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Preamble

The aim of this thesis is to apply methods of spectral theory and functional analysis
to better understand the interaction between a quantum mechanical particle and
a particular family of potentials, the Pöschl-Teller potentials. The exact nature of
this interaction is described by the Schrödinger equation. However, rather than
describing the dynamics in as much detail as possible, one is often more interested
in the following questions, which deal with the asymptotic behavior for very large
times: Is it possible to somehow relate the evolution of a quantum mechanical state
interacting with a potential to that of a state not interacting at all? Given an input
state, what does the state look like far in the future, long after the interaction?
In general, these questions are part of what is called scattering theory. The first
question leads to the concept of Møller operators, the second to that of the scattering
operator. Over the last few decades many interesting results have been proved in a
far more general setting than what we are doing here. Many of the statements in
this thesis can be found in standard textbooks on scattering theory such as [7] and
[12]. Our aim is not to go into too much detail about this general theory. Instead,
we will restrict ourselves to the Pöschl-Teller potential, allowing us to take a more
direct approach to give an explicit expression for these two operators.

The thesis is structured as follows: The first chapter introduces some mathemat-
ical background of quantum mechanics. The second chapter is devoted to a detailed
analysis of the Pöschl-Teller potentials. The third chapter builds on these results
and tries to answer the two questions above.

Knowledge about topics covered in introductory lectures on functional analysis
and spectral theory are prerequisites. These prerequisites can be found for example
in [1],[3] or [6]. In particular the reader should be familiar with bounded and un-
bounded operators on Hilbert spaces and a bit theory of Sobolev spaces. Theorems
proven in these lectures and used in this thesis can be found in the Appendix.
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Chapter 1

A Brief Introduction to Some
Mathematical Foundations of
Quantum Mechanics

The first section of this chapter introduces the most fundamental operators in quan-
tum mechanics, namely the free Hamiltonian, the momentum operator and the
position operator. Furthermore, we are going to prove some properties of these op-
erators that we will need later on. The second section deals with the analysis of
bounded potentials and defines the Pöschl-Teller potential which will be studied in
detail in the following chapters.

1.1 The Basic Operators of Quantum Mechanics

We start by introducing the free Hamiltonian and the momentum operator.

Definition 1.1.1. Let D(P ) = D(H0) := S (R) ⊆ L2(R). The operators

P : D(P )→ L2(R), f 7→ −if ′

H0 : D(H0)→ L2(R), f 7→ P 2f = −f ′′

are called free Hamiltonian H0 and momentum operator P .

If f ∈ S (R) then Pf ∈ S (R). Therefore, H0 = P 2 is indeed well-defined on
D(H0) = S (R).

Remark 1.1.1. Let id : R→ R be given by id(k) = k and let Mid be the correspond-
ing multiplication operator

Mid : L2(R) ⊇ D(Mid)→ L2(R), f 7→ id · f

defined on

D(Mid) :=
{
f ∈ L2(R)|id · f ∈ L2(R)

}
.

According to the properties of the Fourier transform F the following relation holds

Mid

∣∣
S (R) = FPF

−1.
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Chapter 1

Likewise, for id2(k) := id(k)2 = k2 and the multiplication operator Mid2 defined on
D(Mid2) :=

{
f ∈ L2(R)|id2 · f ∈ L2(R)

}
, we find

Mid2
∣∣
S (R) = FH0F−1.

This interplay between P , H0, Mid, Mid2 and the Fourier transform will come in
handy later on.

Regarding the essentially self-adjointness, one can check that H0 and P are
indeed essentially self-adjoint on S (R):

Lemma 1.1.2. H0 and P are essentially self-adjoint and their closures H0 and P

satisfy H0 = P
2
.

Proof. We are going to use Lemma A.1.2 to prove the essential self-adjointness of
P . Obviously, P is densely defined. Hence, we need to check that P is symmetric
and that Ran(P ± i) is dense. The symmetry of P follows from partial integration:
Let R > 0 and f ∈ S (R). We have∫ R

−R
f(x)(Pf)(x) dx = −i

∫ R

−R
f(x)f ′(x) dx

=

∫ R

−R
−if ′(x)f(x) dx− i

[
f(x)f(x)

]R
−R

= C(R) +

∫ R

−R
(Pf)(x)f(x) dx,

where C(R) := −i
[
f(x)f(x)

]R
−R

. Since f ∈ S (R), we have limR→∞C(R) = 0. Be-

cause of χ(−R,R)fPf → fPf pointwise as R→∞ and fPf majorates χ(−R,R)fPf ,
the Lebesgue dominated convergence theorem leads to

⟨f, Pf⟩ ←−−−
R→∞

∫ R

−R
f(x)(Pf)(x) dx = C(R) +

∫ R

−R
(Pf)(x)f(x) dx −−−→

R→∞
⟨Pf, f⟩.

Now let ϕ ∈ Ran(P ± i)⊥ and choose (fj)j∈N ⊆ S (R) such that Ffj → Fϕ in norm.

Set gj := F−1
(
(id± i)−1Ffj

)
∈ S (R). Then

0 = ⟨ϕ, (P ± i)gj⟩ = ⟨Fϕ,F(P ± i)gj⟩ = ⟨Fϕ,Ffj⟩ −−−→
j→∞

∥Fϕ∥22,R = ∥ϕ∥22,R

and therefore ϕ = 0. Hence, Ran(P ± i) = {0}⊥ = L2(R).
Recall that H0 = P 2 by definition. Therefore,

ker(H0 ± i) = ker ((P ± i)(P ∓ i)) ⊆ ker(P ∓ i) = {0}

which proves the essential self-adjointness of H0. Since P
2
is self-adjoint and extends

H0, we find H0 = P
2
.

As mentioned in the introduction, the goal of this thesis is to understand the
scattering behavior of one specific potential, namely the Pöschl-Teller potential (a
precise definition will be given in the next section). One cornerstone is going to
be the spectral measures of the free Hamiltonian perturbed by that potential. In
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its simplest case, the Pöschl-Teller potential is identically 0. Hence, the perturbed
Hamiltonian is just the free Hamiltonian. Consequently, knowing the spectral mea-
sure of the free Hamiltonian is the first step towards achieving the above-mentioned
goal. The following results characterize the spectral measures of H0 and P and draw
some immediate consequences.

Lemma 1.1.3. For S ∈ B(R) let EP : B(R)→ B(L2(R)) be given by

EP
S := EP (S) := F−1MχS

F for S ∈ B(R),

where χS denotes the characteristic function of the set S. Then EP is the spectral
measure of P .

Proof. That EP
S is an orthogonal projection follows from the unitarity of F :(

EP
S

)∗
= (F)∗M∗

χS

(
F−1

)∗
= F−1MχS

F = EP
S(

EP
S

)2
= F−1M2

χS
F = F−1MχS

F = EP
S

Since χ∅ = 0 and χR = 1, we have EP
∅ = 0 and EP

R = 1 respectively. If (Sj)j∈N ⊆
B(R) is a sequence of Borel measurable sets satisfying Si ∩ Sj = ∅ for i ̸= j, then∑

j∈N χSj
= χ⋃

j∈N Sj
and

∑
j∈NE

P
Sj
f = EP⋃

j∈N Sj
f for all f ∈ L2(R). Therefore, EP

is a projection valued measure. The measures µf (S) := ⟨f, EP
S f⟩ for f ∈ L2(R)

evaluate to

µPf (S) = ⟨Ff, χSFf⟩ =
∫
S

|Ff |2 dλ,

so that µPf is absolutely continuous with respect to the Lebesgue measure λ and
dµPf
dλ

= |Ff |2. Define the self-adjoint operator

T :=

∫
R
λ dEP (λ).

We show that T extends P . To this end, choose ϕ ∈ S (R) arbitrarily. One finds

⟨f, Pf⟩ = ⟨Ff,F (Pf)⟩

=

∫
R
x|(Ff)(x)|2 dλ(x)

=

∫
R
x dµPf (x)

= ⟨f, Tf⟩.

By the polarization identity this generalizes to ⟨f, Pg⟩ = ⟨f, Tg⟩ for all f, g ∈
S (R) and since S (R) ⊆ L2(R) is dense, Pg = Tg for all g ∈ S (R). Therefore,
the self-adjoint operator T extends P indeed. Since P is essentially self-adjoint
(Lemma 1.1.2), this implies P = T . The claim follows from the uniqueness of the
spectral measure.

Recall that H0 = P
2
(Lemma 1.1.2). Using functional calculus we easily obtain

the spectral measures of H0:
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Theorem 1.1.4. For S ∈ B(R) define ξS(x) = χS(x
2) and let E0 : B(R) →

B(L2(R)) be given by

E0
S := E0(S) := F−1MξSF for S ∈ B(R).

Then E0 is the spectral measure of H0.

Proof. For S ∈ B(R) we have χS(H0) = χS(P
2
) = (χS ◦ f)(P ) where f(p) = p2.

Since χS ◦ f = χf−1(S), we find χS(H0) = EP
f−1(S) and Lemma 1.1.3 yields

χS(H0) = F−1Mχf−1(S)
F = F−1MξSF = E0

S.

With a bit of theory of Sobolev spaces and weak derivatives we can conclude what
the domains of P and H0 are and how these extensions act on weak differentiable
functions.

Corollary 1.1.5. The closure H0 of H0 is defined on D(H0) = H2,2(R) and given
by H0f = −f ′′ for f ∈ H2,2(R). Likewise, the closure P of P is defined on D(P ) =
H1,2(R) and given by Pf = −if ′ for f ∈ H1,2(R).

Proof. By definition, f ∈ D(P ) if and only if
∫
R λ

2 dµPf =
∫
R x

2|Ff(x)|2 < ∞
and hence f ∈ H1,2(R). Furthermore, Lemma 1.1.3 implies Pf = F−1 (idRF (f)) =
−iF−1 (iidRF (f)) = −if ′ for f ∈ D(P ), where the last equality is just the definition

of weak derivatives. Since H0 = P
2
, the domain D(H0) consists of all f ∈ H1,2(R) =

D(P ) for which f ′ ∈ H1,2(R) = D(P ). Therefore, D(P ) = H2,2(R) and H0f =
(−i)2f ′′ = −f ′′ for f ∈ H2,2(R).

After investigation of self-adjointness, the next natural question arising in physics
addresses the spectrum of the Hamiltonian. Clearly, we have to understand the
spectrum of the free Hamiltonian first, before dealing with perturbed ones. As
we already know the spectral measures, we could just use that for any self-adjoint
operator T the relation

supp(ET ) = σ(T )

holds, to conclude that

σ(P ) = R and σ(H0) = [0,∞).

However, in the case of H0, an alternative way using approximate eigenvalues is
presented, as we will reuse this result later on and build up on that idea.

Lemma 1.1.6. The spectrum of H0 is given by σ(H0) = R≥0.

Proof. Let λ > 0. We are going to prove that λ is an approximate eigenvalue and use
Lemma A.1.3 to conclude λ ∈ σ(H0). In that regard, we notice that f(x) = ei

√
λx

solves (− d2

dx2
− λ)f = 0. For n ∈ N choose ηn ∈ C∞

c (R) such that

0 ≤ ηn ≤ 1, ηn
∣∣
(−n,n) = 1, supp ηn ⊆ [−n− 1, n+ 1]

and such that there are constants C1, C2 > 0 with

|η′n| ≤ C1 and |η′′n| ≤ C2∀n ∈ N.
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Now define

gn :=
ηnf

∥ηnf∥2,R
∈ D(H0)

and verify that these functions form a Weyl-sequence for λ (Ω := supp(ηn)\(−n, n)):

∥(H0 − λ)gn∥22,R

= ∥ηnf∥−2
2,R

∫
R
|(H0 − λ)ηnf |2 dx

= ∥ηnf∥−2
2,R

(∫
(−n,n)

|(H0 − λ)f |2 dx+
∫
Ω

|(H0 − λ)ηnf |2 dx
)

= ∥ηnf∥−2
2,R

∫
Ω

| − (η′′nf + 2η′nf
′ + ηnf

′′)− ληnf |2 dx

= ∥ηnf∥−2
2,R

∫
Ω

| − η′′n − 2i
√
λη′n|2|f |2 dx

≤ ∥ηnf∥−2
2,R|Ω|(C

2
2 + 4λC2

1) ≤ ∥ηnf∥−2
2,R(2C

2
2 + 8λC2

1)

and since ∥ηnf∥2,R ≥
√
2n, we have ∥(H0 − λ)gn∥2,R → 0 for n → ∞. Since

∥gn∥2,R = 1 this calculation shows that λ is an approximate eigenvalue. As σ(H0) is
closed, the inclusion R≥0 ⊆ σ(H0) follows. It remains to prove (−∞, 0)∩σ(H0) = ∅.
However, this is clear since ⟨f,H0f⟩ = ⟨Pf, Pf⟩∥f ′∥22,R ≥ 0 (f ∈ D(H0)).

Another consequence of Theorem 1.1.4 and Lemma 1.1.3 is the following:

Corollary 1.1.7. The spectra σ(H0) and σ(P ) are both purely absolutely continuous.
In particular H0 and P do not have eigenvalues.

Proof. In the case of P , this follows from the proof of Lemma 1.1.3, where we
explicitly constructed the measures µPf . In the case of H0, the measures µ0

f (S) :=
⟨f, E0

Sf⟩ are given by

µ0
f (S) = ⟨Ff, ξSFf⟩ =

∫
R
χS(x

2)|Ff(x)|2 dλ(x)

=

∫
R+

χS(x)
1

2
√
x

(
|Ff(

√
x)|2 + |Ff(−

√
x)|2

)
dλ(x).

Hence, µ0
f is absolutely continuous with respect to λ and

dµ0
f

dλ
(x) = χR+(x)

|Ff(
√
x)|2 + |Ff(−

√
x)|2

2
√
x

.

We finish this introductory section with a few words on unitary equivalence and
Remark 1.1.1. Recall that two operators T : D(T ) → H and S : D(S) → H are
said to be unitarily equivalent if there exists a unitary operator U ∈ B(H) such that
D(T ) = UD(S) and T = USU∗. Unitary equivalence preserves many properties as
the following theorem shows.

Theorem 1.1.8. Let U ∈ B(H ) be unitary and T : H ⊇ D(T ) → H be an
essentially self-adjoint operator. Then S := UTU∗ : H ⊇ UD(T ) → H is also
essentially self-adjoint. Furthermore, if T is self-adjoint, then S is self-adjoint and
for every Borel measurable function f : R→ C one has f(S) = Uf(T )U∗.
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Proof. First, suppose that T is essentially self-adjoint. Because of the unitarity of
U , the domain D(S) := UD(T ) ⊆H is dense. For all x, y ∈ UD(T ) we have

⟨x, Sy⟩ = ⟨U∗x, TU∗y⟩ = ⟨TU∗x, U∗y⟩ = ⟨UTU∗x, y⟩ = ⟨Sx, y⟩,

where we used U∗x, U∗y ∈ D(T ) and the symmetry of T in the second equality.
Thus, S is symmetric. Pick y ∈ H . There exists a sequence (x±j )j∈N ⊂ D(T ) such

that (T ± i)x±j → U∗y. Consider the sequence x̃±j := Uxj. One has x̃±j ∈ D(S) and

(S ± i)x̃±j = U(T ± i)U∗Ux±j = U(T ± i)x±j −−−→
j→∞

UU∗y = y.

Since y ∈ H was arbitrary, S is essentially self-adjoint (see Lemma A.1.2). Now
suppose that T is self-adjoint. Following the same argument, one shows that Ran(S±
i) = H . Again, consider y ∈H and choose x± ∈ D(T ) such that (T ± i)x± = Uy.
Then x̃± := Ux± ∈ D(S) and (S ± i)x̃± = y.

Next suppose that T is self-adjoint and therefore, by the above arguments, S
is self-adjoint too. Denote with ET , ES their spectral measures. Because of the
unitarity of U , EV := UET

VU
∗ (for V ∈ B(R)) is a projection valued measure. Define

the operator S̃ :=
∫
R λ dE(λ). Since µUy(V ) := ⟨Uy,EVUy⟩ = ⟨y, ET

V y⟩ =: µTy (V )

(for every y ∈ H ) one has y ∈ D(T ) if and only if Uy ∈ D(S̃). Therefore,
UD(T ) = D(S̃) and for x ∈ D(T ) we have

⟨x, Tx⟩ =
∫
R
λ dµTx (λ) =

∫
R
λ dµUx(λ) = ⟨Ux, S̃Ux⟩.

Thanks to polarization this implies ⟨y, Tx⟩ = ⟨y, U∗S̃Ux⟩ for all x, y ∈ D(T ). Since
D(T ) is dense, Tx = U∗S̃Ux for all x ∈ D(T ). Therefore, S = S̃ and by uniqueness
of the spectral measure E = ES. Therefore, χV (S) = UχV (T )U

∗ for measurable
V ∈ B(R) and consequently ϕ(S) = Uϕ(T )U∗ for step functions ϕ. Hence, f(S) =
Uf(T )U∗ for all Borel measurable f .

In the subsequent chapters we will need a slightly reformulated version:

Scholium 1.1.9. Let U ∈ B(H ) be unitary, T : H ⊇ D(T ) → H a self-adjoint
operator and ET the associated projection valued measure. Then ES := UET

SU
∗

defines a projection valued measure and one has

UTU∗ =

∫
R
λ dEλ.

Remark 1.1.10. Recall that, according to Remark 1.1.1, P and Mid are related
via the Fourier transform. According to the previous theorem and the essential self-
adjointness of P (Lemma 1.1.2), the operatorX :=Mid

∣∣
S (R) is essentially self-adjoint

with self-adjoint closure X = F−1PF . X is called position operator. For sure, we
could have done everything in reverse and first introduce the position operator,
prove self-adjointness, determine the spectral measure of X and then introduce the
momentum operator and the free Hamiltonian and deduce all their above-mentioned
properties from the properties of X. However, this way was not chosen as it would
have given not that many insights into the behavior of H0 and P .
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1.2 Bounded Potentials

So far we investigated the spectrum and spectral measures of the free Hamiltonain.
The next step towards our goal is to understand the effect of bounded perturbations
of the free Hamiltonian. Recall that for bounded V ∈ B(H ) and not necessarily
bounded T : H ⊇ D(T )→H the sum T + V is defined as the operator

T + V : D(T + V )→H , (T + V )x := Tx+ V x ∀x ∈ D(T + V ),

whereD(T+V ) := D(T ). By a perturbed Hamiltonian we mean the operatorH0+V
for a bounded V ∈ B(H ), called the perturbation. If V is a multiplication operator
by some function v ∈ L∞(R) we call v (or V ) a potential. These perturbations
might change the spectrum (e.g. by introducing point spectrum), but at least we
can hope that (essentially) self-adjoint perturbations do not change (essential) self-
adjointness. The following result formalizes our hope:

Theorem 1.2.1. Let T : H ⊇ D(T ) → H be an essentially self-adjoint operator
and V = V ∗ ∈ B(H ). Then T + V : D(T ) → H is essentially self-adjoint.
Furthermore, if T is self-adjoint, then T + V is also self-adjoint.

Before proving this theorem we need a small supplementary lemma.

Lemma 1.2.2. Let T : H ⊇ D(T )→H be a densely defined and closable operator
and V ∈ B(H ). Then T + V : D(T ) → H is closable with closure T + V and
(T + V )∗ = T ∗ + V ∗.

Proof. To see that T + V is closed, consider (xj)j∈N ⊆ D(T + V ) = D(T ) such that

there are x, y ∈ H with xj → x and (T + V )xj → y. Then, since V is continuous,
xj → x and Txj → y−V x. Therefore, since T is closed, x ∈ D(T ) and Tx = y−V x.
Consequently, we have x ∈ D(T + V ) as well as (T + V )x = y, which shows that
T + V is closed. Clearly, T + V is a closed extension of T + V . Hence, T + V is
closable and we have to show that T + V = T + V =: B. Consider the operator
B−V which is closed according to the arguments above. Furthermore, for x ∈ D(T )
we have (B − V )x = (T + V − V )x = Tx so that B − V is a closed extension of T
and therefore T ⊆ B − V . Therefore, T + V ⊆ B = T + V which proves the claim.

Next we are going to prove (T + V )∗ = T ∗ + V ∗. By the continuity of V we find

x ∈ D(T ∗) ⇐⇒ D(T ) ∋ y 7→ ⟨x, Ty⟩ is continuous
⇐⇒ D(T ) ∋ y 7→ ⟨x, Ty⟩+ ⟨x, V y⟩ is continuous
⇐⇒ x ∈ D((T + V )∗)

so that D(T ∗ + V ∗) = D(T ∗) = D((T + V )∗). Now the relation ⟨x, (T + V )y⟩ =
⟨x, Ty⟩+⟨x, V y⟩ = ⟨(T ∗+v∗)x, y⟩ for x ∈ D(T ∗), y ∈ D(T ) concludes the proof.

Equipped with Lemma 1.2.2 we are ready to prove Theorem 1.2.1.

Proof of Theorem 1.2.1. Let T be essentially self-adjoint. Then T +V is symmetric
(since T and V are both symmetric) and T + V ∗ = (T + V )∗ = T

∗
+ V ∗ = T +

V = T + V , where we used Lemma 1.2.2. Hence, T + V is self-adjoint. Therefore,
T + V is essentially self-adjoint. If T is self-adjoint, then, again by Lemma 1.2.2,
(T + V )∗ = T ∗ + V ∗ = T + V so that T + V is self-adjoint.
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In particular, we are interested in applying this theorem to Schrödinger operators
of the form H = H0 + V , where V is a bounded (real valued) potential. In that
specific case we are able to say something about the spectrum of the perturbed
Hamiltonian H.

Lemma 1.2.3. Let v ∈ L∞(R,R) and V ∈ B(L2(R)) the corresponding multiplica-
tion operator by v. Set H := H0 + V : D(H0)→ L2(R). Then:

1. (−∞, ess inf(v)) ∩ σ(H) = ∅

2. If there exists C ∈ R such that ∥χ(n,∞)(v − C)∥∞,R → 0 as n → ∞ then

(C,∞) ⊆ σ(H). Likewise, if there exists C̃ ∈ R such that ∥χ(−∞,n)(v −
C̃)∥∞,R → 0 as n→ −∞ then (C̃,∞) ⊆ σ(H).

Proof. Notice that, since v is real-valued, V is self-adjoint. Furthermore, according
to Theorem 1.2.1 and the self-adjointness of H0 (Lemma 1.1.2), H is self-adjoint.

1. Let λ < ess inf(v), ϕ ∈ D(H0) and set C := ess inf(v − λ) > 0. We observe
that

∥(H − λ)ϕ∥2,R∥ϕ∥2,R ≥ ⟨(H − λ)ϕ, ϕ⟩
= ⟨(V − λ)ϕ, ϕ⟩+ ⟨H0ϕ, ϕ⟩
≥ ess inf(v − λ)∥ϕ∥22,R = C∥ϕ∥22,R.

Thus, C∥ϕ∥2,R ≤ ∥(H−λ)ϕ∥2,R for all ϕ ∈ D(H0). Therefore, H−λ is injective
and Ran(H − λ) is closed. Moreover, ker(H − λ) = {0} also implies that

{0} = ker(H − λ) = ker((H − λ)∗) = Ran(H − λ)⊥

=⇒ L2(R) = (Ran(H − λ)⊥)⊥ = Ran(H − λ).

But because Ran(H − λ) is closed, we find Ran(H − λ) = L2(R) and thus
λ /∈ σ(H).

2. Let ϵ > 0, set λ := C + ϵ > C and assume that ∥χ(n,∞)(v − C)∥∞,R → 0 as
n→∞. We are going to show that λ is an approximate eigenvalue of H (see
Lemma A.1.3). To do so, choose a sequence (ϕj)j∈N ⊆ D(H0) such that

∥ϕj∥2,R = 1, ∥(H0 − ϵ)ϕj∥2,R → 0, supp(ϕj) ⊆ [−j − 1, j + 1] = Bj+1(0)

(such a sequence has been given explicitly in the proof of Lemma 1.1.6).
Thanks to the asymptotic behavior of v at infinity we can find a sequence
of points (pj)j∈N ∈ R such that

∥χBj+1(pj)(v − C)∥∞,R ≤
1

j
∀j ∈ N.

Now we can shift each ϕj by pj and obtain a sequence (gj)j∈N ⊆ D(H0) given
by gj := ϕj ◦ τ pj where τ pj(x) = x − pj implements the shift by pj. The
sequence (gj)j∈N has the following properties:

(a) ∥gj∥2,R = ∥ϕj∥2,R = 1 and supp(gj) ⊆ Bj+1(pj).
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(b) Using g′′j = ϕ′′
j ◦ τ pj we get H0gj = (H0ϕj) ◦ τ pj and therefore

∥(H0 − ϵ)gj∥2,R = ∥(H0 − ϵ)ϕj∥2,R → 0.

(c) By definition of pj we have

∥(V − C)gj∥2,R = ∥χBj+1(pj)(v − C)gj∥2,R
≤ ∥χBj+1(pj)(v − C)∥∞,R∥gj∥2,R

≤ 1

j
−−−→
j→∞

0.

These three properties together imply that λ is indeed an approximate eigen-
value of H:

∥(H − λ)gj∥2,R ≤ ∥(H0 − ϵ)gj∥2,R + ∥(V − C)gj∥2,R −−−→
j→∞

0

The proof in the case of ∥χ(−∞,n)(v − C̃)∥∞,R → 0 as n→ −∞ works exactly
the same.

Remark 1.2.4. The fact that there are no parts of the spectrum below the potentials
minimum is, from a physical point of view, not very surprising, as elements in σ(H)
correspond to possible energies. The total energy consists of a kinetic part and
potential energy, where the latter is given by the potential v. As the kinetic energy
is always positive, the sum of kinetic and potential energy can never be smaller than
the infimum of v. The second part of the Lemma shows that the spectrum heavily
depends on the asymptotic behavior of the potential at ±∞.

The question that remains is this: What parts (if any) of the spectrum lie in
between ess inf(v) and C, C̃ and what type of spectrum do we have (e.g. pure point,
absolute continuous or even singular continuous)? In general, these questions can be
quite difficult to answer, as there are potentials with rather “bizarre” spectra (more
on this can be found, for example, in [8]). However, in the case of the Pöschl-Teller
potential, we will see in the next chapter that the spectrum is “well behaved” and
we do not have to deal with anything strange.
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The Pöschl-Teller Potential

In this chapter we finally introduce the family Hl of Hamiltonians, which we want
to study in more detail. We are going to derive their full spectral decomposition.
At first, we are going to determine the point spectrum and in particular we are
interested in the relation between σp(Hl−1) and σp(Hl). This knowledge will be
helpful when looking at the spectral measures of Hl in a next step.

2.1 Analysis of the Spectrum

Definition 2.1.1. For l ∈ N ∪ {0} the map

vl : R→ R, x 7→ − l(l + 1)

cosh2(x)

is called the Pöschl-Teller potential. Furthermore, we define Vl ∈ B(L2(R)) to be
the multiplication operator by vl

Vl : L
2(R)→ L2(R), f 7→ f · vl

and we define the operator Hl respectively Hl to be

Hl : D(H0)→ L2(R), f 7→ (H0 + Vl)f

Hl : D(H0)→ L2(R), f 7→ (H0 + Vl)f.

Since vl ∈ L∞(R), Vl is indeed a bounded potential. Therefore, we can apply the
work we did in the previous section to draw some immediate consequences:

1. According to Theorem 1.2.1, Hl is essentially self-adjoint and Hl is its self-
adjoint closure (which justifies the notation).

2. Regarding Theorem 1.2.3, we have

(a) (0,∞) ⊆ σ(Hl) and, since the spectrum is closed, σ(H0) = [0,∞) ⊆
σ(Hl).

(b) (−∞,−l(l + 1)) ⊆ ρ(Hl).

12
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Figure 2.1: Plot of the Pöschl-Teller Potential
vl for different l.

A few words on the physical im-
portance of the Pöschl-Teller po-
tential: In Figure 2.1 a plot of
the Pöschl-Teller potential for l ∈
{1, 2, 3} is given. The Pöschl-
Teller potential has already been
used in molecular physics and chem-
istry about 30 years ago ([14]). Re-
cently, a generalized version extend-
ing Definition 2.1.1 was applied for
better understanding the interac-
tions and vibrational energies of
molecules ([5]).

As mentioned above, our first
goal is to determine the point spec-
trum. We are going to need the following operators:

Definition 2.1.2. Let l ∈ N ∪ {0} and set D(al) := D(P ) = S (R) ⊆ L2(R). Let
Mth : L2(R) → L2(R) be the multiplication operator by tanh. Then the linear
operator al : D(al)→ L2(R) is defined by

alf(x) := (Pf)(x)− il(Mthf)(x).

Lemma 1.2.2 allows us to obtain the closure of al and its adjoint.

Corollary 2.1.1. For each l ∈ N ∪ {0} the operator al is closable with closure
al = P − ilMth and its adjoint is given by a∗l = P + ilMth.

Proof. Observe that tanh is bounded, real-valued and thereforeM∗
th =Mth ∈ B(H).

Hence, the claim is a direct consequence of Lemma 1.2.2 and the essential self-
adjointness of P (Lemma 1.1.2).

Furthermore, we are going to need compositions of al and a∗l . Therefore, we
define:

Definition 2.1.3. Let l ∈ N ∪ {0} and set D(Al) := D(Bl) := S (R) ⊆ L2(R). We
define the linear operators Al : D(Al)→ L2(R) and Bl : D(Bl)→ L2(R) to be

Al := a∗l al and Bl := ala
∗
l .

Remark 2.1.2. If f ∈ S (R) then alf ∈ S (R) ⊆ D(a∗l ) and a
∗
l f ∈ S (R) = D(al).

Hence, the operators Al and Bl are well-defined on S (R).

The following useful relations between Al, Bl and Hl hold:

Lemma 2.1.3. Let l ∈ N. Then the following relations hold:

1. Hl = Al − l2

2. Hl−1 = Bl − l2

Page 13



Chapter 2

Proof. For f ∈ S (R) we have (using Corollary 2.1.1) a∗l f = (P + ilMth)f = (P +
ilMth)f . Therefore, the relations follow from a direct calculation. Indeed, for f ∈
S (R) we have

Alf = (P + ilMth)(−if ′ − il tanh ·f)
= −f ′′ − l(tanh ·f)′ + l tanh ·f ′ + l2 tanh2 ·f

= H0f − l(tanh ·f ′ +
1

cosh2f) + l tanh ·f ′ + l2(1− 1

cosh2 )f

= H0f −
l(l + 1)

cosh2 f + l2f

= Hlf + l2f.

And likewise we find (again f ∈ S (R))

Blf = (P − ilMth)(−if ′ + il tanh ·f)
= −f ′′ + l(tanh ·f)′ − l tanh ·f ′ + l2 tanh2 ·f

= H0f + l(tanh ·f ′ +
1

cosh2f)− l tanh ·f
′ + l2(1− 1

cosh2 )f

= H0f −
l(l − 1)

cosh2 f + l2f

= Hl−1f + l2f.

As we already know that Hl is essentially self-adjoint and hence closable, we can
use Lemma 1.2.2 to conclude that the operators Al, Bl are closable and we are able
to obtain their closures.

Corollary 2.1.4. Let l ∈ N. Then Al and Bl are closable with closures Al = a∗l al
and Bl = ala

∗
l defined on D(Al) = D(Bl) = H2,2(R). Furthermore, we have:

1. Hl = Al − l2

2. Hl−1 = Bl − l2

Proof. By Lemma 1.2.2 we have that Al and Bl are closable with closures Al = Hl+l
2

and Bl = Hl−1 + l2 (with domain D(Al) = D(Bl) = D(H0) = H2,2(R)). By the
same calculations as in the previous proof we find that

al
∗al = Hl + l2 =⇒ Al = al

∗al = a∗l al

and
alal

∗ = Hl−1 + l2 =⇒ Bl = alal
∗ = ala

∗
l .

Notice, that in order to actually apply the calculations in the previous proof, we have
to make sure that we are allowed to apply the product rule on the term P (tanh f) for
f ∈ H2,2(R). Clearly, tanh ·f ∈ L2(R) because of tanh ∈ L∞(R). Let ϕ ∈ C∞

c (R).
Then tanh ·ϕ ∈ C∞

c (R) since tanh ∈ C∞(R) and we have

−
∫
R
f · (tanh ·ϕ)′ dλ =

∫
R
f ′ · (tanh ·ϕ) dλ

⇐⇒ −
∫
R
(f · tanh) · ϕ′ dλ =

∫
R
(f · tanh′+f ′ · tanh) · ϕ dλ.
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Since f · tanh′ +f ′ · tanh ∈ L2(R) we can conclude tanh ·f ∈ H1,2(R) with weak
derivative (tanh ·f)′ = f · tanh′ +f ′ · tanh.

Lemma 2.1.5. Let l ∈ N ∪ {0}. Then ker(a∗l ) = {0}.

Proof. Recall that, according to Corollary 2.1.1, we have a∗l = P + ilMth : D(P ) =
H1,2(R)→ L2(R) so that we are looking for weak solutions f ∈ H1,2(R) of

−if ′ + il tanh ·f = 0 ⇐⇒ f ′ = l tanh ·f. (2.1)

Suppose that we have a weak solution f ∈ H1,2(R) of equation 2.1. By the argument
we already did in the proof of Corollary 2.1.4, we have tanh f ∈ H1,2(R). Equa-
tion 2.1 then implies f ′ ∈ H1,2(R). Consequently, we have f ∈ H2,2(R). Thanks
to the Sobolev embedding theorem (Appendix A.2.1) we can conclude that f is a
classical solution. Each classical solution of equation 2.1 is of the form

f(x) = f(0)el
∫ x
0 tanh dx

for some f(0) ∈ C. If f(0) ̸= 0 this solution is not in L2(R) because it diverges at
infinity. Therefore, besides the trivial solution, there are no classical solutions in
L2(R) (and by the arguments above no weak solutions) of equation 2.1.

Our next goal is to determine σp(Hl). In order to do this, we proceed in the
following steps:

1. Show that 0 ∈ σp(al).

2. Examine the relation between eigenvalues of Al and eigenvalues of Bl.

3. Conclude that Hl has the same eigenvalues as Hl−1 and one additional more.

The first step is easily done:

Corollary 2.1.6. Let l ∈ N and ψl0(x) := cosh−l(x). Then ψl0 ∈ D(al) ∩ L1(R) and
alψ

l
0 = 0. More than that, ker(al) = Cψl0.

Proof. Because of

cosh(x)−l =
2l

(ex + e−x)l
≤ 2l

elx + e−lx
≤ 2l(e−lxχR+ + elxχR−)

we have ψl0 ∈ L1(R)∩L2(R). ψl0 has the classical derivative
(
ψl0
)′
= −l sinh cosh−l−1 =

−l tanhψl0. This, together with tanh ∈ L∞(R), implies
(
ψl0
)′ ∈ L2(R). Therefore,

ψl0 ∈ H1,2(R) = D(al). Application of al on ψ
l
0 yields

alψ
l
0 = −i

(
ψl0
)′ − il tanhψl0 = −i (−l tanhψl0)− il tanhψl0 = 0

and hence Cψl0 ⊆ ker(al). It remains to prove that dimC(ker(al)) ≤ 1. Follow-
ing the same line of reasoning as in the proof of Lemma 2.1.5, we find that each
solution f ∈ H1,2(R) of the equation Pf − il tanh f = 0 is of the form f(x) =
f(0) exp

(
−l
∫ x
0
tanh(x) dx

)
for some f(0) ∈ C. Therefore, dimC(ker(al)) ≤ 1.

As for how eigenvalues of Al relate to eigenvalues of Bl, the following corollary
provides an answer.
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Corollary 2.1.7. The following statements hold (l ∈ N):

1. If λ ∈ σp(Bl) with eigenvector ϕ ∈ D(Bl) then a∗l ϕ ∈ D(Al) and λ ∈ σp(Al)
with eigenvector a∗l ϕ.

2. If λ ∈ σp(Al) with eigenvector ϕ ∈ D(Al) then alϕ ∈ D(Bl) and if alϕ ̸= 0
then λ ∈ σp(Bl) with eigenvector alϕ.

Proof. 1. Let 0 ̸= ϕ ∈ D(Bl) = H2,2(R) be such that Blϕ = λϕ. According to
Corollary 2.1.4 we have

Blϕ = (Hl−1 + l2)ϕ = λϕ

⇐⇒ (λ− l2 − Vl−1)ϕ = H0ϕ.

Since vl−1 ∈ C∞(R) ∩ L∞(R) we have Vl−1ϕ ∈ H2,2(R) and therefore, the
left-hand side is in H2,2(R). Thus, the right hand has to be in H2,2(R) too
and we can conclude ϕ ∈ H4,2(R). In particular, we obtain Pϕ ∈ H3,2(R) ⊆
D(Al). Since tanh ∈ C∞(R) ∩ L∞(R), we also have Mthϕ ∈ D(Al). Hence,
a∗l ϕ = Pϕ+ ilMthϕ ∈ D(Al). According to Lemma 2.1.5, a∗l ϕ ̸= 0 and we can
verify that a∗l ϕ is an eigenvector of Al (by using Corollary 2.1.4):

Ala
∗
l ϕ = a∗l ala

∗
l ϕ = a∗lBlϕ = λa∗l ϕ

2. Let 0 ̸= ϕ ∈ D(Al) = H2,2(R) such that Alϕ = (Hl + l2)ϕ = λϕ. We can use
the same argument as in 1. to see that ϕ ∈ H4,2(R). Consequently, we obtain
alϕ ∈ H2,2(R) = D(Bl). Now suppose alϕ ̸= 0. Then alϕ is an eigenvector of
Bl with eigenvalue λ:

Blalϕ = ala
∗
l alϕ = alAlϕ = λalϕ

Thanks to Corollary 2.1.4 we can rewrite Corollary 2.1.7 in terms of the operators
Hl and Hl−1.

Corollary 2.1.8. The following statements hold (l ∈ N):

1. If λ ∈ σp(Hl−1) with eigenvector ϕ ∈ D(Hl−1) then a∗l ϕ ∈ D(Hl) and λ ∈
σp(Hl) with eigenvector a∗l ϕ.

2. If λ ∈ σp(Hl) with eigenvector ϕ ∈ D(Hl) then alϕ ∈ D(Hl−1) and if alϕ ̸= 0
then λ ∈ σp(Hl−1) with eigenvector alϕ.

Proof. This is a direct consequence of Corollary 2.1.4 and Corollary 2.1.7.

Now we are ready two determine the full point spectrum of Hl.

Theorem 2.1.9. Let l ∈ N. Then

σp(Hl) = σp(Hl−1) ∪ {−l2}

and therefore

σp(Hl) =
l⋃

j=1

{−j2}.

Furthermore, dimC(ker(Hl − λ)) = 1 for each λ ∈ σp(Hl).
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Proof. Let λ ∈ σp(Hl) and 0 ̸= ϕ ∈ D(Hl) such that Hlϕ = λϕ. Assume alϕ ̸= 0.
According to Corollary 2.1.8 we then have λ ∈ σp(Hl−1). If instead alϕ = 0 then
there exists a c ∈ C such that ϕ = cψl0 (Corollary 2.1.6). Thus, by Corollary 2.1.4,
(Hl + l2)ϕ = ca∗l alψ

l
0 = 0 and hence λ = −l2. This proves the inclusion “⊆”.

Conversely, let λ ∈ σp(Hl−1) ∪ {−l2}. If λ = −l2 we are done since ψl0 is
an eigenvector of Hl with eigenvalue −l2. If λ ∈ σp(Hl−1) with corresponding
eigenvector ϕ ∈ D(Hl−1) = D(Hl) then a

∗
l ϕ is an eigenvector of Hl with eigenvalue

λ according to Corollary 2.1.8. This proves the other inclusion “⊇”.
Knowing that σp(H0) = ∅ (Corollary 1.1.7) we obtain

σp(Hl) =
l⋃

j=1

{−j2}.

Next we prove dimC(ker(Hl − λ)) = 1 (for each λ ∈ σp(Hl)): Observe that for
λ = −l2 ∈ σp(Hl) the claim follows directly from the above results: Thanks to Corol-
lary 2.1.4 we have ker(Hl + l2) = ker(a∗l al) and since ker(a∗l ) = {0} (Lemma 2.1.5),
ker(Hl+l

2) = ker(al) = Cψl0 by Corollary 2.1.6 so that dimC(ker(Hl+l
2)) = 1. Since

σp(H1) = {−12}, the claim is true for l = 1. Now suppose that the claim is true for
one l ∈ N. Let λ ∈ σp(Hl+1). We have to show that dimC(ker(Hl+1 − λ)) = 1. If
λ = −(l+1)2 we are done by the above reasoning. Assume λ ̸= −(l+1)2 and choose
ϕ1, ϕ2 ∈ ker(Hl+1− λ). Since λ ̸= −(l+1)2, we have al+1ϕ1,2 ̸= 0, and we can apply
Corollary 2.1.8 to conclude that al+1ϕ1,2 ∈ ker(Hl−λ). By the induction hypothesis
there exists a c ∈ C such that al+1ϕ1 = cal+1ϕ2 or equivalently ϕ1− cϕ2 ∈ ker(al+1).
Thanks to Corollary 2.1.6 we can conclude that there exists a d ∈ C such that
ϕ1 − cϕ2 = dψl+1

0 . We obtain

−(l + 1)2dψl+1
0 = dHl+1ψ

l+1
0 = Hl+1(ϕ1 − cϕ2) = λ((ϕ1 − cϕ2)) = λdψl+1

0 .

Therefore, if d ̸= 0, we find λ = −(l + 1)2 contradicting the assumption. Hence,
d = 0 and ϕ1 = cϕ2.

So far we have seen that σ(H0) ∪ σp(Hl) ⊆ σ(Hl). Proving equality requires a
bit more work and will be done in the following section.

2.2 Calculating the Spectral Measures

The aim of this section is to find out an explicit formula for the spectral measures
of Hl. We will start with a bit of physical intuition to get an idea of what these
measures could look like. A small word of warning: The following paragraph is
intended to serve only as an intuition and is not meant to be precise or rigourus.
Without usage of what is called “Gelfand triples”, most of the following expressions
are ill-defined. A good starting point for learning more about Gelfand triples might
be [4].

Given a Hamiltonian H, physicists like to think of the spectral decomposition as
an integral of the form

H =

∫
R
λ|fλ⟩⟨fλ| dλ, (2.2)

where |fλ⟩ denotes an eigenstate of the Hamiltonian with eigenvalue λ: H|fλ⟩ =
λ|fλ⟩. Notice, that in physics language this does not mean, that |fλ⟩ has to be in
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L2(R) (nonetheless they are called eigenfunctions). Furthermore, an expression like
f(H) for a function f can be thought of as

f(H) =

∫
R
f(λ)|fλ⟩⟨fλ| dλ. (2.3)

The spectral measure ES = χS(H) would then be something like

χS(H) =

∫
S

|fλ⟩⟨fλ| dλ. (2.4)

For the special case at hand, we know, that given a solution |f l−1
λ ⟩ of Hl−1|f l−1

λ ⟩ =
λ|f l−1

λ ⟩ we get an eigenvector of Hl by applying a∗l : Hl|a∗l f l−1
λ ⟩ = λ|a∗l f l−1

λ ⟩ (Corol-
lary 2.1.8). In the language of bras and kets we furthermore have the relations
|a∗l f l−1

λ ⟩ = a∗l |f l−1
λ ⟩ and ⟨a∗l f

l−1
λ | = ⟨f

l−1
λ |al. Applying this to equation 2.4 and

interchanging integration and a∗l , al leads to

χS(Hl) = a∗l

(∫
S

|f l−1
λ ⟩⟨f

l−1
λ | dλ

)
al = a∗l χS(Hl−1)al. (2.5)

Hence, the spectral projections ofHl are completely determined by those ofHl−1. As
we already know them for l = 0, this would be enough to deduce them for arbitrary
l.

Now that we have a rough idea, we need to make this idea more formal. Let
El : B(R) → B(L2(R)) be the spectral measure of Hl and for S ∈ B(R) we write
El
S := El(S) as always. To get a bit more intuition, let us start with the simplest

case by setting S := {−j2} ∈ σp(Hl) (j ∈ {1, 2, . . . , l}). Denoting with ψj ∈ D(Hl)
the normalized eigenvector with eigenvalue −j2 of Hl (there is exactly one according
to Theorem 2.1.9) and El

j := El
{−j2} we have

El
jf = ⟨ψj, f⟩ψj for f ∈ L2(R) (2.6)

and as ψj ∈ D(Hl) ⊆ D(a∗l ) the operator a∗lE
l−1
j al is given by

a∗lE
l−1
j alf = ⟨ψj, alf⟩a∗lψj = ⟨a∗lψj, f⟩a∗lψj for f ∈ S (R). (2.7)

Therefore, we can observe that a∗lE
l
jal (defined on D(al) = S (R)) extends to the

bounded operator L2(R) ∋ f 7→ ⟨a∗lψj, f⟩a∗lψj. However, to make this a projection,
we have to introduce a scaling factor:

Lemma 2.2.1. Let l ∈ N, −j2 ∈ σp(Hl−1) (j = {1, 2, . . . , l − 1}), ψj ∈ D(Hl−1)
the corresponding normalized eigenvector and denote with Ek : B(R) → L2(R) the
spectral measure of Hk for k ∈ N. Then the operator

El
j : L

2(R)→ L2(R) El
jf = (−j2 + l2)−1⟨a∗lψj, f⟩a∗lψj

extends (−j2 + l2)−1a∗lE
l−1
{−j2}al : S (R) → L2(R) boundedly. Furthermore, El

j is an

orthogonal projection and we have El
j = El

{−j2}.

Proof. That El
j is a bounded extension has already been proven. For f, g ∈ L2(R)

we calculate

⟨f, El
jg⟩ = (−j2 + l2)−1⟨a∗lψj, g⟩⟨f, a∗lψj⟩

= (−j2 + l2)−1⟨⟨a∗lψj, f⟩a∗lψj, g⟩ = ⟨El
jf, g⟩
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and hence El
j =

(
El
j

)∗
. Now, observe that

∥a∗lψj∥22,R = ⟨ala∗lψj, ψj⟩ = ⟨(Hl−1 + l2)ψj, ψj⟩ = (−j2 + l2),

where we used ∥ψj∥2,R = 1 and ψj ∈ D(Hl−1) = H2,2(R) and therefore a∗lψj ∈
H1,2(R) = D(al) = D(a∗∗l ) (by Corollary 2.1.1 al is closable). Now, it follows from
a direct calculation that El

j is a projection. Indeed, for f ∈ L2(R) we have(
El
j

)2
f = (−j2 + l2)−1⟨a∗lψj, El

jf⟩a∗lψj
= (−j2 + l2)−2∥a∗lψj∥22,R⟨a∗lψj, f⟩a∗lψj = El

jf.

By design, we have El
j = Projspan(a∗l ψj)

and since a∗lψj is an eigenvector of Hl with

eigenvalue−j2 (Corollary 2.1.8) and ker(Hl+j
2) is one-dimensional (Theorem 2.1.9),

this leads to El
j = Projker(Hl+j2)

= El
{−j2}.

Our physical reasoning from above indeed leads to the correct relation between
El
S and El−1

S , at least for S ⊆ σp(Hl−1). Next, we can try to generalize the result to
arbitrary S ∈ B(R). Observe that

(−j2 + l2)−1El−1
{−j2} = Rl−1(−l2)El−1

{−j2}, (2.8)

whereRl−1(−l2) := (Hl−1+l
2)−1 denotes the resolvent. Our hope is that for arbitrary

S ∈ B(R) we find something like

El
S = a∗lR

l−1(−l2)El−1
S al. (2.9)

Of course, this can certainly not be true, as Hl has one more eigenvalue than Hl−1

and therefore El−1 does not have all the information that is needed for El. We
will see later on that we can overcome this issue by adding a projection onto the
eigenspace of the additional eigenvalue. Leaving this aside, without consideration
of rigorous details we can rewrite equation 2.9 as follows

El
S =

a∗l√
Hl−1 + l2

El−1
S

al√
Hl−1 + l2

(2.10)

=
a∗l√
ala∗l

El−1
S

al√
ala∗l

. (2.11)

Recall that for bounded operators T ∈ B(H) we can use the polar decomposition to
write T = U

√
T ∗T with U ∈ B(H) being a partial isometry. If

√
T ∗T was invertible,

then U = T
√
T ∗T

−1
which reminds us of the terms in equation 2.11. Again, we have

to formalize these ideas. Recall that the polar decomposition can be generalized to
closed densely defined operators.

Theorem 2.2.2 ([9], page 138). Let T : H ⊇ D(T ) → H be a closed densely
defined linear operator. Then T ∗T is a positive self-adjoint operator and there exists
a partial isometry U ∈ B(H) with initial space ker(U)⊥ = ker(T )⊥ = Ran(T ∗) and
final space Ran(U) = Ran(T ) = ker(T ∗)⊥ such that

T = U |T |,

where |T | := (T ∗T )
1
2 denotes the modulus of T . Furthermore, the following relations

hold:
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1. UU∗ = Projker(T ∗)⊥

2. T ∗ = |T |U∗

Equation 2.11 seems to suggest a relation between El
S, E

l−1
S and the polar de-

composition of a∗l . As we will need the partial isometry later on, let us start by
giving it a name:

Definition 2.2.1. For l ∈ N we denote with Ul ∈ B(L2(R)) the partial isometry
from the polar decomposition (Theorem 2.2.2) of the closed operator a∗l .

Now, we can quickly prove two important facts. First, some properties of Ul and
second, how Ul relates Hl with Hl−1.

Lemma 2.2.3. Let l ∈ N. Then Ul is an isometry. Furthermore, restricted to
D(al), U

∗
l is given by

U∗
l

∣∣
D(al)

=
(
Hl−1 + l2

)− 1
2
(
P − ilMth

)
. (2.12)

In particular, for l = 1, one obtains

U∗
1 =

P

(P
2
+ 1)

1
2

− i(P 2
+ 1)−

1
2Mth. (2.13)

Proof. Since ker(a∗l ) = {0} (Lemma 2.1.5), Ul is isometric. As −l2 /∈ σ(Hl−1)

the operator |a∗l | =
√
ala∗l =

√
Hl−1 + l2 has the bounded inverse

(
Hl−1 + l2

)− 1
2 .

Theorem 2.2.2 yields

a∗∗l = al = |a∗l |U∗
l =⇒ U∗

l

∣∣
D(al)

=
(
Hl−1 + l2

)− 1
2 al,

which, together with Corollary 2.1.1, proves equation 2.12. In the case l = 1, it

is easy to see how equation 2.12 simplifies to equation 2.13: Because of H0 = P
2

and the boundedness of the function R ∋ x 7→ x(x2 + 1)−
1
2 , we can drop the above

restriction to D(a1) and obtain equation 2.13.

Lemma 2.2.4. Let l ∈ N. The operators Hl and Hl−1 are related via

Hl = UlHl−1U
∗
l − l2Projker(al).

Proof. We find

Hl = a∗l al − l2 (Corollary 2.1.4)

= Ul|a∗l ||a∗l |U∗
l − l2 (Theorem 2.2.2)

= Ulala
∗
lU

∗
l − l2

= Ul(Hl−1 + l2)U∗
l − l2 (Corollary 2.1.4)

= UlHl−1U
∗
l − l2(1− UlU∗

l ).

In view of Theorem 2.2.2, we have 1 − UlU∗
l = 1 − Projker(al)⊥ = Projker(al), which

proves the claim.
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We can now hope that the relation between Hl and Hl−1 carries over to the
relation between the corresponding spectral measures. And indeed, we have the
following Theorem.

Theorem 2.2.5. Let l ∈ N and El−1 be the spectral measure of Hl−1. Then the
spectral measure El of Hl is given by

El
S = UlE

l−1
S U∗

l + δ−l2(S)Projker(Hl+l2)
∀S ∈ B(R),

where δ−l2 denotes the Dirac measure centered at the point −l2.

Proof. Recall that ker(Hl + l2) = ker(al). At first, we have to make sure that for
S ∈ B(R) the operator

ES := UlE
l−1
S U∗

l + δ−l2(S)Projker(al)

is an orthogonal projection and that E : B(R) → B(L2(R)), S 7→ ES defines a
projection valued measure.

1. Because Ul is isometric (U∗
l Ul = 1), E∗

S = ES. Since Ran(Ul) = ker(al)
⊥, we

find Projker(al)Ul = 0 as well as U∗
l Projker(al) = 0. Therefore, (ES)

2 = ES.
Hence, ES is an orthogonal projection.

2. Clearly, E∅ = 0 and

ER = UlU
∗
l + Projker(al) = Projker(al)⊥ + Projker(al) = 1.

3. If (Sj)j∈N ⊆ B(R) is a pairwise disjoint family of Borel sets then δ−l2(∪j∈NSj) =∑
j∈N δ−l2(Sj) and using that El−1 already is a projection valued measure we

obtain E∪j∈NSj
f =

∑
j∈NESj

f for all f ∈ L2(R).

We notice that for f ∈ L2(R) the measures µEf (S) := ⟨f, ESf⟩ are given by

µEf (S) = ⟨U∗
l f, E

l−1
S U∗

l f⟩+ δ−l2(S)⟨f,Projker(al)f⟩
= µl−1

U∗
l f
(S) + δ−l2(S)⟨f,Projker(al)f⟩,

where we set µl−1
g := ⟨g, El−1

S g⟩ for g ∈ L2(R). Define the self-adjoint operator

A :=

∫
R
λ dEλ

and use the previous lemma to derive that for f ∈ D(Hl)

⟨f,Hlf⟩ = ⟨U∗
l f,Hl−1U

∗
l f⟩ − l2⟨f,Projker(al)f⟩

=

∫
R
λ dµl−1

U∗
l f

+

∫
R
λ⟨f,Projker(al)f⟩ dδ−l2

=

∫
R
λ dµEf = ⟨f, Af⟩.

By the polarization identity this shows that ⟨g,Hlf⟩ = ⟨g, Af⟩ for all f, g ∈ D(Hl)
and since D(Hl) ⊆ L2(R) is dense, we have Hl ⊂ A. Since Hl as well as A are
self-adjoint, we even have the equality A = Hl. By the uniqueness of the spectral
measures this implies E = El.
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Remark 2.2.6. Theorem 2.2.5 provides an answer to whether there are parts of the
spectrum below zero which do not belong to the point spectrum. We find

σ(Hl) = supp(El) = supp(El−1) ∪ {−l2} = σ(Hl−1) ∪ {−l2}.

As σ(H0) = R≥0 we find

σ(Hl) = R≥0 ∪

(
l⋃

j=1

{−j2}

)
.

So that there is indeed only point-spectrum below zero.

In the subsequent sections we are mainly interested in operators of the form eitHl .
Now that the spectral measures are known, we are in a quite good position to relate
eitHl and eitHl−1 .

Corollary 2.2.7. Let g ∈ L∞(σ(Hl)) and l ∈ N. Then

g(Hl) = Ulg(Hl−1)U
∗
l + g(−l2)Projker(al). (2.14)

Proof. This is a consequence of Theorem 2.2.5. For f ∈ L2(R) we have

⟨f, g(Hl)f⟩ =
∫
R
g(λ) dµlf

=

∫
R
g(λ) dµl−1

U∗
l f

+

∫
R
g(λ)⟨f,Projker(al)f⟩ dδ−l2

= ⟨U∗
l f, g(Hl−1)U

∗
l f⟩+ g(−l2)⟨f,Projker(al)f⟩

= ⟨f,
(
Ulg(Hl−1)U

∗
l + g(−l2)Projker(al)

)
f⟩.

The polarization identity now proves the claim.

With the help of Lemma 2.2.3 we can try to eliminate the Ul operators in equa-
tion 2.14. At least for l = 1 this is easily done.

Corollary 2.2.8. Let g ∈ L∞(σ(H1)) be such that g(P
2
)S (R) ⊆ S (R). Then

g(H1)
∣∣
S (R) =

(
P + iMth

) g(P 2)

P
2
+ 1

(
P − iMth

)
+ g(−1)Projker(a1).

Proof. Since
(
P

2
+1
)−1

S (R) ⊆ S (R) and g(P 2
)S (R) ⊆ S (R) the above equation

is indeed well-defined on S (R). Then the Corollary is a direct consequence of
Lemma 2.2.3 (equation 2.13) and Corollary 2.2.7.

Recursively, we obtain the following expression for g(Hl):

Theorem 2.2.9. Let g ∈ L∞(σ(Hl)) be such that g(P
2
)S (R) ⊆ S (R). Then

g(Hl)
∣∣
S (R) =

(
l−1∏
j=0

a∗l−j

)
g(P

2
)∏l

j=1

(
P

2
+ j2

) ( l∏
j=1

aj

)

+
l−1∑
j=1

 g (−j2)∏l
k=j+1 (−j2 + k2)

l−(j+1)∏
k=0

a∗l−k

Projker(aj)

(
l∏

k=j+1

ak

)
+ g

(
−l2
)
Projker(al). (2.15)
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Proof. At first, we have to make sure that the above expression is well-defined on
S (R). We can use the same reasoning as in the proof of Corollary 2.2.8 to see
that the first term is well-defined on S (R). The third term is also easy to handle.
The second term (the one including the projections) is more complicated. Since
Projker(aj) = ⟨ψj0, ·⟩ψ

j
0 (recall the definition of ψj0 from Corollary 2.1.6), we have

to prove that a∗j+1ψ
j
0 ∈ D(a∗j+2) = H1,2(R), a∗j+2a

∗
j+1ψ

j
0 ∈ D(a∗j+3) = H1,2(R) and

so on. This reduces to whether
(
ψj0
)(n) ∈ H1,2(R) for all n ∈ N, where

(
ψj0
)(n)

denotes the n-th derivative. We claim that there exists a polynomial Pn such that(
ψj0
)(n)

= Pn(tanh)ψ
j
0. Thanks to the proof of Corollary 2.1.6 we already know, that

the claim is true for n = 1 (choose P1(x) = −jx). Let the claim be true for one
n ∈ N. Then (

ψj0
)(n+1)

=
(
Pn(tanh)ψ

j
0

)′
= (tanh)′P ′

n(tanh)ψ
j
0 + Pn(tanh)

(
ψj0
)′

=
(
(1− tanh2)P ′

n(tanh)− j tanhPn(tanh)
)
ψj0.

Setting Pn+1(x) = (1−x2)P ′
n(x)− jxPn(x), which is again a polynomial, proves the

claim. Since tanh is bounded and smooth, Pn(tanh) is bounded and smooth too.

Therefore,
(
ψj0
)(n)

= Pn(tanh)ψ
j
0 ∈ H1,2(R) because ψj0 ∈ H1,2(R) (Corollary 2.1.6).

Hence, the expression in equation 2.15 is indeed well-defined.

We prove equation 2.15 by induction. For l = 1 the claim follows from Corol-
lary 2.2.8. Let l ∈ N be such that equation 2.15 holds true. Thanks to Corollary 2.2.7
we have

g(Hl+1) = Ul+1g(Hl)U
∗
l+1 + g(−(l + 1)2)Projker(al+1)

.

Using Lemma 2.2.3 (equation 2.12) we obtain

g(Hl+1)
∣∣
S (R) =

(
P + i(l + 1)Mth

) g(Hl)

Hl + (l + 1)2

(
P − i(l + 1)Mth

)
+ g

(
−(l + 1)2

)
Projker(al+1)

.

Setting f : σ(Hl)→ R, x 7→ g(x)
x+(l+1)2

we can rewrite this equation as

g(Hl+1)
∣∣
S (R) = a∗l+1f(Hl)al+1 + g

(
−(l + 1)2

)
Projker(al+1)

.

Since f is bounded, we can use the induction hypothesis and get

g(Hl+1)
∣∣
S (R) =

a∗l+1

(
l−1∏
j=0

a∗l−j

)
f(P

2
)∏l

j=1

(
P

2
+ j2

) ( l∏
j=1

aj

)
al+1

+ a∗l+1

l−1∑
j=1

 f (−j2)∏l
k=j+1 (−j2 + k2)

l−(j+1)∏
k=0

a∗l−k

Projker(aj)

(
l∏

k=j+1

ak

) al+1

+ a∗l+1f
(
−l2
)
Projker(al)al+1 + g

(
−(l + 1)2

)
Projker(al+1)

.
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Therefore, using the definition of f and reorganizing the indices, we obtain

g(Hl+1)
∣∣
S (R) =(l+1)−1∏

j=0

a∗(l+1)−j

 g(P
2
)∏l+1

j=1

(
P

2
+ j2

) ( l+1∏
j=1

aj

)

+

(l+1)−1∑
j=1

 g (−j2)∏l+1
k=j+1 (−j2 + k2)

(l+1)−(j+1)∏
k=0

a∗(l+1)−k

Projker(aj)

(
l+1∏

k=j+1

ak

)
+ g

(
−(l + 1)2

)
Projker(al+1)

.
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Scattering Theory and
Transparent Potentials

Now that we have successfully worked out the spectral measures of our Hamiltonian,
we are in a good position to start understanding the scattering behavior of the
quantum system described by the Pöschl-Teller potential. The first part of this
chapter deals with the most fundamental theoretical background of scattering theory
and how the purely mathematical definitions can be understood from the viewpoint
of a physicist. This chapter is intended to give the important definitions we need in
the following sections and is certainly not an introduction to scattering theory. A
much more thorough description of scattering theory can be found, for example, in
[11]. The second part applies our results from the previous sections to the case at
hand.

3.1 Wave Operators, Scattering Operators and

Their Physical Meaning

Let A : H ⊇ D(A) → H be a self-adjoint operator, ϕ0 ∈ D(A), ϕ : R → H
differentiable and ϕ(R) ⊆ D(A). Then the initial value problem

iϕ′(t) = Aϕ(t) ∀t ∈ R, ϕ(0) = ϕ0 (3.1)

is called Schrödinger equation and the operator A is called Hamiltonian. One can
show that a unique solution of 3.1 exists and is given by ϕ(t) = e−itAϕ0 ([11]). One
says that the operator e−itA describes the time evolution of a state ϕ0. In physics,
the Hamiltonian (usually called H) is often of the form H = −∆ + V where V is
a multiplication operator with some function v called the potential. For bounded v
and the one-dimensional Laplacian we have seen that H is indeed self-adjoint. One
goal of scattering theory is to compare two different time evolutions e−itA and e−itB.
Therefore, one defines the wave operators Ω±.

Definition 3.1.1. Let A : H ⊇ D(A) → H and B : H ⊇ D(B) → H be two
self-adjoint operators. Set P ac

A ∈ B(H ) to be the projection onto the absolute con-
tinuous subspace H A

ac := {x ∈ H : µAx is absolutely continuous with respect to λ}.
If the limits

Ω± := s-lim
t→±∞

eitBe−itAP ac
A
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exist then Ω± are called wave operators (Møller operators) of the pair (A,B).

In many applications in physics we set A = −∆ and B = H = −∆ + V and
interpret A as describing the evolution of a free state which does not interact with
any potential, whereas B describes the interaction of a state with a given potential
V . Assuming the wave operators exist, we define the scattering operator S.

Definition 3.1.2. Let (A,B) be a pair of self-adjoint operators for which both wave
operators Ω+ and Ω− exist. Then the scattering operator S is defined as

S := Ω∗
+Ω−.

Just a few words about the physical meaning of the operators Ω± and S. Take
Figure 3.1 as an illustration of the following explanation (see also [11] and [10]).

Figure 3.1: Illustration of incoming and outgoing
waves.

If the effect of the potential
is not too far-reaching, then
we can expect the motion of
the scattered particle (gray line
in Figure 3.1) to be more or
less free if the particle is far
away from the potentials cen-
ter. Suppose that we were give
an outgoing respectively incom-
ing state ψ± (which lie in H A

ac ),
then we would expect to find
a state ψ such that ∥e−itBψ −
e−itAψ±∥2,R → 0 as t → ±∞.
By the unitarity of e−itB we
have ∥e−itBψ − e−itAψ±∥2,R =
∥ψ− eitBe−itAψ±∥2,R and there-
fore, we see that ψ = Ω±ψ±. That is why we say that the wave operators relate the
free and the interacting dynamics. Now, the scattering operator takes the asymp-
totic free incoming state ψ− (represented by the orange line) and maps it to the
asymptotic free outgoing state ψ+ (represented by the dotted green line).

In the next section we set A = H0 and B = Hl and want to determine the wave
operators and the scattering operator of the pair (H0, Hl). In that case, Defini-
tion 3.1.1 simplifies since P ac

H0
= 1 according to Corollary 1.1.7. We introduce the

following notation:

Definition 3.1.3. Let l ∈ N∪{0}. We set Ωl
± and Sl to be the wave operators and

scattering operators of the pair (H0, Hl).

Based on the scattering operator, we can now say, what a transparent potential
is. To do so, we first introduce the notion of moving directions of a wave. Let
ψ ∈ L2(R) be any wave function. We call the wave

1. right-moving if supp(Fψ) ⊆ R+,

2. left-moving if supp(Fψ) ⊆ R−.
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Observe that we can split any wave function ψ in a right moving part ψ+ := EP
R+
ψ

and a left moving part ψ− := EP
R−
ψ. Let ψ be any incoming state and ψ̃ := Sψ

the corresponding outgoing state. We are interested in whether left-moving waves
stay left-moving waves (i.e. ψ̃− is completely determined by ψ−) and whether right-
moving waves stay right moving waves (i.e. ψ̃+ is completely determined by ψ+).
In this case we speak of transparency. In the case where parts of left-moving waves
get mapped to right-moving ones and vice versa we speak of reflectivity.

3.2 Transparency of the Pöschl-Teller Potential

We start by analyzing the free dynamics (see also [11], page 169).

Theorem 3.2.1. Let f ∈ L1(R) ∩ L2(R). Then the interaction-free time evolution
is given by (

e−itH0f
)
(x) =

1√
4πit

∫
R
ei

(x−y)2

4t f(y) dλ(y)

for t ∈ R \ {0}.

Proof. Set et(p) := e−itp
2
. Then ft := e−itH0f = F−1 (etF (f)). Let n ∈ N and set

ent (p) := e−(it+
1
n)p2 . We have

1. ent ∈ L2(R) ∩ L∞(R)

2. ent → et pointwise as n→∞

3. supn∈N∥ent ∥∞,R = 1 <∞

Therefore, ent (P )
SOT−−→ et(P ) for n → ∞. Furthermore, the Fourier transform of ent

exists (since ent ∈ L2(R) as opposed to et) and hence

ft = et(P )f ←−−−
n→∞

fnt := ent (P )f = F−1 (ent F (f)) = (2π)−
1
2F−1 (ent ) ∗ f.

Since (ent )
′ = −2idR

(
it+ 1

n

)
ent ∈ L2(R) we find

0 = F−1
(
(ent )

′) (x) + F−1

(
2idR

(
it+

1

n

)
ent

)
(x)

⇐⇒ 0 = −ixF−1 (ent ) (x)− 2

(
it+

1

n

)
i
(
F−1 (ent )

)′
(x)

⇐⇒ 0 =
(
F−1 (ent )

)′
(x) +

nx

2(int+ 1)
F−1 (ent ) (x).

We can solve this ordinary differential equation and conclude that there exists a

constant C ∈ C such that F−1 (ent ) (x) = C exp
(
− n

4(int+1)
x2
)
. The constant C is

determined via

C = F−1 (ent ) (0) =
1√
2π

∫
R
ent (x)dx =

√
n

2(int+ 1)
.
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In total we get

fnt (x) =
1√
2π
F−1 (ent ) ∗ f(x) =

√
n

4π(int+ 1)

∫
R
e−

n(x−y)2

4(int+1)f(y) dy

−−−→
n→∞

√
1

4πit

∫
R
e−

(x−y)2

4it f(y) dy =: f̃t(x),

where we used Lebesgue Dominated Convergence (with majorant |f |). But since
also fnt → ft in norm, we have ft = f̃t.

Using this explicit form, we can immediately draw a physical conclusion.

Lemma 3.2.2. Let f0 ∈ L2(R), t ∈ R \ {0} and set ft := e−itH0f0. We have:

1. If f0 ∈ L1(R) then ft ∈ L∞(R) and

∥ft∥∞,R ≤
1√
|4πt|

∥f0∥1,R.

2. If f0 ∈ L1(R) then for every bounded (Borel measurable) S ⊆ R

∥χSft∥2,R → 0 for t→ ±∞.

3. ⟨ϕ, ft⟩ −−−−→
t→±∞

0 for each ϕ ∈ L2(R) ∩ L1(R).

Proof. 1. We apply Theorem 3.2.1 and obtain

∥ft∥∞,R ≤
1√
|4πt|

sup
x∈R

∫
R

∣∣∣∣ei (x−y)2

4t f0(y)

∣∣∣∣ dλ(y) = 1√
|4πt|

∥f0∥1,R.

2. We can use 1. to obtain ∥χSft∥2,R ≤ ∥ft∥∞,R∥χS∥2,R → 0, where we used
χS ∈ L2(R), since S is bounded.

3. First suppose that f0 ∈ S (R). Then the claim follows from 1.:

|⟨ϕ, ft⟩| ≤
∫
R
|ϕ||ft| dλ ≤ ∥ft∥∞,R∥ϕ∥1,R → 0

For arbitrary f0 ∈ L2(R) let ϵ > 0, choose f̃0 ∈ S (R) such that ∥ϕ∥1,R∥f0 −
f̃0∥2,R < ϵ and T ∈ R such that |⟨ϕ, e−itH0 f̃0⟩| < ϵ for all t ≥ T . Then

|⟨ϕ, ft⟩| ≤ |⟨ϕ, e−itH0(f0 − f̃0)⟩| + |⟨ϕ, e−itH0 f̃0⟩| ≤ ∥ϕ∥1,R∥f0 − f̃0∥2,R + ϵ ≤ 2ϵ
for all t ≥ T .

Remark 3.2.3. The mapping x→ |ft(x)|2 is commonly interpreted as the probability
density of the position of the particle at time t. If we start at time t = 0 with a
particle that is described by a wave packet f0 ∈ L2(R) ∩ L1(R), the probability to
find this particle in any bounded region Ω will decrease over time. This phenomenon
is often called spreading of wave packets.
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The next step will be to determine the wave operator Ωl
± for l = 1. We can use

Corollary 2.2.7 to get

eitH1e−itH0 =
(
U1e

itH0U∗
1 + e−itProjker(a1)

)
e−itH0 . (3.2)

Recall, that, thanks to Lemma 2.2.3, we already know what U∗
1 is. Inserting equa-

tion 2.13 into equation 3.2 leads to

eitH1e−itH0 = U1
P − ieitH0Mthe

−itH0

(P
2
+ 1)

1
2

+ e−itProjker(a1)e
−itH0 . (3.3)

When taking the SOT-limit t → ±∞ the second summand on the right hand side
vanishes thanks to Lemma 3.2.2. In order to get control over the first summand
we need to take a closer look at the term eitH0Mthe

−itH0 . We can start with some
intuition from physics. Consider a right-moving wave ϕ and its time evolution
ϕt := e−itH0ϕ. As ϕ propagates to the right, not many parts of ϕt will be located
to the left from its starting point and ϕt moves to +∞. Since tanh(x) ≈ 1 for

large x, we have Mthϕt ≈ ϕt so that eitH0Mthe
−itH0ϕ ≈ ϕ for large times t and

right-moving waves ϕ. Conversely, if ϕ is purely left-moving then eitH0Mthe
−itH0ϕ ≈

−ϕ since tanh(x) ≈ −1 for large negative x. In summary, we would expect that

eitH0Mthe
−itH0ϕ → EP

R+
ϕ − EP

R−
ϕ for t → +∞ (for t → −∞ the roles of left and

right-moving waves are reversed). The following results make this idea precise.

Lemma 3.2.4. Let f ∈ L∞(R,R) be a bounded real-valued function such that the
limit

Lf := s-lim
t→±∞

eitH0Mfe
−itH0

exists and tanh−f ∈ L2(R) (Mf denotes the multiplication operator by f). Then
the limit

Lth := s-lim
t→±∞

eitH0Mthe
−itH0

also exists and Lf = Lth.

Proof. Assume that Lf exists, set g := tanh−f and suppose g ∈ L2(R). We claim
that

Lg := s-lim
t→±∞

St, St := eitH0Mge
−itH0

exists and Lg = 0. Indeed, for ϕ ∈ S (R) and t ∈ R we have (Lemma 3.2.2)

∥Stϕ∥2,R = ∥Mge
−itH0ϕ∥2,R ≤ ∥g∥2,R∥e−itH0ϕ∥∞,R → 0 for t→ ±∞.

Therefore Stϕ converges. As ∥St∥ ≤ ∥g∥∞,R for every t ∈ R and S (R) is dense in
L2(R), the Banach-Steinhaus theorem (Appendix A.2.2) assures the existence of Lg
and, by the above calculations, we have Lg = 0. Because of

eitH0Mthe
−itH0 = eitH0Mge

−itH0 + eitH0Mfe
−itH0

SOT−−−−→
t→±∞

Lg + Lf

Lth exists and Lth = Lg + Lf = Lf .
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Lemma 3.2.4 allows us to replace tanh in equation 3.3 with any other function f ∈
L∞(R,R) that looks like tanh (in the sense that tanh−f ∈ L2(R)). In particular,
we are interested in the choice f = χR+ − χR− , since this function is much easier
to handle than tanh. The next step will be to get more insights into the operator
eitH0Xe−itH0 (recall the definition of the position operator X from Remark 1.1.10).

Lemma 3.2.5. Let t ∈ R. The operator

Xt := eitH0Xe−itH0

is well-defined on D(Xt) := S (R). The operator Wt := X + 2tP on its domain
D(Wt) := D(X) ∩D(P ) = S (R) satisfies Xt = Wt for all t ∈ R. Wt is essentially

self-adjoint and f(Wt) = eitH0Mfe
−itH0 for every Borel measurable function f : R→

C (as always Mf denotes the multiplication operator with f).

Proof. To see thatXt is well-defined on S (R) we have to make sure that eitH0S (R) ⊆
D(X) = S (R): Let f = eitH0ϕ for some ϕ ∈ S (R) and set et(p) := eitp

2
. Then

f = F−1 (Ff) = F−1 (etF (ϕ))

and since etF (ϕ) ∈ S (R) we find f ∈ S (R). A direct calculation proves Wt = Xt:
For f ∈ S (R) we have

F (Xtf) (p) = et(p)F
(
Xe−itH0f

)
(p)

= −et(p)(−i)
d

dp

(
F
(
e−itH0f

))
(p)

= iet(p)
d

dp
(e−tF (f)) (p)

= iet(p)
(
e−t(p)F (f)′ (p)− 2itpe−t(p)F (f) (p)

)
= iF (f)′ (p) + 2tpF (f) (p)

= F (Xf) (p) + 2tF (Pf) (p)

and therefore Xtf = (X + 2tP )f for all f ∈ S (R). Since X is essentially self-

adjoint and eitH0 is unitary, Theorem 1.1.8 implies that Wt is essentially self-adjoint
with self-adjoint extension Wt = eitH0Xe−itH0 . Since f(X) = Mf for Borel mea-

surable functions f , the relation f(Wt) = eitH0Mfe
−itH0 is also a consequence of

Theorem 1.1.8.

Remark 3.2.6. The factor 2 in the operator Wt = X + 2tP seems a bit “strange”,
as we would expect to have the relation “Position at time t = Position at t = 0 +
t · velocity”. However, the additional factor 2 originates from our slightly non-
physical definition of the Hamiltonian. In physics the free Hamiltonian (in one
dimension) is usually defined as H0 = − 1

2m
d2

dx2
, where m describes the mass. In

our case, we always assumed m = 1/2 so that we only have H0 = − d2

dx2
. Since

“velocity = momentum/m”, we then have “velocity = 2 ·momentum”.

As described above, we want to choose f = χR+ − χR− . By the last lemma we

then have eitH0Mfe
−itH0 = χR+(Wt) − χR−(Wt). Therefore, we need to determine

the projection valued measure of Wt:
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Lemma 3.2.7. Let t ∈ R \ {0}. The spectral measures EWt of the closure Wt are
given by (S ∈ B(R))

EWt
S =Me−tE

2tP
S Met ,

where Met denotes the multiplication operator with the function et(p) := ei
p2

4t and

E2tP
S := F−1MχS/(2t)

F is the spectral measure of the operator 2tP where S/(2t)
denotes the set {x ∈ R : 2tx ∈ S}.

Proof. Clearly E2tP
S = EP

S/(2t) is the projection valued measure of 2tP . Let E :

B(R) → B(L2(R)) be given by ES := Me−tE
2tP
S Met for S ∈ B(R). Then E is a

projection valued measure because Met is unitary and E2tP is a projection valued
measure. Therefore, the operator

A :=

∫
R
λ dEλ

is self-adjoint and satisfies A =Me−t(2tP )Met (according to Scholium 1.1.9). Hence,
D(A) = Me−tD(P ) and in particular S (R) ⊆ D(A). Therefore, for f ∈ S (R) we
get

(Af)(x) = 2te−t(x)P (etf)(x)

= −2tie−t (e′t(x)f(x) + et(x)f
′(x))

= −2ti
(
2ix

4t
f(x) + f ′(x)

)
= xf(x)− 2tif ′(x) = (X + 2tP ) f(x) = Wtf(x).

Hence, Wt ⊂ A and by a standard argument we did many times before (Wt is
essentially self-adjoint therefore the self-adjoint extension is unique) we find that

Wt = A and EWt = E.

Corollary 3.2.8. The spectral measure EWt(S) for S ∈ {R+,R−} has the following
asymptotics

s-lim
t→∞

EWt(R±) = EP (R±)

s-lim
t→−∞

EWt(R±) = EP (R∓),

where EP (S) denotes the spectral measure of the momentum operator P .

Proof. For t ∈ R \ {0} we have

R±

2t
=

{
R± if t > 0

R∓ if t < 0

and hence

EWt(R±) =Me−tF−1MχR±/(2t)
FMet =

{
Me−tE

P (R±)Met if t > 0

Me−tE
P (R∓)Met if t < 0

.
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Next we claim that Me±t → 1 in SOT. To prove this, consider f ∈ L2(R). As
e±t → 1 pointwise we have

∥(Me±t − 1)f∥22,R =

∫
R
|e±t(x)− 1|2|f(x)|2 dx −−−−→

t→±∞
0

thanks to Lebesgue Dominated convergence (one can choose 4|f |2 as a majorant).

With this we can prove the above-mentioned asymptotics of EWt . Again, let f ∈
L2(R). We find for t > 0:

∥EWt(R±)f − EP (R±)f∥2,R = ∥Me−tE
P (R±)Metf − EP (R±)f∥2,R

≤ ∥Me−tE
P (R±)Metf −Me−tE

P (R±)f∥2,R + ∥Me−tE
P (R±)f − EP (R±)f∥2,R

≤ ∥(Met − 1) f∥2,R + ∥
(
Me−t − 1

)
EP (R±)f∥2,R

→ 0 for t→ −∞

And likewise for negative times t:

∥EWt(R±)f − EP (R∓)f∥2,R = ∥Me−tE
P (R∓)Metf − EP (R∓)f∥2,R

≤ ∥(Met − 1) f∥2,R + ∥
(
Me−t − 1

)
EP (R∓)f∥2,R

→ 0 for t→∞

Now we have everything together to give our physical intuition from the begin-
ning of this section a mathematically precise foundation.

Theorem 3.2.9. For l = 1 the wave operators Ωl
± exist and are given by

Ω1
± = U1

P − i
(
EP

R±
− EP

R∓

)
(
P

2
+ 1
) 1

2

.

Proof. From Corollary 2.2.7 we derive

eitH1e−itH0 = U1e
itH0U∗

1 e
−itH0 + e−itProjker(a1)e

−itH0 .

Lemma 2.2.3 (equation 2.13) allows us to simplify the above equation to

eitH1e−itH0 = U1e
itH0

(
P

(P
2
+ 1)

1
2

− i(P 2
+ 1)−

1
2Mth

)
e−itH0 + Ct

= U1

(
P

(P
2
+ 1)

1
2

− i(P 2
+ 1)−

1
2 eitH0Mthe

−itH0

)
+ Ct,

where we set Ct := e−itProjker(a1)e
−itH0 . Our goal is to use Lemma 3.2.4 to replace

the multiplication with tanh by the multiplication with g := χ(0,∞) − χ(−∞,0). To
this end, observe that g ∈ L∞(R) and tanh−g ∈ L2(R), which can be seen from the
estimate

| tanh(x)− g(x)| =
∣∣(tanh(x)− 1)χ(0,∞)(x) + (tanh(x) + 1)χ(−∞,0)(x)

∣∣
=

∣∣∣∣− 2

e2x + 1
χ(0,∞)(x) +

2

e−2x + 1
χ(−∞,0)(x)

∣∣∣∣
≤ 2χ(0,∞)(x)e

−2x + 2χ(−∞,0)(x)e
2x,
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where we have used that tanh(x) = 1− 2
e2x+1

. Thanks to Lemma 3.2.5 we have

eitH0Mge
−itH0 = g(Wt) = EWt(R+)− EWt(R−).

Applying Corollary 3.2.8 leads to

s-lim
t→±∞

eitH0Mge
−itH0 = EP (R±)− EP (R∓).

Back to Lemma 3.2.4, we therefore know that

s-lim
t→±∞

eitH0Mthe
−itH0 = EP (R±)− EP (R∓).

Next we have to determine s-limt→±∞Ct. Let ϕ ∈ ker(al) be a normalized eigenvec-
tor. Then for f ∈ L2(R) we have

Projker(al)f = ⟨ϕ, f⟩ϕ,

since ker(al) is one-dimensional (Corollary 2.1.6). Furthermore, thanks to Corol-
lary 2.1.6 ϕ ∈ L1(R) ∩ L2(R) and therefore, Lemma 3.2.2 implies

Ctf = e−it⟨ϕ, eitH0f⟩ϕ −−−−→
t→±∞

0 =⇒ s-lim
t→±∞

Ct = 0. (3.4)

Putting everything together, we arrive at

s-lim
t→±∞

eitH1e−itH0 = U1

(
P

(P
2
+ 1)

1
2

− i(P 2
+ 1)−

1
2

(
EP (R±)− EP (R∓)

))
.

Corollary 3.2.10. For l = 1 the scattering operator Sl is given by

S1 =
P − i
P + i

EP (R−) +
P + i

P − i
EP (R+).

Proof. By Theorem 3.2.9 (and using that U∗
1U1 = 1 according to Lemma 2.2.3) we

obtain

S1 =
(
Ω1

+

)∗
Ω1

− =

P − i(EP (R−)− EP (R+))(
P

2
+ 1
) 1

2


2

=
P

2 − 2iP
(
EP (R−)− EP (R+)

)
−
(
EP (R−)− EP (R+)

)2
P

2
+ 1

=
P

2 − 2iP
(
EP (R−)− EP (R+)

)
− 1

P
2
+ 1

=
P

2
(
EP (R−) + EP (R+)

)
− 2iP

(
EP (R−)− EP (R+)

)
−
(
EP (R−) + EP (R+)

)
P

2
+ 1

=

(
P − i

)2
EP (R−) +

(
P + i

)2
EP (R+)

P
2
+ 1

.

The relation P
2
+ 1 =

(
P + i

) (
P − i

)
finishes the proof.
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In the next steps we want to generalize these results to arbitrary l ∈ N. We are
going to use the same ideas recursively and replace every occurrence of Hl with Hl−1

with the help of Lemma 2.2.4, until everything is expressible in terms of H0 and P .
However, we have to do a bit of bookkeeping to keep track of all the operators Ul,
which will definitely show up during this process. Furthermore, we are going to
make use Lemma 2.2.3. However, in contrast to the proof of Theorem 3.2.9, we no
longer can use equation 2.13. We have to deal with the more general equation 2.12.
Therefore, we must take care of the restrictions to D(al). To overcome this issue, we
first look at “wave operators” which might not be defined everywhere and continue
from there.

Definition 3.2.1. Let l ∈ N ∪ {0}. Set

D(Ω̃l
±) := {f ∈ L2(R) : lim

t→±∞
eitHle−itH0f exists}

and define the linear operators

Ω̃l
± : D(Ω̃l

±)→ L2(R), Ω̃l
± := lim

t→±∞
eitHle−itH0f.

Remark 3.2.11. If D(Ω̃l
±) ⊆ L2(R) is a dense subspace and Ω̃l

± is bounded (on that
subspace), then it can be uniquely extended to a bounded operator on L2(R). In
that case, Ωl

± exists and is equal to the extension of Ω̃l
±.

The first question is, to what extent Ω̃l
± is determined by Ωl−1

± (in case the latter
one exists).

Lemma 3.2.12. Let l ∈ N and suppose that Ωl−1
± exists. Then for f ∈ S (R) the

limit limt→±∞ eitHle−itH0f exists, so that S (R) ⊆ D(Ω̃l
±). Furthermore, on S (R),

Ω̃l
± is given by

Ω̃l
±
∣∣
S (R) = Ul

(
Hl−1 + l2

)− 1
2 Ωl−1

±

(
P − il

(
EP

R± − E
P
R∓

))
.

Proof. By Lemma 2.2.4 we have

eitHle−itH0 =
(
Ule

itHl−1U∗
l + e−itl

2

Projker(al)

)
e−itH0 (3.5)

= Ule
itHl−1U∗

l e
−itH0 + Ct,l, (3.6)

where Ct,l := e−itl
2
Projker(al)e

−itH0 . We can reuse the ideas in the proof of The-
orem 3.2.9 twice: First, we notice that equation 3.4 implies s-limt→±∞Ct,l = 0.
Second, equation 2.12 leads to

Ule
itHl−1U∗

l e
−itH0f

= Ul
(
Hl−1 + l2

)− 1
2 eitHl−1

(
P − ilMth

)
e−itH0f

= Ul
(
Hl−1 + l2

)− 1
2

(
eitHl−1e−itH0P − ileitHl−1e−itH0eitH0Mthe

−itH0

)
f

for f ∈ S (R). Observe that (by assumption) the limit s-limt→±∞ eitHl−1e−itH0 =
Ωl−1

± exists so that we can use the proof of Theorem 3.2.9 (equation 3.2) one last
time to conclude

Ule
itHl−1U∗

l e
−itH0f −−−−→

t→±∞
Ul
(
Hl−1 + l2

)− 1
2 Ωl−1

±

(
P − il

(
EP

R± − E
P
R∓

))
f.
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Putting everything together, equation 3.6 applied to f ∈ S (R) evaluates in the
limit t→ ±∞ to

eitHle−itH0f −−−−→
t→±∞

Ul
(
Hl−1 + l2

)− 1
2 Ωl−1

±

(
P − il

(
EP

R± − E
P
R∓

))
f,

which completes the proof.

As we already have knowledge about Ωl
± for l = 1, we can use induction on l to

get that Ω̃l+1
± is densely defined. We can then try to use Remark 3.2.11 to extend

Ω̃l+1
± boundedly to Ωl

±. Before doing so, we need a bit more knowledge about Ωl
±.

Lemma 3.2.13. Let l ∈ N and suppose that Ωl
± exists. Then Ran(Ωl

±) ⊆ ker(al)
⊥.

Proof. Let g ∈ L2(R), f := Ωl
±g ∈ Ran(Ωl

±) and ψ ∈ ker(al). Then ψ is an
eigenvector of Hl with eigenvalue −l2 (Corollary 2.1.4). Therefore,

⟨ψ, f⟩ = lim
t→±∞

⟨eitH0e−itHlψ, g⟩

= lim
t→±∞

eitl
2⟨ψ, e−itH0g⟩ = 0,

where the last equality is justified by Lemma 3.2.2 (again, ψ ∈ L2(R) ∩ L1(R) by
Corollary 2.1.6).

Theorem 3.2.14. For each l ∈ N the wave operators Ωl
± exist and are given by

Ωl
± =

(
l−1∏
j=0

Ul−j

) l∏
j=1

P − ij
(
EP

R±
− EP

R∓

)
(
P

2
+ j2

) 1
2

 . (3.7)

Proof. We prove the claim by induction on l. For l = 1 Theorem 3.2.9 proves the
claim. Let l ∈ N be such that for each j ∈ {1, ..., l} Ωj

± exists and is given by
equation 3.7. Then, by Lemma 3.2.12, S (R) ⊆ D(Ω̃l+1

± ) and

Ω̃l+1
±
∣∣
S (R) = Ul+1

(
Hl + (l + 1)2

)− 1
2 Ωl

±

(
P − i(l + 1)

(
EP

R± − E
P
R∓

))
. (3.8)

Using the induction hypothesis and applying Lemma 2.2.4 on
(
Hj + (l + 1)2

)− 1
2

yields (
Hj + (l + 1)2

)− 1
2 Ωj

±

= Uj
(
Hj−1 + (l + 1)2

)− 1
2 U∗

j UjΩ
j−1
±

P − ij(EP
± − EP

∓)

(P
2
+ j2)

1
2

+ (−j2 + (l + 1)2)−
1
2Projker(aj)Ω

j
±.

According to Lemma 3.2.13 and the fact that Uj is an isometry, the last equation
simplifies to

(
Hj + (l + 1)2

)− 1
2 Ωj

± = Uj
(
Hj−1 + (l + 1)2

)− 1
2 Ωj−1

±
P − ij(EP

R±
− EP

R∓
)

(P
2
+ j2)

1
2

.
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Recursively, we obtain (recall that Ω0
± = 1)

(
Hl + (l + 1)2

)− 1
2 Ωl

± =

(
l−1∏
j=0

Ul−j

)(
H0 + (l + 1)2

)− 1
2

(
l∏

j=1

P − ij(EP
R±
− EP

R∓
)

(P
2
+ j2)

1
2

)

=

(
l−1∏
j=0

Ul−j

)(
l∏

j=1

P − ij(EP
R±
− EP

R∓
)

(P
2
+ j2)

1
2

)(
H0 + (l + 1)2

)− 1
2 ,

where the last equality is justified by the fact that the interchanged operators are all
of the form g(P ) for bounded Borel functions g. Substituting this into equation 3.8
leads to

Ω̃l+1
±
∣∣
S (R) =

(
l∏

j=0

Ul+1−j

)(
l+1∏
j=1

P − ij(EP
R±
− EP

R∓
)

(P
2
+ j2)

1
2

)
.

The right-hand side describes a bounded operator on L2(R). Therefore, the right-
hand side is a bounded extension of Ω̃l+1

± to all of L2(R). Thus, thanks to Re-
mark 3.2.11, Ωl+1

± exists and fulfills equation 3.7.

Remark 3.2.15. Observe that we recursively obtain Ωl
± via

Ωl
± = UlΩ

l−1
±
P − il(EP

R±
− EP

R∓
)

(P
2
+ l2)

1
2

,

as can be directly seen by splitting up the first factor in the first product and the
last factor in the second product of equation 3.7.

Again, as in the case l = 1, the scattering operator Sl now follows easily.

Theorem 3.2.16. For l ∈ N the scattering operator Sl is given by

Sl =

(
l∏

j=1

P − ij
P + ij

)
EP

R− +

(
l∏

j=1

P + ij

P − ij

)
EP

R+
.

Moreover, Sl is unitary.

Proof. We use Theorem 3.2.14 to obtain

Sl =
(
Ωl

+

)∗
Ωl

− (3.9)

=

 l∏
j=1

P − ij
(
EP

R+
− EP

R−

)
(
P

2
+ j2

) 1
2


∗

Γl

 l∏
j=1

P − ij
(
EP

R−
− EP

R+

)
(
P

2
+ j2

) 1
2

 , (3.10)

where

Γl :=

(
l−1∏
j=0

Ul−j

)∗( l−1∏
j=0

Ul−j

)
=

(
l∏

j=1

U∗
j

)(
l−1∏
j=0

Ul−j

)
= 1,

where we used that the operators Uj are isometric (Lemma 2.2.3). Since all factors
are of the form g(P ) for bounded Borel functions g, they all commute pairwise. This
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allows us to rewrite equation 3.10 as

Sl =

 l∏
j=1

P + ij
(
EP

R+
− EP

R−

)
(
P

2
+ j2

) 1
2


 l∏
j=1

P − ij
(
EP

R−
− EP

R+

)
(
P

2
+ j2

) 1
2


=

l∏
j=1

P
2 − 2Pij

(
EP

R−
− EP

R+

)
− j2

(
EP

R−
− EP

R+

)2
P

2
+ j2

=
l∏

j=1

P
2 − 2Pij

(
EP

R−
− EP

R+

)
− j2

P
2
+ j2

.

Again, as in the proof of Corollary 3.2.10, we can use 1 = EP
R−

+ EP
R+

to get that

Sl =
l∏

j=1

(
P − ij

)2
EP

R−
+
(
P + ij

)2
EP

R+(
P − ij

) (
P + ij

)
=

l∏
j=1

(
P − ij
P + ij

EP
R− +

P + ij

P − ij
EP

R+

)
.

Since EP
R±
EP

R∓
= 0. we can simplify this even further:

Sl =

(
l∏

j=1

P − ij
P + ij

)
EP

R− +

(
l∏

j=1

P + ij

P − ij

)
EP

R+

The unitarity of Sl follows easily:

S∗
l Sl =

(
l∏

j=1

P + ij

P − ij

)(
l∏

j=1

P − ij
P + ij

)
EP

R− +

(
l∏

j=1

P − ij
P + ij

)(
l∏

j=1

P + ij

P − ij

)
EP

R+

=

(
l∏

j=1

P + ij

P − ij

)(
l∏

j=1

P − ij
P + ij

)(
EP

R− + EP
R+

)
= 1.

The same calculations show SlS
∗
l = 1.

We end this section with a physical remark: Suppose, we have a purely right-
moving incoming wave ψ ∈ L2(R), i.e. ψ = ψ+ (recall the definition of ψ± := EP

R±
ψ

from the beginning of the chapter). Then the outgoing state ψ̃ := Slψ is given by

ψ̃ =

(
l∏

j=1

P + ij

P − ij

)
ψ.

Therefore, (
F ψ̃
)
(k) = tl(k) (Fψ) (k),

where tl(k) :=
∏l

j=1
k+ij
k−ij . Since supp (Fψ) ⊆ R+, we also have supp

(
F ψ̃
)
⊆ R+.

That means, S maps right-moving waves to right-moving waves. The same line of
reasoning shows that Sl maps left-moving to left-moving waves. Hence, the Pöschl-
Teller-potential is transparent. The coefficient tl is called transmission coefficient.
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Conclusion and Outlook

In the present work we have taken a look at Schrödinger operators with bounded
potentials. In particular, this class of potentials covers the Pöschl-Teller potentials.
We were able to use the methods developed in the first and second chapters to calcu-
late the Møller operators and the scattering operator of the Pöschl-Teller potential
explicitly. This allowed us to prove that the Pöschl-Teller potentials are transparent.
Therefore, we can say that the goals formulated in the preamble have been achieved.
Admittedly, bounded potentials do not cover all the physically important potentials
by far.

The main results of this thesis are Theorem 2.2.9 and Theorem 3.2.16, which give
rise to interesting follow-up questions, such as the following: Can the products in
Theorem 2.2.9 be simplified? Based on the explicit form of the Møeller operators, can
we say something about completeness? What is the special form of the transmission
coefficient all about and is there any reason to expect the eigenvalues to appear?
Questions like the third one have already been answered in literature. Questions like
the first two, however, have not been studied as far as I know. Due to the limited
time and scope of this work, I was unable to answer these questions. However,
perhaps they can be examined in a future work.
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Appendix

A.1 Prerequisites in Spectral Theory

Lemma A.1.1 ([6], page 256). Let T : D(T )→H be a densely defined symmetric
operator. Then the following statements are equivalent:

1. T is self-adjoint.

2. ker(T ∗ ± i) = {0} and T is closed.

3. Ran(T ± i) = H .

Lemma A.1.2 ([6], page 257). Let T : D(T )→H be a densely defined symmetric
operator. Then the following statements are equivalent:

1. T is essentially self-adjoint.

2. ker(T ∗ ± i) = {0}.

3. Ran(T ± i) is dense in H .

Lemma A.1.3 ([11], page 76). Let λ ∈ C and T : D(T )→ H be a closed densely
defined operator. If there exists a seqeuence (xj)j∈N ⊆ D(T ) such that ∥xj∥ = 1 for
all j ∈ N and (T − λ)x→ 0 (in norm) for x→∞ then λ ∈ σ(T ). Such a sequence
is called a Weyl sequence.

A.2 Prerequisites in Functional Analysis

Theorem A.2.1 ([2], page 284). Let n ∈ N, 1 ≤ p <∞ and m ∈ N. Then, for all
k ∈ N ∪ {0} with k ≤ m− n

p
one has Hm,p (Rn) ⊆ Ck (Rn).

Theorem A.2.2 ([13], page 174). Let X, Y be Banach spaces and (Tj)j∈N ⊆ B(X, Y )
be bounded linear operators from X to Y . There exists T ∈ B(X, Y ) such that
Tj → T in SOT if and only if the following two conditions are fullfilled:

1. The sequence (Tj)j∈N is bounded, i.e. supj∈N∥Tj∥ <∞.

2. There exists a dense subset D ⊆ X such that (Tjx)j∈N ⊆ Y converges for every
x ∈ D.
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