)i∈I → (C ′i)i∈I the morphism qi∈Ifi : Πi∈ICi → Πi∈IC

′
i

with (qi∈Ifi) ◦ ιi = ι′i ◦ fi induced by the universal property of the coproduct.

Then ΠI : CI → C is right adjoint to ∆ and qI : CI → C is left adjoint to ∆. The bijections
between the Hom-sets are given by

ΦC,(Ci)i∈I : HomC(C,Πi∈ICi)→ HomCI ((C)i∈I ,Πi∈ICi), f 7→ (πi ◦ f)i∈I

Φ−1
(Ci)i∈I ,C

: HomC(qi∈ICi, C)→ HomCI ((Ci)i∈I , (C)i∈I), f 7→ (f ◦ ιi)i∈I .

The universal property of the (co)product implies that they are bijections, and a short
computation shows that they satisfy the naturality condition in (3).

6. Tensor products and Hom-functors:
• For any R-right module M , the functor M⊗R− : R-Mod→ Ab is left adjoint to the

functor Hom(M,−) : Ab→ R-Mod.

• For any R-left module N the functor −⊗R N : Rop-Mod→ Ab is left adjoint to the
functor Hom(N,−) : Ab→ Rop-Mod.

Proof:
We prove the claim for R-right modules M . For an abelian group A and R-left module L
we equip HomAb(M,A) with the R-module structure (r � φ)(m) = φ(m� r) and define

φL,A : HomR-Mod(L,HomAb(M,A)) → HomAb(M ⊗R L,A)

ψ : L→ HomAb(M,A), l 7→ ψl 7→ χ : M⊗RL→ A, m⊗l 7→ ψl(m).

The map χ : M⊗RL → A, m⊗l 7→ ψl(m) is well defined, since the R-linearity of the
map ψ : L → HomAb(M,A) implies that χ′ : M × L → A, (m, l) → ψl(m) is R-bilinear:
χ′(m, r � l) = ψr�l(m) = (r � ψl)(m) = ψl(m � r) = χ′(m � r, l) for all r ∈ R, l ∈ L
and m ∈ M . By the universal property of the tensor product, it induces a unique group
homomorphism χ : M ⊗R L→ A with χ(m⊗l) = χ′(m, l). The inverse of φL,A is given by

φ−1
L,A : HomAb(M ⊗R L,A) → HomR-Mod(L,HomAb(M,A))

χ : M⊗RL→ A, 7→ ψ : L→ HomAb(M,A), l 7→ ψl with ψl(m) = χ(m⊗ l).

As we have ψr�l(m) = χ(m⊗ (r� l)) = χ((m� r)⊗ l) = ψl(m� r), the map ψl is indeed
R-linear, and a short computation shows that the diagram (3) commutes for all R-linear
maps f : L′ → L and all group homomorphisms g : A→ A′. 2

7. Restriction, induction and coinduction:
Let φ : R → S be a ring homomorphism and Res : S-Mod → R-Mod the restriction
functor from Example 1.1.6, 5. that sends

• an S-module (M,�S) to the R-module (M,�R) with r �R m = φ(r) �S m,

• every S-linear map f : M →M ′ to itself.
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The induction functor Ind = S⊗R− : R-Mod→ S-Mod is left adjoint to Res. It sends

- an R-module M to the S-module Ind(M) = S ⊗RM with s� (s′⊗m) = (ss′)⊗m,
- an R-linear map f : M →M ′ to the S-linear map Ind(f) = idS ⊗ f .

The coinduction functor Coind = HomR(S,−) : R-Mod → S-Mod is right adjoint to
Res. It sends

- an R-module M to the S-module HomR(S,M) with (s� f)(s′) = f(s′ · s),
- an R-linear map f : M →M ′ to HomR(S, f) : g 7→ f ◦ g.

Proof:
To see that Ind is left adjoint to Res, note that the (S,R)-bimodule structure on S given
by s � s′ = s · s′ and s � r = s · φ(r) defines an S-left-module structure on the abelian
group S⊗RM given by s� (s′⊗m) = (s · s′)⊗m. For all R-modules M and S-modules N
the group homomorphisms

φM,N : HomR(M,Res(N))→ HomS(Ind(M), N), φM,N(f)(s⊗m) = s� f(m)

ψM,N : HomS(Ind(M), N)→ HomR(M,Res(N)), ψM,N(g)(m) = g(1⊗m).

are mutually inverse and hence bijections. To prove that the diagram (3) commutes, we
compute for all R-linear maps f : M ′ →M , h : M → N and S-linear maps g : N → N ′

g ◦ φM,N(h) ◦ (idS⊗f)(s⊗m′) = g ◦ φM,N(h)(s⊗f(m′)) = g(s� h ◦ f(m′))

= s� (g ◦ h ◦ f(m′)) = φM ′,N ′(g ◦ h ◦ f)(s⊗m′).

To show that Coind is right adjoint to Res we consider the ring S with the R-left module
structure r � s := φ(r) · s and the abelian group HomR(S,M) with the S-left module
structure (s� f)(s′) = f(s′ · s) and note that the maps

φM,N : HomR(Res(N),M)→ HomS(N,HomR(S,M)), φM,N(f)(s) = f(s� n)

ψM,N : HomS(N,HomR(S,M))→ HomR(Res(N),M), ψM,N(g)(n) = g(n)(1).

are mutually inverse and hence bijections. A short computation shows that φM,N makes
the diagram (3) commute. 2

8. Induction, coinduction and forgetful functor:
For every ring S, the induction functor Ind = S⊗Z− : Ab → S-Mod is left adjoint and
the coinduction functor Coind = HomZ(S,−) : Ab → S-Mod is right adjoint to the
forgetful functor Res : S-Mod→ Ab.

This is Example 1.2.7, 7. for R = Z, where Res : S-Mod→ Ab is the forgetful functor.

These examples show that adjoint functors arise in many contexts in algebra and topology and
are often related to certain canonical constructions such as forgetful functors, freely generated
modules or tensoring over a ring. Example 1.2.7, 3. shows that a functor need not have left and
right adjoints. However, it seems plausible that if they exist, left or right adjoint functors should
be unique, at least up to natural isomorphisms. To address this, we work with an alternative
characterisation of left and right adjoints in terms of natural transformations.

Proposition 1.2.8: A functor F : C → D is left adjoint to G : D → C if and only if there
are natural transformations ε : FG ⇒ idD and η : idC ⇒ GF , the unit and counit of the
adjunction, such that

(Gε) ◦ (ηG) = idG, (εF ) ◦ (Fη) = idF . (4)
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Proof:
1. Let F : C → D be left adjoint to G : D → C. Then there are bijections

φG(D),D : HomC(G(D), G(D))→ HomD(FG(D), D)

φ−1
C,F (C) : HomD(F (C), F (C))→ HomC(C,GF (C)).

We define the natural transformations ε : FG ⇒ idD and η : idC ⇒ GF by specifying their
component morphisms:

εD := φG(D),D(1G(D)) : FG(D)→ D ηC := φ−1
C,F (C)(1F (C)) : C → GF (C).

The commuting diagram (3) in Definition 1.2.6 implies

φC′.D′(G(g) ◦ h ◦ f) = g ◦ φC,D(h) ◦ F (f)

for all morphisms h : C → G(D), f : C ′ → C and g : D → D′. It follows that for every
morphism k : D → D′ in D:

εD′ ◦ FG(k) = φG(D′),D′(1G(D′)) ◦ FG(k)
(3)
= φG(D),D(1G(D′) ◦G(k)) = φG(D),D(G(k))

= φG(D),D(G(k) ◦ 1G(D))
(3)
= k ◦ φG(D),D(1G(D)) = k ◦ εD.

This shows that the morphisms εD : FG(D)→ D define a natural transformation ε : FG→ idD.
Diagram (3) then implies for all objects C in C

εF (C) ◦ F (ηC) = φGF (C),F (C)(1GF (C)) ◦ F (φ−1
C,F (C)(1F (C)))

(3)
= φC,F (C)(1GF (C) ◦ φ−1

C,F (C)(1F (C))) = φC,F (C) ◦ φ−1
C,F (C)(1F (C)) = 1F (C).

The proofs for η : idC ⇒ GF and of the identity G(εD) ◦ ηG(D) = 1G(D) are analogous.

2. Let ε : FG ⇒ idD and η : idC ⇒ GF be natural transformations that satisfy (4). Consider
for all objects C in C und D in D the maps

φC,D = Hom(1F (C), εD) ◦ F : HomC(C,G(D))→ HomD(F (C), D), f 7→ εD ◦ F (f)

ψC,D = Hom(ηC , 1G(D))) ◦G : HomD(F (C), D)→ HomC(C,G(D)), g 7→ G(g) ◦ ηC .

Then we have for all morphisms f : C → G(D) in C and g : F (C)→ D in D

ψC,D ◦ φC,D(f) = G(εD) ◦GF (f) ◦ ηC
nat
= G(εD) ◦ ηG(D) ◦ f

(4)
= f

φC,D ◦ ψC,D(g) = εD ◦ FG(g) ◦ F (ηC)
nat
= g ◦ εF (C) ◦ F (ηC)

(4)
= g.

This shows that ψC,D = φ−1
C,D and φC,D : HomC(C,G(D)) → HomD(F (C), D) is a bijection.

To verify that the diagram (3) in Definition 1.2.6 commutes, consider morphisms f : C ′ → C,
h : C → G(D) in C and g : D → D′ in D and compute

φC′,D′(G(g) ◦ h ◦ f) = εD′ ◦ FG(g) ◦ F (h) ◦ F (f)
nat
= g ◦ εD ◦ F (h) ◦ F (f) = g ◦ φC,D(h) ◦ F (f).

2

Theorem 1.2.9: Left and right adjoint functors are unique up to natural isomorphisms.
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Proof:
Let F, F ′ : C → D be left adjoint to G : D → C. Then by Proposition 1.2.8 there are natural
transformations ε : FG⇒ idD, η : idC ⇒ GF and ε′ : F ′G⇒ idD, η′ : idC ⇒ GF ′ satisfying (4).
Consider the natural transformations κ = (εF ′) ◦ (Fη′) : F ⇒ F ′, κ′ = (ε′F ) ◦ (F ′η) : F ′ ⇒ F
with component morphisms κC = εF ′(C) ◦ F (η′C) and κ′C = ε′F (C) ◦ F ′(ηC). Then κC und κ′C are
inverse to each other since

κC ◦ κ′C
def κ
= εF ′(C) ◦ F (η′C) ◦ κ′C

natκ′
= εF ′(C) ◦ κ′GF ′(C) ◦ F ′(η′C)

defκ′
= εF ′(C) ◦ ε′FGF ′(C) ◦ F ′(ηGF ′(C)) ◦ F ′(η′C)

nat ε′
= ε′F ′(C) ◦ F ′G(εF ′(C)) ◦ F ′(ηGF ′(C)) ◦ F ′(η′C)

= ε′F ′(C) ◦ F ′(G(εF ′(C)) ◦ ηGF ′(C)) ◦ F ′(η′C)
(4)
= ε′F ′(C) ◦ F ′(η′C)

(4)
= 1F ′(C),

and an analogous computation yields κ′C ◦ κC = 1F (C). This shows that κ and κ′ are natural
isomorphisms and that F is naturally isomorphic to F ′. The proof for right adjoints is analogous.
2

1.3 Hom functors and the Yoneda lemma

Besides identity functors and constant functors, the Hom functors are the only functors that
arise directly from the definition of a category and are defined for all categories. They play a
special role, as they allow one to relate and translate claims for a category C to claims in Set.
They are also important in relation to adjoint functors.

Definition 1.3.1: Let C be a category. The Hom functors for an object C ∈ ObC there are
functors Hom(C,−) : C → Set and Hom(−, C) : Cop → Set that assign

• to an object the sets of morphisms HomC(C,D) and HomC(D,C),
• to a morphism f : D → D′ the maps

Hom(C, f) : HomC(C,D)→ HomC(C,D
′), Hom(f, C) : HomC(D

′, C)→ HomC(D,C),

g 7→ f ◦ g g 7→ g ◦ f.

Given a functor F : C → Set or F : Cop → Set one might ask if this functor is naturally
isomorphic to a Hom functor for an object C ∈ ObC. If this is the case, then it singles out
an object in C with special properties. Obvious functors to consider are the forgetful functors
V : C → Set in concrete categories.

Definition 1.3.2: Let C be a category.

1. A functor F : C → Set is called representable, , if there is an object C ∈ Ob C, a
representing object of F , and a natural isomorphism η : Hom(C,−)⇒ F .

2. A functor F : Cop → Set is called representable, if there is an object C ∈ Ob C, a
representing object of F , and a natural isomorphism η : Hom(−, C)⇒ F .
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Example 1.3.3:

1. The identity functor idSet : Set → Set is representable with the singleton set {•} as
representing object.

Proof:
The maps ηX : HomSet({•}, X)→ X, f 7→ f(•) for every set X define a natural isomor-
phism η : Hom({•},−)→ idSet. As all maps g : X → X ′ the satisfy the identities

g ◦ ηX′(f) = g(f(•)) = ηX′(g ◦ f) = ηX′(Hom({•}, g)(f)) = ηX′ ◦ Hom({•}, g)(f),

one has the commuting diagram for a natural transformation

HomSet({•}, X)
ηX :f 7→f(•)//

Hom({•},f):g 7→f◦g
��

X

g

��
HomSet({•}, X ′)

ηX′ :f 7→f(•)
// X ′.

2

2. The forgetful functor V : Top → Set is representable with the singleton space {•} as
representing object.

Proof:
This follows, because continuous maps g : {•} → X are in bijection with points x ∈ X.
The maps ηX : HomTop({•}, X) → X, f 7→ f(•) then define a natural isomorphism
η : Hom({•},−)→ V . 2

3. The forgetful functor V : R-Mod→ Set is representable with the ring R as a left module
over itself as representing object.

Proof:
Any R-linear map f : R → M satisfies f(r) = f(r � 1) = r � f(1) for all r ∈ R and
hence is determined uniquely by f(1) ∈M . The maps ηM : HomR(R,M)→M , f 7→ f(1)
define a natural isomorphism η : HomR-Mod(R,−) → V , because one has for all R-linear
maps g : M →M ′

ηM ′ ◦ Hom(R, f)(g) = ηM(f ◦ g) = f(g(1)) = f(ηM(g)) = f ◦ ηM(g),

and this yields the commuting diagram for a natural transformation

HomR-Mod(R,M)
ηM :f 7→f(1)//

Hom(R,f):g 7→f◦g
��

M

g

��
HomR-Mod(R,M ′)

ηM′ :f 7→f(1)
// M ′.

2

4. The forgetful functor V : Grp→ Set is representable with representing object Z.

Proof:
This follows, because any group homomorphism f : Z → G is determined uniquely
by f(1). This yields a bijection between group homomorphisms f : Z → G and ele-
ments of G. The maps ηG : HomGrp(Z, G) → G, f 7→ f(1) define a natural isomorphism
η : Hom(Z,−)→ V . 2
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5. The forgetful functor V : URing→ Set is representable with the polynomial ring Z[x] as
representing object. (Exercise)

The definition of a representable functor F : C → Set and the examples raise the question
about the uniqueness of the representing object C and the associated natural isomorphism
η : Hom(C,−) ⇒ F . We will see that the former follows from the latter and investigate the
uniqueness of natural transformations η : Hom(C,−) ⇒ F . It is clear that any such natural
transformation has a special component morphism, namely the map ηC : HomC(C,C)→ F (C),
and a distinguished morphism in its domain, the identity morphism 1C ∈ HomC(C,C). It turns
out that its image determines η completely, due to naturality.

Theorem 1.3.4: (Yoneda-Lemma) Let C be locally small.
Let F : C → Set be a functor and C ∈ ObC. Then natural transformations η : Hom(C,−)⇒ F
form a set MC,F = HomSetC(Hom(C,−), F ) and the Yoneda map is a bijection

Y : MC,F → F (C), η 7→ ηC(1C)

Proof:
1. Injectivity of the Yoneda map:
A natural transformation η : Hom(C,−) ⇒ F defines maps ηC′ : HomC(C,C

′) → F (C ′) for
C ′ ∈ ObC, such that the following diagram commutes for every morphism f : C ′ → C ′′

HomC(C,C
′)

g 7→f◦g
��

ηC′ // F (C ′)

F (f)

��
HomC(C,C

′′)
ηC′′ // F (C ′′).

Setting C = C ′ and g = 1C ∈ HomC(C,C) yields

ηC′′(f) = F (f) ◦ ηC(1C) ∀f ∈ HomC(C,C
′′).

This shows that ηC′ : HomC(C,C
′) → F (C ′) is uniquely determined by F and ηC(1C). Hence,

the Yoneda map Y : MC,F → F (C) is injective.

2. Surjectivity of the Yoneda map:
To show that the Yoneda map is surjective, we construct for every element c ∈ F (C) a natural
transformation τ : Hom(C,−)⇒ F with τC(1C) = c. We define the component morphisms

τC : HomC(C,C
′)→ F (C ′), h 7→ F (h)(c),

which satisfy τC(1C) = F (1C)(c) = 1F (C)(c) = idF (C)(c) = c. The morphisms τC′ define a natural
transformation if and only if the following diagram commutes for all morphisms f : C ′ → C ′′

HomC(C,C
′)

h7→f◦h
��

τC′ :h7→F (h)(c)// F (C ′)

F (f)
��

HomC(C,C
′′)

τC′′ :k 7→F (k)(c)
// F (C ′′).

This follows by a direct computation: F (f)(F (h)(c)) = (F (f) ◦ F (h))(c) = F (f ◦ h)(c) and
shows that the Yoneda map is surjective. 2
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Corollary 1.3.5: Let C be a category.

1. The functors Hom(C,−),Hom(C ′,−) : C → Set for C,C ′ ∈ ObC are naturally isomorphic
if and only if the objects C and C ′ are isomorphic.

2. If F : C → Set is representable, its representing object is unique up to isomorphism.

3. Analogous claims hold for the functors Hom(−, C) : Cop → Set and F : Cop → Set.

Proof:
1. Every isomorphism ε : C → C ′ defines bijections

ηD : HomC(C,D)→ HomC(C
′, D), g 7→ g◦ε−1 η−1

D : HomC(C
′, D)→ HomC(C,D), g 7→ g◦ε,

for all objects D in C. They form a natural isomorphism η : Hom(C,−)⇒ Hom(C ′,−), because
the following diagram commutes for all morphisms f : D → D′

HomC(C,D)

Hom(C,f): g 7→f◦g
��

ηD:g 7→g◦ε−1
// HomC(C

′, D)

Hom(C′,f): g 7→f◦g
��

HomC(C,D
′)
ηD′ :g 7→g◦ε−1

// HomC(C
′, D′).

Conversely, any natural isomorphism η : Hom(C,−) ⇒ Hom(C ′,−) defines an isomorphism
f = η−1

C′ (1C′) : C → C ′ with inverse f−1 = ηC(1C) : C ′ → C, because the diagrams

HomC(C,C)

Hom(C,f): g 7→f◦g
��

ηC // HomC(C
′, C)

Hom(C′,f): g 7→f◦g
��

HomC(C,C
′) ηC′

// HomC(C
′, C ′).

HomC(C
′, C ′)

g 7→ηC(1C)◦g
��

η−1
C′ // HomC(C,C

′)

g 7→ηC(1C)◦g
��

HomC(C
′, C)

η−1
C

// HomC(C,C).

commute by naturality of η. Evaluating the diagram on the left on 1C ∈ HomC(C,C) and the
diagram on the right on 1C′ ∈ HomC(C

′, C ′) yields

f ◦ ηC(1C) = ηC′(f ◦ 1C) = ηC′(f) = 1C′

ηC(1C) ◦ f = ηC(1C) ◦ η−1
C′ (1C′) = η−1

C (ηC(1C) ◦ 1C) = η−1
C (ηC(1C)) = 1C

This shows that f : C → C ′ is an isomorphism with inverse f−1 = ηC(1C) : C ′ → C.

2. If C,C ′ are both representing objects of F : C → Set, there are natural isomorphisms
η : Hom(C,−) ⇒ F und η′ : Hom(C ′,−) ⇒ F ′. Because they define a natural isomorphism
η′−1 ◦ η : Hom(C,−)⇒ Hom(C ′,−), claim 1. implies C ∼= C ′. 2

This Corollary and the Yoneda lemma are useful, because they translate claims about functors
and natural transformations into claims about morphism sets. They can be applied whenever
functors are characterised by claims about sets of morphisms. To illustrate this, we give an
alternative proof of the uniqueness of adjoints with the Yoneda lemma.

Corollary 1.3.6:
If a functor F : C → D has a left or right adjoint, it is unique up to natural isomorphisms.
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Proof:
Let F, F ′ : C → D left adjoint to G : D → C with bijections

ΦC,D : HomC(C,G(D))→ HomD(F (C), D) Φ′C,D : HomC(C,G(D))→ HomD(F ′(C), D)

as in Definition 1.2.6 for all C ∈ Ob C and D ∈ ObD. This yields bijections

η
(C)
D = φ′C,D ◦ φ−1

C,D : HomD(F (C), D)→ HomD(F ′(C), D).

Because the isomorphisms φC,D and φ′C,D satisfy the naturality conditions in Definition 1.2.6,
the following diagram commutes for all morphisms f : D → D′ in D

HomD(F (C), D)

η
(C)
D

**

Hom(F (C),f):g 7→f◦g
��

Φ−1
C,D // HomC(C,G(D))

g 7→G(f)◦g
��

Φ′C,D // HomD(F ′(C), D)

Hom(F ′(C),f):g 7→f◦g
��

HomD(F (C), D′)

η
(C)

D′

44

Φ−1
C,D′ // HomC(C,G(D′))

Φ′
C,D′// HomD(F ′(C), D′).

This shows that for every C ∈ ObC the morphisms η
(C)
D define a natural isomorphism

η(C) : Hom(F (C),−)⇒ Hom(F ′(C),−), η
(C)
D = φ′C,D ◦ φ−1

C,D.

By the proof of Corollary 1.3.5 the morphisms τC = η
(C)
F (C)(1F (C)) : F ′(C) → F (C) are isomor-

phisms, and the naturality condition from Definition 1.2.6 implies that the following diagram
commutes for all morphisms f : C ′ → C

HomD(F (C), D)

η
(C)
D

**

g 7→g◦F (f)

��

Φ−1
C,D // HomC(C,G(D))

g 7→g◦f
��

Φ′C,D // HomD(F ′(C), D)

g 7→g◦F ′(f)
��

HomD(F (C ′), D)

η
(C′)
D

44

Φ−1
C′,D // HomC(C

′, G(D))
Φ′
C′,D// HomD(F ′(C ′), D).

Setting D = F (C) and g = 1F (C) yields with the naturality condition from Definition 1.2.6

τC ◦ F ′(f) = η
(C′)
F (C)(1F (C) ◦ F (f)) = η

(C′)
F (C)(F (f) ◦ 1F (C′)) = F (f) ◦ η(C′)

F (C′)(1F (C′)) = F (f) ◦ τC′ ,

This shows that the isomorphisms τC : F ′(C)→ F (C) form a natural isomorphism τ : F ′ ⇒ F .
2

References:

• Chapters I, III and IV in Mac Lane, S. (2013) Categories for the working mathematician,

• Chapters 1 and 2 in Richter, B. (2020) From categories to homotopy theory,

• Chapters 1,2 and 4 in Riehl, E. (2017) Category theory in context.
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2 Limits and Colimits

2.1 (Co)limits: definitions and examples

Limits and colimits are ubiquitous in category theory. Limits are generalisations of categorical
products and pullbacks. The dual concept, colimits, generalises categorical coproducts and
pushouts. Limits and colimits associate to given categorical data - certain families of objects in
a category C and morphisms between them - a distinguished object, the limit or colimit, and a
family of distinguished morphisms with a universal property.

The given categorical data can be viewed as a functor F : J → C from a category J that
encodes the combinatorics of the given objects and morphisms. Often, the category J is small
and rather trivial. It determines the shape of the diagram for the universal property. The functor
F : J → C is therefore called a diagram. Limits and colimits can then be viewed as optimal
approximations of the diagram F : J → C by constant functors.

We start by considering constant functors F : J → C and natural transformations between
them. Such functors and natural transformations are defined, respectively, by a choice of an
object and a morphism in C and define a functor from C to the functor category CJ .

Definition 2.1.1: Let J , C be categories. The embedding functor ∆ : C → CJ sends

• C ∈ ObC to the constant functor ∆(C) : J → C with ∆(C)(J) = C and ∆(C)(j) = 1C
for all objects J and morphisms j in J ,

• f ∈HomC(C,C
′) to the constant natural transformation ∆(f) : ∆(C)⇒∆(C ′) with

component morphisms ∆(f)J = f : C → C ′ for all J ∈ ObJ .

The only sensible interpretation of an approximation of a functor F : J → C by a constant
functor ∆(C) : J → C is a natural transformation between them. The constant functor ∆(C)
is either the source or the target of this natural transformation. In the first case, one calls
the natural transformation a cone over F , in the second a cocone or a cone under F . The
component morphisms of the natural transformation are called legs.

The name cone originated in topology, where constructions involving topological cones give rise
to categorical cones. One can also justify it by viewing the images of objects and morphisms in
J under F as a diagram in a plane. If the object C is placed above the plane, the component
morphisms of the natural transformation correspond to downward arrows from C to the vertices
in the plane and form a cone. Cocones are the dual concept and hence correspond to an object
C below this plane with arrows pointing downwards towards C.

Definition 2.1.2: Let C,J be categories. A diagram of shape J in C is a functor F : J → C.

1. A cone over a diagram F : J → C with apex C ∈ ObC is a natural transformation
λ : ∆(C) ⇒ F : a family of morphisms λJ : C → F (J) indexed by ObJ such that
F (j) ◦ λJ = λJ ′ for all morphisms j : J → J ′ in J

C
λJ

||

λJ′

""
F (J)

F (j)
// F (J ′).
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2. A cone morphism from λ : ∆(C) ⇒ F to µ : ∆(C ′) ⇒ F is a morphism f : C → C ′

with µ ◦∆(f) = λ:
C

f
��λJ

��

λJ′

��

C ′

µJ|| µJ′ ""
F (J)

F (j)
// F (J ′)

3. A cocone under a diagram F : J → C with nadir C ∈ ObC is a natural transformation
λ : F ⇒ ∆(C): a family of morphisms λJ : F (J) → C indexed by ObJ such that
λJ ′ ◦ F (j) = λJ for all morphisms j : J → J ′ in J

F (J)

λJ ""

F (j) // F (J ′)

λJ′||
C

4. A cocone morphism from λ : F ⇒ ∆(C) to µ : F ⇒ ∆(C ′) is a morphism f : C → C ′

with ∆(f) ◦ λ = µ.

F (J)

λJ ""

µJ

""

F (j) // F (J ′)

λJ′||

µJ′

||

C

f
��
C ′

We denote by (co)cone(F ) the category of (co)cones for a diagram F : J → C and (co)cone
morphisms between them.

We now define a limit of a functor F : J → C as a cone over F that approximates F as closely
as possible from above. Approximation by any other cone must give rise to a cone morphism
from that cone to the limit. Thus, we define a limit as a terminal object in the category cone(F ).
Dually, a colimit of F is a cocone that approximates F as closely as possible from below and is
defined as an initial object in the category cocone(F ).

Definition 2.1.3: Let F : J → C be a diagram.

1. A limit of F is a terminal object in the category cone(F ): a cone λ : ∆(limF )⇒ F such
that for every cone µ : ∆(C)⇒ F there is a unique cone morphism f : C → limF .

C

∃!f
��µJ





µJ′

��

limF

λJzz λJ′ $$
F (J)

F (j)
// F (J ′)
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2. A colimit of F is an initial object in the category cocone(F ): a cocone λ : F ⇒ ∆(colimF )
that yields for any cocone µ : F ⇒ ∆(C) a unique cocone morphism f : colimF → C.

F (J)

λJ %%

µJ

%%

F (j) // F (J ′)

λJ′yy

µJ′

yy

colimF

∃!f
��
C

Remark 2.1.4:

1. To emphasise the shape of the diagram we sometimes write limJ F and colimJF instead
of limF and colimF . This is the standard convention in the literature.

2. To distinguish the objects limF , colimF from the (co)cones λ : ∆(limF ) ⇒ F and
µ : F ⇒ ∆(colimF ), we often call the latter limit cone and colimit cone. In most
references the word (co)limit refers to both, the object and the natural transformation.

Remark 2.1.5:

1. As terminal (initial) objects, (co)limits are unique up to unique isomorphisms.

If λ : ∆(C)⇒ F and µ : ∆(C ′)⇒ F are limits of F : J → C, then there is a unique cone
morphism f : C → C ′ and a unique cone morphism f ′ : C ′ → C. The universal property
of the limit then implies f ◦f ′ = 1C′ and f ′◦f = 1C . An analogous claim holds for colimits.

2. The existence of (co)limits is not guaranteed. It depends on the functor F : J → C.

3. Colimits of diagrams F : J → C can be viewed as limits of the opposite diagram
F ′ : J op → Cop and vice versa.

Every natural transformation µ : F ⇒ G a defines a natural transformation µ′ : G′ ⇒ F ′.
Thus, (initial) cocones for F : J → C are (terminal) cones for F ′ : J op → Cop.

We will often use Remark 2.1.5, 3. when proving claims for limits and the dual claims for
colimits. Although we state both claims for completeness, it is sufficient to prove one of them.

We now consider examples of (co)limits. In most examples the categories J have a very simple
form and consist of few objects or morphisms. The resulting (co)limit cones then correspond
to familiar diagrams characterising the universal properties of certain constructions.

Example 2.1.6:

1. constant functors:
A category J is called connected, if for any two objects J, J ′ ∈ ObJ there is a finite
sequence of objects J = J0, J1, . . . , Jn = J ′ with HomJ (Ji, Ji+1)∪HomJ (Ji+1, Ji) 6= ∅ for
each i = 0, ..., n− 1. In a connected category, every constant functor ∆(C) : J → C has
limit and colimit cone id∆(C) : ∆(C)⇒ ∆(C) (Exercise 6).

2. (co)products:
Let J be a small discrete category, a category with ObJ = J for a set J and only

identity morphisms. Then limits of functors F : J → C are products Πj∈JF (j) and
colimits coproducts qj∈JF (j).
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• A functor F : J → C is simply a family of objects (Cj ∈ ObC)j∈J indexed by J .

• Cones π : ∆(C)⇒ F are families of morphisms (πj : C → Cj)j∈J . A cone π : ∆(C)⇒ F
is terminal, if for any family of morphisms (fj : C ′ → Cj)j∈J , there is a unique morphism
f : C ′ → C with πj ◦ f = fj for all j ∈ J . Thus, limF = Πj∈JCj is a product.

• Cocones ι : F ⇒ ∆(C) are families of morphisms (ιj : Cj → C)j∈J , and a cocone is
initial, if for every family of morphisms (fj : Cj → C ′)j∈J there is a unique morphism
f : C → C ′ with f ◦ ιj = fj for all J ∈ J . Thus, colimF = qj∈JCj is a coproduct.

3. pullbacks and pushouts:
Let J be a category with three objects J0, J1, J2 and two non-identity morphisms

J1
j1−→ J0

j2←− J2.

Then a limit of a functor F : J → C is a pullback or fibre product and a colimit of a
functor F : J op → C a pushout in C.

• Functors F : J → C are pairs of morphisms p1 : C1 → C0 and p2 : C2 → C0 in C.
A cone λ : ∆(C) ⇒ F is a triple of morphisms λj : C → Cj for j = 0, 1, 2 with
λ0 = p1◦λ1 = p2◦λ2 or, equivalently, a pair λ1 : C → C1, λ2 : C → C2 with p1◦λ1 = p2◦λ2.
It is terminal, if for every pair of morphisms µ1 : C ′ → C1, µ2 : C ′ → C2 satisfying
p1 ◦µ1 = p2 ◦µ2 there is a unique morphism f : C ′ → C with λ1 ◦ f = µ1 and λ2 ◦ f = µ2.

C ′

∃!f

  

µ2

��

µ1

""

C

λ1

��

λ2 // C2

p2

��
C1 p1

// C0.

• Functors F : J op → C are pairs of morphisms i1 : C0 → C1 and i2 : C0 → C2 in C.
A cocone λ : F ⇒ ∆(C) under F is a pair of morphisms λ1 : C1 → C, λ2 : C2 → C with
λ1 ◦ i1 = λ2 ◦ i2. It is initial, if for every pair of morphisms µ1 : C1 → C ′, µ2 : C2 → C ′

there is a unique morphism f : C → C ′ with f ◦ λi = µi.

C ′

C

∃!f
``

C2
λ2oo

µ2
oo

C1

µ1

PP

λ1

OO

C0.i1
oo

i2

OO

Example 2.1.7: Examples of (co)products are the following:

1. terminal and initial objects:
If J = ∅ in Example 2.1.6, 2. then the associated product in C is a terminal object,
an object T ∈ ObC such that for every object C ∈ ObC there is a unique morphism
tC : C → T . The associated coproduct in C is an initial object, an object I ∈ ObC such
that for every C ∈ ObC there is a unique morphism iC : I → C.
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2. (co)powers: If (Cj)j∈J in Example 2.1.6, 2. is a constant family with Cj = C for all
j ∈ J , then the product Πj∈JC is called a power of C and denoted CJ and the coproduct
qj∈JC is called a copower of C and denoted J · C. If C = Set, they coincide with
the set CJ of functions from J to C and with the product J×C, respectively (Exercise 8).

3. Set and Top: A product of a family (Xj)j∈J of sets (topological spaces) is their usual
product Πj∈JXj (with the product topology). Their coproduct is the disjoint union
∪̇j∈JXj (with the sum topology).

4. R-Mod: The product of a family (Mj)j∈J of R-modules is their usual product, and their
coproduct is the direct sum ⊕j∈JMj. Finite products and coproducts are isomorphic,
and this holds more generally for any abelian category.

5. Grp: The product of a family (Gj)j∈J of groups is their direct product ×j∈JGj. Their
coproduct is the free product ?j∈JGj. Elements of the free product are finite tuples
(g1, . . . , gk) of non-trivial elements of the groups Gj such that neighbouring entries are in
different groups. The group multiplication is given by

(g1, . . . , gk) · (h1, . . . , hl) =


(g1, . . . , gk−1) · (h2, . . . , hl) gk = h−1

1 ∈ Gi

(g1, . . . , gk−1, gk · h1, h2, . . . , hl) gk 6= h−1
1 ∈ Gi

(g1, . . . , gk, h1, . . . , hm) else,

and the inclusion morphisms by ιi : Gi → qj∈JGj, g 7→ (g).

6. Ring: The product of a family (xj)j∈J of rings is their direct product. Their coproduct is
the free product of rings, constructed analogously to the one for groups. It is a quotient
of the tensor algebra of R⊕ S over Z by an ideal that encodes the relations of R, S.

Pullbacks and pushouts are ubiquitous in topology. Pushouts are quotient spaces of topological
sums and allow one to build up topological spaces from simpler components. Many of the spaces
investigated in topology and geometry are built in this way. Pullbacks are subspaces of product
spaces and also arise in many applications. Pullbacks and pushouts also exist for morphisms in
familiar algebraic categories such as Grp, Ring, R-Mod, AlgF.

The Seifert-van Kampen theorem states that the functor Π1 : Top→ Grpd that assigns to
a topological space X its fundamental groupoid Π1(X) and to a continuous map f : X → Y
the induced functor between them, sends pushouts in Top to pushouts in Grpd.

Algebraic examples of pushouts arise, whenever an algebraic structure is presented in terms
of generators and relations.This includes presentations of groups, algebras and modules over
rings. Other important examples of pullbacks and pushouts are (co)kernel pairs. A kernel
pair is the pullback and a cokernel pair the pushout of two identical morphisms. Kernel
pairs detect monomorphisms and cokernel pairs epimorphisms, which generalise injective and
surjective maps to categories (cf. Exercise 13).

Example 2.1.8: (Pullbacks and pushouts in Top)

1. A pullback of a pair of continuous maps p1 : X1 → X0, p2 : X2 → X0 is the set
X1 ×X0 X2 = {(x1, x2) ∈ X1 ×X2 | p1(x1) = p2(x2)} with the subspace topology induced
by the product topology and with the continuous maps λi : X1×X0X2 → Xi, (x1, x2) 7→ xi.
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2. A pushout of a pair of continuous maps i1 : X0 → X1, i2 : X0 → X2 is the set
X1 +X0 X2 = X1∪̇X2/ ∼ with1 i1(x0) ∼ i2(x0) for all x0 ∈ X0 with the quotient topology
induced by the sum topology and with the maps λi : Xi → X1 +X0 X2, x 7→ [ιi(x)].

3. wedge product: If X0 = {x0}, then the continuous maps ij : X0 → Xj are given by two
points x1 = i1(x0) ∈ X1, x2 = i2(x0) ∈ X2. The equivalence relation ∼ identifies x1 and
x2. In this case X1+X0X2 is called the wedge product of X1 and X2 and denoted X1∨X2.

4. attaching topological spaces:
If X0 ⊂ X1 is a subspace and i1 : X0 → X1 its inclusion, one says that X1 +X0 X2 is ob-
tained by attaching the topological space X1 to X2 with the attaching map i2. In this
case, the equivalence relation ∼ identifies all points x1 ∈ X0 with their images ι2(x1) ∈ X2.

5. attaching n-cells:
If in 4. X1 = qIDn is a topological sum of closed n-discs Dn = {x ∈ Rn | ||x|| ≤ 1} and
X0 = qISn−1 ⊂ X1 the disjoint union of their boundaries ∂Dn = Sn−1, one says that
X1 +X0 X2 is obtained by attaching n-cells to X2.

Example 2.1.9: (pullbacks and pushouts in other categories)

1. Set: Pullbacks and pushouts in Set are obtained from Example 2.1.8, 1. and 2. by
forgetting the topology.

2. R-Mod: The pullback of a pair of R-linear maps p1 : X1 → X0 and p2 : X2 → X0 is the
submodule X1 ×X0 X2 = {(x1, x2) ∈ X1 ×X2 | p1(x1) = p2(x2)} ⊂ X1 ×X2.

The pushout of a pair of R-linear maps i1 : X0 → X1 and i2 : X0 → X2 is the quotient
module X1 +X0 X2 = X1 ⊕X2/〈{i1(x0)− i2(x0) | x0 ∈ X0}〉.

3. Grp and Ring:
• Pullbacks in Grp and Ring are the same subsets as in Example 2.1.8, 1. with the
induced group or ring structure.

• Pushouts in Grp are factor groups C1 ?C2/N of the free product C1 ?C2 by the normal
subgroup N ⊂ C1 ? C2 generated by the set {ι1(c)ι2(c)−1 | c ∈ C0}. Pushouts in Ring are
given as quotients of the tensor algebra T (C1 ⊕ C2) by a certain ideal.

Note that all pullbacks in Examples 2.1.8 and 2.1.9 are subsets of products and all pushouts
quotients of coproducts. We will see later in Theorem 2.2.2 that this is not a coincidence. To
investigate this systematically, we need categorical concepts that generalise the subset U ⊂ X,
where two functions f1, f2 : X → Y are equal, and the quotient set Y/ ∼ obtained by identifying
their values. These are equalisers and coequalisers.

Example 2.1.10: (equalisers and coequalisers)
Let J be a category with two objects Js, Jt and two parallel non-identity morphisms

Js
j2
//

j1 // Jt

Functors F : J → C correspond to a choice of parallel morphisms f1, f2 : Cs → Ct in C.
1Here, we mean by ι1(x0) ∼ ι2(x0) for all x0 ∈ X0 the smallest equivalence relation ∼ on X := X1∪̇X2

generated by the subset {(ι1(x0), ι2(x0)) | x0 ∈ X0} ⊂ X ×X. We use a similar notation in the following.
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• A cone ι : ∆(C) ⇒ F corresponds to morphisms ιs : C → Cs and ιt : C → Ct with
f1 ◦ ιs = f2 ◦ ιs = ιt. This is equivalent to a choice of a single morphism ι = ιs : C → Cs with
f1 ◦ ι = f2 ◦ ι. A cone given by ι : C → Cs is terminal, if for any morphism µ : C ′ → Cs with
f1 ◦ µ = f2 ◦ µ, there is a unique morphism µ′ : C ′ → C with ι ◦ µ′ = µ.

• A cocone over F is given by a morphism π : Ct → C with π ◦ f1 = π ◦ f2. It is initial if for
any morphism µ : Ct → C ′ with µ ◦ f1 = µ ◦ f2, there is a unique µ′ : C → C ′ with µ′ ◦ π = µ.

• Thus, a limit of a functor F : J → C is an equaliser of the morphisms f1, f2 : Cs → Ct:
a morphism ι : eq(f1, f2) → Cs in C with f1 ◦ ι = f2 ◦ ι and the following universal property:
for every µ : C ′ → Cs with f1 ◦µ = f2 ◦µ, there is a unique µ′ : C ′ → eq(f1, f2) with ι ◦µ′ = µ.

eq(f1, f2) ι // Cs
f2

//
f1 // Ct

C ′
∃!µ′

dd
µ

OO

• A colimit of F : J → C is a coequaliser of the morphisms f1, f2 : Cs → Ct:
a morphism π : Ct → coeq(f1, f2) in C with π ◦f1 = π ◦f2 and the following universal property:
for every µ : Ct→C ′ with µ◦f1 = µ◦f2, there is a unique µ′ : coeq(f1, f2)→C ′ with µ′ ◦ π = µ.

coeq(f1, f2)

∃!µ′
%%

Ct
πoo

µ

��

Cs
f1oo

f2

oo

C ′

Example 2.1.11: (equalisers and coequalisers)

1. Let f1, f2 : X → Y be morphisms in Set (Top):

• Their equaliser is eq(f1, f2) = {x ∈ X | f1(x) = f2(x)} ⊂ X (equipped with the
subspace topology) with the (continuous) inclusion ι : eq(f1, f2)→ X.

• Their coequaliser is coeq(f1, f2) = Y/ ∼ with f1(x) ∼ f2(x) for all x ∈ X (equipped
with the quotient topology) with the (continuous) surjection π : Y → coeq(f1, f2).

2. Let R be a ring and f1, f2 : M → N morphisms in R-Mod:

• Their equaliser is the submodule eq(f1, f2) = ker(f1 − f2) ⊂ M with the inclusion
ι : eq(f1, f2)→M .

• Their coequaliser is coeq(f1, f2) = N/im(f1−f2) = coker(f1−f2) with the canonical
surjection π : N → coeq(f1, f2).

This covers Ab = Z-Mod, VectF = F-Mod and RepF(G) = F[G]-Mod for a group G.

3. More generally, any two morphisms f1, f2 : A→ A′ in an abelian category A have

• kernels as equalisers ι : ker(f1 − f2)→M ,
• cokernels as coequalisers π : N → coker(f1 − f2).

4. For two morphisms f1, f2 : G→ H in Grp:

• the equaliser is the subgroup eq(f1, f2) = {g ∈ G | f1(g) = f2(g)} ⊂ G with the
inclusion ι : eq(f1, f2)→ G,

• the coequaliser is the factor group H/N by the normal subgroup N generated by
the set {f1(g)f2(g)−1 | g ∈ G} with the canonical surjection π : H → H/N .
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5. For two morphisms f1, f2 : R→ S in Ring

• the equaliser is eq(f1, f2)={r∈R | f1(r)=f2(r)} with the inclusion ι : eq(f1, f2)→R,

• the coequaliser is the quotient S/I by the ideal I generated by {f1(r)−f2(r) | r ∈ R}
with the canonical surjection π : S → S/I.

So far we showed that (co)limits generalise many familiar notions for sets, topological spaces,
vector spaces, groups or rings to categories and treat them in a common framework. However,
they seem to have little to do with usual notions of limits in calculus and topology. In fact, limits
of sequences in a topological space can be viewed as special cases of categorical limits. This
requires a category of filters on a topological space and hence more background in topology.
Exercise 15 shows that categorical (co)limits capture the notions of infimum and supremum.

We can also consider other examples of limits and colimits associated to sequences of objects
and morphisms in a category. The appropriate diagram category J for sequences indexed by
non-negative integers is the poset category (N0,≤).

Recall that a partially ordered set or poset is a set X together with a relation � that is

(i) reflexive: x � x for all x ∈ X,
(ii) antisymmetric: x � y and y � x implies x = y,
(iii) transitive: x � y and y � z implies x � z.

The poset category for a poset (X,�) is a category C with ObC = X and morphism spaces
HomC(x, y) that contain a single morphism if x � y and are empty otherwise.

Example 2.1.12: (sequential (co)limits)
Let J be the poset category for (N0,≤).

A functor F : J → C corresponds to a family of objects (Ci)i∈N0 and a family of morphisms
fij : Ci → Cj for i ≤ j such that fii = 1Ci and fjk ◦fij = fik for all i ≤ j ≤ k. This is equivalent
to specifying a family of morphisms (fi : Ci → Ci+1)i∈N0 with no further relations. Thus:

• A functor F : J → C is a family of morphisms (fi : Ci → Ci+1)i∈N0 .
• A functor F : J op → C is a family of morphisms (fi : Ci+1 → Ci)i∈N0 .

A limit of a functor F : J op → C is called sequential limit or inverse limit and noted lim←fn.

It is a family of morphisms (λi : C → Ci)i∈N0 with fi ◦λi+1 = λi for all i ∈ N0 and the following
universal property: for any family of morphisms (µi : C ′ → Ci)i∈N0 with fi ◦ µi+1 = µi for all
i ∈ N0 there is a unique morphism f : C ′ → C with λi ◦ f = µi for all i ∈ N0.

C ′

∃!f
��µi

��

µi−1





µi+1



µi+2

��

C
λi

~~

λi+1

""
. . . Ci−1fi−2

oo Cifi−1

oo Ci+1fi
oo Ci+2fi+1

oo . . .
fi+2

oo

A colimit of a functor F : J → C is called sequential colimit or direct limit, lim→ fn.
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It is a family of morphisms (λi : Ci → C)i∈N0 with λi+1 ◦fi = λi for all i ∈ N0 and the following
universal property: for any family of morphisms (µi : Ci → C ′)i∈N0 with µi+1 ◦ fi = µi for all
i ∈ N0 there is a unique morphism f : C → C ′ with f ◦ λi = µi for all i ∈ N0.

. . .
fi−2 // Ci−1

fi−1 //

µi−1

,,

Ci
fi //

λi   

µi

((

Ci+1

µi+1

uu

λi+1||

fi+1 // Ci+2
fi+1 //

µi+2

qq

. . .

C

∃!f
��
C ′

Example 2.1.13: Let J be as in Example 2.1.12.

1. Let C = Set, Top, Grp, Ring, R-Mod or any other category whose objects are sets and
such that all inclusion maps between objects define morphisms in C.
Then any sequence of objects X0 ⊂ X1 ⊂ X2 ⊂ . . . in C together with the inclusions
ιi : Xi → Xi+1 defines a functor F : J → C. Its sequential colimit (direct limit) is the
object X = ∪n∈N0Xn together with the inclusions ji : Xi → X, x 7→ x and with the
topology, group structure, ring structure or module structure induced by these inclusions.

• For C = Top the topology on X is the weak topology on X, the final topology
induced by the inclusions ji for i ∈ N0:
a subset U ⊂ X is open if and only if j−1

i (U) = U ∩Xi is open in Xi for all i ∈ J .

• For C = Grp, Ring, R-Mod and x, x′ ∈ X there is always a j ∈ N0 with x, x′ ∈ Xj.
The multiplication, addition and R-module structure is then given by the multi-
plication, addition and R-module structure in Xj. The properties of the inclusions
ensure that this is consistent and independent of the choice of j.

2. A CW-complex is the sequential colimit (direct limit) of a sequence of topological
spaces X0 ⊂ X1 ⊂ X2 ⊂ . . . such that X0 is equipped with the discrete topology and
Xn is obtained from Xn−1 by attaching n-cells for all n ∈ N, cf. Example 2.1.8, 5. The
topological space Xn is called the n-skeleton of X.

3. The permutation groups Sn for n ∈ N with the inclusion maps ιn : Sn → Sn+1, σ 7→ σ′

with σ′(n+ 1) = n+ 1 and σ′(i) = σ(i) for i ∈ {1, . . . , n} define a functor S : J → Grp.
Its sequential colimit (direct limit) is the group S∞.

4. The groups GL(n,F) with the inclusions ιn : GL(n,F) → GL(n + 1,F), φ 7→ φ′ with
φ′(en+1) = en+1 and φ′(ei) = φ(ei) for i ∈ {1, . . . , n} define a functor GL : J → Grp. Its
sequential colimit (direct limit) is the group GL(∞,F).

5. Let p ∈ N be a prime and F : J op → CRing given by the ring homomorphisms

0 = Z/Z Z/pZf0oo Z/p2Zf1oo . . .
f2oo fk : Z/pk+1Z→ Z/pkZ, n̄ 7→ n̄

The sequential limit (inverse limit) of F is the ring Zp of p-adic integers

Zp =
{

(xk)k∈N0 ∈ Πk∈N0Z/pkZ | fk(xk+1) = xk ∀k ∈ N0

}
with componentwise addition and multiplication. It is an integral domain, and its field of
fractions is the field of p-adic numbers.
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We now discuss a less elementary example that is more typical of the way (co)limits are used in
modern mathematics, namely sheaves. The idea is to describe structures on a topological space
X, for instance continuous functions on X or abelian groups associated to X, by defining them
locally, on open subsets U ⊂ X. Common sense dictates that the data assigned to open subsets
must restrict appropriately, whenever one subset is contained in another, and that the data
assigned to two subsets must agree on their intersection. The idea is that any local assignment
of structure satisfying these conditions should lead to a unique global assignment of data to X.
This idea can be formulated in terms of limits, namely equalisers and products.

Example 2.1.14: (sheaves)
Let X be a topological space and O(X) the poset category with open subsets U ⊂ X as objects
and the partial ordering �=⊂ given by inclusions of subsets.

• A presheaf on X with values in a category C is a functor F : O(X)op → C.
• A morphism of presheaves from F to F ′ is a natural transformation µ : F ⇒ F ′.

Thus a presheaf F : O(X)op → C assigns to each open subset U ⊂ X an object F (U) in C and to
each inclusion map ιUV : U → V a morphism F (ιUV ) : F (V )→ F (U) such that F (ιUU) = 1F (U)

and F (ιUV ) ◦ F (ιUW ) = F (ιUW ) for all U ⊂ V ⊂ W .

An example is the presheaf F : O(X)op → Set that assigns to each subset U ⊂ X the set
C0(U,R) of continuous real functions on U and to an inclusion ιUV : U → V the restriction
map F (ιUV ) : C0(V,R)→ C0(U,R), f 7→ f |U .

A presheaf F : O(X)op → C is called a sheaf if for all open subsets U ⊂ X and all open covers
(Ui)i∈I of U , the pair (F (U), I) is an equaliser of the morphisms φ, ψ in the diagram

F (Ui)
F (ιiij) // F (Ui ∩ Uj)

F (U)

F (ιi)
99

F (ιj) %%

� � I // Πi∈IF (Ui)

πi

OO

πj

��

ψ
//

φ // Πi,j∈IF (Ui ∩ Uj)

πij

OO

πij

��
F (Uj)

F (ιjij)

// F (Ui ∩ Uj)

where

• the morphisms πi : Πi∈IF (Ui) → F (Ui) and πij : Πi,j∈IF (Ui ∩ Uj) → F (Ui ∩ Uj) are the
projection morphisms of the products,

• ιiij : Ui ∩ Uj → Ui and ιi : Ui → U are the inclusion maps,

• I : F (U)→ Πi∈IF (Ui) is the unique morphism with πi ◦ I = F (ιi) for all i ∈ I,

• φ and ψ are the unique morphisms with πij ◦ φ = F (ιiij) ◦ πi and πij ◦ ψ = F (ιjij) ◦ πj for
all i, j ∈ I defined by the universal property of the product.

The condition on a sheaf guarantees that morphisms fi : C → F (Ui) that match on all inter-
sections Ui ∩ Uj can be glued to a unique morphism f : C → F (U):

A family (fi)i∈I of morphisms fi : C → F (Ui) matches on all intersections Ui ∩Uj, if it satisfies
F (ιiij) ◦ fi = F (ιjij) ◦ fj for all i, j ∈ I. By the universal property of the product, each such
family defines a unique morphism f ′ : C → Πi∈IF (Ui) with πi ◦ f ′ = fi for all i ∈ I.
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As the family of morphisms matches on the intersections, one has for all i, j ∈ I

πij ◦ φ ◦ f ′ = F (ιiij) ◦ πi ◦ f ′ = F (ιiij) ◦ fi = F (ιjij) ◦ fj = F (ιjij) ◦ πj ◦ f ′ = πij ◦ ψ ◦ f ′,

and the universal property of the product implies φ ◦ f ′ = ψ ◦ f ′. By universal property of
the equaliser, there is a unique morphism f : C → F (U) with I ◦ f = f ′ or, equivalently,
πi ◦ I ◦ f = fi for all i ∈ I.

It is a good exercise to show that the presheaf F : O(X)op → Set of continuous functions
discussed as an example above satisfies the sheaf condition and to determine the morphism
f : C → F (U) induced by a matching family of morphisms (fi : C → F (Ui))i∈I in this case.
In contrast, the presheaf G : O(X)op → Set that assigns to a subset U ⊂ X the set G(U) of
bounded functions f : U → R is not necessarily a sheaf (Exercise 16).

We conclude this section with an alternative characterisation of (co)limits that relates their
existence to the representability of certain functors from C to Set. More specifically, for any
diagram F : J → C we obtain a functor cone(−, F ) : Cop → Set that assigns

• to an object in C the set of all cones for F with apex C,
• to a morphism f : C → C ′ the induced map between these sets of cones.

A limit of F is a representation of cone(−, F ). This encodes the universal property of limits
relating cone morphisms from a cone to the limit cone to morphisms from its apex to the limit.
An analogous characterisation exists for colimits. This perspective on limits and colimits allows
one to apply the Yoneda lemma to prove their uniqueness.

Proposition 2.1.15: Let J be small, C locally small and F : J → C a diagram.

1. Cones over F define a functor cone(−, F ) : Cop → Set that sends

• an object C in C to the set cone(C,F ) of cones over F with apex C,
• a morphism f : C → C ′ to the map cone(f, F ) : cone(C ′, F ) → cone(C,F ) that

sends a cone λ : ∆(C ′)⇒ F to the cone µ = λ ◦∆(f) : ∆(C)⇒ F .

A limit of F is a representing object of this functor: cone(−, F ) ∼= HomC(−, limF ).

2. Cocones under F define a functor cocone(F,−) : C → Set that sends

• an object C in C to the set cocone(F,C) of cocones under F with nadir C,
• a morphism f : C → C ′ to the map cocone(F, f) : cocone(C,F ) → cocone(C ′, F )

that sends a cocone λ : F ⇒ ∆(C) to the cocone ∆(f) ◦ λ : F ⇒ ∆(C ′).

A colimit of F is a representing object of this functor: cocone(F,−) ∼= HomC(colimF,−).

Proof:
We prove the claim for limits. The claim for colimits follows with Remark 2.1.5, 3.

1. By definition, cone(f, F )(λ) = λ ◦ ∆(f) is a natural transformation and hence a cone over
F . For f = 1C we have λ ◦∆(f) = λ, which implies cone(1C , F ) = idcone(C,F ). For morphisms
f : C → C ′ and f ′ : C ′ → C ′′ and λ ∈ cone(C ′′, F ) we have

cone(f ′◦f, F )(λ) = λ◦∆(f ′◦f) = λ◦∆(f ′)◦∆(f) = cone(f ′, F )◦∆(f) = cone(f, F )◦cone(f ′, F )(λ).

This shows that cone(−, F ) : Cop → Set is a functor.
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2. A representation of cone(−, F ) : Cop → Set consists of an object C in C and a natural
isomorphism η : HomC(−, C)⇒ cone(−, F ). By the Yoneda lemma, such a natural isomorphism
is determined uniquely by the cone λ := ηC(1C) : ∆(C) ⇒ F , and the naturality of η states
that the following diagram commutes for all morphisms f : C ′ → C

HomC(C
′, C)

ηC′

∼=
// cone(C ′, F )

HomC(C,C)

h7→h◦f

OO

∼=
ηC
// cone(C,F ).

ρJ 7→ρJ◦f

OO

Inserting the identity morphism 1C ∈ HomC(C,C) yields for every cone µ ∈ cone(C ′, F ) a
unique cone morphism f = η−1

C′ (µ) : C ′ → C with λJ ◦f = µJ for all j ∈ ObJ . This is precisely
the condition that λ = ηC(1C) is a terminal cone over F . 2

2.2 Existence of (co)limits

In this section, we derive criteria for the existence of limits and colimits of functors F : J → C
and relate them to other concepts from category theory. We will show that if J is small,
the existence of products and equalisers in C is sufficient for the existence of limits. Dually,
the existence of coproducts and coequalisers in C guarantees the existence of colimits for all
functors F : J → C. In this case, limits and colimits organise into functors (co)lim : CJ → C
that are adjoints of the embedding functor ∆ : C → CJ from Definition 2.1.1.

Functors F : J → C from small categories J are often called small diagrams and the
associated (co)limits are called small colimits. In some cases, it is sufficient to restrict attention
to finite categories J , small categories J with finitely many objects and morphisms. In this
case one speaks of finite diagrams and finite (co)limits.

Definition 2.2.1: A category C is called

• (co)complete, if every small diagram F : J → C has a (co)limit,
• finitely (co)complete, if every finite diagram F : J → C has a (co)limit.
• (finitely) bicomplete, if C is (finitely) complete and cocomplete,

It turns out that the existence of (co)products and (co)equalisers is sufficient for the existence
of all small (co)limits. The following theorem explains in particular why all pullbacks and
pushouts in Examples 2.1.8 and 2.1.9 are given in terms of (co)products and (co)equalisers and
generalises the constructions in these examples.

Theorem 2.2.2:
A category C is (co)complete, if and only if it has all (co)products and (co)equalisers.

Proof:
We prove the claim for cocomplete categories. The claim for complete categories then follows
with Remark 2.1.5, 3.

As coproducts and coequalisers are colimits, cocompleteness implies the existence of all coprod-
ucts and coequalisers. Suppose now that C has all coproducts and coequalisers, let J be small
and F : J → C a diagram in C.
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As J is small, we have sets ObJ and MorJ =
⋃
J,J ′∈ObJ HomJ (J, J ′) and can consider the

coproducts qJ∈ObJF (J) and qf∈MorJF (s(f)) with associated inclusion morphisms

ιI : F (I)→ qJ∈ObJF (J) ιg : F (s(g))→ qf∈MorJF (s(f)).

Let φ, ψ : qf∈MorJF (s(f))→ qJ∈ObJF (J) be the unique morphisms induced by the universal
property of the coproducts that satisfy for all morphisms f : s(f)→ t(f) in J

φ ◦ ιf = ιs(f) ψ ◦ ιf = ιt(f) ◦ F (f)

and define π : qj∈ObJF (J)→ C as the coequaliser of φ and ψ.

F (s(f))

ιf

��

ιs(f)

))
qf∈MorJF (s(f))

ψ
//

φ // qJ∈ObJF (J) π // // C

F (s(f))

ιf

OO

F (f)
// F (t(f))

ιt(f)

OO

(5)

The morphisms λJ := π ◦ ιJ : F (J) → C define a cocone λ : F ⇒ ∆(C), as we have for each
morphism j : J → J ′ in J

λJ ′ ◦ F (j) = π ◦ ιJ ′ ◦ F (j) = π ◦ ψ ◦ ιj = π ◦ φ ◦ ιj = π ◦ ιJ = λJ ,

where we used the definition of λJ , of ψ, that π coequalises φ, ψ and then the definition of φ.

We show that the cocone λ : F ⇒ ∆(C) is an initial cocone. Via the universal property of
the coproduct, any cocone µ : F ⇒ ∆(C ′) defines a morphism g : qJ∈ObJF (J) → C ′ with
g ◦ ιJ = µJ for all J ∈ ObJ . This morphism satisfies for all morphisms f : J → J ′

g ◦ φ ◦ ιf = g ◦ ιJ = µJ = µJ ′ ◦ F (f) = g ◦ ιJ ′ ◦ F (f) = g ◦ ψ ◦ ιf , (6)

where we used the definition of φ, of g, that µ is a cocone, then the definition of g and ψ. By
the universal property of the coproduct, this implies g ◦ φ = g ◦ ψ. By the universal property
of the coequaliser there is a unique morphism g′ : C → C ′ with g′ ◦ π = g. This is a cocone
morphism, since the definitions of g′ and g imply for all J ∈ ObJ

g′ ◦ λJ = g′ ◦ π ◦ ιJ = g ◦ ιJ = µJ . 2

The proof of Theorem 2.2.2 also shows that that the existence of (co)equalisers and finite
(co)products is sufficient for the existence of all finite (co)limits. In this case, diagram (5) is
still defined for a finite category J , and the rest of the proof proceeds analogously.

Corollary 2.2.3: A category C is finitely (co)complete if and only if it has all (co)equalisers
and all finite (co)products.

The crux in the proof of Theorem 2.2.2 is diagram (5), which looks complicated at first, but
this is mainly due to the notation. For concrete categories C, categories whose objects are sets,
it has a simple interpretation:
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It states that the colimit of F : J → C is obtained by taking the coproduct of all objects F (J)
for J ∈ ObJ and then identifying for each morphism j : s(j) → t(j) each element of F (s(j))
with its image under the map F (j) in the set F (t(j)).

This is precisely the construction used for the pushouts in Examples 2.1.8 and 2.1.9 and in the
coequalisers of Example 2.1.11. It is a useful exercise to check that the sequential (co)limits in
Example 2.1.13 are also a special case of this construction.

Example 2.2.4:

1. The following categories are bicomplete by Theorem 2.2.2 and Examples 2.1.7 and 2.1.11

• Set, Top
• R-Mod for any ring R, in particular VectF, Ab, F[G]-Mod.
• Grp, Ring.

2. Any abelian category is finitely bicomplete by Corollary 2.2.3, because it has (co)equalisers
and finite (co)products by definition, see Example 2.1.11, 3.

3. The category Cat of small categories and functors between them and its full subcategory
Grpd of groupoids and functors between them are bicomplete:.

• The product of a family (Cj)j∈J of small categories is the category C = Πj∈JCj with
ObC = Πj∈JObCj and HomC((Cj)j∈J , (C

′
j)j∈J) = Πj∈JHomCj(Cj, C

′
j), together with

the projection functors πi : C → Ci.

• The coproduct of a family (Cj)j∈J of small categories is the category C = qj∈JCj
with ObC = ∪̇j∈JObCj and HomC(C,C

′) = HomCj(C,C
′) for C,C ′ ∈ Ob Cj and

HomC(C,C
′) = ∅ otherwise, together with the inclusion functors ιi : Ci → C.

• The equaliser of two functors F1, F2 : C → D between small categories is the
subcategory U ⊂ C with ObU = {C ∈ ObC | F1(C) = F2(C)} and morphism sets
HomU(C,C ′) = {f ∈ HomC(C,C

′) | F1(f) = F2(f)}, with the inclusions ι : U → C.

• Coequalisers in Cat and Grpd exist, but are more difficult to describe. We will prove
their existence in Corollary 5.4.7 in Section 5.

Even if a category C is not complete or cocomplete, limits or colimits of functors may still
exist for all diagrams F : J → C of a fixed shape J . For instance, a category C may have all
coproducts, but not all coequalisers. In this case, it still makes sense to consider the (co)limits
of functors F : J → C and to determine how they interact with natural transformations.

As cones over F : J → C are natural transformations λ : ∆(C) ⇒ F , post-composing them
with natural transformation τ : F ⇒ F ′ yields cones over F ′. This induces a morphisms between
the limits of F and F ′ and allows one to organise limits into a functor. There also is a dual
construction for colimits. It turns out that the resulting functors are right adjoint and left
adjoint to the embedding functor ∆ : C → CJ from Definition 2.1.1. Conversely, if this functor
has a right or left adjoint, this defines limits or colimits of functors F : J → C.

Proposition 2.2.5: Let J be a small category and C a category.

1. If all limits of diagrams F : J → C exist, they define a right adjoint lim : CJ → C to
∆ : C → CJ . If ∆ has a right adjoint, all limits of functors F : J → C exist.
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2. If all colimits of diagrams F : J → C exist, they define a left adjoint colim : CJ → C to
∆ : C → CJ . If ∆ has a left adjoint, all colimits of functors F : J → C exist.

Proof:
We prove the claim for limits. The claim for colimits follows with Remark 2.1.5, 3.

1. Suppose that all functors F : J → C have limit cones λF : ∆(limF )⇒ F .

(a) We define the functor lim : CJ → C:
It assigns to a functor F : J → C the object limF . A natural transformation τ : F ⇒ F ′ defines
a cone τ ◦ λF : ∆(limF )⇒ F ′. Hence, there is a unique morphism lim τ : limF → limF ′ with

λF
′ ◦∆(lim τ) = τ ◦ λF (7)

by the universal property of limF ′. We assign to τ this morphism lim τ : limF → limF ′. To
show that this defines a functor, note that for τ = idF one has λF ◦∆(1limF ) = λF and hence
lim idF = 1limF . For any natural transformation τ ′ : F ′ → F ′′ we have from (7)

λF
′′ ◦∆(lim τ ′) ◦∆(lim τ) = τ ′ ◦ λF ′ ◦∆(lim τ) = τ ′ ◦ τ ◦ λF ⇒ lim(τ ′ ◦ τ) = lim τ ′ ◦ lim τ.

(b) We show that lim : CJ → C is right adjoint to ∆ : C → CJ : the maps

φC,F : HomC(C, limF )→ HomCJ (∆(C), F ) (8)

g 7→ λF ◦∆(g) : ∆(C)⇒ F, .

for C ∈ ObC and functors F : J → C are bijections by the universal property of the limit cone.
They are natural, as we have for all f : C ′ → C and natural transformations µ : F ⇒ F ′

φC′,F ′(lim(µ) ◦ g ◦ f) = λF
′ ◦∆(lim(µ) ◦ g ◦ f) = λF

′ ◦∆(limµ) ◦∆(g) ◦∆(f)

(7)
= µ ◦ λF ◦∆(g) ◦∆(f) = µ ◦ φC,F (g) ◦∆(f).

2. Suppose that ∆ : C → CJ has a right adjoint G : CJ → C with unit η : idC ⇒ G∆ and counit
ε : ∆G⇒ idCJ satisfying (i) ε∆ ◦∆η = id∆ and (ii) Gε ◦ ηG = idG.

We prove that for each functor F : J → C the component morphism εF : ∆(G(F )) ⇒ F is a
limit cone. Let µ : ∆(C)⇒ F be a cone over F . Then f = G(µ) ◦ ηC : C → G(F ) satisfies

εF ◦∆(f) = εF ◦∆G(µ) ◦∆(ηC)
nat ε
= µ ◦ ε∆(C) ◦∆(ηC) = µ ◦ (ε∆ ◦∆η)C

(i)
= µ ◦ (id∆)C = µ.

If f ′ ∈ HomC(C,G(F )) is another morphism with εF ◦∆(f ′) = µ one has

f=G(µ) ◦ ηC =G(εF ) ◦G∆(f ′) ◦ ηC
nat η
= G(εF ) ◦ ηG(F ) ◦ f ′=(Gε ◦ ηG)F ◦ f ′

(ii)
= 1G(F ) ◦ f ′=f ′.

2

2.3 (Co)limits in functor category and exchange of (co)limits

In this section, we investigate (co)limits in functor categories. As we will see in the following, this
has many applications. An important example are simplicial objects and simplicial morphisms,
which we will encounter in Section 5 and which form the foundation of homological algebra as
well as many modern developments in category theory. Another example is the category BG
for a finite group G, also called the delooping of G. Functors F : BG→ C define objects in C
equipped with G-actions, such as G-sets and representations of G on vector spaces.
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Example 2.3.1: Let G be a group and C a category. The category BG has

• a single object •,
• the morphism set HomBG(•, •) = G with the group multiplication as composition and

the group unit as identity morphism.

The category CBG is called the category of G-objects and G-equivariant morphisms in C.
Examples are the following:

• SetBG = G-Set has
– as objects G-sets: sets X equipped with a group action �X : G×X → X,
– as morphisms from (X,�X) to (Y,�Y ) G-equivariant maps:

maps f : X → Y with f(g �X x) = g �Y f(x) for all g ∈ G, x ∈ X.

• TopBG has
– as objects topological spaces X equipped with a continuous action �X : G×X → X

of the discrete group G,
– as morphisms from (X,�X) to (Y,�Y ) continuous G-equivariant maps.

• VectBGF = RepF(G) = F[G]-Mod has
– as objects representations of G over F,
– as morphisms morphisms of representations.

To investigate (co)limits in functor categories we identify the functor category (CD)J with the
functor category CJ×D via the isomorphism of categories that assigns

• to a functor F : J ×D → C the functor F ′ : J → CD that sends
– J ∈ ObJ to the functor F (J,−) : D → C,
– j : J → J ′ to the natural transformation F (j,−) : F (J,−)⇒ F (J ′,−),

• to a natural transformation τ : F ⇒ G the natural transformation τ ′ : F ′ ⇒ G′ with
component morphisms τ ′J = τJ,− : F (J,−)⇒ G(J,−).

This allows us to describe (co)limits of functors F : J → CD in terms of (co)limits of the
associated functors F : J × D → C. We can evaluate functors F : J × D → C on objects
D ∈ ObD and consider the (co)limits of the resulting functors F (−, D) : J → C. It turns out
that if all of the latter have (co)limits, then they combine into a (co)limit of F : J → CD. One
says that (co)limits of functors F : J → CD are computed pointwise or objectwise.

Proposition 2.3.2: (Limits and colimits in functor categories are pointwise.)

Let J be a small category and F : J → CD a diagram such that FD := F (−, D) : J → C has
a (co)limit for all objects D ∈ ObD. Then the (co)limit of F is the functor

(co)limF : D → C D

d
��

� // (co)limFD

(co)limF (d)

��
D′ � // (co)limFD′

In particular, if C is (co)complete or finitely (co)complete, so is CD.

Proof:
We prove the claim for limits. The claim for colimits follows with Remark 2.1.5, 3.
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1. For D ∈ ObD denote by λD : ∆(limFD) ⇒ FD the limit cone of the associated functor
FD = F (−, D) : J → C. These limit cones define a functor limF : D → C that assigns

• to D ∈ ObD the object limF (D) = limFD ∈ ObC,
• to d ∈ HomD(D,D′) the unique morphism limF (d) : limFD → limFD′ with

λD
′ ◦∆(limF (d)) = Fd ◦ λD (9)

from the universal property of the limit and Fd = F (−, d) : FD ⇒ FD′ .

That limF is indeed a functor, follows by applying (9) to an identity morphism d = 1D and to
the composites d′ ◦ d of morphisms d : D → D′, d′ : D′ → D′′.

2. The limit cones λD : ∆(limFD) ⇒ FD define a cone λ : ∆(limF ) ⇒ F over F : J → CD
with legs (λJ)D = λDJ , because one has for all morphisms j : J → J ′ and d : D → D′

F (j, d) ◦ λDJ = (Fd)J ′ ◦ FD(j) ◦ λDJ = (Fd)J ′ ◦ λDJ ′ = λD
′

J ′

where we first used the fact that λD is a cone and then (9). We show that the cone λ is terminal.

For this, let µ : ∆(G) ⇒ F with G : D → C be a cone over F . Then for all D ∈ ObD, this
defines a cone µD : ∆(G(D))⇒ FD over FD. As λD is a limit cone, there is a unique morphism
fD : G(D)→ limFD with λD◦∆(fD) = µD. The morphisms fD define a natural transformation
f : G⇒ limF , because one has for all morphisms d : D → D′

λD
′ ◦∆(fD

′ ◦G(d)) = λD
′ ◦∆(fD

′
) ◦∆(G(d)) = µD

′ ◦∆(G(d))
nat µ
= Fd ◦ µD

= Fd ◦ λD ◦∆(fD)
(9)
= λD

′ ◦∆(limF (d)) ◦∆(fD) = λD
′ ◦∆(limF (d) ◦ fD).

As λD is a limit cone, this implies limF (d)◦fD = fD
′ ◦G(d) for all morphisms d : D → D′ and

hence naturality of f . This shows that f : G⇒ limF is a morphism in CD with λ ◦∆(f) = µ,
and hence λ is a terminal cone. 2

If the category D has a simple structure, we can think of functors G : D → C as objects in
C that are equipped with an action of the category D. This generalises the group actions on
categories for D = BG in Example 2.3.1. Proposition 2.3.2 then states that the (co)limit of a
functor F : J → CD is obtained by taking (co)limits in C and equipping them with the induced
D-action. This intuition becomes a precise statement for the category D = BG.

Example 2.3.3: Let G be a group.

1. Any (co)limit of a functor F : J → G-Set is given as the (co)limit of the corresponding
functor F ′ : J → Set, equipped with the induced G-action.

2. Any (co)limit of a functor F : J → RepF(G) is the (co)limit of the corresponding functor
F ′ : J → VectF, equipped with the induced representation of G.

As we can view a functor F : I ×J → C as a functor F : I → CJ or as a functor F : J → CI ,
we can take (co)limits with respect to both categories I and J . We can also combine them,
for instance, take first a (co)limit of F : I → CJ and then a (co)limit of (co)limIF : J → C
or first a (co)limit of F : J → CI and then a (co)limit of (co)limJF : I → C. The question is
whether these procedures commute and yield isomorphic (co)limit cones. This depends on the
precise combination of limits and colimits. It is true if we either take limits or take colimits
with respect to both categories.
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Theorem 2.3.4: Let I,J be small and F : I × J → C be a functor.

1. If limI limJ F and limJ limI F exist, then there are canonical isomorphisms

lim
I

lim
J
F ∼= lim

J
lim
I
F ∼= lim

I×J
F.

2. If colimIcolimJF and colimJ colimIF exist, then there are canonical isomorphisms

colimIcolimJF ∼= colimJ colimIF ∼= colimI×JF.

Proof:
We prove the claim for limits. The claim for colimits follows with Remark 2.1.5, 3. As a limit of F
is a terminal object in the category cone(F ), it is sufficient to show that cone(F ), cone(limJ F )
and cone(limI F ) are isomorphic via functors that preserve the apexes of the cones.

We construct a functor N : cone(limJ F )→ cone(F ) with a strict inverse that preserves apexes
of cones and is the identity on the morphisms. For this, we denote by µ : ∆(limJ F ) ⇒ F
the limit cone of the associated functor F : J → CI whose legs are natural transformations
µJ : limJ F ⇒ F (−, J). with component morphisms (µJ)I : limJ F (I)→ F (I, J).

The functor N : cone(limJ F )→ cone(F ) sends

• a cone σ : ∆(C)⇒ limJ F over limJ F to the cone N(σ) = µ ◦∆(σ) : ∆(C)⇒ F with

N(σ)I,J = (µJ)I ◦ σI , (10)

• a cone morphism f : C → C ′ from σ to σ′ to itself, as cone morphism from N(σ) to N(σ′).

By definition N(σ) is a natural transformation and hence a cone over F . It is also directly
apparent that any cone morphism from σ to σ′ defines a cone morphism from N(σ) to N(σ′).
The functoriality of N follows directly, as N is the identity on the morphisms.

The inverse N−1 : cone(F )→ cone(limJ F ) sends

• a cone τ : ∆(C)⇒ F to the unique cone morphism N−1(τ) : ∆(C)⇒ limJ F in CI with
µ ◦∆(N−1(τ)) = τ or, equivalently,

(µJ)I ◦N−1(τ)I = τI,J , (11)

• a cone morphism f : C → C ′ from τ to τ ′ to itself, viewed as a cone morphism from
N−1(τ) to N−1(τ ′).

That N−1(τ) : ∆(C) ⇒ limJ F is a cone over limJ F follows, as it is a morphism in CI . That
any cone morphism f : C → C ′ from τ to τ ′ is also a cone morphism from N−1(τ) and N−1(τ ′)
follows from the definition of N−1(τ). The functoriality of N−1 is again clear.

It remains to show that N−1 is the inverse of N . For any cone τ : ∆(C)⇒ F , one has

N(N−1(τ))I,J
(10)
= (µJ)I ◦N−1(τ)I

(11)
= τI,J

for all J ∈ ObJ , I ∈ Ob I and hence N(N−1(τ)) = τ . For a cone σ : ∆(C)⇒ limJ F , one has

(µJ)I ◦N−1(N(σ))I
(11)
= N(σ)I,J

(10)
= (µJ)I ◦ σI ,

and the universal property of the limit µ implies N−1(N(σ)) = σ. 2
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If we take a colimit with respect to I and a limit with respect to J for a functor F : I×J → C,
then exchanging these two operations is more subtle. It is clear that the result cannot correspond
to a limit or colimit with respect to I × J , but it is not even guaranteed that the resulting
objects are isomorphic. One obtains a canonical morphism from the colimit of the limit to the
limit of the colimit, which need not be an isomorphism.

Lemma 2.3.5: For every functor F : I × J → C for which these (co)limits exist, there is a
canonical morphism

g : colim
I

lim
J
F → lim

J
colim
I

F

Proof:
We denote by

• λ : ∆(limJ F )⇒ F the limit cone of the associated functor F : J → CI ,
• µ : F ⇒ ∆(colimIF ) the colimit cone of the associated functor F : I → CJ ,

• ρ : ∆(limJ colimIF )⇒ colimIF the limit cone of the functor colimIF : J → C,
• σ : limJ F ⇒ ∆(colimI limJ F ) the colimit cone of the functor limJ F : I → C,

The morphisms κI,J = (µI)J ◦ (λJ)I : limJ F (I)
(λJ )I−−−→ F (I, J)

(µI)J−−−→ colimIF (J) are natural
in I and J and hence define cones κI : ∆(limJ F (I)) ⇒ colimIF with legs κIJ = κI,J . By the
universal property of ρ, there are unique cone morphisms fI : limJ F (I)→ limJ colimIF with
ρ◦∆(fI) = κI for I ∈ ObI. Because they are natural in I ∈ ObI, the cone morphisms fI define
a cocone f : limJ F ⇒ ∆(limJ colimIF ) over limJ F : I → C. By the universal property of σ,
there is a unique cocone morphism g : colimI limJ F → limJ colimIF with ∆(g) ◦ σ = f . 2

Example 2.3.6:
If I = J = ∅, then I × J = ∅ and CI = CJ = CI×J = C∅ contains a single functor that is the
empty map on the objects and morphisms. Hence, limits and colimits correspond to terminal
and initial objects in C by Example 2.1.7.

Thus, colimI limJ F is an initial and limJ colimIF a terminal object in C. The morphism
g : colimI limJ F → limJ colimIF the unique morphism from the initial to the terminal object.
This is an isomorphism if and only if C has a zero object.

This example shows that the morphism in Lemma 2.3.5 need not be an isomorphism, not
even for C = Set or C = Top. Sufficient conditions on I and J that guarantee that it is an
isomorphism for any functor F : I × J → Set are that I is finite and J is filtered, see for
instance [Rh, Theorem 3.8.9] and [Rc, Theorem 3.5.6].

2.4 Transformations of (co)limits under functors

In this section, we investigate how (co)limits behave under functors and derive sufficient criteria
to guarantee that a functor sends (co)limits to (co)limits. As cones over or under a diagram
F : J → C are natural transformations, applying a functor F : C → D to them yields cones
over or under the image GF : J → D of this diagram. There are now several ways to logically
relate the statements that either the original cone or its image is a (co)limit.
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Definition 2.4.1: Let G : C → D be a functor and I a family of diagrams in C.

1. preserves (co)limits for I, if for any diagram F ∈ I and (co)limit cone λ of F , the
image Gλ is a (co)limit cone of GF .

2. reflects (co)limits for I, if any (co)cone λ for F ∈ I, whose image Gλ is a (co)limit
cone of GF , is a (co)limit cone of F .

3. creates (co)limits for I, if it reflects them and for any F ∈ I whose image GF has a
(co)limit, it has a (co)limit cone of the form Gλ with a (co)limit cone λ of F .

Remark 2.4.2: (Exercise)

1. The condition that G reflects limits 3. is necessary to ensure that creation of (co)limits
implies reflection of (co)limits. Show with an example that the second condition in
3. alone does not guarantee this.

2. If G : C → D creates (co)limits for a family I of diagrams in C and their images in D
have (co)limits, then the diagrams in I have (co)limits, and G preserves them.

Families of diagrams that are of special interest in Definition 2.4.1 are the families of all small
diagrams and of all finite diagrams. Whenever one deals with abelian categories, for instance
in homological algebra or in representation theory, the statement that a functor preserves all
finite limits or colimits has important consequences. The following definition is often stated
only for abelian categories, but makes sense in more generality.

Definition 2.4.3: A functor G : C → D is called left exact, if it preserves all finite limits,
and right exact, if it preserves all finite colimits in C.

Example 2.4.4:

1. Any fully faithful functor G : C → D reflects all (co)limits in D.

2. Any equivalence of categories G : C → D preserves and creates all (co)limits in C or D.

3. A functor F : A → B between abelian categories is left (right) exact, if and only if it
preserves finite direct sums and (co)kernels. This follows from the proof of Theorem 2.2.2,
Corollary 2.2.3 and Example 2.1.11, 3.

It turns out that there are many functors that are right or left exact or even preserve all
(co)limits, not just the rather obvious functors in Example 2.4.4. The first important example
are Hom functors. Covariant and contravariant Hom functors, respectively, send all limits or
colimits that exist in a given category C to limits in Set.

Proposition 2.4.5: Let C be a category and C ∈ ObC.
1. The functor Hom(C,−) : C → Set preserves all limits that exist in C.
2. The functor Hom(−, C) : Cop → Set sends all colimits that exist in C to limits in Set.

Proof:
We prove the claim for limits. The claim for colimits follows with Remark 2.1.5, 3. if one takes
into account that that HomC(−, C) ∼= HomCop(C,−) : Cop → Set.
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Let F : J → C be a diagram in C with a limit cone λ : ∆(limF ) ⇒ F and C ∈ ObC. We
show that the natural transformation Hom(C, λ) : ∆(Hom(C, limF )) ⇒ Hom(C,F (−)) with
components Hom(C, λ)J : HomC(C, limF ) → HomC(C,F (J)), f 7→ λJ ◦ f is a limit cone of
HomC(C,F (−)) : J → Set.

• A cone ρ over HomC(C,F (−)) with apex X is a collection of maps ρJ : X → HomC(C,F (J))
that satisfy F (j) ◦ ρJ(x) = ρJ ′(x) for all x ∈ X and morphisms j : J → J ′. This corresponds to
a collection of cones ρx : ∆(C)⇒ F , indexed by X, with components ρxJ = ρJ(x) : C → F (J).

• Cone morphisms from a cone ρ to Hom(C, λ) are maps f : X → HomC(C, limF ) satisfying
ρJ(x) = λJ ◦ f(x) for all x ∈ X and J ∈ ObJ . This amounts to a collection of morphisms
fx = f(x) : C → limF indexed by X with ρxJ = λJ ◦ fx and hence to a collection of cone
morphisms fx from ρx to λJ .

By the universal property of λ, for each x ∈ X there is a unique cone morphism fx : C → limF
with ρxJ = λJ ◦ fx. This defines a unique cone morphism f : X → HomC(C, limF ), x 7→ fx

from ρ to Hom(C, λ) and shows that Hom(C, λ) is a limit of Hom(C,F (−)). 2

In fact, the proof of Proposition 2.4.5 shows more than the just the claim. Combining it with
Proposition 2.3.2 by which (co)limits in functor categories are computed objectwise, we find
that any limit cone λ : ∆(limF ) ⇒ F in C yields a limit cone of the diagram in SetC

op

that
sends J ∈ ObJ to the functor Hom(−, F (J)) : Cop → Set and a morphism j : J → J ′ to the
natural transformation Hom(−, F (j)) : Hom(−, F (J))⇒ Hom(−, F (J ′)).

We can state this more succinctly in terms of the co- and contravariant Yoneda embedding

y : C → SetC
op

C

c

��

� // Hom(−, C)

Hom(−,c)
��

C ′ � // Hom(−, C ′)

y : Cop → SetC C

c

��

� // Hom(C,−)

C ′ � // Hom(C ′,−).

Hom(c,−)

OO
(12)

The Yoneda embeddings are fully faithful by the Yoneda Lemma and hence reflect all (co)limits
by Example 2.4.4, 1. Combining the proof of Proposition 2.4.5 with Proposition 2.3.2 then shows
that the Yoneda embeddings preserve and reflect limits.

Corollary 2.4.6:

1. The covariant Yoneda embedding y : C → SetC
op

preserves and reflects limits.

2. The contravariant Yoneda embedding y : Cop → SetC preserves and reflects limits.

Another important class of functors that preserve either limits or colimits are right and left
adjoints. Preserving both, limits and colimits, is a much stronger condition, satisfied by all
functors that have a left and a right adjoint. Roughly speaking, the data of an adjunction
allows one to transport cones and cone morphisms between the two categories. This can be
used to show that the image of a (co)limit cone remains terminal (initial).

Theorem 2.4.7: Right adjoint functors preserve limits and left adjoint functors colimits.

Proof:
Let L : C → D be left adjoint to R : D → C with unit η : idD ⇒ RL and counit ε : LR ⇒ idC
satisfying (i) εL ◦ Lη = idL and (ii) Rε ◦ ηR = idR.
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We prove the claim for limits. The claim for colimits follows with Remark 2.1.5, 3.

Suppose λ : ∆(limG) ⇒ G is a limit of G : J → D. Then Rλ : ∆(R(limG)) ⇒ RG is a cone
over RG. We show that it is terminal. Let µ : ∆(C) ⇒ RG be another cone over RG. Then
εG◦Lµ : ∆(L(C))⇒ G is a cone over G and hence there is a unique morphism g : L(C)→ limG
with λ ◦∆(g) = εG ◦ Lµ. The morphism f = R(g) ◦ ηC : C → R(limG) satisfies

Rλ ◦∆(f) = Rλ ◦∆R(g) ◦∆(ηC)
R∆=∆R

= RεG ◦RLµ ◦∆(ηC)
nat η
= RεG ◦ ηRG ◦ µ (ii)

= µ.

If f ′ : C → R(limG) is another morphism with Rλ ◦∆(f ′) = µ, then one has

λ ◦∆(g) = εG ◦ Lµ = εG ◦ LRλ ◦∆(L(f ′))
nat ε
= λ ◦∆(εlimG ◦ L(f ′)).

As g is unique by the universal property of the limit, this implies g = εlimG ◦ L(f ′) and

f = R(g) ◦ ηC = R(εlimG) ◦RL(f ′) ◦ ηC
nat η
= R(εlimG) ◦ ηR(limG) ◦ f ′

(ii)
= f ′. 2

Example 2.4.8:

1. The forgetful functor V : Top → Set is left adjoint to the indiscrete topology functor
R : Set → Top and right adjoint to the discrete topology functor L : Set → Top that
assign to a set X the indiscrete and discrete topology on X (cf. Example 1.2.7, 2).

Hence, V preserves all limits and colimits, the indiscrete topology limits and the discrete
topology colimits. In particular:

• the indiscrete topology on a product set Πi∈IXi is the product topology for the
indiscrete topologies on the sets Xi,
• the indiscrete topology on a subset U ⊂ X coincides with the subspace topology

induced by the indiscrete topology on X,
• the discrete topology on a disjoint union ∪̇i∈IXi is the sum topology of the discrete

topologies on Xi,
• the quotient topology on a quotient of a discrete topological space is the discrete

topology on the quotient.

2. By Example 1.2.7, 1. the forgetful functor V : R-Mod → Set is right adjoint to the free
generation functor 〈 〉R : Set→ R-Mod, that assigns

• to a set X the free R-module 〈X〉R generated by X,
• to a map f : X → X ′ the unique R-linear map 〈f〉 : 〈X〉R → 〈X ′〉R, x 7→ f(x),

Hence, V preserves limits and 〈 〉R colimits. In particular, one has 〈X∪̇Y 〉R ∼= 〈X〉R⊕〈Y 〉R.

3. The forgetful functor V : Grp → Set is right adjoint to the free generation functor
? : Set→ Grp that assigns
• to a set X the free group F (X) = ?XZ generated by X,
• to a map f : X → X ′ the unique group homomorphism F (f) : ?XZ → ?X′Z with
F (f) ◦ ιx = ιf(x) for all x ∈ X.

Hence, V preserves limits and ? colimits.

4. The forgetful functor V : H-Set → Set for a group H is left adjoint to the functor
G = HomSet(H,−) : Set→ H-Set, that assigns

• to a set X the set of maps f : H → X with (h� f)(k) = f(kh),
• to a map g : X → X ′ the H-linear map

HomSet(H, f) : HomSet(H,X)→ HomSet(H,X
′), f 7→ g ◦ f.

Hence, V preserves colimits and G limits.
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5. By Example 1.2.7, 6. for any R-right module M , the functor F := M⊗R− : R-Mod→ Ab
is left adjoint to G := HomAb(M,−) : Ab→ R-Mod. Thus, F is right and G left exact.

The unit and counit of the adjunction are given by ηN : N → HomAb(M,M⊗RN),
n 7→ fn with fn(m) = m⊗n and εA : M⊗RHomAb(M,A)→ A, m⊗f 7→ f(m).

6. Left (right) adjoint functors are right (left) exact. In particular, this holds for left (right)
adjoint functors between abelian categories.

The following example is important in representation theory, where one often considers the
inclusion homomorphism φ : F[U ] → F[H] for the group algebra of a subgroup U ⊂ H. This
inclusion homomorphism allows one to restrict any representation of H to a representation
of the subgroup U . Constructing a representation of H out of a representation of U is less
obvious. It can be achieved by considering induced and coinduced representations. We consider
this example in more generality, with rings instead of the group algebras F[U ] and F[H] and a
general ring homomorphism instead of the inclusion.

Example 2.4.9: (induction and coinduction, cf. Example 1.2.7, 7)
A ring homomorphism φ : R→ S induces a functor Resφ : S-Mod→ R-Mod that assigns

• to an S-module (M,�) the R-module (M,�φ) with r �φ m = φ(r) �m,

• to an S-linear map f : (M,�)→ (M ′,�′) the R-linear map f : (M,�φ)→ (M ′,�′φ).

It is right adjoint to the induction functor Indφ = S⊗R− : R-Mod→ S-Mod that assigns

• to an R-module M the S-module S⊗RM with s � (s′⊗m) = ss′⊗m and the R-right
module structure on S given by s� r = sφ(r),

• to an R-linear map f : M →M ′ the S-linear map idS⊗f : S⊗RM → S⊗RM ′.

and left adjoint to the coinduction functor Coindφ = HomR(S,−) : R-Mod→ S-Mod that

• sends anR-moduleM to the S-module ofR-linear maps f : S →M with (s�f)(t) = f(ts)
and the R-module structure on S is given by r � s = φ(r)s,

• an R-linear map f : M →M ′ to the S-linear map

HomR(S, f) : HomR(S,M)→ HomR(S,M ′), g 7→ f ◦ g.

Hence Resφ preserves limits and colimits and is left and right exact. The functor Indφ preserves
colimits and is right exact, the functor Coindφ preserves limits and is left exact.

Inspired by Example 2.4.9, one might ask under which conditions it is possible to compute
limits and colimits in a subcategory U ⊂ C from limits and colimits in C. It is clear that one
should at least require that the subcategory U ⊂ C is a full subcategory to have control over
its morphisms. However, even in this case it is in general not guaranteed that (co)limit cones
in C define (co)limit cones in U . It holds, if the inclusion functor ι : U → C has a left adjoint.

Definition 2.4.10: A reflective subcategory is a full subcategory U of C such that the
inclusion functor ι : U ↪→ C has a left adjoint L : C → U , the reflector or localisation.

47



Example 2.4.11:

1. The category Ab is a reflective subcategory of Grp.

The reflector is the abelisation functor L : Grp→ Ab that sends
• a group G to its abelisation L(G) = G/[G,G] ,
• each group homomorphism f : G → G′ to the induced group homomorphism
L(f) : G/[G,G]→ G′/[G′, G′].

2. The category CAlgF of commutative algebras over F and algebra homomorphisms between
them is a reflective subcategory of AlgF.

The reflector L : AlgF → CAlgF sends
• an F-algebra A to its symmetrisation S(A) = A/[A,A], its quotient by the two-sided

ideal generated the commutators [a, b] = ab− ba for all a, b ∈ A,
• an algebra homomorphism f : A → A′ to the induced algebra homomorphism
L(f) : A/[A,A]→ A′/[A′, A′].

3. The category Field is a reflective subcategory of the category Int of integral domains and
injective ring homomorphisms between them.

The reflector L : Int→ Field assigns

• to each integral domain I its field of fractions Q(I),
• to each injective ring homomorphism f : I → I ′ the induced field homomorphism
L(f) : Q(I)→ Q(I ′).

4. The category cHaus of compact Hausdorff spaces and continuous maps between them is
a reflective subcategory of Top.

The reflector L : Top→ cHaus assigns
• to a topological space X its Stone-Čech compactification X̌,
• to each continuous map f : X → X ′ the induced map f : X̌ → X̌ ′.

We now show that reflective subcategories are well-behaved with respect to (co)limits. Whenever
a diagram in U has a (co)limit as a diagram in C, then it has a (co)limit as a diagram in U , and
this (co)limit is obtained by applying the reflector and the counit of the adjunction. Hence, the
(co)limit of a diagram of abelian groups in Ab coincides with its (co)limit in Grp. Analogous
statements hold for commutative algebras and algebras, for fields and integral domains and for
compact Hausdorff spaces and topological spaces.

Proposition 2.4.12: Let U be a reflective subcategory of C with inclusion functor ι : U ↪→ C
and left adjoint L : C → U . Then:

1. The counit of the adjunction is a natural isomorphism ε : Lι⇒ idU .

2. U has all colimits that exist in C:
if F : J → U is a diagram and ιF : J → C has a colimit λ : ιF ⇒ ∆(C), then
Lλ ◦ ε−1F : F ⇒ ∆(L(C)) is a colimit of F .

3. The inclusion functor ι : U ↪→ C creates all limits that exist in C:
if F : J → U is a diagram and ιF : J → C has a limit λ : ∆(C) ⇒ ιF , then the cone
µ := εF ◦ Lλ : ∆(L(C))⇒ F is a limit of F and ιµ a limit of ιF .

In particular, if C is (co)complete, so is U .
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Proof:
Denote by η : idC ⇒ ιL and ε : Lι ⇒ idU the unit and counit of the adjunction with (i)
ιε ◦ ηι = idι and (ii) εL ◦ Lη = idL.

1. As U is a full subcategory, the embedding functor ι is full and faithful and induces iso-
morphisms HomU(U,U ′) ∼= HomC(U,U

′) for all U,U ′ ∈ ObU . Thus, for each U ∈ ObU , the
morphism ηU : U → L(U) is in U . This implies

εU ◦ ηU
(i)
= 1U ηU ◦ εU

nat ε
= εL(U) ◦ L(ηU)

(ii)
= 1L(U).

This shows that all component morphisms of ε are isomorphisms, and ε : Lι⇒ idU is a natural
isomorphism. In particular, this implies that L is full.

2. Let F : J → U be a diagram such that ιF : J → C has a colimit λ : ιF ⇒ ∆(C). Then
Lλ : LιF ⇒ ∆(L(C)) is a colimit of LιF , since left adjoint preserve colimits by Theorem
2.4.7. Pre-composing with the natural isomorphism ε−1F : F ⇒ LιF then yields a colimit
Lλ ◦ ε−1F : F ⇒ ∆(L(C)) of F .

3. Suppose F : J → U is a diagram and λ : ∆(C) ⇒ ιF a limit cone of ιF . Then the natural
transformation µ := εF ◦ Lλ : ∆(L(C))⇒ F is a cone over F . We show that it is a limit cone.

(a) We construct a cone isomorphism from ιµ to λ:
As ιµ : ∆(L(C))⇒ ιF is a cone over ιF , there is a unique morphism φ : L(C)→ C in C with
λ ◦∆(φ) = ιµ. We show that φ is an isomorphism:

• As we have ιµ ◦∆(ηC) = ιεF ◦ ιLλ ◦∆(ηC) = ιεF ◦ ηιF ◦ λ = λ by naturality of η and by (i),
it follows that λ ◦∆(φ ◦ ηC) = λ, and the universal property of λ implies φ ◦ ηC = 1C .

• Because ι and L are full, there is a morphism f : C → C in C with ιL(f) = ηC ◦ φ, and
this implies ηC = ηC ◦ 1C = ηC ◦ φ ◦ ηC = ιL(f) ◦ ηC = ηC ◦ f by naturality of η. This
yields f = φ ◦ ηC ◦ f = φ ◦ ηC = 1C . Hence, φ : L(C) → C is an isomorphism with inverse
ηC : C → L(C) and a cone isomorphism from ιµ to λ. It follows that ιµ is a limit of ιF .

(b) If ρ : ∆(U)⇒ F is a cone over F , then ιρ : ∆(U)⇒ ιF is a cone over ιF , and hence there
is a unique morphism ψ : U → C with λ ◦∆(ψ) = ιρ. This implies by naturality of ε−1

µ ◦∆(Lψ ◦ ε−1
U ) = εF ◦ L(λ ◦∆(ψ)) ◦∆(ε−1

U ) = εF ◦ Lιρ ◦∆(ε−1
U ) = εF ◦ ε−1F ◦ ρ = ρ.

Suppose now that σ, τ : U → L(C) are morphisms in U with µ ◦ ∆(σ) = µ ◦ ∆(τ). As
λ ◦∆(φ) = ιµ by (a), this implies λ ◦∆(φ ◦ σ) = λ ◦∆(φ ◦ τ) and by the universal property of
λ then φ ◦ σ = φ ◦ τ . As φ is an isomorphism, this yields τ = σ. Hence, µ : ∆(L(C))⇒ F is a
limit cone of F , such that ιµ : ∆(L(C))⇒ ιF is a limit cone of ιF . 2

Proposition 2.4.12 allows one to draw conclusions about the (co)completeness of reflective sub-
categories without explicitly computing their equalisers, coequalisers, products and coproducts.
An important example is the category Cat of small categories and functors between them and
its full subcategory Grpd of groupoids. Coequalisers in these categories are difficult to describe,
as quotients need to be taken in a coherent way for both, objects and morphisms.

Remark 2.4.13: We will show in Section 5, Corollary 5.4.7, that Cat is a reflective subcate-
gory of a functor category SetC for a small category C. Propositions 2.3.2 and 2.4.12 then imply
that Cat is bicomplete.
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3 Kan extensions

3.1 Kan extensions: definitions and examples

In the last section we approximated functors by constant functors, which lead to the concepts
of limits and colimits as their closest categorical approximations from above and below. This
allowed us to recover familiar concepts from calculus and topology such as infima, suprema
and limits of sequences but also included many more advanced constructions from algebra and
topology, such as pullbacks and pushouts, CW complexes and direct and inverse limits.

In this section, we extend functors, that is, change their domain from one category to another.
Extending a function f : C → E usually means finding another function f ′ : D → E with
C ⊂ D and f ′|C = f or, equivalently, f ′ ◦ ι = f for the inclusion map ι : C → D. The second
condition generalises to arbitrary maps k : C → D. We can define an extension of f along k as
a function f ′ : D → E with f ′ ◦ k = f .

If we replace the maps f : C → E and k : C → D by functors F : C → E and K : C → D,
imposing that there is a functor F ′ : D → E with F ′K = F or even F ′K ∼= F is too restrictive
and destroys interesting examples. Instead, we should require either that there is a natural
transformation η : F ⇒ F ′K or that there is a natural transformation ε : F ′K ⇒ F . Just
as in the case of cocones and cones, we can view the pairs (F ′, η) and (F ′, ε) as categorical
approximations of the functor F from below and above, respectively.

Just as in the definition of (co)limits we then require that these approximations are as close
as possible in a categorical sense. In case of an approximation (F, η) from below, as close as
possible means that for any other approximation (G, γ), consisting of a functor G : D → E and
a natural transformation γ : F ⇒ GK, there is a unique natural transformation α : F ′ ⇒ G
that relates η and γ. In case of an approximation (F, ε) from above, it means that for any other
approximation (G, δ), by functor G : D → E and a natural transformation δ : GK ⇒ F , there
is a unique natural transformation β : G⇒ F ′ that relates ε and δ.

This yields the concept of a left and right Kan extension, with left corresponding to approxima-
tions from below and right corresponding to approximations from above. As we will see in the
following, Kan extensions are a very fundamental concept of category theory that encompasses,
among others, all limits and colimits, adjunctions and the Yoneda lemma. As stated by Saun-
ders MacLane: “The notion of Kan extensions subsumes all the other fundamental concepts of
category theory” or, more briefly: All concepts are Kan extensions.

Definition 3.1.1: Let F : C → E and K : C → D be functors.

1. A left Kan extension of F along K is a functor LanKF : D → E together with a natural
transformation η : F ⇒ (LanKF )K that has the following universal property:

For every pair (G, γ) of a functor G : D → E and a natural transformation γ : F ⇒ GK,
there is a unique natural transformation α : LanKF ⇒ G such that γ = (αK) ◦ η.

C F //

K ��
⇓η

E

D
LanKF

?? C F //

K ��
⇓η

E

D

LanKF
⇓α

33

G

KK
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2. A right Kan extension of F along K is a functor RanKF : D → E together with a
natural transformation ε : (RanKF )K ⇒ F that has the following universal property:

For every pair (G, δ) of a functor G : D → E and a natural transformation δ : GK ⇒ F ,
there is a unique natural transformation β : G⇒ RanKF such that δ = ε ◦ (βK).

C F //

K ��

E

D
⇑ε

RanKF

?? C F //

K ��

E

D
⇑ε

RanKF
⇑β

33

G

KK

Remark 3.1.2:

1. As they are defined by universal properties, left and right Kan extensions are unique up
to unique isomorphisms: if (LanKF, η) and (Lan′KF, η

′) are left Kan extensions of F along
K, there are unique natural transformations α : LanKF ⇒ Lan′KF with (αK) ◦ η = η′

and α′ : Lan′KF ⇒ LanKF with (α′K) ◦ η′ = η, and α′ is the inverse of α.

2. Right (left) Kan extensions are left (right) Kan extensions in opposite categories.

Every functor F : C → D corresponds to a unique functor F ′ : Cop → Dop and every
natural transformation µ : F ⇒ G to a natural transformation µ′ : G′ ⇒ F ′. Thus, a left
(right) Kan extension of F : C → E along K : C → D defines a right (left) Kan extension
of F ′ : Cop → Eop along K ′ : Cop → Dop.

It should be noted that Kan extensions are categorical extensions and do not generalise ex-
tensions of functions in a naive sense. Many claims that one would expect to hold naively are
false in general. Even if K : C → D is fully faithful, for instance a categorical inclusion of a full
subcategory, the natural transformations of a left or right Kan extension need not be natural
isomorphisms. We will derive a sufficient condition for this to hold in Corollary 3.2.11. The
next example shows that a Kan extension of a constant functor along a constant functor is not
necessarily given by a constant functor.

Example 3.1.3: (Hom-functors are Kan extensions)
Let • be the category with a single object and morphism and ∗ : • → Set the functor that
sends the object to the singleton set {•}.

Then a left Kan extension of ∗ along ∆(C) : • → C is given by Hom(C,−) : C → Set and the
map η : {•} → HomC(C,C), • 7→ 1C

•

∆(C) ��

∗ //

⇓η

Set

C
Hom(C,−)=Lan∆(C)∗

>>

A natural transformation γ : ∗ ⇒ G∆(C) for a functor G : C → Set corresponds to a map
γ : {•} → G(C) and hence to the choice of an element x = γ(•) ∈ G(C).

By the Yoneda lemma a natural transformation α : Hom(C,−) ⇒ G is given by αC′(f) =
G(f) ◦ αC(1C) for all morphisms f : C → C ′ and hence determined by αC(1C).

The condition γ = (α∆(C)) ◦ η implies x = γ(•) = αC(η(•)) = αC(1C). This shows that
Hom(C,−) has the universal property of the left Kan extension.
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Example 3.1.4: (Limits and Colimits are Kan extensions)
Let J , C be categories and T : J → • the terminal functor. A left (right) Kan extension of a
functor F : J → C along T is a colimit (limit) of F :

J

T ��

F //

⇓η

C

•
LanTF=colimF

?? J

T ��

F // C

•
⇑ε

RanTF=limF

??

Proof:
1. A pair (G, γ) of a functor G : • → C and a natural transformation γ : F ⇒ GT is a cocone
γ : F ⇒ ∆(G(•)) over F . Thus (LanTF, η) is a cocone η : F ⇒ ∆(C) with nadir C = LanTF (•).
A natural transformation α : LanTF⇒G with (αT )◦η = γ is a cocone morphism. The universal
property of the left Kan extension states that (LanTF, η) is an initial cocone, a colimit of F .

2. A pair (G, δ) of a functor G : • → C and a natural transformation δ : GT ⇒ F is a cone
γ : ∆(G(•)) ⇒ F over F . Thus (RanTF, ε) is a cone ε : ∆(C) ⇒ F with apex C = RanTF . A
natural transformation β : G ⇒ RanTF with ε ◦ (βT ) = δ is a cone morphism. The universal
property of the right Kan extension states that ε is a terminal cone, a limit of F . 2

Other interesting examples of Kan extensions that could be expected to be trivial at first
sight are Kan extensions involving identity functors. The left and right Kan extension of a
functor F along an identity functor is indeed trivial. It is given by F and the identity natural
transformation on F . In contrast, extensions of identity functors arise from adjunctions.

Example 3.1.5: (Adjunctions are Kan extensions)
Let F : C → D be left adjoint to G : D → C with unit η : idC ⇒ GF and counit ε : FG⇒ idD.
Then (G, η) is a left Kan extension of idC along F and (F, ε) a right Kan extension of idD alongG.

C

F ��

idC //

⇓η

C

D
LanF idC=G

?? D

G ��

idD // D

C
⇑ε

RanGidD=F

??

Proof:
1. For a pair (H, γ) of a functor H : D → C and a natural transformation γ : idC ⇒ HF the
unique natural transformation α : G⇒ H with (αF ) ◦ η = γ is α = Hε ◦ γG.

The defining relations for the adjunction (i) Gε ◦ ηG = idG and (ii) εF ◦ Fη = idF imply for
all natural transformations α : G⇒ H with (αF ) ◦ η = γ and D ∈ ObD

H(εD) ◦ γG(D) = H(εD) ◦ αFG(D) ◦ ηG(D)
nat α
= αD ◦G(εD) ◦ ηG(D)

(i)
= αD.

That α = Hε ◦ γG indeed satisfies the condition follows, because for all C ∈ ObC

(αF )C ◦ ηC = H(εF (C)) ◦ γGF (C) ◦ ηC
nat γ
= H(εF (C)) ◦HF (ηC) ◦ γC = H(εF ◦ Fη)C ◦ γC

(ii)
= γC .

This shows that (G, η) has the universal property of the left Kan extension.

2. For a pair (H, δ) of a functor H : C → D and a natural transformation δ : HG ⇒ idC the
unique natural transformation β : H ⇒ F with ε ◦ (βG) = δ is β = δF ◦ Hη. This follows
analogously to 1. and shows that (F, ε) is a right Kan extension. 2
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The preceding examples show that even Kan extensions along functors or of functors that seem
rather trivial give rise to important categorical concepts. However, the main goal is not to
rediscover known concepts, but to apply Kan extensions to other mathematical problems.

A fairly typical example of the latter are induced and coinduced representations. They answer
the question how to canonically extend a representation of a subgroup C ⊂ D to a represen-
tation of the full group D, which is not obvious, if attempted naively. The notion of a Kan
extension not only allows one to solve this problem, but also to generalise its solution to sets
or other objects with group actions instead of representations (cf. Example 2.3.1).

Example 3.1.6: (Induced and coinduced representations are Kan extensions)
Let E = VectF, C,D groups and C = BC, D = BD the associated categories with a single
object • and group elements as morphisms. Then:

• functors F : C → E are representations F : C → AutF(VF ) on VF = F (•),
• functors G : D → E are representations G : D → AutF(VG) on VG = G(•),
• functors K : C → D are group homomorphisms K : C → D,
• natural transformations µ : F ⇒ F ′ : C → VectF are morphisms of C-representations,
• natural transformations ν : G⇒ G′ : D → VectF are morphisms of D-representations.

1. The left Kan extension of a functor F : C → VectF along K : C → D is given by the induced
representation from Example 2.4.9 (Exercise 23):

• the functor LanKF : D → VectF with

– LanKF (•) = F[D]⊗F[C]VF for the right F[C]-action d� c = dK(c) on F[D],

– LanKF (d)(d′⊗v) = (dd′)⊗v,

• the morphism of representations η : VF → F[D]⊗F[C]VF , v 7→ 1⊗v.

C

K ��

F //

⇓η

VectF

D
LanKF=indDCF

<<

2. The right Kan extension of F : C → VectF along K : C → D is given by the coinduced
representation from Example 2.4.9 (Exercise 23):

• the functor RanKF : D → VectF with

– RanKF (•) = HomF[C](F[D], VF ) for the F[C]-action c� d = K(c)d on F[D],

– (RanKF (d)f)(d′) = f(d′d),

• the morphism of representations ε : HomF[C](F[D], VF )→ VF , f 7→ f(1).

C

K ��

F // VectF

D

⇑ε
RanKF=coindDCF

<<
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Induced and coinduced representations were already considered in Example 2.4.9 for general
rings and ring homomorphisms. The (co)induced representations from Example 3.1.6 are a
special case of Example 2.4.9 with group algebras R = F[C] and S = F[D] as rings and a ring
homomorphism φ : R → S induced by a group homomorphism K : C → D. In this case, the
categories R-Mod and S-Mod from Example 2.4.9 are functor categories VectBCF and VectBDF .

Example 2.4.9 shows that the induced and coinduced representations define functors
IndK ,CoindK : VectBCF → VectBDF that are left and right adjoint to the restriction functor
ResK : VectBDF → VectBCF . The latter is simply pre-composition with the group homomorphism
K or, equivalently, with the functor K : BC → BD.

One might ask if this pattern generalises to other functors K : C → D and categories E :

• Do the left and right Kan extensions LanKF,RanKF : D → E of functors F : C → E
organise into functors LanK ,RanK : EC → ED?

• If yes, are the functors LanK ,RanK : EC → ED part of an adjunction?

The natural candidate for an adjoint is the pre-composition functor K∗ : ED → EC that

• sends a functor F : D → E to the functor FK : C → E ,
• a natural transformation µ : F ⇒ F ′ to the natural transformation µK : FK ⇒ F ′K.

This generalises the group homomorphism K : C → D from Examples 2.4.9 and 3.1.6. The
following proposition shows that the answer to these questions is indeed positive, whenever the
left and right Kan extensions along K exist for all functors F : C → E . Thus, the pattern from
Examples 2.4.9 and 3.1.6 holds more generally.

If one ignores largeness issues and does not require that the resulting functor categories are
locally small, one can investigate this for arbitrary categories and functors, as we do in the
following. If one wants to work with locally small functor categories, one must restrict attention
to functors K : C → D between small categories C and D.

Proposition 3.1.7: Let E be a category and K : C → D a functor.

1. If the left Kan extension LanKF : D → E exists for all functors F : C → E , it defines a
left adjoint LanK : EC → ED to K∗ : ED → EC that sends

• a functor F : C → E to its left Kan extension LanKF : D → E along K,

• a natural transformation µ : F ⇒ F ′ between functors F, F ′ : C → E to the unique
natural transformation LanKµ : LanKF ⇒ LanKF

′ with (LanKµ)K ◦ η = η′ ◦ µ.

2. If the right Kan extension LanKF : D → E exists for all functors F : C → E , it defines a
right adjoint RanK : EC → ED to K∗ : ED → EC that sends

• a functor F : C → E to its right Kan extension RanKF : D → E along K,

• a natural transformation µ : F ⇒ F ′ between functors F, F ′ : C → E to the unique
natural transformation RanKµ : RanKF ⇒ RanKF

′ with ε ◦ (RanKµ)K = µ ◦ ε′.

Proof:
By Remark 3.1.2, 2. it is sufficient to prove the claim for left Kan extensions.

1. The natural transformation LanKµ : LanKF ⇒ LanKF
′ is defined uniquely by the universal

property of the Kan extension LanKF , by setting G = LanKF
′ and γ = η′◦µ : F ⇒ (LanKF

′)K
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in Definition 3.1.1. To see that LanK is a functor, note that for F = F ′ and µ = idF we have
η ◦ idF = η = idLanKFK ◦ η and hence LanK idF = idLanKF . For natural transformations
µ : F ⇒ F ′ and µ′ : F ′ ⇒ F ′ we obtain

(LanKµ
′ ◦ LanKµ)K ◦ η = (LanKµ

′)K ◦ (LanKµ)K ◦ η = (LanKµ
′)K ◦ η′ ◦ µ = η′′ ◦ (µ′ ◦ µ),

⇒ LanK(µ′ ◦ µ) = LanKµ
′ ◦ LanKµ.

2. We show that LanK is left adjoint to K∗.

The unit η : idEC ⇒ K∗LanK of the adjunction has as component morphisms the natural
transformations ηF : F ⇒ (LanKF )K in Definition 3.1.1 of the left Kan extension. The counit
ε : LanKK

∗ ⇒ idED has as component morphism εH : LanK(HK) ⇒ H the unique natural
transformation with (εHK) ◦ ηHK = idHK that is defined by the universal property of the left
Kan extension for G = H : D → E and γ = idHK : HK ⇒ HK. It remains to verify the
defining identities of the adjunction

K∗ε ◦ ηK∗ = idK∗ εLanK ◦ LanKη = idLanK .

The component morphism of the first identity for a functor H : D → E is precisely the defining
identity for εH . To verify the second identity, we compute

(εLanK◦LanKη)FK◦ηF = (εLanKFK)◦K∗LanK(ηF )◦ηF
nat η
= (εLanKFK)◦η(LanKF )K◦ηF = ηF ,

where we used the defining identity for εLanKF in the last step. This shows that the natural
transformation α := (εLanK ◦ LanKη)F : LanKF ⇒ LanKF is a natural transformation with
αK ◦ ηF = ηF for the pair G = LanKF : D → E and γ = ηF : F ⇒ GK. As idLanKF is another
one, the universal property of LanKF implies (εLanK ◦ LanKη)F = 1LanKF . 2

This proposition is useful in two ways. If a left or right adjoint to the pre-composition functor
K∗ is known, it gives a candidate for the left or right Kan extension along K : C → D for any
functor F : C → E . Conversely, if the left or right Kan extensions of all functors F : C → E are
known, we can infer that the pre-composition functor K∗ has a left or right adjoint and compute
it explicitly. It also motivates the words left and right for left and right Kan extensions: left
Kan extensions define left and right Kan extensions right adjoints to pre-composition functor.

3.2 Formulas for Kan extensions

In this section, we derive sufficient criteria for the existence of left and right Kan extensions
and formulas that describe them in terms of colimits and limits. The central ingredient is the
comma category, which can be viewed as a generalisation of action groupoids for group actions.
It exists in two versions, one for left, one for right Kan extensions. There are also more general
versions of comma categories that involve additional functors, but we will not consider them.

Definition 3.2.1: Let K : C → D be a functor.

1. The comma category K ↓ D has

• as objects pairs (C, d) with C ∈ ObC and d ∈ HomD(K(C), D),

• as morphisms from (C, d) to (C ′, d′) morphisms c : C → C ′ with d′ ◦K(c) = d.

K(C)

d ""

K(c) // K(C ′)

d′||
D
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2. The comma category D ↓ K has

• as objects pairs (C, d) with C ∈ ObC and d ∈ HomD(D,K(C)),

• as morphisms from (C, d) to (C ′, d′) morphisms c : C → C ′ with d′ = K(c) ◦ d.

K(C)
K(c) // K(C ′)

D
d

bb

d′

<<

3. The projection functors PD : K ↓ D → C and PD : D ↓ K → C are given by

PD : (C, d)

c

��

� // C

c

��
(C ′, d′) � // C ′

PD : (C, d)

c

��

� // C

c

��
(C ′, d′) � // C ′

Remark 3.2.2: The comma categories for a functor K : C → D have the following properties:

• Every morphism d : D → D′ in D defines a functor d∗ : K ↓ D → K ↓ D′ with
d∗(C, d′) = (C, d ◦ d′) and PD′d∗ = PD.

• Every morphism d : D → D′ in D defines a functor d∗ : D′ ↓ K → D ↓ K with
d∗(C, d

′) = (C, d′ ◦ d) and PD d∗ = PD′ .

• The morphisms τD(C,d) = d : K(C) → D form a cone τD : KPD ⇒ ∆(D) under KPD

with τD
′
d∗ = ∆(d) ◦ τD for all morphisms d : D → D′ in D.

• The morphisms τD(C,d) = d : D → K(C) form a cone τD : ∆(D) ⇒ KPD over KPD with

τDd∗ = τD
′ ◦∆(d) for all morphisms d : D → D′ in D.

Although the comma categories seem complicated at first, we can view them as generalisations
of action groupoids. Recall that the action groupoid or transformation groupoid for a left
action � : G×X → X of a group G on a set X is the category with

• elements x ∈ X as objects,
• group elements g ∈ G with g � x = x′ as morphisms from x to x′.

Action groupoids arise as special cases of comma categories for functors K : BG → C. The
simplest cases are the ones where C = Set or C = SetBH for another group H. In the first case,
the functor K corresponds to a G-set, in the second to a group homomorphisms K : G→ H.

Example 3.2.3: Let G be a group and K : BG→ Set a functor with K(•) = X.

1. The comma category K ↓ D for a set D has

• maps f : X → D as objects,

• morphism spaces HomK↓D(f, f ′) = {g ∈ G | f ′ ◦K(g) = f}.

This is the action groupoid for the G-action

�′ : G× HomSet(X,D)→ HomSet(X,D), g �′ f = f ◦K(g−1).
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2. The comma category D ↓ K for a set D has

• maps f : D → X as objects,

• morphism spaces HomD↓K(f, f ′) = {g ∈ G | f ′ = K(g) ◦ f}.

This is the action groupoid for the G-action

�′′ : G× HomSet(D,X)→ HomSet(D,X), g �′′ f = K(g) ◦ f.

The functors PD and PD send every object of K ↓ D and D ↓ K to • and every morphism to
the corresponding element of G.

Example 3.2.4:
Let K : BC → BD be the functor defined by a group homomorphism K : C → D.

1. The comma categories K ↓ •D and •D ↓ K have object sets D and morphisms

HomK↓•D(d, d′) = {c ∈ C | d′ = dK(c)−1} Hom•D↓K(d, d′) = {c ∈ C | d′ = K(c)d}.

They are the action groupoids for the left actions

�R : C ×D → D, c�R d = dK(c)−1 �L : C ×D → D, c�L d = K(c)d.

2. The functors P • : K ↓ •D → BG and P• : •D ↓ K → BG send each element d ∈ D to the
object •C and each morphism c : d→ d′ to the corresponding element of C.

In the general case, the comma categories are more complicated, as they keep track of the objects
as well as the morphisms in C. Nevertheless, we can think of them as a sort of generalised action
categories, where morphisms in C act on morphisms with a fixed source or target in D.

The comma categories and their projection functors allow one to construct left and right Kan
extensions of functors F : C → E along functors K : C → D.

Theorem 3.2.5: Let F : C → E and K : C → D be functors.

1. If the functor FPD : K ↓ D → E has a colimit for every D ∈ ObD, then F has a left
Kan extension given by LanKF (D) = colim(FPD) on the objects.

2. If the functor FPD : D ↓ K → E has a limit for every D ∈ ObD, then F has a right Kan
extension given by RanKF (D) = lim(FPD) on the objects.

Proof:
By Remark 3.1.2, 2. it is sufficient to prove the claim for left Kan extensions. We denote by
λD : FPD ⇒ ∆(colim(FPD)) the colimit cone for D ∈ ObD.

1. We define the functor LanKF : D → E :

We set LanKF (D) = colim(FPD) on the objects of D. As PD′d∗ = PD for all morphisms
d : D → D′ by Remark 3.2.2, the natural transformation λD

′
d∗ : FPD ⇒ ∆(colim(FPD′)) is a

cocone under FPD. The universal property of the colimit yields a unique morphism

LanKF (d) : colim(FPD)→ colim(FPD′) with ∆(LanKF (d)) ◦ λD = λD
′
d∗. (13)
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We show that this defines a functor LanKF . Note first that 1∗D = idK↓D and (d′ ◦ d)∗ = d′∗ ◦ d∗
for all morphisms d : D → D′ and d′ : D′ → D′′. This implies LanKF (1D) = 1LanKF (D) and

λD
′′
(d′ ◦ d)∗ = λD

′′
d′∗d∗

(13)
= (∆(LanKF (d′)) ◦ λD)d∗ = ∆(LanKF (d′)) ◦ λDd∗

(13)
= ∆(LanKF (d′)) ◦∆(LanKF (d)) ◦ λD = ∆(LanKF (d′) ◦ LanKF (d)) ◦ λD,

which yields LanKF (d′ ◦ d) = LanKF (d′) ◦ LanKF (d).

2. We define the natural transformation η : F ⇒ (LanKF )K with component morphisms

ηC = λ
K(C)
(C,1K(C))

: F (C)→ colim(FPK(C)). (14)

The naturality of η follows, because each morphism c ∈ HomC(C,C
′) defines a morphism

c : (C,K(c))→ (C ′, 1K(C′)) in K ↓ D and λK(C′) is a cocone:

ηC′ ◦ F (c)
def η
= λ

K(C′)
(C′,1K(C′))

◦ F (c)
cocone

= λ
K(C′)
(C,K(c)) = λ

K(C′)
(C,K(c)◦1K(C))

= (λK(C′)K(c)∗)(C,1K(C))

(13)
= ∆(LanKF (K(c))) ◦ λK(C)

(C,1K(C))

def η
= ∆(LanK(F )K(c)) ◦ ηC .

3. We show that (LanKF, η) has the universal property of the left Kan extension:

For this, let γ : F ⇒ GK a natural transformation for a functor G : D → E . We construct a
natural transformation α : LanKF ⇒ G with (αK) ◦ η = γ from the cocones

µD = GτD ◦ γPD : FPD ⇒ ∆(G(D)), (15)

where τD : KPD ⇒ ∆(D) is the cocone from Remark 3.2.2. As µD is a cone under FPD, the
universal property of the colimit yields a unique morphism

αD : colim(FPD)→ G(D) with ∆(αD) ◦ λD = µD. (16)

That the morphisms αD define a natural transformation α : LanKF ⇒ G follows from the
universal property of λD, as we have for all morphisms d : D → D′ in D

∆(αD′ ◦ LanKF (d)) ◦ λD (13)
= ∆(αD′) ◦ λD

′
d∗

(16)
= µD

′
d∗

(15)
= (GτD

′ ◦ γPD′)d∗
3.2.2
= GτD

′
d∗ ◦ γPD

3.2.2
= ∆(G(d)) ◦GτD ◦ γPD (15)

= ∆(G(d)) ◦ µD (16)
= ∆(G(d)) ◦∆(αD) ◦ λD = ∆(G(d) ◦ αD) ◦ λD.

It satisfies (αK) ◦ η = γ, since we have for all objects C ∈ ObC

(αK)C ◦ ηC = αK(C) ◦ ηC
(14)
= αK(C) ◦ λK(C)

(C,1K(C))

(16)
= µ

K(C)
(C,1K(C))

(15)
= G(1K(C)) ◦ γC = γC .

To show the uniqueness of α, suppose α′ : LanKF ⇒ G is another natural transformation with
(α′K) ◦ η = γ. We then have for all objects (C, d) of K ↓ D

µD(C,d)

(15)
= (GτD ◦ γPD)(C,d)

3.2.2
= G(d) ◦ γC = G(d) ◦ α′K(C) ◦ ηC

(14)
= G(d) ◦ α′K(C) ◦ λ

K(C)
(C,1K(C))

nat α′
= α′D ◦ LanKF (d) ◦ λK(C)

(C,1K(C))

(13)
= α′D ◦ λD(C,d)

and hence ∆(α′D) ◦ λD = µD = ∆(αD) ◦ λD. The universal property of λD implies α′ = α. 2

This theorem reduces Kan extensions to the computation of (co)limits in those cases where the
relevant (co)limits exist. In particular, their existence is guaranteed for all functors F : C → E
and K : C → D, if C is small, D locally small and E (co)complete. In this case, they define
adjoints to the pre-composition functor K∗ : ED → EC by Proposition 3.1.7.
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Corollary 3.2.6: Let K : C → D with C small, D locally small and E (co)complete.
Then the right (left) Kan extensions along K exist for all functors F : C → E , are given by
Theorem 3.2.5 and define a right adjoint RanK : EC→ED (left adjoint LanK : EC→ED) to K∗.

Proof:
If C is small and D locally small, the comma categories K ↓ D and D ↓ K are small for all
functors K : C → D. As E is (co)complete, the (co)limit of the functors FPD : K ↓ D → E and
FPD : D ↓ K → E exist for any functor F : C → D, define the left (right) Kan extensions by
Theorem 3.2.5 and a left (right) adjoint to K∗ by Proposition 3.1.7. 2

The benefits of the formula in Theorem 3.2.5 go beyond the concrete expressions for their values
on objects. Via Corollary 3.2.6 it gives sufficient criteria for the existence of Kan extensions
that involve mainly the existence of (co)limits in the category E . This allows one to define
mathematical structures as Kan extensions of certain functors in many situations, also in those
cases, where they are difficult to compute explicitly.

The challenges in determining the left or right Kan extensions with the formula in Theorem
3.2.5 depend on the complexity of the relevant comma categories. Generally, it is often sufficient
to compute the Kan extensions on the objects. The associated natural transformations are then
given by the limit cones, and the action of the functors on morphisms is often obvious from the
context. The simplest cases involve categoriesBG for a groupG and yield familiar constructions.

Example 3.2.7:
Let G be a group and K : BG→ SetBG

op

be the covariant Yoneda embedding from (12). Then
the left Kan extension of a G-set X : BG→ Set along K sends a Gop-set Y : BGop → Set to

LanKX(Y ) = Y ×G X

Proof:
The functor K defines the Gop-set G = K(•) = Hom(•, •) with the right multiplication. The
comma category K ↓ Y for a Gop-set Y has

• as objects Gop-equivariant maps f : G→ Y , or, equivalently, elements y ∈ Y ,
• morphism sets HomK↓Y (y, y′) = {g ∈ G | y′ � g = y}.

The functor XP Y : Y ↓ K → Set is given by

XP Y : y ∈ Y
g

��

� // X

X(g):x 7→g�x
��

y � g−1 ∈ Y � // X

A cocone τ : XP Y ⇒ ∆(Z) is a collection of maps τy : X → Z with τy(g � x) = τy�g(x) for
all g ∈ G, y ∈ Y and x ∈ X. This is equivalent to a map fτ : Y ×G X → Z, (y, x) 7→ τy(x).
Thus, the initial cocone is λ : XP Y ⇒ ∆(Y ×GX) with λy : X 7→ Y ×GX, x 7→ (y, x) and the
unique cone morphism from λ to τ is fτ . Thus, LanKX(Y ) = colim(XP Y ) = Y ×G X. 2

Example 3.2.8: Let G be a group and K : BG → (SetBG)op the contravariant Yoneda
embedding from (12). The right Kan extension of a G-set X : BG→ Set along K sends a G-set
Y : BG→ Set to the set of G-equivariant maps f : Y → X

RanKX(Y ) = HomSetBG(Y,X).
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Proof:
The category (SetBG)op has as objects G-sets and as morphisms from a G-set X to a G-set Y
G-equivariant maps f : Y → X. The functor K defines the G-set G = Hom(•, •) with the left
multiplication. The comma category Y ↓ K for a G-set Y has

• as objects G-equivariant maps f : G→ Y , or, equivalently, elements y ∈ Y ,
• morphism sets HomY ↓K(y, y′) = {g ∈ G | y′ = g � y}.

The functor XPY : Y ↓ K → Set is given by

XP Y : y ∈ Y
g

��

� // X

X(g):x 7→g�x
��

g � y ∈ Y � // X

A cone τ : ∆(Z) ⇒ XPY is a collection of maps τy : Z → X with g � τy(z) = τg�y(z) for all
g ∈ G, y ∈ Y and z ∈ Z. This corresponds to a map fτ : Z 7→ HomSetBG(Y,X), z 7→ τ(z) with
τ(z) : Y → X, y 7→ τy(z). Thus, the terminal cone is λ : ∆(HomSetBG(Y,X))⇒ XPY with legs
λy : HomSetBG(X, Y )→ X, h 7→ h(y), and the unique cone morphism from τ to λ is fτ . 2

Example 3.2.9: Let K : BC → BD the functor for a group homomorphism K : C → D and
F : BC → VectF with F (•) = V . Then the (co)limit formulas from Theorem 3.2.5 yield the
(co)induced representations

LanKF (•) = F[D]⊗F[C]V RanKF (•) = HomF[C](F[D], V ).

Proof:
By Example 3.2.4 the functors FP • : K ↓ •D → VectF and FP • : •D ↓ K → VectF send

• each object, given by an element d ∈ D, to FP •(d) = V ,
• a morphism c : d→ d′ to F (c) ∈ AutF(V ).

• A cocone µ : FP • ⇒ ∆(W ) is a collection of linear maps µd : V → W with µd ◦F (c) = µdK(c)

for all c ∈ C, d ∈ D. Every such cocone induces a unique linear map

φ : F[D]⊗F[C]V → W, d⊗v 7→ µd(v),

where F[D] has the F[C]-right module structure d � c = dK(c). This is a cocone morphism
from the cocone λ with legs λd : V → F[D]⊗F[C]V , v 7→ 1D⊗v to µ.

• A cone µ : ∆(W ) ⇒ FP• is a collection of linear maps µd : W → V with F (c) ◦ µd = µK(c)d

for all c ∈ C, d ∈ D. Every such cone induces a linear map

φ : W → HomF[C](F[D], V ), w 7→ fw with fw(d) = µd(w),

where the F[C]-module structure on F[D] is given by c � d = K(c)d and fw is e F[C]-linear.
This is a cone morphism from µ to the cone λ with legs λd : f 7→ f(d). 2

Another insight is that Theorem 3.2.5 and Corollary 3.2.6 can be used to prove the Yoneda
lemma. The basic idea is to consider the right Kan extension of a functor F : C → Set along
the identity functor idC. This is of course given by RanKF = F and ε = idF : F ⇒ F . On the
other hand, we can use the comma category C ↓ idC and the limit formula to compute it.
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Corollary 3.2.10: (Yoneda Lemma)
Let C be small. Then for any functor F : C → Set and object C ∈ ObC, natural transformations
τ : Hom(C,−)⇒ F are in bijection with elements of F (C):

Nat(Hom(C,−), F ) ∼= F (C).

Proof:
As C is small and Set locally small and complete, the right Kan extension of F : C → Set along
the identity functor idC is given by Corollary 3.2.6 and the limit formula from Theorem 3.2.5.

The category C ↓ idC has as objects morphisms d ∈ HomC(C,C
′) for objects C ′ ∈ ObC and as

morphisms from d to d′ ∈ HomC(C,C
′′) morphisms c ∈ HomC(C

′, C ′′) with d′ = c ◦ d.

A cone µ : ∆(X)⇒ FPC has legs µd : X → F (C ′) for d ∈ HomC(C,C
′) with F (c) ◦ µd = µc◦d

for all c ∈ HomC(C
′, C ′′). It defines a map µ′ : X → Nat(Hom(C,−), F ) that assigns to x ∈ X

the natural transformation µx : Hom(C,−)⇒ F with components µxC′ : HomC(C,C
′)→ F (C ′),

d 7→ µd(x). The naturality of µx is precisely the cone property of µ

µxC′′ ◦ Hom(C, c)(d) = µc◦d(x) = F (c) ◦ µd(x) = F (c) ◦ µxC′(d).

The map µ′ is the unique cone morphism from µ to the terminal cone

λ : ∆(Nat(Hom(C,−), F ))⇒ FPC

λd : Nat(Hom(C,−), F )→ F (C ′), ρ 7→ ρC′(d) for d ∈ HomC(C,C
′).

The limit formula and the uniqueness of the Kan extension then yield the Yoneda lemma:

RanidCF (C) = Nat(Hom(C,−), F ) ∼= F (C). 2

These examples show that Kan extensions given by the (co)limit formulas from Theorem 3.2.5
have particularly nice properties. Almost all Kan extensions arising from familiar constructions
are of this type. Generally, Kan extensions that are not given by (co)limit formulas are ill-
behaved and mostly useless in practice. In particular, we will see in the next section that
they interact badly with Hom functors. As the Kan extensions given by (co)limit formulas
are computed object by object by taking for each object an appropriate (co)limit, these Kan
extensions are called objectwise or, more frequently, pointwise.

Definition 3.2.11: Let C be small and D and E locally small categories. A right (left) Kan
extension of F : C → D along K : C → D is called pointwise, if it is given by the (co)limit
formula from Theorem 3.2.5.

A first indication that pointwise Kan extensions are the good Kan extensions is that they are
indeed extensions in a more naive sense under certain conditions. If a functor F : C → E is
extended along a fully faithful functor K : C → D, the natural transformation that characterises
a pointwise Kan extension is a natural isomorphism.

Corollary 3.2.12:

1. If a left Kan extension (LanKF, η) is pointwise and K : C → D fully faithful, then
η : F ⇒ (LanKF )K is a natural isomorphism.
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2. If a right Kan extension (RanKF, ε) is pointwise and K : C → D fully faithful, then
ε : (RanKF )K ⇒ F is a natural isomorphism.

Proof:
We prove the claim for left Kan extensions. The claim for right Kan extensions then follows
from Remark 3.1.2, 2.

If K is fully faithful, then the canonical functor H : idC ↓ C → K ↓ K(C) with PC = PK(C)H

H : (C ′, d′)

c

��

� // (C ′, K(d′))

c

��
(C ′′, d′′) � // (C ′′, K(d′′))

is an isomorphism of categories, since for all morphisms d′ : C ′ → C, d′′ : C ′′ → C and
c : C ′ → C ′′ one has d′ = d′′ ◦ c if and only if K(d′) = K(d′′) ◦K(c).

It follows that any cocone µ : FPK(C) ⇒ ∆(D) defines a unique cocone µ′ : FPC ⇒ ∆(D)
with legs µ′(C′,d′) = µ(C′,K(d′)) and vice versa. Thus, by Theorem 3.2.5 the left Kan extension is

determined by the colimit cone λ′ : FPC ⇒ ∆(colim(FPC)).

The category idC ↓ C has the terminal object (C, 1C), since for every pair (C ′, d′), there is
exactly one morphism t : (C ′, d′)→ (C, 1c), namely t = d′ : C ′ → C. Hence, the colimit cone λ′

has the legs λ′(C′,d′) = F (d′) : F (C ′)→ F (C), see Exercise 10, and the left Kan extension is

LanKF (K(C)) = colim(FPK(C)) = colim(FPC) = F (C)

ηC = λ′(C,1C) = F (1C) = 1F (C) : F (C)→ F (C). 2

Another important motivation for pointwise Kan extensions are the special properties of point-
wise Kan extensions along the Yoneda embeddings (12). Any pointwise left Kan extension of
a functor F : C → E along the covariant Yoneda embedding y : C → SetC

op

yields a left adjoint
LanyF : SetC

op → E to the functor R = HomE(F (−),−) : E → SetC
op

. One one hand, this
can be used to determine this left Kan extension, if a left adjoint of R is known, by using the
uniqueness of adjoints. On the other hand, this adjunction is conceptually important. We will
see examples of both in Section 5. There is also an analogous statement for right Kan extensions
along the contravariant Yoneda embedding, which is less used in practice (Exercise).

Proposition 3.2.13: Let C be small. Then a pointwise left Kan extension F : C → E along
the covariant Yoneda embedding y : C → SetC

op

C F //

y ""
⇓η

E

SetC
op

LanyF

<<

is left adjoint to the functor R = HomE(F (−),−) : E → SetC
op

that assigns to

• an object E ∈ ObE the functor R(E) = HomE(F (−), E) : Cop → Set,

• a morphism e ∈ HomE(E,E
′) the natural transformation R(e) : R(E) ⇒ R(E ′) with

components R(e)C = HomE(F (C), e) : HomE(F (C), E)→ HomE(F (C), E ′), f 7→ e ◦ f .

The natural transformation η : F ⇒ LanyFy is a natural isomorphism.
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Proof:
That η : F ⇒ LanyF is a natural isomorphism follows from Corollary 3.2.12, because the
Yoneda embedding is fully faithful.

We show that LanyF : SetC
op → E is left adjoint to R : E → SetC

op

by constructing bijections

HomSetC
op (S,R(E)) ∼= cocone(FP S, E) ∼= HomE(LanyF (S), E) (17)

that are natural in S and E for all functors S : Cop → Set and objects E ∈ ObE . Here,
P S : y ↓ S → C is the projector for the comma category y ↓ S.

1. The second bijection in (17) follows from the colimit formula in Theorem 3.2.5. The universal
property of the colimit states that there is a bijection

cocone(FP S, E) ∼= HomE(colim(FP S), E) ∼= HomE(LanyF (S), E)

that is natural in E. Its naturality in S follows from the fact that LanyF : SetC
op → E is a

functor and the functoriality of the colimit, see Proposition 2.2.5.

2. To construct the first bijection in in (17), we consider the comma category y ↓ S.

• Its objects are pairs (C, ν) of C ∈ ObC and natural transformations ν : HomC(−, C)⇒ S.

By the Yoneda lemma the latter are in bijection with elements of S(C). For each
s ∈ S(C) the unique natural transformation νs : HomC(−, C) ⇒ S with νsC(1C) = s has
component morphisms are νsC′ : HomC(C

′, C)→ S(C ′), f 7→ S(f)(s).

• A morphism c : (C, ν) → (C ′, ν ′) in y ↓ S is a morphism c : C → C ′ in C that satisfies
ν ′ ◦ HomC(−, c) = ν, or, equivalently,

ν ′C(c) = S(c)(ν ′C′(1C′)) = νC(1C). (18)

The projector P S : y ↓ S → C sends each object (C, ν) to C and each morphism to itself.

3. We show that there are bijections HomSetC
op (S,R(E)) ∼= cocone(FP S, E) that are natural in

E ∈ ObE and S : Cop → Set. For this, we consider the maps

φS,E : HomSetC
op (S,R(E)) → cocone(FP S, E)

α : S ⇒ R(E) 7→ λα : FP S ⇒ ∆(E)

λα(C,ν) = αC(νC(1C)) : F (C)→ E

ψS,E : cocone(FP S, E) → HomSetC
op (S,R(E))

λ : FP S ⇒ ∆(E) 7→ βλ : S ⇒ R(E)

βλC : S(C)→ HomE(F (C), E), s 7→ λ(C,νs)

To show that λα is indeed a cocone for each natural transformation α : S ⇒ R(E), we compute
for a morphism c : (C, ν)→ (C ′, ν ′) in y ↓ S

λα(C′,ν′)◦F (c)
def λα

= αC′(ν
′
C′(1C′))◦F (c)

def R(E)
= (R(E)(c) ◦ αC′)(ν ′C′(1C′)

nat α
= (αC ◦ S(c))(ν ′C′(1C′))

(18)
= αC(νC(1C)) = λα(C,ν).

To show that βλ : S ⇒ R(E) is a natural transformation for each cocone λ : FP S ⇒ ∆(E),
note that by (18) each morphism c : C → C ′ in C defines a morphism c : (C, νS(c)(s′))→ (C ′, νs

′
)
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in y ↓ S for all s′ ∈ S(C ′), because one has νs
′
C (c) = S(c)νs

′
(1C) = S(c)(s′) = ν

S(c)s′

C (1C). This
implies for all s′ ∈ S(C ′)

βλC ◦ S(c)(s′)=βλC(S(c)(s′))=λ(C,νS(c)(s′))
λ cocone

= λ(C′,νs′ ) ◦ F (c)=βλC′(s
′) ◦ F (c)=(R(E)(c) ◦ βλC′)(s′).

A direct computation then shows that ψS,E is the inverse of ψS,E:

(ψS,E ◦ φS,E)(α)C(s) = ψS,E(λα)C(s) = λα(C,νs) = αC(νsC(1C)) = αC(s) ∀ C ∈ ObC, s ∈ S(C)

(φS,E ◦ ψS,E)(λ)(C,ν) = ψS,E(λ)C(νC(1C)) = λ(C,ν) ∀ (C, ν) ∈ Ob(y ↓ S).

The naturality of φS,E follows, because we have for each natural transformation β : S ′ ⇒ S,
morphism e : E → E ′ and (C, ν) ∈ Ob(y ↓ S)

φS′,E′(Hom(−, R(e)) ◦ α ◦ β)(C,ν) = (Hom(F (C), e) ◦ αC ◦ βC)(νC(1C)) = e ◦ αC(βC(νC(1C)))

= ∆(e) ◦ αC((β ◦ ν)C(1C)) = (∆(e) ◦ φS,E(α))(C,β◦ν).
2

The simplest example of the construction in Proposition 3.2.13 arises if we take for C = BG for
a group G. In this case, a functor F : C → Set is a G-set X = F (•) and the left Kan extension
is LanyF = −×GX : SetBG

op → Set by Example 3.2.7. By working with opposite categories, we
can also consider the right Kan extension along the contravariant Yoneda embedding and obtain
an analogous statement for right Kan extensions. By Example 3.2.8 we then have RanyF =
HomSetBG(−, X) : (SetBG)op → Set Proposition 3.2.13 then takes the following form.

Example 3.2.14: Let G be a group and X a G-set.

1. The functor LanyX = −×G X : SetBG
op → Set from Example 3.2.7 that sends

• a Gop-set Y to the set Y ×G X,
• a Gop-equivariant map f : Y → Y ′ to the induced map f×G id : Y ×GX → Y ′×GX,

is left adjoint to the functor HomSet(X,−) : Set→ SetBG
op

that sends

• a set Z to the Gop-set of maps f : X → Z with (f �g)(x) = f(gx) for x ∈ X, g ∈ G,
• a map f : Z → Z ′ to f∗ : HomSet(X, Y )→ HomSet(X,Z

′), g 7→ f ◦ g.

2. The functor RanyX = HomSetBG(−, X) : (SetBG)op → Set from Example 3.2.8 that sends

• a G-set Y to the set HomBG(Y,X) of G-equivariant maps f : Y → X,
• a G-equivariant map f : Y ′ → Y to f ∗ : HomBG(Y,X)→ HomBG(Y ′, X), g 7→ g ◦ f ,

is right adjoint to the functor HomSet(−, X) : Set→ (SetBG)op that sends

• a set Z to the G-set of maps f : Z → X with (g�f)(z) = g�f(z) for g ∈ G, z ∈ Z,
• a map f : Z ′ → Z to f ∗ : HomSet(Z,X)→ HomSet(Z

′, X), g 7→ g ◦ f .

3.3 Preservation of Kan extensions

It remains to consider the interaction of Kan extensions with functors. Given a left or right Kan
extension (LanKF, η) or (RanKF, ε) of a functor F : C → E along K : C → D and a functor
H : E → F , we can consider the pairs (HLanKF,Hη) or (HRanKF,Hε). If they are left or
right Kan extensions of HF : C → F along K : C → D, we say that the Kan extensions are
preserved by H.
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Definition 3.3.1: Let F : C → E and K : C → D be functors. A functor H : E → F
preserves a left Kan extension (LanKF, η) or right Kan extension (RanKF, ε), respectively, if
(HLanKF,Hη) or (HRanKF,Hε) is a left or right Kan extension of HF along K:

C F //

K ��
⇓η

E H // F

D
LanKF

?? = C HF //

K ��
⇓Hη

F

D
LanK(HF )

>>

C F //

K ��

E H // F

D
⇑ε

RanKF

?? = C HF //

K ��

F

D
⇑Hε

RanK(HF )

>>

As right (left) adjoint functors preserve (co)limits by Theorem 2.4.7, it is plausible that they
preserve pointwise right (left) Kan extensions, which are given by (co)limit formulas. One could
also expect them to preserve Kan extensions in more generality, as the functors in the adjunction
and its unit and counit can be used to transport natural transformations between the categories
E and F , as in the Proof of Theorem 2.4.7. This intuition is correct.

Proposition 3.3.2: Left (right) adjoints preserve left (right) Kan extensions.

Proof:
We prove the claim for left Kan extensions. The one for right Kan extensions follows with
Remark 3.1.2, 2. because L : E → F left adjoint to R : F → E with unit η : idE ⇒ RL and
counit ε : LR ⇒ idF implies that L′ : Eop → Fop is right adjoint to R′ : Fop → Eop with unit
ε′ : idFop ⇒ L′R′ and counit η′ : R′L′ ⇒ idEop .

Let (LanKF, η) be a left Kan extension of F : C → E along K : C → D and L : E → F left
adjoint to R : F → E with unit ι : idE ⇒ RL and counit ν : LR ⇒ idF of the adjunction
satisfying (i) Rν ◦ ιR = idR and (ii) νL ◦ Lι = idL.

We show that (LLanKF,Lη) is a left Kan extension of LF : C → F along K : C → D:
For this, let G : D → F be a functor and γ : LF ⇒ GK a natural transformation. Then
Rγ ◦ ιF : F ⇒ RLF ⇒ RGK is a natural transformation with RG : D → E , and by the
universal property of (LanKF, η) there is a unique natural transformation β : LanKF ⇒ RG
with βK ◦ η = Rγ ◦ ιF . Then α = νG ◦ Lβ : LLanKF ⇒ LRG⇒ G satisfies

αK ◦ Lη = νGK ◦ LβK ◦ Lη = νGK ◦ LRγ ◦ LιF nat ν
= γ ◦ νLF ◦ LιF (ii)

= γ.

Suppose that α′ : LLanKF ⇒ G is another natural transformation with α′K ◦ Lη = γ. Then
the natural transformation Rα′ ◦ ιLanKF : LanKF ⇒ RLLanKF ⇒ RG satisfies

(Rα′ ◦ ιLanKF )K ◦ η = Rα′K ◦ ιLanKFK ◦ η
nat ι
= Rα′K ◦RLη ◦ ιF = Rγ ◦ ιF,

and the universal property of (LanKF, η) implies Rα′ ◦ ιLanKF = β. This yields

α = νG ◦ Lβ = νG ◦ LRα′ ◦ LιLanKF
nat ν
= α′ ◦ νLLanKF ◦ LιLanKF

(ii)
= α′

and shows that (LLanKF,Lη) has the universal property of the left Kan extension. 2
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Example 3.3.3:

1. The forgetful functor V : Top → Set has a left and a right adjoint by Example 2.4.8,
1. and hence preserves left and right Kan extensions.

2. The forgetful functors V : R-Mod → Set and V : Grp → Set preserve right Kan-
extensions, as they have left adjoints by Example 2.4.8, 2. and 3.

3. The forgetful functor V : H-Set→ Set for a group H preserves left Kan extensions, as it
has a right adjoint by Example 2.4.8, 4.

4. The functor M⊗R− : R-Mod → Ab for an R-right module M preserves left Kan
extensions and the functor HomAb(M,−) : Ab → R-Mod for an R-right module M
preserves right Kan extensions by Example 2.4.8, 6.

5. By Example 2.4.9, for a ring homomorphism φ : R → S the associated induction
functor Indφ : R-Mod → S-Mod preserves left Kan extensions, the coinduction functor
Coindφ : R-Mod → S-Mod preserves right Kan extensions and the restriction functor
Resφ : S-Mod→ R-Mod preserves left and right Kan extensions.

6. The inclusion ι : U → C for a reflective subcategory U ⊂ C preserves right Kan extensions
and its reflector L : C → U left Kan extensions, see Example 2.4.11 for concrete examples.

The examples involving forgetful functors V : E → Set seem somewhat trivial, but they often
allow one to guess a Kan extension of a functor F : C → E from the corresponding Kan
extension of V F : C → Set. The latter can often be promoted to a Kan extension with values
in E by equipping it with additional structure. It is tempting to employ a similar strategy for
Kan extension in other categories by applying a Hom functor instead of a forgetful functor.

This raises the question which Kan extensions are preserved by Hom-functors. As every left
Kan extension of F : C → E along K : C → Set corresponds to a right Kan extension of
F ′ : Cop → Eop along K ′ : Cop → Eop by Remark 3.1.2, 2, it is sufficient to consider this
question for right Kan extensions. The relevant Hom-functors are then covariant Hom-functors
Hom(E,−) : E → Set. They preserve precisely the pointwise right Kan extensions.

Theorem 3.3.4: Let F : C → E and K : C → D be functors.

1. A right Kan extension (RanKF, ε) is pointwise if and only if it is preserved by all functors
Hom(E,−) : E → Set

C F //

K ��

E Hom(E,−) // Set

D
⇑ε

RanKF

?? = C Hom(E,−)F //

K
&&

Set

D
⇑Hom(E,−)ε

RanK(Hom(E,−)F )

77

2. A left Kan extension (LanKF, η) is pointwise if and only if the associated right Kan
extension from Remark 3.1.2 is preserved by all functors Hom(−, E) : Eop → Set

Cop F ′ //

K′ ""

Eop Hom(−,E) // Set

Dop
⇑η′

RanK′F
′

<< = Cop Hom(−,E)F ′ //

K′ ''

Set

Dop
⇑Hom(−,E)η

RanK′ (Hom(−,E)F ′)

77
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Proof:
We prove the claim for right Kan extensions. The proof for left Kan extensions follows with
Remark 3.1.2, 2. , as HomEop(E,−) ∼= HomE(−, E) : Eop → Set.

1. If the right Kan extension (RanKF, ε) is pointwise, then by Theorem 3.2.5 it is given by
the limit cone λD : ∆(lim(FPD)) ⇒ FPD. By Proposition 2.4.5 its image Hom(E,−)λD is
a limit cone of Hom(E,−)FPD and by Theorem 3.2.5 it defines the right Kan extension of
Hom(E,−)F along K.

2. Suppose now that (RanKF, ε) is a right Kan extension of F along K such that for all E ∈ ObE
the pair (Hom(E,−)RanKF,Hom(E,−)ε) is a right Kan extension of Hom(E,−)F along K.

To prove that (RanKF, ε) is pointwise, we have to show that RanKF (D) is a limit of the functor
FPD : D ↓ K → E or, equivalently, that the set cone(E,FPD) of cones over FPD with apex E
is in bijection with the set HomE(E,RanKF (D)). For this, note first that

HomE(E,RanKF (D)) ∼= HomSetD(Hom(D,−),Hom(E,RanKF (−)))
∼= HomSetC(Hom(D,K(−)),Hom(E,F (−))),

where we used in the first step the Yoneda Lemma, stating that natural transformations
Hom(D,−) ⇒ Hom(E,RanKF (−)) are in bijection with elements of HomE(E,RanKF (D)),
and in the second step the universal property of the right Kan extension Hom(E,−)RanKF ,
stating that natural transformations δ : Hom(D,−)K ⇒ Hom(E,−)F are in bijection with
natural transformations β : Hom(D,−)⇒ Hom(E,−)RanKF .

It remains to show that natural transformations φ : Hom(D,K(−)) ⇒ Hom(E,F (−)) are in
bijection with cones over FPD with apex E.

The former are collections of maps φC : HomD(D,K(C)) → HomE(E,F (C)), d 7→ φC(d) for
C ∈ ObC with φC′(K(c) ◦ d) = F (c) ◦ φC(d) for all morphisms c : C → C ′ and d : D → K(C).
The latter are collections of morphisms λ(C,d) : E → F (C) indexed by pair of objects C ∈ ObC
and morphisms d : D → K(C) with λ(C′,K(c)◦d) = F (c) ◦ λ(C,d) for for all morphisms c : C → C ′

and d : D → K(C). The bijection is thus given by

cone(E,FPD) → HomSetC(Hom(D,K(−)),Hom(E,F (−)))

λ(C,d) : E → F (C) 7→ φC : d 7→ λ(C,d).
2

Thus, we can characterise pointwise Kan extensions not only as the Kan extensions given by
(co)limit formulas, but also as the Kan extensions that can be related to Kan extensions in
Set by applying Hom-functors. As a good interaction with functors is essential for categorical
concepts, these are the only Kan extensions that are relevant in practice. By Corollary 3.2.6
this includes in particular all Kan extensions of functors F : C → E from small categories C
into bicomplete categories E along functors K : C → D into a locally small category D.
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4 Ends and Coends

4.1 Ends and coends: definition and properties

In this section, we introduce ends and their dual concept, coends. They are mathematical tools
that allow rather simple and intuitive computations with limits and colimits and gives rise to
a more efficient and intuitive formula for Kan extensions. Ends and coends are in principle
nothing new and arise as special cases of limits and colimits. Nevertheless, they are useful and
important, in roughly the same way as tensor products over rings.

Recall that the tensor product of an R-module N and an R-right module M is, by definition,
a quotient of the free abelian group generated by the set M ×N by the subgroup that enforces
the R-bilinearity: M⊗RN = 〈M ×N〉Z/U where U is the subgroup generated by the elements

• (m+m′, n)− (m,n)− (m′, n),
• (m,n+ n′)− (m,n)− (m,n′),
• (m� r, n)− (m, r � n)

for all m,m′ ∈ M , n, n′ ∈ N and r ∈ R. Thus, the tensor product over R is nothing but a
coequaliser (quotient) of a coproduct (direct sum, free module), and in principle quotients and
direct sums are sufficient to describe it. Nevertheless, it would be very cumbersome to describe
tensor products in this way. Rather, one characterises them by a universal property (arising
from the ones of quotients and direct sums) and works directly with tensor products.

(Co)ends describe categorical generalisations of this construction and are defined in a similar
way as (co)limits. Limits are taken of functors F : C → E and defined as terminal cones,
natural transformations from a constant functor to F and colimits as initial cocones, natural
transformations from F to a constant functor. Ends and coends are taken only for functors
F : Cop × C → E and associated to wedges and cowedges, dinatural transformations from a
constant functor to F or from F to a constant functor.

A dinatural transformation between functors F,G : Cop×C → E can be viewed as a weakening
of the concept of a natural transformation. While a natural transformation ν : F ⇒ G is defined
by component morphisms νC,C′ : F (C,C ′) → G(C,C ′) for all C,C ′ ∈ ObC and required to be
natural in both arguments, the components of a dinatural transformation are defined only on
the diagonal, for C = C ′ and the naturality condition is weakened accordingly. The prefix di
thus stands for defined only on the diagonal.

Definition 4.1.1: Let F,G : Cop × C → E be functors. A dinatural transformation
τ : F

•⇒G is a collection of morphisms τC : F (C,C) → G(C,C) such that the following di-
agram commutes for all morphisms f : C → C ′

F (C ′, C)

F (1C′ ,f)

��

F (f,1C)// F (C,C)
τC

&&
F (C ′, C ′)

τC′

&&

G(C,C)

G(1C ,f)

��
G(C ′, C ′)

G(f,1C′ )
// G(C,C ′)
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Example 4.1.2:

1. Every natural transformation ν : F ⇒ G for F,G : Cop × C → E defines a dinatural
transformation ν ′ : F

•⇒G with components ν ′C = νC,C : F (C,C)→ G(C,C) (Exercise 35).

2. A functor F : BGop × BG → Set for a group G corresponds to a set X = F (•)
with a left G-action � defined by g � x = F (1•, g)x and right G-action � defined by
x� g = F (g, 1•)x with g � (x� h) = (g � x) � h for all x ∈ X and g, h ∈ G.

A natural transformation ν : F ⇒ F ′ is a map f : X → X ′ that is equivariant with re-
spect to both actions: f(g�x) = g�f(x) and f(x�g) = f(x)�g for all g ∈ G and x ∈ X.

A dinatural transformation F
•⇒F ′ is a map f : X → X ′ with g� f(x� g) = f(g�x)� g

for all g ∈ G and x ∈ X, or, equivalently, equivariant with respect to the conjugation
action �′ : G×X → X, (g, x) 7→ g � x� g−1.

Just as (co)cones for a functor F are defined as a natural transformations between F and a
constant functor, (co)wedges for a functor F : Cop×C → E are defined as dinatural transforma-
tions between F and a constant functor. There are also notions of (co)wedge morphisms and
categories of (co)wedges for the functor F . Just as limits and colimits are terminal cones and
initial cocones, ends and coends are defined as terminal wedges and and initial cowedges.

Definition 4.1.3: Let F : Cop × C → E be a functor.

1. A wedge over F is a dinatural transformation τ : ∆(E)
•⇒F from a constant functor.

2. A wedge morphism from τ : ∆(E)
•⇒F to τ ′ : ∆(E ′)

•⇒F is a morphism e : E → E ′ in
E with τ ′C ◦ e = τC for all C ∈ ObC.

3. A cowedge under F is a dinatural transformation τ : F
•⇒∆(E) to a constant functor.

4. A cowedge morphism from τ : F
•⇒∆(E) to τ ′ : F

•⇒∆(E ′) is a morphism e : E → E ′

in E with τ ′C = f ◦ τC for all C ∈ ObC.

(Co)wedges and (co)wedge morphisms over F form a category (co)wedge(F ).

Definition 4.1.4: Let F : Cop × C → E be a functor.

1. An end of F is a terminal object in wedge(F ): a wedge λ : ∆(
∫
C∈C F (C,C))

•⇒F such that

for every wedge τ : ∆(E)
•⇒F there is a unique wedge morphism φ : E →

∫
C∈C F (C,C).

E
∃!φ

%%

τC

##

τC′

''∫
C∈C F (C,C)

λC
��

λC′ // F (C ′, C ′)

F (f,1C′ )

��
F (C,C)

F (1C ,f)
// F (C,C ′)
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2. A coend of F is an initial object in cowedge(F ): a cowedge λ :F
•⇒∆(

∫ C∈C
F (C,C)) such

that for each cowedge τ :F
•⇒∆(E) there is a unique cowedge morphism φ :

∫ C∈C
F (C,C)→E.

F (C ′, C)

F (f,1C)

��

F (1C′ ,f)// F (C ′, C ′)

λC′
�� τC′

��

F (C,C)
λC
//

τC ..

∫ C∈C
F (C)

∃!φ

$$
ERemark 4.1.5:

1. As terminal and initial objects, ends and coends are unique up to unique isomorphism.

2. A cowedge under a functor F : Cop × C → E is a wedge over the associated functor
F ′ : C × Cop → Eop. This implies that an end or coend of F : Cop × C → E is a coend or
end of F ′ : C × Cop → Eop.

The integral notation for ends and coends will be justified in the next subsection. At the
moment, we just take it as a notation for the objects that characterise the end or coend.

The diagrams for the universal properties of (co)ends in Definition 4.1.4 are more illuminating.
By comparing with the diagrams for pullbacks and pushouts in Example 2.1.6, 3. we see that
for each morphism f : C → C ′ the end is a pullback of F (1C′ , f) : F (C,C) → F (C,C ′) and
F (f, 1C) : F (C ′, C ′) → F (C,C ′) and the coend a pushout of F (1C′ , f) : F (C ′, C) → F (C ′, C ′)
and F (f, 1C) : F (C ′, C) → F (C,C). As pullbacks are equalisers of products and pushouts
coequalisers of coproduct, this also fits well with the intuition about tensor products at the
beginning of this section. What distinguishes (co)ends from usual pullbacks and pushouts is
that they are simultaneous pullbacks and pushouts for all morphisms in C.

Example 4.1.6:

1. group actions: Let G be a group and F : BGop × BG → Set a set X = F (•) with
commuting left G-action � and right G-action �, as in Example 4.1.2, 2.

A wedge over F is a map τ : E → X with g � τ(e) = τ(e) � g for all e ∈ E, g ∈ G
or, equivalently, a map τ ′ : E → XG into the fixed point set XG of the conjugation
action �′ : G × X → X, g �′ x = g � x � g−1. Hence, the end of F is the inclusion
ι : XG → X and the unique morphism φ : E → X with ι◦φ = τ is the corestriction τ ′ of τ .

A cowedge under F is a map τ : X → E with τ(g � x) = τ(x � g) or, equivalently,
τ(g�′x) = x for all x ∈ X, g ∈ G. Hence, the end of F is the orbit setO = {G�′x | x ∈ G}
with the canonical surjection π : X → O. The map φ : O → E, G �′ x 7→ τ(x) is the
unique map with φ ◦ π = τ .

2. tensor product of G-sets: As a special case of 1. consider F : BGop ×BG→ Set with
F (•) = X × Y for a right G-set X and left G-set Y .

A wedge over F is a map τ : E → X × Y with values in the fixed point set of the action
�′ : G×X×Y → X×Y , g�′(x, y) = (x�g−1, g�y), and the end its inclusion into X×Y .

A cowedge over F is a map τ : X × Y → E with τ(x� g, y) = τ(x, g � y) for all x ∈ X,
y ∈ Y and g ∈ G. Any such map induces a unique map φ′ : X ×G Y → E with φ′ ◦π = τ ,
and hence the coend is π : X × Y → X ×G Y .
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3. evaluation: Let k be a commutative ring, N a k-module and consider the functor
F = Homk(−, N)⊗k− : k-Modop × k-Mod→ k-Mod that assigns to

• a pair of k-modules (M1,M2) the k-module Homk(M1, N)⊗kM2,

• to a pair (f1, f2) of k-linear maps f1 : M ′
1 →M1 and f2 : M2 →M ′

2 the k-linear map

Homk(f1, N)⊗f2 : f⊗m 7→ (f ◦ f1)⊗f2(m).

A cowedge of F is a collection of k-linear maps τM : Homk(M,N)⊗kM → E satisfying
τM ′(f ◦g⊗m′) = τM(f⊗g(m′)) for all m′ ∈M ′ and k-linear f : M → N and g : M ′ →M .
The coend of F is given by the maps λM : Homk(M,N)⊗M → N , f⊗m 7→ f(m),
and φ : N → E, n 7→ τN(idN⊗n) is the unique map with φ◦λM = τM for all k-modules M .

4. natural transformations: Let C be small, F,G : C → E functors and consider the
functor H = HomE(F (−), G(−)) : Cop × C → Set.

A wedge over H is a collection of maps τC : E → HomE(F (C), G(C)), e 7→ τ eC indexed by
objects of C, with τ eC′ ◦ F (f) = G(f) ◦ τ eC for all morphisms f : C → C ′. This is a map
τ ′ : E → Nat(F,G), e 7→ τ e that assigns to e ∈ E a natural transformation τ e : F ⇒ G.

The end of H is given by the maps λC : Nat(F,G) → HomE(F (C), G(C)), τ 7→ τC , and
the unique morphism φ : E → Nat(F,G) with λC ◦ φ = τC is φ = τ ′.

We will now show that (co)wedges are special cases of (co)cones and consequently (co)ends are
special cases of (co)limits. For this, we introduce the twisted arrow category, which exists in
the literature with various notations.

Definition 4.1.7: Let C be a category.

1. The twisted arrow category Cτ has

• as objects triples (C1, c, C2) of objects C1, C2 ∈ ObC and a morphism c : C1 → C2,

• as morphisms from (C1, c, C2) to (C ′1, c
′, C2) pairs (f1, f2) of morphisms f1 : C ′1 → C1

and f2 : C2 → C ′2 with f2 ◦ c ◦ f1 = c′

C1
c // C2

f2

��
C ′1

f1

OO

c′
// C ′2

Composition of morphisms and identity morphisms are given by the ones in C.

2. The twisted arrow functor χ : Cτ → Cop × C assigns to

• an object (C1, c, C2) the pair (C1, C2),

• a morphism (f1, f2) : (C1, c, C2) → (C ′1, c
′, C ′2) the corresponding morphism

(f1, f2) : (C1, C2)→ (C ′1, C
′
2) in Cop × C.

To show that (co)ends are special cases of (co)limits, it is sufficient to show that (co)wedges are
special cases of (co)cones. By Remark 2.1.5, 3 and Remark 4.1.5, 2. it is sufficient to consider
cones, wedges and ends. For a functor H : C → D we denote by H ′ : Cop → Dop the associated
functor between the opposite categories and identify (Cop × C)op = C × Cop. In particular, the
twisted arrow functor defines functors χ′ : (Cτ )op → C × Cop and χ′′ : (Cop τ )op → Cop × C.
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Proposition 4.1.8: Let F : Cop × C → E be a functor. Then:

1. The category wedge(F ) is equivalent to cone(Fχ).

2. The category cowedge(F ) is equivalent to cocone(Fχ′′).

In particular, an end of F is a limit of Fχ and a coend of F a colimit of Fχ′′.

Proof:
We prove the first claim. The second claim follows from Remarks 2.1.5, 3 and 4.1.5, 2.
We consider the functor φ : cone(Fχ)→ wedge(F ) that assigns to

• a cone µ : ∆(E)⇒ Fχ the wedge φ(µ) : ∆(E)
•⇒F with components φ(µ)C = µ(C,1C ,C),

• a cone morphism e : E → E ′ from µ to µ′ to the wedge morphism e from φ(µ) to φ(µ′).

and the functor ψ : wedge(F )→ cone(Fχ) that assigns to

• a wedge ν : ∆(E)
•⇒F the cone ψ(ν) : ∆(E)⇒ Fχ with ψ(ν)(C1,c,C2) = F (1C1 , c) ◦ νC1 ,

• a wedge morphism e : E → E ′ from ν to ν ′ the cone morphism e from ψ(ν) to ψ(ν ′).

To show that φ and ψ are defined, note that c ∈ Hom(C1, C2) defines two morphisms in Cτ

(1C1 , c) : (C1, 1C1 , C1)→ (C1, c, C2) (c, 1C2) : (C2, 1C2 , C2)→ (C1, c, C2).

That φ(µ) is a wedge for each cone µ over Fχ then follows from the cone property of µ:

F (1C1 , c) ◦ φ(µ)C1 = F (1C1 , c) ◦ µ(C1,1C1
,C1)

cone
= µ(C1,c,C2)

cone
= F (c, 1C2) ◦ µ(C2,1C2

,C2)

= F (c, 1C2) ◦ φ(µ)C2

To show that ψ(ν) is a cone over Fχ for each wedge ν over F , we compute for c ∈ HomC(C1, C2),
c′ ∈ HomC(C

′
1, C

′
2), f1 ∈ HomC(C

′
1, C1) and f2 ∈ HomC(C2, C

′
2) with c′ = f2 ◦ c ◦ f1

F (f1, f2) ◦ ψ(ν)(C1,c,C2) = F (f1, f2) ◦ F (1C1 , c) ◦ νC1

func
= F (f1, 1C′2) ◦ F (1C1 , f2 ◦ c) ◦ νC1

func
= F (1C′1 , f2 ◦ c) ◦ F (f1, 1C1) ◦ νC1

wedge
= F (1C′1 , f2 ◦ c) ◦ F (1C′1 , f1) ◦ νC′1

func
= F (1C′1 , f2 ◦ c ◦ f1) ◦ νC′1 = ψ(ν)(C′1,f2◦c◦f1,C′2) = ψ(ν)(C′1,c

′,C′2)

That every cone morphism e : E → E ′ from µ to µ′ defines a wedge morphism from φ(µ) to
φ(µ′) and every wedge morphism from ν to ν ′ a cone morphism from ψ(ν) to ψ(ν ′) follows
directly from the definitions. For all C ∈ ObC and c ∈ HomC(C1, C2) one has

φ(µ′)C ◦ e = µ′(C,1C ,C) ◦ e = µ(C,1C ,C) = φ(µ)C

ψ(ν ′)(C1,c,C2) ◦ e = F (1C1 , c) ◦ ν ′C1
◦ e = F (1C1 , c) ◦ νC1 = ψ(ν)(C1,c,C2).

As φ and ψ are the identity on the morphisms, it follows that they are functors. To show that
φ and ψ form an equivalence of categories, we compute for all C ∈ ObC and c ∈ HomC(C1, C2)
cones µ over Fχ and wedges ν over F

ψ(φ(µ))(C1,c,C2) = F (1C1 , c) ◦ φ(µ)C1 = F (1C1 , c) ◦ µ(C1,1C1
,C1)

cone
= µ(C1,c,C2)

φ(ψ(ν))C = ψ(ν)(C,1C ,C) = F (1C , 1C) ◦ νC = νC .

This shows that ψ = φ−1 and φ, ψ are equivalences of categories. As such, they send terminal
to terminal objects and initial ones to initial ones and identify limits of Fχ with ends of F . 2

In particular, this characterisation of (co)ends as limits yields sufficient conditions for the
existence of (co)ends for all functors F : Cop × C → E . By applying Proposition 2.2.5 we also
obtain a characterisation of (co)ends as functors.
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Corollary 4.1.9: If C is small and E (co)complete, all (co)ends of functors F : Cop × C → E
exist and define functors

∫
C∈C : ECop×C → E and

∫ C∈C
: ECop×C → E .

4.2 (Co)end calculus

After identifying (co)ends as special cases of (co)limits, we now show that they render certain
formulas with (co)limits more simple and intuitive. In fact, with the integral notation, many
identities for limits and colimits appear as categorical counterparts of well-known theorems in
calculus, such as Fubini’s or Lebesgue’s theorem. All of the following are direct consequences
of certain identities for (co)limits and the fact that (co)ends are (co)limits.

Corollary 4.2.1: Let C be small, E (co)complete, F : C × Cop → E a functor and G : E → F
a functor that preserves small (co)limits, also called a (co)continuous functor. Then:

G

(∫
C∈C
F (C,C)

)
∼=
∫
C∈C
GF (C,C) G

(∫ C∈C
F (C,C)

)
∼=
∫ C∈C

GF (C,C).

Proof:
This follows directly from the fact that (co)ends of F and GF are (co)limits of Fχ and GFχ,
respectively, by Proposition 4.1.8, that the twisted arrow categories Cτ are small for all small
categories C and that G preserves small (co)limits. 2

Corollary 4.2.2: (Fubini’s Theorem)
Let F : (C × D)op × (C × D)→ E be a functor. Whenever all (co)ends are defined one has∫

C∈C

∫
D∈D

F (C,D,C,D) =

∫
D∈D

∫
C∈C

F (C,D,C,D) =

∫
(C,D)∈C×D

F (C,D,C,D)∫ C∈C∫ D∈D
F (C,D,C,D) =

∫ D∈D∫ C∈C
F (C,D,C,D) =

∫ (C,D)∈C×D
F (C,D,C,D).

Proof:
This follows, because (co)ends are (co)limits by Proposition 4.1.8, with Theorem 2.3.4 and with
the canonical equivalence of categories (C × D)τ ∼= Cτ ×Dτ . 2

Corollary 4.2.3: (Lebesgue’s theorem)
Let F : B × Cop × C → E be a functor. Whenever the (co)ends and (co)limits exist

lim
B

∫
C∈C
F (−, C, C) ∼=

∫
C∈C

lim
B
F (−, C, C) colim

B

∫ C∈C
F (−, C, C) ∼=

∫ C∈C
colim
B

F (−, C, C).

Proof:
This follows from Theorem 2.3.4 and because (co)ends are (co)limits by Proposition 4.1.8. 2

Further examples that translate claims about (co)limits into integration formulas for (co)ends
are given as exercises for this chapter, see Section 8.4. We now derive the last and most impor-
tant formula of this type, namely a formula for pointwise Kan extensions.

To translate the (co)limit formulas for Kan extensions from Theorem 3.2.5 into integration
formulas for (co)ends we first require concrete descriptions of (co)ends in terms of (co)equalisers
and (co)products. This is the concrete counterpart of the abstract characterisation of (co)ends as
(co)limits in Proposition 4.1.8. It also generalises the concrete formulas for (co)ends in Example
4.1.6 and the observations about pullbacks and pushouts after Remark 4.1.5.
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Proposition 4.2.4: If C is small and E (co)complete, every functor F : Cop × C → E has a
(co)end, and it is given by∫

C∈C
F (C,C) ∼= eq

(
ΠC∈ObCF (C,C)

u

⇒
v

Πf∈MorCF (s(f), t(f))

)
, (19)∫ C∈C

F (C,C) ∼= coeq

(
qf∈MorCF (t(f), s(f))

u′

⇒
v′
qC∈ObCF (C,C)

)
,

where u, v, u′, v′ are the morphisms induced by the universal property of the (co)product with

• πf ◦ u = F (1s(f), f) ◦ πs(f) and πf ◦ v = F (f, 1t(f)) ◦ πt(f),
• u′ ◦ ιf = ιs(f) ◦ F (f, 1s(f)) and v′ ◦ ιf = ιt(f) ◦ F (1t(f), f)

and πf , πC , ιf , ιC are the projection and inclusion morphisms for the products and coproducts.

Proof:
It is sufficient to prove the claim for ends; the one for coends follows with Remarks 2.1.5, 3 and
4.1.5, 2. We write ι : E → ΠC∈ObCF (C,C) for the equaliser in (19)

F (s(f), s(f))
F (1s(f),f)

// F (s(f), t(f))

E

λt(f) &&

λs(f)

88

ι // ΠC∈ObCF (C,C)

πs(f)

OO

πt(f)

��

u //

v
// Πf∈MorCF (s(f), t(f))

πf

OO

πf

��
F (t(f), t(f))

F (f,1t(f))
// F (s(f), t(f))

and show that the morphisms λC = πC ◦ ι : E → F (C,C) for C ∈ ObC define the end of F .

To show that they define a wedge over F we compute for all morphisms f : C → C ′

F (f, 1C′) ◦ λC′ = F (f, 1C′) ◦ πC′ ◦ ι = πf ◦ v ◦ ι
eq
= πf ◦ u ◦ ι = F (1C , f) ◦ πC ◦ ι = F (1C , f) ◦ λC .

To show that the wedge λ is terminal, note that any wedge τ : ∆(E ′)
•⇒F induces a unique

morphism τ ′ : E ′ → ΠC∈ObCF (C,C) with πC ◦τ ′ = τC for all C ∈ ObC by the universal property
of the product. The morphism τ ′ satisfies for all morphisms f : C → C ′

πf ◦ u ◦ τ ′=F (1C , f) ◦ πC ◦ τ ′=F (1C , f) ◦ τC =F (f, 1C′) ◦ τC′=F (f, 1C′) ◦ πC′ ◦ τ ′=πf ◦ v ◦ τ ′,

and the universal property of the product implies u ◦ τ ′ = v ◦ τ ′. By the universal property
of the equaliser, there is a unique morphism τ ′′ : E ′ → E with ι ◦ τ ′′ = τ ′. This implies
τC = πC ◦ τ ′ = πC ◦ ι ◦ τ ′′ = λC ◦ τ ′′ for all C ∈ ObC. Conversely, any morphism ρ : E ′ → E
with τC = λC ◦ ρ for all C ∈ ObC satisfies πC ◦ τ ′ = πC ◦ τC = πC ◦ ι ◦ ρ for all C ∈ ObC and
by the universal property of the product ι ◦ ρ = τ ′. By the universal property of the equaliser
this implies τ ′′ = ρ and hence uniqueness of τ ′′. 2

The formulas for ends and coends in Proposition 4.2.4 allow one to organise the (co)limit
formulas for Kan extensions from Theorem 3.2.5 in a more efficient way. In principle, the rel-
evant (co)limits in Theorem 3.2.5 can be computed in terms of (co)equalisers of (co)product
via formula (5) and its dual, see the proof of Theorem 2.2.2. However, this is rather compli-
cated in practice. With formulas (19) for the (co)ends, one can compute these (co)equalisers of
(co)products in terms of (co)ends and (co)powers.
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Definition 4.2.5: Let C be a category in which all (co)products exist.

1. The power functor u : Setop × C → C assigns to

• an object (X,C) the product CX = Πx∈XC,

• a morphism (f, c) : (X,C) → (Y,D) the unique morphism cf : CX → DY with
πy ◦ cf = c ◦ πf(y) for all y ∈ Y , where πx : CX → C and πy : DY → D are the
projection morphisms of the product.

2. The copower functor t : Set× C → C assigns to

• an object (X,C) the coproduct X · C = qx∈XC,

• a morphism (f, c) : (X,C)→ (Y,D) the unique morphism fc : X · C → Y · C with
fc ◦ ιx = ιf(x) ◦ c for all x ∈ X, where ιx : C → X · C and ιy : D → Y ·D are the
inclusion morphisms for the coproducts.

The benefit of the (co)end formula (19) and the (co)power functors is that they allow one to
split (co)products in the limit formula (5) into two separate (co)products. One of them defines
the (co)power functor and the other is absorbed by the (co)end. This yields the following result.

Proposition 4.2.6: Let F : C → E and K : C → D functors.

1. A left Kan extension of F along K is pointwise if and only if it is given by

LanKF (D) =

∫ C∈C
HomD(K(C), D) t F (C)

2. A right Kan extension of F along K is pointwise if and only if it is given by

RanKF (D) =

∫
C∈C

HomD(D,K(C)) u F (C)

Proof:
We prove the claim for right Kan extensions. The claim for left Kan extensions follows with
Remark 2.1.5, 3, Remark 3.1.2, 2 and Remark 4.1.5, 2.

By Definition 3.2.11 a right Kan extension is pointwise if and only if it is given by the limit
formula RanKF (D) = lim(FPD), where FPD : D ↓ K → E is the functor that assigns to

• an object (C, d) with d ∈ HomD(D,K(C)) the object F (C),

• a morphism f : (C, d) → (C ′, d′), given by f ∈ HomC(C,C
′) with d′ = K(f) ◦ d, the

morphism F (f) : F (C)→ F (C ′).

By the proof of Theorem 2.2.2 the limit is given by the dual of formula (5), as the equaliser of
the morphisms φ, ψ defined by the diagram

FPD(t(f))

ΠJ∈Ob(D↓K)FPD(J)

πt(f)

OO

ψ
//

φ //

πs(f)

��

Πf∈Mor(D↓K)FPD(t(f))

πf
jj

πf

��
FPD(s(f))

FPD(f)
// FPD(t(f)).
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By Definition 3.2.1 of the comma category D ↓ K the products in this formula become

ΠJ∈Ob(D↓K)FPD(J) = ΠC∈ObCΠd∈HomD(D,K(C))F (C) = ΠC∈ObCHomD(D,K(C)) u F (C)

Πf∈Mor(D↓K)FPD(t(f)) = Πf∈MorCΠd∈HomD(D,K(s(f)))F (t(f))

= Πf∈MorCHomD(D,K(s(f))) u F (t(f)).

Applying Formula (19) to G = HomD(D,K(−)) u F (−) : Cop × C → E proves the claim. 2

The formulas for Kan extensions in Proposition 4.2.6 are somewhat more intuitive than the
(co)limit formulas in Theorem 3.2.5 and exhibit analogies with integration theory. The for-
mula for the right Kan extension resembles the formula

∫
X
f(x)dµ(x) for the integral of a

µ-measurable function f : X → R with respect to a measure dµ on X. The functor F : C → E
replaces the function f : X → R and the set of morphisms HomD(D,K(C)) the measure dµ(x).
The two are combined via the power functor.

The functor K : C → D along which F is extended thus defines a categorical weight assigned to
each object C ∈ ObC. This weight is given by set of morphisms f : D → K(C) and suppresses
the contributions of objects C ∈ ObC for which the corresponding object K(C) cannot be
reached by morphisms from D. The integral is dominated by the images F (C) of those objects
C ∈ ObC for which there are many morphisms f : D → K(C).

We illustrate the formalism with a simple example that was already treated in Example 3.2.9
with the (co)limit formula from Theorem 3.2.5, namely induced and coinduced representations.

Example 4.2.7: A functor F : BGop×BG→ VectF corresponds to a vector space V = F (•)
with a left action � and right action � of the group G on V by linear automorphisms such
that g� v = F (1•, g)v, v� g = F (g, 1•)v and (g� v) � h = g� (v� h) for all g, h ∈ G, v ∈ V .

1. The (co)power functors u : Setop×VectF → VectF and t : Set×VectF → VectF are given by

X u V = ΠXV ∼= HomF(〈X〉F, V ) X t V = qXV ∼= 〈X〉F⊗FV,

with projection morphisms πx : HomF(〈X〉F, V ) → V , f 7→ f(x) and inclusion morphisms
ιx : V → 〈X〉F⊗FV , x 7→ x⊗v for x ∈ X. The (co)end formulas (19) yield

V G =

∫
•∈BG

F (•, •) = eq

(
V

v 7→(g 7→g�v)

⇒
v 7→(g 7→v�g)

HomF(F[G], V )

)

VG =

∫ •∈BG
F (•, •) = coeq

(
F[G]⊗FV

g⊗v 7→g�v
⇒

g⊗v 7→v�g
V

)
Thus, the end and coend are given by the linear maps

ι : V G = {v ∈ V | g � v = v � g ∀g ∈ G} → V, v 7→ v

π : V → VG = V/〈{g � v − v � g | v ∈ V, g ∈ G}〉, v 7→ [v].

These are precisely the inclusions for the invariants V G and the projection on the coinvariants
VG of the representation �′ : G× V → V , g �′ v = g � v � g−1.

2. Consider now the Kan extensions of a C-representation X : BC → VectF on X(•) = W
along the functor K : BC → BD induced by a group homomorphism K : C → D.
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In this case, we have HomBD(K(•), •) = HomBD(•, K(•)) = D.

• The power functor HomBD(•, K(−)) u X(−) : BCop × BC → VectF in Proposition 4.2.6
corresponds to the vector space V = HomF(F[D],W ) with C-left and C-right actions given by

(c� f)(d) = c� f(d) (f � c)(d) = f(K(c)d)

for all c ∈ C, d ∈ D and F-linear maps f : F[D]→ W . Thus, by step 1. we have

RanKX(•) = {f ∈ HomF(F[D],W ) | f(K(c)d) = c�f(d) ∀c ∈ C, d ∈ D} = HomF[C](F[D],W ).

• The copower functor HomBD(K(−), •) t X(−) : BCop × BC → VectF in Proposition 4.2.6
corresponds to the vector space V = F[D]⊗FW with the C-left and right C-actions given by

c� (d⊗w) = d⊗(c� w) (d⊗w) � d = dK(c)⊗w

for all c ∈ C, d ∈ D and w ∈ W . Thus, by step 1. we have

LanKX(•) = F[D]⊗FW/spanF{dK(c)⊗w − d⊗(c� w) | c ∈ C, d ∈ D,w ∈ W} = F[D]⊗F[C]W.

The formulas in Proposition 4.2.6 together with Formula (19) for the (co)ends thus yield a
concrete way of computing the left and right Kan extension via (co)products and (co)equalisers.

References:

• Chapters 1 and 2 in Loregian, F. (2015) Coend calculus. arXiv preprint arXiv:1501.02503,

• Chapters IX.4,5,6, X.4 in Mac Lane, S.(2013) Categories for the working mathematician,

• Chapters 4.4 and 4.5 in Richter, B. (2020) From categories to homotopy theory.
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5 Simplicial objects

5.1 Simplexes and simplicial complexes

Simplexes and simplicial complexes are widely used in topology and geometry and come in
various flavours - affine, singular or combinatorial. They were originally used in topology and
geometry to build and investigate topological spaces. Their usefulness comes from the fact that
they are simple building blocks that exist in all dimensions and can be glued together in a
controlled way. The simplest variant are affine simplexes in Euclidean space.

Although they are geometric objects, they are mostly characterised by the combinatorics of
their vertices, as any affine linear map f : Rn → Rk is determined uniquely by its value on any
n+ 1 points that are not contained in an affine plane of dimension < n.

Definition 5.1.1:

1. An affine m-simplex ∆ ⊂ Rn is the convex hull of m+ 1 points v0, ..., vm ∈ Rn

∆ = conv({v0, ..., vm}) = {Σm
i=0λivi | 0 ≤ λi ≤ 1,Σm

i=0λi = 1}.

It is called degenerate, if there is an affine plane P of dimension < m with ∆ ⊂ P .

2. The k-simplexes conv({vi0 , ..., vik}) for subsets {i0, ..., ik} ⊂ {0, ...,m} with k+1 elements
are called the k-faces of ∆, the 0-faces are called vertices and the 1-faces edges.

3. An ordered m-simplex is an affine m-simplex with an ordering of its vertices. We write
[v0, ..., vm] for ∆ = conv({v0, ..., vm}) with ordering v0 < v1 < ... < vm.

Affine n-simplexes can be glued together via affine linear maps that identify some of their
(n − 1)-faces. If one is only interested in the resulting polyhedra, it is sufficient to consider
affine simplexes of a particular simple form, the standard n-simplexes with the origin and the
elements e1, . . . , en of the standard basis as vertices. By applying affine transformations, one
can relate any affine n-simplex to a standard simplex. In particular, we require affine linear
maps that embed standard simplexes into faces of higher-dimensional standard simplexes and
collapse them to lower-dimensional ones.

Definition 5.1.2: Let (e1, ..., en) be the standard basis of Rn and e0 := 0 ∈ Rn.

1. The standard n-simplex ∆n ⊂ Rn is the ordered n-simplex [e0, ..., en].

2. For n ∈ N and i ∈ {0, ..., n} the ith face map fni : ∆n−1 → ∆n and degeneracy map
sni : ∆n+1 → ∆n are the affine linear maps given by

fni (ej) =

{
ej j < i

ej+1 j ≥ i.
sni (ej) =

{
ej j ≤ i

ej−1 j > i
.

The name face map is due to the fact that the ith face map fni sends the simplex ∆n−1 to the
(n− 1)-face [e0, ...ei−1, ei+1, ..., en] in ∆n opposite the vertex ei. In contrast, the ith degeneracy
map sni sends the simplex ∆n+1 to ∆n by collapsing the edge [ei, ei+1] ⊂ ∆n+1. We can also
interpret its image as a degenerate (n+ 1)-simplex sni (∆n+1) = [e0, . . . , ei−1, ei, ei, ei+1, . . . , en].
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The ordering of an affine m-simplex is pictured by drawing an arrow on each edge that
points from its vertex of lower order to its vertex of higher order. Note that the face maps
and degeneracies respect the ordering of vertices in the standard n-simplexes. They omit or
repeat vertices but do not change their ordering. Hence, the ordering of the vertices in the
(n − 1)-face fni (∆n−1) ⊂ ∆n induced by the ordering of ∆n−1 coincides with the one induced
by the ordering of ∆n and analogously for lower-dimensional faces.

x1

10

∆0

x1

x2

10

1

x1

x2

x3

1

1

1

∆1 ∆2 ∆3

The standard n-simplexes for n = 0, 1, 2, 3.

Instead of just glueing affine simplexes via affine linear maps, one can also distort them and use
continuous maps that are injective in the interior of the simplexes. This allows for a more flexible
construction of topological spaces with simplexes and leads to the concepts of (semi)simplicial
complexes. Many familiar spaces from topology have the structure of a semisimplicial complex.

Definition 5.1.3:

1. A (finite) ∆-complex or semisimplicial complex is a topological space X, together
with a (finite) family {τα}α∈I of continuous maps τα : ∆nα → X such that:

(S1) The maps τα|∆̊nα : ∆̊nα → X are injective for all α ∈ I.

(S2) For every point x ∈ X there is a unique α ∈ I with x ∈ τα(∆̊nα).

(S3) For every α ∈ I and i ∈ {0, ..., nα} there is a β ∈ I with τα ◦ fnαi = τβ : ∆nα−1 → X.

(S4) The topology on X is the final topology induced by the family {τα}α∈I :
A subset A ⊂ X is open if and only if τ−1

α (A) ⊂ ∆nα is open for all α ∈ I.

2. A semisimplicial complex is called a simplicial complex if

(S5) For each α ∈ I the images of the vertices of ∆nα under τα are all distinct:
τα(ei) 6= τα(ej) for all i 6= j ∈ {0, ..., nα}.

(S6) {τα(e0), ..., τα(enα)} = {τβ(e0), ..., τβ(enβ)} implies α = β.

3. The n-skeleton of a (semi)simplicial complex (X, {τα}α∈I) is the (semi)simplicial complex
sknX = X \ (∪nα>nτα(∆̊nα)) with the family {τα}α∈I,nα≤n.

Example 5.1.4:

1. A semisimplicial structure on the circle S1 is given by any continuous map σ : [0, 1]→ S1

with σ(0) = σ(1) = 1 and σ|(0,1) : (0, 1) → S1 injective and ρ : {0} → S1, 0 7→ 1. Its
1-skeleton is S1 and its 0-skeleton the point (1, 0).
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x2

x1

σ

ρ

2. The torus is the quotient T = [0, 1]×2/ ∼ with the equivalence relation (x, 0) ∼ (x, 1)
and (0, x) ∼ (1, x) for all x ∈ [0, 1]. It has the structure of a semisimplicial complex with
two 2-simplexes, three 1-simplexes and one 0-simplex. They are the composites of the
canonical surjection π : [0, 1]× [0, 1]→ T with the affine linear maps

ρ : [e0, e1, e2]→ [e0, e2, e1 + e2], σ : [e0, e1, e2]→ [e0, e1, e1 + e2], p : [e0]→ [e0]

a : [e0, e1]→ [e0, e1], b : [e0, e1]→ [e0, e2], c : [e0, e1]→ [e0, e1 + e2].

Its 2-skeleton is T , its 1-skeleton is the union of the images of a′, b′, c′, a bouquet with
three circles, and its 0-skeleton is the image of p′, a point.

x1

x2

ρ′

σ′

a′

a′

b′ b′c′

p′ p′

p′p′

3. Real projective space RP2 is the quotient RP2 = [0, 1] × [0, 1]/ ∼ with the equivalence
relation (x, 1) ∼ (1− x, 0) and (0, x) ∼ (1, 1− x) for all x ∈ [0, 1]. It has a semisimplicial
structure with two 2-simplexes, three 1-simplexes and two 0 -simplexes which are obtained
by composing the canonical surjection π : [0, 1]× [0, 1]→ RP2 with the affine simplexes

ρ : [e0, e1, e2]→ [e0, e1 + e2, e2], σ : [e0, e1, e2]→ [e0, e1 + e2, e1],

a : [e0, e1]→ [e0, e1], b : [e0, e1]→ [e0, e2], c : [e0, e1]→ [e0, e1 + e2],

p : [e0]→ [e0], q : [e0]→ [e1].

Its 2-skeleton is RP2, its 1-skeleton the union of the images of a′, b′, c′, two points connected
by three different edges, and its 0-skeleton contains two points, the images of p′, q′.

x1

x2

ρ′

σ′

a′

a′

b′ b′c′

p′ q′

p′q′

A given topological space may have many (semi)simplicial complex structures. The notion of a
simplicial complex is more restrictive than the one of a semisimplicial complex. However, every
semisimplicial complex can be transformed into a simplicial one by a subdivision procedure.
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Axiom (S5) forbids that the images of distinct vertices of an n-simplex coincide, and condition
(S6) forbids that the vertex sets of different simplexes coincide.

This allows one to describe a simplicial complex in a purely combinatorial way. Every k-face
in a simplicial complex is determined uniquely by its vertices. If one is interested only in the
resulting topological space, one can discard all the information about the continuous maps
σα : ∆nα → X and the standard simplexes and retain only the information how the simplexes
are contained in each other or glued together. This leads to combinatorial simplicial complexes.

Definition 5.1.5:

1. A combinatorial simplicial complex is a subset K ⊂ P(V ) for some set V such that

(i) M ∈ K implies M 6= ∅ and M finite,

(ii) ∅ 6= M ⊂ N with N ∈ K implies M ∈ K.

2. A combinatorial simplicial complex is called ordered, if the set V is ordered.

3. The n-skeleton of K is the combinatorial simplicial complex

skn(K) = K \ {M ∈ K | |M | > n+ 1}.

Example 5.1.6:

p q

r

p p

pp

q q

r r

s

s

t

t

u
v

x

y

1. The first picture describes a simplicial complex structure and an associated combinatorial
simplicial complex K = {{p}, {q}, {r}, {p, q}, {q, r}, {p, r}} with V = {p, q, r}.

2. The second picture describes a simplicial and combinatorial simplicial complex K for the
torus with vertex set V = {p, q, r, s, t, u, v, w, x}. The elements of K are

• the 9 singleton sets containing elements of V ,
• the 27 sets of pairs of distinct neighbouring vertices connected by a blue line,
• the 18 sets of neighbouring triples of vertices that form triangles.

5.2 The simplex category and (co)simplicial objects

The idea is now to organise all combinatorial information about the standard n-simplexes and
the face maps and degeneracies between them in a common framework. As we need to treat all
n-simplexes ∆n for n ∈ N0, this suitable framework is a category, whose objects correspond to
the n-simplexes. To account for the n + 1 ordered vertices of the simplexes ∆n, we choose as
objects the finite ordinals [n+ 1] = {0, 1, ..., n} for n ∈ N0.
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The category must also encode as morphisms all maps between standard simplexes obtained by
composing face maps and degeneracies. As the face maps and degeneracies are monotonic, such
composites must be monotonic as well. Hence, we describe them as weakly monotonic maps
f : [m] → [n] between ordinals. The counterparts of the face maps are the face morphisms,
strictly monotonic maps δin : [n]→ [n + 1] that skip the number i ∈ [n + 1]. The counterparts
of the degeneracies are the degeneracy morphisms, weakly monotonic maps σin : [n + 1] → [n]
that send i, i+ 1 ∈ [n+ 1] to i ∈ [n] and are injective on the other elements.

Definition 5.2.1:

1. The simplex category or simplicial category ∆ has

• as objects the finite non-empty ordinal numbers [n] = {0, 1, ..., n− 1} for n ∈ N,
• as morphisms f : [m]→ [n] weakly monotonic maps f : {0, ...,m−1} → {0, ..., n−1},

with the composition of maps as composition and the identity as identity morphisms.

2. The ith face morphism δin : [n]→ [n+1] for i ∈ [n+1] and jth degeneracy morphism
σjn : [n+ 1]→ [n] for j ∈ [n] are the morphisms

δin(k) =

{
k 0 ≤ k < i

k + 1 i ≤ k < n
σjn(k) =

{
k 0 ≤ k ≤ j

k − 1 j < k ≤ n.

We now show that any monotonic map between finite ordinals is a composite of face and
degeneracy morphisms. If one imposes a fixed ordering of the latter, this composite even becomes
unique. We also describe relations between different face maps and degeneracies. This leads to
a characterisation of the simplex category in terms of generating morphisms and relations.

Proposition 5.2.2: (factorisation in the simplex category)

1. Every morphism f : [m]→ [n] in ∆ can be expressed uniquely as a composite

f = δi1n−1 ◦ ... ◦ δ
ik
m−l ◦ σ

j1
m−l ◦ ... ◦ σ

jl
m−1 (20)

n = m− l + k, 0 ≤ ik < ... < i1 < n, 0 ≤ j1 < ... < jl < m− 1

2. The morphisms δin : [n]→ [n+ 1] and σjn : [n+ 1]→ [n] satisfy the relations

δin+1 ◦ δjn = δj+1
n+1 ◦ δin for i ≤ j

σjn ◦ σin+1 = σin ◦ σ
j+1
n+1 for i ≤ j

σjn ◦ δin =


δin−1 ◦ σ

j−1
n−1 i < j

1[n] i ∈ {j, j + 1}
δi−1
n−1 ◦ σ

j
n−1 i > j + 1.

(21)

Proof:
Every monotonic map f : [m]→ [n] is determined uniquely by the sets

Mδ = {i1, ..., ik} = [n] \ im(f) Mσ = {j1, ..., jl} = {x ∈ [m− 1] | f(x) = f(x+ 1)}

with n− k = m− l. If 0 ≤ ik < ... < i1 < n, 0 ≤ j1 < ... < jl < m− 1 and im(f) = {l1, ..., ln−k}
with 0 ≤ l1 < ... < ln−k, then f factorises uniquely as f = g ◦ h with an injective monotonic
map g : [m − l] → [n] and a surjective monotonic map h : [m] → [m − l] given by g(r) = lr+1

for r ∈ [m− l] and h(r) = r − s for js < r ≤ js+1, h(r) = r for r ≤ j1, h(r) = r − l for r > jl.
This implies g = δi1n−1 ◦ ... ◦ δ

ik
m−l and h = σj1m−l ◦ ... ◦ σ

jl
m−1. The relations follow by a direct

computation from the definitions. 2
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Remark 5.2.3: As the relations (21) allow one to transform any composite of the morphisms
δin and σjn into the form (20) and the factorisation in (20) is unique, all relations between the
morphisms δin and σjn are composites of the relations (21). One says that ∆ is generated as a
category or presented as a category by the morphisms δin and σjn with the relations (21).

The simplex category encodes the combinatorics of the standard n-simplexes and face maps
and degeneracies between them. More precisely, we can describe the latter as a functor from the
simplex category into the category Top that sends the object [n+ 1] to the standard n-simplex
∆n and the face and degeneracy morphisms to the associated face and degeneracy maps from
Definition 5.1.2. This idea is not restricted to the category Top. We can consider analogous
functors into any category C.

Definition 5.2.4: Let C be a category.

1. A simplicial object in C is a functor S : ∆op → C and a simplicial morphism from a
simplicial object S to simplicial object S ′ a natural transformation λ : S ⇒ S ′.

2. A cosimplicial object in C is a functor S : ∆→ C and a cosimplicial morphism from
a cosimplicial object S to cosimplicial object S ′ a natural transformation λ : S ⇒ S ′.

A (co)simplicial object in Set is also called a (co)simplicial set and a (co)simplicial morphism
in Set a (co)simplicial map. Simplicial sets and maps form the category SSet = Set∆op

.

More generally, simplicial objects and morphisms in C form the functor category C∆op
and

cosimplicial objects and morphisms in C the functor category C∆. The nomenclature for Set
is used analogously for common categories in algebra and topology. For instance, a simplicial
object in Top is called a simplicial space, a simplicial object in Grp a simplicial group and a
simplicial object in R-Mod a simplicial module.

As the morphisms δin : [n]→ [n+ 1] and σjn : [n+ 1]→ [n] from Proposition 5.2.2 generate the
simplex category ∆ subject to the relations (21), a (co)simplicial object is determined uniquely
by the images of the objects [n] for n ∈ N and the images of the morphisms δin and σjn, which
must satisfy relations analogous or dual to (21).

Remark 5.2.5: Let C be a category.

1. A simplicial object C : ∆op → C is given by

• a family (Cn)n∈N0 of objects Cn ∈ ObC,
• families of morphisms din : Cn → Cn−1 for n ∈ N0, 0 ≤ i ≤ n, the face maps,
• families of morphisms sin : Cn → Cn+1 for n ∈ N0 and 0 ≤ i ≤ n, the degeneracies

with Cn = C([n+ 1]), din = C(δin) and sin = C(σin+1), satisfying the simplicial relations

djn ◦ din+1 = din ◦ d
j+1
n+1 for i ≤ j

sin+1 ◦ sjn = sj+1
n+1 ◦ sin for i ≤ j

din+1 ◦ sjn =


sj−1
n−1 ◦ din i < j

1Cn i ∈ {j, j + 1}
sjn−1 ◦ di−1

n j + 1 < i ≤ n+ 1.

(22)

2. A simplicial morphism µ : C ⇒ C ′ is a collection of maps µn : Cn → C ′n with

µn−1 ◦ din = d′ in ◦ µn µn+1 ◦ sin = s′ in ◦ µn, n ∈ N0, 0 ≤ i ≤ n.
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3. A cosimplicial object C : ∆→ C is given by

• a family (Cn)n∈N0 of objects Cn ∈ ObC,
• families of morphisms dni : Cn−1 → Cn for n ∈ N0, 0 ≤ i ≤ n, the face maps,
• families of morphisms sni : Cn+1 → Cn for n ∈ N0 and 0 ≤ i ≤ n, the degeneracies,

with Cn = C([n+ 1]), dni = C(δin) and sni = C(σin+1), satisfying relations dual to (22).

4. A cosimplicial morphism µ : C ⇒ C ′ is a collection of maps µn : Cn → C ′n with

µn ◦ dni = d′ni ◦ µn−1 µn ◦ sn+1
i = s′ni ◦ µn+1, n ∈ N0, 0 ≤ i ≤ n.

The shift in indices between the ordinal [n + 1] and the sets Sn and Cn are unfortunate. It
arises, because we use the algebraist’s convention, in which the ordinal [n] has n elements. In
the topologist’s convention, the ordinal [n] has n+1 elements, just as the standard n-simplex has
n+ 1 vertices. Thus, [n+ 1] in our convention corresponds to [n] in the topologist’s convention.

Example 5.2.6:

1. The standard n-simplexes and the face maps and degeneracies between them from Defi-
nition 5.1.2 define a cosimplicial object T : ∆→ Top with

Tn = ∆n, T (δin) = fni : ∆n−1 → ∆n, T (σin+1) = sni : ∆n+1 → ∆n.

It assigns to a monotonic map f : [n + 1] → [m + 1] the unique affine linear map
T (f) : ∆m → ∆n with T (f)(ei) = ef(i) for all i ∈ [m+ 1].

2. Denote by [n]′ the poset category for the set [n] = {0, 1, ..., n−1} with the ordering �=≤.
Then every monotonic map f : [m] → [n] defines a functor f : [m]′ → [n]′. This yields a
cosimplicial object C : ∆→ Cat with

Cn = [n+ 1]′ dni = δin : Cn−1 → Cn sni = σin+1 : Cn+1 → Cn.

3. The identity functor id∆ : ∆→ ∆ defines a cosimplicial object in ∆.

Although these cosimplicial objects seem rather trivial, they give rise to important constructions
in topology and algebra. They allow one to associate a simplicial set to every object in the
categories Top, Cat and ∆ via the nerve construction, by combining them with a Hom functor.

Example 5.2.7: (nerves)
Any cosimplicial object F : ∆→ C in a category C yields a functor HomC(F (−),−) : C → SSet
that assigns to

• an object C the simplicial set HomC(F (−), C) : ∆op → Set,
• a morphism c : C → C ′ the simplicial map

HomC(F (−), c) : HomC(F (−), C)⇒ HomC(F (−), C ′).

Such a functor is called a nerve of C. For the cosimplicial objects in Example 5.2.6 this yields

1. For C = Top, F = T : ∆→ Top the singular nerve Sing = Hom(T (−),−) : Top→ SSet
that assigns to
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• a topological space X the simplicial set SX : ∆op → Set with SXn = HomTop(∆n, X),

din : Hom(∆n, X)→ Hom(∆n−1, X), σ 7→ σ ◦ fni ,
sin : Hom(∆n, X)→ Hom(∆n+1, X), σ 7→ σ ◦ sni ,

• a continuous map f : X → Y the simplicial map Sf : SX ⇒ SY given by the maps
Sfn : HomTop(∆n, X)→ HomTop(∆n, Y ), σ 7→ f ◦ σ.

2. For C = Cat and F = C : ∆ → Cat the simplicial nerve or categorical nerve
N = HomCat(C(−),−) : Cat→ SSet that sends

• a category C to the simplicial set SC : ∆op → Set with SCn = HomCat([n+ 1]′, C),
• a functor G : C → D to the simplicial map SG : SC ⇒ SD with components
SGn : HomCat([n+ 1]′, C)→ HomCat([n+ 1]′,D), H 7→ GH.

3. For C = ∆ and F = id∆ : ∆→ ∆, the functor ∆• : ∆→ SSet that sends

• the object [n+ 1] in ∆ to the simplicial set ∆n = Hom∆(−, [n+ 1]) : ∆op → Set, the
standard n-simplex in SSet,

• a morphism α : [m+ 1]→ [n+ 1] to the simplicial map Hom(−, α) : ∆m ⇒ ∆n with
components Hom([k+1], α) : Hom([k+1], [m+1])→ Hom([k+1], [n+1]) τ 7→ α◦τ .

The simplicial set ∆n : ∆op → Set play a special role in the category SSet. By the Yoneda
lemma simplicial maps α : ∆n ⇒ S into a simplicial set S : ∆op → Set are in bijection
with elements of Sn.

Other important examples are the simplicial objects that underly the definition of Hochschild
homology and group homology, cf. Section 5.5. In this case, the input data are an algebra and a
bimodule. If the algebra is a group algebra, one usually assumes that the left module structure
is trivial and works with a right module over the group algebra. One may also take the algebra
as a bimodule over itself with the left or right multiplication or the underlying field F as a
trivial module over the group algebra.

Example 5.2.8: Let A be an algebra over F and M an (A,A)-bimodule.
This defines a simplicial vector space S : ∆op → VectF with Sn = M⊗FA

⊗n for n ∈ N0 and
face maps and degeneracies

din : Sn → Sn−1, m⊗a1⊗ . . .⊗an 7→


(m� a1)⊗a2⊗ . . .⊗an i = 0

m⊗a1⊗ . . .⊗(aiai+1)⊗ . . .⊗an 1 ≤ i ≤ n− 1

(an �m)⊗a1⊗ . . .⊗an−1 i = n

sin : Sn → Sn+1, m⊗a1⊗ . . .⊗an 7→ m⊗a1⊗ . . .⊗ai⊗1A⊗ai+1⊗ . . .⊗an.

If A = F[G] for a group G and M is equipped with the trivial F[G]-left module structure, this
reduces to Sn = M⊗FF[G×n] with face maps and degeneracies

din : Sn → Sn−1, m⊗(g1, . . . , gn) 7→


(m� g1)⊗(g2, . . . , gn) i = 0

m⊗(g1, . . . , (gigi+1), . . .⊗gn) 1 ≤ i ≤ n− 1

m⊗(g1, . . . , gn−1) i = n

sin : Sn → Sn+1, m⊗(g1, . . . , gn) 7→ m⊗(g1, . . . , gi, 1G, gi+1, . . . , gn).
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Besides these structural examples that play a fundamental role in topology and homological
algebra, there are also concrete examples of simplicial objects, arising for instance from ordered
combinatorial simplicial complexes.

Example 5.2.9: Any ordered combinatorial simplicial complex K ⊂ P(V ) as in Definition
5.1.5 defines a simplicial set SK : ∆op → Set given by

SKn = {(v0, . . . , vn) | {v0, . . . , vn} ∈ K, v0 ≤ . . . ≤ vn}
din : SKn → SKn−1, (v0, . . . , vn) 7→ (v0, . . . , vi−1, vi+1, . . . , vn)

sin : SKn → SKn+1, (v0, . . . , vn) 7→ (v0, . . . , vi−1, vi, vi, vi+1, . . . , vn).

This example illustrates the role of the degeneracies in a simplicial set. Here, a point
(v0, . . . , vn) ∈ Sn is in the image of a degeneracy map if and only if it contains repeated
vertices. If the vertices are taken as points in Rn, this corresponds to a degenerate n-simplex
contained in an affine plane of dimension < n. If V is finite with k vertices, every element of
Sn is degenerate for all n ≥ k. A similar phenomenon occurs when one realises a k-dimensional
manifold as a combinatorial simplicial complex. In this case, all n-simplexes for k > n are
degenerate. The elements in the images of degeneracy maps carry only redundant information.

In the following we will use simplicial sets and other simplicial objects in two ways, to construct
mathematical objects in a category E and to investigate objects in a category E . The simplicial
objects used in the former and in the latter are adjoints.

The left adjoint is a left Kan extension LanyF : SSet → E of a cosimplicial object F : ∆ → E
along the Yoneda embedding y : ∆ → SSet and serves to construct objects in the category
E from simplicial sets. The right adjoint is the nerve functor Hom(F (−),−) : E → SSet from
Example 5.2.7. It assigns to each object of E a simplicial set that can be used to analyse the
category E . Essentially everything in the next sections is based on the following corollary, which
is a direct consequence of Corollary 3.2.6 and Proposition 3.2.13.

Corollary 5.2.10: Let E be cocomplete.

1. Every cosimplicial object F : ∆→ E has a pointwise left Kan extension LanyF : SSet→ E
along the Yoneda embedding y : ∆→ SSet .

2. The left Kan extension is left adjoint to the nerve Hom(F (−),−) : E → SSet.

5.3 Geometric realisation

In this section, we consider the left adjoint in Corollary 5.2.10 for the category E = Top. In this
case, F : ∆ → Top is the cosimplicial object from Example 5.2.6, 1. defined by the standard
n-simplexes. Its left Kan extension LanyF : SSet → Top is called the geometric realisation. It
associates to every simplicial set a topological space and is left adjoint to the singular nerve
Sing : Top→ SSet from Example 5.2.7, 1.

The geometric realisation is important, because it allows one to investigate simplicial sets with
methods from topology. We will see in the following sections how this construction can be
applied to characterise objects in different categories and relate them to topological spaces.
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Definition 5.3.1: The geometric realisation Geom = LanyT : SSet→ Top is the left Kan
extension of the cosimplicial object T : ∆ → Top from Example 5.2.6, 1. along the covariant
Yoneda embedding y : ∆→ SSet

∆ T //

y !!
∼=⇓η

Top

SSet
LanyT=Geom

;;

Its right adjoint is called the singular nerve Sing = HomTop(T (−),−) : Top→ SSet.

While the existence of the geometric realisation is guaranteed by Corollary 5.2.10, it is desirable
to have a more concrete picture of the topological spaces and continuous maps that this functor
associates to simplicial sets and simplicial maps, respectively. The first step is to derive a formula
for this Kan extension with the coend formula from Proposition 4.2.6.

Proposition 5.3.2: The geometric realisation Geom : SSet→ Top assigns to

• a simplicial set S : ∆op → Set the topological space

Geom(S) = |S| = (qn∈N0Sn ×∆n) / ∼ (S(f)(s), x) ∼ (s, T (f)(x))

for f : [m + 1] → [n + 1], x ∈ ∆m and s ∈ Sn, with the topology induced by the metric
topology on ∆n and the discrete topology on Sn,

• a simplicial map α : S ⇒ S ′ the continuous map Geom(α) = |α| : |S| → |S ′| with
α([s, x]) = [αn(s), x] for s ∈ Sn, x ∈ ∆n.

Proof:
By Proposition 4.2.6 the left Kan extension LanyT (S) is the coend of the functor

F = HomSSet(y(−), S) t T (−) : ∆op ×∆→ Top.

By the Yoneda lemma we have HomSSet(y([n + 1]), S) = HomSSet(Hom∆(−, [n + 1]), S) ∼= Sn
for all n ∈ N0 and hence F ([n+ 1], [m+ 1]) = Sn t∆m = qSn∆m ∼= Sn×∆m for all m,n ∈ N0.
Formula (19) for the coend then gives

Geom(S) =

∫ [n]∈∆

F ([n], [n]) = coequ

(
qf :[m+1]→[n+1]Sn ×∆m

(s,x)7→(s,T (f)x)

⇒
(s,x) 7→(S(f)s,x)

qm∈N0Sm ×∆m

)
,

where the first coproduct runs over all morphisms f in ∆ and [m+1] := s(f) and [n+1] := t(f).
A simplicial map α : S ⇒ S ′ induces a natural transformation µ : F ⇒ F ′ with components

µn,m : Sn ×∆m → S ′n ×∆m, (s, x) 7→ (αn(s), x) for s ∈ Sn, x ∈ ∆m,

and by Example 4.1.2, 1. a dinatural transformation µ′ : F
•⇒F ′ with µ′n = µn,n. The universal

property of the coend then defines the morphism Geom(α) : Geom(S)→ Geom(S ′). 2

Proposition 5.3.2 provides a formula for the geometric realisation of a simplicial set. However, it
is still difficult to have a concrete picture. In particular, the formula necessarily involves standard
n-simplexes for all n ∈ N0. It is therefore not obvious how it describes simple topological spaces
such as tori or spheres. Also, while it is intuitive that the face maps glue different standard
n-simplexes along their faces, it remains unclear what is the role of the degeneracies.
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It turns out that their role is similar to Example 5.2.9, where they define degenerate higher
simplexes obtained by repeating the vertices of lower dimensional ones. With the equivalence
relation from Proposition 5.3.2 we see that degenerate affine simplexes in the geometric reali-
sation correspond to elements of the simplicial sets in the images of the degeneracy maps. We
call an element s ∈ Sn of a simplicial set S : ∆op → Set degenerate, if it is in the image of
one of the degeneracy maps. It turns out that these elements are redundant in the geometric
realisation, as every point in Geom(S) is represented by a non-degenerate element of S.

Theorem 5.3.3: Let S be a simplicial set with geometric realisation Geom(S) = |S|.

1. For every p ∈ |S| there are unique x ∈ ∆̊n and non-degenerate s ∈ Sn with [s, x] = p.

2. |S| inherits a semisimplicial complex structure and a CW complex structure, such that
n-simplexes and an n-cells are in bijection with non-degenerate elements of Sn.

Proof:
We prove only the first part. The second is a rather direct consequence of the first, but requires
more topology. For each point p ∈ |S|, there is an m ∈ N0 and r ∈ Sm, z ∈ ∆m with p = [r, z].

1. There is a unique injection δ : [k + 1]→ [m+ 1] and a unique y ∈ ∆̊k with z = T (δ)y:

If z ∈ ∆̊m, then δ = 1[m+1] and y = z. Otherwise, z is contained in a (m − 1)-face, and there

is a face map fmi1 = T (δi1m) : ∆m−1 → ∆m and an y1 ∈ ∆m−1 with z = fmi1 (y1). If y1 ∈ ∆̊m−1

we set δ = δi1m and y = y1. Otherwise, there is a face map fm−1
i2

= T (δi2m−1) : ∆m−2 → ∆m−1

and y2 ∈ ∆m−2 with y1 = fm−1
i2

(y2). If y2 ∈ ∆̊m−2, we set y = y2 and δ = δi1m ◦ δ
i2
m−1. The

procedure terminates after at most m steps and yield a unique y ∈ ∆̊k and monotonic injection
δ : [k + 1]→ [m+ 1] with z = T (δ)y.

2. There is a unique surjection σ : [n + 1]→ [k + 1] in ∆ and a unique non-degenerate s ∈ Sn
with S(δ)r = S(σ)(s):

If S(δ)r is non-degenerate, then s = S(δ)r and σ = 1[k+1]. Otherwise, there is a surjection

σj1k : [k+ 1]→ [k] and an s1 ∈ Sk−1 with S(δ)r = S(σj1k )(s1). If s1 is non-degenerate, set s = s1

and σ = σj1k . Otherwise there is a surjection σj2k−1 : [k]→ [k − 1] with s1 = S(σj2k−1)(s2). If s2 is

non-degenerate, set σ = σj2k−1 ◦ σ
j1
k and s = s2. This terminates after at most k steps and yields

a unique non-degenerate s ∈ Sn and surjection σ : [k + 1]→ [n+ 1] with S(δ)r = S(σ)s.

3. Combining 1. and 2. yields p = [r, z] = [r, T (δ)y] = [S(δ)r, y] = [S(σ)s, y] = [s, T (σ)y]. As

y ∈ ∆̊k = {Σk
j=0tjej | Σk

j=0tj = 1, tj > 0 ∀j ∈ {0, ..., k}}

one has T (σ)y ∈ ∆̊n by definition of the degeneracy maps. Hence, p = [s, x] with s ∈ Sn and
x = S(σ)r ∈ ∆̊n. The uniqueness is clear from the construction. 2

Example 5.3.4:

1. The geometric realisation of an ordered combinatorial simplicial complex K ⊂ P(V )
is defined as the geometric realisation of its simplicial set SK : ∆op → Set from Example
5.2.9. The n-simplexes τα : ∆n → |SK| in the semisimplicial complex |SK| are in bijection
with elements α = (v0, . . . , vn) ∈ SKn with v0 < . . . < vn.

2. The geometric realisation of the simplicial set ∆n = Hom(−, [n + 1]) : ∆op → Set from
Example 5.2.7, 3. is the topological standard n-simplex ∆n. (Exercise 43)
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Theorem 5.3.3 gives a more concrete and intuitive picture of the geometric realisation of a
simplicial set, and Example 5.3.4 allow one to understand it in terms of combinatorial simplicial
complexes. Nevertheless, some questions remain. For instance, for a semisimplicial complex or
a combinatorial simplicial complex one can construct the n-skeleta by discarding all simplexes
of dimension greater than n, see Definitions 5.1.3 and 5.1.5.

The question is if a similar procedure can be applied to simplicial sets and how it interacts with
forming the n-skeleton of its geometric realisation. The definition of a simplicial set enforces
non-empty sets Sn for all n ∈ N0 as soon as S0 6= ∅. However, one can fill the sets Sk for k > n
with only degenerate simplexes. This is achieved by first restricting a simplicial set to the full
subcategory of ∆ that contains only the ordinals [k] for k ≤ n + 1 and then performing a left
Kan extension along the inclusion functor.

Definition 5.3.5: Let ∆≤n ⊂ ∆ the full subcategory with objects [1], [2], . . . , [n + 1] and
ιn : ∆≤n → ∆ the inclusion functor.

1. The n-truncation of a simplicial set S : ∆op → Set is the functor Sιn : ∆op
≤n → Set.

2. The n-skeleton sknS : ∆op → SSet of a simplicial set S : ∆op → Set is the left Kan
extension of Sιn : ∆op

≤n → Set along the inclusion ιn : ∆op
≤n → ∆op

∆op
≤n

Sιn //

ιn ""
⇓η

Set

∆op

sknS

==

Proposition 5.3.6: In the n-skeleton sknS of a simplicial set S the sets (sknS)k for k > n
contain only degenerate elements. One has |sknS| ∼= skn|S|

Proof:
1. With the coend formula (19) and the formula from Proposition 4.2.6 one computes

(sknS)p = (qm≤nHom∆([p+ 1], [m+ 1])× Sm)/ ∼

with the equivalence relation (β ◦ α, s) ∼ (α, S(β)s) for β : [m + 1] → [l + 1] with l,m ≤ n,
s ∈ Sl and α : [p+ 1]→ [m+ 1]. On the morphisms the left Kan extension is given by

(sknS)(γ) : (sknS)p → (sknS)q, [α, s] 7→ [α ◦ γ, s]

for all γ : [q + 1]→ [p+ 1], α : [p+ 1]→ [m+ 1], s ∈ Sm.

If p > n and m ≤ n, the canonical factorisation of the simplex category (20) allows one to
express any morphism α : [p + 1] → [m + 1] as a composite α = δ ◦ σ with an injective
monotonic map δ : [k+ 1]→ [m+ 1] and a surjective monotonic map σ : [p+ 1]→ [k+ 1] that
is a non-trivial composite of degeneracies. This implies [α, s] = [δ ◦ σ, s] = (sknS)(σ)[δ, α] for
all s ∈ Sm, α : [p+ 1]→ [m+ 1] and hence any element in (sknS)p for p > n is degenerate.

In contrast, if p ≤ n, then any morphism α : [p + 1] → [m + 1] is a morphism in ∆≤n, and
one has [α, s] = [1[p+1], S(α)s]. This induces bijections φp : (sknS)p → Sp, [α, s] 7→ S(α)s with
inverses φ−1

p : Sp → (sknS)p, s 7→ [1[p+1], s] that satisfy

φq ◦ (sknS)(γ)([α, s]) = φq([α ◦ γ, s]) = S(γ)S(α)s = S(γ) ◦ φp([α, s])
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for all γ : [q + 1] → [p + 1], α : [p + 1] → [m + 1] and s ∈ Sm with m, p, q ≤ n. Hence, an
element in [α, s] ∈ (sknS)p is degenerate if and only if φp([α, s]) is degenerate. Theorem 5.3.3
then implies |sknS| = skn|S| for all n ∈ N0. 2

Another option is to consider semisimplicial sets, functors s : ∆op
inj → Set from the subcat-

egory ∆inj ⊂ ∆ with the same objects but only injective monotonic maps as morphisms. For
semisimplicial sets, one can define a counterpart of the geometric realisation, the fat realisation,
which is more intuitive. In this approach, the sets sk = s([k + 1]) may be empty for k ≥ n and
some fixed n, and elements of sk correspond bijectively to k-cells in the fat realisation, cf. Exer-
cises 44 and 47. This was the first approach, but also has drawbacks compared with simplicial
sets. In particular, it becomes difficult to collapse simplexes and to include degenerate data.

5.4 Simplicial nerve and homotopy category

In this section, we consider the left Kan extension LanyF : SSet→ Cat from Corollary 5.2.10 for
the cosimplicial object F : Cat→ Set from Example 5.2.6, 2. This Kan extension assigns small
categories to simplicial sets and functors to simplicial maps. Its right adjoint, the simplicial
nerve N : Cat → SSet from Example 5.2.7, 2. assigns simplicial sets to small categories and
simplicial maps to functors between them .

As we have not yet shown that the category Cat is cocomplete, we cannot argue that this
left Kan extension exists by cocompleteness of Cat. Instead, we consider the simplicial nerve,
construct its left adjoint explicitly and show that this adjunction identifies Cat with a reflective
subcategory of SSet. As SSet is bicomplete, this implies that Cat is bicomplete as well. It follows
that the left Kan extension exists, is pointwise and the left adjoint of the simplicial nerve. To
work with the simplicial nerve we require a more concrete description. We characterise functors
from poset categories into a small category C as composable sequences of objects in C.

Lemma 5.4.1: Let C : ∆→ Cat be the cosimplicial object from Example 5.2.6 that sends

• an ordinal [n] to the poset category [n]′,
• a monotonic map f : [m]→ [n] to the associated functor f ′ : [m]′ → [n]′.

The simplicial nerve N = HomCat(C(−),−) : Cat→ SSet

• sends a category C to the simplicial set N(C) : ∆op → Set, where

– N(C)0 = ObC,
– N(C)n = {(f1, . . . , fn) | fj : Cj−1 → Cj} for n ≥ 1

is the set of sequences of n composable morphisms in C,
– face maps and degeneracies are given by

d0
1 : f1 7→ C1, d1

1 : f1 7→ C0, (23)

din : (f1, . . . , fn) 7→


(f2, . . . , fn) i = 0

(f1, . . . , fi+1 ◦ fi, . . . , fn) 1 ≤ i ≤ n− 1

(f1, . . . , fn−1) i = n

n > 1,

s0
0 : C 7→ 1C sin : (f1, . . . , fn) 7→ (f1, . . . , fi, 1Ci , fi+1, . . . , fn) n ≥ 1,

• sends a functor F : C → C ′ to the simplicial map N(F ) : N(C)⇒ N(C ′) with components

N(F )n : N(C)n → N(C ′)n, (f1, . . . , fn) 7→ (F (f1), . . . , F (fn)).

91



This lemma gives a more explicit expression for the simplicial nerve that could be used in
principle to compute it. The simplest examples are nerves of poset categories and simplicial
nerves of groups, viewed as categories with a single object.

Example 5.4.2: The simplicial nerve of the poset category C = [n+ 1]′ is given by

N(C)k = HomCat([k + 1]′, [n+ 1]′) ∼= Hom∆([k + 1], [n+ 1])

N(C)(τ) : N(C)l → N(C)k, σ 7→ σ ◦ τ for τ : [k + 1]→ [l + 1].

Thus, N([n+ 1]′) = Hom(−, [n+ 1]) : ∆op → Set is the simplicial set from Example 5.2.7, 3.

Example 5.4.3: The simplicial nerve of the category BG for a group G is given by

N(BG)n = G×n

sin : G×n → G×(n+1), (g1, . . . , gn) 7→ (g1, . . . , gi−1, 1, gi, . . . , gn)

din : G×n → G×(n−1), (g1, . . . , gn) 7→


(g2, . . . , gn) i = 0

(g1, . . . , gi+1 · gi, . . . , gn) 1 ≤ i ≤ 0

(g1, . . . , gn−1) i = n

Clearly, the simplicial nerve N : Cat → SSet is injective on the objects and fully faithful and
hence identifies the category Cat with a full subcategory of SSet. We will now show that it has
a left adjoint h : SSet → Cat, the homotopy functor. Thus, the simplicial nerve identifies Cat
with a reflective subcategory of SSet, see Definition 2.4.10.

Definition 5.4.4: The homotopy functor h : SSet→ Cat sends

• a simplicial set S : ∆op → Set to the category C = h(S) with ObC = S0, elements y ∈ S1

as generating morphisms y : d1
1(y)→ d0

1(y) and relations

1x = s0
0(x) for all x ∈ S0 d0

2(z) ◦ d2
2(z) = d1

2(z) for all z ∈ S2, (24)

• a simplicial map α : S ⇒ S ′ to the functor h(α) : h(S)→ h(S ′) given by α0 : S0 → S ′0 on
the objects and α1 : S1 → S ′1 on the morphisms.

The category h(S) for a simplicial set S is called the homotopy category of S.

Remark 5.4.5:

1. Only non-degenerate elements of S2 give rise to non-trivial relations in h(S):

If z = s0
1(y) for some y ∈ S1, then relations (22) and the first relation in (24) imply

d0
2(z) = d1

2(z) = y and d2
2(z) = 1d1

1(y). If z = s1
1(y), then one obtains d1

2(z) = d2
2(z) = y

and d0
2(z) = 1d1

0(y). In both cases, the second relation in (24) is satisfied trivially.

2. In general, the morphisms of h(S) are hard to describe concretely. They are equivalence
classes of sequences (y1, . . . , yn) with yi ∈ S1 and d1

1(yi) = d0
1(yi−1) for 1 ≤ i ≤ n, with

the concatenation as composition and the equivalence relation defined by (24).
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3. The naturality of α ensures that the functor h(α) : h(S)→ h(S ′) respects the source and
targets of morphisms and the relations (24). Compatibility with composition of morphisms
is then satisfied trivially, as composition is given by concatenation.

We now show that the homotopy functor is left adjoint to the simplicial nerve. The key observa-
tion is that for any simplicial map α : S ⇒ N(C) the component morphisms αo : S0 → ObC and
α1 : S1 → MorC satisfy the relations in (24). Hence, the adjunction must identify a simplicial
map with the functor h(S)→ C induced by the component morphisms α0 and α1.

Proposition 5.4.6: The homotopy functor h : SSet → Cat is left adjoint to the simplicial
nerve N : Cat→ SSet with hN ∼= idCat.

Proof:
1. The adjunction is given by the maps

φS,C : HomSSet(S,N(C))→ HomCat(h(S), C)

that send a simplicial map α : S ⇒ N(C) to the functor φS,C(α) : h(S) → C induced by the
maps α0 : S0 → ObC and α1 : S1 → MorC, where MorC is the set of all morphisms of C.
That φS,C(α) is indeed a functor follows, because the naturality of α and formulas (23) for the
simplicial nerve imply for all x ∈ S0, y ∈ S1 and z ∈ S2

t(φS,C(α)(y))
(23)
= d0

1 ◦ α1(y)
nat α
= α0 ◦ d0

1(y) = φS,C(α)(d0
1(y)) = φS,C(α)(t(y)) (25)

s(φS,C(α)(y))
(23)
= d1

1 ◦ α1(y)
nat α
= α0 ◦ d1

1(y) = φS,C(α)(d1
1(y)) = φS,C(α)(s(y))

φS,C(α)(s0
0(x)) = α1 ◦ s0

0(x)
nat α
= s0

0 ◦ α0(x)
(23)
= 1α0(x) = φS,C(α)(1x)

φS,C(α)(d1
2(z)) = α1 ◦ d1

2(z)
nat α
= d1

2 ◦ α2(z)
(23)
= d0

2(α2(z)) ◦ d2
2(α2(z))

nat α
= α1(d0

2(z)) ◦ α1(d2
2(z))

= φS,C(α)(d0
2(z) ◦ d2

2(z)),

where s(f) and t(f) denote the source and the target of a morphism f in C or h(S). Naturality
in S and C follows directly from the definitions.

2. The inverse of φS,C sends a functor F : h(S)→ C given by F0 : S0 → ObC and F1 : S1 → MorC
to the simplicial map α = φ−1

S,C(F ) given by α0 = F0, α1 = F1 and

αn = (F1(f 1
n), . . . , F1(fnn )) : Sn → N(C)n, s 7→ (F1(f 1

n(s)), . . . , F1(fnn (s))) for n > 2, (26)

where f jn = S(τ jn) is the image of the map

τ jn : [2]→ [n+ 1], 0 7→ j − 1, 1 7→ j 1 ≤ j ≤ n. (27)

3. To show that this defines a simplicial map, it remains to prove the naturality of α. Note that
the fact that F is a functor implies for all x ∈ S0 and y ∈ S1

d0
1 ◦ α1(y) = t(F1(y)) = F0(t(y)) = α0 ◦ d0

1(y)

d1
1 ◦ α1(y) = s(F1(y)) = F0(s(y)) = α0 ◦ d1

1(y)

s0
0 ◦ α0(x) = 1α0(x) = 1F0(x) = F1(1x) = F1(s0

0(x)) = α1 ◦ s0
0(x).

It remains to show that for all n ≥ 2 and i ∈ [n+ 1], k ∈ [n]

αn ◦ din+1 = din+1 ◦ αn+1 αn ◦ skn−1 = skn ◦ αn−1.
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With some computations we obtain

δin+1 ◦ τ jn =


τ jn+1 i < j

ρjn ◦ δ1
2 i = j

τ j+1
n+1 i > j

σkn ◦ τ jn =


τ j−1
n−1 k < j − 1

τ j−1
n−1 ◦ σ0

1 k = j − 1

τ jn−1 k ≥ j

ρjn : [3]→ [n+ 2], 0 7→ j − 1, 1 7→ j, 2 7→ j + 1,

and this yields with (26), (27) and din+1 = S(δin+1)

αn ◦ d0
n+1 = (F1(f 2

n+1), . . . , F1(fn+1
n+1 ))

αn ◦ dn+1
n+1 = (F1(f 1

n+1), . . . , F1(fnn+1))

αn ◦ skn−1 = (F1(f 1
n−1), . . . , F1(fk−1

n−1), 1d1
0◦f

k−1
n−1

, F1(fkn−1), . . . F1(fn−1
n−1 )).

As ρjn ◦ δ0
2 = τ j+1

n+1 and the relations (21) imply ρjn ◦ δ2
2 = τ jn+1, we also obtain with relation (24)

and the identity F1(d1
2(z)) = F1(d0

2(z)) ◦ F1(d2
2(z)) for all z ∈ S2

αn ◦ din+1 = αn ◦ S(δin+1) = (F1(f 1
n+1), . . . , F1(f i−1

n+1), F1S(ρin ◦ δ1
2)), F1(f i+1

n+1) . . . , F1(fn+1
n+1 ))

= (F1(f 1
n+1), . . . , F1(d1

2 ◦ S(ρin)), . . . , F1(fn+1
n+1 ))

= (F1(f 1
n+1), . . . , F1(d0

2 ◦ S(ρin)) ◦ F1(d2
2 ◦ S(ρin)), . . . , F1(fn+1

n+1 ))

= (F1(f 1
n+1), . . . , F1S(ρin ◦ δ0

2) ◦ F1S(ρin ◦ δ2
2), . . . , F1(fn+1

n+1 ))

= (F1(f 1
n+1), . . . , F1S(τ j+1

n+1) ◦ F1S(τ jn+1), . . . , F1(fn+1
n+1 ))

= (F1(f 1
n+1), . . . , F1(f i+1

n+1) ◦ F (f in+1), . . . , F1(fn+1
n+1 )) 1 ≤ 1 ≤ n− 1.

Comparing with the formulas in Lemma 5.4.1 then shows that α is a simplicial map.

4. To show that hN ∼= idCat we consider the functors βC : C → hN(C) for each small category C
that send each object to itself and each morphism f in C to the equivalence class of (f) ∈ N(C)1

in hN(C). Their inverses are the functors β−1
C : hN(C)→ C that send each object to itself and

the equivalence class of a composable n-tuple (f1, . . . , fn) of morphisms in C to the morphism
fn ◦ . . . ◦ f1. That β−1

C is indeed inverse to βC follows from the relations of hN(C), which relate
any composable n-tuple (f1, . . . , fn) of morphisms in C to their composite fn ◦ . . . ◦ f1. 2

As the simplicial nerve N : Cat → SSet is injective on the objects, fully faithful and right
adjoint to the homotopy functor h : SSet→ Cat, it identifies Cat with a reflective subcategory
of SSet. As SSet is bicomplete by Proposition 2.3.2, Proposition 2.4.12 implies that Cat is
cocomplete, as anticipated in Remark 2.4.13 and at the beginning of this section.

Corollary 5.4.7: The category Cat is a reflective subcategory of SSet with the embedding
functor N : Cat→ SSet. In particular, Cat is bicomplete.

Proposition 5.4.6 also allows us to identify the homotopy functor h : SSet → Cat as the left
Kan extension LanyC : SSet→ Cat of the functor C : ∆→ Top from Example 5.2.6, 2. along
the Yoneda embedding y : ∆ → SSet. As ∆ is small and Cat cocomplete, this Kan extension
exists, is pointwise and left adjoint to the simplicial nerve N : Cat→ SSet by Corollary 5.2.10.
As the left adjoint is unique, it follows that the homotopy functor is naturally isomorphic to
this left Kan extension, h ∼= LanyC, and hence a left Kan extension of C along y.
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Corollary 5.4.8: The homotopy functor h : SSet → Cat is the left Kan extension of the
functor C : ∆→ Cat along the Yoneda embedding y : ∆→ SSet.

∆ C //

y ""
⇓η

Cat

SSet
LanyC=h

;;

Thus, the nerve N : Cat→ SSet and the homotopy functor h : SSet→ Cat are the categorical
counterparts of the singular nerve Sing : Top → SSet and the geometric realisation functor
Geom : SSet → Top from Definition 5.3.1. The functor C : ∆ → Cat from Example 5.2.6,
2. replaces the functor T : ∆ → Top from Example 5.2.6, 1 and the poset categories for
ordinals take the role of the standard n-simplexes. Both Kan extensions and adjunctions are
just different manifestations of Corollary 5.2.10.

Beyond the proof of the bicompleteness of Cat, the nerve and the homotopy functor have
other applications. As the nerve assigns to each category a simplicial set and to each functor
a simplicial map, one can combine it with the geometric realisation functor to assign to each
category a topological space and to each functor a continuous map. This allows one to apply
techniques from topology to investigate categories and functors between them.

Definition 5.4.9: The classifying space functor for a small category C is the functor
B = GeomN : Cat→ Top that assigns

• to a small category C its classifying space BC = |N(C)|,
• to a functor F : C → D the associated continuous map B(F ) : |BC| → |BD|.

Example 5.4.10:

1. A set J as a discrete category J with only identity morphisms has the classifying space
BJ = J with the discrete topology.

2. The classifying space of a groupG is the classifying space of the associated category BG.

3. The poset category [n + 1]′ for n ∈ N0 has as classifying space the standard n-simplex
B[n+ 1] = ∆n. This follows from Example 5.3.4, 2. and Example 5.4.2.

5.5 Chain complexes and homologies

In this section, we discuss an important application of simplicial objects, namely chain com-
plexes and their homologies. Chain complexes play a fundamental role in algebra, topology and
geometry - they are often the best and most practical way to characterise mathematical objects.
They are complicated enough to store considerable amounts of mathematical information, but
simple to handle due to their linear nature.

We will show that simplicial objects in the category R-Mod of modules over a ring R define
chain complexes in R-Mod and simplicial morphisms define chain maps between them. In fact,
this holds more generally for simplicial objects and morphisms in abelian categories. We will
even see that up to isomorphism, all positive chain complexes in R-Mod arise from simplicial
objects in R-Mod. This is the famous Dold-Kan correspondence. Its proof can be viewed as an
exercise in Kan extensions. It consists mainly of computing a Kan extension.
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In particular, this correspondence between chain complexes and simplicial objects in R-Mod
allows one to construct chain complex from simplicial sets. Any simplicial set S : ∆op → Set
can be promoted to a simplicial R-module by considering the R-modules generated by the sets
Sn for n ∈ N0 and the R-linear maps between them induced by its face maps and degeneracies.

We start by introducing chain complexes, chain maps and their homologies and then investigate
their relation with simplicial objects. They play a role in almost every part of mathematics.

Definition 5.5.1: Let R be a ring.

1. A chain complex C• in R-Mod is a family (Cn)n∈Z of R-modules and a family (dn)n∈Z of
R-linear maps dn : Cn → Cn−1, the boundary operators, with dn−1 ◦ dn = 0 for n ∈ Z.

C• = . . .
dn+2−−−→ Cn+1

dn+1−−−→ Cn
dn−→ Cn−1

dn−1−−−→ . . .

2. A chain map f• : C• → C ′• is a family (fn)n∈Z of R-linear maps fn : Cn → C ′n with
d′n ◦ fn = fn−1 ◦ dn for all n ∈ Z

. . .
dn+2 // Cn+1

fn+1

��

dn+1 // Cn

fn
��

dn // Cn−1

fn−1

��

dn−1 // . . .

. . .
d′n+2

// C ′n+1 d′n+1

// C ′n d′n

// C ′n−1 d′n−1

// . . .

The category of chain complexes and chain maps, with the composition (g• ◦ f•)n = gn ◦ fn and
identity morphisms (1C•)n = idCn , is denoted ChR-Mod.

A chain complex is called positive if Cn = 0 for all n < 0. The full subcategory of positive
chain complexes is denoted ChR-Mod≥0 ⊂ ChR-Mod.

Remark 5.5.2:

1. Chain complexes and chain maps between them can be defined in more generality,
namely in abelian categories.

2. Sequences of trivial modules are omitted from a chain complex. A chain complex that
ends with 0 on the left, the right or both is to be supplemented by trivial modules.

3. Elements of the R-modules Cn are called n-chains, elements of the kernel ker(dn) ⊂ Cn
are called n-cycles and elements of the image im(dn+1) ⊂ Cn are called n-boundaries.

4. A chain complex C• is called exact in n, if ker(dn) = im(dn+1), and exact, if it is exact
in all n ∈ Z.

The essential quantities associated to a chain complex are its homologies. The condition
dn ◦ dn+1 = 0 for all boundary operators implies that im(dn+1) ⊂ ker(dn) is a submodule.
Thus, one can form the quotient module Hn(C•) = ker(dn)/im(dn+1), the nth homology of C•.
It vanishes if and only if C• is exact in n and therefore measures the non-exactness of C• in n.

The compatibility conditions between boundary operators and chain maps ensures that
fn(ker(dn)) ⊂ ker(d′n) and fn(im(dn+1)) ⊂ im(d′n+1) for all chain maps f• : C• → C ′•. Thus, any
chain map induces an R-linear map Hn(f•) : Hn(C•) → Hn(C ′•). This allows one to view the
homologies as functors Hn : ChR-Mod → R-Mod.
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Definition 5.5.3: Let R be a ring.
For n ∈ Z the nth homology is the functor Hn : ChR-Mod → R-Mod that assigns to

• a chain complex C• in R-Mod the R-module Hn(C•) = ker(dn)/im(dn+1),

• a chain map f• : C• → C ′• the induced map Hn(f•) : Hn(C•)→ Hn(C ′•), [c] 7→ [fn(c)].

Example 5.5.4:

1. The chain complex C• = . . .
x̄ 7→2x−−−→ Z/4Z x̄ 7→2x−−−→ Z/4Z x̄ 7→2x−−−→ . . . in Ab has the homologies

Hn(C•) = ker(x̄ 7→ 2x)/im(x̄ 7→ 2x) = {0̄, 2̄}/{0̄, 2̄} = 0 for all n ∈ N0 and is exact.

2. A chain complex of the form 0→ L
ι−→M

π−→ N → 0 is exact if and only if ι is injective and
π surjective with ker(π) = im(ι). This is equivalent to the statement that L is isomorphic
to a submodule of M and N to the associated quotient module. An exact chain complex
of this form is called a short exact sequence.

Chain complexes and chain maps in a category R-Mod are closely related to simplicial objects
and simplicial morphisms in R-Mod. Any simplicial object S : ∆op → R-Mod defines a chain
complex S•, whose modules are the objects Sn for n ∈ N0 and zero if n < 0. Its boundary
morphisms are given as alternating sums over the face maps. The simplicial relations (21)
ensure that they satisfy the relation dn−1 ◦ dn = 0 for all n ∈ Z. Due to their naturality, the
component morphisms αn : Sn → S ′n of a simplicial morphism α : S ⇒ S ′ define a chain map
α• : S• → S ′•. This gives rise to a functor from the category of simplicial objects and morphisms
in R-Mod to the category of chain complexes and chain maps in R-Mod.

Proposition 5.5.5: Let R be a ring.
The standard chain complex functor • : R-Mod∆op → ChR-Mod assigns to

• a simplicial object S : ∆op → R-Mod the chain complex S• with boundary operators

dn = Σn
i=0(−1)iS(δin) : Sn → Sn−1,

• a simplicial morphism α : S ⇒ S ′ in R-Mod the chain map α• : S• → S ′• with components

αn : Sn → S ′n.

Proof:
1. We show that each simplicial object S : ∆op → R-Mod yields a chain complex S•:

dn−1 ◦ dn = Σn−1
j=0 Σn

i=0(−1)i+jS(δin ◦ δ
j
n−1)

= Σ0≤j<i≤n(−1)i+jS(δin ◦ δ
j
n−1) + Σ0≤i≤j≤n(−1)i+jS(δin ◦ δ

j
n−1)

(21)
= Σ0≤j<i≤n(−1)i+jS(δin ◦ δ

j
n−1) + Σ0≤i≤j≤n(−1)i+jS(δj+1

n ◦ δin−1)

= Σ0≤j<i≤n(−1)i+jS(δin ◦ δ
j
n−1)− Σ0≤j<i≤n(−1)i+jS(δjn ◦ δin−1) = 0.

2. That any simplicial morphism α : S ⇒ S ′ defines a chain map α• : S• → S ′• follows, because

αn−1 ◦ dn = Σn
i=0(−1)iαn−1 ◦ S(δin)

nat α
= Σn

i=0(−1)iS ′(δin) ◦ αn = dn ◦ αn.

This defines a functor, because the composition and identity morphisms of simplicial maps and
chain maps are both componentwise. 2
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Simplicial objects and morphisms in a category R-Mod can be constructed easily from simplicial
sets and maps. One simply composes them with the functor 〈 〉R : Set→ R-Mod that assigns

• to a set X the free R-module 〈X〉R,
• to a map f : X → Y the R-linear map 〈f〉R : 〈X〉R → 〈Y 〉R with 〈f〉R|X = f .

This yields a post-composition functor FR = 〈 〉R ∗ : SSet→ R-Mod∆op

that assigns to

• a simplicial set S : ∆op → Set the simplicial object 〈 〉RS : ∆op → R-Mod,
• a simplicial map α : S ⇒ S ′ the simplicial morphism 〈 〉R α : 〈 〉R S ⇒ 〈 〉R S ′.

Many chain complexes that are important in algebraic topology and homological algebra are
constructed in this way. For practical reasons and ease of computation one usually restricts
attention to commutative rings R = k or even the ring R = Z.

Example 5.5.6: Let k be a commutative ring.

1. Post-composing the singular nerve Sing : Top → SSet from Example 5.2.7, 1. with the
functor Fk : SSet → k-Mod∆op

and the standard chain complex functor from Proposi-
tion 5.5.5 yields the singular chain complex functor C•(−, k) : Top→ Chk-Mod. It sends

• a topological space X to the chain complex C•(X, k) with

Cn(X, k) = 〈HomTop(∆n, X)〉k
dn : Cn(X, k)→ Cn−1(X, k), σ 7→ Σn

i=0(−1)iσ ◦ fni ,

• a continuous map f : X → Y to the chain map C•(f, k) : C•(X, k)→ C•(Y, k) with

fn : Cn(X, k)→ Cn(Y, k), σ 7→ f ◦ σ,

The associated homologies Hn(X, k) = HnC•(X, k) are called singular homologies of
X. They play a fundamental role in algebraic topology - most algebraic topology lectures
are essentially an investigation of this functor.

2. Composing the simplicial nerve N : Cat→ SSet from Example 5.2.7, 2. with the functor
Fk : SSet → k-Mod∆op

and then the standard chain complex functor from Proposition
5.5.5 yields a functor C•(−, k) : Cat→ Chk-Mod that assigns

• to a category C the chain complex C•(C, k) with

Cn(C, k) = 〈N(C)n〉k d = Σn
i=0(−1)i〈N(δin)〉k : Cn(C, k)→ Cn−1(C, k)

• to a functor F : C → D the chain map C•(F, k) : C•(C, k) → C•(D, k) with
components Cn(F, k) = 〈N(F )n〉k : 〈N(C)n〉k → 〈N(D)n〉k.

3. Let ι : Grp → Cat be the inclusion functor that assigns to a group G its delooping
BG. Composing it with the functor C•(−,Z) : Cat → ChAb from 2. yields a functor
C•(−,Z) : Grp→ ChAb that assigns

• to a group G the chain complex C•(G,Z) with Cn(G,Z) = Z[G×n] and boundary
operator dn = Σn

i=0(−1)idin given by Example 5.4.3

din(g1, . . . , gn) =


(g2, . . . , gn) i = 0

(g1, . . . , gi+1 · gi, . . . , gn) 1 ≤ i < n

(g1, . . . , gn−1) i = n,
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• to a group homomorphism f : G→ H the chain map C•(f,Z) : C•(G,Z)→ C•(H,Z)
given by Cn(f,Z) : Cn(G,Z)→ Cn(H,Z), (g1, . . . , gn)→ (f(g1), . . . , f(gn)).

The homologies of C•(G,Z) are called the group homologies ofG and denotedHn(G,Z).

4. Let S : SSet → VectF be the simplicial object from Example 5.2.8 for an algebra A
as a bimodule over itself. Composing it with the standard chain complex functor from
Proposition 5.5.5 yields a functor C•(−) : AlgF → ChVectF that assigns to

• an algebra A over F the chain complex C•(A) with Cn(A) = A⊗(n+1) and boundary
operator dn = Σn

i=0(−1)idin

din(a0⊗a1⊗ . . .⊗an) =

{
a0⊗a1⊗ . . .⊗(aiai+1)⊗ . . .⊗an 0 ≤ i ≤ n− 1

(ana0)⊗a1⊗ . . .⊗an−1 i = n,

• an algebra homomorphism f : A → B the chain map C•(f) : C•(A) → C•(B) with
Cn(f) : A⊗(n+1) → B⊗(n+1), a0⊗ . . .⊗an 7→ f(a0)⊗ . . .⊗f(an).

The homologies of C•(A) are called Hochschild homology of A and denoted Hn(A).

Example 5.5.6 covers the most important chain complexes that arise in topology and algebra.
The point of these constructions is that they assign a chain complex to each topological space,
category, group or algebra in a systematic way that is compatible with the morphisms. This
allows one to use these chain complexes and their homologies in classification problems. For
instance, if two groups, algebras or topological spaces are isomorphic, this must also hold for
their chain complexes and the associated homologies. Homologies can thus be used to compare
or distinguish algebraic objects or topological spaces.

The following examples show that the homologies of the chain complexes in Example 5.5.6
contain relevant information about the underlying algebraic object or topological space. In
general, the information encoded in the nth homology becomes more complicated and difficult
to access for increasing n. The lowest homologies have a simple interpretation.

Example 5.5.7:

1. The zeroth group homology H0(G,Z) = ker(d0)/im(d1) ∼= Z/0 = Z, and the first group
homology is the abelisation of G

H1(G,Z) = ker(d1)/im(d2) = Z[G]/〈gh− g − h | g, h ∈ G〉 = G/[G,G] = Ab(G).

2. The 0th and 1st Hochschild homologies are

H0(A) = ker(d0)/im(d1) = A/〈ab− ba | a, b ∈ A〉 = A/[A,A]

H1(A) =
{a⊗b ∈ A⊗A | ab = ba}

〈ab⊗c− a⊗bc+ ca⊗b | a, b, c ∈ A〉

3. The zeroth singular homology of a topological space X is the free k-module generated
by its path components: H0(X, k) = 〈π0(X)〉k.
Hurewicz’s theorem states that the first homology of a path-connected topological
space X for k = Z is the abelisation of its fundamental group: H1(X,Z) = Ab π1(X).
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The boundary operators of the chain complex for a simplicial object from Proposition 5.5.5
depend only on its face maps and do not involve the degeneracies. This is similar to the geometric
realisation, where only the face maps of a simplicial set are used to glue different simplexes
along their faces. The simplexes of the resulting semisimplicial complex are then in bijection
with non-degenerate elements of the simplicial set.

The standard chain complex S• associated to a simplicial object follows a similar pattern. It
can be decomposed as a direct sum or coproduct of the degenerate chain complex DS• that
contains the images of the degeneracies and a normalised chain complex NS•. One can show
that only the latter contributes to the homologies and contains non-trivial information.

Proposition 5.5.8: Let R be a ring and S : ∆op → R-Mod a simplicial object.

1. For all n ∈ N0 the associated standard chain complex S• satisfies

Sn = NSn ⊕DSn with NSn = ∩n−1
i=0 ker(din), DSn = +n−1

i=0 im(sin−1) ⊂ Sn

This defines chain complexes NS• ⊂ S• and DS• ⊂ S•, the normalised chain complex
and degenerate chain complex, with Hn(S•) = Hn(NS•) and Hn(DS•) = 0 for n ∈ N0.

2. This induces functors N,D : R-Mod∆op → ChR-Mod that assign

• to a simplicial object S : ∆op → R-Mod the chain complexes NS• and DS•,

• to a simplicial morphism α : S ⇒ S ′ the induced chain maps Nα• : NS• → NS ′•
and Dα• : DS• → DS ′• induced by the components αn : Sn → S ′n.

Proof:
1. We show that the boundary operators of S• restrict to NS• and DS•:

This follows by a direct computation with the simplicial relations (22). We have for all
x ∈ NSn, y = skn−1(z) ∈ DSn and i = 0, ..., n− 2

din−1 ◦ dn(x) = (−1)ndin−1 ◦ dnn(x)
(22)
= (−1)ndn−1

n−1 ◦ din(x) = 0 ⇒ dn(x) ∈ NSn−1

dn(y) = Σn
j=0(−1)jdjn ◦ skn−1(z)

(22)
= Σk−1

j=0(−1)jsk−1
n−2 ◦ d

j
n−1(z) + Σn

j=k+2(−1)jskn−2 ◦ d
j−1
n−1(z) ⇒ dn(y) ∈ +n−2

i=0 im(sin−2).

2. We show that for each n ∈ N0 one has Sn = NSn ⊕DSn:

2.(a) To see that DSn ∩NSn = {0}, let 0 6= x ∈ DSn ∩NSn and set

j = max{k ∈ {0, ..., n− 1} | x ∈ +n−1
i=k im(sin−1)}.

Then we have x = Σn−1
i=j s

i
n−1(xi) with sjn−1(xj) 6= 0. As x ∈ NSn, we obtain

0 = djn(x) = Σn−1
i=j d

j
n ◦ sin−1(xi) = xj + Σn−1

i=j+1s
i−1
n−2 ◦ djn(xi).

If j = n− 1, it follows that xn−1 = 0 and x = sn−1
n−1(xn−1) = 0. If j < n− 1 it follows that

sjn−1(xj) = −Σn−1
i=j+1s

j
n−1 ◦ si−1

n−2 ◦ djn(xi) = −Σn−1
i=j+1s

i
n−1 ◦ s

j
n−2 ◦ djn(xi) ∈ +n−1

i=j+1im(sin−1)

and x ∈ +n−1
k=j+1im(sin−1), in contradiction to the maximality of j. Hence, NSn ∩DSn = {0}.
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2.(b) To show that Sn = NSn + DSn, let x ∈ Sn and jx = min{k ∈ {0, ..., n} | dkn(x) 6= 0}. If
jx = n, then x ∈ NSn. If jx = j < n, we have x = x1 + y1 = (x− sjn−1 ◦ djn(x)) + sjn−1 ◦ djn(x)

djn(x1) = djn(x− sjn−1 ◦ djn(x)) = djn(x)− djn(x) = 0

dkn(x1) = dkn(x− sjn−1 ◦ djn(x)) = dkn(x)− sj−1
n−2 ◦ dkn−1 ◦ djn(x) = −sj−1

n−2 ◦ d
j−1
n−1 ◦ dkn(x) = 0

for k ∈ {0, ..., j − 1}. We decomposed x = x1 + y1 with y1 ∈ DSn and an element x1 ∈ Sn with
jx1 ≥ jx+1. By iterating this procedure, we obtain elements y1, ..., yk ∈ DSn and x1, ..., xk ∈ Sn
with xi = xi+1 + yi+1 and xk ∈ NSn. This shows that x = xk + Σk

i=1yi ∈ NSn +DSn.

3. Due to naturality, the components of a simplicial morphism α : S ⇒ S ′ satisfy

d′in ◦ αn = αn−1 ◦ din ⇒ αn(ker(din)) ⊂ kerd′in ⇒ αn(NSn) ⊂ NS ′n

αn ◦ sin−1 = s′in−1 ◦ αn−1 ⇒ αn(im(sin−1)) ⊂ im(s′in−1) ⇒ αn(DSn) ⊂ DS ′n.

This shows that every simplicial morphism α : S ⇒ S ′ induces chain maps Nα• : NS• → NS ′•
and Dα• : DS• → DS ′•. The functoriality follows directly from Proposition 5.5.5.

4. The proof that Hn(DS•) = 0 and, consequently, Hn(S•) = Hn(NS•) for n ∈ N0 requires
more techniques from homological algebra. We refer to [GJ, Chapter III.2, Theorem 2.4] for an
elegant and to [Me, Proposition 5.2.1] for a more pedestrian proof. 2

Proposition 5.5.5 tells us that every simplicial object in R-Mod defines a positive chain com-
plex, and Proposition 5.5.8 allows us to decompose this chain complex into a degenerate chain
complex with trivial homologies and a normalised chain complex.

This raises the question, which positive chain complexes in a category R-Mod can be obtained
as normalised chain complexes of a simplicial object, up to isomorphism. A fundamental and
surprising result by Dold and Kan states that these are all positive chain complexes in R-Mod.

Theorem: (Dold-Kan correspondence)
The functor N : R-Mod∆op → ChR-Mod≥0 is an equivalence of categories.

In fact, this theorem is valid in more generality, namely in all categories, where one can define
chain complexes - abelian categories. It explains the emphasis we placed on simplicial objects.
Instead of the category of positive chain complexes and chain maps in an abelian category A
we can consider the category of simplicial objects and morphisms in A.

We prove it for the category R-Mod by constructing a functor F : ChR-Mod≥0 → R-Mod∆op

with FN ∼= id and NF ∼= id. It needs to assign a simplicial object S : ∆op → R-Mod to any
positive chain complex C• in R-Mod. It is reasonable to take as its modules the component
modules of the chain complex: Sn = S([n+ 1]) = Cn for all n ∈ N0.

The difficulty is to define the face maps and degeneracies. The boundary operators of C•
dn : Cn → Cn−1 provide just one morphism in each degree, which lowers the degree and hence
must be related to face maps. However, there are no apparent morphisms that raise the degree
and could be related to degeneracies.

To solve this problem, we employ a similar strategy as for the truncation and skeleta of simplicial
sets in Definition 5.3.5. We consider the subcategory ∆inj ⊂ ∆ of the simplex category that
contains only injective monotonic maps, composites of the face morphisms and then extend
functors S : ∆op

inj → E along the inclusion functor ι : ∆op
inj → ∆op to functors LanιS : ∆op → E .
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Definition 5.5.9: Let ∆inj ⊂ ∆ the subcategory of ∆ with the same objects but only
injective monotonic maps as morphisms and ι : ∆op

inj → ∆ the inclusion functor.

A functor S : ∆op
inj → E is called a semisimplicial object and a natural transformation

α : S ⇒ S ′ between semisimplicial objects a semisimplicial morphism in E .

Given a semisimplicial object S : ∆op
inj → R-Mod we can apply Corollary 3.2.6 to extend it

along the inclusion ι : ∆op
inj → ∆op to a simplicial object LanιS : ∆op → R-Mod. To work with

these Kan extensions, we need a more explicit description, which is obtained from the formula
in Proposition 4.2.6. To keep notation simple, we write σ : [p + 1] � [m + 1] for a monotonic
surjection and δ : [n+ 1] ↪→ [m+ 1] for a monotonic injection in the category ∆.

Lemma 5.5.10:

1. The left Kan extensions of semisimplicial objects S : ∆op
inj → R-Mod along ι : ∆op

inj → ∆op

define a left adjoint K = Lanι : R-Mod∆op
inj → R-Mod∆op

to ι∗ : R-Mod∆op → R-Mod∆op
inj .

∆op
inj

S //

ι
""
⇓η

R-Mod

∆op

LanιS

::

2. The functor K = Lanι : R-Mod∆op
inj → R-Mod∆op

assigns to

• S : ∆op
inj → R-Mod the simplicial object KS : ∆op → R-Mod with

– KSp = qσ:[p+1]�[m+1]Sm, where the coproduct runs over all monotonic surjec-
tions σ with source [p+ 1] and any target [m+ 1] := t(σ),

– KS(γ) : KSp → KSq for γ : [q + 1]→ [p+ 1] is the unique morphism for which
the following diagram commutes,

KSp
KS(γ)// KSq

Sm

ισ

OO

S(δγ)
// Sn

ισγ

OO

δγ : [n+ 1] ↪→ [m+ 1],
σγ : [q + 1]� [n+ 1],

with σ ◦ γ = δγ ◦ σγ.

• a semisimplicial morphism α : S ⇒ S ′ the simplicial morphism Kα : KS ⇒ KS ′

with components satisfying Kαp ◦ ισ = ισ ◦ αm for all σ : [p+ 1]� [m+ 1].

3. Every element in the image of an inclusion ισ : Sm → KSp with m < p is degenerate.

Proof:
1. As R-Mod is cocomplete and ∆ small, the first claim follows directly from Corollary 3.2.6.

2. To derive the concrete formulas for K we use the coend formulas (19) and Proposition 4.2.6.
To determine KS on an ordinal [p+ 1] we need to compute the coend of the functor

Hom∆([p+ 1],−) t S(−) : ∆×∆op → R-Mod.

The coend formula (19) yields

KSp =
(
qα:[p+1]→[m+1]Sm

)
/ ∼ (28)

with ιδ◦α(s) ∼ ια ◦ S(δ)(s) for δ : [m+ 1] ↪→ [n+ 1], α : [p+ 1]→ [m+ 1], s ∈ Sn,
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where the coproduct runs over all morphisms α in ∆ with fixed source s(α) = [p+ 1] and any
target [m+1] := t(α). The morphism KS(γ) : KSp → KSq for a morphism γ : [q+1]→ [p+1]
in ∆ is given by KS(γ) ◦ ια = ια◦γ.

By Proposition 5.2.2 each α : [p+ 1]→ [m+ 1] can be factorised uniquely as α = δα ◦ σα with
an injection δα : [n+ 1] ↪→ [m+ 1] and a surjection σα : [p+ 1]� [n+ 1]. With (28) this yields

KSp = qσ:[p+1]�[n+1]Sn,

where the coproduct runs over all monotonic surjections with source [p + 1] and any target
[n + 1] := t(σ). For any γ : [q + 1] → [p + 1] and surjection σ : [p + 1] � [m + 1] there is a
unique injection δγ : [n+ 1] ↪→ [m+ 1] and surjection σγ : [q+ 1]� [n+ 1] with δγ ◦σγ = σ ◦ γ.
This yields KS(γ) ◦ ισ = ισγ ◦ S(δγ).

By the proof of Theorem 3.2.5 each semisimplicial morphism α : S ⇒ S ′ induces a simplicial
morphism Kα : KS ⇒ KS ′ with components Kαp : KSp → KS ′p satisfying Kαp ◦ ισ = ισ ◦αm
for all σ : [p+ 1]� [m+ 1].

3. For any monotonic surjection σ : [p+ 1]� [m+ 1] the commuting diagram for KS(σ) yields

KSm
KS(σ) // KSp

Sm

ι1[m+1]

OO

idSm

// Sm

ισ

OO

This shows that the image of ισ is contained in the image of KS(σ) and hence degenerate if
σ 6= 1[p+1] or, equivalently, m < p. 2

We now apply this extension procedure to construct an equivalence of categories with the
functor N : R-Mod∆op → ChR-Mod≥0 from Proposition 5.5.8. We proceed as follows:

1. As the definition of N involves only face morphisms, we can define it analogously for
semisimplicial objects. This yields a functor N ′ : R-Mod∆op

inj → ChR-Mod≥0 with N ′ι∗ ∼= N .

2. We construct a left adjoint G : ChR-Mod≥0 → R-Mod∆op
inj to N ′ with GN ′ ∼= id.

3. We compose G with the functor K from Lemma 5.5.10 and show that the resulting
functor KG : ChR-Mod≥0 → R-Mod∆op

is left adjoint to N : R-Mod∆op → ChR-Mod≥0.

4. To prove Dold-Kan correspondence, we show that KG and N form an adjoint equivalence.

For step 1, we simplify notation by working with a different sign convention. We set dn = S(δnn)
instead of dn = (−1)nS(δnn) as in Proposition 5.5.8. This has no consequences, as we will see in
the following that the resulting functors are naturally isomorphic.

Definition 5.5.11: Let N ′ : R-Mod∆op
inj → ChR-Mod≥0 be the functor that assigns to

• a semisimplicial object S : ∆op
inj → R-Mod the chain complex N ′S• with modules

N ′Sn = ∩n−1
i=0 kerS(δin) and boundary operator dn = S(δnn) : N ′Sn → N ′Sn−1,

• a semisimplicial morphism α : S ⇒ T the chain map α• : N ′S• → N ′T• with components
αn = α[n+1] : N ′Sn → N ′Tn.

We now implement step 2 and construct a functor G : ChR-Mod≥0 → R-Mod∆op
inj that is left

adjoint toN withN ′G ∼= id. It must associate to each positive chain complex C• a semisimplicial
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object GC : ∆op
inj → Set. The simplest choice is to set GCn = Cn. On the morphisms, the

condition N ′G ∼= id suggests GC(δnn) = dn : Cn → Cn−1 and GC(δin) = 0 for all i 6= n.

Lemma 5.5.12:
The functor N ′ : R-Mod∆op

inj → ChR-Mod≥0 has a left adjoint G : ChR-Mod≥0 → R-Mod∆op
inj that

• assigns to a chain complex C• the semisimplicial object GC : ∆op
inj → R-Mod with

GCn = Cn, GC(δin) = 0 : Cn → Cn−1 for i < n and GC(δnn) = dn : Cn → Cn−1,

• to a chain map f• : C• → C ′• the semisimplicial morphism Gf : GC ⇒ GC ′ with
components Gfn = fn : Cn → C ′n.

The adjunction satisfies N ′G ∼= id and N ′ι∗ ∼= N , where ι∗ : R-Mod∆op → R-Mod∆op
inj is the

restriction functor for the inclusion ι : ∆op
inj → ∆op.

Proof:
The adjunction is given by the bijections

ΦC•,S :Hom
R-Mod

∆
op
inj

(G(C•), S) → HomChR-Mod≥0
(C•, N

′S•)

α : G(C•)⇒ S 7→ α• : C• → N ′S•, αn = α[n+1] : Cn → N ′Sn.

That this yields a chain map α• : C• → N ′S• for every semisimplicial morphism α : G(C•)⇒ S
follows from the naturality of α and the definition of G, which imply for i 6= n

S(δin) ◦ αn = αn−1 ◦GC(δin) = αn−1 ◦ 0 = 0 S(δnn) ◦ αn = αn−1 ◦GC(δnn) = αn−1 ◦ dn.

The same identities ensure that ΦC•,S is invertible and that its inverse associates to each chain
map α• : C• → N ′S• a semisimplicial morphism α : G(C•)⇒ S. The naturality of φC•,S in C•
and S is also evident from the definitions, and the same holds for the identity N ′G ∼= id. A
natural isomorphism τ : N ⇒ N ′ι∗ has as components for a simplicial object S : ∆op → R-Mod

(τS)2k+1 = (−1)k+1idNS2k+1
, (τS)2k = (−1)kidNS2k

k ∈ N0. 2

We can now implement steps 3 and 4. We apply Lemma 5.5.10 to extend the semisimplicial
objects from Lemma 5.5.12 to simplicial objects. This amounts to composing the functor G
from Lemma 5.5.12 with the functor K from Lemma 5.5.10.

Theorem 5.5.13: (Dold-Kan correspondence)
The functor N : R-Mod∆op → ChR-Mod≥0 is an equivalence of categories.

Proof:
1. We show that KG : ChR-Mod≥0 → R-Mod∆op

is left adjoint to N with NKG ∼= id:

From Lemmas 5.5.12 and 5.5.10 we have a chain of natural isomorphisms

HomR-Mod∆op (KG(C•), S) ∼= Hom
R-Mod

∆
op
inj

(G(C•), ι
∗(S))

∼= HomChR-Mod≥0
(C•, N

′ι∗(S))

∼= HomChR-Mod≥0
(C•, N(S)) = HomChR-Mod≥0

(C•, NS•)

where we used first that K is left adjoint to ι∗ by Lemma 5.5.10, then that G is left adjoint
to N ′ by Lemma 5.5.12 and in the last step that N ∼= N ′ι∗ by Lemma 5.5.12. This shows that
KG is left adjoint to N .
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2. We show that NKG = id:

By Lemma 5.5.10, 3. any element in the image of an inclusion ισ : G(C•)m → KG(C•)p for
a monotonic surjection σ : [p + 1] � [m + 1] with m < p and a positive chain complex C• is
degenerate. This implies qσ:[p+1]�[m+1],m<pCm ⊂ DKG(C•). With the identity G(δip) = 0 for
i < p one obtains that NKG(C•)p = NG(C•)p = Cp. The commuting diagram in Lemma 5.5.10
for σ = 1[p+1] and γ = δpp then implies NKG(C•) = C•. With the expression for KG(f•) for
chain maps f• : C• → C ′• in Lemma 5.5.10 it follows that NKG = id.

3. It remains to show that KGN ∼= id or, equivalently, KGN ′ι∗ ∼= id:

3.(a) Note that the adjunctions from Lemmas 5.5.10 and 5.5.12 yield natural transformations
ε : GN ′ ⇒ id and ε′ : Kι∗ ⇒ id and hence a natural transformation η = ε′◦Kει∗ : KGN ′ι∗ ⇒ id.
By Lemmas 5.5.10 and 5.5.12 its component morphisms ηS : KGN ′ι∗(S)⇒ S are given by

ηS[p+1] ◦ ισ = S(σ) ◦ im (29)

for all σ : [p+ 1]� [m+ 1] and simplicial objects S : ∆op → R-Mod, where im : NSm → Sm is
the inclusion and ισ : NSm → qσ:[p+1]�[m+1]NSm the inclusion for the coproduct.

3.(b) We show that all component morphisms ηS[p+1] are injective:

For each σ : [p + 1] � [m + 1] we can use the relations (21) in ∆ to construct an injective
monotonic map δ : [m+ 1] ↪→ [p+ 1] with σ ◦ δ = 1[m+1]. With (29) this yields

S(δ) ◦ ηS[p+1] ◦ ισ
(29)
= S(δ) ◦ S(σ) ◦ im = S(σ ◦ δ) ◦ im = S(1[m+1]) ◦ im = im.

As im is injective, ηS[p+1] ◦ ισ is injective and ηS[p+1] is injective as well.

3.(c) We show by induction over p that all morphisms ηS[p+1] are surjective:

p = 0: In this case m = 0, i0 = id : NS0 → S0 and σ = 1[1] : [1] → [1] is the only surjective
morphism indexing the coproduct qσ:[p+1]�[m+1]NSm. This yields ηS[1] = idS0 : S0 → S0.

p − 1 ⇒ p: Suppose we showed that ηS[k+1] is an isomorphism for all k ≤ p − 1. With the

naturality of ηS and the induction hypothesis we then obtain

sjp−1 = S(σjp) = ηS[p+1] ◦KGNι∗(σjp) ◦ (ηS[p])
−1 ⇒ im(sjp−1) ⊂ im(ηS[p+1]) ∀j ∈ {0, ..., p− 1},

and choosing σ = 1[p+1] in (29) yields

ηS[p+1] ◦ ι1[p+1]
= ip ⇒ NSp ⊂ im(ηS[p+1]).

As Sp = NSp ⊕DSp with DSp = +m−1
j=0 im(sjm−1) by Proposition 5.5.8, ηS[p+1] is surjective. 2

The proof of Theorem 5.5.13 not only shows that simplicial objects capture the essential in-
formation of chain complexes, but also that Kan extensions are a useful and essential concept.
Without the concept of a Kan extension, it would be almost impossible to find and motivate the
left adjoint functor K from Theorem 5.5.13. If one is familiar with Kan extensions and previous
examples, then the idea is rather simple. The concrete formula for this functor is derived by
routine computations, namely the ones with the Kan extension formula in Lemma 5.5.10.

105



References:

• Simplicial objects:

– Chapter I.1.1 in Goerss, P. G., & Jardine, J. F. (2009) Simplicial homotopy theory,

– Chapter VII.5 in Mac Lane, S.(2013) Categories for the working mathematician,

– Chapter 10.1 and 10.2 in Richter, B. (2020) From categories to homotopy theory.

– Chapters 8.1, 8.2 in Weibel, C.(1994). An introduction to homological algebra.

• Geometric realisation:

– G. Friedman, An elementary illustrated introduction to simplicial sets,

– Chapter I.1.2 in Goerss, P. G., & Jardine, J. F. (2009) Simplicial homotopy theory,

– Chapters 10.6, 10.7, 10.9 in Richter, B. (2020) From categories to homotopy theory.

– Chapters 8.1, 8.2 in Weibel, C. (1994). An introduction to homological algebra.

• Nerves, homotopy category and classifying spaces:

– Chapter 3 in Loregian, F. (2015) Coend calculus, arXiv preprint arXiv:1501.02503,

– Chapter XII.2 in Mac Lane, S.(2013) Categories for the working mathematician,

– Part 1, Chapter 1.2, in Lurie, J. Kerodon, https://kerodon.net/,

– Chapters 11.1 and 11.2 in Richter, B. (2020) From categories to homotopy theory,

– Moerdijk, I. (2006) Classifying spaces and classifying topoi. Springer.

• Chain complexes and homologies:

– Chapter III.2 in Goerss, P. G., & Jardine, J. F. (2009) Simplicial homotopy theory,

– Chapter 10.11 in Richter, B. (2020) From categories to homotopy theory,

– Chapters 1.1, 8.1, 8.2, 8.4, Weibel, C. (1994). An introduction to homological algebra.

106

https://kerodon.net/


6 Homotopies

6.1 Homotopies in Top

In this section we recall some background on homotopies and homotopy groups of topological
spaces. A homotopy between continuous maps f, f ′ : X → Y with the same source and target
can be viewed as a continuous deformation from f into f ′. Thus, one considers a parameter
t ∈ [0, 1] and a family of continuous maps ht : X → Y that depend continuously on t, such
that h0 = f and h1 = f ′. This is equivalent to the following definition.

Definition 6.1.1: Let X and Y be topological spaces and f, f ′ : X → Y continuous maps.

1. A homotopy from f to f ′ is a continuous map h : [0, 1] ×X → Y with h(0, x) = f(x)
and h(1, x) = f ′(x) for all x ∈ X.

X

f
$$

ι0 // [0, 1]×X
h
��

X
ι1oo

f ′
zz

Y

ιi : X → [0, 1]×X, x 7→ (i, x).

If there is a homotopy from f to f ′ one calls f and f ′ homotopic and writes f ∼ f ′.

2. The spaces X and Y are called homotopy equivalent or of the same homotopy type,
if there are continuous maps f : X → Y and g : Y → X with g ◦f ∼ idX and f ◦g ∼ idY .
Then f and g are called a homotopy equivalence, and one writes X ' Y .

3. If X is homotopy equivalent to a one-point space, it is called contractible.

Remark 6.1.2:

1. For all topological spaces X, Y being homotopic is an equivalence relation on
HomTop(X, Y ):

• For any continuous map f : X → Y a homotopy from f to f is given by

hf : [0, 1]×X → Y, (t, x) 7→ f(x).

• If h : [0, 1]×X → Y is a homotopy from f to f ′, then a homotopy from f ′ to f is

h̄ : [0, 1]×X → Y, (t, x) 7→ h(1− t, x).

• If h : [0, 1] ×X → Y is a homotopy from f to f ′ and h′ : [0, 1] ×X → Y a homotopy
from f ′ to f ′′, then a homotopy h′′ : [0, 1]×X → Y from f to f ′′ is given by

h′′(t, x) =

{
h(2t, x) t ∈ [0, 1

2
]

h′(2t− 1, x) t ∈ [1
2
, 1].

2. Being homotopic is compatible with the composition of morphisms:

If h : [0, 1]×X → Y is a homotopy from f to f ′ and k : [0, 1]× Y → Z a homotopy from
g to g′ then a homotopy from g ◦ f to g′ ◦ f ′ is given by

l : [0, 1]×X → Z, (t, x) 7→ k(t, h(t, x)).
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3. This defines a category K(Top), the homotopy category of topological spaces with

• topological spaces as objects,
• homotopy classes of continuous maps as morphisms.

Isomorphisms in K(Top) are homotopy classes of homotopy equivalences.

In many settings the category K(Top) is preferable to Top. If one works in the category Top,
one considers and classifies topological spaces up to homeomorphisms, the isomorphisms in
Top. This is very difficult, even with simplifying assumptions. It turns out that classifying
topological spaces in K(Top), up to homotopy equivalences rather than homeomorphisms, is
more intuitive, easier in practice and often more suitable, as many quantities that characterise
topological spaces depend only on their homotopy type.

Many homotopy equivalences can be easily visualised and correspond more directly to intuitive
ideas of shapes. For instance, the following spaces are all homotopy equivalent, but none of
them is homeomorphic to any of the others

• the n-sphere Sn = {x ∈ Rn+1 | ||x|| = 1},
• an open n-sphere of finite thickness OSn = {x ∈ Rn+1 | 1

2
< ||x|| < 3

2
},

• a closed n-sphere of finite thickness CSn = {x ∈ Rn | 1
2
≤ ||x|| ≤ 3

2
},

• the open n-sphere of infinite thickness Rn+1 \ {0}.

It is intuitive that these spaces roughly have the same shape, although some of their topological
properties such as openness, closedness, compactness are different. Homotopy equivalences and
homotopies can often be visualised as stretching, melting or denting spaces or blowing them up
to infinite thickness. They are not sensitive to openness, closedness and compactness and give
rise to a coarser classification than homeomorphisms. Examples are the following.

Example 6.1.3:

1. Homeomorphic topological spaces are homotopy equivalent.

2. Two maps f, f ′ : {•} → X from the one-point space into a topological space X are
homotopic if and only if there is a continuous map h : [0, 1] → X with h(0) = f(•) and
h(1) = f ′(•), a path in X from f(•) to f ′(•).
Thus, the homotopy class of a map f : {•} → X can be identified with the set of points
x′ ∈ X for which there is a path from f(•) to x′, the path component π(f(•)). The set
of homotopy classes of maps from {•} to X is the set of path components of X

π0(X) = {π(x) | x ∈ X}.

3. The spaces Rn \ {0} and Sn−1 are homotopy equivalent, but not homeomorphic.

The maps f : Rn \ {0} → Sn−1, x 7→ x/||x|| and g : Sn−1 → Rn \ {0}, x 7→ x form a
homotopy equivalence, as f ◦ g = idSn−1 and a homotopy from idRn\{0} to g ◦f is given by

h : [0, 1]× Rn \ {0} → Rn \ {0}, (t, x) 7→ tx/||x||+ (1− t)x.

4. Any topological space X is homotopy equivalent to the cylinder C = X × [0, 1].

The maps f : C → X, (x, z) 7→ x and g : X → C, x 7→ (x, 0) form a homotopy
equivalence, since f ◦ g = idX and a homotopy from g ◦ f to idC is given by

h : [0, 1]× C → C, (t, x, z) 7→ (x, tz).
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5. Any convex subspace X ⊂ Rn is contractible.

For any point p ∈ X the maps f : X → {p}, x 7→ p and g : {p} → X, p 7→ p form a
homotopy equivalence, since f ◦ g = id{p} and a homotopy from idX to g ◦ f is given by

h : [0, 1]×X → X, x 7→ (1− t)x+ tp.

In homotopy theory and, more generally, algebraic topology, one characterises topological spaces
by algebraic quantities such as groups, abelian groups or modules. An important example of
such quantities are the homotopy groups of a topological space. They probe a topological space
X with continuous maps f : Sn → X that send a reference point p ∈ Sn to a fixed point
x ∈ X. As it is simpler in practice, one works instead with continuous maps from a unit cube
C = [0, 1]×n ⊂ Rn into X that send the boundary ∂C to x ∈ X. Such maps are considered up
to homotopies that preserve the point x.

Definition 6.1.4:
Let f, g : X → Y be continuous maps and A ⊂ X a subspace with f(a) = g(a) for all a ∈ A.

A homotopy from f to g relative to A is a homotopy h : [0, 1] ×X → Y from f to g with
h(t, a) = f(a) = g(a) for all t ∈ [0, 1] and a ∈ A. If there is such a homotopy, one writes f ∼A g
and calls f and g homotopic relative to A.

Clearly, a homotopy in the sense of Definition 6.1.1 is just a homotopy relative to ∅ ⊂ X. The
idea is now to consider continuous maps f : C → X with f(∂C) = {x}, up to homotopies
relative to ∂C. One then defines a concatenation of such maps that induces a group structure
on their relative homotopy classes.

The simplest case is the one one where n = 1 and the unit cube is the unit interval C = [0, 1].
In this case continuous maps f : C → X with f(∂C) = {x} are paths that start and end at
x. Given two paths γ : [0, 1] → X and δ : [0, 1] → X with γ({0, 1}) = δ({0, 1}) = {x}, one
has an obvious way to compose them, namely to first traverse the path γ and then δ, each at
twice the usual speed. There is also a candidate for a neutral element, namely the constant
path x : [0, 1] → X, t 7→ x and for an inverse, namely the path γ̄ : [0, 1] → X, t 7→ γ(1 − t)
which goes backwards. For higher n, there is no such obvious composition or inverse. However,
it turns out we can use the same definitions and just apply them to one of the coordinates.

Theorem 6.1.5: Let X be a topological space, x ∈ X and n ∈ N.

1. Homotopy classes of continuous maps f : [0, 1]×n → X with f(∂[0, 1]×n) = {x} relative
to ∂[0, 1]×n form a group πn(x,X) with the multiplication

[g] ◦ [f ] = [g ? f ] (g ? f)(t1, ..., tn) =

{
f(2t1, t2, ..., tn) t1 ∈ [0, 1

2
]

g(2t1 − 1, t2, . . . , tn) t1 ∈ [1
2
, 1],

(30)

the nth homotopy group at x or, for n = 1, the fundamental group of X at x.

2. For n > 1 the homotopy group πn(x,X) is abelian.

Proof:
To simplify notation we write C := [0, 1]×n for the unit cube.
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1. We show that the group multiplication is well-defined: If h1 : [0, 1]× C → X is a homotopy
from f to f ′ relative to ∂C and h2 : [0, 1] × C → X a homotopy from g to g′ relative to ∂C,
then the continuous map

k : [0, 1]× C → X, (s, t1, ..., tn) 7→

{
h1(s, 2t1, ..., tn) t1 ∈ [0, 1

2
]

h2(s, 2t1 − 1, ..., tn) t1 ∈ [1
2
, 1]

satisfies k(0, t) = (g ? f)(t), k(1, t) = (g′ ? f ′)(t) for all t ∈ C and k(s, t) = x for all t ∈ ∂C and
hence is a homotopy relative to ∂C from g ? f to g′ ? f ′.

2. We show that the group multiplication is associative: Let e, f, g : C → X be continuous with
e(∂C) = f(∂C) = g(∂C) = {x}. Then we have

(g ? (f ? e))(t1, ..., tn) =


e(4t1, t2, ..., tn) t1 ∈ [0, 1

4
]

f(4t1 − 1, t2, ..., tn) t1 ∈ [1
4
, 1

2
]

g(2t1 − 1, t2, ..., tn) t1 ∈ [1
2
, 1]

((g ? f) ? e)(t1, ..., tn) =


e(2t1, t2, ..., tn) t1 ∈ [0, 1

2
]

f(4t1 − 2, t2, ..., tn) t1 ∈ [1
2
, 3

4
]

g(4t1 − 3, t2, ..., tn) t1 ∈ [3
4
, 1]

and the following map is a homotopy from g ? (f ? e) to (g ? f) ? e relative to ∂C

h : [0, 1]× C → X, (s, t1, ..., tn) 7→


e( 4t1

1+s
, t2, ..., tn) t1 ∈ [0, 1

4
(1 + s)]

f(4t1 − 1− s, t2, ..., tn) t1 ∈ [1
4
(1 + s), 1

4
(2 + s)]

g(4t1−2−s
2−s , t2, ..., tn) t1 ∈ [1

4
(2 + s), 1].

3. Denote by x : C → X, t 7→ x the constant map to x. We show that the homotopy class of
x is the neutral element in πn(x,X). This follows, because for any continuous map f : C → X
with f(∂C) = {x} the following are homotopies from f ? x and from x ? f to f relative to ∂C

h1 : [0, 1]× C → X, (s, t1, ..., tn) 7→

{
x t1 ∈ [0, 1

2
(1− s)]

f(2t1−1+s
1+s

, t2, ..., tn) t1 ∈ [1
2
(1− s), 1]

h2 : [0, 1]× C → X, (s, t1, ..., tn) 7→

{
f( 2t1

1+s
, t2, ..., tn) t1 ∈ [0, 1

2
(1 + s)]

x t1 ∈ [1
2
(1 + s), 1].

4. We show that for any continuous map f : C → X with f(∂C) = {x} the homotopy class of
f̄ : C → X, (t1, ..., tn) 7→ f(1− t1, ..., tn) is the inverse of the homotopy class of f . For this it,
is sufficient to note that the following map is a homotopy from f̄ ? f to x relative to ∂C

h : [0, 1]× C → X, (s, t1, ..., tn) 7→


f( 2t1

1−s , t2, ..., tn) t1 ∈ [0, 1
2
(1− s)]

f̄(2t1−1+s
1−s , t2, ..., tn) t1 ∈ [1

2
(1− s), 1− s]

x t1 ∈ [1− s, 1].

5. We show that πn(x,X) is abelian for n ≥ 2 by using an Eckmann-Hilton argument:

If ◦, • : A × A → A are two binary operations on a set A with units 1◦ and 1• that satisfy
(a ◦ b) • (c ◦ d) = (a • c) ◦ (b • d) for all a, b, c, d ∈ A, then ◦ = • is commutative and associative.
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One has 1◦ = 1◦ ◦ 1◦ = (1◦ • 1•) ◦ (1• • 1◦) = (1◦ ◦ 1•) • (1• ◦ 1◦) = 1• • 1• = 1• =: 1,
and hence a ◦ b = (a • 1) ◦ (1 • b) = (a ◦ 1) • (1 ◦ b) = a • b for all a, b ∈ A. This implies
commutativity a ◦ b = (1 ◦ a) ◦ (b ◦ 1) = (1 ◦ b) ◦ (a ◦ 1) = b ◦ a for all a, b ∈ A and associativity
(a ◦ b) ◦ c = (a ◦ b) ◦ (1 ◦ c) = (a ◦ 1) ◦ (b ◦ c) = a ◦ (b ◦ c) for all a, b, c ∈ A.

We apply the Eckmann-Hilton argument to the group multiplication ◦ of πn(x,X) and

[g] • [f ] = [g ?2 f ] (g ?2 f)(t1, ..., tn) =

{
f(t1, 2t2, t3, ..., tn) t2 ∈ [0, 1

2
]

g(t1, 2t2 − 1, t3, . . . , tn) t2 ∈ [1
2
, 1],

whose unitality follows as in 3. Then the condition in the Eckmann-Hilton argument is satisfied
for all maps e, f, g, h : C → X that send ∂C to x, as we have

(e ? f) ?2 (g ? h) = (e ?2 g) ? (f ?2 h) =


h(2t1, 2t2, t3, ..., tn) t1, t2 ∈ [0, 1

2
]

g(2t1 − 1, 2t2, t3, ..., tn) t1 ∈ [1
2
, 1], t2 ∈ [0, 1

2
]

f(2t1, 2t2 − 1, t3, ..., tn) t1 ∈ [0, 1
2
], t2 ∈ [1

2
, 1]

e(2t1 − 1, 2t2 − 1, t3, ..., tn) t1, t2 ∈ [1
2
, 1].

2

Remark 6.1.6:

1. For n = 0 one defines π0(X) as the set of path-components of X, cf. Example 6.1.3, 1.
In this case, there is no group structure.

2. The quotient space [0, 1]×n/∂[0, 1]×n is homeomorphic to Sn. Thus, one can identify con-
tinuous maps f : [0, 1]×n → X that satisfy f(∂[0, 1]×n) = {x} with continuous maps
f : Sn → X that send a point p ∈ Sn to f(p) = x.

Note that group structure of the homotopy groups in Theorem 6.1.5 requires that one works with
homotopy classes of maps. The concatenation ? of maps defined in (30) is neither associative
nor unital, only associative and unital up to reparametrisations. The homotopy classes are also
required to ensure that the group multiplication does not depend on the specific choice of the
coordinate that is concatenated in (30).

We now consider how the homotopy groups of a topological space X depend on the choice of the
basepoint. The idea is to transport continuous maps f : [0, 1]×n → X with f(∂[0, 1]×n) = {x}
along paths in X to relate them to such maps for other basepoints x′ ∈ X. If n = 1, this is
simple and intuitive. One chooses a path γ from x to x′, concatenates it with a path from x to
x and then again with the path γ, traversed in the other direction.

For n > 1 the idea is similar, but the concatenation of paths and maps f : [0, 1]×n → X with
f(∂[0, 1]×n) = {x} and the associated homotopies become more complicated. In all cases, one
finds that this transport along paths induces group homomorphisms between the homotopy
groups that depend only on their homotopy classes.

Proposition 6.1.7: Let X be a topological space.

1. Every path γ in X from x to x′ induces group isomorphisms

γ∗ : πn(x′, X)→ πn(x,X), [f ] 7→ γ∗[f ].

2. The group isomorphisms γ∗ depend only on the homotopy class of γ relative to {0, 1} and
define a right action � : πn(x,X)× π1(x,X)→ πn(x,X) with [f ] � [γ] = γ∗[f ].
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Proof:
We denote by Cr(p) = {x ∈ Rn | ||x− p||∞ ≤ r} the cube of side length 2r around p ∈ Rn and
set C := [0, 1]n = C1/2(p) with p := (1

2
, ..., 1

2
) ∈ Rn. We parametrise points in C as p+ sy with

s ∈ [0, 1] and p+ y ∈ ∂C.

Let f : C → X be a continuous map with f(∂C) = {x′} and γ : [0, 1] → X a path with
γ(0) = x and γ(1) = x′. We define a continuous map γf : C → X with γf(∂C) = {x} by

γf(p+ sy) =

{
γ(2s) s ∈ [0, 1

2
]

f(q + (2− 2s)y) s ∈ [1
2
, 1].

By defining suitable homotopies analogous to the ones in the proof of Theorem 6.1.5 (Exercise)
one can show that for all continuous maps e, f, g : C → X with e(∂C) = f(∂C) = {x′},
g(∂C) = {x′′}, paths γ from x to x′ and δ from x′ to x′′ one has

γ(e ? f) ∼ γe ? γf x′ ? f ∼ f γ(δg) ∼ (δ ? γ)g.

If h : [0, 1]×C → X is a homotopy from e to f relative to ∂C and hs = h(s,−) : C → X, then
the continuous map h′ : [0, 1]× C → C, (s, t) 7→ (γhs)(t) is a homotopy from γe to γf relative
to ∂C. This shows that every path γ from x to x′ defines a group homomorphism

γ∗ : πn(x′, X)→ πn(x,X), [f ] 7→ [γf ]

with x∗ = idπn(x,X) and (δ ? γ)∗ = γ∗ ◦ δ∗. To prove the second claim, it remains to show that
these group homomorphism depend only on the homotopy class of the path and are invertible.

If β, γ are paths from x to x′ and h : [0, 1]×[0, 1]→ X a homotopy from β to γ relative to {0, 1},
then for any continuous f : C → X with f(∂C) = {x′} the map h′ : [0, 1]×C → X, (s, t) 7→ hsf
is a homotopy from βf to γf relative to ∂C. This implies β∗[f ] = [βf ] = [γf ] = γ∗[f ] for all
continuous maps f : C → X with f(∂C) = {x′} and hence β∗ = γ∗.

As one has γ̄ ? γ ∼ x and γ ? γ̄ ∼ x′ for all paths γ from x to x′, the group homomorphisms
γ∗ : πn(x′, X)→ πn(x,X) and γ̄∗ : πn(x,X)→ πn(x′, X) satisfy the identities γ∗◦̄γ∗ = idπn(x,X)

and γ̄∗ ◦ γ∗ = idπn(x′,X) and hence are mutually inverse isomorphisms. 2

For a path-connected topological space X, Proposition 6.1.7 implies πn(x,X) ∼= πn(x′, X) for all
n ∈ N and x, x′ ∈ X. In this case, one often writes πn(X) instead of πn(x,X) and suppresses the
basepoint. However, if one wants to view homotopy groups as functors, one needs to be careful
about the basepoints. In this case, one works with the category Top∗ of pointed topological
spaces, whose objects are pairs (x,X) of a topological space X and a point x ∈ X and whose
morphisms from (x,X) to (y, Y ) are continuous maps f : X → Y with f(x) = y.

Being homotopic relative to {x} then defines an equivalence relation on the set of morphisms
from (x,X) to (y, Y ) that is compatible with composition: If h : [0, 1]×X → Y is a homotopy
from f to f ′ relative to {x} and k : [0, 1]× Y → Z a homotopy from g to g′ relative to {f(x)},
then l : [0, 1]×X → Y , (s, x) 7→ k(s, h(s, x)) is a homotopy from g ◦ f to g′ ◦ f ′ relative to {x}.

Thus, one obtains a homotopy category K(Top∗) of pointed topological spaces, whose objects
are pointed topological spaces and whose morphisms from (x,X) to (y, Y ) homotopy classes
relative to {x} of continuous maps f : X → Y with f(x) = y.
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With these considerations, we can view the nth homotopy groups as a functor from the category
Top∗ to Grp, or, if we restrict attention to n > 1, to the category Ab of abelian groups. The
fact that post-composition of a homotopy relative to {x} with a continuous map yields again
a homotopy relative to {x} implies that πn descends to the homotopy category K(Top∗).

Theorem 6.1.8:

1. The nth homotopy groups define functors πn : Top∗ → Grp that assign

• to a pointed topological space (x,X) the nth homotopy group πn(x,X),
• to a continuous map f : (x,X)→ (f(x), Y ) the group homomorphism

πn(f) : πn(x,X)→ πn(f(x), Y ), [g] 7→ [f ◦ g]

2. If f, f ′ : X → Y are homotopic relative to {x}, then

πn(f) = πn(f ′) : πn(x,X)→ πn(f(x), X).

3. The nth homotopy groups induce functors πn : K(Top∗) → Grp. In particular, path-
connected spaces of the same homotopy type have isomorphic homotopy groups.

Proof:
1. Let C = [0, 1]×n. If f : X → Y is continuous and g : C → X continuous with g(∂C) = {x},
then f ◦g : C → Y is continuous with f ◦g(∂C) = {f(x)}. For any homotopy h : [0, 1]×C → X
from g to g′ relative to ∂C, the map f ◦ h : [0, 1]× C → Y is a homotopy from f ◦ g to f ◦ g′
relative to ∂C. Thus, f induces a map πn(f) : πn(x,X)→ πn(f(x), Y ), [g] 7→ [f ◦ g]

As f ◦ (g ? g′) = (f ◦ g) ? (f ? g′) for all continuous g, g′ : C → X with g(∂C) = g′(∂C) = {x},

πn(f)([g]◦[g′])=πn(f)([g?g′])=[f◦(g?g′)]=[(f◦g)?(f◦g′)]]=[f◦g]◦[f◦g′]=πn(f)([g])◦πn(f)([g′])

and the map πn(f) is a group homomorphism. It follows directly from the definition that
πn(idX) = idπn(x,X) and πn(f ′ ◦ f) = πn(f ′) ◦ πn(f) for all continuous f : X → Y , f ′ : X ′ → Y ′.
This shows that πn is a functor.

2. If h : [0, 1]×X → Y is a homotopy from f : X → Y to f ′ : X → Y relative to {x}, then for
all continuous g : C → X with g(∂C) = {x}, the map h′ : [0, 1]×C → Y , (s, t) 7→ h(s, g(t)) is a
homotopy relative to ∂C from f ◦ g to f ′ ◦ g. Hence, πn(f)([g]) = [f ◦ g] = [f ′ ◦ g] = πn(f ′)]([g])
for all continuous g : C → X with g(∂C) = {x}, which implies πn(f) = πn(f ′).

3. The first claim follows from 2. The second claim follows, because the homotopy groups of a
path-connected topological space in all basepoints are isomorphic by Proposition 6.1.7. 2

Example 6.1.9:

1. If X is contractible, one has πn(X) = {1} for all n ∈ N, as X is homotopy equivalent to a
point. This holds in particular for convex subsets X ⊂ Rn such as linear subspaces or discs.

2. Fundamental groups of path-connected topological spaces be computed by choosing a
CW-complex structure on X and applying the Seifert-van Kampen theorem. Every
1-cell contributes a generator of the fundamental group π1(X) and every 2-cell a relation.
This yields, for instance, π1(S1) = Z and π1(Sn) = {1} for all n ∈ N0. The fundamental
group of a torus is π1(T ) = Z × Z and for a surface of genus g ≥ 2 one has the
presentation π1(Σ) = 〈a1, b1, ..., ag, bg | [bg, ag] · · · [b1, a1] = 1〉.

3. Higher homotopy groups are very difficult to compute. One has πn(Sn) = Z for all n ∈ N,
but many homotopy groups πk(S

n) with k > n are currently unknown.
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6.2 Simplicial homotopies

The aim is now to generalise the concept of a homotopy from the category Top to the categories
C∆op

for suitable categories C, in particular C = Set, and subsequently to Cat and ChR-Mod.
For this, recall from Definition 6.1.1 that a homotopy from a continuous map f : X → Y to
a continuous map g : X → Y is a continuous map h : [0, 1] × X → Y with h ◦ ι0 = f and
h ◦ ι1 = g. This makes it natural to define a homotopy from a simplicial morphism α : S ⇒ T
to a simplicial morphism β : S ⇒ T as a simplicial morphism h : [0, 1]×S ⇒ T , where [0, 1]×S
should be a simplicial object constructed from S that replaces the product space [0, 1] × X.
Moreover, one should replace the inclusions ι0, ι1 : X → [0, 1] × X from Definition 6.1.1 with
simplicial morphisms ι0, ι1 : S ⇒ [0, 1]×S and impose the conditions h ◦ ι0 = α and h ◦ ι1 = β.

The first step is to replace the unit interval [0, 1] by a corresponding simplicial object and
to define its product with S. For this, recall that the counterpart of the standard n-simplex
∆n ⊂ Rn in SSet is the simplicial set ∆n = Hom(−, [n+ 1]) : ∆op → Set from Example 5.2.7, 3.
In particular, [0, 1] = ∆1 ⊂ R corresponds to the simplicial set ∆1 = Hom(−, [2]) : ∆op → Set.
The sets ∆1

n = Hom∆([n+ 1], [2]) contain exactly n+ 2 elements, namely the maps

ρin : [n+ 1]→ [2], k 7→

{
0 k < i

1 k ≥ i
i = 0, . . . , n+ 1. (31)

In a general category C there are usually no counterparts of the simplicial sets ∆n : ∆op → Set,
so one cannot form a naive categorical product [0, 1]× S of a simplicial object [0, 1] in C with
another simplicial object S : ∆op → C. However, if C has coproducts, we can use the copower
functor t : Set× C → C from Definition 4.2.5 to form products of sets with objects in C.

Definition 6.2.1: Let C be a category with all coproducts.

The copower functor t : SSet× C∆op → C∆op
assigns

• to a simplicial set X : ∆op → Set and a simplicial object S : ∆op → C the simplicial
object X t S : ∆op → C that sends

– an ordinal [n+ 1] to the set Xn t Sn = qXnSn,

– a morphism τ : [m+1]→ [n+1] to the morphism X(τ)tS(τ) : XntSn → XmtSm
given by the following commuting diagram for n ∈ N0 and x ∈ Xn

qXnSm
X(τ)tS(τ)// qXmSm

Sn

ιx

OO

S(τ)
// Sm,

ιτ(x)

OO
. (32)

• to a simplicial map α : X ⇒ X ′ and a simplicial morphism β : S ⇒ S ′ the simplicial
morphism α t β : X t S ⇒ X ′ t S ′ defined by the following commuting diagrams

qXnSn
(αtβ)n// qX′nS ′n

Sn

ιx

OO

βn
// S ′n.

ιαn(x)

OO
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It is a good exercise to verify that this is indeed a functor. Note also that it is sufficient that C
is finitely cocomplete, if one considers only simplicial sets X with finite components Xn, such
as the simplicial sets ∆n = Hom(−, [n + 1]) : ∆op → Set from Example 5.2.7, 3. This ensures
that the following constructions work for all abelian categories, which have finite coproducts
by definition. Note also that for C = Set, this construction reduces to the usual product of
simplicial sets defined by Proposition 2.3.2.

Example 6.2.2: If C = Set, then the product X t S is just the product X × S : ∆op → Set
given by the sets (X × S)n = Xn × Sn and the maps

(X × S)(α) = X(α)× S(α) : Xn × Sn → Xm × Sm, (x, s) 7→ (X(α)x, S(α)s)

for every α : [m+ 1]→ [n+ 1]. The inclusions are ιx : Sn → Xn × Sn, s 7→ (x, s) for x ∈ Xn.

With Definition 6.2.1 we can define the categorical counterpart of the product space [0, 1]×X
for a topological space X in any category C with finite coproducts. We replace

• the topological space X by a simplicial object S : ∆op → C,
• the interval [0, 1] by the simplicial set ∆1 = Hom∆(−, [2]) : ∆op → Set,
• the product space [0, 1]×X by the simplicial object ∆1 t S : ∆op → C,
• 0, 1 ∈ [0, 1] by ρn+1

n , ρ0
n ∈ ∆1

n from (31) with ρn+1
n (k) = 0, ρ0

n(k) = 1 for all k ∈ [n+ 1].

This suggests replacing the inclusions ιi : X → [0, 1]×X, x 7→ (i, x) for i = 0, 1 by the simplicial
morphisms whose components are the inclusions for ρn+1

n , ρ0
n ∈ ∆1

n

ι0 : S ⇒ ∆1 t S ι1 : S ⇒ ∆1 t S (33)

ι0n = ιρn+1
n

: Sn → q∆1
n
Sn, ι1n = ιρ0

n
: Sn → q∆1

n
Sn.

Definition 6.2.3: Let C be a category with finite coproducts, S, T : ∆op → C simplicial
objects in C and α, β : S ⇒ T simplicial morphisms. A simplicial homotopy h : α V β is a
simplicial morphism h : ∆1 t S ⇒ T with h ◦ ι0 = α : S ⇒ T and h ◦ ι1 = β : S ⇒ T .

S

α
##

ι0 // ∆1 t S
h
��

S
ι1oo

β
{{

T

Although Definition 6.2.3 is conceptual and allows one to see simplicial homotopies as analogues
of topological homotopies, it is sometimes difficult to use in practice. It is often convenient to
use the following definition, which is more technical, but also more explicit. An additional
advantage is that it can be formulated for any category C.

Definition 6.2.4: Let S, T : ∆op → C be simplicial objects in C and α, β : S ⇒ T simplicial
morphisms. A simplicial homotopy h : αV β from α to β is a collection of morphisms

hin : Sn → Tn+1 i = 0, . . . , n

that satisfy for all n ∈ N0

d0
n+1 ◦ h0

n = βn, dn+1
n+1 ◦ hnn = αn (34)

din+1 ◦ hjn =


hj−1
n−1 ◦ din i < j

din+1 ◦ hi−1
n i = j 6= 0

hjn−1 ◦ di−1
n i > j + 1

sin+1 ◦ hjn =

{
hj+1
n+1 ◦ sin i ≤ j

hjn+1 ◦ si−1
n i > j.
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That Definitions 6.2.3 and 6.2.4 yield the same notion of simplicial homotopy is far from obvious.
Some careful computations show that this is indeed the case. Beware of mistakes and different
conventions for simplicial homotopies in the literature. Sometimes the source and target of the
homotopy are switched, and the proofs do not always match the conventions.

Proposition 6.2.5: Let C be a category with finite coproducts and α, β : S ⇒ T simplicial
morphisms in C. Then A simplicial homotopy k : αV β in the sense of Definition 6.2.3 defines
a simplicial homotopy h : αV β in the sense of Definition 6.2.4 and vice versa.

Proof:
A direct computation shows that the maps ρin : [n + 1] → [2] with ρin(k) = 0 for k < i and
ρin(k) = 1 for k ≥ i from (31) satisfy

ρ0
n ◦ τ = ρ0

m, ρn+1
n ◦ τ = ρm+1

m for all τ : [m+ 1]→ [n+ 1] (35)

ρjn ◦ δin =

{
ρj−1
n−1 0 ≤ i < j < n+ 1

ρjn−1 0 < j ≤ i < n+ 1
ρjn ◦ σin+1 =

{
ρj+1
n+1 0 ≤ i < j < n+ 1

ρjn+1 0 < j ≤ i < n+ 1.

1. Given a family of morphisms hin : Sn → Tn+1 satisfying the conditions in Definition 6.2.4, we
define the morphisms kn : ∆1

ntSn → Tn via the inclusions ιρin : Sn → ∆1
ntSn for the coproduct

kn ◦ ιρin = din+1 ◦ hin = din+1 ◦ hi−1
n i = 0, . . . , n− 1. (36)

Then we have by definition

kn ◦ ι0n = k ◦ ιρn+1
n

= dn+1
n+1 ◦ hnn = αn kn ◦ ι1n = k ◦ ιρ0

n
= d0

n+1 ◦ h0
n = βn.

To show that this defines a simplicial morphism k : ∆1 t S ⇒ S one computes for any
morphism τ : [m+ 1]→ [n+ 1]

km ◦ (∆1(τ) t S(τ)) ◦ ιρ0
n

(32)
= km ◦ ιρ0

n◦τ ◦ S(τ)
(35)
= km ◦ ιρ0

m
◦ S(τ)

(36)
= d0

m+1 ◦ h0
m ◦ S(τ)

= βm ◦ S(τ) = T (τ) ◦ βn = T (τ) ◦ d0
n+1 ◦ h0

n

(36)
= T (τ) ◦ kn ◦ ιρ0

n

km ◦ (∆1(τ) t S(τ)) ◦ ιρn+1
n

(32)
= km ◦ ιρn+1

n ◦τ ◦ S(τ)
(35)
= km ◦ ιρm+1

m
◦ S(τ)

(36)
= dm+1

m+1 ◦ hmm ◦ S(τ)

= αm ◦ S(τ) = T (τ) ◦ αn = T (τ) ◦ dn+1
n+1 ◦ hnn

(36)
= T (τ) ◦ kn ◦ ιρn+1

n

For the remaining cases, one verifies the relations din ◦ kn = kn−1 ◦ din and sin ◦ kn = kn+1 ◦ sin by
direct computations using formula (36), the relations (34) and (35) and the simplicial relations
(22). For instance, one has for 0 < j ≤ i < n+ 1

kn−1 ◦ din ◦ ιρjn
(32)
= kn−1 ◦ ιρjn◦δin ◦ d

i
n

(35)
= kn−1 ◦ ιρjn−1

◦ din
(36)
= djn ◦ h

j−1
n−1 ◦ din

(34)
= djn ◦ di+1

n+1 ◦ hj−1
n

(22)
= din ◦ d

j
n+1 ◦ hj−1

n

(36)
= din ◦ kn ◦ ιρjn .

and for 0 ≤ i < j < n+ 1

kn−1 ◦ din ◦ ιρjn
(32)
= kn−1 ◦ ιρjn◦δin ◦ d

i
n

(35)
= kn−1 ◦ ιρj−1

n−1
◦ din

(36)
= dj−1

n ◦ hj−2
n−1 ◦ din

(34)
= dj−1

n ◦ hj−1
n−1 ◦ din

(34)
= dj−1

n ◦ din+1 ◦ hjn
(22)
= din ◦ d

j
n+1 ◦ hjn

(36)
= din ◦ kn ◦ ιρjn

The computations for the degeneracies are analogous, and this shows that the maps kn define
a simplicial homotopy k : αV β in the sense of Definition 6.2.3.
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2. Let k : ∆1 t S ⇒ T be a simplicial homotopy from α to β in the sense of Definition 6.2.3.
We consider the morphisms

hin = kn+1 ◦ ιρi+1
n+1
◦ sin : Sn → Tn+1 (37)

which satisfy

d0
n+1 ◦ h0

n

(37)
= d0

n+1 ◦ kn+1 ◦ ιρ1
n+1
◦ s0

n

(32)
= kn ◦ ιρ1

n+1◦δ0
n+1
◦ d0

n+1 ◦ s0
n

(22),(35)
= kn ◦ ιρ0

n
= kn ◦ ι1 = β

dn+1
n+1 ◦ hnn

(37)
= dn+1

n+1 ◦ kn+1 ◦ ιρn+1
n+1
◦ snn

(32)
= kn ◦ ιρn+1

n+1◦δ
n+1
n+1
◦ dn+1

n+1 ◦ snn
(22),(35)

= kn ◦ ιρn+1
n

= kn ◦ ι0 = α

The relations in (34) then follow by direct computations using (37), the fact that k is a simplicial
morphism, the relations (35) and the simplicial relations (22). For instance, we have for i < j

i < j : din+1 ◦ hjn
(37)
= din+1 ◦ kn+1 ◦ ιρj+1

n+1
◦ sjn

(32)
= kn ◦ ιρj+1

n+1◦δin+1
◦ din+1 ◦ sjn

(22),(35)
= kn ◦ ιρjn ◦ s

j−1
n−1 ◦ din

(37)
= hj−1

n−1 ◦ din,

i = j 6= 0 : din+1 ◦ hin
(37)
= din+1 ◦ kn+1 ◦ ιρi+1

n+1
◦ sin = kn ◦ ιρi+1

n+1◦δin+1
◦ din+1 ◦ sin

(22),(35)
= kn ◦ ιρin

(22),(35)
= kn ◦ ιρin+1◦δin+1

◦ din+1 ◦ si−1
n = din+1 ◦ kn ◦ ιρin+1

◦ si−1
n

(37)
= din+1 ◦ hi−1

n ,

j < i− 1 : din+1 ◦ hjn
(37)
= din+1 ◦ kn+1 ◦ ιρj+1

n+1
◦ sjn

(32)
= kn ◦ ιρj+1

n+1◦δin+1
◦ din+1 ◦ sjn

(22),(35)
= kn ◦ ιρj+1

n
◦ sjn−1 ◦ di−1

n

(37)
= hjn−1 ◦ di−1

n .

The relations for the degeneracies in (34) are verified analogously, and this shows that the maps
hn form a simplicial homotopy h : αV β in the sense of Definition 6.2.4.

A direct computation shows that applying first (37) and then (36) or the other way around
yields again the original simplicial homotopy . 2

Remark 6.2.6:

1. Being simplicially homotopic in the sense of Definition 6.2.3 or Definition 6.2.4 is a
reflexive relation (Exercise 55). It also follows from Definition 6.2.4 that it is compatible
with the composition of simplicial morphisms:

If α, β : S ⇒ T are simplicial maps and h : αV β a simplicial homotopy, then

• the maps hin ◦ γn : Rn → Tn+1 define a simplicial homotopy hγ : α ◦ γ V β ◦ γ for
every simplicial morphism γ : R⇒ S,

• the maps δn+1 ◦ hin : Sn → Un+1 define a simplicial homotopy δh : δ ◦ α V δ ◦ β for
for every simplicial morphism δ : T ⇒ U

2. However, being simplicially homotopic is not necessarily an equivalence relation. In
particular, it is in general not an equivalence relation for simplicial sets. We will derive a
sufficient condition for this to hold in Section 7.2.

3. If C = R-Mod for a ring R or, more generally, an abelian category, then being simplicial
homotopic in the sense of Definition 6.2.3 or Definition 6.2.4 is an equivalence relation
on HomC∆op (S, T ) for all simplicial objects S, T : ∆op → C (Exercise 55).

We defined simplicial homotopies in analogy to topological homotopies by replacing continuous
maps by simplicial morphisms and product spaces by suitable products of simplicial sets and
simplicial objects. However, there is a more direct relation between continuous and simplicial
maps. The singular nerve Sing : Top→ SSet from Example 5.2.7, 1. and Definition 5.3.1 assigns
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x1

x2

x3

x1

x2

Figure 1: The prism maps P n
i : ∆n+1 → [0, 1]×∆n for n = 1, 2.

• to a topological space X the simplicial set Sing(X) = HomTop(T (−), X) : ∆op → Set with
components Sing(X)n = HomTop(∆n, X) and face maps and degeneracies

din : Sing(X)n → Sing(X)n−1, σ 7→ σ ◦ fni sin : Sing(X)n → Sing(X)n+1, σ 7→ σ ◦ sni ,

• to a continuous map f : X → Y the simplicial map Sing(f) : Sing(X) ⇒ Sing(Y ) with
components Sing(f)n : Sing(X)n → Sing(Y )n, σ 7→ f ◦ σ,

where ∆n is the standard n-simplex and fni : ∆n−1 → ∆n and sni : ∆n+1 → ∆n be the affine
linear face maps and degeneracies from Definition 5.1.2.

It is then natural to ask if a continuous homotopy from f to g give rise to a simplicial homotopy
between the singular nerves Sing(f) and Sing(g). This is an important consistency check. To
relate continuous and simplicial homotopies, one uses the prism maps, the affine linear counter-
parts the maps ρjn : [n+1]→ [2] from (31). They describe the systematic subdivision of a prism
into (n+ 1)-simplexes and give a geometrical interpretation to the maps ρjn : [n+ 1]→ [2].

Proposition 6.2.7: Every continuous homotopy h : [0, 1] × X → Y from f : X → Y to
g : X → Y induces a simplicial homotopy Sing(h) : Sing(f)V Sing(g).

Proof:
Let f, g : X → Y be continuous maps and h : [0, 1]×X → Y is a homotopy from f to g. The
prism maps are the affine linear maps

P n
i : ∆n+1 → [0, 1]×∆n, ek 7→ (ρi+1

n+1(k), sni (ek)) =

{
(0, ek) k ≤ i

(1, ek−1) k > i
i = 0, . . . , n, (38)

where ρjn : [n + 1] → [2] are the maps from (31). They describe the subdivision of the prism
[0, 1]×∆n into (n+1) different (n+1)-simplexes and are shown in Figure 1. A direct computation
(Exercise) shows that they satisfy the relations

P n
0 ◦ fn+1

0 = i1 : ek 7→ (1, ek) P n
n ◦ fn+1

n+1 = i0 : ek 7→ (0, ek) (39)

P n
j ◦ fn+1

i =


(id× fni ) ◦ P n

j−1 i < j

P n
i−1 ◦ fn+1

i i = j 6= 0

(id× fni−1) ◦ P n
j i > j + 1

P n
j ◦ sni =

{
(id× sni ) ◦ P n

j+1 i ≤ j

(id× sni−1) ◦ P n
j i > j.
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We define the maps

hjn : Sing(X)n → Sing(Y )n+1, σ 7→ h ◦ (id× σ) ◦ P n
j

The relations (39) for the prism maps then imply that they satisfy the relations (34) and define
a simplicial homotopy Sing(h) : Sing(g)V Sing(f) (Exercise). 2

This proposition shows that the singular nerve Sing : Top → SSet respects homotopies. It
sends homotopic maps in Top to homotopic simplicial maps. One might ask if an analogous
statement also holds for its left adjoint, the geometric realisation functor Geom : SSet → Top
from Definition 5.3.1 and Proposition 5.3.2. This is indeed the case and allows one to transform
simplicial homotopies into continuous homotopies.

Proposition 6.2.8: Let S, T : ∆op → Set simplicial sets and α, β : S ⇒ T simplicial maps.
A simplicial homotopy h : αV β induces a homotopy Geom(h) : [0, 1]×Geom(S)→ Geom(T )
from Geom(α) to Geom(β) as in Definition 6.1.1.

Proof:
We define the continuous homotopy Geom(h) with the prism maps from (38). For this, note
that for every point (t, x) ∈ [0, 1] × ∆n, there is a prism map P n

i : ∆n+1 → [0, 1] × ∆n with
i ∈ {0, . . . , n} and a point y ∈ ∆n+1 with (t, x) = P n

i (y).

If (t, x) is contained in a single affine (n + 1)-simplex P n
i (∆n+1), then i and y are unique.

Otherwise, (t, p) is contained in an n-face shared by two affine (n+ 1)-simplexes P n
i (∆n+1) and

P n
i+1(∆n+1). In this case (38) yields a z ∈ ∆n with (t, x) = P n

i (y) = P n
i+1(y) and y = fn+1

i+1 (z).

For a simplicial homotopy h : α V β given by a collection of maps hn : Sn → Tn+1 as in
Definition 6.2.4, we define the continuous homotopy Geom(h) by

Geom(h) : [0, 1]×Geom(S)→ Geom(T ), (t, [s, x]) 7→ [hin(s), y],

where s ∈ Sn and x ∈ ∆̊n form the unique non-degenerate representative of [s, x] ∈ Geom(S)
from Theorem 5.3.3 and (t, p) = P n

i (y). The map Geom(h) is well-defined and continuous,
because one has for (t, p) = P n

i (y) = P n
i+1(y) with y = fn+1

i+1 (z)

[hin(s), y] = [hin, f
n+1
i+1 (z)] = [di+1

n+1◦hin(s), z]
(34)
= [di+1

n+1◦hi+1
n (s), z] = [hi+1

n (s), fn+1
i+1 (z)] = [hi+1

n (s), y].

It is a homotopy from Geom(β) to Geom(α), because (38) implies (0, p) = P n
n (fn+1

n+1 (p)) and
(1, p) = P n

0 (fn+1
0 (p)) and consequently

h(0, [s, p]) = [hnn(s), fn+1
n+1 (p)] = [dn+1

n+1 ◦ hnn(s), p]
(34)
= [αn(s), p] = Geom(α)[s, p]

h(1, [s, p]) = [h0
n(s), fn+1

0 (p)] = [d0
n+1 ◦ h0

n(s), p]
(34)
= [βn(s), p] = Geom(β)[s, p]. 2

We have thus shown that both, the singular nerve Sing : Top → SSet and its left adjoint, the
geometric realisation functor Geom : SSet→ Top, send homotopies to homotopies.

Besides these two functors, we encountered another pair of adjoints with values in SSet, namely
the simplicial nerveN : Cat→ SSet from Example 5.2.7, 2. and Lemma 5.4.1 and its left adjoint,
the homotopy functor h : SSet→ Cat from Definition 5.4.4. It is then natural to ask if there is
a notion of homotopy in Cat that corresponds to simplicial homotopies under this adjunction.

As continuous and simplicial homotopies relate morphisms in Top and SSet with the same source
and target, a homotopy in Cat should relate functors with the same source and target. The
only obvious candidate for this are natural transformations. We investigate how they behave
under the nerve N : Cat→ SSet and the classifying space functor B = GeomN : Cat→ Top.
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Theorem 6.2.9: Let C,D be small categories and F,G : C → D functors.

1. A natural transformation ν : F ⇒ G induces a simplicial homotopy h : N(F ) V N(G)
and a homotopy h : [0, 1]×BC → BD from BF : BC → BD to BG : BC → BD.

2. If F has a left or right adjoint, then the classifying spaces BC and BD are homotopy
equivalent. In particular, this holds if F is an equivalence of categories.

Proof:
1. Let [1]′ be the poset category for the ordinal [1] and [2]′ the poset category for [2] with objects
0, 1 and a single non-identity morphism d : 0→ 1.

Denote by I i : C → [2]′ × C for i = 0, 1 the functors given by I i(C) = (i, C) and I i(f) = (1i, f)
for all objects C and morphisms f : C → C ′.

Then natural transformations τ : F ⇒ G correspond bijectively to functors T : [2]′ × C → D
with TI0 = F and TI1 = G or, equivalently,

• T (0, C) = F (C) and T (1, C) = G(C) on the objects,
• T (10, f) = F (f), T (11, f) = G(f), T (d, f) = τC′ ◦F (f) = G(f) ◦ τC for f ∈ HomC(C,C

′).

Applying the nerve N : Cat→ SSet yields a simplicial homotopy N(T ) : N(F )V N(G):

For this, recall from Example 5.4.2 that N([n + 1]′) = ∆n = Hom(−, [n + 1]) : ∆op → Set
for all n ∈ N0. As a right adjoint, the simplicial nerve preserves products by Theorem 2.4.7,
and this yields simplicial maps N(T ) : ∆1 × N(C) ⇒ N(D) and N(I i) : N(C) → ∆1 × N(C)
with N(T )N(I0) = N(F ) and N(T )N(I1) = N(G). With Example 6.2.2, Definition 6.2.3 and
equation (33) it follows that N(T ) is a simplicial homotopy from N(F ) to N(G).

2. We prove the claim for a right adjoint. The proof for a left adjoint is analogous.
If F : C → D has a right adjoint R : D → C then the unit and counit of the adjunction
are natural transformations η : idC ⇒ RF and ε : FR ⇒ idD. By 1. they induce simplicial
homotopies N(η) : idN(C) V N(R)N(F ) and N(ε) : N(F )N(R)V idN(D). By Proposition 6.2.8,
these simplicial homotopies induce continuous homotopies between the geometrical realisations.

If B = GeomN : C → Top denotes the classifying space functor from Definition 5.4.9, these
are continuous maps BF : BC → BD and BR = BD → BC such that (BR)(BF ) ∼ idBC and
(BF )(BR) ∼ idBD. Hence, the classifying spaces BC and BD are homotopy equivalent. 2

This theorem identifies natural transformations as categorical counterparts of homotopies and
adjunctions as the categorical counterparts of homotopy equivalences. This allows one to apply
homotopy theory to categories. If one is only interested in quantities that are homotopy invariant
such as homotopy groups and homologies of their classifying spaces, then one can identify
categories related by adjunctions. On the other hand, one can deduce statements about their
classifying spaces from the properties of the categories.

Corollary 6.2.10: (Exercise 57) Let C be a small category.

1. If C has an initial or terminal object, then BC is contractible.
2. If C has binary products or coproducts, then BC is contractible.

The question if the left adjoint of the simplicial nerve, the homotopy functor h : SSet → Cat
from Definition 5.4.4, also preserves homotopies, is less important in practice. One wants to
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use simplicial sets and topological spaces to investigate categories, not the other way around.
Nevertheless, it is not difficult to show that the homotopy functor sends simplicial homotopies
to natural transformations. This follows from the fact that the homotopy functor preserves
products and sends the simplicial sets ∆0 and ∆1 to the poset categories [1]′ and [2]′.

Corollary 6.2.11: Let α, β : S ⇒ T be simplicial maps. The functor h : SSet→ Cat sends a
simplicial homotopy k : ∆1×S ⇒ T from α to β to a natural transformation h(k) : h(α)⇒ h(β).

Proof:
By Definition 5.4.4 the functor h sends the simplicial set ∆n = Hom(−, [n + 1]) : ∆op → Set
to the associated poset category [n+ 1]′. From Definition 5.4.4 it is also apparent that it sends
products in SSet to products in Cat. A direct computation shows that it sends the inclusions
ι0, ι1 : S → ∆1 × S from (33) to the functors I0, I1 : h(S) → [2]′ × h(S) from the proof
of Theorem 6.2.9. Hence, the image of a simplicial homotopy k : ∆1 × S ⇒ T is a functor
h(k) : [2]′ × h(S) → h(T ) with h(k)I0 = h(α) and h(k)I1 = h(β). By the proof of Theorem
6.2.9 this defines a natural transformation h(k) : h(α)⇒ h(β). 2

6.3 Simplicial homotopies and chain homotopies

As shown in Section 5.5, simplicial objects and simplicial morphisms in a category R-Mod define
positive chain complexes and chain maps between them via the standard chain complex functor
from Proposition 5.5.5 and the normalised chain complex functor from Proposition 5.5.8. The
Dold-Kan correspondence in Theorem 5.5.13 states that the normalised chain complex functor
is an equivalence of categories. This implies that there must be a counterpart of the concept of
a simplicial homotopy in the category ChR-Mod of chain complexes in R-Mod and chain maps
between them. As we will see, this is the concept of a chain homotopy.

Definition 6.3.1: Let X•, X
′
• be chain complexes in R-Mod and f•, f

′
• : X• → X ′• chain maps.

1. A chain homotopy h• : f• ⇒ f ′• is a family (hn)n∈Z of morphisms hn : Xn → X ′n+1 with

f ′n − fn = hn−1 ◦ dn + d′n+1 ◦ hn ∀n ∈ Z.

If there is a chain homotopy h• : f• ⇒ f ′•, then f• und f ′• are called chain homotopic,
and one writes f• ∼ f ′•.

2. A chain map f• : X• → X ′• is called a chain homotopy equivalence if there is a chain
map g : X ′• → X• with g• ◦ f• ∼ 1X• and f• ◦ g• ∼ 1X′• .

In this case the chain complexes X• und X ′• are called chain homotopy equivalent and
one writes X• ' X ′•.

Remark 6.3.2:

1. For given chain complexes X•, X
′
•, the chain maps f• : X• → X ′• and chain homotopies

between them form an abelian groupoid.

The composite of two chain homotopies h : f• ⇒ f ′• and h′• : f ′• ⇒ f ′′• is the chain
homotopy h′• ◦ h• = (hn + h′n)n∈Z : f• ⇒ f ′′• . The identity morphisms are trivial chain
homotopies 1f• = (0)n∈Z and the inverse of h• : f• ⇒ f ′• is h−1

• = (−hn)n∈Z : f ′• ⇒ f•.
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2. By 1. being chain homotopic defines an equivalence relation on the set of chain maps from
X• to X ′•. It is compatible with the composition of morphisms:

For all chain maps f•, f
′
• : X• → X ′• and g•, g

′
• : X ′• → X ′′• and chain homotopies

h• : f• ⇒ f ′• and h′• : g• ⇒ g′•, the family of morphisms k• = (gn+1 ◦ hn + h′n ◦ f ′n)n∈Z is a
chain homotopy k• : g• ◦ f• ⇒ g′• ◦ f ′• (Exercise).

3. This yields the homotopy category of chain complexes K(R-Mod) with

• chain complexes in R-Mod as objects,
• chain homotopy classes of chain maps in R-Mod as morphisms.

Isomorphisms in K(R-Mod) are chain homotopy classes of chain homotopy equivalences.

Just as Definition 6.2.4 of a simplicial homotopy, Definition 6.3.1 is technical and not very
illuminating. One wonders if chain homotopies h• : f• ⇒ g• can also be formulated as chain
maps between certain chain complexes, as it was done for simplicial homotopies in Definition
6.2.3 and continuous homotopies in Definition 6.1.1. This is indeed possible.

Lemma 6.3.3: Let (X•, d•), (X ′•, d
′
•) be chain complexes in R-Mod and f•, g• : X• → X ′•

chain maps between them. Then chain homotopies h• : f• ⇒ g• are in bijection with chain
maps k• : Z• → X ′• such that k• ◦ ι0• = f• and k• ◦ ι1• = g•

X•

f•   

ι0• // Z•

k•
��

X•
ι1•oo

g•~~
X ′•

where

• Z• is the chain complex with

Zn = Xn ⊕Xn ⊕Xn−1

dn : Zn → Zn−1, (x, x′, x′′) 7→ (dn(x)− x′′, dn(x′) + x′′,−dn−1(x′′)),

• the inclusions ιi• : X• → Z• for i = 0, 1 are given by

ι0n : Xn → Zn, x 7→ (x, 0, 0) ι1n : Xn → Zn, x 7→ (0, x, 0)

Proof:
A direct computation shows that Z• is indeed a chain complex and the inclusions ι0n, ι1n define
chain maps ι0•, ι

1
• : X• → Z•.

By the universal property of the direct sum, an R-linear map kn : Zn → X ′n with kn ◦ ι0n = fn
and kn ◦ ι1n = gn is given by fn, gn : Xn → X ′n and an R-linear map hn−1 : Xn−1 → X ′n as

kn(x, x′, x′′) = fn(x) + gn(x′) + hn−1(x′′) x, x′ ∈ Xn, x
′′ ∈ Xn−1.

The R-linear maps kn define a chain map if and only if

d′n ◦ kn(x, x′, x′′) = d′n ◦ fn(x) + d′n ◦ gn(x′) + d′n ◦ hn−1(x′′)

=kn−1 ◦ dn(x, x′, x′′) = fn−1 ◦ dn(x)− fn−1(x′′) + gn−1 ◦ dn(x′) + gn−1(x′′)− hn−2 ◦ dn−1(x′′).

By setting x′ = x′′ = 0, x = x′′ = 0 and x = x′ = 0, one finds that is the case if and only if f•
and g• are chain maps and h• : f• ⇒ g• is a chain homotopy. 2
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It is also possible to understand the chain complex Z• from Lemma 6.3.3 as a counterpart of
the topological space [0, 1]×X in Definition 6.1.1 and the simplicial object ∆1tS in Definition
6.2.3. This requires the tensor product of chain complexes and yields Z• = ∆1

•⊗X• with a chain
complex ∆1

• that describes the unit interval. This makes the relation more direct, but requires
additional background on tensor products and monoidal categories.

The central property of chain homotopies that makes them fundamental in homological algebra
is that they do not affect the induced maps between the homologies: chain homotopic chain
maps induce the same maps between the homologies. Thus, the homologies descend to functors
from the homotopy category of chain complexes from Remark 6.3.2, 3. to the category R-Mod.
In particular, chain homotopy equivalent chain complexes have isomorphic homologies.

Proposition 6.3.4: Let R be a ring.

1. Chain homotopic chain maps in R-Mod induce the same morphisms on the homologies:
if f• ∼ g• then Hn(f•) = Hn(g•) for all n ∈ Z.

2. The nth homology induces a functor Hn : K(R-Mod)→ R-Mod for all n ∈ Z.

3. Chain homotopy equivalences induce isomorphisms on the homologies:
if X• ' X ′•, then Hn(X•) ∼= Hn(X ′•) for all n ∈ Z.

Proof:
Let f•, g• : X• → X ′• be chain maps and h• : f• ⇒ g• a chain homotopy. Then one has

Hn(g•)[x]−Hn(f•)[x] = [gn(x)]− [fn(x)] = [gn(x)− fn(x)] = [hn−1 ◦ dn(x) + d′n+1 ◦ hn(x)]

= [hn−1(dn(x))] = [hn−1(0)] = 0 ∀x ∈ ker(dn)

⇒ Hn(f•) = Hn(g•).

The second and third claim follow directly from the first. 2

With the standard chain complex functor from Proposition 5.5.5 and the normalised chain
complex functor from Proposition 5.5.8 we can now relate simplicial homotopies to chain ho-
motopies. This extends the Dold-Kan correspondence from Theorem 5.5.13 to simplicial homo-
topies and chain homotopies.

Theorem 6.3.5: Let S, T : ∆op → R-Mod simplicial objects and α, β : S ⇒ T simplicial
morphisms in R-Mod.

1. For every simplicial homotopy h : αV β, the morphisms hn = Σn
i=0(−1)ihin : Sn → Tn+1

define chain homotopies h• : α• ⇒ β• and Nh• : Nα• ⇒ Nβ•.

2. Every chain homotopy h• : Nα• ⇒ Nβ• arises from a simplicial homotopy h : αV β.

Proof:
1. That the morphisms hn define a chain homotopy h• : α• ⇒ β• follows by a direct computa-
tion from the defining relations (34) of the simplicial homotopy. For this, one splits the sums
occurring in the boundary operators according to the three cases in (34)

dn+1 ◦ hn + hn−1 ◦ dn = Σn
j=0Σn+1

i=0 (−1)i+jdin+1 ◦ hjn + Σn−1
j=0 Σn

i=0(−1)i+jhjn−1 ◦ din

= Σn
j=0Σj−1

i=0 (−1)i+jdin+1 ◦ hjn + Σn
j=0d

j
n+1 ◦ hjn − d

j+1
n+1 ◦ hjn + Σn

j=0Σn+1
i=j+2(−1)i+jdin+1 ◦ hjn

+ Σn−1
j=0 Σj

i=0(−1)i+jhjn−1 ◦ din + Σn−1
j=0 Σn

i=j+1(−1)i+jhjn−1 ◦ din
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(34)
= Σn

j=0Σj−1
i=0 (−1)i+jhj−1

n−1 ◦ din + d0
n+1 ◦ h0

n − dn+1
n+1 ◦ hn+1 + Σn

j=0Σn+1
i=j+2h

j
n−1 ◦ di−1

n

+ Σn−1
j=0 Σj

i=0(−1)i+jhjn−1 ◦ din + Σn−1
j=0 Σn

i=j+1(−1)i+jhjn−1 ◦ din

= d0
n+1 ◦ h0

n − dn+1
n+1 ◦ hnn = βn − αn.

It is then sufficient to show that hn(NSn) ⊂ NTn+1 for all n ∈ N0. With the defining relations
(34) of the simplicial homotopy, we obtain

d0
n+1 ◦ hn = Σn

j=0(−1)jd0
n+1 ◦ hjn

(34)
= d0

n+1 ◦ h0
n + Σn

j=1(−1)jhj−1
n−1 ◦ d0

n = fn + Σn
j=1(−1)jhj−1

n−1 ◦ d0
n

⇒ hn(ker(d0
n)) ⊂ ker(d0

n+1)

din+1 ◦ hn = Σn
j=0(−1)jdin+1 ◦ hjn 0 < i ≤ n

= Σi−2
j=0(−1)jdin+1 ◦ hjn + (−1)idin+1 ◦ hin + (−1)i−1din+1 ◦ hi−1

n + Σn
j=i+1d

i
n+1 ◦ hjn

(34)
= Σi−2

j=0(−1)jhjn ◦ di−1
n + Σn

j=i+1(−1)jhj−1
n−1 ◦ din

⇒ hn(ker(din)) ⊂ ker(din+1)

This shows that hn(NSn) ⊂ NTn+1 and proves the claim for Nα•, Nβ• : NS• → NT•.

2. We do not give this proof here, because it is lengthy and technical. For a sketch of proof, see
[W, Section 8.4]. 2

Theorem 6.3.5 is useful whenever one has a functor that assigns simplicial objects in R-Mod to
objects in a given category C and a notion of homotopy in C that induces simplicial homotopies
in R-Mod. An example is the singular chain complex functor C•(−, k) : Top → Chk-Mod from
Example 5.5.6, 1. that defines the singular homologies of a topological space with coefficients in
a commutative ring k. Theorem 6.3.5 implies that this functor sends continuous homotopies in
Top to chain homotopies. It follows that the singular homologies of a topological space depend
only on its homotopy type.

Corollary 6.3.6: Let k be a commutative ring and X, Y topological spaces.

1. Homotopic maps f, g : X → Y induce the same morphisms on the singular homologies:

f ∼ g ⇒ Hn(f, k) = Hn(g, k) : Hn(X, k)→ Hn(Y, k) ∀n ∈ N0.

2. If X and Y are homotopy equivalent, then their homologies are isomorphic

X ' Y ⇒ Hn(X, k) ∼= Hn(Y, k) ∀n ∈ N0.

Proof:
By Example 5.5.6, 1. the singular chain complex functor C•(−, k) : Top → Chk-Mod is the
composite of the functor Sing : Top→ SSet from Example 5.2.7, 1, the free generation functor
Fk : SSet→ k-Mod∆op

and the standard chain complex functor from Proposition 5.5.5.

1. By Proposition 6.2.7 a continuous homotopy h : [0, 1]×X → Y from f to g induces a simplicial
homotopy Sing(h) : Sing(f)V Sing(g). Post-composition with Fk : SSet→ k-Mod∆op

yields a
simplicial homotopy between simplicial maps in k-Mod and post-composition with the standard
chain complex functor then a chain homotopy C•(h, k) : C•(f, k)⇒ C•(g, k) by Theorem 6.3.5.
Proposition 6.3.4, 1. then implies 1.
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2. If f : X → Y and f ′ : Y → X are continuous maps with f ′◦f ∼ idX and f ◦f ′ ∼ idY then by
1. the induced chain maps C•(f, k) : C•(X, k) → C•(Y, k) and C•(f

′, k) : C•(Y, k) → C•(X, k)
form a chain homotopy equivalence, and Proposition 6.3.4, 3. implies claim 2. 2

Another example where Theorem 6.3.5 can be applied is the functor C•(−, k) : Cat→ Chk-Mod

from Example 5.5.6, 2. that assigns to

• a small category C the chain complex C•(C, k) with

Cn(C, k) = 〈N(C)n〉k d = Σn
i=0(−1)i〈N(δin)〉k : Cn(C, k)→ Cn−1(C, k)

• a functor F : C → D the chain map C•(F, k) : C•(C, k) → C•(D, k) with components
Cn(F, k) = 〈N(F )n〉k : 〈N(C)n〉k → 〈N(D)n〉k.

The homologies of these chain complexes define functors Hn(−, k) : Cat→ k-Mod. By applying
Theorem 6.3.5 one can show that these functors do not distinguish categories that are related
by adjunctions. This can be used to show that a given functor cannot have a left or right adjoint
or, more generally, that there cannot be an adjunction between two categories.

Corollary 6.3.7:
Let k be a commutative ring, C,D be small categories and F,G : C → D functors.

• If there is a natural transformation τ : F ⇒ G, then F and G induce the same maps on
the homologies: Hn(F, k) = Hn(G, k) : Hn(C, k)→ Hn(D, k) for all n ∈ N0,

• If C and D are related by an adjunction, then Hn(C, k) ∼= Hn(D, k) for all n ∈ N0.

Proof:
By Example 5.5.6, 2. the functor C•(−, k) : Cat → Chk-Mod is obtained by composing the
simplicial nerve N : Cat → SSet from Example 5.2.7, 2. and Lemma 5.4.1 with the functor
Fk : SSet→ k-Mod∆op

and then the standard chain complex functor from Proposition 5.5.5.

By Theorem 6.2.9 a natural transformation τ : F ⇒ G induces a simplicial homotopy
h : N(F ) V N(G). Post-composition with Fk : SSet → k-Mod∆op

yields a simplicial ho-
motopy between the induced simplicial morphisms in k-Mod and post-composition with the
standard chain complex functor a chain homotopy C•(τ, k) : C•(F, k)⇒ C•(G, k) by Theorem
6.3.5. Proposition 6.3.4, 1. implies the first claim. The second follows as in Corollary 6.3.6. 2

For topological spaces that are classifying spaces BC or BG of a category C or a group G,
the homologies of the singular chain complexes from Corollary 6.3.6 and the homologies from
Corollary 6.3.7 are in fact related. This result is well-known for classifying spaces of groups.

Remark 6.3.8: For any group G the group homologies coincide with the singular homologies
of its classifying space

Hn(G,Z) ∼= Hn(BG,Z) ∀n ∈ N0.

This follows, because the classifying spaces are geometric realisations of the nerve from Example
5.2.7, 2. and Lemma 5.4.1. Theorem 5.3.3 states that they are CW-complexes whose cells are
in bijection with non-degenerate elements of the simplicial nerve. By applying techniques from
algebraic topology one can efficiently compute the homologies of CW-complexes by counting
the cells in each dimension. This relates the singular homologies Hn(BG,Z) of the classifying
space BG to the homologies of the associated chain complex C•(G,Z) from Corollary 6.3.6. A
sketch of proof is given in [W, Example 8.2.3]. For more background see a textbook on group
(co)homology, such as [B] or [AM] or the book [Mo] on classifying spaces of categories.
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7 Kan complexes and quasicategories

7.1 Kan complexes

In this section we generalise the concept of homotopy groups from topological spaces to certain
simplicial sets. The simplicial sets for which this is possible are called Kan complexes. Their
homotopy groups generalise the homotopy groups of topological spaces from Theorem 6.1.5 and
are related to them via the singular nerve and the geometric realisation functor.

Studying Kan complexes will also lead to a deeper understanding of the simplicial sets arising
as nerves of topological spaces, groups and categories and finally to quasicategories or ∞-
categories, a generalisation of categories that is a current research topic in mathematics. Our
main references for this chapter are the books [M] and [GJ] and the preprint [F].

The homotopy groups of topological spaces in Section 6.1 were obtained by considering contin-
uous maps f : [0, 1]×n → X with f(∂[0, 1]×n) = {x}, up to homotopies relative to ∂[0, 1]×n. To
generalise this to simplicial sets, note that the choice of the unit cube [0, 1]×n as the domain of
these maps is not essential. It is convenient for working with coordinates, but continuous maps
f : ∆n → X with f(∂∆n) = {x} would yield the same homotopy groups.

Hence, it makes sense to replace continuous maps f : [0, 1]×n → X with simplicial maps
α : ∆n ⇒ X. To generalise the condition f(∂[0, 1]×n) = {x}, we need to define a boundary ∂∆n.
This is achieved by considering simplicial subsets. Just as a subspace U ⊂ X of a topological
space X is given by a monomorphism ι : U → X in Top, one can define a simplicial subset of
S : ∆op → Set as a simplicial set T : ∆op → Set with a monomorphism ι : T ⇒ S in SSet.
As monomorphisms can be realised as limits (Exercise 13) and limits in the functor category
SSet are pointwise by Proposition 2.3.2 a monomorphism ι : T ⇒ S in SSet is a simplicial map
ι : S ⇒ T such that ιn : Tn → Sn is injective for all n ∈ N0. This allows one to identify Tn with
a subset of Sn for all n ∈ N0 and yields the following definition.

Definition 7.1.1: Let S : ∆op → Set be a simplicial set.

1. A simplicial subset T ⊂ S is a simplicial set T : ∆op → S with Tn ⊂ Sn for all n ∈ N0

and S(α)(t) = T (α)(t) for all monotonic maps α : [m+ 1]→ [n+ 1] and t ∈ Tn.

2. The simplicial subset 〈X〉 ⊂ S generated by a subset X ⊂ Sn for some n ∈ N0 is the
smallest simplicial subset of S containing X. For all m ∈ N0 one has

〈X〉m = {S(τ)x | x ∈ X, τ : [m+ 1]→ [n+ 1] monotonic}.

We now apply Definition 7.1.1 to define the faces and boundaries of the simplicial sets
∆n = Hom(−, [n + 1]) : ∆op → Set from Example 5.2.7, 3. The boundary ∂∆n of a topo-
logical standard n-simplex ∆n is the union of its faces. The faces are the images of ∆n−1 under
the face maps fni : ∆n−1 → ∆n from Definition 5.1.2.

The counterparts of the face maps in SSet are the simplicial maps Hom(−, δin) : ∆n−1 ⇒ ∆n. We
thus define the ith face of the standard n-simplex ∆n in SSet as the simplicial subset generated
by {δin} ⊂ ∆n

n−1 and its boundary ∂∆n as the simplicial subset generated by {δ0
n, ..., δ

n
n} ⊂ ∆n

n−1.
As we will see in the following, it is also important to consider subsets of the boundary with
exactly one face removed, the horns of ∆n.
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Definition 7.1.2: Let ∆n = Hom∆(−, [n+ 1]) : ∆op → Set and k ∈ {0, . . . , n}.

1. The kth face ∂k∆
n is the simplicial subset of ∆n generated by δkn ∈ ∆n

n−1.

2. The boundary ∂∆n is the simplicial subset of ∆n generated by {δ0
n, ..., δ

n
n} ⊂ ∆n

n−1.
It is also called the simplicial (n− 1)-sphere.

3. The kth horn Λk
n is the simplicial subset of ∆n generated by {δ0

n, ..., δ
k−1
n , δk+1

n , ..., δnn}.
The horns Λ1

n, ... Λn−1
n are called inner horns, the horns Λ0

n and Λn
n outer horns.

Remark 7.1.3:

1. For n = 0 one has ∂∆0 = ∅, the empty simplicial set with (∂∆0)k = ∅ for all k ∈ N0.

2. The boundary ∂∆n is the (n− 1)-skeleton of ∆n:

One has (∂∆n)k = ∆n
k for all k < n and all elements of (∂∆n)k for k ≥ n are degenerate.

The set (∂∆n)k contains precisely the non-surjective monotonic maps α : [k+1]→ [n+1]
(Exercise 59).

3. The simplicial set ∂∆n can also be realised as the coequaliser

∂∆n = coequ

(
q0≤i<j≤n∆n−2

u

⇒
v
q0≤i≤n∆n−1

)
,

where u ◦ ιi,j = ιj ◦ Hom(−, δin−1) and v ◦ ιij = ιi ◦ Hom(−, δj−1
n−1) (Exercise 60). This

corresponds to taking an (n − 1)-simplex for each of the n faces of ∆n and identifying
them along their shared (n− 2)-faces in ∆n.

4. The sets (Λk
n)j for the kth horn Λk

n contain exactly the monotonic maps α : [j+1]→ [n+1]
with {0, 1, . . . , k − 1, k + 1, . . . , n} 6⊂ im(α).

5. The kth horn can also be defined as the coequaliser

Λk
n = coequ

(
q0≤i<j≤n∆n−2

u

⇒
v
q0≤i 6=k≤n∆n−1

)
with u, v as in 3. This corresponds to taking an (n − 1)-simplex for each face of ∆n

except the face opposite k and identifying them along shared (n− 2)-faces in ∆n.

6. The geometric realisation of the n-simplex, faces, boundary and horns are given by the
corresponding quantities for the topological n-simplex from Definition 5.1.2

|∆n| = ∆n, |∂k∆n| = fnk (∆n−1), |∂∆n| = ∂∆n, |Λn
k | = ∪0≤j 6=k≤nf

n
j (∆n−1)

This follows with Theorem 5.3.3 by determining the non-degenerate elements in the sim-
plicial sets ∆n, ∂k∆

n, ∂∆n, Λk
n.

In Section 6.1 we defined the homotopy groups of a topological space X as homotopy classes
of continuous maps f : [0, 1]×n → X with f(∂[0, 1]×n) = {x} or, equivalently, homotopy classes
of continuous maps f : Sn → X relative to a basepoint. It is therefore plausible to consider
simplicial maps α : ∂∆n+1 ⇒ S in SSet and to interpret the simplicial set ∂∆n+1 as a simplicial
counterpart of the n-sphere Sn = ∂Dn+1 in Top.
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For the homotopy groups in Top it is essential, if a continuous map f : Sn−1 → X can be
extended to a map g : Dn → X with g|∂Dn = f . If this is the case, then f is homotopic
to a constant map f ′ : Sn−1 → X and [f ] = [f ′] ∈ πn−1(x,X) is trivial (Exercise 53). Only
continuous maps f : Sn−1 → X that cannot be extended to continuous maps g : Dn → X give
rise to non-trivial elements of homotopy groups.

Analogously, we can ask if a simplicial map α : ∂∆n ⇒ S can be filled, extended to a simplicial
map β : ∆n ⇒ S. One can also consider simplicial maps α : Λk

n ⇒ S for the n-horns of the
standard n-simplex and ask if they can be completed to simplicial maps α : ∂∆n ⇒ S or filled
to simplicial maps α : ∆n ⇒ S.

Definition 7.1.4: Let S : ∆op → Set be a simplicial set.

1. A simplicial (n− 1)-cycle or (n− 1)-sphere on S is a simplicial map α : ∂∆n ⇒ S.

2. A simplicial (n− 1)-cycle α : ∂∆n ⇒ S is called a simplicial (n− 1)-boundary, if there
is a simplicial map β : ∆n ⇒ S with β ◦ ι = α for the inclusion ι : ∂∆n ⇒ ∆n

∂∆n α //
_�

ι
��

S

∆n
β

==

3. A (k, n)-horn on S is a simplicial map α : Λn
k ⇒ S. It is called an outer horn for

k ∈ {0, n} and else an inner horn.

4. A completion of a (k, n)-horn α : Λk
n ⇒ S is a simplicial map β : ∂∆n ⇒ S with

β ◦ ι = α for the inclusion ι : Λk
n ⇒ ∂∆n

Λk
n

α //
_�

ι

��

S

∂∆n

β

==

5. A filler of a (k, n)-horn α : Λk
n ⇒ S is a simplicial map β : ∆n ⇒ S with β ◦ ι = α for

the inclusion ι : Λk
n ⇒ ∆n

Λk
n

α //
_�

ι

��

S

∆n

β

??

Remark 7.1.5:

1. A simplicial (n − 1)-cycle α : ∂∆n ⇒ S corresponds to an (n + 1)-tuple (x0, ..., xn) of
elements xi = αn−1(δin) ∈ Sn−1 with din−1(xj) = dj−1

n−1(xi) for all 0 ≤ i < j ≤ n.

This is shown in Exercise 60 and also follows from Remark 7.1.3, 3.

2. A simplicial (n− 1)-cycle as in 1. is a simplicial (n− 1)-boundary if and only if there is
an element y ∈ Sn with din(y) = xi for all 0 ≤ i ≤ n.

Simplicial maps β : ∆n ⇒ S are in bijection with elements y = βn(1[n+1]) ∈ Sn by the
Yoneda lemma. The condition β ◦ ι = α then states that

xi = αn−1(δin) = βn−1(δin) = βn−1(1[n+1] ◦ δin) = S(δin)βn(1[n+1]) = din(y) i = 0, ..., n.
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3. A (k, n)-horn α : Λk
n ⇒ S on S corresponds to an n-tuple (x0, ..., xk−1, xk+1, ..., xn) of

elements xj = αn−1(δjn) ∈ Sn−1 such that din−1(xj) = dj−1
n−1(xi) for 0 ≤ i < j ≤ n and

i, j 6= k. This follows by expressing Λk
n as a coequaliser as in Remark 7.1.3, 5.

4. A completion of a (k, n)-horn that is given by an n-tuple (x0, ..., xk−1, xk+1, ..., xn) as in
3. is an (n− 1)-cycle (x0, ..., xk−1, xk, xk+1, ..., xn) with xi ∈ Sn−1.

5. A filler of a (k, n)-horn given by an n-tuple (x0, ..., xk−1, xk+1, ...xn) as in 3. is an element
y ∈ Sn, whose boundary is a completion of the horn:

dn(y) := (d0
n(y), ..., dnn(y)) = (x0, ..., xk−1, d

k
n(y), xk+1..., xn).

This follows as in 2, because simplicial maps β : ∆n ⇒ S are in bijection with elements
x = βn(1[n+1]) ∈ Sn by the Yoneda lemma.

For n = 2, these structures can be visualised as follows, and in the case n = 3 there are
analogous pictures involving tetrahedra.

simplicial 1-boundary d(y) = (x0, x1, x2)

x2 = d2
2(y) x0 = d0

2(y)

x1 = d1
2(y)

y

d0
1(x0) = d0

1(x1)d1
1(x1) = d1

1(x2)

d0
1(x2) = d1

1(x0)

filler y of (1,2)-horn (x0, x2)

x2 x0

x1 = d1
2(y)

y

d0
1(x0)d1

1(x2)

d0
1(x2) = d1

1(x0)

filler y of (0,2)-horn (x1, x2)

x2 x0 = d2
2(y)

x1

y

d0
1(x1)d1

1(x2) = d1
1(x1)

d0
1(x2)

filler y of (2,2)-horn (x0, x1)

x2 = d0
2(y) x0

x1

y

d0
1(x1) = d0

1(x0)d1
1(x1)

d1
1(x0)

The names boundaries and cycles are reminiscent of simplicial homologies, and this is not a
coincidence. One can show that the boundary dn(y) = (d0

n(y), ..., dnn(y)) for an element y ∈ Sn
is always a simplicial (n− 1)-cycle (Exercise 60).
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Remarks 7.1.5, 2. and 5. also show what is special about simplicial sets, simplicial maps and
simplicial standard simplexes ∆n. The category SSet and the standard n-simplex in SSet allow
one to describe simplicial maps α : ∆n ⇒ S via the Yoneda lemma and hence to identify them
with elements of the set Sn. This is a useful feature that will be important in the following.

Using Definition 7.1.4 and Remark 7.1.5 we can now state the essential property that distin-
guishes Kan complexes from more general simplicial sets.

Definition 7.1.6: A simplicial set X : ∆op → Set is called fibrant or a Kan complex if it
satisfies the Kan condition: every horn α : Λk

n ⇒ X with k ∈ {0, . . . , n} has a filler.

We denote by Kan ⊂ SSet the full subcategory of Kan complexes in SSet.

Remark 7.1.7: By Remark 7.1.5, a simplicial set X is a Kan complex if and only if for each
n ∈ N and each n-tuple (x0, ..., xk−1, xk+1, ..., xn) with xj ∈ Xn−1 and din−1(xj) = dj−1

n−1(xi) for
0 ≤ i < j ≤ n, i, j 6= k, there is an y ∈ Xn, the horn filler, with xi = din(y) for 0 ≤ i 6= k ≤ n.

Example 7.1.8:

1. The simplicial set ∆n = Hom(−, [n+ 1]) : ∆op → Set is not a Kan complex for n > 0:

The horn α : Λ0
2 ⇒ ∆n given by the pair (x1, x2) with x1 : [2] → [n + 1], 0, 1 7→ 0 and

x2 : [2]→ [n+ 1], 0 7→ 0, 1 7→ 1 satisfying d1
1(x1) = x1 ◦ δ1

1 = x2 ◦ δ1
1 = d1

1(x2) : 0 7→ 0 does
not have a filler. A map x : [3]→ [n+ 1] with d1

2(x) = x ◦ δ1
2 = x1 and d2

2(x) = x ◦ δ2
2 = x2

cannot be monotonic, because

x(0) = x ◦ δ2
2(0) = x2(0) = 0, x(1) = x ◦ δ2

2(1) = x2(1) = 1, x(2) = x ◦ δ1
2(1) = x1(1) = 0.

2. For the same reasons, the simplicial sets ∂∆n, Λk
n do not satisfy the Kan condition.

3. With the same argument one can show that the simplicial set SK : ∆op → Set defined by
an ordered combinatorial simplicial complex K is not a Kan complex, unless it contains
only degenerate simplexes in all degrees n > 0.

Despite these counterexamples, many important examples of simplicial sets are Kan complexes.
In particular, this includes all singular nerves of topological spaces, see Example 5.2.7, 1, and
all simplicial sets obtained from simplicial groups by forgetting their group structure. A special
case of the latter are simplicial R-modules for any ring R.

Proposition 7.1.9:
For every topological space X, the simplicial set Sing(X) : ∆op → X is a Kan complex.

Proof:
As the singular functor Sing : Top→ SSet is right adjoint to the geometric realisation functor
Geom = | | : SSet→ Top, we can use the adjunctions to transport fillers from Top to SSet.

For this, let η : id⇒ SingGeom and ε : GeomSing⇒ id be the unit and counit of the adjunction
with (i) Sing(εX) ◦ ηSing(X) = idSing(X) and (ii) ε|S| ◦ |ηS| = id|S| for all topological spaces X and
simplicial sets S.
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The image of the horn extension diagram under the functor Geom = | | : SSet→ Top is

|Λk
n|_�

|ι|
��

|α| // |Sing(X)|

|∆n|
β

99

By Remark 7.1.3, 6. the topological horn |Λk
n| ⊂ |∆n| is a retract of |∆n|: there is a continuous

map r : |∆n| → |Λk
n| with r ◦ |ι| = id. Thus, β = |α| ◦ r : |∆n| → |Sing(X)| is a horn filler.

The simplicial map β′ = Sing(εX)◦Sing(β)◦η∆n : ∆n ⇒ Sing(X) is a horn filler for α, as we have

β′ ◦ ι = Sing(εX) ◦ Sing(β) ◦ η∆n ◦ ι nat η
= Sing(εX) ◦ Sing(β) ◦ Sing(|ι|) ◦ ηΛkn

= Sing(εX) ◦ Sing(β ◦ |ι|) ◦ ηΛkn
= Sing(εX) ◦ Sing(|α|) ◦ ηΛkn

nat η
= Sing(εX) ◦ ηSing(X) ◦ α

(i)
= α.

2

Proposition 7.1.10: For every simplicial group S : ∆op → Grp, the underlying simplicial set
S : ∆op → Set is a Kan complex.

Proof:
Let (x0, ..., xk−1, xk+1, ..., xn) be an n-tuple of elements xi ∈ Sn−1 with din−1(xj) = dj−1

n−1(xi) for
all 0 ≤ i < j ≤ n and i, j 6= k. We construct a sequence of elements y−1, y1, . . . , yn = x ∈ Sn
with din(yr) = xi for all 0 ≤ i ≤ r, i 6= k. We start with y−1 = e ∈ Sn. Suppose we already
constructed y−1, ..., yr−1 satisfying this condition.

If r = k, we choose yk = yk−1. If r 6= k, we consider the element z := x−1
r · drn(yr−1) ∈ Sn−1 and

compute for k 6= i < r

din−1(z) = din−1(xr)
−1 · din−1 ◦ drn(yr−1) = din−1(xr)

−1 · dr−1
n−1 ◦ din(yr−1) = din−1(xr)

−1 · dr−1
n−1(xi) = e,

where we used first the compatibility between the face maps and the group multiplication in a
simplicial group and in the last step the identity din−1(xr) = dr−1

n−1(xi) for k 6= i < r. This shows
that din−1(z) = e for k 6= i < r and consequently din ◦ srn−1(z) = sr−1

n−2 ◦ din−1(z) = e by (22).

We define yr := yr−1 · srn−1(z)−1 and obtain with (22) for all k 6= i ≤ r

i < r din(yr) = din(yr−1) · din ◦ srn−1(z) = din(yr−1) = xi

i = r drn(yr) = drn(yr−1) · drn ◦ srn−1(z) = drn(yr−1) · z−1 = drn(yr−1) · drn(yr−1)−1xr = xr. 2

Propositions 7.1.9 and 7.1.10 show that Kan complexes are abundant. Together with the coun-
terexamples in Example 7.1.8, they also provide an intuition what properties of an object are
required in order to obtain a Kan complex via a nerve construction. The Kan property requires
that the elements of the sets Sn are invertible in a certain sense.

Roughly speaking, as soon as one has a composition one can fill the inner horns. However, in
order to fill the outer horns, one needs to invert some (n − 1)-simplexes. This is possible for
nerves of topological spaces, due to the invertibility of paths, and for simplicial groups, as their
elements are invertible by definition. It cannot be done for an ordered combinatorial complex
or the standard n-simplex in SSet, because it creates problems with the ordering.

The following theorem confirms this intuition and provides additional motivation for Kan com-
plexes, as well as a reason to weaken this concept eventually.
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Theorem 7.1.11:

1. A simplicial set S is isomorphic to the nerve N(C) of a small category C if and only if
every inner horn on S has a unique filler.

2. A simplicial set S is isomorphic to the nerve N(G) of a groupoid G if and only if every
n-horn on S with n ≥ 2 has a unique filler.

3. The nerve of a small category C is a Kan complex, if and only if C is a groupoid.

Proof:
1.1 Let S = N(C) be the nerve of a small category C and α : Λk

n ⇒ S with k ∈ {1, ..., n− 1} an
inner horn on S.

By Remark 7.1.5, 3. the inner horn α is given by a collection (x0, ..., xk−1, xk+1, ..., xn) of points
xi = αn−1(δin) ∈ N(C)n−1 with din−1(xj) = dj−1

n−1(xi) for all 0 ≤ i < j ≤ n, i, j 6= k.

By Lemma 5.4.1 the elements in N(C)n−1 are sequences of n−1 composable morphisms in C, and
the boundary operators din are given by composing two consecutive morphisms for 1 ≤ i ≤ n−2
or removing the first and last morphism, respectively, for i = 0 and i = n − 1. The condition
din−1(xj) = dj−1

n−1(xi) for all 0 ≤ i < j ≤ n − 1, i, j 6= k then implies that there are objects
C0, ..., Cn ∈ ObC and morphisms fi : Ci−1 → Ci such that

x0 = αn−1(δ0
n) = C1

f2−→ . . .
fn−→ Cn

xi = αn−1(δin) = C0
f1−→ . . .

fi−1−−→ Ci−1
fi+1◦fi−−−−→ Ci+1

fi+2−−→ . . .
fn−→ Cn 0 ≤ i ≤ n, i 6= k

The Yoneda lemma states that a simplicial map β : ∆n ⇒ N(C) is determined uniquely by
y = βn(1[n+1]) ∈ N(C)n, and the unique horn filler y with din(y) = xi for all 0 ≤ i ≤ n, i 6= k is

y = C0
f1−→ C1

f2−→ . . .
fn−1−−→ Cn−1

fn−→ Cn.

1.2. Suppose S : ∆op → Set is a simplicial set in which every inner horn has a unique filler.

1.2.(a) We construct a small category C with N(C) ∼= S. This is analogous to the construction
of the homotopy category h(S) from Definition 5.4.4, but with the composition of morphisms
given by horn fillers:

• ObC = S0,
• MorC = S1 with elements y ∈ S1 as morphisms y : d1

1(y)→ d0
1(y),

• identity morphisms 1x = s0
0(x) for x ∈ S0 = ObC,

• the composition of morphisms x0, x2 ∈ S1 with d0
1(x2) = d1

1(x0) given by x0 ◦ x2 = d1
2(z),

where z ∈ S2 is the unique horn filler for (x0, x2).

The composition of morphisms defined this way has the right source and target. To show that C
is a category, it remains to check (i) that 1x = s0

0(x) for x ∈ S0 is indeed an identity morphism
and (ii) the associativity of the composition.

(i) For a morphism x : d1
1(x)→ d0

1(x), the composites 1d0
1(x) ◦ x and x ◦ 1d1

1(x) are given by the

fillers of (s0
0 ◦ d0

1(x), x) and (x, s0
0 ◦ d1

1(x)), respectively. They are z = s1
1(x) and z′ = s0

1(x) with

d2
2(z) = d1

2(z)
(22)
= x d0

2(z) = d0
2 ◦ s1

1(x)
(22)
= s0

0 ◦ d0
1(x)

d0
2(z′) = d1

2(z′)
(22)
= x d2

2(z′) = d2
2 ◦ s0

1(x)
(22)
= s0

0 ◦ d1
1(x).
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This shows that 1d0
1(x) ◦ x = d1

2(z) = x and x ◦ 1d1
1(x) = d1

2(z′) = x.

(ii) To show associativity of the composition, consider composable morphisms x1 : s0 → s1,
x2 : s1 → s2 and x3 : s2 → s3 given by elements x1, x2, x3 ∈ S1 and s0, s1, s2, s3 ∈ S0. Let

• z012 ∈ S2 be the filler of the inner horn (x2, x1) with d0
2(z012) = x2, d2

2(z012) = x1,
• z123 ∈ S2 be the filler of the inner horn (x3, x2) with d0

2(z123) = x3, d2
2(z123) = x2,

• z023 ∈ S2 be the filler of (x3, d
1
2(z012)) with d0

2(z023) = x3 and d2
2(z023) = d1

2(z012),
• z013 ∈ S2 be the filler of (d1

2(z123), x1) with d0
2(z013) = d1

2(z123) and d2
2(z013) = x1.

x2 ◦ x1

x1 x2

s0 s2

s1

z012

x3 ◦ x2

x2 x3

s1 s3

s2

z123

x3 ◦ (x2 ◦ x1)

x2 ◦ x1 x3

s0 s3

s2

z023

(x3 ◦ x2) ◦ x1

x1 x2 ◦ x3

s0 s3

s1

z013

Then (z123, z023, z012) is a (2, 3)-horn as we have d0
2(z023) = d0

2(z123) and d0
2(z012) = d2

2(z123). This
is visualised by the following tetrahedron, whose top three faces are z012, z023 and z123.

s2

s0 s1

s3

x2

x3

x3 ◦ x2

x2 ◦ x1

x1

x3 ◦ (x2 ◦ x1)
z123z023

z012

0 1

3

2

(40)

This horn has a unique filler z ∈ S3 with d0
3(z) = z123, d1

3(z) = z023 and d3
3(z) = z012, and

d0
2 ◦ d2

3(z)
(22)
= d1

2 ◦ d0
3(z) = d1

2(z123) d2
2 ◦ d2

3(z)
(22)
= d2

2 ◦ d3
3(z) = d2

2(z012) = x1.

Thus, by uniqueness of the filler we have d2
3(z) = z013, and this yields

(x3 ◦ x2) ◦ x1 = d1
2(z013) = d1

2 ◦ d2
3(z)

(22)
= d1

2 ◦ d1
3(z) = d1

2(z023) = x3 ◦ (x2 ◦ x1).

The filler corresponds to the tetrahedron in (40), and the element z013 to its bottom face, which
is invisible in (40). The associated three-dimensional picture is
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x1

x2

x3

x3 ◦ (x2 ◦ x1)
(x3 ◦ x2) ◦ x1 =

x2 ◦ x1

x3 ◦ x2

s0

s1

s2

s3

1.2.(b) We construct a simplicial isomorphism φ : S ⇒ N(C):
The simplicial map φn : Sn → N(C)n assigns to s ∈ Sn the element C0

f1−→ . . .
fn−→ Cn ∈ N(C)n

given by Ci = S(πi)(s) ∈ S0 and fj = S(τj)(s) ∈ S1 for the morphisms

πi : [1]→ [n+ 1], 0 7→ i τj : [2]→ [n+ 1], 0 7→ j − 1, 1 7→ j 0 ≤ i ≤ n, 1 ≤ j ≤ n. (41)

That it is a simplicial map can be verified either by direct computations or by noting that it
defines a functor [n]′ → C for the associated poset category [n]′.

We show by induction that φ is a simplicial isomorphism. We have φ0 = idS0 : S0 → N(C)0 and
φ1 = idS1 : S1 → N(C)1 by definition of C. Suppose we already showed that φk : Sk → N(C)k
is bijective for 0 ≤ k ≤ n− 1. Then we have for 1 ≤ k ≤ n− 1 a commuting diagram

Sn ∼= HomSSet(∆
n, S)

β 7→β◦ι ∼=
��

α 7→φn◦α // HomSSet(∆
n, N(C)) ∼= N(C)n

β 7→β◦ι∼=
��

HomSSet(Λ
k
n, S)

γ 7→φn−1◦γ
// HomSSet(Λ

k
n, N(C))

in which the lower horizontal arrow is an isomorphism by the induction hypothesis. The ver-
tical arrows are isomorphisms, because every horn has a unique filler, which holds for S by
assumption and for the nerve N(C) by 1.1. This implies that the upper horizontal arrow is a
bijection as well.

2.(a) Let now S be a simplicial set such that every horn α : Λn
k ⇒ S with n ≥ 2 has a unique

filler. We show that every morphism in the category C from 1.2 has an inverse. For this, consider
a morphism x : d1

1(x)→ d0
1(x) given by x ∈ S1. Then the pair (s0

0 ◦d1
1(x), x) is a (0, 2)-horn and

the pair (x, s0
0 ◦ d0

1(x)) a (2, 2)-horn due to the identities

d1
1 ◦ s0

0 ◦ d1
1(x) = d1

1(x) d1
1 ◦ s0

0 ◦ d0
1(x) = d0

1(x).

Their unique fillers z and z′ define morphisms d0
2(z) : d0

1(x)→ d1
1(x) and d2

2(z′) : d1
1(x)→ d0

1(x)
with d2

2(z) ◦ x = 1d1
1(x) and x ◦ d1

2(z′) = 1d0
1(x).
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d1
2(z) = 1d1

1(x)

x = d2
2(z) d0

2(z)

d1
1(x) d1

1(x)

d0
1(x)

z

d1
2(z′) = 1d0

1(x)

d2
2(z′) x = d0

2(z′)

d0
1(x) d0

1(x)

d1
1(x)

z′

Thus every morphism f : C → C ′ in C has a left and right inverse. A standard argument then
shows that the left and right inverses are equal: for g, h : C ′ → C with g◦f = 1C and f ◦h = 1C′
one has g = g ◦ 1C′ = g ◦ f ◦ h = 1C ◦ h = h.

2.(b) Suppose that S = N(G) is the nerve of a groupoid G. Then an outer horn α : Λ0
2 ⇒ N(G)

is given by a pair (g, f1) and an outer horn β : Λ2
2 ⇒ N(G) by a pair (f2, h) of morphisms with

the unique horn fillers z and z′ as shown below

g = d1
2(z)

f1 = d2
2(z) g ◦ f−1

1 = d0
2(z)

C0 C2

C1

z

h = d1
2(z′)

f−1
2 ◦ h = d2

2(z′) f2 = d0
2(z′)

C0 C2

C1

z′

z = C0
f1−→ C1

g◦f−1
1−−−→ C2 z′ = C0

f−1
2 h
−−−→ C1

f2−→ C2

The horn fillers for horns α : Λ0
n ⇒ N(G) and β : Λn

n ⇒ N(G) for n > 2 are defined analogously.

Horn fillers for the outer horns α : Λ0
1 ⇒ N(C) or β : Λ1

1 ⇒ C are simply morphisms f : x→ y
in C from or to the given object in the horn. They exist for any category C, as one can take the
identity morphisms, but they are in general non-unique. 2

7.2 Simplicial homotopy groups

In this section we generalise homotopy groups from topological spaces to Kan complexes. We
will see that the Kan condition is needed to ensure that being simplicially homotopic is an
equivalence relation. This does not hold for general simplicial maps by Remark 6.2.6, 2.

The general idea is to replace continuous maps f : [0, 1]×n → X with f(∂[0, 1]×n) = {x} in a
pointed topological space (x,X) by simplicial maps α : ∆n ⇒ X from the standard n-simplex
∆n = Hom(−, [n + 1]) to a Kan complex X and homotopies by simplicial homotopies. This
requires the notion of a simplicial basepoint and a simplicial homotopy relative to ∂∆n.

We start by generalising the notion of a basepoint. A choice of a point x ∈ X in a topological
space X is equivalent to the choice of a continuous map f : {•} → X, where {•} is the
terminal object in Top. To generalise this to simplicial sets, we consider the terminal object
T : ∆op → Set in SSet and simplicial maps α : T ⇒ X.

As limits in functor categories are pointwise by Proposition 2.3.2, the terminal simplicial set
T : ∆op → Set is given by singleton sets Tn = {tn} for all n ∈ N0. A simplicial map ? : T ⇒ X is
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given by a collection of points ?n = ?n(tn) ∈ Xn satisfying din(?n) = ?n−1 and sin(?n) = ?n+1 for
all n ∈ N0 and 0 ≤ i ≤ n. Thus, specifying a simplicial map ? : T ⇒ X amounts to specifying
an element ? = ?0 ∈ S0 and setting ?n = s0

n−1 ◦ . . . ◦ s0
0(?0) for all n ∈ N0.

Definition 7.2.1: A pointed Kan complex (?,X) is a Kan complexX : ∆op → Set together
with a simplicial map ? : T ⇒ X, the basepoint, given by a collection of points ?n ∈ Xn with
X(τ)(?m) = ?n for all monotonic maps τ : [n+ 1]→ [m+ 1].

Given this definition of a pointed Kan complex, it is plausible to replace continuous maps
f : [0, 1]×n → X with f(∂[0, 1]×n) = {x} for a pointed topological space (x,X) by simplicial
maps α : ∆n ⇒ X with α(τ) = ?m for all elements τ ∈ ∂∆n

m ⊂ ∆n
m.

By the Yoneda lemma, simplicial maps α : ∆n ⇒ X are in bijection with elements x ∈ Xn and
are given by αm(ρ) = X(ρ)(x) for all monotonic maps ρ : [m + 1] → [n + 1]. The condition
α(τ) = ?m for τ ∈ ∂∆n

m translates into the condition din(x) = X(δin)(x) = ?n−1 for all 0 ≤ i ≤ n.
For a point x ∈ Xn with din(x) = ?n−1 for 0 ≤ i ≤ n we denote by x̄ : ∆n ⇒ X the associated
simplicial map with x̄m(ρ) = X(ρ)x for all monotonic maps ρ : [m+ 1]→ [n+ 1].

In analogy with the continuous homotopies relative to ∂[0, 1]×n from Theorem 6.1.5, we then
define a simplicial homotopy relative to ∂∆n from x̄ : ∆n ⇒ X to x̄′ : ∆n ⇒ X as a simplicial
homotopy h : x̄V x̄′ in the sense of Definitions 6.2.3 and 6.2.4 such that the associated maps
hm : ∆n

m → Xm+1 satisfy an appropriate boundary condition on ∂∆n
m.

Definition 7.2.2: Let (?,X) be a pointed Kan complex and x̄, x̄′ : ∆n ⇒ X the simplicial
maps defined by elements x, x′ ∈ Xn with din(x) = din(x′) = ?n−1 for all 0 ≤ i ≤ n.

A homotopy relative to ∂∆n from x̄ to x̄′ is a simplicial homotopy h : x̄V x̄′ that satisfies
him(τ) = ?m+1 for all m ∈ N0, 0 ≤ i ≤ m and τ ∈ ∂∆n

m.

If there is a homotopy relative to ∂∆n from x̄ to x̄′, then x, x′ are called homotopic, x ∼ x′.

This notion of relative simplicial homotopy is conceptual and a direct generalisation of the
corresponding concept for continuous maps in Theorem 6.1.5. However, it is rather abstract and
difficult to work with. We need a definition that gives the same notion of simplicial homotopy
relative to ∂∆n but is formulated entirely in terms of elements of the sets Xn. This is given by
the following definition, which also makes it easier to show that being simplicially homotopic
is an equivalence relation.

Definition 7.2.3: Let (?,X) be a pointed Kan complex and x, x′ ∈ Xn elements satisfying
din(x) = din(x′) = ?n−1 for 0 ≤ i ≤ n. Then x and x′ are called homotopic, x ∼ x′, if there is a
y ∈ Xn+1, a homotopy from x to x′, with

dn+1(y) := (d0
n+1(y), . . . , dn+1

n+1(y)) = (?n, . . . , ?n, x, x
′).

Lemma 7.2.4: Being homotopic in the sense of Definition 7.2.3 is equivalence relation.
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Proof:
1. x ∼ x: For every x ∈ Xn with din(x) = ?n−1 for 0 ≤ i ≤ n, the element y = snn(x) is a
homotopy from x to x, as (22) implies

din+1 ◦ snn(x) = sn−1
n−1 ◦ din(x) = sn−1

n−1(?n−1) = ?n 0 ≤ i ≤ n− 1, dnn+1 ◦ snn(x) = dn+1
n+1 ◦ snn(x) = x.

2. x ∼ x′ ∧ x ∼ x′′ ⇒ x′ ∼ x′′: Suppose y ∈ Xn+1 is a homotopy from x to x′ and y′ ∈ Xn+1 a
homotopy from x to x′′. Then the (n+ 2)-tuple

w = (w0, . . . , wn+1) = (?n+1, ..., ?n+1, y, y
′),

is an (n+ 2, n+ 2)-horn on X, as we have

din+1(wj) = ?n = dj−1
n+1(wi) 0 ≤ i < j ≤ n− 1

dn−1
n+1(wi) = ?n = din+1(y) = din+1(wn) 0 ≤ i ≤ n− 1

dnn+1(wi) = ?n = din+1(y′) = din+1(wn+1) 0 ≤ i ≤ n− 1

dnn+1(wn+1) = dnn+1(y′) = x = dnn+1(y) = dnn+1(wn).

By the Kan condition, there is a filler z ∈ Xn+2 with

dn+2(z) = (?n, ..., ?n, y, y
′, dn+2

n+2(z)),

and dn+2
n+2(z) ∈ Xn+1 is a homotopy from x′ to x′′, as we have with (22) for 0 ≤ i ≤ n− 1

din+1 ◦ dn+2
n+2(z)

(22)
= dn+1

n+1 ◦ din+2(z) = dn+1
n+1(?n+1) = ?n 0 ≤ i ≤ n− 1

dnn+1 ◦ dn+2
n+2(z)

(22)
= dn+1

n+1 ◦ dnn+2(z) = dn+1
n+1(y) = x′

dn+1
n+1 ◦ dn+2

n+2(z)
(22)
= dn+1

n+1 ◦ dn+1
n+2(z) = dn+1

n+1(y′) = x′′.

3. x ∼ x′ ⇒ x′ ∼ x: Suppose x ∼ x′. By 1. we also have x ∼ x, and 2. implies x′ ∼ x. 2

The proof of Lemma 7.2.4 shows why homotopy is defined for pointed Kan complexes rather
than pointed simplicial sets. The Kan condition guarantees that simplicial homotopy in the
sense of Definition 7.2.3 is an equivalence relation. While reflexivity holds for any pointed
simplicial set, the composition of homotopies is achieved with horn fillers.

We are now ready to show that being homotopic in the sense of Definition 7.2.3 agrees with
being homotopic in the sense of Definition 7.2.2.

Lemma 7.2.5: Let (?,X) be a pointed Kan complex and x, x′∈Xn with din(x)=din(x′) = ?n−1

for 0 ≤ i ≤ n. Then x and x′ are homotopic in the sense of Definition 7.2.2 if and only if they
are homotopic in the sense of Definition 7.2.3.

Proof:
1. Let x, x′ ∈ Xn be homotopic in the sense of Definition 7.2.3 and let y ∈ Xn+1 be an element
with dn+1(y) = (?n, ..., ?n, x, x

′). We define a homotopy h : x̄ V x̄′ by specifying the maps
him : ∆n

m → Xm+1 as in Definition 6.2.4 with him(τ) = ?m+1 for all τ ∈ ∆n
m.
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This condition already defines him on all non-surjective monotonic maps τ : [m + 1] → [n + 1]
by Remark 7.1.3, 2. We can use the relations involving the degeneracies in (34) to define it on
the degeneracies, and it remains to define it on the identity morphism 1[n+1], where we set

hin(1[n+1]) = sin(x) 0 ≤ i < n, hnn(1[n+1]) = y.

Then we have

d0
n+1 ◦ h0

n(1[n+1]) = d0
n+1 ◦ s0

n(x) = x = x̄(1[n+1]) dn+1
n+1 ◦ hnn(1[n+1]) = dn+1

n+1(y) = x′ = x̄′(1[n+1])

djn+1 ◦ hjn(1[n+1]) = djn+1 ◦ sjn(x)
(22)
= dj+1

n+1 ◦ sjn(x) = dj+1
n+1 ◦ hjn(1[n+1])

din+1 ◦ hjn(1[n+1]) = din+1 ◦ sjn(x)
(22)
= ?n i 6= j, j + 1 hjn−1 ◦ din = ?n,

which shows that the relations on the degeneracies in (34) are satisfied. Thus, the maps hjn
define a homotopy from x̄ to x̄′ in the sense of Definition 6.2.4 relative to ∂∆n and hence a
homotopy in the sense of Definition 7.2.2.

2. To prove that being homotopic in the sense of Definition 7.2.2 implies being homotopic in
the sense of Definition 7.2.3, we use the following auxiliary statement:

If u, v ∈ Xn with din(u) = din(v) = ?n−1 for all i = 0, ..., n and there is an element z ∈ Xn+1

with u = dkn+1(z), v = dk+1
n+1(z) and din+1(z) = ?n for all i /∈ {k, k + 1} and some k ∈ {0, ..., n},

then u, v are homotopic in the sense of Definition 7.2.3.

To prove this, note that the element (?n+1, ..., ?n, s
k+1
n+1(v), z, skn(v), ?n, ..., ?n) is a (k, n+ 1)-horn

by the assumptions on u, v, z and by (22). As X is a Kan complex, it has a filler w ∈ Xn+2 with

dn+2(w) = (?n+1, ..., ?n+1, d
k
n+2(w), sk+1

n+1(v), z, skn+1(v), ?n+1, ..., ?n+1).

By applying the simplicial relations (22), one finds that the element z′ = dkn+2(w) satisfies
din+1(z′) = ?n for i 6= k + 1, k + 2 as well as dk+1

n (z′) = u and dk+2
n (z′) = v. Iterating this

procedure finally yields an element t ∈ Xn+1 with dnn+1(t) = u, dn+1
n+1(t) = v and din+1(t) = ?n

for all 0 ≤ i ≤ n− 1, a homotopy from u to v in the sense of Definition 7.2.3.

3. Let now h : x̄ V x̄′ be a simplicial homotopy relative to ∂∆n in the sense of Definition
7.2.2. Then the associated maps him : ∆n

m → Xm+1 satisfy (34) and him(τ) = ?m+1 for all
non-surjective monotonic maps τ : [m+ 1]→ [n+ 1]. We set

yi = hin(1[n+1]) ∈ Xn+1 0 ≤ i ≤ n.

The relations (34) then imply d0
n+1(y0) = x, dn+1

n+1(yn) = x′. Together with (22) and some
additional computations they yield

di+1
n+1(yi+1) = di+1

n+1 ◦ hi+1
n (1[n+1])

(34)
= di+1

n+1 ◦ hin(1[n+1]) = di+1
n+1(yi) (42)

djn ◦ di+1
n+1(yi) = djn ◦ din+1(yi) = 0 0 ≤ i, j,≤ n

djn+1(yi) = ?n j /∈ {i, i+ 1}.

To construct a homotopy from x to x′ in the sense of Definition 7.2.3, we apply 2. to the
elements z = yi ∈ Xn+1. This yields din+1(yi) ∼ di+1

n+1(yi) for all i = 0, . . . , n− 1, and we obtain
a chain of homotopies in the sense of Definition 7.2.3

x = d0
n+1(y0) ∼ d1

n+1(y0)
(42)
= d1

n+1(y1) ∼ . . . ∼ dnn+1(yn−1)
(42)
= dnn+1(yn) ∼ dn+1

n+1(yn) = x′.
2
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This establishes that the two notions of simplicial homotopy relative to ∂∆n in Definitions 7.2.2
and 7.2.3 agree. In particular, it shows that for each pointed Kan complex (?,X), simplicial
homotopy relative to ∂∆n in the sense of Definition 7.2.2 is an equivalence relation on the set
of simplicial maps x̄ : ∆n ⇒ X with x̄m(τ) = ?m for all τ ∈ ∆n

m.

This is a more general pattern that also holds for simplicial homotopies in the sense of Definition
6.2.4 that are not defined relative to a boundary or restricted to simplicial maps x̄ : ∆n ⇒ X.

Remark 7.2.6: If X is a Kan complex, then for all simplicial sets S, homotopy of simplicial
maps α : S ⇒ X is an equivalence relation on the set HomSSet(S,X).

Proof:
As the proof is lengthy and requires more preparation, we will not prove this result. A proof
can be found in [M, Chapter 1.6], Corollary 6.11, and a more modern one in [GJ, Chapter 1.6],
see in particular Corollary 6.2. 2

With the notion of simplicial homotopy from Definitions 7.2.2 and 7.2.3 we can define path
components of a Kan complex X and homotopy groups of a pointed Kan complex (?,X).

For the former, we simply define a path in X from x ∈ X0 to x′ ∈ X0 as a homotopy from x to
x′ in the sense of Definition 7.2.3 or, equivalently, as a homotopy from the constant simplicial
map x̄ : ∆0 ⇒ X to x̄′ : ∆0 ⇒ X in the sense of Definition 7.2.2. In this case, the basepoints
in Definitions 7.2.2 and 7.2.3 play no role and can be omitted. The proof of Lemma 7.2.4
generalises to n = 0. Hence, being connected by a path is an equivalence relation on X0.

Definition 7.2.7: Let X be a Kan complex.

1. A path in X from x ∈ X0 to x′ ∈ X0 is an element z ∈ X1 with

d1(z) = (d0
1(z), d1

1(z)) = (x, x′).

2. The path component of x ∈ X0 is the set

π0(x) = {x′ ∈ X0 | ∃z ∈ X1 with d1(z) = (x, x′)}.

3. The set of path components of X is π0(X) = {π0(x) | x ∈ X}.

For the counterparts of the homotopy groups in Theorem 6.1.5 we need to replace the group
multiplication in Theorem 6.1.5 by a suitable multiplication of homotopy classes of simplicial
maps relative to the boundary. As this must be compatible with the composition of simplicial
homotopies in the proofs of Lemmas 7.2.4 and 7.2.5, we must define it via horn fillers:

For points x, y ∈ Xn with din(x) = din(y) = ?n−1 for all 0 ≤ i ≤ n, we consider the (n, n+1)-horn
(?n, ..., ?n, x, y). Its filler replaces the concatenation of maps f : [0, 1]×n → X in Theorem 6.1.5.

Definition 7.2.8: Let (?,X) be a pointed Kan complex and n ∈ N.

The nth homotopy group of X with basepoint ? ∈ K0 is the set

πn(?,X) = {x ∈ Xn | din(x) = ?n−1 ∀i = 0, ..., n}/ ∼

with the multiplication [x] · [y] = [dnn+1(z)], where z ∈ Xn+1 is a filler of (?n, . . . , ?n, x, y):

dn+1(z) := (d0
n+1(z), . . . , dn+1

n+1(z)) = (?n, . . . , ?n, x, d
n
n+1(z), y)
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Similarly to Theorem 6.1.5 one can show that the homotopy groups of a pointed Kan complex
are indeed groups and abelian for n ≥ 2. This requires some computations with horn fillers that
replace the corresponding computations for the concatenation of maps in the proof of Theorem
6.1.5. Although the concrete computations are different, the arguments are directly analogues
of the ones in the proof of Theorem 6.1.5.

Theorem 7.2.9: Let (?,X) be a pointed Kan complex.

1. For all n ∈ N the nth homotopy group πn(?,X) is a group.

2. It is abelian for n ≥ 2.

Proof:
1.(a) We show that the group multiplication is well-defined:

• As the element dnn+1(z) satisfies din ◦ dnn+1(z) = dn−1
n ◦ din+1(z) = ?n−1 for 0 ≤ i ≤ n − 1 and

dnn ◦ dnn+1(z) = dnn ◦ dn+1
n+1(z) = dnn(y) = ?n−1, we have [dnn+1(z)] ∈ πn(?,X).

• The equivalence class [dnn+1(z)] does not depend on the choice of z:

Suppose that x, y ∈ Xn with din(x) = din(y) = ?n−1 for i = 0, . . . , n and z, z′ are fillers of the
(n, n+ 1)-horn (?n, ..., ?n, x, y). Then a direct computation with (22) shows that they form an
(n, n+ 2)-horn (?n+1, ..., ?n+1, s

n
n ◦ dn−1

n+1(z), z, z′), which has a filler w ∈ Xn+2:

dn+2(w) = (?n, ..., ?n, s
n
n ◦ dn−1

n+1(z), dnn+2(w), z, z′).

Then dnn+2(w) is a homotopy from dnn+1(z) to dnn+1(z′), as one has for 0 ≤ i ≤ n− 1 with (22)

din+1 ◦ dnn+2(w) = dn−1
n+1 ◦ din+2(w) = ?n = sn−1

n−1 ◦ dn−1
n ◦ din+1(z) = sn−1

n−1 ◦ din ◦ dnn+1(z)

dnn+1 ◦ dnn+2(w) = dnn+1 ◦ dn+1
n+2(w) = dnn+1(z) dn+1

n+1 ◦ dnn+2(w) = dnn+1 ◦ dn+2
n+2(w) = dnn+1(z′),

and this implies [dnn+1(z)] = [dnn+1(z′)].

• [dnn+1(z)] does not depend on the choice of the representatives x, y ∈ Xn:

Let x, y, y′ ∈ Xn with din(x) = din(y) = din(y′) = ?n−1 for i = 0, . . . , n and suppose that y ∼ y′.
Then there is a w ∈ Xn+1 with dn+1(w) = (?n, ..., ?n, y

′, y). Let z′ ∈ Xn+1 be a filler of the
(n, n+1)-horn (?n, ..., ?n, x, y

′). Then a direct computation with the definitions and the relations
(22) shows that we have an (n+ 1, n+ 2)-horn (?n+1, ..., ?n+1, s

n−1
n (x), z′, w), which has a filler

u ∈ Xn+2 by the Kan condition

dn+2(u) = (?n+1, ..., ?n+1, s
n−1
n (x), z′, dn+1

n+2(u), w).

Then z := dn+1
n+2(u) ∈ Xn+1 is a filler of the (n, n + 1)-horn (?n, ..., ?n, x, y) that satisfies the

condition dnn+1(z) = dnn+1(z′), as we get with (22)

din+1(z) = din+1 ◦ dn+1
n+2(u) = dnn+1 ◦ din+2(u) = ?n 0 ≤ i ≤ n− 2

dn−1
n+1(z) = dn−1

n+1 ◦ dn+1
n+2(u) = dnn+1 ◦ dn−1

n+2(u) = dnn+1 ◦ sn−1
n (x) = x

dnn+1(z) = dnn+1 ◦ dn+1
n+2(u) = dnn+1 ◦ dnn+2(u) = dnn+1(z′)

dn+1
n+1(z) = dn+1

n+1 ◦ dn+1
n+2(u) = dn+1

n+1 ◦ dn+2
n+2(u) = dn+1

n+1(w) = y.

This shows that [x] · [y] does not depend on the choice of the representative y. An analogous
argument shows that it does not depend on the choice of the representative x.
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1.(b) We show that πn(?,X) is a group:

• The neutral element is [?n]:

For every x ∈ Xn with din(x) = ?n−1 for i = 0, . . . , n, the element z = snn(x) ∈ Xn+1 is filler of the
(n, n+1)-horn (?n, ..., ?n, ?n, x) with dnn+1 ◦snn(x) = x, and this implies [?] · [x] = [dnn+1(z)] = [x].
Likewise, the element z′ = sn−1

n (x) ∈ Xn+1 is a filler of the (n, n+ 1)-horn (?n, ..., ?n, x, ?n), and
this implies [x] · [?n] = [dnn+1(z)] = [x].

• Existence of inverses:

For every element x ∈ Xn with din(x) = ?n−1 for i = 0, ..., n the (n − 1, n + 1)-horn
(?n, ..., ?n, ?n, x) and the (n+ 1, n+ 1)-horn (?n, ..., ?n, x, ?n) have fillers z, z′ ∈ Xn+1 with

dn+1(z) = (?n, ..., ?n, d
n−1
n+1(z), ?n, x) dn+1(z′) = (?n, ..., ?n, x, ?n, d

n+1
n+1(z′))

These are also fillers of the (n, n + 1)-horns (?n, ..., ?n, d
n−1
n+1(z), x) and (?n, ..., ?n, x, d

n+1
n+1(z′)),

respectively, and hence [dn−1
n+1(z)] · [x] = [dnn+1(z)] = [?n] and [x] · [dn+1

n+1(z′)] = [dnn+1(z′)] = [?n].

• Associativity:

Let x, y, z ∈ Xn with din(x) = din(y) = din(z) = ?n−1 for i = 0, . . . , n and choose fillers

• p ∈ Xn+1 of the (n, n+ 1)-horn (?n, ..., ?n, x, y),
• q ∈ Xn+1 of the (n, n+ 1)-horn (?n, ..., ?n, y, z),
• u ∈ Xn+1 of the (n, n+ 1)-horn (?n+1, ..., ?n+1, d

n
n+1(p), z),

• v ∈ Xn+2 of the (n, n+ 2)-horn (?n+1, ..., ?n+2, p, u, q).

Then we have dn+2(v) = (?n+1, ..., ?n+1, p, d
n
n+2(v), u, q), and dnn+2(v) ∈ Xn+1 is a filler of the

(n, n+ 1)-horn (?n, ..., ?n, x, d
n
n+1(q)), as (22) implies

din+1 ◦ dnn+2(v) = dn−1
n+1 ◦ din+2(v) = ?n 0 ≤ i ≤ n− 2,

dn−1
n+1 ◦ dnn+2(v) = dn−1

n+1 ◦ dn−1
n+2(v) = dn−1

n+1(p) = x,

dn+1
n+1 ◦ dnn+2(v) = dnn+1 ◦ dn+2

n+2(v) = dnn+1(q).

This proves that the multiplication is associative:

[x] · ([y] · [z]) = [x] · [dnn+1(q)] = [dnn+1 ◦ dnn+2(v)]
(22)
= [dnn+1 ◦ dn+1

n+2(v)] = [dnn+1(u)] = [dnn+1(p)] · [z]

= ([x] · [y]) · [z].

2. We show that πn(?,X) is abelian for n ≥ 2.

Let n ≥ 2 and w, y ∈ Xn with din(w) = din(y) = ?n−1 for i = 0, ..., n. The claim follows from
the auxiliary identities

tn+1 ∈ Xn+1 with dn+1(t) = (?n, ..., ?n, w, x, y, ?n) ⇒ [y] · [w] = [x] (43)

un ∈ Xn+1 with dn+1(un) = (?n, ..., ?n, w, ?n, y, z) ⇒ [w] · [y] = [z] (44)

v ∈ Xn+1 with dn+1(v) = (?n, ..., ?n, w, x, y, z) ⇒ [x] · [z] = [w] · [y] (45)

for all w, x, y, z ∈ Xn with din(w) = din(x) = din(y) = din(z) = ?n−1 for i = 0, ..., n. By extending
the (n− 1, n+ 1)-horn (?n, ...., ?n, w, y, ?n), one obtains an element tn+1 with

dn+1(tn+1) = (?n, ...., ?n, w, x, y, ?n) x = dn−1
n+1(tn+1).
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This implies [x] = [y] · [w] by (43) and [x] = [w] · [y] by (45) and proves that πn(?,X) is abelian.

We prove the auxiliary identities (43) to (45):

• Proof of (43):
Let tn+1 as in (43) and tn−1 ∈ Xn+1 the filler of the (n− 1, n+ 1)-horn (?n, ..., ?n, x, w)

dn+1(tn−1) = (?n, ..., ?n, ?n, q, x, w) q = dn−1
n+1(un+1). (46)

Then direct computations with the definitions of q, tn+1, tn−1 and the relations (22) show that
(?n+1, ..., ?n+1, s

n
n(w), tn−1, tn+1, s

n−2
n (w)) is an (n, n+ 2)-horn and has a filler t ∈ Xn+2

dn+2(t) = (?n+1, ..., ?n+1, s
n
n(w), tn−1, tn, tn+1, s

n−2
n (w)) tn = dnn+2(t).

Applying again the relations (22) shows that dn+1(tn) = (?n, ..., ?n, q, y, ?n), which implies
[q] · [?n] = [q] = [y] by definition of the multiplication in πn(?,X). Likewise, equation (46)
implies [q] · [w] = [y] · [w] = [x].

• Proof of (44):
Let un be as in (44) and and un−1 ∈ Xn+1 the filler of the (n, n+ 1)-horn (?n, ..., ?n, w, ?n, ?n)

dn+1(un−1) = (?n, ..., ?n, w, ?n, r, ?n) r = dnn+1(un−1). (47)

Then direct computations with the definition of un−1, un, r and relations (22) show that
(?n+1, ..., ?n+1, s

n−2
n (w), un−1, un, s

n
n(z)) is an (n+ 1, n+ 2)-horn and has a filler u ∈ Xn+2

dn+2(u) = (?n+1, ..., ?n+1, s
n−2
n (w), un−1, un, un+1, s

n
n(z)) un+1 = dn+1

n+2(u).

Applying again the relations (22) one finds that dn+1(un+1) = (?n, ..., ?n, r, y, z), and this implies
[r] · [z] = [y]. Applying (43) to (47) yields [r] · [w] = [?n] and hence [r] = [w]−1 and [z] = [y] · [w].

• Proof of (45):
Let vn+2 ∈ Xn+2 be as in (45) and vn−2 ∈ Xn+1 a filler of the (n− 2, n+ 1)-horn (?n, ..., ?n, w)

dn+1(vn−2) = (?n, ..., ?n, p, ?n, ?n, w) p = dn−2
n+1(vn+2). (48)

Choose a filler vn−1 ∈ Xn+1 of the (n, n+ 1)-horn (?n, ..., ?n, p, ?n, x)

dn+1(vn−1) = (?n, ..., ?n, p, ?n, s, x) s = dnn+1(vn−1). (49)

By applying the definition of vn−2, vn−1, vn+2 and some computations with relations (22) one
finds that (?n, ..., ?n, vn−2, vn−1, s

n
n(y), vn+2) is an (n+ 1, n+ 2)-horn and has a filler v ∈ Xn+2

dn+2(v) = (?n+1, ..., ?n+1, vn−2, vn−1, s
n
n(y), vn+1, vn+2) vn+1 = dn+1

n+2(v).

With relations (22) one finds dn+1(vn+1) = (?n, ..., ?n, ?n, s, y, z), which implies [s] · [z] = [y] by
definition of the multiplication in πn(?,X). Applying (44) to (48) yields [p] · [?n] = [p] = [w],
and applying (44) to (49) yields [p] · [s] = [x]. Hence, we have [w] · [s] = [x] and [s] · [z] = [y],
which implies [x] · [z] = [w] · [y]. 2

We thus generalised the homotopy groups of pointed topological spaces to simplicial homotopy
groups of pointed Kan complexes. It remains to investigate their behaviour under simplicial
maps that preserve the basepoints.
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In Theorem 6.1.8 we showed that the homotopy groups of pointed topological spaces (x,X)
define a functor πn : Top∗ → Grp that depends only on the homotopy classes of basepoint
preserving maps: πn(f) = πn(g) for all continuous maps f, g : X → X ′ with f ∼ g.

One thus expects an analogous statement for the simplicial homotopy groups of pointed Kan
complexes. For this, we consider the category Kan∗ with

• pointed Kan complexes (?,X) as objects,
• simplicial maps α : X ⇒ X ′ with αn(?n) = ?′n for all n ∈ N0 as morphisms.

In fact, it is sufficient to impose that the simplicial maps satisfy α0(?0) = ?′0, as we have
X(τ)(?n) = ?m and X ′(τ)(?′n) = ?′m for all monotonic maps τ : [m+ 1]→ [n+ 1]. We call such
simplicial maps basepoint preserving.

We also need a notion of basepoint preserving homotopy h : α V β between basepoint pre-
serving simplicial maps α, β : (?,X) ⇒ (?′, X ′). We define this as a homotopy h : α V β in
the sense of Definition 6.2.4 such that the maps hin : Xn → X ′n+1 satisfy hin(?n) = ?′n+1 for all
n ∈ N0 and 0 ≤ i ≤ n. These definitions yield a simplicial counterpart of Theorem 6.1.8.

Theorem 7.2.10:

1. For all n ∈ N the nth homotopy group defines a functor πn : Kan∗ → Grp.

2. If two basepoint preserving simplicial maps α, β : (?,X)⇒ (?′, X ′) are homotopic with a
basepoint preserving homotopy, then πn(α) = πn(β) for all n ∈ N0.

Proof:
1. We define the functor πn : Kan∗ → Grp on morphisms and to show that it is indeed functorial.

Let (?,X) and (?′, X ′) be pointed Kan complexes and α : X ⇒ X ′ a simplicial map with
α(?n) = ?′n for all n ∈ N0. We define the functor πn : Kan∗ → Grp on the morphisms by

πn(α) : πn(?,X)→ πn(?′, X ′), [x] 7→ [αn(x)].

This assignment is well-defined, as any homotopy y ∈ Xn+1 from x ∈ Xn to x′ ∈ Xn with

dn+1(y) = (sn−1
n−1 ◦ d0

n(x), ..., sn−1
n−1 ◦ dn−1

n (x), x, x′)

defines a homotopy αn+1(y) ∈ X ′n+1 from αn(x) to αn(x′)

dn+1 ◦ αn+1(y) = (d0
n+1 ◦ αn+1(y), ..., dn+1

n+1 ◦ αn+1(y)) = (αn ◦ d0
n+1(y), ..., αn ◦ dn+1

n+1(y))

= (αn(?n), ..., αn(?n), αn(x), αn(x′)) = (?′n, ..., ?
′
n, αn(x), αn(x′))

To see that this yields a group homomorphism, let x, y ∈ Xn with din(x) = din(y) = ?n−1 for all
i = 0, ..., n and let z ∈ Xn+1 be a filler of the (n, n+ 1)-horn (?n, ..., ?n, x, y)

dn+1(z) = (?n, ..., ?n, x, d
n
n+1(z), y).

Then we have [x] · [y] = [dnn+1(z)]. The image z′ = αn+1(z) is a filler of the (n, n + 1)-horn
(?n, ..., ?n, αn(x), αn(y)) with dnn+1(z′) = αn ◦ dnn+1(z), as we have

dnn+1 ◦ αn+1(z) = (d0
n+1 ◦ αn+1(z), ..., dn+1

n+1 ◦ αn+1(z)) = (αn ◦ d0
n+1(z), ..., αn ◦ dn+1

n+1(z))

= (αn(?n), ..., αn(?n), αn(x), αn(dnn+1(z)), αn(y))

= (?′n, ..., ?
′
n, αn(x), αn(dnn+1(z)), αn(y)).
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This shows that πn(α) : πn(?,X)→ πn(?′, X ′) is a group homomorphism:

πn(α)([x]) · πn(α)([y]) = [αn(x)] · [αn(y)] = [αn(dnn+1(z))] = πn(α)([dnn+1(z)]) = πn(α)([x] · [y]).

Then this defines a functor then follows directly from the identities

πn(α′) ◦ πn(α)[x] = πn(α′)[αn(x)] = [α′n(αn(x))] = [(α′ ◦ α)n(x)] = πn(α′ ◦ α)[x]

πn(idX)[x] = [idXn(x)] = [x]

for all basepoint preserving simplicial maps α : X ⇒ X ′, α′ : X ′ ⇒ X ′′ and x ∈ Xn.

2. Let now α, β : (?,X) ⇒ (?′, X ′) basepoint preserving simplicial maps and h : α V β a
basepoint preserving homotopy, given by maps hin : Xn → X ′n+1 with hn(?n) = ?′n+1 for all
n ∈ N0 and 0 ≤ i ≤ n that satisfy the identities in (34).

Let x ∈ Xn and x̄ : ∆n ⇒ X the associated simplicial map. Then by Remark 6.2.6, 1. the maps
hik ◦ x̄k : ∆n

k → X ′k+1 define a simplicial homotopy from α ◦ x̄ : ∆n ⇒ X ′ to β ◦ x̄ : ∆n ⇒ X ′.
As hik(?k) = ?′k+1, we have him ◦ x̄m(τ) = him(?m) = ?′m+1 for all τ ∈ (∂∆n)m, and this is a
homotopy relative to ∂∆n. With Lemma 7.2.5 this implies that αn(x) is homotopic to βn(x)
for all n ∈ N0 and hence πn(α)[x] = [αn(x)] = [βn(x)] = πn(β) for all n ∈ N. 2

To conclude our investigation of simplicial homotopy groups, we relate them to the simplicial
homologies from Section 5.5. By Proposition 5.5.5 that a simplicial object S : ∆op → R-Mod
defines a chain complex S•, its standard chain complex, with boundary operators

dn : Sn → Sn−1, s 7→ Σn
i=0(−1)idin(s).

The homologies of this chain complex are called the simplicial homologies of S.

Given a pointed Kan complex (?,X), we can construct a simplicial object in R-Mod by com-
posing the simplicial set X : ∆op → Set with the functor 〈 〉R : Set→ R-Mod that assigns to a
set M the free R-module 〈M〉R generated by M and to a map f : M → M ′ the R-linear map
〈f〉R : 〈M〉R → 〈M ′〉R given by f on the basis.

To relate the simplicial homotopy groups of (?,X) to its simplicial homologies, we need to
modify this construction slightly to take into account the basepoint. In each degree n we take
the quotient by the submodule 〈?n〉 generated by ?n ∈ Xn and write x+ ?n for the elements of
this quotient module. As din(?n) = ?n−1 for all n ∈ N, this defines a chain complex X?

• with

X?
n = 〈Xn〉R/〈?n〉 n ∈ N0

dn : X?
n → X?

n−1, x+ ?n 7→ Σn
i=0(−1)idin(x) + ?n.

We denote by Hn(X?, R) the homologies of X?
• . The relation between the homotopy groups

πn(?,X) and the homologies of X?
• is then given by Hurewicz’s Theorem. It can be viewed as a

generalisation of Hurewicz’s Theorem for topological spaces, which relates the homotopy group
of a pointed topological space to its singular homologies from Example 5.5.6, 1.

Theorem 7.2.11: (Hurewicz theorem)

Let (?,X) be a a pointed Kan complex and R a ring.

1. For all n ∈ N there is a group homomorphism, the Hurewicz map,

φn : πn(?,X)→ Hn(X?, R), [x]π 7→ [x]Hn .
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2. If πk(?,X) = {1} for all 0 ≤ k < n then this induces an isomorphism

πn(?,X) : Abπn(?,X)→ Hn(X?,Z).

Proof:
1.(a) We show that the maps φn : πn(?,X)→ Hn(x) are well-defined:

Suppose x, x′ ∈ Xn with din(x) = din(x′) = ?n−1 are homotopic in the sense of Definition 7.2.3.
Then there is a z ∈ Xn+1 with

din+1(z) = ?n 0 ≤ i ≤ n− 1, dnn+1(z) = x, dn+1
n+1(z) = x′.

This implies dn+1(z + ?n+1) = Σn+1
i=0 (−1)idin(z) + ?n = (−1)n+1(x′ − x) + ?n and hence

[x]H − [x′]H = [x− x′]H = (−1)n+1[dn+1(z)]H = 0.

1.(b) We show that the maps φn : πn(?,X)→ Hn(x) are group homomorphisms.

Let x, y ∈ Xn with din(x) = din(y) = ?n−1 and z ∈ Xn+1 a filler of the (n, n + 1)-horn
(?n, ..., ?n, x, y), which exists by the Kan condition

din+1(z) = ?n 0 ≤ i < n− 1, dn−1
n+1(z) = x, dn+1

n+1(z) = y.

Then [x]π · [y]π = [dnn+1(z)]π by the definition of the group multiplication in πn(?,X) and

dn+1(z + ?n+1) = Σn+1
i=0 (−1)idin+1(z) + ?n = (−1)n+1(x+ x′ − dnn+1(z)) + ?n

This implies [dnn+1(z)]H = [x]H + [y]H and

φn([x]π · [y]π) = φn([dnn+1(z)]π) = [dnn+1(z)]H = [x+ x′]H = [x]H + [x′]H = φn([x]π) + φn([y]π).

2. We will not prove this result, as it requires extensive preparations and more background. A
proof can be found in [M, Chapter II], Theorem 13.6, and in [GJ, Chapter III], Theorem 3.7. 2

7.3 Quasicategories

In the two preceding subsection, we encountered many examples of Kan complexes: singular
nerves of topological spaces (Proposition 7.1.9), simplicial sets arising from simplicial groups,
in particularly from simplicial modules (Proposition 7.1.10) and simplicial nerves of groupoids,
in particular of groups (Theorem 7.1.11). However, by Theorem 7.1.11, simplicial nerves of
categories are not covered in this setting. In this case, every inner horn has a filler, but not
necessarily the outer horns. This is a motivation to relax the Kan condition and require fillers
only for inner horns. This leads to the concept of a quasicategory or weak Kan complex.

However, there is a another important motivation to consider quasicategories, namely higher
categories. Higher categories have become very important research topic in the last twenty years
in algebra, topology and mathematical physics. A higher category has not only objects and mor-
phisms, often called 1-morphisms, but also 2-morphisms between 1-morphisms, 3-morphisms
between 2-morphisms and so on, up to a top degree n. Each new layer of morphisms comes with
an additional composition and new set of identity morphisms, subject to coherence axioms.

Examples of higher categories are abundant. Many of the structures encountered so far de-
fine higher categories. We formulate this precisely for bicategories, which involve objects, 1-
morphisms and 2-morphisms and two compositions.
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Definition 7.3.1: A bicategory B consists of

• a class of objects ObB,

• for each pair of objects X, Y ∈ ObB a category B(X, Y ), whose objects are called
morphisms or 1-morphisms and whose morphisms are called 2-morphisms of B,

• for each X ∈ ObB an object 1X ∈ B(X,X), the identity 1-morphism on X,

• for each triple of objects X, Y, Z ∈ ObB a functor ⊗Z,Y,X : B(Y, Z)×B(X, Y )→ B(X,Z),

• for each pair of objects X, Y natural isomorphisms, the left and right unitors,

λL(X,Y ) : (1Y⊗Y,Y,X idB(X,Y ))⇒ idB(X,Y ) λRX,Y : (idB(X,Y )⊗Y,X,X1X)⇒ idB(X,Y ),

• for each quadruple of objects W,X, Y, Z ∈ ObB a natural isomorphism, the associator,

aZ,Y,X,W : ⊗Z,X,W (⊗Z,Y,X × idB(X,W ))⇒ ⊗Z,Y,W (idB(Z,Y ) ×⊗Y,X,W )

such that the following conditions are satisfied

(B1) pentagon axiom: for all objects V,W,X, Y, Z ∈ ObB and 1-morphisms f ∈ B(Y, Z),
g ∈ B(X, Y ), h ∈ B(W,X), k ∈ B(V,W ) the following diagram commutes

((f⊗g)⊗h)⊗k
af,g,h⊗1k

��

af⊗g,h,k// (f⊗g)⊗(h⊗k)
af,g,h⊗k// f⊗(g⊗(h⊗k))

(f⊗(g⊗h))⊗k af,g⊗h,k
// f⊗((g⊗h)⊗k),

1f⊗ag,h,k

55
(50)

(B2) triangle axiom: for all objects X, Y, Z and 1-morphisms f ∈ B(Y, Z) and g ∈ B(X, Y )
the following diagram commutes

(f⊗1Y )⊗g
af,1Y ,g //

λRf ⊗1g &&

f⊗(1Y⊗g)

1f⊗λLgxx
f⊗g.

(51)

The composition⊗ is called horizontal composition and the composition in B(X, Y ) vertical
composition of B.

If the associators and unitors are trivial, one speaks of a strict bicategory or 2-category.

Example 7.3.2:

1. Small categories, functors and natural transformations form a 2-category CAT.

The vertical composition is the composition of natural transformations and the horizontal
composition given by the composition of functors and composition of functors with
natural transformations.

2. For every ring R chain complexes in R-Mod, chain maps between them and chain
homotopies form a 2-category.

The vertical composition is composition of chain homotopies from Remark 6.3.2, 1,
and the horizontal composition is given by the composition of chain maps and the
composition of chain maps and chain homotopies from Remark 6.3.2, 2.
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3. A bicategory with a single object is called a monoidal category and a 2-category with
a single object a strict monoidal category.

Monoidal categories arise from the representation theory of groups and, more generally,
Hopf algebras, such as (q-deformed) universal enveloping algebras of Lie algebras and
tensor algebras of vector spaces.

4. A crossed module (A,B,�, ∂) consists of groups A,B, a group action � : B×A→ A by
automorphisms and a group homomorphism ∂ : A→ B satisfying the Peiffer identities

∂(b� a) = b∂(a)b−1 ∂(a) � a′ = aa′a−1 ∀a, a′ ∈ A, b ∈ B.

Every crossed module defines a strict monoidal category, a 2-category with a single
object, with 1-morphisms given by elements of B and with 2-morphisms (a, b) : b→ ∂(a)b
for a ∈ A, b ∈ B. The horizontal composition is (a, b)⊗(a′, b′) = (a(b � a′), bb′) and the
vertical composition (a′, ∂(a)b) ◦ (a, b) = (aa′, b).

Examples arise from normal subgroups A ⊂ B with the inclusion ∂ = ι : A→ B and the
conjugation action � : B × A→ A, b� a = bab−1 of B on A.

5. For every topological space there is a 2-category Π2(X), whose
• objects are points x ∈ X,
• 1-morphisms γ : x→ x′ are paths γ : [0, 1]→ X with γ(0) = x and γ(1) = x′,
• 2-morphisms from γ : x→ x′ to γ′ : x→ x′ are homotopy classes relative to ∂[0, 1]×2

of homotopies from γ to γ′ relative to {0, 1}.

It is useful to compare the last example with the fundamental groupoid Π1(X) of a topo-
logical space, which has points x ∈ X as objects and homotopy classes of paths relative to
the endpoints as morphisms. There, the composition of paths is strictly associative and unital,
whereas in the fundamental 2-groupoid composition of paths is associative only up to (homotopy
classes of) homotopies, which form the associator. In contrast, the composition of 2-morphisms
needs to be strictly associative and unital, which requires that one takes homotopy classes of
homotopies on the top level.

This is the general pattern: while the vertical composition of 2-morphisms is strictly associative
and unital, the horizontal composition is only associative up to specified 2-isomorphisms, namely
the component 2-morphisms of associators and unitors. The pentagon and triangle relations
are essential in this, as they ensure coherence.

If one forms composites of the component 2-morphisms of associators, unitors and identity mor-
phisms via the horizontal and vertical composition, then the resulting 2-morphisms are equal
whenever they have the same source and target 1-morphisms. This is the coherence theorem
for bicategories which is a generalisation of Mac Lane’s coherence theorem for monoidal cate-
gories. This allows one to largely ignore rebracketings and insertions of units, as the results of
different choices are equal, whenever they have the same source and target 1-morphisms.

Definition 7.3.1 of a bicategory can be generalised inductively to of n-categories with higher
morphisms up to degree n for all n ∈ N. Roughly speaking, one defines an n-category C as a
collection of objects ObC and for each pair of objects X, Y an (n−1)-category C(X, Y ) together
with a composition (n − 1)-functors ⊗Z,Y,X : C(Y, Z) × C(X, Y ) → C(X,Z) and coherence n-
morphisms that encode the associativity and unitality of the composition ⊗Z,Y,X , subject to
coherence conditions that generalise the pentagon and triangle axioms.
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An n-category in this sense has objects X, 1-morphisms f : X → Y between objects X, Y ,
2-morphisms α : f ⇒ g between 1-morphisms f, g : X → Y with the same source and target,
3-morphisms h : α V β between 2-morphisms α, β : f ⇒ g with the same source and target
and so on up to level n. On each level k ≤ n there are unit k-morphisms on (k− 1)-morphisms
as well as coherent associators for the n compositions.

The problem with this approach is that the coherence data and coherence axioms become more
and more complicated with growing n and are essentially unmanageable for n > 3. This lead to
a new approach, namely to admit k-morphisms between (k − 1)-morphisms for all k ∈ N, but
to require that all of these higher morphisms are coherent isomorphisms for k ≥ n, for some
fixed level n ∈ N. This leads to the concept of an (∞, n)-category. In the following we focus on
the simplest case, namely (∞, 1)-categories and their concrete realisations as quasicategories.
This is one of the main motivations to consider quasicategories.

Definition 7.3.3: A simplicial set X : ∆op → Set is called a

• an ∞-category or a quasicategory, if every inner horn α : Λk
n ⇒ X has a filler,

• an ∞-groupoid or quasigroupoid, if it is a Kan complex.

The idea is to take elements of X0 as objects, elements of X1 as morphisms and elements of Xk

for k ≥ 2 as higher isomorphisms in the quasicategory. Composites of morphisms are defined
by elements of X2 and identity morphisms by degeneracies. The construction thus resembles
the one of the homotopy category of a simplicial set from Definition 5.4.4, but the composition
is given by horn fillers and no longer required to be unique, in contrast to Theorem 7.1.11.

Definition 7.3.4: Let X be a quasicategory.

1. Elements x ∈ X0 are called objects of X.

2. Elements f ∈ X1 are called morphisms of X.

3. The source of f ∈ X1 is d1
1(f) ∈ X0, its target d0

1(f) ∈ X0. One writes f : d1
1(f)→ d0

1(f).

4. The identity morphism 1x : x→ x on an object x ∈ S0 is the element s0
0(x) : x→ x.

5. If f, g ∈ X1 form an inner horn (g, f) with filler z ∈ X2, then one calls d1
2(z) = g ◦ f a

composite of f and g witnessed by z.

Remark 7.3.5:

1. Neither composites of morphisms nor the fillers that witness them are in general unique.
By Theorem 7.1.11 uniqueness holds if and only if the quasicategory X is simplicially
isomorphic to the nerve of a small category. Thus, quasicategories generalise (nerves of)
small categories.

2. We sketch how to realise n-morphisms between (n − 1)-morphisms for n ≥ 2 in a
quasicategory X and how to form their composites and their inverses. This works by
considering degenerate simplexes in which some faces are identities:
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• A 2-morphism from a 1-morphism f : x → y to a 1-morphism g : x → y is an
element h ∈ X2 with d2(h) = (g, f, 1x). One writes h : f ⇒ g.

x y

x

f

1x g

0 2

1

h

• If σ1 : f ⇒ g and σ2 : g ⇒ h are 2-morphisms between 1-morphisms f, g, h : x→ y,
then a composite σ2◦σ1 : f ⇒ h is given by a filler of the (1,3)-horn (σ2, σ1, s

0
1(1x)):

d3(z) = (σ2, ρ, σ1, s
0
1(1x)). As we have d2(ρ) = (d0

2(σ2), d1
2(σ1), d1

2◦s0
1(1x)) = (h, f, 1x),

the element ρ ∈ X2 is a 2-morphism ρ = σ2 ◦ σ1 : f ⇒ h.

The filler z and the 2-morphism ρ are visualised by a tetrahedron, whose vertices
are associated with objects, edges with morphisms and faces with 2-morphisms. The
face opposite the ith vertex corresponds to the ith element of the filled horn.

x

x x

y

1x

g

h

1x

1x

f
σ2σ1

s0
1(1x)

0 2

3

1

• An identity 2-morphism σ : f ⇒ f for a 1-morphism f : x→ y is the 2-morphism
s0

1(f) ∈ X2 with d2(s0
1(f)) = (f, f, 1x).

• Every 2-morphism σ : f ⇒ g between 1-morphisms f, g : x→ y has a right inverse:

There is a 2-morphism ρ : g ⇒ f given by a filler z ∈ X3 of the (2, 3)-horn
(σ, s0

1(g), s0
1(1x)) with d3(z) = (σ, s0

1(g), ρ, s0
1(1x)). This implies σ ◦ ρ = 1g.

There is also a 2-morphism σ′ : f ⇒ g given by a filler z′ ∈ X3 of the (2, 3)-horn
(ρ, s0

1(f), s0
1(1x)) with d3(z′) = (ρ, s0

1(f), σ′, s0
1(1x)). and ρ ◦ σ′ = 1f .

Combining these identities yields σ = σ◦1f = σ◦(ρ◦σ′) and σ′ = 1g◦σ′ = (σ◦ρ)◦σ′.
Thus, up to associativity, σ and σ′ agree.

• The definition of k-morphisms for k > 2 is analogous: they are defined as
k-simplexes x ∈ Xk such that the first two entries in dk(x) = (d0

k(x), ..., dkk(x)) are
the source and target (k − 1)-morphisms and all other entries are degenerate.

Their composites and inverses are defined as inner horn fillers. However, the combi-
natorics become increasingly complicated, so that the simplicial viewpoint in terms
of horn fillers is much easier to handle.
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This remark illustrates the general features of an (∞, 1)-category: composites of morphisms are
not unique, only unique up to 2-morphisms. In this sense, composites are coherent choices of
structure or data, rather than properties of the category. Associativity and unitality also hold
only up to higher morphisms. We will prove that the composition of 1-morphisms is associative
and unital up to 2-morphisms in Lemma 7.3.8 below. Morphisms of degree ≥ 2 are invertible,
but their inverses are again unique only up to coherent choices of higher morphisms.

Example 7.3.6:

1. The simplicial nerve N(C) of a small category C is a quasicategory by Theorem 7.1.11.
It is an quasigroupoid if and only if C is a groupoid.

2. Singular nerves of topological spaces and simplicial sets underlying simplicial groups are
always quasigroupoids.

3. For every topological space X, there is a quasicategory S = Π≤∞(X) : ∆op → Set, whose

• objects are points x ∈ X,

• 1-morphisms γ : x→ x′ are paths γ : [0, 1]→ X with γ(0) = x, γ(1) = x′,

• 2-morphisms h : γ ⇒ γ′ for paths γ, γ′ : x→ x′ are homotopies between paths with
fixed endpoints: continuous maps h : [0, 1]×2 → X satisfying for all s, t ∈ [0, 1]

h(0, t) = γ(t), h(1, t) = γ′(t), h(s, 0) = x, h(s, 1) = x′.

• 3-morphisms σ : hV h′ between homotopies h, h′ : γ ⇒ γ′ are homotopies between
homotopies: continuous maps σ : [0, 1]×3 → X satisfying for all r, s, t ∈ [0, 1]

σ(0, s, t) = h(s, t), σ(1, s, t) = h′(s, t)

σ(r, 0, t) = γ(t), σ(r, 1, t) = γ′(t)

σ(r, s, 0) = γ(0) = γ′(0), σ(r, s, 1) = γ(1) = γ′(1)

• n-morphisms are defined analogously.

The fundamental groupoid Π1(X) is obtained from the quasicategory Π≤∞(X) in Example
7.3.6, 3. by keeping the objects (the points of X) and identifying those 1-morphisms (paths
with fixed endpoints) that are related by 2-morphisms (homotopies relative to their endpoints).

This can be viewed as a higher analogue of the construction of a skeleton of a category. The
latter is obtained by identifying all objects in a category C that are related by an isomorphism.
The resulting skeleton of C is a category with isomorphism classes of objects in C as objects
and only identity morphisms. It gives the answer to a classification problem, namely to classify
the objects of C up to isomorphism.

One can attempt a similar identification for general quasicategories. One keeps their objects,
elements of X0, and identifies morphisms, elements of X1, if and only if they are related by a 2-
morphism, an element of X2. The invertibility of 2-morphisms should guarantee the symmetry
of this identification, the existence of unit 2-morphisms its reflexivity and the existence of
composites its transitivity. The expected result should be a category in the usual sense. To
emphasise the connection with fundamental groupoids and, more generally, topology, we call a
2-morphism h : f ⇒ g between 1-morphisms f, g : x→ y a homotopy from f to g.
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Definition 7.3.7: Let X be a quasicategory. Morphisms f, g : x→ y are called homotopic,
f ∼ g, if there is an h ∈ X2, a homotopy from f to g, with d2(h) = (g, f, 1x).

x y

x

f

1x g
h

To show that identifying homotopic morphisms in a quasicategory X does indeed give rise to
a category, we need to prove that being homotopic is an equivalence relation on X1 and that it
is compatible with identity morphisms and the composition of morphisms.

Lemma 7.3.8: Let X be a quasicategory. For all objects x, y ∈ X0, being homotopic is an
equivalence relation on the set of morphisms f : x→ y.

It satisfies:

(a) g ◦ f ∼ g′ ◦ f ′ for all composites, if f ∼ f ′ : x→ y and g ∼ g′ : y → z,

(b) f ◦ 1x ∼ f ∼ 1y ◦ f for all morphisms f : x→ y and all composites.

(c) (g ◦ f) ◦ e ∼ g ◦ (f ◦ e) for all composable morphisms e, f, g and all composites.

(d) if g ∼ f ◦ e, then there is a u ∈ X2 with d2(u) = (f, g, e).

Proof:
• Being homotopic is reflexive:

For all morphisms f : x→ y, the element h = s0
1(f) satisfies

d2(h) = (d0
2 ◦ s0

1(f), d1
2 ◦ s0

1(f), d2
2 ◦ s0

1(f))
(22)
= (f, f, s0

0 ◦ d1
1(f)) = (f, f, s0

0(x)) = (f, f, 1x).

• Being homotopic is skew transitive: f ′ ∼ f ∧ f ′′ ∼ f ⇒ f ′′ ∼ f ′:

Let h, h′ ∈ X2 with d2(h) = (f, f ′, 1x) and d2(h′) = (f, f ′′, 1x). Then the element (h, h′, s0
1(1x))

is a (2, 3)-horn, as d0
2(h) = d0

2(h′) = f and d2
2(h) = d2

2(h′) = 1x = d0
2 ◦ s0

1(1x) = d1
2 ◦ s0

1(1x). This
is visualised by the following tetrahedron:

x

x x

y

1x

f
f ′

1x

1x

f ′′
hh′

s0
1(1x)

0 1

3

2

It has a filler u ∈ X3 with d3(u) = (h, h′, w, s0
1(1x)), where w := d2

3(u) corresponds to the
bottom face of the tetrahedron. This implies d2(w) = (d1

2(h), d1
2(h′), d2

2 ◦ s0
1(1x)) = (f ′, f ′′, 1x).

• It is symmetric: if f ∼ f ′, then we have f ′ ∼ f ′ by reflexivity and f ′ ∼ f by skew transitivity.
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(a) We show that f ∼ f ′ : x → y implies g ◦ f ∼ g ◦ f ′ for all g : y → x and all composites.
The proof for g ∼ g′ is analogous.

If f ∼ f ′ there is an h ∈ X2 with d2(h) = (f ′, f, 1x). Let z, z′ ∈ X2 with d2(z) = (g, d1
2(z), f)

and d2(z′) = (g, d1
2(z′), f ′) filler witnessing the composites. Then (z′, z, h) is a (2, 3)-horn, as

d0
2(z′) = g = d0

2(z), d2(z′) = f ′ = d0
2(h) and d2

2(z) = f = d1
2(h).

It has a filler u ∈ X3 with d3(u) = (z′, z, d2
3(u), h), and the element w := d2

3(u) corresponding
to the bottom face of the tetrahedron satisfies

d0
2(w) = d1

2(z′), d1
2(w) = d1

2(z), d2
2(w) = d2

2(h) = 1x ⇒ d1
2(z) ∼ d1

2(z′).

y

x x

z

f ′

g
d1

2(z′)

f

1x

d1
2(z)

z′z

h

0 1

3

2

(b) We show that f ◦ 1x ∼ f ∼ 1y ◦ f for all morphisms f : x→ y and all composites:

By (22), the element z = s0
1(f) ∈ X2 satisfies d2(z) = (f, f, s0

1 ◦ d1
2(f))) = (f, f, 1x) and the

element z′ = s1
1(f) satisfies d2(z′) = (s0

0 ◦ d0
1(f), f, f) = (1y, f, f). This shows that f is a

composite of the morphisms f and 1x and of the morphisms 1y and f . From (a) we then have
f ◦ 1x ∼ f ∼ 1y ◦ f for all composites.

(c) Let e : w → x, f : x→ y and g : y → z be morphisms and t, u, v ∈ X2 fillers witnessing the
composites f ◦ e, g ◦ f and g ◦ (f ◦ e), respectively

d2(t) = (f, d1
2(t), e), d2(u) = (g, d1

2(u), f), d2(v) = (g, d1
2(v), d1

2(t)).

y

w x

z

f

g
d1

2(u)

d1
2(t)

e

d1
2(v)

uv

t

0 1

3

2

Then (u, v, t) is a (2, 3)-horn, as d0
2(u) = d0

2(v) = g, d0
2(t) = d2

2(u) = f and d1
2(t) = d2

2(v). It has
a filler w ∈ X3 with d3(w) = (u, v, r, t), and r = d2

3(w) satisfies

d0
2(r) = d1

2(u), d1
2(r) = d1

2(v), d2
2(r) = d2

2(t) = e.
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As d1
2(u) is a composite g ◦ f , the element r witnesses (g ◦ f) ◦ e, but due to d1

2(r) = d1
2(v) it

also witnesses g ◦ (f ◦ e). Thus we have g ◦ (f ◦ e) ∼ (g ◦ f) ◦ e by 1 and (a).

(d) Exercise 61. 2

As being homotopic is an equivalence relation on X1 that is compatible with the composition
of morphisms by Lemma 7.3.8 (a), we obtain a composition on the set of equivalence classes
of morphisms in X1. Lemma 7.3.8 (b) and (c) ensure that the resulting composition on the
quotient set is strictly associative and unital. Lemma 7.3.8 (d) gives control over the content
of the equivalence classes. The result is a category we encountered already in Definition 5.4.4:
the homotopy category of the simplicial set X.

Proposition 7.3.9: Let X be a quasicategory.

1. There is a category hX, the homotopy category of X with

• elements of X0 as objects,
• homotopy classes of morphisms f : x→ y in X as morphisms from x to y.

The identity morphisms and the composition in hX are given by the homotopy classes
of identity morphisms and composites in X.

2. The homotopy category of hX coincides with the homotopy category of the simplicial set
X from Definition 5.4.4.

Proof:
1. That the composition of morphisms is well-defined and associative follows directly from
Lemma 7.3.8, and the same holds for the conditions on the identity morphisms.

2. That the homotopy category hX coincides with the homotopy category from Definition 5.4.4
follows by comparing the relations in (24) with the ones in Definition 7.3.7 and Lemma 7.3.8.

Let hX ′ be the homotopy category from Definition 5.4.4. We obtain a functor F : hX ′ → hX
that is the identity on objects and given by F (f) = [f ] on the generating morphisms f ∈ X1

of h′X. It is well-defined, because the definition of identity morphisms and composition in hX
in Definition (7.3.7) and 7.3.4 respects the defining relations (24) in hX ′. We also obtain a
functor G : hX → hX ′ that is the identity on objects and G([f ]) = f for f ∈ X1. It is well
defined, because the relations (24) in hX ′ ensure that it does not depend on the choice of the
representative of [f ]. By definition, the functors F and G are inverses of each other. 2

Proposition 7.3.9 justifies the name homotopy category. Although the category from Definition
5.4.4 is defined in more generality for all simplicial sets, it arises from an equivalence relation
that can be viewed as a generalised notion of homotopy if the simplicial set is a quasicategory.

This has important consequences, namely more control over the equivalence classes. As noted
in Remark 5.4.5 it is in general very difficult to describe morphisms in the homotopy category
of a simplicial set X explicitly: they are equivalence classes of composable sequence of elements
of X1 with respect to the equivalence relation given in (24). It is in general not clear if a given
morphism in hX can be represented as the equivalence class of a single element f ∈ X1 or
what is the minimum length of the composable sequence. In contrast, if X is a quasicategory,
Proposition 7.3.9 shows that every morphism in hX is given as the equivalence class of a (not
necessarily unique) morphism f ∈ X1.
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Together with Proposition 5.4.6 this also shows that the construction of the homotopy quasi-
category is consistent with the simplicial nerve N : Cat→ SSet. The identity hN ∼= idCat states
that forming the homotopy category of the nerve of an ordinary category gives back the original
category. Thus starting with a quasicategory, we only obtain one category, up to equivalence,
by iterating simplicial nerves and homotopy categories.

The homotopy category hX of a quasicategory X defines a distinguished class of morphisms
in X, namely those morphisms whose equivalence classes in hX are isomorphisms in hX. Such
morphisms are called equivalences and play a similar role to equivalences of categories. In fact,
we will use them in the following to define equivalences of quasicategories.

Definition 7.3.10: A morphism f : x→ y is a quasicategory X is called an equivalence if
the associated morphism [f ] : x→ y in hX is an isomorphism.

Remark 7.3.11: By Lemma 7.3.8 (d) a morphism f : x → y in a quasicategory X is an
equivalence if and only if there is a morphism g : y → x and z, z′ ∈ X2 with d2(z) = (f, 1y, g)
and d2(z′) = (g, 1x, f).

By definition of an equivalence, quasicategories in which every morphism is an equivalence are
precisely those quasicategories whose homotopy categories are groupoids. This suggests defining
a quasigroupoid as a quasicategory in which every morphism is an equivalence, and not as a
Kan complex as in Definition 7.3.3. Thankfully, the two definitions agree.

We already noted in the proof of Theorem 7.1.11 that the existence of inner horn fillers cor-
responds to a notion of composition, whereas the existence of outer horn fillers corresponds to
the existence of inverses. It is directly apparent that fillers of (0, 2)- and (2, 2)-horns are directly
related to the existence of inverses of 1-morphisms. For n > 2 this becomes more complicated
due to combinatorial issues. We refer to the article [J] by Joyal for the proof.

Proposition 7.3.12:
A quasicategory X is a quasigroupoid if and only if its homotopy category hX is a groupoid.

Proof:
1. If X is a quasigroupoid, then all morphisms f : x→ y the (0, 2)-horn (1x, f) and the (2, 2)-
horn (f, 1y) have fillers z, z′ ∈ X2 with d2(z) = (g, 1x, f) and d2(z′) = (f, 1y, g

′), and this implies
[g] ◦ [f ] = 1x and [f ] ◦ [g′] = 1y. It follows that [g] = [g] ◦ 1y = [g] ◦ [f ] ◦ [g′] = 1x ◦ [g′] = [g′] and
hence [g] is an inverse of [f ] in hX.

2. If X is a quasicategory, then every inner horn has a filler, and the same holds for any (0, 1)-
horn or (1, 1)-horn. If every morphism [f ] : x→ y has an inverse [g] : y → x in hX, then there
are z, z′ ∈ X2 with d2(z) = (g, 1x, f) and d2(z′) = (f, 1y, g) by Lemma 7.3.8 (d).

Suppose that (h, f) is an (0, 2)-horn, d1
1(h) = d1

1(f) = x, and let v ∈ X2 with d2(v) = (h, h, 1x)
and u ∈ X2 with d2(u) = (h, d1

2(u), g) a filler of the inner horn (h, g). Then (u, v, z) is a (2, 3)-
horn and has a filler w ∈ X3 with d3(w) = (u, v, d2

3(w), z). The element t := d2
3(w) satisfies

d2(t) = (d1
2(u), h, f) and fills the (0, 2)-horn (h, f).The proof that every (2, 2)-horn (f, k) can

be filled is analogous (Exercise). Showing that every (0, n)-horn or (n, n)-horn for n > 2 can
be filled requires more advanced techniques. A proof is given in [J], see Theorem 1.3, Corollary
1.4 and Theorem 2.2.
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The next step is to define functors between quasicategories and natural transformations between
them, which are needed in particular for a notion of equivalence of quasicategories. It is plausible
to define a functor between quasicategories as a simplicial map. The appropriate concept for a
natural transformation is less clear. One could attempt to define it as a simplicial homotopy,
but this would be too naive and correspond to introducing an artificial cutoff. It is clear that
one should not just consider homotopies, but also homotopies between homotopies etc.

The guiding principles can be the following.

• The construction should be compatible with simplicial nerves and with homotopies:
functors between categories should induce functors of quasicategories via the nerve and
functors of quasicategories should induce functors between their homotopy categories.

• The construction should be coherent and give rise to functor quasicategories between
quasicategories that generalise the functor categories between categories.

We take the latter as the starting point. To define functor quasicategories, we consider the
corresponding notions for topological spaces. Given two topological spaces X, Y we can consider
continuous maps f : X → Y , homotopies between them, homotopies between homotopies
and so on. Considering all this data simultaneously amounts to considering continuous maps
h : [0, 1]×n ×X → Y or, equivalently, continuous maps h : ∆n ×X → Y for all n ∈ N0.

This can be generalised to simplicial sets by replacing topological spaces by simplicial maps
and topological standard n-simplexes ∆n by the simplicial sets ∆n = Hom(−, [n+ 1]). We thus
consider simplicial maps h : ∆n × X ⇒ Y for fixed simplicial sets X, Y and all n ∈ N0. To
organise them into a simplicial set note that the standard n-simplexes ∆n can be organised
into a functor ∆• : ∆ → SSet that corresponds to the Hom functor with two arguments
Hom∆(−,−) : ∆op ×∆→ Set and assigns

• to the ordinal [n+ 1] the simplicial set ∆•([n+ 1]) = ∆n : ∆op → Set,

• to a monotonic map τ : [m + 1] → [n + 1] the simplicial map ∆•(τ) : ∆n ⇒ ∆m with
component morphisms ∆•(τ)k : ∆n

k → ∆m
k , α 7→ τ ◦ α.

With these preparations, we can define the quasicategory counterpart of a functor category.
This is the function complex that is defined in more generality, for any two simplicial sets.
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Definition 7.3.13: Let X, Y be simplicial sets.

The function complex Map(X, Y ) is the simplicial set with

Map(X, Y )n = HomSSet(∆
n ×X, Y )

din : Map(X, Y )n → Map(X, Y )n−1, α 7→ α ◦ (∆•(δin)× idX)

sin : Map(X, Y )n → Map(X, Y )n+1, α 7→ α ◦ (∆•(σin+1)× idX).

The evaluation map ev : X ×Map(X, Y )⇒ Y is the simplicial map with components

evn : Xn ×Map(X, Y )n → Yn, (x, α) 7→ αn(1[n+1], x).

Remark 7.3.14:
The function complex defines a functor Map : SSetop × SSet→ SSet that assigns

• to a pair of simplicial sets X, Y : ∆op → Set the simplicial set Map(X, Y ),

• to a pair of simplicial maps α : X ′ ⇒ X and β : Y ⇒ Y ′ the simplicial map

Map(α, β) : Map(X, Y )⇒ Map(X ′, Y ′)

Map(α, β)n : Map(X ′, Y ′)n → Map(X, Y )n, γ 7→ β ◦ γ ◦ (id∆n × α)

The function complex of a simplicial set behaves intuitively, similar to maps between sets
or topological spaces. For instance, for any set X the functor Hom(X,−) : Set → Set is right
adjoint to the functor X×− : Set→ Set. This adjunction identifies f : Y → HomSet(X,Z) from
a set X to the set of maps from X to Z with maps f ′ : X × Y → Z. Similarly, for any abelian
group M , the functor Hom(M,−) : Ab→ Ab for an is right adjoint of the functor M⊗− : Ab→
Ab. This identifies group homomorphisms f : B → Hom(M,A) with group homomorphisms
f : M⊗B → A. The function complex defines a similar adjunction, an exponential law for SSet.

Proposition 7.3.15: (exponential law)

1. For any simplicial set X the functor Map(X,−) : SSet → SSet is right adjoint to the
functor X ×− : SSet→ SSet:

HomSSet(Y,Map(X,Z)) ∼= HomSSet(X × Y, Z)

2. For all simplicial sets X, Y, Z there are simplicial isomorphisms that are natural in X, Y, Z

Map(X × Y, Z) ∼= Map(X,Map(Y, Z)).

Proof:
1. The natural bijections

φY,Z : HomSSet(Y,Map(X,Z))→ HomSSet(X × Y, Z), α 7→ φY,Z(α)

φ−1
Y,Z : HomSSet(X × Y, Z)→ HomSSet(Y,Map(X,Z)), β 7→ φ−1

Y,Z(β)

that characterise the adjunction are given by

φY,Z(α)n(x, y) = αn(y)n(1[n+1], x) [φ−1
Y,Z(β)n(y)]m(τ, x′) = βm(x′, Y (τ)y)
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for all n ∈ N0, x ∈ Xn, x′ ∈ Xm, y ∈ Yn and monotonic maps τ : [m + 1] → [n + 1]. That the
morphisms φY,Z(α)n : Xn × Yn → Zn define a simplicial map follows by a direct computation:

φY,Z(α)m(X(τ)x, Y (τ)y) = αm(Y (τ)y)m(1[m+1], X(τ)x)
nat α
= [αn(y) ◦ (∆•(τ)× id)]m(1[m+1], X(τ)x) = αn(y)m(τ,X(τ)x)

= Z(τ) ◦ αn(y)n(1[n+1], x) = Z(τ) ◦ φY,Z(α)n(x, y),

where we used that αn(y) ∈ HomSSet(∆
n × X,Z) to pass to the third line. Likewise, we have

for monotonic maps ρ : [n+ 1]→ [p+ 1], τ : [m+ 1]→ [n+ 1], y′ ∈ Yp and x′ ∈ Xm

[φ−1
Y,Z(β)p(y

′) ◦ (∆•(ρ)× id)]m(τ, x′) = [φ−1
Y,Z(β)p(y

′)]m(ρ ◦ τ, x′) = βm(x′, Y (ρ ◦ τ)y′)

= βm(x′, Y (τ)(Y (ρ)y′)) = [φ−1
Y,Z(β)n(Y (ρ)y′)]m(τ, x′)

which shows that the morphisms φ−1
Y,Z(β)n define a simplicial map. A similar routine computa-

tion shows that φ−1
Y,Z is indeed inverse to φY,Z :

[(φ−1
Y,Z ◦ φY,Z(α))n(y)]m(τ, x′) = φY,Z(α)m(x′, Y (τ)y) = αm(Y (τ)y)(1[m+1], x

′) = αn(y)(τ, x′)

[φY,Z ◦ φ−1
Y,Z(β)]n(x, y) = φ−1

Y,Z(β)n(y)n(1[n+1], x) = βn(x, y).

To show the naturality of φY,Z consider simplicial maps γ : Y ′ ⇒ Y and δ : Z ⇒ Z ′ and denote
by δ∗ : Map(X,Z) ⇒ Map(X,Z ′) the simplicial map given by post-composition with δ. Then
one has for all x ∈ Xn, y′ ∈ Y ′n and α : Y ⇒ Map(X,Z)

[δ ◦ φY,Z(α) ◦ (idXn × γ)]n(x, y′) = δn ◦ αn(γn(y′))n(1[n+1], x) = δn ◦ (α ◦ γ)n(y′)(1[n+1], x)

= (δ∗ ◦ α ◦ γ)n(y)n(1[n+1], x) = φY ′,Z′(δ∗ ◦ α ◦ γ)n(x, y′).

2. The proof of 2. with 1. is Exercise 62. 2

Having defined the function complex of a simplicial set, we now restrict attention to quasi-
categories and quasigroupoids. It turns out that the complex of functions into a quasicategory
(quasigroupoid) is not just a simplicial set, but again a quasicategory (quasigroupoid), and thus
satisfies our consistency requirements. The proof of this statement will be omitted, because it
requires more background on fibrations and lifting properties. An accessible proof is given in
[Rz], see Theorem 20.4 and the required background in Sections 14 to 19.

Proposition 7.3.16: Let X, Y be simplicial sets.

1. If Y is a quasicategory, then Map(X, Y ) is a quasicategory.

2. If Y is quasigroupoid, then Map(X, Y ) is a quasigroupoid.

With the function complex we can define functors and natural transformations between quasi-
categories in analogy to the objects and morphisms of a quasicategory. Functors from a quasi-
category X to a quasicategory Y correspond to elements of Map(X, Y )0 and thus to simplicial
maps α : ∆0 ×X ⇒ Y or, equivalently, simplicial maps α : X ⇒ Y . Consequently, we define a
natural transformation h : αV β as an element h ∈ Map(X, Y )1 with d1

1(h) = α and d0
1(h) = β.

Natural isomorphisms must then correspond to equivalences in the quasicategory Map(X, Y ).
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Definition 7.3.17: Let X, Y be quasicategories.

1. A functor of quasicategories from X to Y is a simplicial map α : X ⇒ Y or,
equivalently, an element of Map0(X, Y ).

2. The identity functor on a quasicategory X is the simplicial map idX : X ⇒ X.

3. Let α, β : X ⇒ Y be functors of quasicategories. A natural transformation h : αV β
is an element h ∈ Map(X, Y )1 with d1

1(h) = α and d0
1(h) = β.

4. A natural transformation h ∈ Map(X, Y )1 is called a natural isomorphism if it is an
equivalence in the quasicategory Map(X, Y ):

there are g ∈ Map(X, Y )1, z, z′ ∈ Map(X, Y )2 with d2(z) = (h, 1β, g), d2(z′) = (g, 1α, h).

Identity natural transformations and composition of natural transformations are of course de-
fined exactly as in Definition 7.3.4, namely as identity morphisms and composite morphisms in
the quasicategory Map(X, Y ). Equivalences of quasicategories can then be defined in analogy
to equivalences of categories, as pairs of functors between the two quasicategories together with
natural isomorphisms that relate their composites to the identity.

Definition 7.3.18: An equivalence of quasicategories is a functor α : X ⇒ Y of quasi-
categories such that there is a functor β : Y ⇒ X of quasicategories, with natural isomorphisms
h : α ◦ β V idY and h′ : β ◦ αV idX .

It follows directly from Definition 5.4.4 of the homotopy functor h : SSet → Cat that every
functor α : X ⇒ Y of quasicategories defines a functor h(α) : hX → hY and that this is com-
patible with the composition of functors and the identity functors. Moreover, by definition a
natural transformation k : α⇒ β between functors of quasicategories is a simplicial homotopy
from α to β. By Corollary 6.2.11 its image under the homotopy functor is a natural transfor-
mation h(k) : h(α) ⇒ h(β), and one can show (Exercise) that it is a natural isomorphism,
whenever k is a natural isomorphism. This implies, see also [Rz, 22.3],

Corollary 7.3.19: If α : X ⇒ Y is an equivalence of quasicategories, then h(α) : hX → hY
is an equivalence of categories.

To conclude our discussion of functors and natural transformations between quasicategories,
we show that they are not only compatible with the homotopy functor h : SSet → Cat but
also with the simplicial nerve N : Cat → SSet. This is an important justification of these
concepts and shows that they can indeed be seen as generalisations of functors and natural
transformations for categories.

Proposition 7.3.20:
Let C,D be categories. Then there is a simplicial isomorphism that is natural in C and D

N(DC) ∼= Map(N(C), N(D)).
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Proof:
From the definition of N in Example 5.2.7, 2. we obtain a chain of natural isomorphisms

N(DC)n = HomCat([n+ 1]′,DC)
∼= HomCat([n+ 1]′ × C,D)
∼= HomSSet(N([n+ 1]′ × C), N(D))
∼= HomSSet(∆

n ×N(C), N(D))
∼= Map(N(C), N(D)),

where we used

• the identification of functor categories from Proposition 2.3.2 to pass to the second line,
• then the fact that the nerve is full faithful to pass to the third line,
• that the nerve preserves products as a right adjoint and the identity ∆n = N([n]′) from

Example 5.2.7, 2. and 3. to pass to the fourth line,
• Definition 7.3.13 of the function complex to pass to the fifth line.

2
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8 Exercises

8.1 Exercises for Chapter 1

Exercise 1: Let A,B,C be sets.

• A relation between A and B is a subset R ⊂ A×B.

• A relation R ⊂ A× B is called a map from A to B, if for every a ∈ A there is a unique
b ∈ B with (a, b) ∈ R.

• The composite of two relations R ⊂ A×B and S ⊂ B × C is the relation

S ◦R = {(a, c) ∈ A× C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S} ⊂ A× C.

(a) Show that sets and relations form a category Rel with HomRel(A,B) = P(A×B).

(b) Determine the isomorphisms in Rel.

(c) Show that the disjoint union of sets defines both, a product and a coproduct in Rel

Exercise 2: Let C be a small category and D a category in which products (coproducts) exist
for all (finite) families (Di)i∈I of objects in D. Show that then products (coproducts) exist for
any (finite) family (Fi)i∈I of objects in the functor category Fun(C,D).

Exercise 3: The abelisation of a group G is the factor group G/[G,G] with respect to the
normal subgroup [G,G] = {[g, g′] | g, g′ ∈ G} ⊂ G, where [g, g′] = gg′g−1g′−1.

(a) Show that the abelisation has the following universal property:
For every group homomorphism f : G → A into an abelian group A, there is a unique
group homomorphism f ′ : G/[G,G] → A with f ′ ◦ π = f , where π : G → G/[G,G],
g 7→ g[G,G] is the canonical surjection.

(b) The abelisation defines a functor Ab : Grp→ Ab.

(c) The functor Ab : Grp→ Ab is left adjoint to the inclusion functor I : Ab→ Grp.

Exercise 4: Let k be a commutative ring. We consider

• the functor F : Grp → Algk that assigns to a group G its group algebra k[G] and to a
group homomorphism f : G→ H the induced group homomorphism k[f ] : k[G]→ k[H],
g 7→ f(g),
• the functor G : Algk → Grp that assigns to an algebra A its group A× of units and to an

algebra homomorphism f : A→ B the induced group homomorphism f× : A× → B×.

Show that F is left adjoint to G.

Exercise 5: Determine, if the forgetful functor V : Ring → Set from the category of unital
rings and unital ring homomorphisms is representable. If yes, determine its representing object.
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8.2 Exercises for Chapter 2

Exercise 6: A category J is called connected, if for any two objects J, J ′ ∈ ObJ there is
a finite sequence of objects J = J0, J1, . . . , Jn = J ′ with HomJ (Ji, Ji+1) ∪ HomJ (Ji+1, Ji) 6= ∅
for each i = 0, ..., n− 1.

Show that for a connected category J , every constant functor ∆(C) : J → C has limit and
colimit cone id∆(C) : ∆(C)⇒ ∆(C). Show that this is not true for a non-connected category.

Exercise 7: Determine which coproducts exist in the category Grpfin of finite groups and
group homomorphisms between them.

Exercise 8: Let J,C be sets. Show that the power CJ = ΠJC and the copower J ·C = qJC
in the category Set are isomorphic to the set of functions f : J → C and the product set J×C,
respectively. Use the universal property of the (co)products in Set.

Exercise 9: Let A be a commutative algebra over a field F and X a finite set. Show that the
copower X ·A in the category CommAlgF of commutative algebras over F is isomorphic to the
|X|-fold tensor product A⊗|X|.

Exercise 10: Let J be a small category with an initial (terminal) object and C a category.
Compute the limit (colimit) of a functor F : J → C.

Exercise 11: Let C = Ab = Z-Mod. Determine the pullback and pushout of the group
homomorphisms f1 : Z→ Z, z 7→ mz and f2 : Z→ Z, z 7→ nz for m,n ∈ N.

Exercise 12: A monomorphism in a category C is a morphism ι : C → C ′ in C such that
ι ◦ f1 = ι ◦ f2 for morphisms f1, f2 : X → C implies f1 = f2. An epimorphism in C is a
morphism π : C → C ′ such that g1 ◦ π = g2 ◦ π for two morphisms g1, g2 : C ′ → Y implies
g1 = g2. Show that equalisers are monomorphisms and coequalisers epimorphisms.

Exercise 13: Let f : A → B be a morphism in category C. A (co)kernel pair of f is a
pullback (pushout) of the form

C ′

∃!µ

  

µ2

��

µ1

##

C

λ1

��

λ2 // A

f
��

A
f
// B.

C ′

C

∃!µ
``

B
λ2oo

µ2
oo

B

µ1

PP
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A
f
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f
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Show that
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(a) f is a monomorphism if and only if the kernel pair of f exists and is of the form λ1 = λ2 :
C → A.

(b) f is an epimorphism if and only if the cokernel pair of f exists and is of the form λ1 = λ2 :
B → C.

Exercise 14: (Co)products of two objects X1, X2 in a category C are also called binary
coproducts.

(a) Show that a category C has all binary products and equalisers if and only if it has all binary
products and all pullbacks.

(b) Show that a category C has all binary coproducts and coequalisers if and only if it has all
binary coproducts and all pushouts.

Exercise 15: Let (X,�) be a partially ordered set and S ⊂ X a subset.

• An infimum of S is an element x ∈ X with x � s for all s ∈ S and x′ � x for all x′ ∈ X
with x′ � s for all s ∈ S.
• A supremum of S is an element x ∈ X with s � x for all s ∈ S and x � x′ for all x′ ∈ X

with s � x′ for all s ∈ S.

Show that a diagram F : J → C in a poset category C has a limit (colimit) if and only if the
set S = {F (J) | J ∈ ObJ } has an infimum (supremum). Investigate the existence of limits
and colimits for diagrams in the following poset categories

(a) C = (R,≤)
(b) C = (P(X),⊆) where P(X) denotes the power set of a set X.

Exercise 16: Let X be a topological space.

(a) Show that the presheaf F : O(X)op → Set that assigns to an open subset U ⊂ X the set of
continuous maps f : U → R is a sheaf.

(b) Show that the presheaf G : O(X)op → Set that assigns to an open subset U ⊂ X the set
G(U) of bounded continuous functions f : U → R is not a sheaf.

Exercise 17: Let X be a topological space and x ∈ X a point. Fix a set S and a one-point set
{•}. Show that there is a presheaf F : O(X)op → Set with F (U) = S if x ∈ U and F (U) = {•}
otherwise. Determine if this is a sheaf.

Exercise 18: Let G be a group and BG the associated category with a single object • and
HomBG(•, •) = G with the group multiplication as composition.

(a) Show that a functor F : BG → Set is a G-Set and a natural transformation η : F ⇒ F ′

between such functors a G-equivariant map.
(b) Compute the limit and colimit of a functor F : BG→ Set.
(c) Compute the right and left adjoint of the functor ∆ : Set→ SetBG.
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Exercise 19: Let J be a small category, C a complete category and D the category with two
objects I, T and a single non-identity morphism d : I → T .

(a) Describe the functor category CD using only quantities from C.
(b) Describe the functor category (CD)J using only quantities from C and J .
(c) Describe the limit cone of a functor F : J → CD using only quantities from C and J .

Exercise 20: Let I and J be discrete categories and F : I ×J → R a functor into the poset
category (R,≤). Formulate the statement of Lemma 2.3.5 without using categorical concepts for
this case and give an example in which the morphism g in Lemma 2.3.5 is not an isomorphism.

Exercise 21: Let f : A → B be a map and f−1 : B → A be the functor between the the
poset categories A = (P(A),⊂) and B = (P(B),⊂) that assigns to each subset X ⊂ B its
preimage f−1(X) ⊂ A.

(a) Show that f−1 has both, a left and a right adjoint.
(b) Determine how they behave with respect to unions and intersections.

Exercise 22: Denote by A × B the product and by A + B the disjoint union of sets A,B.
Show that for all sets A,B,C there are natural isomorphisms

A× (B + C) ∼= A×B + A× C (B × C)A ∼= BA × CA.

Hint: Consider the functors (−)A : Set→ Set and A×− : Set→ Set.

8.3 Exercises for Chapter 3

Exercise 23: Show that the left and right Kan extensions given in Example 3.1.6 have the
universal property of the left and right Kan extensions.

Exercise 24: Let [2] and [3] be the poset categories for [2] = {0, 1} and [3] = {0, 1, 2} and
K : [2]→ [3] the functor with K(0) = 0 and K(1) = 2. Show that for any functor F : [2]→ C
the left and right Kan extensions exist by constructing them explicitly.

Exercise 25: Suppose F : C → D has a right Kan extension (T, ε) along itself

C F //

F ��

D

D
⇑ε

T=RanFF

>>

Show that T : D → D is a monad:
there are natural transformations η : idD ⇒ T and µ : T 2 ⇒ T with

µ ◦ µT = µ ◦ Tµ µ ◦ Tη = µ ◦ ηT = idT .

Remark: The monad T is called the codensity monad of F .
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Exercise 26: We consider the poset categories (Q,≤), (R>0,≤) and (R,≤). Then the map
F : Q→ R>0, q 7→ 2q defines a functor F : Q→ R>0 between the associated poset categories.
Determine the left and right Kan extensions LanιF : R → R>0 and RanιF : R → R>0 of F
along the inclusion functor ι : Q→ R.

Exercise 27: Let C, D be poset categories, K : C → D and F : C → (R,≤) a functor into
the poset category (R,≤). Compute the left and right Kan extensions of F along K with the
(co)limit formula.

Exercise 28: Let C and D be small discrete categories given by sets ObC = C and ObD = D,
K : C → D the functor given by a map K : C → D and F : C → E be a functor into a bicomplete
category E .

(a) Compute the left and right Kan extension of F with the (co)limit formula.
(b) Determine the natural transformations η : F ⇒ LanKFK and ε : RanKFK ⇒ F and show

that the pairs (LanKF, η) and (RanKF, ε) have the universal property of the left and right
Kan extension.

Exercise 29: Consider the categories

• A with a single object 0 and 10 as the only morphism,
• B with two objects, 0 and 1, and only identity morphisms 10 and 11,
• C with two objects, 0 and 1, identity morphisms 10, 11 and a morphism d : 0→ 1.

Construct a left Kan extension that is not pointwise.

Exercise 30: The comma category F ↓ G for functors F : C → D and G : E → D is the
category with

• triples (C,E, f) of C ∈ ObC, E ∈ ObE and a morphism f : F (C)→ G(E) as objects,
• pairs (c, e) of morphisms c : C → C ′ and e : E → E ′ with G(e) ◦ f = f ′ ◦ F (c) as

morphisms from (C,E, f) to (C ′, E ′, f ′).

(a) Show that the categories H ↓ D and D ↓ H for a functor H : C → D are special cases of
comma categories F ↓ G.

(b) Show that the categories cone(H) and cocone(H) for a functor H : C → D are special cases
of comma categories F ↓ G.

Exercise 31:

• A directed graph Γ = (E, V, s, t) consists of sets E, V and maps s, t : E → V .
• A morphism of directed graphs φ = (φE, φV ) : Γ→ Γ′ is a pair of maps φE : E → E ′

and φV : V → V ′ with t′ ◦ φE = φV ◦ t and s′ ◦ φE = φV ◦ s.
• G denotes the category of directed graphs and morphisms of directed graphs.
• C denotes the category with ObC = {I, T} and two non-identity morphisms σ, τ : I → T

I
σ
//

τ // T
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(a) Show that the functor categories SetC
op ∼= SetC are isomorphic to G.

(b) Determine the comma category y ↓ Γ for Γ ∈ ObG and the covariant Yoneda embedding
y : C → SetC

op

. Interpreting its objects as vertices and its morphisms as edges yields a
directed graph constructed from Γ whose edges and vertices are partitioned into two sets.

(c) Determine the left Kan extension LanyF for a functor F : C → Set that corresponds to
(i) a graph with a single edge connecting two distinct vertices,

(ii) a graph with a single vertex and no edges.

Exercise 32: Let C be a small category. Determine the left Kan extension of the covariant
Yoneda embedding along itself:

C y //

y ""
⇓η

SetC
op

SetC
op

Lanyy

::

Exercise 33: Let F : C → Cat be a functor.
The Grothendieck construction is the category C

∫
F , where

• objects are pairs (C,X) of objects C ∈ ObC and X ∈ ObF (C),
• morphisms from (C1, X1) to (C2, X2) are pairs (f, g) of a morphism f : C1 → C2 in C and

a morphism g : F (f)(X1)→ X2 in F (C2),
• composition of (f1, g1) : (C1, X1) → (C2, X2) and (f2, g2) : (C2, X2) → (C3, X3) is given

by (f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g2 ◦ F (f2)(g1)).

(a) Show that any natural transformation µ : F ⇒ F ′ between functors F, F ′ : C → Cat
induces a functor C

∫
µ : C

∫
F → C

∫
F ′.

(b) Show that a functor G : C
∫
F → D into a category D corresponds to the following data:

• a functor GC : F (C)→ D for every C ∈ ObC,
• a natural transformation Gf : GC1 ⇒ GC2 for every morphism f : C1 → C2 in C, such

that G1C = idGC and Gf2◦f1 = Gf2 ◦Gf1 for all composable morphisms f1, f2.
(c) Let N,H be groups and φ : G → Aut(N) a group homomorphism. Show that there is a

functor F : BH → Cat with F (•) = BN and that the associated Grothendieck construction
is the category B(N oφ H).

Exercise 34: Let F : C → D and G : D → C be functors. Show the following: If (G, η) is a
left Kan extension of idC along F and F preserves this left Kan extension, then F is left adjoint
to G with the unit of the adjunction given by η.

8.4 Exercises for Chapter 4

Exercise 35: Show that every natural transformation ν : F ⇒ G with F,G : Cop × C → E
defines a dinatural transformation ν ′ : F

•⇒G with ν ′C = νC,C : F (C,C)→ G(C,C).
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Exercise 36: Show that a (co)limit of a functor F : C → D can be expressed as a (co)end of
an appropriate functor G : Cop × C → D:∫

C∈C
G(C,C) ∼= limF

∫ C∈C
G(C,C) ∼= colimF.

Exercise 37: Let F : Cop × C → D be a functor with an end and a coend. Prove that there
are natural isomorphisms

HomD(D,

∫
C∈C
F (C,C)) ∼=

∫
C∈C

HomD(D,F (C,C))

HomD(

∫ C∈C
F (C,C), D) ∼=

∫ C∈C
HomD(F (C,C), D)

Exercise 38: Let D be a small category, C the discrete category with ObC = ObD and only
identity morphisms and K : C → D the inclusion functor. Let F : C → E be a functor into a
bicomplete category E .

(a) Determine the end and coend of a functor H : Cop × C → E .
(b) Compute LanKF (D) and RanKF (D) for D ∈ ObD with the (co)end formula.
(c) Determine the functors LanKF,RanKF : D → E on the morphisms and the natural trans-

formations η : F ⇒ (LanKF )K and ε : (RanKF )K ⇒ F .

Exercise 39: Let R be a ring and F : R-Mod→ Set the forgetful functor.

(a) Determine LanFF : Set→ Set with the coend formula.
(b) Show that LanFF ∼= HomSet(R,−) : Set→ Set and verify the universal property of the left

Kan extension.

8.5 Exercises for Chapter 5

Exercise 40: Give a combinatorial simplicial complex that describes the cylinder [0, 1]× S1.

Exercise 41: Give the canonical factorisation for the following morphisms in ∆.

(a) τi : [1]→ [n+ 1], 0 7→ i for 0 ≤ i ≤ n,
(b) ρin : [n+ 1]→ [2] with (ρin)−1(0) = {0, 1, . . . , i− 1},
(c) τ : [4]→ [5], 0 7→ 2, 1, 2 7→ 3, 3 7→ 4,
(d) σ1

3 ◦ σ2
4 ◦ δ3

4 ◦ δ2
3 : [3]→ [3].

Exercise 42: Consider the simplicial set ∆n = Hom(−, [n+1]) : ∆op → Set for n ∈ N0. Show
that there are exactly

(
n+m+1

m

)
simplicial maps α : ∆n ⇒ ∆m. Give explicitly the 10 simplicial

maps α : ∆1 ⇒ ∆3 and visualise them with standard n-simplexes in Top.
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Exercise 43: Consider the simplicial set ∆n = Hom(−, [n+ 1]) : ∆op → Set.

(a) Determine the non-degenerate elements in the sets ∆n
k = Hom([k + 1], [n+ 1]) for k ∈ N0.

(b) Determine the geometric realisation of ∆n with Theorem 5.3.3.

Exercise 44: Denote by ∆inj ⊂ ∆ the subcategory of ∆ with the same objects and only
injective monotonic maps as morphisms and by ι : ∆inj → ∆ the inclusion functor.

• A functor S : ∆op
inj → Set is called a semisimplicial set and a natural transformation

µ : F ⇒ F ′ between such functors a semisimplicial map.

• We denote by sSet = Set∆op
inj the category of semisimplicial sets and maps.

The fat realisation of semisimplicial set is the left Kan extension Fat = Lany(Tι) : sSet→ Top
of the functor Tι : ∆inj → Top along the covariant Yoneda embedding y : ∆inj → sSet

∆inj
Tι //

y ""
∼=⇓η

Top

sSet
Lany(Tι)=Fat

<<

(a) Show that every ordered combinatorial simplicial complex K ⊂ P(V ) defines a semisimpli-
cial set s : ∆inj → Set with

sn = {(v0, . . . , vn) | {v0, . . . , vn} ∈ K, v0 < . . . < vn}
din : sn → sn−1, (v0, . . . , vn) 7→ (v0, . . . , vi−1, vi+1, . . . , vn) 0 ≤ i ≤ n.

where we take din as the empty map, if sn = ∅.
(b) Give a description of the fat realisation analogous to the one for the geometric realisation in

Proposition 5.3.2. Show that every point in Fat(s) for a semisimplicial set s is represented
by a unique pair (s, x) with s ∈ sn, x ∈ ∆̊n.

(c) Describe the semisimplicial sets ∆n = Hom∆inj
(−, [n + 1]) : ∆op

inj → Set for n ∈ N and
visualise them for n = 0, 1, 2, 3.

(d) Describe the right adjoint of Fat : sSet→ Top.

Exercise 45: Let � : G × X → X be an action of a group G on a set X and X//G the
associated action groupoid with

• elements of X as objects,
• elements g ∈ G with g � x = x′ as morphisms from x to x′.

Determine the nerve of X//G.

Exercise 46: Let (J,�) a poset and S : ∆op → Set the simplicial set given by

Sn = {(j0, . . . , jn) | j0, . . . , jn ∈ J with j0 � j1 � . . . � jn} n ∈ N0

din(j0, . . . , jn) = (j0, . . . , ji−1, ji+1, . . . , jn) n ∈ N0, 0 ≤ i ≤ n

sin(j0, . . . , jn) = (j0, . . . , ji−1, ji, ji, ji+1, . . . , jn).

Determine its homotopy category h(S).
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Exercise 47: Consider the injective standard n-simplex ∆n = Hom∆inj
(−, [n+1]) : ∆op

inj → Set
and denote by ∪∆n = ∪̇nk=0∆n

k = ∪̇nk=0Hom∆inj
([k + 1], [n+ 1]) the set of all elements of ∆n.

(a) Show that ∪∆n has the structure of a poset.

(b) Denote by Nn : ∆op → Set the nerve of the poset category for ∪∆n. Describe the sets
NDn

k ⊂ Nn
k of non-degenerate elements in Nn

k .

(c) Relate the sets NDn
k from (b) to the barycentric subdivision of an affine simplex and

draw the associated barycentric subdivision of an affine 2-simplex.

(d) Show that the sets NDn
k ⊂ Nn

k define a functor B : ∆inj → sSet with B([n+ 1]) = NDn.

(e) Define the barycentric subdivision functor B′ : sSet→ sSet for general semisimplicial sets.

Remark:

• The barycentre of an affine k-simplex w = [w0, . . . , wk] is b(w) = 1
k+1

(w0 + . . .+ wk).

• The barycentric subdivision of w is given by the k-simplexes [b(f0), . . . , b(fk)], where
b(fi) is the barycentre of the i-face fi of w with f0 ⊂ f1 ⊂ . . . ⊂ fk.

Exercise 48: Determine the classifying spaces of the following categories:

(a) the category with two objects I, T and two non-identity morphisms σ, τ : I → T ,
(b) the category with three objects C0, C1, C2 and two non-identity morphisms f1 : C0 → C1

and f2 : C0 → C2.

Exercise 49: Let X be a topological space and S := Sing(X) : ∆op → Set the associated
simplicial set with

Sn = HomTop(∆n, X)〉Z = {τ : ∆n → X continuous}
din = S(δin) : Sn → Sn−1, τ 7→ τ ◦ fni
sin = S(σin+1) : Sn → Sn+1, τ 7→ τ ◦ sni ,

where fni : ∆n−1 → ∆n and sni : ∆n+1 → ∆n are the affine linear face maps and degeneracies.
Determine the homotopy category h(S).

Exercise 50: Let k be a commutative ring. Consider the sets and maps

Sn = {τ : [n+ 1]→ [4] | τ monotonic and not surjective} n ∈ N0 (52)

din : Sn → Sn−1, τ 7→ τ ◦ δin n ∈ N
sjn : Sn → Sn+1, τ 7→ τ ◦ σjn+1 n ∈ N0.

(a) Show that this defines a simplicial set S : ∆op → Set and describe its geometric realisation.

(b) Let S ′ : ∆op → R-Mod the associated simplicial module with S ′n = 〈Sn〉R and face maps
and degeneracies given by (52). Determine its normalised chain complex NS ′•.

(c) Compute the homologies of NS ′•.
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Hint: The proof of Proposition 5.5.8 tells you how to compute NS ′•.

Exercise 51: Let k be a commutative ring. Let C be the category with two objects I, T
and two non-identity morphisms σ, τ : I → T and C•(C, k) the associated chain complex from
Example 5.5.6, 2. Compute its homologies.

Hint: Use Proposition 5.5.8 and the associated normalised chain complex.

8.6 Exercises for Chapter 6

Exercise 52: Let X ⊂ Rn with the standard topology and

CX = {(tx, 1− t) | t ∈ (0, 1], x ∈ X} ⊂ Rn+1 CX ′ = {(tx, 1− t) | t ∈ [0, 1], x ∈ X} ⊂ Rn+1.

Show that CX is homotopy equivalent to X and that CX ′ is contractible.

Exercise 53: Let X be a topological space and f : Sn → X and g : Dn+1 → X continous
maps with g|∂Dn+1 = f . Show that for any q ∈ Sn the map f is homotopic to a constant map
relative to {q}.

Exercise 54:
In this exercise, we show that πk(S

n) is trivial for 0 ≤ k < n via the following steps:

1. C0 maps are homotopic to C1 maps: Let h : Rk → [0,∞) be

i) of compact support supp(h) := {x ∈ Rk | h(x) 6= 0},
ii) continuously differentiable,

iii) with
∫
Rk h(x) dx = 1.

(a) Show that the convolution h∗f : Rk → R, h∗f(x) :=
∫
Rk h(x− y)f(y) dy of a continuous

function f : Rk → R of compact support with h is continuously differentiable.

(b) Show that hε(x) := ε−kh(x/ε) with ε ∈ (0, 1] has the same properties i)-iii) as h and
that hε∗f(x) depends continuously on ε, uniformly in x ∈ Rk.

(c) Show that limε→0 hε∗f(x) = f(x), uniformly in x ∈ Rk.

Remark: Applying (a)-(c) to the components yields analogous results for continuous maps
f : Rk → Rn. By using partitions of unity one can thus homotope continuous maps between
manifolds to continuously differentiable maps.

2. πk(S
n) is trivial for 0 ≤ k < n:

(a) Let Q := [0, 1]×k ⊆ Rk and ∼ the equivalence relation that identifies the points of ∂Q.
Show that Q/∼ is homeomorphic to the sphere Sk.

(b) To show that π0(Sn) is trivial, prove that Sn is path-connected if n > 0.

(c) Let f : Sk → Sn be continuously differentiable. Show that f is not surjective.
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(d) Use (c) and stereographic projection

Φn : Sn\{en+1} → Rn , Φn(x) :=
2

1− xn+1

( x1

...
xn

)
(53)

to show that f is homotopic to a constant map Sk → Sn.

(e) Using Part 1 and the Remark, show that every continuous map g : Sk → Sn is homotopic
to a continuously differentiable map f : Sk → Sn.

Exercise 55: Let C = R-Mod. Show that for all simplicial objects S, T : ∆op → C being
simplicially homotopic is an equivalence relation on HomC∆op (S, T ). Proceed as follows:

(a) Show that being simplicially homotopic is reflexive.
(b) Show that for all simplicial homotopies h : α V β and h′ : α′ V β′ there are simplicial

homotopies k : −αV −β and k′ : α + α′ V β + β′.
(c) Show that being simplicially homotopic is symmetric and transitive.

Exercise 56: For a simplicial set S : ∆op → Set we consider the simplicial sets

• CS : ∆op → Set with CSn = S0 for n ∈ N0 and CS(α) = idS0 for all morphisms α in ∆op,

• PS : ∆op → Set with PSn = Sn+1 and PS(δin) = S(δin+1) and PS(σjn) = S(σjn+1) for all
n ∈ N0, 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1.

(a) Show that γn = S(δ0
n+1 ◦ . . . ◦ δ0

1) : Sn+1 → S0 and ρn = S(σ0
1 ◦ . . . ◦ σ0

n+1) : S0 → Sn+1

define simplicial maps γ : PS ⇒ CS and ρ : CS ⇒ PS with γρ = idCS,

(b) Construct a simplicial homotopy h : ργ V idPS.

Exercise 57: Let C 6= ∅ be a small category. Prove the following:

(a) If C has an initial or terminal object, BC is contractible.

(b) If C has binary products or coproducts, BC is contractible.

Hint: in (b) consider the functor C ×− : C → C for a fixed C ∈ ObC.

Exercise 58: Let f, f ′ : G → H be group homomorphisms and Bf,Bf ′ : BG → BH the
associated functors.

(a) Show that natural transformations τ : Bf ⇒ Bf ′ are in bijection with elements h ∈ H
such that f ′(g) = hf(g)h−1 for all g ∈ G,

(b) Determine the simplicial homotopy N(h) : N(Bf) V N(Bf ′) induced by a natural
transformation as in (a) by specifying its components N(h)in : G×n → H×(n+1),

(c) Determine the induced chain homotopy h• : C•(f,Z)⇒ C•(f
′,Z) between the chain maps

C•(f,Z), C•(f
′,Z) : C•(G,Z)→ C•(H,Z) from Example 5.5.6, 3.
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8.7 Exercises for Chapter 7

Exercise 59: Consider the simplicial set ∂∆n : ∆op → Set. Show that

(∂∆n)k = {α : [k + 1]→ [n+ 1] | α monotonic and non-surjective}

and that ∂∆n is isomorphic to the (n− 1)-skeleton of ∆n = Hom(−, [n+ 1]) : ∆op → Set.

Exercise 60: Let S : ∆op → Set be a simplicial set.

(a) Show that simplicial (n − 1)-cycles β : ∂∆n ⇒ S are in bijection with (n + 1)-tuples
(x0, ..., xn) with xi ∈ Sn−1 and din−1(xj) = dj−1

n−1(xi) for i < j.

(b) Show that for every y ∈ Sn the element dn(y) = (d0
n(y), ..., dnn(y)) is a simplicial (n−1)-cycle.

(c) Show that ∂∆n is the coequaliser

∂∆n = coequ

(
q0≤i<j≤n∆n−2

u

⇒
v
q0≤i≤n∆n−1

)
,

where u ◦ ιi,j(τ) = ιj ◦ δin−1 ◦ τ and v ◦ ιij(τ) = ιi ◦ δj−1
n−1 ◦ τ for all τ : [k + 1]→ [n− 1].

Exercise 61: Let e : x → y, f : y → z and g : x → z be morphisms in a quasicategory
X such that g ∼ f ◦ e. Show that there is a t ∈ X2 with d2(t) = (f, g, e), witnessing g as a
composite of f and e.

Conclude that two morphisms f, g : x → y in a quasicategory X are homotopic, if and only if
there is an h ∈ X2 with d2(h) = (1y, f, g).

Exercise 62: Let X, Y, Z be simplicial sets.

(a) Show that ev : X ×Map(X, Y )⇒ Y is natural in X and Y .

(b) Show that for all simplicial sets X, Y, Z there are simplicial isomorphisms

Map(X × Y, Z) ∼= Map(X,Map(Y, Z)).
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finitely complete, 36
forgetful functor, 9
free product

groups, 29
rings, 29

Fubini’s Theorem, 74
full subcategory, 8
fully faithful functor, 12
function complex, 157
functor, 9

cocontinuous, 74
continuous, 74
creates (co)limits, 44
preserves (co)limits, 44
reflects (co)limits, 44
representable, 20

functor category, 11
functor of quasicategories, 159
fundamental group, 10, 109
fundamental groupoid, 148

generators
category, 84

geometric realisation, 88
combinatorial simplicial complex, 89

Grothendieck construction, 166
group, 8
group homologies, 99
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groupoid, 8

Hochschild homology, 99
Hom functors, 20
Hom-functors, 10
homology, 97
homotopic, 107

Kan complex, 137
homotopic relative to A, 109
homotopy, 107

Kan complex, 137
morphisms in quasicategory, 152

homotopy category, 92, 108
quasicategory, 154

homotopy category of chain complexes, 122
homotopy equivalence, 107
homotopy equivalent, 107
homotopy functor, 92
homotopy group, 109
homotopy type, 107
homotopy, relative to a subspace, 109
horizontal composition, 147
horn, 129

simplicial set, 129
standard n-simplex, 128

horn filler, 131
Hurewicz map, 145
Hurewicz theorem, 145
Hurewicz’s theorem, 99

identity 1-morphism, 147
identity 2-morphism, 150
identity morphism, 6
induction, 47
induction functor, 18, 47
initial object, 28
inner horn, 128
inverse

functor, 12
inverse limit, 32
isomorphic, objects in category, 6
isomorphism

of categories, 12
in category, 6

Kan complex, 131
Kan condition, 131
Kan extension, 51

pointwise, 62
kernel, 31

kernel pair, 29

Lebesgue’s theorem, 74
left adjoint functor, 15
left exact, 44
left Kan extension, 51
limit, 26
limit cone, 27
localisation, 47
locally small, 6

monad, 164
monoid, 8
monoidal category, 148
monomorphism, 162
morphism, 6

equivalence, 155
morphism of directed graphs, 165
morphisms

quasicategory, 149

n-skeleton, 33
nadir, 26
natural isomorphism, 10

quasicategories, 159
natural transformation, 10

functors between quasicategories, 159
naturally isomorphic, 10
normalised chain complex, 100
null object, 14

object, 6
object:quasicategory, 149
opposite category, 8
ordered affine simplex, 79
ordinal numbers, 12, 83
outer horn, 128, 129

pairs of topological spaces, 7
partially ordered set, 32
path, 108

Kan complex, 140
path component, 108

Kan complex, 140
Peiffer identities, 148
pentagon axiom, 147
pointed Kan complex, 137
pointed topological spaces, 7
pointwise Kan extension, 62
poset, 32
poset category, 32
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positive chain complex, 96
power, 29
power functor, 76
pre-composition functor, 55
presentation

category, 84
preserves

Kan extension, 66
presheaf, 34
prism maps, 118
product in category, 13, 27
projection functors

comma category, 57
pullback, 28
pushout, 28

quasicategory, 149
quasigroupoid, 149
quotient category, 8

reflective subcategory, 47
reflector, 47
relation, 161
relations

category, 84
relative homotopy

simplicial maps, 137
representable functor, 20
restriction functor, 9, 17
right adjoint functor, 15
right exact, 44
right inverse

2-morphism, 150
right Kan extension, 52

Seifert-van Kampen theorem, 29, 113
semisimplicial complex, 80
semisimplicial map, 168
semisimplicial morphism, 102
semisimplicial object, 102
semisimplicial set, 168
semisimplicial sets, 91
sequential colimit, 32
sequential limit, 32
shape, 25
sheaf, 34
short exact sequence, 97
simplex category, 83
simplicial category, 83
simplicial complex, 80

combinatorial, 82
simplicial homotopy, 115
simplicial map, 84
simplicial morphism, 84
simplicial nerve, 86, 91
simplicial object, 84
simplicial relations, 84
simplicial set, 84

fibrant, 131
simplicial sphere, 128, 129
simplicial subset, 127

generated by set, 127
singular chain complex, 98
singular homologies, 98
singular nerve, 85, 88
skeleton

combinatorial simplicial complex, 82
semisimplicial complex, 80
simplicial set, 90

small, 6
small colimit, 36
small diagram, 36
source

morphism in quasicategory, 149
source of morphism, 6
standard n-simplex, 79

simplicial set, 86
standard chain complex, 97
Stone-Čech compactification, 48
strict bicategory, 147
strict monoidal category, 148
subcategory, 8

reflective, 47

target
morphism in quasicategory, 149

target of morphism, 6
terminal object, 14, 28
transformation groupoid, 57
triangle axiom, 147
trivial

morphism, 14
truncation

simplicial set, 90
twisted arrow category, 72
twisted arrow functor, 72

unique up to unique isomorphism, 13
unit

adjunction, 18
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unitors, 147
universal property

coproduct, 13
product, 13

vertical composition, 147
vertices, 79

weak topology, 33
wedge, 70
wedge morphism, 70
wedge product, 30
witness

quasicategory, 149

Yoneda embedding, 45
Yoneda map, 22
Yoneda-Lemma, 22

zero morphism, 14
zero object, 14
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