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Introduction

In these notes, we describe an interesting connection between unitary representations of Lie groups
and nets of local algebras, as they appear in Algebraic Quantum Field Theory (AQFT). It is based
on first translating the axioms for nets of operator algebras parameterized by regions in a space-
time manifold into those for nets of real subspaces, and then study this structure from a perspective
based on geometry and representation theory of Lie groups.

This topic owes much of its fascination to the close relations between operator algebraic con-
cepts, such as Kubo-Martin—Schwinger (KMS) conditions and spectral conditions, and the complex
geometry related to unitary Lie group representations. To make this a little more concrete, sup-
pose that U; = e is a unitary one-parameter group on the complex Hilbert space H, H = H*
is its selfadjoint generator, and ¢ € H. We are interested in analytic continuations of the or-
bit map U: R — H,t — U If a bounded analytic extension exists on the upper half-plane
Cy = {z € C: Imz > 0}, then its range lies in an invariant subspace on which the operator H
is non-negative (spectral condition). This is rather restrictive, and it is much more common that
U¢ only extends to the closure of a strip Sg = {z € C: 0 < Imz < }. Here the most interesting
context arises if the upper boundary values are coupled to the original map by a conjugation J via

JUS(if+1) =US(t) for teR.

This is precisely the situation one finds in the modular theory of operator algebras if £ represents
a KMS state (thermal state), and the case of positive spectrum corresponds to so-called ground
states. Below we shall see that such conditions also specify so-called standard subspaces V C H (for
B =) if (Ui)ier is the corresponding modular group.

On the geometric side, an action ¢ of a Lie group G on a manifold M often has a “complexi-
fication” in the sense that M sits in the boundary of a complex manifold = that locally looks like
a tube domain R™ 4 2 C C”, i.e., 2 C R" is a pointed open convex cone. In this context, one
may also ask for extensions of orbit maps ¢™: R — M, ¢ — exp(tx).m (m € M,z € g = L(G)), to
the upper half-plane ¢™: C; — E, or to a strip ¢ : Sg — Z. In the latter case, we typically have
an antiholomorphic involution 7z satisfying 7=(c™(i8 +t)) = ¢™(t) for ¢t € R. In the context of
semisimple Lie groups, such situations are well-known for non-compactly causal symmetric spaces
M = G/H, sitting in the boundary of the so-called complex crown of the Riemannian symmetric
space G/K ([GKO02]). Then the existence of such analytic extensions specifies so-called wedge re-
gions W C M that can be characterized in many different ways ([NO23b]). Here the “imaginary
tangent cone”, specifying how M sits in the boundary of =, determines the causal structure on M.
So M carries similar geometric structures as the spacetimes in Mathematical Physics. Our goal is
to connect the analytic extension phenomena in unitary group representations and the underlying
geometry with structures in AQFT.

These notes consist of four main sections whose contents are as follows. In Section [[] we discuss
axioms for nets of local observables, as they appear in Algebraic Quantum Field Theory (AQFT).
This involves a symmetry group G (a connected Lie group) acting on a manifold M (spacetime in the
physics context) and, for each open subset O C M a von Neumann algebra M (O) on some complex
Hilbert space H, on which we also have a unitary representation (U,H) of G, i.e., a continuous
homomorphism U: G — U(H).



Open subsets O© C M may be considered as laboratories, in which experiments are performed
that correspond to the evaluation of quantum observables. The corresponding set of observables
then depends on O, which leads to families, also called nets, of von Neumann algebras (M(O))oc -
Here M(O) corresponds to observables measurable in the “laboratory” O C M.

The axioms that we discuss are:

(Iso) Isotony: O C Os implies M(O1) C M(O5).

(RS) Reeh—Schlieder property: There exists a unit vector 2 € H that is cyclic for M(O) if
O # (. This means that the orbit map M(O) — H, A — AQ is injective with dense range.

(Cov) Covariance: U,M(O)U, " = M(gO) for g € G.
(Vi) Invariance of the vacuum: U(g)Q = for g € G.

(BW) Bisognano—Wichmann property: There exists a Lie algebra element h € g and an open
subset W C M (called a wedge region), such that the orbit map M(W) — H, A — AQ is
injective with dense range (2 is cyclic and separating) and the corresponding modular operator
A = Ay, o associated to the pair (M, Q) by the Tomita-Takesaki Theorem satisfies
A~®/27 — [J(expth) for t € R. In this sense, the modular group is geometrically implemented
by a one-parameter subgroup of G.

A first step in our analysis is to simplify this situation by replacing the algebra M(Q) by the
real subspace

To formulate our axioms for real subspaces, recall that a closed real subspace V. C H is called
standard if V + 4V is dense and VNV = {0}. For any standard subspace, there exists a unique
positive selfadjoint operator Ay and a conjugation (an antilinear involutive isometry) Jy, such that

V= Fix(JVA\l,ﬂ) (see Definition m for details).
We are now ready to formulate the axioms for the family H(O):
(Iso

Iso) Isotony: O; C Oy implies H(O1) C H(O3)
(RS

)
) Reeh—Schlieder property: H(O) is cyclic if O # (.

) Covariance: U,H(O) = H(gO) for g € G.

) Bisognano—Wichmann property: There exists a Lie algebra element h € g and an open

connected subset W C M, such that H(W) is standard and the corresponding modular oper-
ator satisfies A~*/2™ = U(expth) for t € R.

Our goal is to understand such nets and the requirements on the G-space M, its geometry, the
structure of G and the representation (U, H) for which such nets exist. Eventually, one would like
to “classify” all these nets in a suitable sense, but first one has to specify which structures we are
dealing with. Key questions are:

(Q1) Which elements h € g can arise in the Bisognano-Wichmann (BW) condition?
(Q2) What G-invariant structure do we need on M as a fertile ground for nets of real subspaces?

(Q3) How to find the domains W C M, arising in the (BW) condition?



The key result in Section |Z| answers (Q1), namely that h has to be an Euler element, i.e., ad h is
non-zero and diagonalizable with Spec(ad h) C {—1,0,1}. In physics context of the Lorentz and
Poincaré group, these are suitably normalized generators of Lorentz boosts. In Section [2.3] we argue
that it is natural to require M to carry a causal structure, i.e., a field of pointed generating convex
cones Cy, C T,,,(M), invariant under the G-action. Given an Euler element h and a causal structure
on M, the natural candidates for W are the connected components of the positivity region

Wi (h) = {m e M: exp(th).m € c;}.

i

dt lt=0
In Section [2| we discuss these structures for various examples. Since it will play an important role
later on in the construction of nets of real subspaces, we also describe the compression semigroups

Sw:={g€G: gWCW}

for some types of wedge regions W. The most important examples of causal homogeneous spaces M
are causal symmetric spaces and causal flag manifolds.

In Section (3| we turn to constructions of nets for a given antiunitary representation (U, H) and
an Fuler element i € g. This is motivated by the consequence of the Euler Element Theorem
according to which we may assume that the Lie algebra involution T,f = e™2dh integrates to a

group involution 75, (f.i. if G is simply connected), so that we can form the group
G.,—h =G {idg,Th}

and assume that U extends to an antiunitary representation of G,,. This specifies in particular a
standard subspace V = V(h,U) by

Ay = 2™V and  Jy = U(m) (0.1)
(Definitions and [2.54)).

To find a net H satisfying (BW) with H(W) = V, it is instructive to observe that the elements
of V are characterized by the (abstract) Kubo—Martin—-Schwinger (KMS) condition: The orbit map
Uv(t) := U(expth)v extends analytically to the closure of the strip S, = {z € C: 0 < Imz < 7},
such that

U®(mi) = Jyv
(cf. Proposition [3.26)).

This suggests to look for domains W C M and a complex manifold = with M C d= on which
G acts by holomorphic maps, such that W consists of elements m € M whose orbit map o™ (t) =
exp(th).m extends analytically to a map S, — =, such that o™ (7)) = Tp(m), where 7, is an
antiholomorphic involution on = satisfying 71, (g.2) = 74(g).Tr(2) for z € E.

For the case where G is contained in its universal complexification G¢, we describe in Section
conditions on a domain E C G¢ (crown domains for G), so that the following construction leads to
nets. We start with a real subspace F of Jy-fixed vectors v, whose orbit map UV: G — H extends
analytically to a map U": £ — H in such a way that

B+ (v) = lim U” (exp(~ith))

exists in the space H~°°(U},) of distribution vectors for the one-parameter group Uy, (t) = U(exp th).
Note that we have natural inclusions

H® CH®Uy) CHCHU,) CH™™



(see Appendix for details). Then
E:=f(F) CH (U CH ™

is a real subspace. For ¢ € C°(G,R), we have operators U~>(¢) = [, ¢(9)U~>°(g) dg, mapping
H™>° to H. By

HE (0) = spang {U~=(p)E: ¢ € C=(O,R)},

we thus obtain a net of real subspaces on G satisfying (Iso) and (Cov) for trivial reasons, but also
(RS) and (BW). Here the main point is to show that HS (W) = V for a suitable open subset
wW¢caG.

Example 0.1. Elementary particles in the sense of E. Wigner [Wi39] are classified by irreducible
unitary representations of the Poincaré group G = RY471 % SO 41 (R).. We write V := Rb4-1
for the corresponding translation group. For scalar particles, the Hilbert space is of the form
H = L2(RM¥~1 1), where 1 is a Lorentz invariant measure on the dual space V* (often identified
with V' via the Lorentzian form). Here the space E = R1 of real-valued constant functions repre-
sents distribution vectors, and for test functions ¢ € C°(V,R), we have U~>°(¢)1 = @ (Fourier
transform). So HY (O) is generated by Fourier transforms of test functions supported in O.

This leaves us with the question of how to find such domains = and subspaces F C H’. For
semisimple groups, this can be done with the theory of crown domains for Riemannian symmetric
spaces G/K. They provide natural domains = C G¢ to which orbit maps of K-finite vectors of
irreducible representations extend, and a recent result by T. Simon ([Si24]) ensures that they have
a sufficiently well-behaved boundary behavior at 92 to ensure E = 8 (F) C H~>°(U,). Here an
important point is that no restriction on U is required to obtain these nets, and they all descend
in a natural way to the non-compactly causal symmetric spaces M = G/H , associated to the Euler
element h (cf. Section IMNO23| Thm. 4.21]).

Section [4| develops a global perspective on these results. Here we are dealing with representa-
tions that are not necessarily irreducible. Starting with a homogeneous space M = G/H, a domain
W C M and an antiunitary representation (U, ), we associate two nets H7?* and H?{}in on M,
such that any net H on M satisfying (Iso), (Cov) and H(W) =V = V(h,U), satisfies

H17"(0) € H(0) € HE(0)

for every open subset O C M (Lemma [4.7). From this perspective, the question is whether a net
H satisfying (Iso), (Cov) and (BW) exists at all. This is equivalent to H™**(WW) = V, which in turn
is equivalent to the inclusion of semigroups

Sw={9€G:gWCW}CSy={geG:U(g)VCV}. (0.2)

The semigroups Sy has already been described in Section [2] for some examples of wedge regions.
If ker U is discrete, then

Sy = exp(C1)Gyexp(C_) for Ci==+Cy Ngxi(h), (0.3)

where

Cy:={reg: —i-0U(x) >0} with oU (z) U(exptx),

~ dtli=o
is the positive cone of U and gy (h) = ker(A1 — ad h) are the eigenspaces of ad h (Section [4.2).



If G is semisimple and M the non-compactly causal symmetric space associated with the Euler
element h, then Sy = Gy is a group, so that reduces to the inclusion Gy C Gy, which boils
down to g.W =W = U(g)J = JU(g), which is equivalent to 71,(g) ‘g € ker U.

If Sy is not a group, it is typically of the form

Sw = exp(C4)Gw exp(C_),

where Cx = +£Cy N g41(h) for an Ad(G)-invariant cone Cy C g. Comparing with (0.3), we thus
obtain Gy C Gy, and the spectral condition

Cy CCy

on the representation U, i.e., the operators —idU (z) are positive for € £C. For the Poincaré
group, acting on Minkowski space (Remark [1.16]), this corresponds to the positivity of the energy.
We conclude these notes with a discussion of perspectives and open problems in Section [5}

Some history: The starting point for the development that led to fruitful applications of modular
theory in QFT was the Bisognano—Wichmann Theorem, asserting that the modular automorphisms
(M) = A=H#/27 MA™/?T associated to the algebra M(Wg) of observables corresponding to the
right wedge

Wgr = {(.’ﬁo,iﬂh A ,ZL’d_l)Z xry > |£L’0|}

in d-dimensional Minkowski space R¥~! are implemented by the unitary action of a one-parameter
group of Lorentz boosts preserving Wr. This geometric implementation of modular automorphisms
in terms of Poincaré transformations was an important first step in a rich development based on
the work of Borchers and Wiesbrock in the 1990s [Bo92l [Bo95l Bo97, Wi92l Wi93| [Wi93b]. They
managed to distill the abstract essence from the Bisognano—Wichmann Theorem which led to a
better understanding of the basic configurations of von Neumann algebras in terms of half-sided
modular inclusions and modular intersections. In his survey [Bo00], Borchers described how these
concepts have revolutionized quantum field theory. Subsequent developments can be found in
[Ar99, BGL02, [Lo08, TW11l [LL15] [JM18, Mol§].

How to read these notes? FEach of the four sections has a main part and appendices. The
appendices contain more details and discussion of related issues. So they can be skipped on first
reading.

Notation
e Strips in the complex plane: S3 = {2 € C: 0 <Imz < 8} and Syp={z € C: |Imz| < §}.
e The neutral element of a Lie group G is denoted e, and G, is the identity component.
e The Lie algebra of a Lie group G is denoted L(G) or g.

e For an involutive automorphism o of G, we write G° = {g € G: o(g) = g} for the subgroup
of fixed points and G, := G x {idg, o} for the corresponding group extension.

e AU(H) is the group of unitary or antiunitary operators on a complex Hilbert space.

e An antiunitary representation of G, is a homomorphism U: G, — AU(H) with U(G) C U(H)
for which J := U(o) is antiunitary, i.e., a conjugation. We denote representations as pairs
(U, H).



o If G is a group acting on a set M and W C M a subset, then the stabilizer subgroup
of W in G is denoted Gw = {g € G: ¢ W = W}, and the compression semigroup by
Swi={ge€G: gW W}

e If g is a Lie algebra and h € g, then gx(h) = ker(ad h — A1) is the A-eigenspace of ad h and
g*(h) = U, ker(ad h — A1)* is the generalized A-eigenspace. g

e An element z of a Lie algebra g is called

— hyperbolic if ad z is diagonalizable over R

— elliptic or compact if ad x is semisimple with purely imaginary spectrum, i.e., eR2d= is a
compact subgroup of Aut(g).

e We write £(g) for the set of Euler elements h € g, i.e., adh is non-zero and diagonalizable
with Spec(ad h) C {—1,0,1}. We call h symmetric if —h € Inn(g)h. We write 7, := e™2dh ¢
Aut(g) for the involution of g specified by h.

e A causal G-space is a smooth G-space M, endowed with a G-invariant causal structure, i.e.,
a field (Cy,)menr of closed convex cones Cy, C T,y (M).

e For a unitary representation (U, H) of G we write:

o OU(x) = 4 —oU(exptz) for the infinitesimal generator of the unitary one-parameter
group (U(exptx))icr in the sense of Stone’s Theorem.

o dU: g — End(H) for the representation of the Lie algebra g on the space H* of smooth
vectors. Then OU (z) = dU(z) (operator closure) for = € g.

e For a x-algebra M, we write M;, :== {4 € M: A* = A} for the real subspace of hermitian
elements and for Q € H, we put Vas o := MyQ.

Acknowledgment: We thank Michael Preeg, Jonas Schober and Tobias Simon for reading these
lecture notes carefully, for spotting many typos and, last but not least, for many useful comments.

1 Nets of operator algebras and AQFT

Throughout, H denotes a complex Hilbert space.

1.1 Standard subspaces of Hilbert spaces

In this subsection, we introduce the key concept of a standard subspace V of a complex Hilbert
space H. Standard subspaces are “slanted” real forms in the sense that V + iV is dense in H
and VN4V = {0}. As we shall see below, they are parametrized by pairs (A, J), where A > 0
is a selfadjoint operator and J is a conjugation (an antilinear isometric involution) satisfying the

modular relation
JAT = AL

Standard subspaces appear naturally in the modular theory of operator algebras (Tomita—Takesaki
Theorem and also in antiunitary representations of Lie groups, where they correspond to an-
tiunitary representations of the multiplicative group R* = R x {£1}. This establishes an important
link between operator algebras and antiunitary representations.



Definition 1.1. (a) A closed real subspace V C # is called
e separating if VN iv = {0},
e cyclic if V+ 4V is dense in H,
e standard if it is cyclic and separating.

We write Stand(#) for the set of standard subspaces of H.
(b) For a separating subspace V, we define the antilinear Tomita involution

Ty:V+iV—=>H, Ty(v+iw)=v—idw for wv,weV.

(¢) We write y(v,w) := Im{v,w) for the canonical symplectic form on H. For a real subspace
V C H, we define its symplectic orthogonal space by

V=Vt = {weH: Im(v,w) =0} = ivie,

where V1* is the real orthogonal space of V with respect to the real-valued scalar product Re(v, w).
Note that (V,V') C R.

Lemma 1.2. IfV is standard, then Ty is closed and densely defined.

Proof. As V is cyclic, the operator Ty is densely defined. To see that the graph of Ty is closed,
suppose that &, = a, + ib,, is a sequence in D(Ty) = V + iV with ay,, b, € V, such that (&,,Tv&,) =
(an, + by, an — iby) = (§,m) in H x H. As V is closed,

an = 5 (an + by + (an — b)) = 3 (€0 + Ti) = 5(E+7) = a €V,

and L 1 1
=5 by, — (A — 1 ==& — T —(&—n) = .
bn % (an +ibp — (an — iby)) % (én vén) — % (—m) =beV
Therefore £ = a + ib € D(Ty) satisfies Ty§ = a — ib = n. This means that Ty is closed. O

Definition 1.3. We have seen in Lemma [I.2] that, for every standard subspace V C H, the Tomita
operator
Ty: D(Ty) =V 4V — H, Ty(v+iw) = v —iw

is closed, hence has a polar decomposition ([Sch12] Thm. 7.2], [SZ79, Thm. 9.29] E| ), i.e.,
Ay =TTy

is a positive selfadjoint operator, and there exists an antilinear isometry Jy such that
Ty = WAV

The isometry Jy is defined on all of H because Ay has dense range, which in turn follows from
R(Ay)* = ker(Ay) = ker(Ty) = {0}. The relation

WAV =Ty =T = A2 05 = I (A Y20

1To obtain the polar decomposition of a closed operator T', the main step is to show that the operator T*T is
selfadjoint. Then the unique positive square root |T'| := VT*T satisfies || |T'|¢|| = ||T¢|| for all £ € D(T'), which easily
leads to a partial isometry U from R(|T]) = N(|T|)* = N(T)* to R(T) with T = U|T|.




and the uniqueness of the polar decomposition now implies that JZ = 1 and the modular relation
JVAVJV - Av_l (11)

The unitary one-parameter group (A¥),cg is called the modular group of V. It has the important
property that it preserves V (Remark (b)) and its true importance is revealed in the Tomita—
Takesaki Theorem [[LT1]

Remark 1.4. (a) The modular group A¥f commutes with the antiunitary conjugation Jy. In fact,
the antilinearity of Jy implies that

JyAjly =Ay* for zeC.

In view of [NOlB, Prop. 3.1], a unitary one-parameter group (U; = e®H);cp commutes with a
conjugation J if and only if H is symmetric in the sense that there exists a unitary involution .S
satisfying SHS™! = —H.

(b) The fact that the operators A¥ commute with Jy implies that they also commute with Ty, hence
leave V invariant.

Proposition 1.5. The map Vi (Ay, Jy) is a bijection between the set of standard subspaces of H
and the set of pairs (A, J), where J is a conjugation and A > 0 selfadjoint with JAJ = A7, Its
inverse is given by (A, J) r Fix(JAY?),

Proof. ([Lo08|, Prop. 3.2]) To see that we obtain a bijection, suppose that (A, J) is a pair of modular
objects, i.e., a positive operator and a conjugation, satisfying the modular relation (1.1)). Then
T := JA'Y? is a closed, densely defined antilinear involution and

V:=Fix(T):={£eD(T): T¢ =&}

is a standard subspace with Jy = J and Ay = A. Here closedness of T follows from the closedness
of the selfadjoint operator A'/2) and this implies the closedness of Fix(T). O

The correspondence between modular objects and standard subspaces is the core of the modular
theory of operator algebras. It is the key structure in the Tomita—Takesaki Theorem discussed below.

1.2 Modular theory and the Tomita—Takesaki Theorem
Definition 1.6. For a subset S C B(H), we write
S':={AeB(H): (VM e §) AM = MA}

for its commutant. It is a closed subalgebra and *-invariant if S has this property.
A von Neumann algebra is a *-invariant complex subalgebra M C B(H) satisfying M = M".
For a von Neumann algebra M, a unit vector 2 € H is called

e cyclic, if MQ is dense in H.
e separating, if the orbit map M — H, M — M) is injective,

e standard, if it is cyclic and separating.

Lemma 1.7. Q € H is cyclic for M if and only if it is separating for M'.

10



Proof. Suppose first that € is cyclic for M. For A € M’ with AQ = 0, we then obtain AMSQ =

MAQ = {0}, and since M is dense in H, it follows that A = 0. So 2 is separating for M’.
Suppose, conversely, that €2 is separating for M’. Let P: H — H be the orthogonal projection

onto M. Then P € M’ and (1 — P)Q =0 imply 1 = P, so that Q is cyclic for M. O

Definition 1.8. For Q € H and M C B(H), we consider the closed real subspace
Vi=Vpmo = MpQ CH, (1.2)
where My, :== {M € M: M* = M} is the real subspace of hermitian elements in M.

Lemma 1.9. The following assertions hold for a von Neumann algebra M C B(H) and a unit
vector Q € H.

(a) Va,q is cyclic if and only if 0 is cyclic for M.

(b) Va0 is separating in the sense ofDeﬁnition if and only if Q is separating for the restriction
of M to the cyclic subspace MK, i.e., AQ =0 implies AMQ = {0}.

(¢) Vam,q is standard if and only if Q is a standard vector for M.

Note that Vs o being separating only contains information on the representation of M on the
cyclic subspace K := M C H, but not on the representation of M on Kt. If H = C%, M = C?
is the subalgebra of diagonal operators, and €} = e, then Vo0 = Re; is separating, but {2 is not
separating for M. This subtlety does not play a role for (c¢) because we also assume cyclicity.

Proof. (a) follows immediately from the definitions.
(b) Suppose first that  is separating, hence cyclic for M’ (Lemma. We have for A € M, and
B € Mj, the relation

(AQ, BQ) = (Q, ABQ) = (Q, BAQ) = (B}, AQ),
so that
(Va0 Vo) CR.

We conclude that
Vam,o N Z’VM’Q - V.*A’,Q = (/\/IIQ)L = {O},

i.e., Vpq,0 is separating.
Now we assume that Vq,q is separating and derive that €2 is separating for the image of M on
the cyclic subspace K := MQ. So let A € M with AQ = 0. For B € M, we then have

A*"BQ = (A*"B+ B*A)Q € Va0,

so that A*MQ C Vo is a complex linear subspace, hence trivial because Vpq o is separating.
Thus A*K = {0}, and this implies that A|x = 0. This proves (b).
(c) follows from (a) and (b). O

Remark 1.10. (a) Cyclic vectors play an important role in representation theory because every
x-representation on a Hilbert space is a direct sum of cyclic representations. Moreover, representa-
tions with cyclic unit vector 2 can be reconstructed completely from the corresponding state

wM—=C, wM):=(Q,MQ).

11



The map ¢: H — M*,1(v)(M) := (Q, Mv) is injective and intertwines the representation on H
with the right translation representation on M*. The Hilbert space structure on ¢(#), for which ¢
is isometric, is given by

(e(MQ),(NQ)) = w(M"N),

exhibiting «(#) as a reproducing kernel Hilbert space of linear functionals f, satisfying
fM)=(M*Q, fy for MeM,feiH)

(cf. [Ne99l Ch. T]).
(b) If Q is standard, then the orbit map 7%: M — H, M + MS is a dense linear embedding of
M into H, so that we may consider H as the completion of M with respect to the scalar product
(M,N) :=w(M*N).

That € is separating corresponds to the property of the state w that w(M*M) = 0 implies
M = 0 (w is faithful). One can show that all normal (cf. Appendix [A) faithful states on a von
Neumann algebra lead to equivalent GNS representations, called the standard form representation
(|Bla06, Thm. II1.2.6.7]). For more details on these issues, see also_the discussion of symmetric
forms representations in [NO17], [BIa06], [BGN20, §3.1] and Remark

Theorem 1.11. (Tomita—Takesaki Theorem; Tomita, 1967; Takesaki, 1970) Let M C B(H) be
a von Neumann algebra and Q) € ‘H be a standard vector for M. Then V := Vo := MpQ is a
standard subspace. The corresponding modular objects (A, J) satisfy

(a) JIMJ =M and ATMA~* = M fort € R.
(b) JQ=Q, AQ=Q and A®Q =Q fort e R.

(¢) For M € Z(M) := MNM', the center of M, we have JMJ = M* and A*MA~" = M for
teR.

It follows in particular, that ' _
ai(A) = A"AATT

defines a one-parameter group of automorphisms of M, called the modular automorphism group
associated to €.

Proof. By Lemma[L.9(c), V is a standard subspace. We refer to [BR87, Thm. 2.5.14] for the other
assertions, whose proof is rather involved. The standard subspace V already provides A and J. The
main work consists in the verification of (a). O

An approach to the Tomita—Takesaki Theorem through bounded operators can be found in
[RvDT7]. For a rather general approach to modular operators for pairs of subspaces of real Hilbert
spaces, we refer to [NZ24].

The passage to the commutant of an algebra translates easily into the symplectic orthogonal
space V' (cf. Definition [L.1)).

Lemma 1.12. For a standard vector Q of M, we have (Vaq.0) = Var.a.

Proof. Let J = Jap0 and V := Vg o. In view of JQ = Q and JMJ = M’ (Theorem [1.11)), the
assertion follows from Lemma f) below:

v BBy - 0 = MJQ = MO = Voo 0
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Example 1.13. (a) Let H = L*(X,S,u) for a o-finite measure space (X,&,pu) and M =
L>(X, 6, ), acting on H by multiplication operators. Then the normal states of M (Remark(1.10)
are of the form

on(f) = /X fhg,

where 0 < h satisfies [  hdp = 1. Such a state is faithful if and only if A # 0 holds p-almost
everywhere. Then Q := /A € H is a corresponding standard unit vector. Let V =V M, be the
corresponding standard subspace. As it consists of real-valued functions, we obtain Ty(f) = f,
which is isometric and therefore Ty = J and Ay = 1.

(b) Let H = B3(K) be the space of Hilbert—Schmidt operators on the complex separable Hilbert
space K and consider the von Neumann algebra M = B(K), acting on H by left multiplications.
Then M’ 2 B(K)°P, the opposite algebra, acting by right multiplications. Normal states of M are
of the form

ws(A) =tr(AS), where 0<S with trS=1.

Such a state is faithful if and only if ker.S = {0} (which requires K to be separable), and then
Q := /S € H is a cyclic separating unit vector. Then Ty(MQ) = M*Q = (QM)* implies that

JA=A" and A(A)=0%4A072=SAS™! for A€ By(K).

(¢) The prototypical pair (A, J) of a modular operator and a modular conjugation arises from the
regular representation of a locally compact group G on the Hilbert space H = L?(G, ug) with
respect to a left Haar measure pg. Here the modular operator is given by the multiplication

Af:AG'fv

where Ag: G — Rf_ is the modular function of G, and the modular conjugation is given by

(J1)(g) = Dalg) 2 flg D).
Accordingly, we have for T = JA'/2:

(Tf)(g) =Ac(g) " flg™") = f*(9).

The corresponding von Neumann algebra is the algebra M C B(L?(G, ug)) generated by the
left regular representation. If Myh = f x h is the left convolution with f € C.(G), then the value
of the corresponding normal weight w on M (Remark is given by w(My) = f(e), so that w
corresponds to evaluation in e, which is defined on a weakly dense subalgebra of M.

Remark 1.14. Theorem c) asserts that the modular group and J commute with all central
projections, and this entails that the whole situation adapts to the canonical central disintegration

M= /X@ M, du(x)

of M, for which Z(M) = LS. (X, S, ) are the scalar decomposable operators on a locally finite
measure space, and almost every von Neumann algebra M, is a factor, i.e., Z(M;) = C1 (cf.
Examples [A.2b) and [MN24, §5.4] for more details).

So the modular groups are “direct integrals” of modular groups of factors, and for factors, the
modular operators and their spectra are a key tool in Connes’ classification of factors and in the
characterization of von Neumann algebras by their natural cones by A. Connes [Co73| [CoT4] (see

also [NO17, §4.4] and [BRR7))
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1.3 The axioms for nets of local observables

States of quantum mechanical systems are represented by one-dimensional subspaces CQ) C H
(for unit vectors €2) and selfadjoint elements of B(H) represent observables. The evaluation of an
observable in a state [2] := CQ corresponds to the evaluation of the corresponding state

w(A) = (Q, AQ).

For some systems, the observables are restricted to selfadjoint elements of a proper von Neumann
subalgebra M C B(H).
In Algebraic Quantum Field Theory (AQFT) one starts with a “spacetime manifold” M, which,
in the simplest case is Minkowski space M = RV4~1, We write its elements as pairs
T = (anX) = ('rOaxh .. 7xd—1)

and define the Lorentzian form by

B(x,y) = Toyo — Xy = ToYo — T1Y1 — -+ — Td—1Yd—1-

We call x € RY=1 timelike if B(z,x) > 0, lightlike if 3(x, x) = 0, and spacelike if (z,x) < 0. The
convex cone

Vi={ze Rb4L: x9 >0, B(z,r) >0}

is called the positive lightcone. Timelike vectors are possible tangent vectors to worldlinesv: R — M
of massive particles and lightlike vectors are tangent vectors to light-rays (moving with the speed
of light). Causal curves are specified by /(t) € V. for every t, i.e., they correspond to movements
not faster than light.

Examples 1.15. There are also curved homogeneous spacetimes, such as de Sitter space
ds? = {(x,x) € RM: 22 — x? = —1}.

It provides a model of a spherical (positively curved) expanding universe. This is a hypersurface in
the (d + 1)-dimensional Minkowski space RY?. The tangent space T,(dS%) can be identified with
the hyperplane

8 = {y e RY: B(x,y) = 0}.

Since z is spacelike, the restriction of 5 to this hyperplane is Lorentzian, and this specifies a causal

structure on dS%: o
C, = Vi NT,(dS?).

Anti-de Sitter space is the hypersurface
AdS? = {(z1,29,x) € R241: o2 422 —x% =1}
in R?? endowed with the symmetric bilinear form
Yz, y) = 2191 + T2y — Xy for x = (x1,x9,%x) € RZIL,
Again, the tangent space T (Ade) can be identified with the hyperplane
ot = {y e R*71: y(z,y) = 0}.

Since y(xz,z) = 1, the restriction of v to this hyperplane is Lorentzian, and it is easy to verify
that it is time-orientable (there exists a continuous selection of “positive” light cones) (cf. [NO23al
§11]), so that it carries a causal structure on AdS?. One can also argue by the connectedness of
the stabilizer group SOz 4—1(R)S* = SO 4—1(R)e to see that it leaves both light cones in T, (Ade)
invariant.
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For a family M(O) C B(#) and a unitary representation (U, H) of a Lie group G on H, acting
also on M, we consider the following axioms:

(Iso) Isotony: O C O implies M(O1) C M(O5).

(Cov

)
(RS) Reeh—Schlieder property: There exists a unit vector Q € H that is cyclic for M(O), O # 0.
) Covariance: U,M(O)U, " = M(gO) for g € G.

)

(Vi) Invariance of the vacuum: U(g)Qd = for g € G.

(BW) Bisognano—Wichmann property: There exists a Lie algebra element h € g and a subset
W C M (called a wedge region), such that € is cyclic and separating for M(W) and the
corresponding modular operator A = Ay, ., , is given by

A =2 Uh) e AT — U(expth),t € R.

(Loc) Locality: There exists an open non-empty G-invariant subset Dj,c € M x M such that
01 X 02 - Dloc implies M(Ol) - M(Og)/

(Add) Additivity: M(U; O;) is generated by the algebras M(0;),j € J.

Remark 1.16. These axioms are an abstract form of the axioms imposed on nets of local algebras
on Minkowski space M = R%? and the Poincaré group G = R¥~1 x SOy 4-1(R)., acting by affine
isometries. We now explain the differences, resp., the specifics of the Minkowski case.

(a) Here h is a generator of a Lorentz boost:

h.(xo,z1,...,24-1) = (z1,20,0,...,0), (1.3)

and the corresponding wedge region is the Rindler wedge
Wg = {z e RV 21 > ||}, (1.4)
the set of all points z, where h.z is positive timelike. The corresponding one-parameter group of G

consists of Lorentz boosts
«n _ (cosh(t) sinh(t) o1
c = sinh(¢) cosh(t) Rtz

(b) The physical interpretation of the Reeh—Schlieder condition is that every state can be measured
with arbitrary precision in any laboratory O.

(¢) In AQFT, one sometimes assumes, in addition to (Vi), the “irreducibility condition” that the
fixed point space HE of G is one-dimensional, i.e., HE = CQ.

(d) For Minkowski space, the subset Dj,. € M x M is the set of spacelike pairs

{(z,y) e RV xRV Bz —y, 2 —y) < 0}

for the Lorentzian form f(z,y) = xoyo — xy. These are the pairs of spacetime events that cannot
“exchange” information traveling not faster than light. As a consequence, observables in O; and
05 can be evaluated simultaneously if O7 x Oy C Dyqc.

For two selfadjoint operators A; and As, commuting is equivalent to the non-existence of un-
certainties in common measurements (Exercise . Then there exists a spectral measure P on R?
with

A1:/ x1dP(z) and AQZ/ 2o dP(x).
R? R?
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As a consequence, states can be localized simultaneously with respect to A; and As with arbitrary
precision.

The monographs of Varadarajan [Va85] and Mackey [Ma78] are excellent references for the
connection between observables in Quantum Physics and selfadjoint operators. We also recommend
the recent paper [Ba20] by J. Baez on Jordan and Lie structures related to classical and quantum
observables.

We would like to understand the configurations specified by the G-action on M, the geometry
of M, the unitary representation U: G — U(H) and the von Neumann algebras M(O), satisfying
these axioms. As the algebra structure of the local algebras M (Q) only enters through the modular
groups, it makes sense to strip it off to simplify the situation, with the hope that we arrive at more
tractable structures.

So we consider the family

H(O) = Vm0),0 = M(O)2 CH (1.5)

of closed real subspaces. If Q is standard for M(O), then H(O) is standard (Lemma [1.9(c)), and
the corresponding modular objects can be recovered from H(O) (Definition [1.3). So we do not lose
any information on them.

The axioms for the algebras M(Q) thus turn into the following axioms for the net H(QO) of real
subspaces:

(Iso

Iso) Isotony: O; C O implies H(O1) C H(Oy)
(RS

)
) Reeh—Schlieder property: H(O) is cyclic if O # §.
) Covariance: U H(O) = H(gO) for g € G.
) Bisognano—Wichmann property: There exists a Lie algebra element h € g and W C M,
such that H(WW) is standard and the corresponding modular operator is

Anwy = 2 UM e ATH2T = U(expth),t € R.

(Loc) Locality: There exists an open non-empty G-invariant subset Dj, € M x M such that
01 X 02 Q Dloc 1mphes H(Ol) g H(OQ),

(Add) Additivity: H(U, ;) = 3¢, H(O;).

Remark 1.17. (a) The covariance condition (Cov) for real subspaces follows from the G-invariance
of Q and the covariance condition U,M(O)U; ! = M(gO).

(b) The subspace H(M) is G-invariant by (Cov) and cyclic by (RS). If it is also separating, hence
standard, then its modular operator Ayy) and the conjugation Jy := Jycar) commute with
U(G). If (BW) holds, then Proposition below implies H(W) = H(M), and thus h is central
in g, provided ker U is discrete. This shows that H(M) cannot be standard if the net is not very
degenerate.

The passage from a net of algebras M(O) to a net of real subspace H(O) (which is similar
to a forgetful functor) can be “inverted” (in the spirit of an adjoint functor) by procedures of
second quantization assigning operator algebras I'(H) to real subspaces H C H. We refer to Sub-
section below for some more details (see also [Ar63] and [NO17]). Therefore any result on
nets of real subspaces can also be transformed into a result on nets of local algebras obtained by
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second quantization (see also [NOl?7 Rem. 4.10]). We note, however, that most second quantization
procedures (such as the bosonic and fermionic one) are “free” in the sense that they do not take
interaction between particles into account. For a recent systematic construction of twisted second
quantization functors, we refer to [CSL23].

As far as the symmetries and the modular groups are concerned, the algebra axioms are faithfully
represented by the axioms for their associated real subspaces. Even inclusions are rather well-
behaved; we refer to Proposition for a precise statement.

1.4 Appendices to Section

1.4.1 Background on standard subspaces
Lemma 1.18. The passage V— V' has the following properties:
(a) V' =V.

(b) V is cyclic if and only if V' is separating.

d) Ty =Ty, dce., D(TY) =V +iV and (Ty&,n) = (€, Tym) for € €V +iV,n €V + iV
(e Av/ ‘7 and Jvl = Jv.
(f) va :V/.

)
(¢) V is standard if and only if V' is standard.
(d)

)

Proof.  (a) follows immediately from the Hahn-Banach Theorem. Alternatively, we can use that
V/ = V1% and that multiplication with i is isometric, to obtain V/ = 42 (V+#)ie = v,

(b) The subspace (V+ iV)" = V' N ¢V vanishes if and only if V is separating if and only if V' is
cyclic.

(¢) If V is standard, then (b) implies that V' is separating. That V' is also cyclic follows from (b)
and (V') = V. Hence V' is standard if V has this property. If V' is standard, then we now see
with (a) that V= V" is also standard.

(d) First we show that Ty C Ty In fact, for a,b € V' and v,w € V, we derive from (V,V') C R
that

(Ty (a+1ib), v+ iw) = (a —ib, v+ iw) = {(a,v) — (b,w) = {a+ib,v — iw) = {(a+ b, Ty (v + iw)).
Next we observe that, for £ € V and n € D(Ty"), we have
From the equality of real and imaginary part, we derive that
Tin—neVvi®c =i and Tyn+neV.
Therefore n € V' + iV = D(Ty/), and hence that Ty = Ty
(e) From (d) we derive with Exercise that
To = (Ty)* = (KAYH* B AV2 1 = AV2 = yay V2

Thus (e) follows from the uniqueness of the polar decomposition.
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(f) If v € V, then
Tv/ Jv’U = JvA;1/2JvU = A‘1,/2’U = Jv’U.

This shows that JyV C V. Likewise JyV = JyV' C V"’ = V, so that V' C JyV, and thus
V/ = va D

Lemma 1.19. ([Lo08, Prop. 3.11]) Let U; = ™4 be a unitary one-parameter group on H, and
f: R —= C a locally bounded Borel measurable function. If D C D(f(A)) is a U-invariant linear
subspace dense in H, then it is a core for f(A).

Proof. We factorize f = fof1 with fo(R) € T and f; > 0, so that f(A) = fo(A4)f1(A). Then
fo(A) is bounded and D C D(f1(A4)) = D(f(A)). It therefore suffices to show that D is a core for
B := f1(A), resp., that the graph I'(By) of By := B|p is dense in the graph of B. This is equivalent
to By being essentially selfadjoint.

Replacing By by its closure, whose domain is also U-invariant, we may assume that By is closed
and we have to show that By = B. As B is selfadjoint, it suffices to verify that R(By+141) is dense
in H. So let v € R(By +i1)*. We have to show that v = 0.

The closed subspace I'(Bg) C H? is invariant under the diagonal action of the operators (Uy);cr,
hence also under the operators U(p) = [, ¢(t)Uy dt for ¢ € L'(R). In view of the relation U(y) =
P(A), these include the operators ¥ (A4), 1 € S(R,R). For all w € D and ¢ € S(R,R), we thus have

vL(By + i1)1h(A)D = (f(A) + i1)h(A)D.

If 4 has compact support, then the operator f(A)y(A) is bounded because f is locally bounded.
So the density of D in H implies that v L(B + i1)y(A)H. This in turn implies that

Y(Aw € R(B +i1)* = {0}.

Choosing 1, in such a way that 0 < 4, < 1 and ¥y|[—p . = 1, then 0 = ¢, (A)v — v entails
that v =0. O
Proposition 1.20. ([Lo08, Prop. 3.10]) Let H; € V C Hy be closed subspaces such that V is
standard, Hy is cyclic and Hy separating. If A¥H; = H; holds for all t € R, then Hy = V = Ha.
Proof. Our assumption implies that H; + iH; = D(Tw,) = D(Ail/f) is a dense subspace of H,
invariant under the modular group U; = A¥, t € R. This subspace is contained in V+1iV = D(Ty) =
D(A‘}/z), hence a core of A;m by Lemma , and therefore also a core of Ty. Since Ty is an
extension of Ty, , the closedness of Ty, implies that Ty, = Ty, hence that H; = V.

To deal with Ha, we note that H, C V' is cyclic by Lemma b). Our assumption now implies
that H} is invariant under the modular group of V', and the first part of the proof thus entails
H, = V. Finally, Hy = H] =v" =V. O
1.4.2 Cyclic and separating vectors

We collect in this subsection some basic observations on cyclic and separating vectors.

Proposition 1.21. ([Lo08, Prop. 3.24]) Let M C B(H) be a von Neumann algebra with standard
vector €.

(a) If N1,N2 C M are von Neumann algebras with Vpr, o C Va, .o, then N1 C Ns.

(b) If N is a von Neumann algebra commuting with M and Vy o = Vi o, then N = M'.
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Proof. (a) Let A € Nj be selfadjoint. As N7 ,Q C No ), there exists a sequence of hermitian
elements A, € Ny with 4,Q — AQ. Then A,A'Q — AA'Q for every A’ € M’. Thus A, — A
strongly on the dense subspace M’). Since the hermitian operators A, and A are bounded and
Q is separating, hence cyclic for M’ the dense subspace M’Q) is a common core for all of them.
With [RS73, Thm. VIII.25] it now follows that A, — A holds in the strong resolvent sense, i.e.,
that (i1+A,)~* — (i1+ A)~! in the strong operator topology. This implies that (i1+ A)~! € N3,
which entails A € Ns.

(b) From N C M" and V.o = V) g = Var o (Lemma[1.12) we derive with (a) that N = M'. O

Corollary 1.22. Let M C B(H) be a von Neumann algebra and 2 € H separating for M. To
every von Neumann subalgebra N' C M we associate the closed real subspace Vi := NpQ. Then
Vn, =V, implies N1 = Ny for N1, No C M.

Note that the subspace Vs o is standard if Q is also cyclic for M.

1.4.3 Weyl operators on the symmetric Fock space

In this subsection, we consider the bosonic Fock space Fs(#H) of the complex Hilbert space H. We
want to define natural unitary operators on this space, called the Weyl operators. They will form
a unitary representation of the Heisenberg group Heis(H).

We start by observing that, for every v € H, the series

«— = 1 n
Exp(v) := ZO AR
defines an element in F,(H) and that by
(" w"y = nl(v,w)"  and "] = Val|jv|"

(INO17, §6.1]), the scalar product of two such elements is given by

o0

(Exp(v), Exp(w)) = 3

n=0

n!
(n!)2

(v,w)" = efvw)

Lemma 1.23. Exp(H) is total in Fs(H), i.e., it spans a dense subspace.

Proof. Let K C Fy(H) be the closed subspace generated by Exp(?#). We consider the unitary
representation of the circle group T C C* on F,(H) by

U,(v1 V- Vu,)=2"(n V---Vu,) for neNgv €H.

The decomposition Fs(H) = @ZOZOS ™(#H) is the eigenspace decomposition with respect to the oper-
ators U, and it is easy to see that the action of T on F5(H) has continuous orbit maps (Exercise.
For £ € Fs(H) with £ =30 (&, and &, € S"(H), we have U,£ = 0 2"&,, so that

1 27 )
/ e~ 2Tty L € dt
0

T or

&n

(observe the analogy with Fourier coefficients). It follows that, for £ € I, the existence of the
above Riemann integral in the closed subspace I implies &, € K. We conclude that v™ € K for
v € H and n € Ny. Therefore it suffices to observe that the subset {v™: v € H} is total in S™(H)

(Exercise . O
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For v,x € H we have

. 2 . 2
(Exp(v+ z),Exp(w + z)) = elvtowte) e<”’w>e<z’“’>+% e<“’z>+%

)

so that there exists a well-defined and uniquely determined unitary operator U(z) on Fs(H) satis-
fying

z|2
U(z) Bxp(v) = e~ (@)~ = Exp(v+zx) for =zveH (1.6)
(Exercise the surjectivity of U(z) follows from the totality of Exp(H)). A direct calculation
then shows that

U)U(y) = e "™@0U(z +y) for z,yeM. (1.7)
In fact, for v € ‘H, we have
a2
U(2)U(y) Exp(v) = U(x)e™ "1~ Exp(v +y)

lly)l2 llz )12

— e~ W)= o= (T uty) =75 Exp(v +vy + )

2
Iyl

= ¢~ (Ttyv) o~ -5 —(z.) Exp(v+y+ x)

and

llotyl?

U(z +y)Exp(v) = e (et =75 Exp(v+y+x)

—(atyw)y— 122112 Reir )

=e Y 2 2 Y Exp(v+y+ )

The relation (L.7) shows that the map U: (H,+) — U(Fs(H)) is not a group homomorphism.
Instead, we have to replace the additive group of H by the Heisenberg group

Heis(H) =T x H  with (z,0)(2/,v') = (z2/e 100 4.

For this group, we obtain a unitary representation

-~

U: Heis(H) — U(Fs(H)) by U(zv) :=2U(v).
The operators
W) :=U(iv/vV2), wveh,
are called Weyl operators. They satisfy the Weyl relations
W ()W (w) = e @02 (y 4 w)  for  v,w e H. (1.8)

They are an exponentiated form of the “canonical commutation relations” for the corresponding
infinitesimal generators.
The Weyl algebra
W(H) :=C*({W(v): v e H}) C B(Fs(H))

is the C*-subalgebra of B(F,(H)) generated by the Weyl operators. It plays an important role in
Quantum (Statistical) Mechanics and Quantum Field Theory. This is partly due to the fact that it
is a simple C*-algebra (all ideals are trivial), which implies that all its representations are faithful.
Closely related is its universal property: If A is a unital C*-algebra and ¢: H — U(A) a map
satisfying the Weyl relations in the form

o()p(w) = e MWW 2050) 4 w)  for v, w e H, (1.9)

then there exists a unique homomorphism ®: W(H) — A of unital C*-algebras with
® oW = p. An excellent discussion of the Weyl algebra and its properties can be found in the
monograph [BR96|] which also describes the physical applications in great detail.
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1.4.4 From real subspaces to von Neumann algebras

In this subsection, we describe a mechanism that associates to real subspaces of a Hilbert space H
von Neumann algebras on the symmetric Fock space Fg(H). This construction plays an important
role in recent developments in Algebraic Quantum Field Theory (AQFT) because it provides natural
links between the geometric structure of spacetime and operator algebras (see in particular [Ar99]
Lo08| [Leld]). It has also been of great interest for the classification of factors because it provides very
controlled constructions of factors whose type can be determined in some detail ([AWG63| [AWGS]).
We write
y(v,w) :=Im{v,w) for v,weH

and observe that ~ is skew-symmetric and non-degenerate, so that the underlying real Hilbert space
H® carries the structure of a symplectic vector space (H%, 7).
Using the Weyl operators, we associate to every real linear subspace V' C H a von Neumann
subalgebra
R(V)=W(V)" ={W():veV}'CB(Fs(H)).

Lemma 1.24. We have
CR(W)Y if and only if VC W',

V)

(V) is commutative if and only if V C V.

(H) Fs(H)), i.e., the representation of Heis(H) on Fs(H) is irreducible.
(

€ Fs(H) is cyclic for R(V) if and only if V 4+ iV is dense in H.
€ Fs(H) is separating for R(V) if and only if V NiV = {0}.

Proof. (i) follows directly from the Weyl relations .

(ii) follows from (i).

(iii) follows from [BR96, Prop. 5.2.4(3)].

(iv) follows from the fact that H — B(F(H)),v — W, is strongly continuous and R(V) is closed
in the weak operator topology.

(v) Let K :=V +4V. Then R(V)Q C F,(K), so that 2 cannot be cyclic if K # H.

Suppose, conversely, that KX = H and that f € (R(V)Q)*. Then the holomorphic function

f(v) := (f,Exp(v)) on H vanishes on iV, hence also on V + iV, and since this subspace is dense in
H, we obtain f = 0 because Exp(H) is total in Fs(H).
(vi) In view of (iv), we may assume that V' is closed. Let 0 # w € K := V NiV. To see that € is not
separating for R(V), it suffices to show that, for the one-dimensional Hilbert space Hy := Cw, the
vector Q is not separating for R(Cw) = B(Fs(Cw)) (see (iii)). This is obviously the case because
dim F,(Cw) > 1.

Suppose that £ = {0}. As K =V" N V") = (V' +iV’'), it follows that V' + iV’ is dense in H.
By (v), Q is cyclic for R(V”') which commutes with R(V'). Therefore 2 is separating for R(V). O

Theorem 1.25. ([Ar63]) (Araki’s Duality Theorem) For closed real subspaces V,W,V; of H, the
following assertions hold:

(i) R(V) CR(W) if and only if VC W.

(ii) R(ﬂjeJ VJ) = ﬂjeJR(Vj)-
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(iii) R(V) = R(V') (Duality).
(iv) Z(R(V)) =R(VNV’). In particular, R(V) is a factor if and only if VNV' = {0}.

Proof. We only comment on some of these statements:

(i) That V' C W implies R(V) C R(W) is clear, but the converse is non-trivial. It can be derived

from the duality property (iii), which is a deep result, basically the main result of the paper [Ar63].

(ii) here “C” is easy.

(iii) is a deep theorem.

(iv) follows from (ii) and (iii). O
The preceding theorem asserts in particular that

e R(V) is a factor if and only if V. N V' = {0}. This means that the form |y xy is non-
degenerate, i.e., that (V) is a symplectic vector space.

Subspaces with this property are very easy to construct. In [Ar64b] many results on the types
of the so-obtained factors have been derived. In particular, it is shown that factors of type II do
not arise from this construction and [Ar64] provides an explicit criterion for R(V') to be of type I
“Generically”, the so-obtained factors are of type III. We refer to [Sa7l] for details on the type of
a von Neumann algebra.

1.4.5 Standard subspaces and graphs

Let V C H be a standard subspace and recall that V 4+ iV = D(A'/2). The natural Hilbert space
structure on this dense subspace of H is obtained from the isomorphism with the graph

D(AY?) = {(v,AY?0): v e DAY} CHOH
which is a closed subspace.

Proposition 1.26. Let H be a complex Hilbert space. Consider the complex structure on H®?
defined by I(v,w) := (iv, —iw). For any positive selfadjoint operator A > 0 on H, the graph
['(A) C HP? is a standard subspace whose Tomita operator is given by

T(v,w) = (A" w, Av),

its modular operator by
Alv,w) = A2 @ A2,

and its modular conjugation by
J(v,w) = (w,v).

Proof. Let H:=T(A). We first observe that
IH = {(iv, —iAv): v € D(A)} = {(v, —Av): v € D(A)} =T (-A).

Therefore
HNIH=T(A)NI(-A) =ker(A) ® {0} = {(0,0)}. (1.10)

Next we observe that .
T(A)** = {(—Av,v): v € D(A)} =: TTP(—A4).
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So
(H+ IH)* = Ht= 0 THL® = 1P A) 0 TP (— A4) = TP (—A) n TP (A) = {(0,0)}.

In view of ([1.10)), this proves that H is standard.
To identify the corresponding modular objects, we claim that

H+IH =D(A) @ D(A™Y).

Clearly, I'(£A4) C D(A) ® R(A) = D(A) ® D(A™1), so that “C” holds. For the converse, let
v € D(A), w e D(A™Y) and put u := A~tw. Then

(v,w) = (v, Au) = (v+U,AU+u) (v;u

v—U
—A ) H -+ IH.
2 2 ) 5 ) EnT

The domain of the modular operator Ty is H + IH = D(A) @ D(A~!). On this domain the
prescription
T(v,w) := (A" w, Av)

defines an [-antilinear involution with
Fix(T) =T(A) = H.

This implies that T'= Ty is the Tomita operator of the standard subspace H.
It is easy to see that the adjoint operator is given by

T*(v,w) = (Aw, A"'v)  with domain D(A™') @ D(A).

We thus obtain
An(v,w) = (T*T) (v, w) = T* (A" w, Av) = (A%, A %w),

and therefore Ay = A2 @ A~2. Finally, we obtain
Ju(v,w) = THAﬁl/Q(v,w) = Tu(A v, Aw) = (w,v). O
Example 1.27. Let V C H be a standard subspace. Then V + iV = D(A'/2) and the embedding
Ve = D(AY?),  (v,w) = (v +iw, AY? (v + iw))

identifies V¢ with a standard subspace of H®?, endowed with the complex structure I(v,w) =
(v, —iw). Its modular operator takes the form

Ay = Ay & AL

Example 1.28. (Standard subspaces for the translation representation) We consider # = L?(R),
B > 0, and the standard subspace V C L?(R), specified by

Jf=7F and (AT f)(2)= f(x+1t), =z teR.

Then D(A'/?) consists of the space of boundary values of elements of the Hardy space

H2(Sp) i= {F € O(S): sup ||F(-+iy)ll2 < oo}
0<y<pB
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(cf. [GoB9, Prop 5.1]). For f € D(A'/?) we then have (almost everywhere in the sense of L2-
functions)

(A2 f) (@) = f(z+if)
(the upper boundary values on R + i), so that f is fixed by JA'/2 if and only if f* = f, where
i) = f(x+iB) for zeR.

This shows that
V={feDAY?: ff = f}. (1.11)

Endowed with the graph topology, we have D(A'/?) = T'(A'/2), and this further leads to
D(AY2) = HY(Sy) € LA(R)%2,
where we identify H?(Sg) via the boundary value map F + (F|g, F|r+is) with a closed subspace
of L?(R)®2.
In this picture, the Tomita involution Ty corresponds to the involution on H?(Sg), given by
ff(2)=f(Bi+z) for z€S8g (1.12)
and the lower boundary value map thus induces an isometry

H*(Sp) = {f € H*Ss): f*=f} =V, [ flr (1.13)

(cf. [NO17, Ex. 3.16]). On the pairs (f1, f2) = (f, AY2f) € T(AY/2) C L*(R)®2 of boundary values
of elements of H?(Sg), the involution # then takes the form

(fr, f2)* = (fa, f1).

1.4.6 Endomorphisms of standard subspaces and von Neumann algebras

Let Q € H be a standard vector for the von Neumann algebra M, let V = Vo be the corresponding
standard subspace, and let G C U(H) be a subgroup.
We note that the inclusion

Sma={9€G: gMg™ ' CM, g0 =0} CSyo={geG: gVCV,gQ =0}
may be proper.

Example 1.29. E| (a) We consider the Hilbert space H := M, (C) of matrices, endowed with
the Hilbert—Schmidt scalar product (A, B) := tr(A*B). By matrix multiplications from the left,
we obtain a von Neumann subalgebra M C B(H), isomorphic to M, (C), and its commutant M’
consists of right multiplications. The unit vector € := ﬁln is cyclic and separating, and the

corresponding standard subspaces for M and M’ coincide with
Va = Var = Herm,, (C)

of hermitian matrices. Now 6(A) := AT defines a unitary operator on H preserving €2 and the
standard subspace Vaq = Vay, and satisfying MO~ = M’. For G = U(H), we therefore obtain
Sy # Sm.

2We thank Yoh Tanimoto for the discussion that led to this example.
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(b) In the situation above, when M is given, the G-orbit of M in the space of von Neumann
subalgebras of B(H) can be identified with the homogeneous space G/G v, and similarly, G/Gy —
Stand(H), gGy +— ¢V is an embedding. The discrepancy between both spaces comes from the fact
that the von Neumann algebra M need not be invariant under the stabilizer group Gy of V.

Related questions have been analyzed by Y. Tanimoto in [Tal(0]. He refines the picture by
considering the closed convex cone

Vi ={MQ:0< M =M*eM}CVy,
which leads to the inclusions
Sma = Sv+M’Q ={geG: ngM - Vj\/l,gﬂ =0} C Sy,,.

The semigroup SVL,Q appears to be much closer to Saq,q than Sy o. From [Tal(, Thm. 2.10] it
follows in particular that, if M is purely infinite, then S"L a = Sm,q. Let M, denote the predual

of the von Neumann algebra M (the space of normal linear functionals) and M the convex cone
of positive normal functionals. In this context, it is also interesting to note that the map

Vj_\/l_>Mja f'—)COg, LU5(M):<§,M£>

is bijective by [Ko80, Thm. 1.2]. Accordingly, every element g € SVL induces a continuous map on

the convex cone M.
We refer to [Tal0] and [Co74] for more detailed information.

1.4.7 Positive definite functions on R satisfying a KMS condition

This subsection has only illustrative character. It explains how the KMS condition that classi-
cally appears in the context of KMS states for C*-algebraic dynamical systems, can be formulated
independently of C*-algebras as a condition for functions on R with values in spaces of bilinear
forms.

Definition 1.30. Let V be a real vector space and Bil(V) be the space of real bilinear maps
V xV — C. A function ¢: R — Bil(V) is said to be positive definite if the kernel ¥ (¢t — s)(v,w)
on R x V is positive definite. We say that a positive definite function 1: R — Bil(V) satisfies the
KMS condition for 8 > 0 if ¢ extends to a function Sg — Bil(V') which is pointwise continuous and
pointwise holomorphic on the interior Sg, and satisfies

Y(if+t) =(t) for teR. (1.14)

The central idea in the classification of positive definite functions satisfying a KMS condition is
to relate them to standard subspaces. A key result in [NOlQJ is the following characterization of
the KMS condition in terms of standard real subspaces. Here we write Bil™(V) C Bil(V) for the
convex cone of all those bilinear forms f for which the sesquilinear extension to V¢ x V¢ is positive
semidefinite.

Theorem 1.31. (Characterization of the KMS condition; [NO19, Thm. 2.6]) Let V' be a real vector
space and 1p: R — Bil(V) be a pointwise continuous positive definite function. Then the following
are equivalent:

(i) ¢ satisfies the KMS condition for 8 > 0.
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(ii) There exists a standard real subspace V in a Hilbert space H and a linear map j: V — V such
that
Y(O)(v,w) = (j(v), ATj(w))  for tERwweV. (1.15)

(iii) There exists a Bilt(V)-valued regular Borel measure p on R satisfying
P(t) = / e du(N),  where  du(—X\) = e Prda(N).
R

If these conditions are satisfied, then the function v: Sg — Bil(V) is pointwise bounded.

The equivalence of (i) and (ii) in the preceding theorem describes the tight connection between
the KMS condition and the modular objects associated to a standard real subspace. Part (iii)
provides an integral representation that can be viewed as a classification result.

Corollary 1.32. For a standard subspace VC H and the modular operator Ay, the function
p: R = Bil(V), $(t)(v,w) = (v, Ay w)
satisfies the KMS condition for 8 = 2.

Remark 1.33. Important special cases arise from C*-dynamical systems (A, R, «), where A is a
C*-algebra and a: R — Aut(.A) defines a strongly continuous R-action on A. Let

Vi=A,={Ac A: A" = A}
and consider an a-invariant state w on A. Such a state is a S-KMS state if and only if
Y: R — Bil(A4y), v()(A,B):=w(Aw(B))

satisfies the KMS condition for 8 > 0 (cf. [NO15, Prop. 5.2], [RyD77, Thm. 4.10], [BR96]). If
(7w, U¥, Hy,, ) is the corresponding covariant GNS representation of (A, R), then

w(A) = (Q,m,(A)Q) for Ae A and UQ=Q for teR.
For A, B € Ay, we thus obtain

P(t)(A, B) = w(Aay(B)) = (2, m (A (B))Q)
= (@, o (AU 7o (B)UZ,Q2) = (o, (A)Q, Uy, (B)SY)

The corresponding standard real subspace of H,, is V4,0 := 7, (Ap)Q. Here we use that the KMS
condition implies that € is a separating vector for the von Neumann algebra 7, (A)" (cf. [Si23] and
IBR&T]).

1.5 Exercises for Section [1I

Exercise 1.1. Let X be a topological space, H be a Hilbert space and v: X — H be a map. Show
that « is continuous if and only if the corresponding kernel function

K:XxX—=C, K(z,y) = (v(2),7(y))

is continuous.
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Exercise 1.2. Let (U; = ¢);cg be a unitary one-parameter group on the complex Hilbert space
H and consider on the complex Hilbert space H* := H @ H the unitary one-parameter group

Uf =U, ®U,.

Show that the flip involution J#(v,w) := (w,v) and the positive operator
A=t e

form a modular pair of a standard subspace V C H* (cf. Proposition |1.26)).

Exercise 1.3. If V C H is a standard subspace, we consider the antiunitary representation of R*,
defined by

lel) = A A (=1) := Jy.

Show that we thus obtain a bijection between the set Stand(#) of standard subspaces of H and the
set of antiunitary (strongly continuous) representations v: R* — AU(H).

Exercise 1.4. Let M C B(H) be a von Neumann algebra. For two unit vector y,Qs € H, the
states wq, and wq, coincide if and only if there exists an M-equivariant isometry

U: MQl — MQQ with UQl = QQ.

Conclude further that, if M # B(H), then there exist linearly independent unit vectors §2; and
Qo, defining the same state on M. Hint: M # B(H) is equivalent to M’ being non-trivial.

Exercise 1.5. (The Brunetti-Guido-Longo (BGL) construction) Let G be a Lie group, o € Aut(G)
be an involution and G, := G x {1,0} the corresponding semidirect product. We consider an
antiunitary representation U: G, — AU(H), i.e., U(G) C U(H) and U(o) antilinear.
We consider the set
G(G,) == {(z,7) € g x Go: Ad(T)x = x,7% = e}.
Show that:
(a) Each (z,7) defines a morphism

7:R* = G,y y(e') i=exp(tz), ~(=1):=T.

(b) For each pair (z,7) there exists a unique standard subspace V C H with

Jy=U(r) and Ay= e2midU(z)

Exercise 1.6. Let H; and #H, be Hilbert space, X be a set and v;: X — H;, 7 = 1,2, be maps
with total range. Then the following are equivalent:

(a) There exists a unitary operator U: Hq — Ha with U oy = 7o.

(b) (2(2),72(y)) = (11(x), 11 (y)) for all z,y € X.
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Exercise 1.7. Let V and W be K-vector spaces, 5: V" — W be a symmetric n-linear map and
~y(v) := B(v,- -+ ,v). Show that § is completely determined by the values on the diagonal S(v,...,v),
veV.

Hint: Consider

_ n' mi My mi Moy,
’y(t17}1+...+tnvn)— Z mtl tn ﬁ(’l)l ,...,Un )
mi+...4+mup=n
and recover (v1,...,v,) as a suitable partial derivative. Alternatively, one can verify the following
explicit formula:
1
Blvr,...,v,) = on Z €1 eny(Er1vr + -+ Enup). (1.16)

€1,...,en€{1,—1}

Exercise 1.8. Let V be K-vector space and S™(V) := (V&) be the nth symmetric power of V.
Show that
S™(V) = span{v®": v € V}.

Hint: Use the same technique as in Exercise

Exercise 1.9. (Abstract uncertainty principle) Let A and B be bounded selfadjoint operator on H
and 2 € H. Then  defines a state whose expectation values for the observable A is given by

ca = wq(A) = (Q, AQ).
The variance of the observable A in the state wgq is given by the expectation value
oa = wo((A—ca)®)V2 = (A -ca1)Q.

It vanishes if and only if AQ = c4(, i.e., if Q is an eigenvector of A.
Verify the abstract uncertainty principle:

Ta0s > (0,14, BIO)|. (1.17)

Exercise 1.10. Let A: D(A) — H and B: D(B) — H be densely defined unbounded operators on
the real Hilbert space H, so that their adjoints

A*:D(A*) »H, B*:DB)—H

are also defined by
(A*v,w) = (v, Aw) for w e D(A),ve D(A").

The product is defined on D(AB) = B~'D(A) by composition. Show that:
(a) If D(AB) is dense, then (AB)* is an extension of B*A*.
(b) If A is invertible, then (AB)* = B*A*.

Exercise 1.11. Let V C H be a standard subspace and U € AU(H) be a unitary or an antiunitary
operator. Show that UV is also standard and UAyU ! = Ayy and UJ, U™ = Jyy.
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2 Euler elements and causal homogeneous spaces

We have seen in Section [I| how nets of real subspace arise from nets of algebras of local observables.
Eventually, one would like to “classify” all these nets in a suitable sense, but first one has to specify
which structures we are dealing with. Key points are

(Q1) Which elements h € g can arise in the Bisognano-Wichmann (BW) condition?
(Q2) Which G-invariant structure do we need on M as a fertile ground for nets of real subspaces?
(Q3) How to find the domains W C M, arising in the (BW) condition?

As we shall see below, these questions are highly intertwined, in particular when we also discuss
which unitary representations (U, H) of G admit nets satisfying the axioms (Iso), (Cov), (RS)
and (BW).

2.1 The Euler Element Theorem

Definition 2.1. Let g be a finite-dimensional Lie algebra. We call h € g an Fuler element if ad h
is non-zero and diagonalizable with Spec(ad h) C {—1,0,1}, i.e., if

g=g1(h) ®go(h) ®g_1(h).

Then 73, := ™ 24" ¢ Aut(g) is an involution of g. We write £(g) for the set of Euler elements in g.
An Euler element h is called symmetric if —h € Oy, := Inn(g)h.

Remark 2.2. We observe that £(g) + 3(g) = £(g)-
The following theorem provides a very satisfying answer to question (Q1).

Theorem 2.3. (Euler Element Theorem; [MN24]) Let G be a connected finite-dimensional Lie
group with Lie algebra g and h € g. Let (U, H) be a unitary representation of G with discrete
kernel. Suppose that V C H is a standard subspace and N C G an identity neighborhood such that

(a) Ulexp(th)) = A;it/zw fort €R, i.e., Ay = >0V " and
(b) Vi :=yen U(g)V is cyclic.
Then h is an Euler element or central, and the conjugation Jy satisfies
JU(expa)Jy = Ulexpm(z))  for 1, =™ zcg. (2.1)

Corollary 2.4. IfH(O)ocw is a net of real subspaces on open subsets of M satisfying (Iso), (Cov),
(RS) and (BW), and U has discrete kernel, then h € g is an Euler element or central.

Proof. Let © C W be a non-empty open, relatively compact subset. Then O is a compact subset
of the open set W, so that o
N:={geG:g.OCW}

is an open e-neighborhood in G. For every g € N we have by (Cov) and (Iso),
g7 H(0) = H(g.0) c H(W) 27 v,

This implies that H(O) C Vx. Now (RS) implies that H(O) is cyclic, hence standard because it is
contained in V and thus also separating. Now the assertion follows from Theorem [2.3 O
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Remark 2.5. (a) The relation (2.1)) implies that for the representations we are dealing with, we
may replace G by its simply connected covering group G or by the quotient group G/ker(U) to
ensure that the involution 77 = €™ adh on g integrates to an involution 7, on G, so that we can

form the semidirect product
G-,—h =G X {idg,Th}.

Then (2.1]) ensures that U extends to an antiunitary representation of G, by U(m,) := J.

(b) If Vy = V holds in the Euler Element Theorem, then U(g)V D V for all g € N, hence U(g)V=1V
for all g € NN N~L. If G is connected, this implies that U(G) fixes V and hence that h is central
in g.

Problem 2.6. In view of the preceding discussion, the following question is fundamental: Suppose
that h € g is an Euler element, GG is a corresponding connected Lie group, for which G, exists,
and M = G/H a homogeneous space. When does there exist an antiunitary representation (U, H)
of G, , a connected open subset W C M and a net H(O)ocar on open subsets of M, satisfying

(Iso), (Cov), (RS) and (BW)?

Below we shall see that this is always the case if G is reductive and M is the non-compactly
causal symmetric space associated to G and h (cf. Theorem|[3.17)). If G is solvable, the corresponding
question is open (cf. [BN25]).

2.2 First examples of Euler elements

Before we descend deeper into structures related to Euler elements, let us discuss some key examples.

Example 2.7. If E is a finite-dimensional vector space and D € End(F) a diagonal endomorphism
with eigenvalues contained in {1,0,—1}, then we form the solvable Lie algebra g := FE xp R. Here
h:=(0,1) is an Euler element of g.

Example 2.8. (a) In g = sl(R) the diagonal matrix

het (é _01) (2:2)

is an Euler element. Conversely, every Euler element h' € sl(R) must be diagonalizable on R?
(Exercise and the difference between its eigenvalues must be 1. In view of tr(h’) = 0, it is
conjugate to h. The set of Euler elements in sly(R) is

c —a

1
E(sto(R)) = { € sla(R): det(r) = 1} = { ( b ) o=
and Inn(g) = SO; 2(R), acts transitively on this set. In the following, we shall also use the Euler

element )
01
100, 2

1

The element

so that we have
e FM — [z B =k and  eETg — ) (2.4)



(b) If A is a real unital associative algebra, then h = 1 diag(1,—1) is also Euler in the Lie algebra
gly(A). If o € Aut(A) is an involutive automorphism, then o extends to a Lie algebra automorphism
of gly(A) and g = gly(A)° contains the Euler element h with gi(h) = A°. For the involution
T := o7y, we also find a Lie algebra with gi(h) =2 A7°.

This provides a rich supply of Lie algebras with Euler elements. This construction even works
for Jordan algebras A, hence in particular also for alternative algebras. We refer to [KSTTT9],
[dG17] and [Be24] for recent classification results in small dimensions.

Examples 2.9. (a) In the simple Lie algebra g := sl,,(R), we write n x n-matrices as block 2 x 2-
matrices according to the partition n = k + (n — k). Then

L 1 (n — k)lk 0
is diagonalizable with the two eigenvalues ”T’k =1- % and —%. Therefore hy is an Euler element

(Exercise whose 3-grading is given by

ao(h) = { (g 2) L0 € gl(R), d € gl, 4 (R), tr(a) + tx(d) = 0},

(0 Mp,—x(R) ~ 0 0
wiw = () Mg ) w4 e 0):
It is easy to see that hi,...,h,_1 represent the conjugacy class of Euler elements in sl,(R),

whose restricted root system is of type A,_1. This matches the general Classification Theorem
below.

The Euler element hy is symmetric, i.e., —hj € Inn(g)hg, if and only if n = 2k. In fact, if hy
is symmetric, then its eigenvalues have to be symmetric, which is equivalent to n = 2k. That this
condition is sufficient follows by embedding hj into an sly(R)-subalgebra of block matrices with
entries in My (R) and using Example
(b) In the reductive Lie algebra gl,,(R), we infer from (a) that all conjugacy classes of Euler elements
are represented by elements of the form

h=A+hy, k=1,...,n—1

They are symmetric if and only if A =0 and n = 2k.
These elements are also Euler in the semidirect sum g := R” x gl (R) if and only if A\ = £ or

A= % — 1, which leads to
! 1k O " o__ 0 O
h' = (O O> and A" = <0 _1n_k) .

g1 = Rk &® Mk,n—k(R)7 Jgo = g[k(R) 2 (Rnik‘ A g[nfk(R)) and g-1= Mn—k,k(R)v

In the first case,

whereas in the second case
012 Mynk(R), go=(R"xgl(R)®gl, ,(R) and g3 =R"*® M, 1s(R).

Clearly, none of these Euler elements is symmetric.
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Examples 2.10. (a) In the Poincaré Lie algebra g = R x 501 4(R), every Euler element h is
conjugate to the generator h € s01 4(R) of a Lorentz boost:

h.ey=ei;, he =e and he; =0 for j>1

(Lemma and 3(g) = {0}; see also Remark |1.16]).

(b) The split oscillator group is

G := Heis(R?) x, R with oy = e, h= <(1) _01> )

so that
g = beis(R?) x Rh
and h is an Euler element in g. We choose a basis p, ¢, z € heis(R?) with
le.p] =2, [hq =1, [hpl=-1 [h2]=0.

The corresponding involution is given by

Th(Z,Qapa t) = (27 -4, —D, t)

The Euler element h is not symmetric, and all Euler elements of g are, up to sign, conjugate to

elements of the form
hy = Az + h.

This Lie algebra can be realized as a subalgebra of sl3(R), where

(1 0 0 01 0 00 0 00 1
h=5{0 —2 0], g={0 0 0], p=f0 0 1) ==[000
0 0 1 00 0 00 0 00 0

Note that % is an Euler element of sl3(R), i.e., V := R? is a 2-graded g-module (cf. Example[2.9(a)):
V=Vi30V_a3, Viss=Rer+Res, V_y;3=Res.

Remark 2.11. (a) If V is a non-trivial irreducible sl(R)-module and h € g := V x sl3(R) an
Euler element, then the semisimple element h is conjugate to an element of sl(R) (Lemma
and 3(g) = {0}), so that we may assume that h = 3 diag(1, —1) (Example (a)). This leaves only
the possibility that dim V = 3 is the adjoint module.

We obtain more freedom if we replace slo(R) by gly(R). Then Example R.9(b) also provides
Euler elements in R? x gly(R). We may also consider non-trivial 1-dimensional representations of
gly(R), for which

R x gly(R) = (R x R1) @ sly(R).

This example shows already how restrictive the existence of a 3-grading is for semidirect sums.

(b) If h € g is an Euler element contained in a subalgebra s 2 sl3(R), then all simple s-submodules
of g must be 1 or 3-dimensional. If h is contained in a subalgebra [ 2 gl,(R), then also 2-dimensional
irreducible submodules may occur (cf. Lemma below).
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2.3 Causal structures and wedge regions

The Euler Element Theorem [2.3] provides us with the information that Euler elements are the
natural candidates for the elements h in (BW), but it provides no information on how to find
appropriate regions W C M?

Motivated by the Bisognano—Wichmann property (BW) in AQFT, the modular flow on W C M,
given by a}V (m) = exp(th).m should, in a suitable sense, correspond to the “flow of time” on the
spacetime region W. This is mainly based on the interpretation of the modular group in the
context of the Tomita—Takesaki Theorem as the dynamics of the corresponding quantum system,
the thermal time hypothesis, a point of view advocated by A. Connes and C. Rovelli (cf. [CR94]).
References for the AQFT perspective on this issue are [BB99, [BMS01] [Bo09], [CLRR22, §3]. For a
perspective from non-commutative geometry, see [KG09], [KotT19] and [He25].

To formulate what it means that a vector field generates on an open domain W C M a flow
that qualifies as a “flow of time” requires a causal structure on the manifold M, i.e., in each tangent
space T,, (M), we specify a pointed, generating closed convex cone C,, C T,,(M). E| We think of
elements in the interior CY, as timelike, i.e., tangent vectors to curves describing the dynamics on
a region in M (following the “flow of time”).

Assumption: For simplicity, we also assume that M is a homogeneous space M = G/H, for a
closed subgroup H C G with Lie algebra h. Then the tangent space Ty (M) in the base point
identifies naturally with the quotient space q := g/h. Hence the existence of a G-invariant causal
structure on M is equivalent to the existence of an Ad,(H )-invariant pointed generating cone Cyq C g
(cf. [HO97]). Then
Cypg :=9.Ceny =9.Cq4 for gea@q,

is the corresponding causal structure on M = G/H. Here we write G x TM — TM, (g,v) — g.v
for the induced action of G on the tangent bundle T'M.

Coming back to the question of how to find W, let us fix an Euler element h € g. Then we call
XM(m) = 4 exp(th).m (2.6)
dtlt=o0

the corresponding modular vector field. In view of the “flow of time”-philosophy, W should be
contained in the positivity region

Wi (h) == {m e M: X} (m) € C2,}, (2.7)

which is the largest open subset on which the flow is “future-directed”. For m = gH € M = G/H
and the projection pg: g = q = g/h = Teg (M), we have

d d
M _a _a —1 _ —1
X' (gH) = &|  exp(th).gH = —| g9 exp(th).gH = g.ps(Ad(g)™"h). (2:8)
By G-invariance of the causal structure, this calculation shows that XM (gH) € Cgp 1s equivalent
to pq(Ad(g)~'h) € C°, so that we obtain the Lie algebraic description

Wy (h) ={gH € G/H: Ad(g9)~"'h € p;'(C°)}. (2.9)

3A closed convex cone C' in a finite-dimensional vector space V is called pointed if C' N —C = {0}, and generating
if C — C =V, i.e., if C has interior points.
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Definition 2.12. A wedge region for h on the causal homogeneous space M is a connected com-
ponent W of the positivity region Wy, (h).

At this point it is not clear why to focus on connected components and not the whole pos-
itivity region. As the concrete examples where WJ\'Z(h) is not connected shows, the inclusions
H(W) C H(W;(h)) are often proper and H(W) = V, so that H(W;;(h)) can not be separating
by Proposition [1.20} Therefore the connected components turn out to be the better choice for
wedge regions. In this context, Theorem is also of some interest, it shows that small open
exp(Rh)-invariant subsets may already satisfy (BW).

Example 2.13. In Minkowski space M = RY9~! (Remark [1.16)), the causal structure is given by
the constant cone field C, = C for x € M and

C=V,={zecR" 1 2>0,8(x,2z) =122 —x*>0}

Note that M is a homogeneous space of the Poincaré group G = RM~1 x SOq 4—1(R)e with
base point 0, whose stabilizer is the Lorentz group SO; 4—1(R)e.
For the Lorentz boost h(z) = (z1, 0,0, - ,0), the corresponding vector field is linear, i.e.,

Xp! (z) = h(z),

and these vectors are positive timelike, i.e., contained in C° = V if and only if 21 > |xg|, which
specifies the Rindler wedge Wrg.

Lemma 2.14. Any wedge region W C W, (h) is invariant under the identity component G" of the
centralizer

G":={ge G: Ad(g)h =h}
of the Euler element h, hence in particular under exp(Rh).

The following proposition provides a sufficient criterion for the positivity region on M being
non-empty. Note that the condition h € b is equivalent to the base point being fixed under the
modular flow.

Proposition 2.15. (Sufficient conditions for the existence of wedge regions) Suppose that M =
G/H, that h € b is an Euler element and that 7, € Aut(G) fizes H and induces an anti-causal
map, i.e., T (Cp,) = —Crai () for m € M. Then Wit (h) # 0.

Proof. For the action of the one-parameter group e®2d”

on q := g/b, we write q;, j = 1,0, -1, for
the corresponding eigenspace and E|

Cy =£CNqer-
In view of , it suffices to show that, for z4; € Cg, there exists ¢ > 0 such that
gt = exp(tx_1) exp(tzy)
satisfies Ad(g;)~'h € p; ' (C°). Note that —7;,.C' = C implies that
C;-C=(Cy-C)°ccee
(cf. Lemma below).

4For the linear vector field defined by h on g, the positivity region is ijL (h) = C§ +qo + C2 (cf. (2.11)). This
is why we consider these two cones.
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For t > 0 we then have e *24-1h = h—t[x_1,h] = h—tx_; because (adx_1)%h € g_a(h) = {0}.
We thus obtain

Ad(gy)"th = e~tadwigtadaiy _ o=tadar(p g )=y oggy — femtaderg
=h+t(x; —x_q)—tle 2% — 1)z,
As pq(h) = 0, this element is contained in p; ' (C®) if and only if this is the case for
T1 —T_1 — (etad””1 —1)z_;.
For t — 0, this expression tends to 1 —z_; € C°, so that for some ¢t > 0, we have g, H € WA"Z(h) O

Remark 2.16. For a homogeneous space M = G/H, the positivity region W (h) is non-empty
if there exists an open subset @ C G such that p,(Ad(HO)h) C q is contained in a pointed open
convex cone. This depends very much on the geometry of the adjoint orbit Oy, the H-action on
this orbit and its position with respect to b = ker p,.

To understand how wedge regions look like, we first discuss some simple classes of examples.

2.3.1 One-parameter groups on affine causal spaces

To develop the key facts on modular flows on causal homogeneous spaces, we start in this subsection
with the case of causal affine spaces, i.e., pairs (E, C), where E is a finite-dimensional vector space
and C C F a pointed generating closed convex cone.

Specifically, we consider the following data (cf. [NO®21)):

(A1) FE is a finite-dimensional real vector space.
(A2) h € End(E) is diagonalizable with eigenvalues {—1,0,1} and 73, := ™",

Rh

(A3) C C FE is a pointed, generating closed convex cone invariant under e*"* and —7p,.

Writing E\ = E\(h) := ker(h — A1) for the h-eigenspaces and E* := ker(r;, F 1) for the
Th-eigenspaces, (A2) implies

EFE=FEi¢E®oF , E"T=E®&FE_,4, and ET = FEj. (210)

We put Cy := CN E4y. For z € E, we write x = x1 + 9 + x_1 for the decomposition into
h-eigenvectors.

Lemma 2.17. For the projections
_ _ 1
pt1:E— By, x—~ 241, and p :E—E,®E_1=F ,ml—>x1+x_1:§(m—7'hm),

the following assertions hold:

(i) p+1(C) = £C1 and p11(C°) = £C3% # 0.

(i) p(C)=CNE" =Cy®—-C_ andp (C°)=C°NE~ =C; ®—-C°.
(i) C CCy ® By —C_.
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Proof. (i) As £C+ C C, we have +Cy+ C p+1(C). Using the et'-invariance of C' and writing
x =1 + zo + x_1 as before, etz = etz + zy + e tz_1. Now take the limit ¢ — oo to see that

Coetets =z, + etag+e Pa_ > x as ¢t — oo

We likewise get #_1 = lim;_, o efetz € C. It follows that x+ € £C4, so that pi1(C) = £Cy. As
py1 are projections and C° # ), it follows that pyq(C°) C £C%. To obtain equality, it suffices to
observe that C @ —C° C (E~ N C)° C C° follows from —7,(C) = C.

(ii) The two leftmost equalities follow from —7,(C) = C, and the second two rightmost equalities
from (i) and p~ = p1 + p_1.

(iii) follows from (ii). O

As the linear vector field on E corresponding to h is given by X% (x) = x1 —x_1, Lemma ii)
implies that its positivity domain is the wedge region

WiEh) =C, e EyeC° for Cyp==xCNEy. (2.11)

In particular, it is not empty. Here (A3) is important to ensure that C° intersects E~ = im(h).
Otherwise we would include cones of the form C' = Cy + Cy + C_; with C; C E;. Any such cone
is invariant under e, but for such cones C° N (Ey1 + F_1) = () implies that W (h) = 0.

Example 2.18. (The affine group on R) We endow M = R with the canonical causal structure
given by Cp = R>¢ for z € R. Then the connected affine group G = Aff(R). = R x Ry is 2-
dimensional. Its elements are denoted (b,a), and they act by the affine, orientation preserving
maps (b, a)z = ax + b on the real line.

Here h = (0,1) € g is an Euler element whose flow is given by a;(x) = e'z. Therefore its
positivity region is

Wi(h)={zeR:2>0} =R,

and the corresponding reflection is 7, (z) = —=.

All other Euler elements are of the form A’ = (x, +1), where O, = Rx {1} and O_;, = Rx {-1}.
The corresponding positivity regions are the proper unbounded open intervals in R.

2.3.2 More examples of wedge regions

The first example refers also to an affine causal space, but now the linear part of the automorphism
group is larger.

Example 2.19. (Poincaré group and Rindler wedges) The example arising most prominently in
physics is the connected Poincaré group

G =Pl =R xS0 4_1(R)..

It acts on d-dimensional Minkowski space R14~! as an isometry group of the Lorentzian metric
given by (z,y) = xoyo — Xy for x = (29,%) € RY¥=1 The G-action preserves the constant cone
field defined by the closure C' = V of the open future light cone

Vi = {(z0,x) e RV 1 29 > 0,28 > x*}.
The generator h € s01 4—1(R) of the Lorentz boost on the (zg, z1)-plane

h(.l?o,l‘l,l‘g, ce ,.Ifd_l) = (33‘1,.130,0, .- .,0)
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is an Euler element and e™" acts by the reflection 73,(z) = (—z0, —21,2,...,24_1), for which
—1,(C) = C. In view of the Classification Theorem the fact that the restricted root system
of 501 q—1(R) is of type A; implies that there exists only one conjugacy class of Euler elements in
501 g—1(R). With Lemma it follows that the same holds for the Poincaré algebra because its
center is trivial. So Euler elements in this Lie algebra are precisely the Lorentz boosts in different

affine coordinate systems.
By (2.11)), the positivity region of h is

Wi (h) =Ry(eo +e1) —Ry(eg —e1) +spanfes,...,eq 1} = {x € RM™": |zp| < 11}

It is called the standard right wedge or Rindler wedge Wg and plays a key role in AQFT as a
localization region for a uniformly accelerated observer, represented by an orbit of the modular flow
in Wg (JBGL02| [LL15]; see also Remark [1.16]).

The following example is the smallest compact one. It is a causal flag manifold. We refer to
Subsection for more on this class of examples.

Example 2.20. (The action of PSLy(R) on S! 2 R,) The group G := SLa(R) acts on the one-point
compactification M = R, = RU {00} = S! by

g.x = az +b for g= <a Z) € SLy(R).

cr+d c

The subgroup SO2(R) acts transitively by

_( cos(t/2)  sin(t/2) . cos(t/2) - x + sin(t/2)
p(t)2 = (— sin(t/2) cos(t/2)) T —sin(t/2) - x + cos(t/2)’

generated by the vector field XM (2) = (1 + 2%). As this flow is 27-periodic, it induces a diffeo-
morphism R/27Z — Ro,. This shows that the natural causal structure on R extends to M in a
G-invariant fashion.

In g = sl>(R) we consider the Euler element h = 1 diag(1, —1) (cf. Example . The flow it
generates on R is given by ay(z) = e'x, where 0 and oo are fixed. Accordingly,

Wi (h) = Ry C Ro.

As G acts transitively of the set O), = £(sl2(R)) of Euler elements in sly(R) (Example2.8)), their
positivity regions in S! are precisely the non-dense open intervals.
The Cayley transform

1 —T
i+’

C:Ryp—Sti={z€C:|z|=1}, C(x):= C(c0) := —1,

is a homeomorphism, identifying R, with the circle. Its inverse is

_ _ d1—=z
ct:st 5 Ry, C 1(2):zl+z
(cf. Exercise. It maps the upper semicircle {z € S': Im z > 0} to the positive half line R, . The
Cayley transform intertwines the action of SLa(IR) with the action of SU; ;(C) on the circle St C C

by fractional linear transformations. This action preserves the causal structure on S' specified by
C, =Rxpiz C T.(S') = iR for z € S'.
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Example 2.21. The Lie group G := SLy(R) has three classes of causal homogeneous spaces.
In Example we have already seen its action on the 1-dimensional circle S', a flag manifold
Observing that Ad(SLz(R)) = SO 2(R). (Exercise , we obtain two other examples:

e Two-dimensional de Sitter space
dS2 = {(:I:valny) € RLQI :l% — x% — xg — _1}

carries an SO1 2(R)c-invariant causal structure with the positive cone in the base point e;
given by
Co, := {(x0,0,22): 29 > |22|} C Ts, (dS?) = Reg + Res.

. . 2 . .
The inversion —1 on dS” is an anti-causal map.

For the Euler element defined by
h(zo,x1,x2) = (21,%0,0), we obtain the con-
nected wedge region

W =W/,

a2 () = {(@o, 21, 22) € ds?: x> |zo|}.

The wedge region W and the orbits of the
modular flow in W are marked in the picture
on the right.

e Two-dimensional anti-de Sitter space
AdS? = {(z1, 2, 23) € R®: 22 422 — 22 =1}
carries an SOg, 1 (R)-invariant causal structure with the positive cone in the base point e,
given by
092 = {($1,0,$3)Z Tr3 > |l‘1|} - T’e2 (AdSQ) = Re; + Res.
The inversion —1 on AdS? is a causal map. For the Euler element defined by h(zy, zs,z3) =
(0, 3, x2), we obtain the positivity region

Wz_dsz (h) = {(l‘1,$2,$3) € AdSQ: rix3 > 0, |$2| < |1‘3|}

It has two connected components, specified by the sign of x; (ﬂm Lemma 11.3]). Note
that |zo| < |x3| specifies the region on which h, as a vector field on AdS?, is timelike. This
region has four connected components, and ziz3 > 0 selects the two on which it is positive.
They are exchanged by the inversion —1.

As homogeneous spaces, both can be identified with the adjoint orbit 0, = G/G" = &(sly(R)),
where h := 1 diag(l,—1) is an Euler element in sl3(R) (cf. Example . However, both carry

natural causal structures, and these are non-isomorphic because AdS? admits closed causal curves
and dS? does not.
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2.4 The compression semigroup of a wedge region

Let M = G/H be a causal homogeneous space with causal structure given by the cone field
(Crm)mem- The set

Cu={y€g: (vme M)X}(m)e Cn} = ﬂ Ad(g)py 1(C) (2.12)
geG

of those Lie algebra elements whose vector fields on M are everywhere positive (cf. ) is a closed
convex Ad(G)-invariant cone in g. It consists of all y € g corresponding to everywhere “positive”
vector fields on M. If G acts effectively on M, then it is also pointed because elements in C;y N—C)y
correspond to vanishing vector fields on M. This cone is a geometric analog of the positive cone
Cy of a unitary representation of G (see )E| The following observation shows that it behaves
in many respects similarly (cf. [Ne22]).

As any connected component W C W (h) C M is invariant under G* D exp(Rh)ﬂ the same
holds for the closed convex cone

Cw:={yeg: (YmeW) Xéw(m) €Cn} 2 Cuy. (2.13)
Below we show that this cone determines the tangent wedge of the compression semigroup of W.

Proposition 2.22. For a connected component W C W;}(h), 1ts compression semigroup
Sw:={g9g€G: gWCW}

s a closed subsemigroup of G with Gy = Sw N S‘,_Vl DG and

L(Sw) ={r € g: exp(Ryz) CSw}=go(h) +Cw++Cw_, with Cwax:==2CwNgsi(h).

In particular, the convex cone L(Sw) has interior points if Cyy does.

Proof. As W C M is an open subset, its complement W€ := M \ W is closed, and thus
Sw={geG: g W C W}

is a closed subsemigroup of G, so that its tangent wedge L(Sy ) is a closed convex cone in g ([HN93]).
Let m = gH € W, so that pq(Ad(g)~*h) € C°. For z € gy1(h) we then derive from g4o(h) = {0}
that
e Th =h+[z,h] =hFu

This leads to

pq(Ad(exp(z)g)~"h) = pq(Ad(g) '™ *1*h) = pg(Ad(g) " (h + z))
= Dq (Ad(g)flh) + pq(Ad(g)flx).

For z € Cyw,+, we have py(+Ad(g)~'z) € C, so that ps(Ad(exp(z)g)~th) € C°, which in turn

implies that exp(z).m € W for m € W. So exp(Cw,+) C Sw, and thus Cyw1+ C L(Sw). The

invariance of W under the identity component G" of the centralizer of h further entails go(h) C
L(Sw), so that

Cw,+ + go(h) + Cw,— € L(Sw). (2.14)

5Note that the existence of a pointed generating invariant cone in a Lie algebra g has strong structural implications

(cf. [Ne99)). If, f.i., g is simple, then it must be hermitian.
6Recall that G* = {g € G: Ad(g)h = h}.
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We now prove the converse inclusion. Let z € gq(h). If XM (m) & C,, ie., py(Ad(9)"'z) & C,
then there exists a t; > 0 with

pq(Ad(g) " h) +to - pg(Ad(g) 'a) ¢ C

(INe99l Prop. V.1.6]), so that exp(tox).m ¢ W. We conclude that

L(Sw) n gl(h) = CW7+.

Radh jmplies that, for

Further, the invariance of the closed convex cone L(Sy ) under e
r=z_1+z0+z1 €L(Sw) and z;€ g;(h),

we have
vy = lim eTle™ My € L(Sw) N ge1(h) = Cw,

which implies the other inclusion L(Sw) C Cw 4+ + go(h) + Cw,—, hence equality by (2.14)).
Let p1: g — g+1(h) denote the projection along the other eigenspaces of ad h. Then

Cw,+ 2 Oyt = £Cy Ngt1(h) = £p+(Cur)

also follows from [NO®21| Lemma 3.2]. Therefore C, # @ implies Cyy4+ # 0, and this is equivalent
to L(Sw)° # 0. =

The Rindler wedge in Minkowski space

Let G = P(d). be the identity component of the Poincaré group P(d) := Rb4=1 x O 4_1(R) and
h € g the Euler element corresponding to the Lorentz boost in the (eg, e1)-plane with wedge region

Wgr={z e RM 1. 2 > |z}
(Example . The corresponding reflection is 7, = diag(—1,—1,1,...,1).
Lemma 2.23. The stabilizer group of Wg is
Gwy 2 E(d—2)+ x SO1,1(R). = (Er x SO4—2(R)) x SO1 1 (R)., (2.15)
where E(d — 2)4 denotes the connected group of proper euclidean motions on
ER :=span{ey,...,eq_1} = RI2

and SO1 1(R) acts on span{eg,e1}. The compression semigroup of Wr is

Swy :={g € P(d): gWr C Wg} = Wg x O1 4-1(R)w,.

Proof. The stabilizer group P(d)w, contains the translation group corresponding to the edge Fr,
and gWgr = Wg implies g(0) € Eg, so that

P(d)wy = Er % 01,4-1(R)wy-
Further, each g € Oy 4-1(R) preserving Er also preserves its orthogonal complement, so that

O1,4-1(R)wy = 04-2(R) x O11(R)w,, = Og—2(R) x (SO11(R)e{1,71}),
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where r = diag(1,—1,1,...,1).
Next we use Lemma [2.24] below to see that

SWR = WR X {g S SOLd,l(R)e: gWgr C WR}.

Any g € SOq 4_1(R)e with gWr C Wk satisfies gEr = ERr because ¢ is injective and dim Fr < cc.
This in turn implies that ¢ commutes with 7, = diag(—1,—1,1,...,1), so that g = g1 @ go with
g1 € O11(R) preserving the wedge region le% C RY! = span{eg,er}. As gy W}% is a quarter plane
bounded by light rays, it cannot be strictly smaller than W3, hence ;W3 = W3, and finally
gWgr = Wg. This completes the proof. O

Lemma 2.24. Let E be a finite-dimensional real vector space and C C E be a closed convex cone.
In the affine group G := Aff(E) 2 E x GL(E), we then have

Sc:={g€G:gC CC}=Cx{geGL(E): gC CC}. (2.16)
If C has interior points, then Sco = S and C = C°.
Proof. We write g = (b,a) with gz = b+ azx. Then ¢g.C C C implies b = ¢g.0 € C.
Moreover, for the recession cone
Im(C):={ze€E:2+CCC}={z€F: (3ceC)c+Ryx CC}
(INe99, Prop. V.1.6]) the relation g.C' C C implies

aC = lim(b+ aC) = lim(g.C) C lim(C) = C,

and this implies (2.16). o
If C has interior points, then ¢.C° C C° and C' = C° imply ¢g.C C C, so that Sco C S¢.
Conversely, C 4+ C° C C° implies that S¢ C Sco. O

2.5 Causal Lie groups

The most structured examples of causal homogeneous spaces are causal groups with a biinvariant
causal structure.

Let G be a connected Lie group and Cy C g be a pointed generating closed convex cone. Then
Cy :=g.Cy C Ty(G) defines on G a left-invariant causal structure. These structures become more
interesting if Cy is also Ad(G)-invariant, so that the action of G x G by (g1, g2).g = glgggl preserves
the causal structure. E] If ho € g is an Euler element, then h := (hg, hg) € g©? is Euler as well. It
generates the flow

at(g) = exp(tho)g exp(—tho).

The corresponding vector field is

d -
Xfi(g) = 2| expltho)gexp(=tho) = ho.g = g.ho = g.(Ad(g) " ho — ho).

Therefore

W (h) = {g € G: Ad(g) 'ho — ho € C} = {g € G: Ad(g)ho — ho € —C} (2.17)

"That a G action on M preserves the causal structure (Ci,)mear means that g.Cp, = Cg., for g € G,m € M.
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It is easy to see that this is an open subsemigroup of G, contained in the closed subsemigroup
S(ho,Cy) :={g € G: hog — Ad(g)ho € Cy}. (2.18)
For the G-invariant order (causal structure) on g, defined by
r<c, ¥ it y—xzedly,

this means that
S(thg) = {g e G: Ad(g)ho SCB h()}.

We likewise have for the strict order, defined by
r<c,y if y-zeCy

that
W (h) ={g € G: Ad(g9)ho <c, ho}.

We consider the two pointed generating cones

Cy =xCy3Ngt (2.19)
(cf. Lemma [2.17)).
We claim that
exp(Cj_)GhO exp(C?) C W (ho), (2.20)

which, by passing to the closure, implies
exp(C )G exp(C-) C S(ho, Cy). (2.21)

As the centralizer G of hg is obviously contained in S(hg,Cy) and exp(C4)G" = G exp(Cy ), it
suffices to show that exp(C%)exp(C°) C W (ho). For z4 € C%, this follows from
eddereade—p _p— o (h 4z h))—h=e%(h4+a_)—h=[zy, h]+e%2z_  (2.22)
=-—zy + e =M (p_ —py) € —eMTH(C - C°) C -Cy

(cf. the proof of Proposition [2.15)). Here we used —7,(Cy) = Cy for the inclusion C — C° C Cy
(Lemma i)).

Definition 2.25. Assume that 77 = emadh integrates to an automorphism 75, of G. Using the
complex Olshanski semigroup S(iCy) := G Exp(iCy) (see [Ne99, §IX.1], [HN93, 3.20] and also
[Ne22| §2.4] for a detailed discussion), [?| we define the subsemigroup Gxyms C G as the set of those
elements g € G for which the orbit map

ad:R—=G, aI(t)=a(g)

extends analytically to a map S — S(iCy) with a?(S,) C S(iCy), such that o (i) = 7,(g).

8If G is simply connected and ng: G — Gg its universal complexification, then S(iCyq) is the simply connected
covering of the subsemigroup 1 (G)exp(iCq) C Gc, and if G is not simply connected, it is the quotient of S5 (iCq)

by the kernel of the covering map q¢ : G — G. The map Exp: iCy — S(iCy) is the map corresponding in this context
to the exponential function i{Cy — G¢ and G x Cy — S(iCy), (g, ) — g Exp(iz) is a homeomorphism.
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Theorem 2.26. If G is simply connected, h € g an Euler element, and Cy C g a pointed closed
convex invariant cone with —17(Cy) = Cy, then

S(h,Cy) = exp(C1)G"exp(C_) = G exp(Cy + C_), (2.23)

the positivity domain
W (h) = eXp(C’i)Gh exp(C?)
18 a subsemigroup, and
Grus = exp(C5)G exp(C?) = G exp(CS + C°) = S(h, Cy)2
is a connected component of W (h).

Proof. The first two equalities in are the Decomposition Theorem [Ne22, Thm. 2.16]. Further
[Ne22, Thm. 2.21] shows that S(h,Cy) coincides with the set of all g € G for which a9 extends to
a map S, — S(iCy).

Next we show that the additional requirement that a9(S;) C S(iCj) specifies the open subset
G"exp(CS + C°) = S(h,Cy)°. For g = goexp(zy + x_1) with z4; € Cy, we have

af(z) = go Exp(e”z1 + e "z_1).
For z = a + b with 0 < b < m, we have for x4, € C%
Im(e*zy + e *x_1) =sin(y)(x1 —xz_1) € (Cx + C_)°.
This shows that
Gl exp(CS + C2) = S(h, Cy)? = exp(C3)Gl exp(C2) € Grcnss.
If, conversely, x4+, € C+ and a9(mi/2) = go Exp(i(z; —x_1)) € S(iCy), then
T -z €CinNg ™" =07 —-C2

(Lemma [2.17)).

For g = goexp(z1 + xz—1) we have 7,(g) = 7(g0) exp(—21 — z_1), so that we find for Gxys the
additional condition that go € G™ (cf. [Ne22l, Cor. 2.22]). O

Remark 2.27. For the antiholomorphic extension 7, of 73, to the complex semigroup S(iCy), the

fixed point set -
S(iCy)™ = G™ Exp(iCy ™) = G™ Exp(i(Cy — C)),
is a real Olshanski semigroup in the c-dual group G¢ (with respect to 73,) with Lie algebra g¢ =

go + ig~™. The invariance condition —7;(Cy) = Cy implies that C;™ = Cy — C_ has interior
points (cf. Lemma [2.17)).

Remark 2.28. In the context of causal Lie groups, specified by a pair (G, Cy) as above, g may not
contain an Euler element, but there may be an Euler derivation D € der(g), i.e., D is diagonalizable
with eigenvalues contained in {—1,0,1} (see Example below, and Example for the case
where G = E is a vector space). Then 7p := e™P defines an involutive automorphism of g, and
compatibility with the causal structure corresponds to the requirements

fPCy=Cy and —71pCy = Cy. (2.24)
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To implement a modular flow on G, we assume that all automorphisms af := e'P of g integrate
to automorphisms a; of G. Then G := G x, R is a Lie group acting by causal automorphisms
on M := G, where (9,0) € G” acts by left translation and (0,¢) by a;. This action leaves the
biinvariant cone field invariant, and the involution Tg on G is anti-causal, i.e., flips the cone field
into its negative. Now h” := (0,1) € g’ is an Euler element, and for every g = (¢9,0) € G C G*, we

have Ad(g)hb — h* € g. We may therefore consider the closed subsemigroup
S(h*,Cq) == {g € G: I* — Ad(g)h’ € C,}
and find the positivity domain
WE (W) ={g€G: 1" —Ad(g)h" € C3}.
With the same arguments as above, we also obtain with [Ne22]
W (1) = exp(CS)G" exp(C°) = G exp(CS + C°) = S(h?, Cy)°. (2.25)

Example 2.29. (a) Not every Euler element has a non-trivial positivity region. If M = G is a
causal Lie group with biinvariant cone field corresponding to Cy C g, on which G' x G-acts, then
every Euler element hg € g specifies an Euler element h := (hg,0) € g®2, but the corresponding
modular vector field is X (g) = g.h, and this is never contained in Cy; = ¢.Cy because h & Cj.
This follows from the fact that h is hyperbolic and the semisimple Jordan components of elements
in Cy are elliptic ([NOe22]). We also note that 7, = 7, ©idy does not commute with the flip, hence
cannot be implemented on the symmetric space GG in a natural way.

(b) For left invariant causal structure on a Lie group G, the cone C' C g = T.(G) can be any
pointed generating closed convex cone. Then Wg (h) # 0 is equivalent to h € C°, and in this case
W (h) = G, so that the situation is quite degenerate.

2.6 Causal flag manifolds

We have seen above that Euler elements h € g play a key role, and that we have to understand
causal homogeneous spaces M = G/H for which the positivity region W, (h) is non-empty, because
otherwise we have no wedge regions for the Bisognano—Wichmann property. As the most well-
behaved homogeneous spaces are symmetric spaces and flag manifolds, this is the class of manifolds
for which we investigate this question first. In Physics, the most prominent example is the conformal
compactification (S x S471)/{#£1} of d-dimensional Minkowski space (Example .

Definition 2.30. To define flag manifolds for a connected semisimple Lie group, consider = € g
such that ad z is diagonalizable, put

Qe = ZgA(x) and  Q,:={g€G: Ad(9)q. = 4.}

A<0
Then Q. is called a parabolic subgroup of G and G/Q, the corresponding flag manifold.
For the description of the causal flag manifolds, we also need hermitian Lie algebras.

Definition 2.31. A simple Lie algebra g with Cartan decomposition g = €@ p is called hermitian
if the center 3(¢) of a maximal compactly embedded subalgebra £ is non-zero. For hermitian Lie
algebras, the restricted root system ¥ = X(g, a), with respect to a maximal abelian subspace a C p,
is either of type C, or BC,. (cf. Harish Chandra’s Theorem [Ne99, Thm. XII.1.14]), and we say that
g is of tube type if the restricted root system is of type C,. The terminology comes from the fact
that the corresponding hermitian symmetric space G/K is a tube domain, i.e., biholomorphic to
V4 + iV C V¢ for a real vector space V and an open convex cone V. C V.

44



Theorem 2.32. (Classification of causal flag manifolds, [Ne25]) Let G be a connected semisimple
Lie group and Q C G be a parabolic subgroup such that q contains no non-zero ideals of g. Suppose
that the corresponding flag manifold G/Q carries a G-invariant causal structure. Then g is a direct
sum of hermitian simple ideals and there exists an Euler element h € g such that

q=qn = go(h) +g-1(h).
If, conversely, this is the case, then G/Qp, is a causal flag manifold.

If g is simple hermitian, then an Euler element h exists in g if and only if g is of tube type, and
then they are all conjugate and h is symmetric (Proposition [2.46). We fix one and consider the
corresponding causal flag manifold M = G/Qp. The tangent space in the base point is

a/an = g1(h),

and the causal structure on M is specified by the cone
Cy = Cynagi(h),

where Cj is a pointed generating closed convex Ad(G)-invariant cone in g. We thus obtain an
(up to sign) unique causal structure on M, i.e., any other cone Cy satisfies Cy N g1(h) = Cy or
CgNgi(h) = —Cy ([MNO23, §3.5]). This also follows from the fact that gi(h) only contains two

e*d90_invariant non-trivial closed convex cones ([FINO94]).
On the open dense subset of M obtained by embedding g; via n(z) := exp(z)Qp, the vector
field X} is the Euler vector field on gy, so that n(C$) C W}, (h), and we actually have that

W =Wy (h) =n(C3) (2.26)
(IMN25, Lemma 2.7]).
Proposition 2.33. The compression semigroup of W C M = G/Qy, is

Sw={9ge€G: gWCW}= exp(CJr)Gh exp(C_) for Ci==xCygNgs1(h). (2.27)

Proof. As Gy = exp(g1) is abelian, the inclusions exp(C) C Sy and G" C Sy are obvious.
All elements z € C4 correspond to constant vector fields on the open subset n(g1) € M, and
since this subset is dense (Bruhat decomposition), we obtain

C. CCu={yecg: (Yme M) X, (m) € Cp}

(cf. 212)). As G acts effectively on M (the corresponding homomorphism G — Diff(M) is in-
jective), the closed convex Ad(G)-invariant cone Cps C g is pointed, and the preceding argument
yields

C’]\/[’Jr = CM Ngs = C+.

As Cyp; — C)y is an ideal of g and g is simple, the cone C}y; is also generating, so that we also obtain

C_ = —Cp Ng_1 by the discussion preceding the proposition. Thus exp(C_) C Sy follows from
Proposition [2:22] Putting everything together, we get
Sw D exp(C4)G" exp(C_), (2.28)

and the hard part is to verify equality in . This involves showing that the product set on
the right is a subsemigroup (which is not easy to see) and that it actually coincides with Sy, by
showing that it is maximal, hence equal to Sy . We refer to [Nel8, Lemma 3.7, Thm. 3.8] for more
details and references. O
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Problem 2.34. Theorem describes all causal flag manifolds M = G/Q}, for semisimple Lie
groups, but it makes good sense to ask for a more general result:

(CF1) Let x € g be such that ad z is diagonalizable, put

Iz = ng(x) and Q. :={g€G: Ad(9)q. = q.}-

A<0

Show that, if M = G/Q, is causal, then x must be an Euler element (cf. [Ne25] for similar
arguments). Note that x € q, implies that g, is self-normalizing, so that L(Q.) = q.

(CF2) Assume that h € g is an Euler element. Determine those manifolds M = Q/Q), with an
invariant causal structure on which G acts effectively.

Remark 2.35. (The affine case) Particular examples arise for Euler elements with g_; = {0}.
Then M = G/Qn = n(g1) = g1 and we may assume that G = g1 x Gp.

This covers the action of Aff(R). on R and of the Poincaré group on Minkowski space. More
generally, we may start with a finite-dimensional real linear space E and a pointed generating
convex cone C' C E. We write Aut(C) C GL(E) for its linear automorphism group, which is a
closed subgroup. Then G := E x Aut(C) acts transitively on the affine causal manifold M := E,
endowed with the constant cone field C,, = C for m € M. Further, h := (0,idg) is an Euler
element with g_; = {0}, Aut(C) = G" and g; = E. The corresponding positivity region is

W =W (h) =C°,
and its compression semigroup is readily identified with
Sw = C x Aut(C)

because Aut(C) C Sy (cf. also Lemma [2.24).

Lie algebra elements (b,a) € g = g1 X go correspond to affine vector fields X (z) = b+ az, and
such a vector field is positive on all of F if and only if b + aFE C C, which is equivalent to a = 0
and b € C. Therefore the invariant cone Cy; C g coincides with C' C g;.

Euclidean Jordan algebras

The causal flag manifolds of simple Lie groups are precisely the conformal compactifications of
simple euclidean Jordan algebras.

The following table lists the simple hermitian Lie algebras of tube type, the only non-simple Lie
algebra listed is 509 2(R) = 501 2(R)®2, corresponding to the non-simple Jordan algebra V = R:! 2
R @ R (the Minkowski plane, decomposing in lightray coordinates).

Hermitian Lie algebra g spy, (R) | su, - (C) 50%(4r) ¢7(—25) 502 4(R)
Euclidean Jordan algebra | V Sym,.(R) | Herm,(C) | Herm,(H) | Hermz(Q) | R14-!
rank of V rankV | r T T 3 2

Table 1: Hermitian Lie algebras of tube type and euclidean Jordan algebras

The corresponding flag manifolds M have interesting geometric interpretations. For g = s02 4(R),
the manifold M is the isotropic quadric Q@ = Q(R*?) in the real projective space P(R%4), and for

0 1,

Q:=Qy, = (_1 0) S MQT(K), K=R,CH,
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we obtain a uniform realization of the Lie algebras sp,,.(R), u, .(C) and so*(4r) as
w(Q,K?) = {x € gly, (K): 2*Q + Qz = 0}. (2.29)

Then M is the space of maximal isotropic subspaces L C K?" with respect to the skew-hermitian
form B(z,w) := 2*Qw on K"

Example 2.36. (The Lorentzian case) For d-dimensional Minkowski space V = R14~1 we realize
the conformal completion M of V as the quadric

Q = Q®>?) = {[5] € B(V): B(7,7) = 0}, (2.30)

where 5 is the symmetric bilinear form on R?¢, given by

B(x,y) = T1y1 + Tay2 — T3Y3 — -+ — Tay2Yd+2-
The natural dense open embedding R~ — @ is given by

1—5(’0,’0) .v._l"_ﬁ(vav)

5 v 5 € Q C P(R*%), (2.31)

n: V-0, nk):=

corresponding to the action of the translation group (V,4) = g;(h) on @ (cf. [HN12, §17.4], [Ne25]).

2.7 Causal symmetric spaces

We start with some terminology and observations concerning symmetric spaces and symmetric Lie
algebras (cf. [HO97)):

o A symmetric Lie algebra is a pair (g, 7), where g is a finite-dimensional real Lie algebra and
7 is an involutive automorphism of g. We write

g=hdq with Hh=g =ker(r—1) and q=g " =ker(r+1). (2.32)

e A symmetric space is a homogeneous space of the foorm M = G/H, where H C G7 is an
open subgroup and 7 € Aut(G) an involution. Then H contains the identity component
G := (G7).. We call the triple (G, 7, H) a symmetric Lie group because this triple specifies
the symmetric space M.

o A causal symmetric Lie algebra is a triple (g, 7,C), where (g,7) is a symmetric Lie algebra
and C C q is a pointed generating closed convex cone, invariant under the group Inng(h) :=
(e2db) C Aut(g). We call (g,7,0)

— compactly causal (cc) if C is elliptic in the sense that, for x € C° (the interior of C), the
operator ad z is semisimple with purely imaginary spectrum.

— non-compactly causal (nce) if C is hyperbolic in the sense that, for z € C°, the operator
ad z is diagonalizable.

e For a symmetric Lie algebra (g, 7), the pair (g¢, 7¢) with g¢:= b +iq and 7¢(z + iy) = = — iy
is called the c-dual symmetric Lie algebra.
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e A modular causal symmetric Lie algebra is a quadruple (g, 7, C, h), where (g, 7, C) is a causal
symmetric Lie algebra, h € g7 is an Euler element, and the involution 73, satisfies 7,(C) = —C.

Remark 2.37. (a) (g,7,C) is non-compactly causal if and only if (g¢, 7¢,iC) is compactly causal.
(b) (g, 7,C, h) is modular if and only if the c-dual quadruple (g¢, 7¢,iC, h) is modular.

Remark 2.38. If C; C g is a pointed generating invariant cone in g and h € g an Euler element
satisfying —75,(Cy) = Cy, then there is a variety of associated causal symmetric Lie algebras:

(a) (%2, Taip, C, (h, h)) with C = {(z,—z): x € Cy} is a modular causal symmetric Lie algebra
of group type (cf. Subsection .

(b) (gc,0,iCy, h) is a modular non-compactly causal symmetric Lie algebra of complex type.

(¢) (g,7h,Cy—C_,h) is a modular compactly causal symmetric Lie algebra of Cayley type. Note
that C; ™ = Cy — C_ by Lemma W(u)

(d) (g,7h,C+ + C_,h) is a modular non-compactly causal symmetric Lie algebra of Cayley type.

Note that _
%’L

" gc—ge satisfies  wy(g) = g, (2.33)

Rp = €

so that (g, 7s) = (g%, 75) as symmetric Lie algebras. Moreover,

kn(C3™) = kn(Cy — C-) = i(Cy +C),

so that
(Ga Th, Cg_Th7 h) = (g7 Th, C+ - C*7 h‘) = (907 Th Z(C+ + C*)7 h’) = (97 Thy C+ + 0*7 h’)c (234)
as modular causal symmetric Lie algebras.

Remark 2.39. (Tangent spaces) If (G, 7, H) is a connected symmetric Lie group corresponding to
the causal symmetric Lie algebra (g, 7, C'), then we obtain on q a constant causal structure defined
by C that is invariant under the action of the semidirect product group q x H, where H := G7 (cf.
Remark . If, in addition, h € h is an Euler element with 7,(C') = —C, then the pair (q,C)
satisfies the assumptions (A1)-(A3) from Section [2.3.1] So q is an affine causal symmetric space,

and (2.11)) in Subsection implies that
W;(h) =Cl{®qh)@C for Ci:=xCNgsr(h).

Remark 2.40. (Lorentzian symmetric spaces) Important examples of causal symmetric spaces are
those where causal structure comes from a Lorentzian form, for instance de Sitter space dS? and
anti-de Sitter space AdS? (see Examples .

If My = G1/H; is a Lorentzian symmetric space and My = G/ Hs is a Riemannian symmetric
space, then the product M = M; x M> is also Lorentzian. Important examples are

AdSP xS7  and  dSP xHyp?

and the compact group U, (C) carries biinvariant Lorentzian structures. We refer to [Ne25] for more
details and conformal embeddings of these spaces for p + ¢ = d into Q(R?9).
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2.7.1 Causal symmetric spaces of group type

We assume first that g is simple hermitian and that hy € g is an Euler element. Then any Ad(G)-
invariant closed convex pointed generating cone Cy C g specifies a biinvariant causal structure on
the group G, considered as a symmetric space on which G x G acts transitively. Then the Euler
elements h € g®2 for which W (h) # 0 are conjugate to h = (hg, ho) for some Euler element hq € g,

and in this case
W (h) = exp(CS)G" exp(C°) = S(h, Cy)° (2.35)

follows from Theorem cf. also (2.17) and (2.18)). Note that W, (k) only depends on the cones
C4, hence is unique up to sign if g is simple ([MNO23| §3.5]).

2.7.2 Modular compactly causal symmetric spaces

If (g,7,C) is an irreducible compactly causal symmetric Lie algebra which is not of group type,
then g is simple hermitian ([NO23bl Prop. 2.13] and by c—dualityﬁ ). If g contains an Euler element,
then g is of tube type, Ad(G) acts transitively on £(g) (Proposition and there exist T-fixed
Euler elements (Corollary in Appendix [2.8.6). Now the embedding

(6,7,C) = (6%, 71p, C), x> (z,7(x)) (2.36)

can be used to determine the positivity region W]Jvr[(h) by using the results for spaces of group type.
On the global side, we consider the action of G on G by g.x := gz7(g)~!, corresponding to the
embedding . Then M := G.e is the identity component in the fixed point set of the involution
g* := 7(g)~! and a symmetric space with symmetric Lie algebra (g, 7). If C = Cy N q, then we
even have an embedding of causal symmetric spaces which is equivariant for the modular flow. This

easily implies that
Wi (h) = Wg (h)N M = S(Cq, h)° N M, (2.37)

and
W =G" exp(Cy +C2) for Cy==+C;" Ngsi(h).

The compression semigroup of W is
Sw = Gwexp(Cy +C_) with Gw =GIH". (2.38)

Furthermore, Gy is open in G" ([NO23a, Thm. 9.1]). We refer to [NO23a| for details.

2.7.3 Non-compactly causal symmetric spaces

TIrreducible non-compactly causal symmetric Lie algebras (g,7,C) are c-dual to irreducible com-
pactly causal ones. The dual (g¢ 7¢) is of group type if and only if g is a complex simple Lie
algebra (considered as a real one) and 7 is antilinear, so that h = g7 is a real form and g & h¢.
Then (g° 7¢) = (§%2, 7a;,). The existence of the causal structure implies that § is hermitian, but
these real forms are precisely those for which the corresponding conjugation 7 is of the form 67y,
where h € g is an Euler element ([MNO23| Thm. 4.21]). So Euler elements in complex simple Lie
algebras automatically determine causal symmetric Lie algebras of complex type.

This picture prevails for general simple Lie algebras g. Whenever h € g is an Euler element and
0 a Cartan involution with #(h) = —h, then 7 := 67, is an involution of g. Further & is also Euler in

9The dual symmetric Lie algebra (g¢,7¢,4C) is irreducible, non-complex and non-compactly causal. Hence g° is
simple. Moreover 7¢ = 73,6 for a causal Euler element h € iq = q°. Then g§ = 34c(h) = by © gy = be @ iqe implies
that 3¢(¢h) = ¢. So ih € 3(¢) implies that g is hermitian.
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the complexification gc, on which the antilinear extension 6 of 6 to gc¢ defines a Cartan involution.
Then 7 := 07, is an antilinear extension of the involution 7 = 67, on g, and g¢ := (g¢c)” = b +iq is
a hermitian real form of g¢ with 3(¢°) = Réh. For any invariant cone Cye C g° containing —ih, we
then obtain by

C:=iCyg Ny

an e P-invariant cone in q with h € C°. We have an embedding
(9,7,C) = (gc, T, iCgye)

of causal symmetric Lie algebras of non-compact type, and we thus obtain a parametrization of
irreducible non-compactly causal symmetric Lie algebras in terms of Euler elements:

Theorem 2.41. (Classification of irreducible non-compactly causal symmetric Lie algebras;[MNO23|
Thm. 4.21)) Let g be a simple real Lie algebra and pick a Cartan involution 6 with 6(h) = —h. Then
the assignment

h— (g,Thg,C)

described above defines a bijection from the set £(g)/Inn(g) of conjugacy classes of Euler elements
to the isomorphism classes of irreducible non-compactly causal symmetric Lie algebras with maximal
Inn(h)-invariant cone.

Theorem 2.42. ([MNO24, Cor. 6.3]) For an irreducible non-compactly causal symmetric space
M = G/H there exists a unique conjugacy class of Euler elements Oy, C g for which WI\"/}(h) # 0.
In particular Wy, (=h) = 0 if h is not symmetric.

Let us assume for simplicity that M = G/H is minimal, i.e., that all other causal symmet-
ric spaces with the same triple (g,7,C) are coverings of M (this is M,q in the notation of Ap-
pendix . In addition, we assume that the causal structure is maximal, i.e., that C C q is a
maximal proper Inn(h)-invariant convex cone in q. We choose a Cartan involution 6 commuting
with 7. Let q¢ = q N € for a Cartan decomposition g = € ® p with h € g, and consider the domain

s
Qq, = {x € qe: rgpec(adz) < 5}7

where rgpec(ad z) is the spectral radius of ad z. Then the connected component W := W (h)ex of
the base point eH in the positivity domain W;;(h) is the region

W = G exp(Qq, ).eH (2.39)
(IMNO24, Thm. 3.6] and (2.55)) in Appendix [2.8.5)). The semigroup Sy actually is a group, as we
shall see in Theorem F.35] below.
2.7.4 Non-triviality of wedge regions

Wedge regions have been studied in detail for compactly and non-compactly causal symmetric
spaces in [N 023a] and [N023b, MNO24], respectively. For causal flag manifolds, we refer to [MN25],
[Ne25] and Section The case of general Lie groups is still poorly understood; but see [BN25]
and [Oeh22] [Oeh23]. We shall return to this topic below.

Problem 2.43. Let h € g be an Euler element and M = G/H a causal homogeneous space.

(a) How can we determine effectively if W, (h) # 07 A sufficient condition is given in Proposi-
tion [2.15)
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(b) If —h = Ad(g)h for some g € G, then W;;(—h) = g.W;;(h) is nonempty if W, (h) # 0. The
converse is not true by Example where W, (£h) # 0 but h is not symmetric. However,
for irreducible non-compactly causal symmetric spaces it is true (Theorem [2.42)). Is there a
natural characterization of those cases where W (£h) # 07

(c) How are these conditions related to the existence of fixed points of the vector field X }ZLW , 1.e.,

to Op N #£ 07

Example 2.44. In this context, the Euler element h; € sl3(R) (cf. Example [2.9) is instructive. It
is not symmetric; note that —hy € Oy, # Op,. The corresponding non-compactly causal symmetric
space is

M=G.IL={ghag":g€SL3(R)} C Symy(R), I, =diag(l,—1,—1).
Then I 5 € WAJ/FI(hl) £, but va}(—hl) = () and the vector field
XM (z) = hix + zhy

has no zeros on M C Symy(R). In fact, if X}/ (x) = 0, then z anticommutes with hy. If v € R?
is an hp-eigenvector with hjv = Av, it follows that hyxv = —Azv; contradicting the fact that the
eigenvalues of h; are % and —%. We refer to [Ne25, Prop. 5.7] for a detailed discussion of this class
of spaces and their modular flows.

2.8 Appendices to Section
2.8.1 Euler elements in simple Lie algebras

In this appendix, we present a classification of Euler elements in simple real Lie algebras, following
[MN2T]. As they correspond to 3-gradings, it can also be derived from [KA88]. We also reproduce
the list of the 18 types from [Kan98| p. 600] and Kaneyuki’s lecture notes [Kan00].

Let g is a real semisimple Lie algebra. An involutive automorphism 6 € Aut(g) is called a Cartan
tnvolution if its eigenspaces

t=g'={zcg:0@)=2} and p:=g?={rcg: b(z)=—x}

have the property that they are orthogonal with respect to the Cartan—Killing form x(z,y) =
tr(ad x ad y), which is negative definite on ¢ and positive definite on p. Then

g=tdp (2.40)

is called a Cartan decomposition. Cartan involutions always exist and two such involutions are
conjugate under the group Inn(g) of inner automorphism, so they produce isomorphic decomposi-
tions ([HN12, Thm. 13.2.11]). The subalgebra ¢ is a maximal compactly embedded. An element
x € g is elliptic if and only if its adjoint orbit O, = Inn(g)x intersects €, and = € g is hyperbolic if
and only if O, Np # 0.

For the finer structure theory, we start with a Cartan involution § and fix a maximal abelian
subspace a C p. As a is abelian, ada is a commuting set of diagonalizable operators, hence
simultaneously diagonalizable. For a linear functional 0 # a € a*, the simultaneous eigenspaces

0o = 0a(a) :={y € g: (Vx € a) [z,y] = a(v)y}
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are called root spaces and
S = S(g,a) == {a € a*\ {0}: g # 0}
is called the set of restricted roots. We pick a set
Mm:={ay,...,ap,} CX

of simple roots. This is a subset with the property that every root a € X is a linear combination

a =i nja;, where the coefficients are either all in Z> or in Z<o. The convex cone

I*:={z €a: (Vaell) a(z) >0}

is called the closed positive (Weyl) chamber corresponding to T1.
We have the root space decomposition

g:go@@ga and go=m@a, where m=gyN€t
acX

Now 6(ga) = g-a, and for a non-zero element x, € g,, the 3-dimensional subspace spanned by
Zo,0(zq) and [z4,0(z4)] € a is a Lie subalgebra isomorphic to sl2(R). In particular, it contains a
unique element a¥ € a with a(a") = 2. Then

Toia—a, 7o(z):=1z—a(z)a’

is a reflection, and the subgroup
W= (r,: a € ) C GL(a)

is called the Weyl group. Its action on a provides a good description of the adjoint orbits of
hyperbolic elements: Every hyperbolic element in g is conjugate to a unique element in IT* C a,
a fundamental domain for the G-action on the subset of hyperbolic elements in g. For « € a, the
intersection O, Na = Wxz is the Weyl group orbit ([KN96, Thm. I11.10]).

From now on we assume that g is simple. Then ¥ is an irreducible root system, hence of
one of the following types:

A'ru Bn; Cn7 Dn7 EGaE7aE87 F47 G2 or BCn,nzl

(cf. [Bo90al).

The adjoint orbit of an Euler element in g contains a unique h € IT*. For any Euler element
h € II*, we have a(h) € {0,1} for o € II because the values of the roots on h are the eigenvalues
of ad h. If such an element exists, then the irreducible root system X must be reduced. Otherwise,
for any root a with 2ac € ¥, we must have a(h) = 0 because ad x has only three eigenvalues. As
the set of such roots generates the same linear space as X, this leads to h = 0. This excludes the
non-reduced simple root systems of type BC,,.

To see how many possibilities we have for Euler elements in a, we recall that II is a linear basis
of a, so that, for each j € {1,...,n}, there exists a uniquely determined element

hj € a, satisfying ax(h;) = 6. (2.41)

The following theorem lists for each irreducible root system ¥ the possible Euler elements in
the positive chamber IT*. Since every adjoint orbit in £(g) has a unique representative in IT*, this
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classifies the Inn(g)-orbits in £(g) for any non-compact simple real Lie algebra. For semisimple
Lie algebras g = g1 & -+ - ® gk, an element x = (x1,...,2,) is an Euler element if and only if its
components x; € g; are Euler elements, and its orbit is

Op =04, x -+ x O,.

Therefore it suffices to consider simple Lie algebras, and for these the root system ¥ is irreducible.
As every complex simple Lie algebra g is also a real simple Lie algebra, our discussion also covers
complex Lie algebras.

Theorem 2.45. Suppose that g is a non-compact simple real Lie algebra, with restricted root
system 3 C a* of type X,,. We follow the conventions of the tables in [Ba90al for the classification
of irreducible root systems and the enumeration of the simple roots a,...,ay,. Then every Euler
element h € a on which II is non-negative is one of hy, ..., hy, and for every irreducible root system,
the Euler elements among the h; are the following:

Aphi, .o by, B, : hy, Ch i hy, Dy, i hayhp—1,hn,  Eg:hi,he,  E7:hy. (242)

For the root systems BC,,, Es, Fy and Gy no Euler element exists (they have no 3-grading). The
Euler elements with are symmetric in the sense that —h € Oy = Inn(g)h, are

Agnfl : hn, Bn : hl, Cn : hn, Dn : hl, Dgn : hgnfl,hgn, E7 : h7. (243)
Proof. Writing the highest root in ¥ with respect to the simple system II as ayax = Z?Zl cjoy, we
have ¢; € Zs for each j. If h € IT* is an Euler element, then II(h) C {0,1}, and 1 = amax(h) =
2?21 c;ja;(h) implies that at most one value «j(h) can be 1, and then the others are 0, i.e., h = h;
for some j € {1,...,n}. Conversely, h; is an Euler element if and only if ¢; = 1. Consulting the
tables on the irreducible root systems in [Bo90a], we obtain the Euler elements listed in .

To determine the symmetric ones, let wg € W be the longest element of the Weyl group, which
is uniquely determined by wilIl = —II for the dual action of W on a*. Then h; = wo(—h;) is the
Euler element in the positive chamber representing the orbit O_j,. Therefore h; is symmetric if
and only if —h; € Wh;, which is equivalent to h; = h;. Using the description of wy and the root
systems in [Bo90al, now leads to

An,1 : h; = hn,j, Bn : hll == h17 Cn : h;l = hn, (244)
hp—1 1 dd,
Dyt b = hy, B, = Lo (2.45)
hy, for n even,
E@ : hll = h@, E7 : h{7 = h7. (246)
Hence the symmetric Euler elements are those listed in (2.43)). O

There are many types of simple 3-graded Lie algebras that are neither complex nor hermitian
of tube type; for instance the Lorentzian algebras so0; ,,(R). We refer to [Kan98, p. 600] or [Kan00].
for the list of all 18 types which is reproduced below in a different order. We identify so*(4n) with
the Lie algebra us, (H, Q) of the isometry group of the non-degenerate skew-hermitian form on H2"

defined by the matrix 2 = (01 é)
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g E(gv Cl) h g1 (h‘)
Complex Lie algebras
1 ﬁ[n((C) An,1 hj, 1 S] <n-— 1 Mj}n,j((C)
2 Ean(C) CTL hn Symn ((C)
3a 5027L+1(C) B, h1 (ORICaE
3b | 502,(C) D, hy C2n—2
4 | 509,(C) D, hn_1,hp Alt,(C)
5 QG(C) E6 h1 = hg MLQ(@)(C
6 27((C) E7 h7 Herm3 ((O))(C
Hermitian Lie algebras
7 | su, ,(C) C, hn, Herm, (C)
8 | spa,(R) Cn hin Sym,, (R)
9a 502)d(R) Cy (2 < d) hy Rb.d-1
10 | so0*(4n) = uy,.(H, Q) Cn hn, Herm,, (H)
11 87(_25) 03 hg Herm3 (@)
Non-hermitian split forms
12 ﬁ[n(R) An—l hj, 1 Sj § n—1 Mj,n—j(R)
9b 50n,n+1(R) B, h1 R2n-1
13 | sopn(R) D, hp—1,hn Alt, (R)
14 | es(R) Es hy = hg M 2(Ogpiit)
15 | e7(R) E; h Herms(Ogpiit)
Non-hermitian non-split forms
16 ﬁ[n(H) An—l hj, 1 S] <n-— 1 Mj,n—j(H)
17 | uy ., (H) Cn hp, Aherm,, (H)
9c | s0p4(R),2#p#qg—1 B, (p<q) | I RP+a—2
Dy (p=4q)
18 | eg(—26) Ay hy M 5(0)

Table 2: Simple 3-graded Lie algebras

In our context, hermitian simple Lie algebras are of particular interest. We therefore collect

some of their main properties in the following proposition.

Proposition 2.46. For a simple real Lie algebra, the following assertions hold:

(a) g is hermitian if and only if there exists a closed convex Inn(g)-invariant cone Cy # {0}, g.

(b) A simple hermitian Lie algebra contains an Euler element if and only if it is of tube type, and
in this case Inn(g) acts transitively on E(g).

Proof. (a) is a consequence of the Kostant-Vinberg Theorem (cf. [HO97, Lemma 2.5.1]).

(b) Since the restricted root system of a hermitian simple Lie algebra is of type C,. or BC, (see
[IMNO23, §3.1] or Table 3 below), and the first case characterizes the algebras of tube type, the
assertion follows from Theorem because the root system C). only permits one class of Euler
elements. O

Remark 2.47. (a) As h € a implies 8(h) = —h, the Cartan involution 0 always maps h into —h,
but this only implies that A is symmetric if § € Inn(g). This is the case if g is hermitian, so that in
these Lie algebras all Euler elements are symmetric (cf. Proposition .

(b) (Making Euler elements symmetric) If the Euler element h € g is not symmetric, we could still
“make it symmetric” by doubling: In g®2, the Euler element hy := (h, —h) has the property that
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the flip involution 7aip(x,y) = (y,x) satisfies 7a;p(hg) = —hg. So we have at least —h € Aut(gq)h
but not in Inn(g)h.

The classification of Euler elements requires some interpretation. So let us first see what it says
about complex simple Lie algebras g. In we see that, only if g is not of type Eg, Fy or Ga,
the Lie algebra g contains an Euler element. Euler elements correspond to 3-gradings of the root
system and these in turn to hermitian real forms g°, where ih; € 3(£°) generates the center of a
maximal compactly embedded subalgebra € ([Ne99, Thm. A.V.1]). We thus obtain the following
possibilities. In Table 3, we write g° for the hermitian real form, g for the complex Lie algebra, X
for its restricted root system, and h; for the corresponding Euler element. These correspond to the
cases (13)-(18) in Table 2:

[ g° (hermitian) [ X(g°,a°) | 9=(g)c [ X(g,0) | Euler element |
supq(C), 1 <p<q | BCy(p <q), Cplp=1q) 5lp+q(C) | Aptg—1 hyp
502}d(R),d > 2 Cy 502+d((C) Bg#, d odd h1
Dy, g, deven
5p2n (R) Cn 5p2n ((C) Cﬂ h”ﬂ
50*(2n) BC|z|(n odd), Cz(n even) | $02,(C) D, hpn—1,hn
66(,14) BCQ (433 E6 hl = h/6
e7(—25) Cs e7 E; h7

Table 3: Simple hermitian Lie algebras g° (g as in (1)-(6) in Table 2)

Note that sl3(R) = s091(R) = suy,1(C). More exceptional isomorphisms are discussed in some
detail in [HN12| §17].

In this correspondence, those hermitian simple Lie algebras corresponding to symmetric Euler
elements are of particular interest. Comparing with the list of hermitian simple Lie algebras of tube
type (cf. [FK94] p. 213]), we see that they correspond precisely to 3-gradings specified by symmetric
Euler elements, as listed in . Since the Euler elements h, 1 and h, for the root system of
type D,, are conjugate under a diagram automorphism, they correspond to isomorphic hermitian
real forms.

[ g° (hermitian) [ $(g°,a°) [ g = (g°)c | X(g,0) | symm. Euler element h ||
sunm((C) Cn S[Qn((C) Agn_l hn
502,d(R),d > 2 Cy 502+d(C) Bai1, d odd hi
Dli%, d even
5Py (R) Ch 5po,(C) | Gy, B
50*(4n) Cn 504, (C) | Dap, han—1,han
€7(—25) Cs ¢7 Er h7

Table 4: Simple hermitian Lie algebras g° of tube type ((7)-(11) in Table 2)

2.8.2 Conjugacy classes of Euler elements in general Lie algebras

Remark 2.48. To understand Euler elements in general Lie algebra, it is instructive to consider
abelian subalgebras a C g which are maximal with respect to the property that ad a is diagonalizable.
It follows from [KN96, Thm. II1.3], applied to the symmetric Lie algebra (g%, 7a;,) that they are
conjugate under Inn(g). Moreover, there always exists an ad a-invariant Levi complement s ([KN96,
Prop. 1.2]), so that

a=a.Pa; for g=txs.
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Then [a.,s] CvNs={0}. As g is a nilpotent module of the ideal [g,t], it further follows that

anfg,g] €3(g)Nlg, gl

so that
a=3(g) ®a; D as, (2.47)

where a¢ C a, is a complement of 3(g).
Lemma 2.49. For an Euler element h € g, the following assertions hold:

(a) If g is the Lie algebra of an algebraic group G with Levi decomposition U x L (U unipotent
and L reductive), then Oy, intersects the Lie subalgebra 3(g) + [, where [ = L(L).

(b) Ifh € [g, 9] is an Euler element contained in the commutator algebra, then Op+3(g) intersects
every Levi complement.

Proof. (a) Suppose that g = L(G) for a linear algebraic group G with Levi decomposition G =
U x L, and the corresponding decomposition g = u x [. Then we have the Levi decomposition
Ad(G) =2 Ad(U) x Ad(L) and exp(Radh) is contained in a reductive subgroup of the Zariski
closure of Ad(G), hence conjugate to a subgroup of Ad(L) ([Ho&1, Prop. VIIL.3.1]). This means
that O, + 3(g) intersects [.

(b) According to Remark we may assume that h € a, where a is adapted to a Levi decompo-

sition. Then (2.47)) implies that
anfg g € (anfg,t]) +5C3(0) ©s.

Therefore h € [g,g] implies that h € 3(g) + 5. Since all Levi complements are conjugate, (b)
follows. O

Proposition 2.50. ([MN21l Prop. 3.2]) The following assertions hold:

(i) An Euler element h € g is symmetric, if and only if h is contained in a Levi complement s
and h is a symmetric Fuler element in s.

(ii) Let g =t x s be a Levi decomposition.

(a) Ifh € g is a symmetric Euler element, then Oy, = Inn(g)(OrNs) = Oy, where q: g — s
18 the projection map.

(b) Two symmetric Euler elements are conjugate under Inn(g) if and only if their images in
s are conjugate under Inn(s).

Proof. (i) As O, C h+]g, g] follows from the invariance of the affine subspace h+[g, g] under Inn(g),
the relation —h € Oy, implies h € [g, g]. In view of Lemma [2.49b), there exists a Levi complement
s with h € 3(g) +s. Then v and s are ad h-invariant, so that the ad h-eigenspaces of the restrictions
satisfy

vt=rty(h) +vo(h) +v_1(h) and s=s1(h)+so(h)+s_1(h),

and define 3-gradings of v and s. Further g11(h) C [h,g] C [g,9] and s = [s,s] C [g, g] imply that
g = to(h) + [9,09]. As [g,g] is an ideal and to(h) a subalgebra of g, the subgroup Inng([g,g]) of
Inn(g) is normal, and Inn(g) = Inng([g, g]) Inn(ro(h)). As Inn(rg(h)) fixes h, this in turn shows that
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O, = Inng([g, g])h = Inng([g, t]) Inng(s)h. Writing h = h, + hs with h, € 3(g) and hs € E(s), we
thus find « € [g,t] and s € Inng(s) such that E

—h, —hs = —h=¢e1%s.h = h, + *1%5.h,.

Applying the Lie algebra homomorphism ¢: g — s to both sides, we derive from ¢(h.) = 0 and
goe*® =g that —h, = s.hg, and therefore

eTh = hy + 2h,.

We conclude that the unipotent linear map e*d® preserves the linear subspace Rhg + Rh., and this

implies that ad z = log(e*!*) also has this property. We thus arrive at
[h7x] = [hsax] g IRhs + ha g gO(h)7

so that we must have z € go(h) = go(hs), which in turn leads to 0 = e*d*h, — h, = 2h_, ie.,
h=hs €s.
To prove the second assertion of (i), we observe that the homomorphism ¢: g — s & g/v satisfies

9(0z) =0y, for zeg. (2.48)
Hence ¢(Egym(9)) € Esym(s). If, conversely, h € Egym(s), then we clearly have —h € Inng(s)h C
Inn(g)h, so that h € Eym(g).
(ii)(a) As Oy, intersects s by (i), ¢(On) N O # B, and since Inn(s) acts transitively on ¢(Oy) by
(2.48)), we obtain ¢(Op) C Oy, and thus ¢(Op) = O N's. This further leads to

Oy, = Inn(g)(Or Ns) = Inn(g)q(O) = Inn(g)OZ(h) = Oy(n)-

(ii)(b) follows immediately from (a). O

Proposition [2.50] reduces for a given Lie algebra g the description of symmetric Euler elements
up to conjugation by inner automorphisms to the case of simple Lie algebras.

It would be nice to have a classification of Euler elements in any Lie algebra g, but, due to the
complexity of Levi decompositions g = t x s, this is not a well-posed problem. If g is reductive, then
the classification of Euler elements in g follows immediately from the case of simple Lie algebras,
which is described in Theorem [2.45] For symmetric Euler elements h, Proposition [2.50 below largely
reduces the classification to the semisimple case, but then one has to describe the module structure
of the radical. [[]

Example 2.51. (An example from symplectic geometry) A particularly interesting example which
is neither semisimple nor solvable is the Lie algebra

g = hesp(V,w) := heis(V,w) x esp(V,w),

where (V,w) is a symplectic vector space, heis(V,w) = R @ V is the corresponding Heisenberg
algebra with the bracket [(z,v), (#/,v")] = (w(v,v),0), and

esp(V,w) :=sp(V,w) ® Ridy

10Here we use that the ideal [g, t] is nilpotent, so that the exponential function of the corresponding group Inng([g, t])
is surjective, see [HN12].

1 The role of the symmetry of h for the existence of nets of real subspaces is still not yet well understood. It certainly
plays an important role in specifying locality conditions (cf. Section . If h is not connected, one may be forced
to also take non-connected causal manifolds M into consideration, resp., to replace G by a suitable non-connected
group.
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is the conformal symplectic Lie algebra of (V,w). The hyperplane ideal j := heis(V,w) x sp(V,w)
(the Jacobi algebra) can be identified by the linear isomorphism

P13 Pola(V),  ple,0,2)(€) = 2+ w(v,6) + sw(ak,E), EE€V

with the Lie algebra of polynomials Pol<3(V) of degree < 2 on V, endowed with the Poisson bracket
(INe99, Prop. A.IV.15]). The set

Cy :={f €Pol<a(V): f >0}

is a pointed generating invariant cone in j. The element hg := idy defines a derivation on j by
(ad ho)(z,v,z) = (22,v,0) for z € Ryv € V,z € sp(V,w). Any involution 7y on V satisfying
Tyw = —w defines by

Tv(z,v,2) == (—z,—1v (v), TvETY) (2.49)

an involution on g with 7y (ho) = ho, and —7y (Cy) = Cjy follows from
o(Tv(z,v,2)) = —p(z,v,2) o Ty.
Considering hg := %TV as an element of sp(V,w), the element
h:=hs + 1idy € csp(V,w)
is Euler in g. Writing V' = V; @ V_; for the 1y -eigenspace decomposition, we have
g-1=000@sp(Viw)—1, go=08V_1@sp(Viw)o = V_y1xgl(Vo1), g1 =R@Vi@sp(V,w).

Note that ‘
Th = 67”adh = ’l’:\/. (250)

Here g; can be identified with the space Pol<2(V_1) of polynomials of degree < 2 on V_; and
C+ = Cg Nngr = {f S POISQ(V_l): f > 0}

This cone is invariant under the natural action of the affine group Go = Aff(V_1)o = V_1 xGL(V_1)
whose Lie algebra is gg. We also note that

g_1 =Polp(Vi) and C_=-Cyng_1={fe€Poly(Vi): f <0},

so that C_ is also pointed and generating.

Note that h is not symmetric because dimg; # dimg_.

We also claim that the Lie algebra hsp(V,w) contains no Euler element. In fact, as it is
perfect, and heis(V,w) x sp(V,w) is a Levi decomposition, it suffices by Lemma to show that
no Euler element of g is contained in R® {0} ®@sp(V,w). Since all Euler elements h in the hermitian
Lie algebra sp(V,w) are conjugate (Proposition, it suffices to consider h = h;+ (A, 0,0), A € R.
As

Spec(ad h) = Spec(ad hs) = {+1,+3,0},

h is not Euler in heis(V,w) x sp(V,w).
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2.8.3 Euler elements in small subalgebras

Lemma 2.52. Let g be a finite-dimensional Lie algebra and h € £(g) an Euler element. If h is not
contained in the solvable radical rad(g), then there exists a Lie subalgebra b C g containing h such
that

(a) b

(b) b

(c) If h is symmetric, then Inng(b) = PSLy(R).
)

IIZ

slo(R) if and only if h is symmetric, and

IIZ

gl5(R) if h is not symmetric.

(d) If h is not symmetric and g is simple, then Inng([b, b]) = SLo(R).

Proof. (a) If h € b = sl3(R), then h is symmetric because all Euler elements in sl3(R) are symmetric
by Example[2.8] If, conversely, h is symmetric, then Proposition implies that h is contained in a
Levi complements s. Therefore [MN21, Thm. 3.13] implies that h is contained in an sly-subalgebra.
(b) Suppose that h is not symmetric and pick a maximal abelian hyperbolic subspace a C g
containing h. With [KN96, Prop. I.2] we find an a-invariant Levi complement s C g. Then as := aNs
is maximal hyperbolic in s and a = a,; + 34(s). As h is not contained in rad(g), there exists a root
a € A(s,a) with a(h) = 1 and root vectors z, € s, and y, € §_, with hy = [24,y4] # 0. We
stress that x, € s1(h). We use that

[xaa ya] = H(xon ya)aaa

where a,, € a is the unique element with a(a) = k(aq, a) for all @ € a, and that the Cartan—Killing
form k induces a dual pairing s, x s_, — R. Then

bo 1= Rz + Rya + Rha = sly(R)

and [h, b,] C b,. Hence b := Rh + b, is a Lie subalgebra of g. As h is not symmetric, h ¢ b,,, and
therefore b = g[2 (R).

(c) If h is symmetric and b = [b,b] = sl3(R) as in (a), then the fact that b contains an Euler
element of g implies that all simple b-submodules of g are either trivial of isomorphic to the adjoint
representation of sly(R) (consider eigenspaces of ad k). This implies that Inng(b) = PSLy(R).

(d) Suppose that g is simple. If A is not symmetric, then the Weyl group reflection s, corresponding
to the root o from above satisfies

sa(h) =h—a(h)a’ =h—a".

As h is not contained in RaY C by, we have s, (h) & Rh.
The simplicity of g ensures that the root system A = A(g, a) is irreducible and 3-graded by h € a.

Therefore
Ag:={aeA: a(h) =0}

spans a hyperplane in a*, which coincides with ht, and thus Rh = Ag by duality. Since s, (h) is
not contained in Rh, there exists a § € Ag with 8(sq(h)) # 0. Now S(h) = 0 implies

0# B(sa(h) = —Ba”).

As sq(h) is an Euler element, we obtain |3(a")| = 1. Therefore the central element e™2d@” of
Inng (b, ) acts non-trivially, and this implies that Inng(b,) = SLa(R) because it is a linear Lie group
with non-trivial center ([HN12, Ex. 9.5.18]). O

99



2.8.4 The Brunetti-Guido—Longo (BGL) net

Here we recall a construction we introduced in [MN21] that generalizes the algebraic construction
of free fields for AQFT models presented in [BGL02]. We refer to [MN21] for a detailed discussion
of this construction; see also Exercise |1.5

Definition 2.53. For an involutive automorphism o of G, we write G, := G % {idg, o} for the
corresponding group extension.
The set
G:=G(G,) :={(h,7) €gx Go: 7> = e,Ad(T)h = h}

is called the abstract wedge space of G,. An element (h,7) € G is called an Euler couple if h € E(g)
and
Ad(T) = 7. (2.51)

Then 7 is called an Euler involution on G. We write Gg C G for the subset of Euler couples.
(c) Consider the homomorphism e: G, — {+1}, defined by kere = G. On g we consider the twisted
adjoint action of G, which changes the sign on odd group elements:

Ad®: G, — Aut(g), Ad®(g) :=e(g) Ad(g). (2.52)
It extends to an action of G, on G by
g-(h,7) := (Ad*(g)h, grg™"). (2.53)

(d) (Duality operation) The notion of a “causal complement” is defined on the abstract wedge space
as follows: For W = (h,7) € G, we define the dual wedge by

W':=(=h,7)=1.W.

Note that (W') = W and (gW)' = gW’ for g € G by (2.53). This relation fits the geometric
interpretation in the context of wedge domains in spacetime manifolds.

Definition 2.54. If (U,H) is an antiunitary representation of G,, then we obtain a standard
subspace Hy (W), determined for W = (h,7) € G by the couple of operators (cf. Proposition [1.5]):

JHU(W) = U(T) and AHU(W) = 627ri'8U(h), (254)

and thus a G-equivariant map Hy : G — Stand () (cf. Exercise|l1.11)). This is the so-called Brunetti—
Guido-Longo (BGL) net
HBCL: G(G,) — Stand(H).

2.8.5 Wedge regions in non-compactly causal symmetric spaces

In this appendix, we put some of the results from [MNO24] into the context in which they are used
here.

As above, G denotes a connected simple Lie group, h € g is an Euler element, 7 = 67, for a
Cartan involution 6 satisfying 6(h) = —h and M = G/H is a corresponding non-compactly causal
symmetric space, where the causal structure is specified by a maximal Ad(H)-invariant closed
convex cone C C q satistying h € C° (cf. [MNO23, Thm. 4.21]).

60



First we consider the “minimal” space associated to the triple (g, 7, C). It is obtained as
Mad = Gad/Hada

where
Gaa = Ad(G) =Inn(g) and Hag := K" exp(h,) C Gy

(see [MNO23l Rem. 4.20(b)] for more details). In this space, the positivity domain W&ad(h) is
connected by [MNO24, Thm. 7.1]. Further, [MNO24, Thm. 8.2, Prop. 8.3] imply that the positivity
domain is connected and given by

Wi\/}ad (h’) = GZ exp(QCIe)'eHad~ (2.55)

By [MNO23, Rem. 4.20(a)] (see also Subsection [2.7.3), we have H = Hy exp(h,) with Hx C K",
so that Ad(H) C H,q. Therefore

q: M — M,q, gHw~— Ad(g)Had € M,q

defines a covering of causal symmetric spaces. The stabilizer in G of the base point in M,q is the
subgroup
HY := Ad™" (Haq) = K" exp(h,)

because Z(G) = ker(Ad) C K". Note that H* need not be contained in G™ because 7 may act
non-trivially on K" (cf. Remark [2.55). So we may consider M,q as the homogeneous G-space

M,q = G/H".
As g is a G-equivariant covering of causal manifolds,

Wi (h) = (fl(V[/'I\J/}ad (h)) = ¢ H(G" exp(Qq, ).eHaa) = Gh exp(QqE)Hﬁ.eH
=Ggh eXp(Qqé)Kh.eH = GhK" exp(Qq,).eH = Gh exp(Qq, ).eH,

and the inverse image under the map gy : G — G/H = M is therefore given by

@yt Wi (h)) = G" exp(Qq, ) H* = G" exp(Qq,) K™ exp(h))
= G"K" exp(Qq,) exp(bhy) = G" exp(Qq, ) exp(hy).

Next we recall from [MNO24| Cor. 8.4] that the map
Gh Xpn Qq, = Wi (h), [g,2] = gexp(z)Haq (2.56)

is a diffeomorphism. Therefore W&Rd(h) is an affine bundle over the Riemannian symmetric space
G" /K", hence contractible and therefore simply connected. So its inverse image Wy (k) in M is
a union of open connected components, all of which are mapped diffeomorphically onto WA'Zad(h)

by qar, and the group mo(K") = K" /K" acts transitively on the set of connected components. It
follows in particular that the diffeomorphism ({2.56|) lifts to a diffeomorphism

Gh Xgn Qqp = W= Wi (hew, [g,7] = gexp(x)H. (2.57)
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Remark 2.55. (The possibilities for H) For m € NU {oo}, let G, be a connected Lie group with
Lie algebra g = slx(R) and |Z(G,,)] = m. For m € N this means that Z(G,,) = Z/mZ and G, is
an m-fold covering of Ad(G,,) = PSLy(R) = G;. Note that Gy = SLy(R). Further Go, = SLy(R)

is simply connected with Z(Gs) = Z.
We consider the Cartan involution #(z) = —2 ", the Euler element
1/1 0 170
h= 2<0 1) and zp = 3 (1 0) €t =s05(R),
which satisfies €2™%t = —1. Then

K =exp(Rz), Z(Gn)=exp(2nZz;), and 7p(exptze) = 7(exptze) = exp(—tze)
because 7 = 07,. We conclude that
K" ={e} if m=oco and K" ={eexp(mmz)} otherwise.

For m = oo, H = G7, is connected. For m € N, the group G, = K7 exp(h) has two connected
components, but if m is odd, then K™ does not fix the Euler element h € C°. Therefore only
H := exp(h) leads to a causal symmetric space G,,,/H. If m is even, then H can be either (G,,)I
or G7,.

In G; = PSLy(R), the subgroup H corresponds to SO; 1(R). and the non-compactly causal
symmetric space G1/H = dS? is the 2-dimensional de Sitter space.

—9 —
The universal covering dS 1is obtained for m = oo, Go = SL2(R) and then H = exp(h) is
connected. All other coverings of dS® are obtained as G,,,/H for H = exp(bh).

2.8.6 Modular structures on reductive compactly causal symmetric spaces

In [NO23a| positivity regions of modular flows have been studied in modular compactly causal
symmetric spaces, because the existence of an Euler element in g already implies the existence of a
modular structure (Corollary , and this is needed for wedge regions and positivity regions to
be defined.

The following observation follows from [Oeh22bl, Prop. 3.12].

Proposition 2.56. Let g be simple hermitian, h € g an Euler element, and V := gi(h) the
corresponding euclidean Jordan algebra. For every involutive automorphism o € Aut(V), there
exists a unique automorphism o, € Aut(g) with ou|v = a, and then (g, 7h0a, Cy ™7, h) is modular
compactly causal. Conversely, every simple modular compactly causal Lie algebra is of this form.

Corollary 2.57. Let (g,7,C) be simple compactly causal and h € g an Euler element. Then
OrNh 75 (.

Proof. Since £(g) = Op, the assertion follows from Proposition which asserts that 7 fixes some
Euler element k£ with 7 = 10, O

Proposition 2.58. (Modular structures on reductive compactly causal symmetric Lie algebras)
Let (g,7,C) be an effective reductive compactly causal symmetric Lie algebra with C°N (g, g] # 0. If
g contains a non-central Euler element, then there exist an Euler element h' € q = g" and a cone
C' C C such that (g,7,C", k) is a modular causal symmetric Lie algebra.
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Proof. (cf. [Ne25, Lemma 3.3]) (a) First we use the Extension Theorem [NO23a, Thm. 2.4] to find
a pointed generating Inn(g)-invariant cone Cy in g with —7(Cy) = Cy and C' = CyNq. It follows in
particular that g is quasihermitian, i.e., its simple ideals are either compact or hermitian. We write
g =3(g) ® gn D u with u compact semisimple and g, a sum of hermitian simple ideals. Projecting
along the compact semisimple ideal p,: g — 3(g) + gn (the fixed point projection of the compact
group Inn(u)), it follows that

Ce N (3(9) +9n) = pu(Cy) #0
(cf. Lemma[E.1)) and likewise

Cq Ngn =pu(Cq N g, 0]) # 0.

Here we use that our assumption implies that
0#C°nlg, 0] =C;Nanig, gl (2.58)

(b) Let hy € g be an Euler element. Then the ideal g; < g generated by [hy1, g] has trivial center
and contains no compact ideal, hence only simple hermitian ones with an Euler element, so that
they are of tube type. The 7-invariant ideal go := g1 + 7(g1) also has only simple hermitian tube
type ideals. We may thus replace hy by an Euler element hy € [g, g] generating the ideal ga.

(c) Let j < go be a minimal 7-invariant ideal. Then either j is simple or a sum of two simple ideals
exchanged by 7. In the latter case, j & b @ b with 7 acting by 7(a,b) = (b,a). Any generating
Euler element in j has non-zero components, and all these are conjugate under inner automorphisms
(Proposition . So the projection of hy to j is conjugate to an element of the form (z,x) €j7.
If j is simple, then h = g7 contains an Euler element by Proposition [2.:56] Putting these results on
minimal invariant ideals together, we see that ho is conjugate to an element of g7, i.e., g” contains
an Euler element hs generating go.

(d) The involution 73 := 73, commutes with 7. Next we observe that g~™ C g, is contained in a
sum of hermitian simple ideals. Therefore [N(/)23a7 Prop. 2.7(d)] implies that the cones Cg‘i“ and
Cglax are —73-invariant and

(C;na)c)f'rg _ (C;nin)f'rg _ 057'3.

As g9 intersects the interior of Cy by (2.58]), and the cone Cg“i“ C go is generating, it follows with

(Lemma that
D#(CNgy™)°=(CygNgy ™) =CyNgy ™.

Now

C'=Cn(-m3(C)) Cq

is an Inn(h)-invariant pointed cone in q. As it contains Cg Ng, > Ng = C'N g, "®, hence interior
points of Cy, it has non-trivial interior. Therefore (g, 7, C”, hs) is modular. O

2.9 Exercises for Section [2]

Exercise 2.1. Let h € s, (R). Show that h is an Euler element if and only if & is diagonalizable
with 2 eigenvalues A, u satisfying A\ — u = 1.

Exercise 2.2. Describe the conjugacy classes of Euler elements in the Lie algebras g = sl,,(R), gl,,(R)
and 501 ,(R) up to conjugation.

Exercise 2.3. The Cayley transform C: R — S!, C(z) = er—i has a natural interpretation in terms
of the stereographic projection. Show that, projecting the point 1+ 2ix on the tangent line through
1 € St C C with the center —1 € S! onto the circle yields C(z).
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Exercise 2.4. We consider the following linear bijection

2 Ty — T2 —I1

1/0 -1 1/0 1 1/1 0
%9=5\ 1 0 )>%%T3 1 0)/)°273 0 -1 )

(a) o HX) = (—-2Tr(Xop),2Tr(Xo2), —2Tr(Xoy1)).

~ 1 —zo —
0: R? = sly(R), == (v, 21,22) > T := ( o 0 @)7

and

Show that

(b) The Lorentz form 2% = x3 — 22 — 23 on R? corresponds to the determinant by 2% = 4 det 7.
In particular, z € dS? if and only if det ¥ = —i.

(¢) Show that
A: SLy(R) — SO12(R)e, A(g) = e toAd(g)op

defines a 2-fold covering with kernel Z(SLy(R)) = {£1}.

(d) The one-parameter groups A, (t) = exp(o;t) € SLa(R),7 = 1,2, are lifts of Lorentz boosts
and r(0) = exp(—oo0) is the one-parameter group lifting the space rotations

1 0 0
A(r(0)) =R(0)= [0 cosf —sinf|. (2.59)
0 sinf cosf

3 Analytic continuation of orbit maps and crown domains

In this section, we turn to constructions of nets for a given antiunitary representation (U,H) of
G, = G x {idg, 7, }. This specifies in particular a standard subspace V= V(h,U) by

Av _ eZwiaU(h) and Jy = U(Th)'

We shall assume (for simplicity) that G C G¢ and consider domains = C G, so that analytic
extension to = of orbit maps UY: G — H,g — U(g)v and their boundary values provide real

subspaces E C H~° of distribution vectors. Then

HE (0) := spang {U~>(p)E: ¢ € C*(O,R)},

leads a net of real subspaces on G satisfying (Iso), (Cov), (RS) and (BW).
The motivation for the introduction of the domain Z is that its boundary contains a manifold M,
a suitable coset of G, such that we have analytic extensions of orbit maps

U’ ZUM — H™™,

and these map a suitable subset W C M (actually WM C Myys in the sense of Appendix
into Hynps- One then obtains nets with HY (W) = V for the inverse image W of W™ under the
orbit map.

For semisimple groups, there are canonical candidates for =, obtained from the crown of the
Riemannian symmetric space G/K, but for general Lie groups the situation is more complicated
and suitable candidates have to be determined by other means (see [BN25| for some very first steps).
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3.1 Crown domains in Lie groups
We consider the following setting:

e (G is a connected Lie group whose universal complexification ng: G — G¢ is injective. |E|
Then G¢ is a complex Lie group with Lie algebra g¢ and there exists an antiholomorphic
involutive automorphisms o of G¢ with G = (GZ)e.

e h € g is an Euler element for which the associated involution 7 = e™adh of g integrates

to an involutive automorphism 75, of G. By the universal property of G¢, it extends to a
holomorphic involution on G¢, denoted .

We consider the antiholomorphic involution 7 := o o 75, = 75, 0 0 of G¢. Then
G = (Ggh)e = (Ge)i"
is a connected subgroup of G¢ with Lie algebra

g = go(h) +i(g1(h) +g-1(h)).
For .
¢ := exp ( - %h) € Ge, (3.1)

we have

G°=("'G¢ and GC=(Ge (3.2)

Remark 3.1. For a connected Lie group G, the natural map ng: G — G¢ to its universal com-
plexification can be quite pathological in the sense that ker(ng) need not be discrete ([HN12]). This
is not the case if G is simply connected. Then ker(n¢) is discrete and G is the simply connected
Lie group with Lie algebra g¢.

If ng: G — G has discrete kernel, then the setting in this section applies to the closed subgroup
ne(G) € Ge.

To construct “crown domains” on which G acts freely, a natural idea is to look for a covering
manifold 2 — E.

We consider = C G¢ as an 1ng(G)-principal bundle. There is an obstruction for lifting its struc-
ture group 7 (G) to its covering group G that is contained in H?(Z/ng(G), ker(ng)) (INWW13]).
We shall return to this issue in Remark in Section B3] below.

We now present an axiomatic specification of domains in G¢ to which orbit maps of J-fixed
vectors in antiunitary representations may extend in such a way that boundary values lead to nets
of real subspaces on G.

Definition 3.2. A (G, h)-crown domain in G¢ is an open subset = C G¢ with the following
properties:

(Crl) GE = = and 7(E) = £, ie., Z is invariant under the action of G,, by (anti-)holomorphic
maps of G¢.
(Cr2) exp(Sir/2) € E and

(Cr3) ¢ =exp(— Zth) € OZ.

12This assumption is made for convenience and can be overcome with some more technical effort; see Subsection
for the semisimple case.
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(Cr4) There exists a connected open subset W& C M := G¢ (called a wedge region) such that
expRO)WM = WM and  exp(S,h)WM C =.

Remark 3.3. (a) (Cr4) implies that W& := WM . (=1 C G is a domain with exp(RR)WY = W¢,
and
exp(Sh)WY C 2. ¢ L
(b) Note that (T*WM = exp(Zh)W™M C E™ follows from (T*WM C (T'G( = G° C (Ge)™. As
a consequence
WM C ¢z, (3.3)

Example 3.4. For G = R and h = 1 (a basis element in g = R), the above conditions are only
satisfied for the strip
== S:t-rr/Z CC=G¢c and Fh(z) =7Z.

In this case, M = WM =R — %

Given a domain = C G¢ satisfying (Crl-4), and an antiunitary representation (U, H) of G, , we

write
HU(E)CH

for the subspace of those analytic vectors, whose orbit map extends to =Z. That the non-triviality
of this space imposes serious restrictions on Z follows in particular from the discussion in the last
section of [BN23|, where we have seen in particular that for the group G = Aff(R). = R x Ry,
the domain must be contained in C x C,., where C,. is the open right half-plane. So one has to
understand the boundary behavior of the extended orbit maps on the domain =. Let

Himp CH) =Fix(J) for J=U(r)

be the dense real linear subspace of H”, consisting of those vectors v for which the orbit map
U7 (t) = U(expth)v extends to the open strip

Sinpi={2€C:|Imz| <7/2} CC (34)
and the limit
Bt (v) ;== lim Uy (—it) (3.5)
t—mw/2

exists in the subspace H~>°(U) C H~°° of distribution vectors of the one-parameter group U}, (see

Appendix |C] Theorem . E

These boundary values are actually contained in the space Hyns (see Appendix|3.4.2), consisting
of those distribution vectors a whose orbit map U, **: R — H™>° extends analytically to the

closed strip S; such that
U, <% (mi) = Jo.

Using Theorem it then follows that smearing with test functions on R maps « into V.= V(h, U).
Therefore any real linear subspace
FCHY(E) N Hiomp
which is G-cyclic in the sense that U(G)F spans a dense subspace of H, leads to a real subspace
E:=f(T(F) CH >, (3.6)

and from this space we construct a net of real subspaces on G as follows.

13The notation Htemp refers to the “temperedness” of the boundary values, which in the classical context corre-
sponds to tempered distributions.
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Definition 3.5. Let E C H™°° be a real linear subspace. Then, for each ¢ € C>*(G,C), the
operator

U==(p) = /G o()U~(g) dg

maps H~°° into H, because it is an adjoint of a continuous operator U(p*): H — H>. To an open
subset O C G, we may thus associate the closed real subspace

HE (0) := spangU~>(C°(O, R))E, (3.7)
where the closure is taken with respect to the topology of H.

Remark 3.6. It is obvious that the net HS satisfies (Iso). To see that (Cov) also holds, observe
that the left-invariance of the Haar measure dg on G yields

U™=(9) U™ (p) =U=(d, * ),
where (0, * ¢)(z) = ¢(g ) is the left translate of (.

Remark 3.7. One may also consider subspaces E C H, but the key advantage of working with the
larger space H~° of distribution vectors is that it contains finite-dimensional subspaces invariant
under ad-diagonalizable elements and non-compact subgroups. For finite-dimensional subspaces of
H, this is excluded by Moore’s Theorem if ker U is discrete ([Mo80]).

Theorem 3.8. (Construction Theorem for nets of real subspaces) Let (U, H) be an antiunitary
representation of G, := G x {1,7,} and
FCHL NHY(Z)

temp

be a G-cyclic subspace of H, i.e., U(G)F is total in H. We consider the linear subspace
E=(T(F) CH ™.
Then the net HS on G satisfies (Iso), (Cov), (RS) and (BW), in the sense that

HEWS) =V for W =WM('={geG:g.Ce W},

s

whereC:exp(f7 )

Proof. (Outline) The Reeh—Schlieder property follows from [BN25, Thm. 2.15]. One has to show
that, for ) # O, we have H{(O)* = {0}. This is derived from the fact that, for a € E, the orbit
map U™%%: G — H~>° extends to a holomorphic map = — H™°°, so that it is determined by its
boundary values on every open subset of G.

For (BW), it suffices to show that U~°°(WY)E C Hyprg (Proposition . Then Proposi-
tionyields HE (W) C v, and by (RS), HY (W) is cyclic, so that (Cov) and exp(Rh)WE = W¢
lead to equality (Proposition [1.20)). O

Example 3.9. We consider the 2-dimensional affine group of the real line G = Aff(R). 2 R x R
with g = Rz x Rh, [h,z] = x and 7(b,a) = (—b,a). Here a pair (b,c) € G acts on R by the affine
map
(b,c).x = b+ e‘x.
Then
Ge 2Cx,C with a,(w)=¢€*w (3.8)
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acts on C by the same formula, and ng: G — G is the inclusion. The antiholomorphic extension
of 1, to G, is given by B B
Th(b,c) = (=b,¢) with G =iR xR.

(a) First, we consider in G¢ the domain

=C x84rpp with E™ = iR x R = G°.

(1]

For ¢ = (0, —7i/2) = exp(—7h) € C x C = G¢ we then have
G.¢ =R x (R —7i/2) C I5,

and
W :=(E™ = (0,—7i/2).(iR x R) = R x (R — 7i/2) = G.(0, —7i/2).

Based on results in [BN23], we show in [BN25|] that there are irreducible unitary representations
(U, H) of G for which H¥(Z) is dense and dU(1,0) is injective but

HY(2) N Hiomp = {0}

Therefore this domain = is too large for our purposes.

(b) A natural strategy, to find good smaller domains, is inspired by the crown domains of Rieman-
nian symmetric spaces (see Subsection below). For the upper half-plane C, considered as a
real 2-dimensional homogeneous space of G via the orbit map (a,c¢) — (a, ¢).i = a+ e, we consider
the “complexification”

ne,: C4 = C4 xC_CC? e, (2) = (2,2).

The complex Lie group G¢ acts naturally on C x C by the diagonal action with respect to the
canonical action on C by affine maps.
The Gc-orbits in C? are:

e The diagonal A¢ C C?, which is one-dimensional complex.
e Its complement C? \ A¢, which is 2-dimensional complex.

We consider the complex manifold Z¢, := C4 x C_ as a crown domain of C; = 1, (C4). It is
invariant under the real group G = R x R;. As C; = G.i, we obtain the corresponding crown
domain in G¢ as:

E:={g€Gc:gnec, (i) e C4L xC_} ={(b,c) e Ge: bxe‘i e Ci}
={(b,c) € Ge: e“ixbe Cy} ={(b,c) € Ge: Ree® > 0,|Imb| < Ree}.

The boundary of C, x C_ is the totally real submanifold M := R2. The G-orbits in M = R?
are:

e The diagonal Ar C R?, which is one-dimensional.

e The two regions R? := {(z,y) € R?*: 2 > y} and R := {(z,y) € R?: z < y}.

68



For (z,y) € R?, we have " .(z,y) = (e’*z, e'y), so that
et (z,y)€CLxC_ for O<t<m
is equivalent to > 0 and y < 0. This specifies the wedge region
W: =R, xR_ C M =R~

It turns out that the domain = behaves much better than the one from (a). This is due to the fact
that the irreducible unitary representations of G extend to unitary representations of PSLsy(R), for
which C; is a Riemannian symmetric space. Therefore the results outlined in Subsection below
for the semisimple case (Theorem imply corresponding results for G. We refer to [BN25] for
details and a discussion of more general solvable Lie groups.

3.2 Push forwards to homogeneous spaces

Definition 3.10. On a homogeneous space M = G/H with the projection map qpr: G — M, we
now obtain a “push-forward net”

HE'(0) == ((ga1)-HE)(0) = HE (43, (0)). (3.9)

The so-obtained net on M thus corresponds to the restriction of the net HY indexed by open subsets
of GG, to those open subsets O C G which are H-right invariant in the sense that O = OH; these
are the inverse images of open subsets of M under q;.

Remark 3.11. (a) If E is invariant under U~°°(H), then Lemma a) in Appendix
implies that HY(O) = HY(OH) for any open subset O C G, so that HS can be recovered
from the net HY on M by HS (O) = HS(OH) = HY (qu(0)).

(b) We have already seen in Remark that the net HY and hence also HY satisfy (Iso) and
(Cov). Further, the net HY inherits (RS) from HS. If (BW) holds for HY and the wedge
region W& C G in the sense that HY (W) = V, then it holds for its image in G/H if E is
H-invariant, which implies with W = ¢;;(W) that

HE (W) = HE (WEH) = HE (a5 (W) = Hg! (W)

(Lemma in Appendix [3.4.1]).

(c¢) If E is not H-invariant, then the situation is more complicated. We may enlarge E to the
closed subspace E of H~° generated by U~°°(H )E, but then it is not clear if this still has the
form % (F) for some F C H*(2) N iy

3.3 Crown domains for semisimple groups

To apply Theorem one first has to specify a domain = satisfying (Crl-4), and then one has to
find for an antiunitary representation (U, H) subspaces F C H{,,,, N H“(Z). We now explain how
this can be done if G is a connected semisimple real Lie group. In this case, the Euler element
h € g specifies non-compactly causal symmetric spaces M = G/H with 7 = 07;, (Theorem ,
and for these, the subspaces E = 81 (F) is automatically H-invariant, so that we obtain nets on M
by .

The precise context is the following (cf. [FNO23]):
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e (G is a connected semisimple Lie group
e 1 : G — Gc is the universal complexification of Gj its kernel is discrete.
e h € gis an Euler element.

e 0 is a Cartan involution on G and its Lie algebra g, and g = £ ® p is the eigenspace decompo-
sition, and we assume that 0(h) = —h.

e K := G? is the group of fixed points of a Cartan involution ¢, so that Ad(K) C Ad(G) is
maximally compact.

e (g,7) is non-compactly causal, i.e., 7 = 7,0, 7, = €™ 24| and the T-eigenspace decomposi-
tion is denoted g = bh @ q (cf. Theorem [2.41]). We also write

be=bnNt by=bNp, ge=qgnNt gy =qgNp.
e C C q is the maximal Inn(h)-invariant cone containing h (cf. [MNO23]| §3]).

e 7 defines an involution on G and H C G7 is an open #-invariant subgroup with Ad(H)C = C.
In view of [MNO23| Cor. 4.6], this is equivalent to Hx := HNK fixing h. Polar decomposition
then yields H = Hp exp(h,) = H"exp(hy). If G is given, this means that Hyi, € H C
Hopnax, where Hyin = G7 is connected and Hp., = K™" exp(hp) (cf. Subsection and
Appendix .

e M = G/H is the corresponding non-compactly causal symmetric space (cf. Subsection .
The simply connected covering M is G/G", where G™ is connected ([Lo69]).

e M, := G/K is the Riemannian symmetric space of G, and if K¢ C G is the integral subgroup
corresponding to f¢, then M¢ := G¢/Kc is a complex homogeneous space containing M, as
the G-orbit of the base point.

o G, =G x{1,7,} is the corresponding extended Lie group. Here we use that 7, = 67, as an
involution of G.

e (U,H) an irreducible antiunitary representation of G, . In particular, J := U(7,) is a
conjugation on H and U(G) C U(H).

Lemma 3.12. The automorphism ¢ := ¢~ 2 24" ¢ Aut(ge) satisfies

C(be +iqe) = b, (3.10)

hence in particular ((tc) = be.

Proof. As 7, = 70, we have go(h) = g™ = be @ qy and g7 = b, © qe = g1(h) © g_1(h). As
O(h) = —h, we have 0(g1(h)) = g_1(h). So qe = {x + 0(z): € g1(h)}. This shows that

((ae) = {i(z — 6(x)): z € g1(h)} = iby,
and therefore ((he +iqe¢)) = he + b = b, which entails ((¢c) = be. O

Let Q, C p consists of all elements for which the spectral radius of ad x is smaller than 7, i.e.,
Qp = AdK)Qu  with Qg = {x € a: (Va € (g, ) |a(z)] < g}
Note that th € Q, if and only if |¢t| < 7/2.
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Remark 3.13. (a) The domain
Eg/K = G.exp(iQp)KC C G¢/Kc

is called the crown of the Riemannian symmetric space G/K, realized naturally in G¢/Kc¢. This
set has a natural fiber bundle structure ZEq,x = G Xk €2y —» G/K. Further 7j induces the
antiholomorphic involution [g, ] — [Th(g), —7h(z)], and as

(G/K)™ = exp(p™).eK = exp(qp).eK = G".eK,
the fiber bundle structure shows that the fixed point set is

EZ*L/K =Gh exp(iQ, ™).eKc = Gh exp(iQy, ).eKc.
The argument given in [MNO24] §8] for the adjoint group applies also in this, slightly more general,
context because the crown domains are the same.
(b) Gindikin and Krétz analyze in [GK02| the distinguished boundary of Z¢,k and find, up to
coverings, all irreducible non-compactly causal symmetric spaces.

The idea is rather simple. Let us assume that G C G¢. Then Mc = G¢/Kc is a complex
homogeneous space containing M, = G/K as a totally real submanifold.

Then Eq/x = Gexp(i€Qy)Kc € Mc, and

oM = exp ( — %h).e[(c = (.eK¢ € Mc¢
is a point whose stabilizer in G is

H, = ((Ke¢ChH) NG

As the holomorphic involutions fc, 7,¢c and 7¢ on G satisfy

7c(g) = Oc(¢ 1 g)¢ = (POc(9)¢ % = Thcbc(9),
we have H; C G7, so that
M1 = G.OM = G/Hl

is a symmetric space corresponding to the symmetric Lie algebra (g,7). However, it may not be
causal because Ad(H;)-invariant pointed convex cones in q may not exist, i.e., H; g may not fix h
(IMNO23|, Rem. 4.20(a)]).

Assume, in addition, that G¢ is simply connected. Then the subgroup G(ecC is connected,
hence equal to Kc. Let 7 € Aut(Gc) be the antiholomorphic involution for which G¢ := (G¢)7 is
the connected subgroup with Lie algebra g¢ = b + iq. Then

GT=GNG°

and therefore
K =KnG°C K¢,

where K€ is a connected Lie group with Lie algebra
= be +iqp = 3ge(h).

As a consequence, the connected group K¢ is contained in G(’é, so that also K™ C K". This shows
that H := G7 leaves a cone in ¢ invariant, and thus G/H is a non-compactly causal symmetric
space ([MNO23| Rem. 4.20(a)]). Moreover, H; = GEZ NG = G7 implies that M; = G/H.
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(c) If Ge is not necessarily simply connected and K¢ = (G%),, then He = (GIF).. For G¢ :=
(GZ)e and H := G°N G, we then have H C GEZ NG = G7, and with the polar decomposition
H = Hg exp(hy), and the compactness of the subgroup

Hyk=HNK=GNK

of G¢, it follows that Hx C K¢ = (G)", ie., Hg fixes h, so that G/H is causal ([MNO23|
Rem. 4.20(a)]). However, Hc N G need not be contained in H.

Proposition 3.14. If G C G¢ and Mc = G¢/Kc, then the domain
Ece = Gexp(iQy)Kc C Ge

is an open connected subset satisfying (Crl-4) with
w¢.=gh exp(q, ) exp(hy).

Proof. Properties (Cr2) and (Cr3) are obvious from the construction, and so is the G-invariance.
Further 7,(iQ,) = —iQ, = iQ, and 7,(Kc) = K¢ imply (Crl). As in Remark b) above, we
have the G-orbit My := G.op =2 G/H; in 0Zg K. We consider the connected open subset

Wi = Gg exp(Qq,).on C My
(cf. (2.39). Its inverse image under the orbit map
au, 2 G = My =G/Hy, g+ gom

is
G exp(Qq,)H1 = G Hy i exp(€q,) exp(by) C G™ exp(2q,) exp(hy).

Its identity component is
W = Gy exp(Qq,) exp(by).-

Now
exp(S:h)W1 C Eq/k

follows with the same argument as in [MNO24] Thm. 8.2], and this implies that
exp(Szh)W¢ C Zg..
Therefore (C4) is also satisfied. O

Example 3.15. For de Sitter space M = dS? C V := R? and the Lorentzian forms 22 = r3 —x?
on RM?, a natural complexification is the complex sphere

Mc :={z = (20,2) € C'*?: 22 — 22 = —1}.
It contains M = Mc N RV and also the Riemannian symmetric spaces
My := {(iyo,iy): vg — y* = 1, %yo > 0} = SOy 4(R)./SO4(R).

Here G = SO1 4(R). € G¢ = SO01,4(C) = SO144(C) and K = SO4(R) C K¢ = SO4(C). The crown
domains of the hyperbolic spaces Hy = G/K are the intersections with tube domains V iV :

Men (V+iVy).

—_
= .
I
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For both domains,
ds? = {(z0,x) e RM: 22 —x? = —1} C 9B

For the Euler element given by the Lorentz boost
h.(l‘o,xl, N ,.’I?dfl) = (.1317.’170,07 N ,O),

we have

i
(.x = exp ( - Eh)x = (—izy, —i%o, T2, ..., Xq),

so that (.iep = e € ds. o
We also note that, for V.C 9(V+ iV, ) and C := V., the set of KMS-points is

Vims = CS + Vo +C° = Wi (h), where Cy =Rs(er ep)
(cf. Examples [3.31]). Accordingly,
dSicns = Viems N dST = W, (h).

Example 3.16. For G = SL,(R) and the Euler element

_1(q1, 0
hq = - < 0 —p1q> € sl,(R)

from , the corresponding involution is
m(x) = —I g2 I,, for p+4q=n.
Therefore G™ = SO,, ((R) and, for the action of G on Sym,, (R), we have
M :=G.I,,=1{9l,,9": g € SL,(R)}.

This space carries a causal structure for which M < (Sym,,(R), Sym,,(R),) becomes an embedding
of causal manifolds.
Here M, := G.I,, =2 G/K is the corresponding Riemannian symmetric space. For

¢ :=exp ( - %th> we have  (.I, = exp(—mih,) = e~ ™", @ ™P/M1, = "™,

so that G.(¢.1,) 2 G.Ip = M.

Theorem 3.17. Let (U, H) be an irreducible antiunitary representation of G,, = Gx{1,m}, let F
be a finite-dimensional subspace invariant under K and J, and F := F”/. Then E = 3+ (F) C H~>°
with B from and the net HY from on the non-compactly causal symmetric space M =
G/H satisfies (Iso), (Cov), (RS) and (BW), where W = W, (h)en is the connected component of
the positivity domain of h on M, containing the base point.

Note that 7,(K) = K implies that J leaves the dense subspace HE] of K-finite vectors invariant.
Therefore J-invariant finite-dimensional K-invariant subspaces exist in abundance.
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Proof. (Sketch; assuming that G C G, [ENO23, Thm. 8]). First, Simon’s Growth Theorem m
implies that
FC () D™ (3.11)
T€EQ,

With [FNO23, Prop. 6] we now see that the map G xx F — H,[g,v] — U(g)v extends to a
holomorphic map

Ur:F=(GxiQ) xxg F—H, [g,iz,0]— U(g)e®V@y, (3.12)

where F carries the structure of a G-equivariant holomorphic vector bundle over the complex man-
ifold Eg/x = G x g i€y ([ENO23, Prop. 5]).

Assuming that G C G¢, this implies in particular that 7 C H*¥(E¢g,.), so that the assumptions
of Theorem are satisfied. Further, Theorem implies that F := F7/ C H,;{emp, so that, for
v € F, the limit

B (v) = lim e UMy
t—mw/2
exists in the space H~°° of distribution vectors, endowed with the weak-* topology. Natural equiv-
ariance properties (Proposition in Appendix then imply that
E:=fT(F)CH ™ (3.13)

is a finite-dimensional H-invariant subspace, and the net HY = (gas)«HS on M = G/H, defined
as in (3.9)), also satisfies (RS) and (BW). O

Remark 3.18. (“Independence” of the net from the choice of H) In the context of Theorem [3.17]
the real subspace E C H~° is invariant under U~°°(H). For any open subset Og C G we therefore

have
HE (0) = HE (OH)

by Lemma Hence the inclusions Hpyin € H C Hpax (see the context list at the beginning of
this subsection) imply that

Here we use that the real subspace E C H™°° is invariant under H,.x because Proposition m(c)
also applies to Hyax. For the covering

qm: G/H - Mmin = G/Hmax

it therefore follows that the net H2 on M can be recovered from its pushforward H,].:VImin t0 Mpin
because

HE'(0) = Hg' (4, (4m (0))) = HE™ (4, (0))
for any open subset O C M.

Remark 3.19. To deal with the case where 7g is not injective, we may assume that G is simply
connected, which implies that its universal complexification G¢ is also simply connected.
We first consider the crown domain of the Riemannian symmetric space G/K:

Eq/k =G Xk iy = (G x i)/ ~  with (g,iz) ~ (gk, Ad(k) 'iz),k € K. (3.14)
The complex structure on this domain is determined by the requirement that the map

q: Ea/x — Go' ={g€Gec: 0(g) =g}, ql[g.iz]) — g.exp(2iz) = gexp(2iz)f(g) ",
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which is a covering of an open subset of the complex symmetric space G 0“, is holomorphic. This
domain is biholomorphic to Z¢/k, and we may thus consider Zg,x as a domain in G¢ /Kc. Let
qme: Ge — G¢ /K¢ denote the quotient map and

EGC = q]T/LlC(EG/K) = Gexp(iQp)Kc.

This is an open subset of G¢ that is right Kc-invariant, so that Eq. is a Kc-principal bundle
over Eqg/ k. As Eq/ is contractible (it is an affine bundle with convex fibers over the contractible
space G/K), the natural homomorphism 7 (K¢) — 71(Eg.) is an isomorphism by the long exact

homotopy sequence for fiber bundles. We conclude that the simply connected covering Z¢, is a
holomorphic K¢-principal bundle over Z¢g /.

As G is simply connected, the G-action lifts naturally to an action on EGC. To see that this
action is free, note that the group of deck transformations is

™ (Kc) = m(n(K)) = m(n(G)) = kerng.

Comparing the action on the base point, it follows that the subgroup ker ng C G acts faithfully by
deck transformations, and so does G.

3.4 Appendices to Section

3.4.1 Tools for nets of real subspaces

Lemma 3.20. Let O C G be open and ¢ € CX(0). We further assume that (O;)jcs is an open
cover of O. Then there exist ji,...,ji € J and ¢, € C°(0;,) such that ¢ = o1+ -+ + @i.

Proof. Let O C G be open and ¢ € CX(0). We further assume that (O;);es is an open cover
of O. Then (O;);cs also in an open cover of supp(y), and there exist ji,...,ji € J such that

Supp(@) C Ojl U---u OJk

Then
G \ Supp(@)? Ojl? ) Ojk
k

is an open cover of G. Let xoq,...,Xxx be a subordinated partition of unity. Then ¢ = ijl Pjs
where @; := x; satisfies supp(yp;) C O;.

Lemma 3.21. (Fragmentation Lemma) For () # O C G open, the following assertions hold:
(a) If H C G is a closed subgroup, then
(i) every test function p € CX(OH,R) is a finite sum of test functions of the form
opp: G—C, g (gp), Y eCT(OR),peH.
(ii) every test function p € CX(HO,R) is a finite sum of test functions of the form
Yor:G—=C, g—v(pg), v eCF(O,R),peH.

(b) Every ¢ € C*°(G,R) is a finite sum Z;‘Zl ;o N, with ¢; € CF(O,R) and g; € G.
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Proof. (a)(i) The family (Op),e g is an open cover of the compact subset supp(¢), so that Lemma|3.20]
implies that ¢ = Z?:1 @; with supp(¢;) € Op;. Then ¥; = ¢;0p, € CF(O,R) and ¢ =
Z?:l ¢j o /)pjfl-

(a)(ii) and (b) are proved along the same lines. For (b), we use the open cover (¢9O)scq of the
group G. O

Lemma 3.22. Let (U, H) be a unitary representation of G, let E C H™°° be a real linear subspace,
H C G a closed subgroup and O # O C G. Then the following assertions hold:

(a) HE(OH) = HS (O) if E is H-invariant.
(b) HS(HO) is the closed real span of U(H)HS (O).
(¢) The real subspace spanned by U(G)HE (O) is dense in HS(G).

Proof. (a) The inclusion H§ (0) C HE(OH) is trivial. Conversely, for ¢ = 1 0 p,, 1 € C=(O) and
p € H, we obtain with (C.7)

U™ (QE=U""(Yopp)E=Ac(p) U™ ()U™*(p )E=U"*(J)E CE.

Hence the assertion follows from Lemma a).

(b) From Remark we know that U(p)HF(O) = HE (pO) C HF(HO) for p € H. Now the
assertion follows from Lemma [3.21|(b).

(c) is an immediate consequence of (b), applied with H = G. O

3.4.2 KMS vectors for 1-parameter groups

In this subsection, we discuss some general tools concerning holomorphic extensions of orbit maps
of one-parameter groups on locally convex spaces to strips in the complex plane. They are instru-
mental in formulating Kubo-Martin—Schwinger (KMS) boundary conditions that are related to the
construction of standard subspaces.

Definition 3.23. Let (Ui)icr be a one-parameter subgroup of GL()) for a topological vector
space ) and J an antilinear operator on ), commuting with (Uy)ier.

We write Vkms for the subspace of those y € ), whose orbit map U": R — Y, t — U,v extends
to a continuous map on So » := R+ [0, 7], holomorphic on the interior Sp ,, such tha‘.

U(mi+t) =JU(t) =JUw for teR. (3.15)
We call the elements of this space KMS vectors (with respect to U and J).

In [BN23] we study for an antiunitary representation (U, H) of G, the space Hyinig := (H™°°)kms
of distribution vectors (see Appendix [C| for details), on which we have the one-parameter group
U~°°(expth) generated by the Euler element h and the action of the conjugation J~>° = U~ (73,).

In combination with the following Proposition the following theorem is the key tool to
verify that nets of real subspaces satisfy the Bisognano—Wichmann property H(W) C V.

Theorem 3.24. Let (U,H) be an antiunitary representation of G, and V. C H the standard
subspace specified by Ay = >0V and J, = U(r). Then the following assertions hold:

(a) (H™°°)kwms is a weak-x-closed subspace of H™°.

4By equivariance, it actually suffices that UV (7i) = Juv.

76



(b) Hems NH =V.
(c) Vis dense in Hgps-
Proof. (a) is [BN23| Thm. 6.2], (b) is [BN23| Thm. 6.4], and (c) is [BN23| Thm. 6.5]. O
The following proposition is useful to verify that HE (W) C V.

Proposition 3.25. Let (U, H) be an antiunitary representation of G, and V.= V(h,U) the corre-
sponding standard subspace. For an open subset O C G and a real subspace E C H™°, the following
are equivalent:

(a) HE(O) C V.
(b) For all ¢ € C°(O,R) we have U~>°(p)E C V.
(c) For all ¢ € C*(O,R) we have U~*°(9)E C Hyys-
(d) U™*°(9)E C Hypg for every g € O.
To show that HY (W) C V, we thus need to show that U~°(W%)E C Hy s

implies (c) because V C Hy g (Theorem b)).
For the implication (c) = (d), let (6, )nen be a d-sequence in C°(G,R). Then U(6,)¢ — & in
H>° and hence also in H~°. It follows in particular that

Proof. ([ENQ23, Prop. 9]) It is clear that (a) implies (b) by the definition of HE (O). Further, (b)
ﬂ(

U™®(6n % 6g)n =U">00,)U (g = U">(g)n for neH .

Hence the closedness of Hyyrg (Theorem a)), shows that (c) implies (d). Here we use that
dp x g € C(O,R) for g € O if n is sufficiently large.

As the G-orbit maps in H~°° are continuous and Hy g is closed, hence stable under integrals
over compact subsets and U~>°(C(O,R))H~>° C H>, we see that (d) implies (a). O

3.4.3 Standard subspaces and J-fixed points

In this subsection, we derive a characterization of the elements of a standard subspace V specified
by the pair (A, J) in terms of analytic continuation of orbit maps of the unitary one-parameter
group (A%);cr and the real space H7.

In the terminology of Appendix the following proposition asserts that

V = Hkwms.

Proposition 3.26. Let V C H be a standard subspace with modular objects (A, J). For & € H, we
consider the orbit map af: R — H,t — A™*/27¢. Then the following are equivalent:

(i) £ ev.
(ii) € € D(AY?) with AY/?¢ = J¢.

(iii) The orbit map af: R — H extends to a continuous map S, — H which is holomorphic on Sy
and satisfies af (i) = J¢E.

(iv) There exists an element n € H’ whose orbit map a" extends to a continuous map
Sir/2 — M which is holomorphic on the interior and satisfies a'(—mi/2) = &.
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Proof. The equivalence of (i) and (ii) follows from the definition of A and J.
(ii) = (iii): If £ € D(AY?), then & € D(A?) for 0 < Rez < 1/2, so that the map

[:8 = H, f(z)=A"5¢

is defined. Let P denote the spectral measure of the selfadjoint operator
1
H:= 5 logA andlet PS= (& P(-)¢)
i

denote the corresponding positive measure on R defined by & € H. Then [N()l& Lemma A.2.5]
shows that

£(PE)(2r) = /R =2 4PE(\) < oo,

This implies that the kernel

i(z—w)

(), f(2) = (A8 E ARG = (6, A7) = (6, eCMHg — £ (27)

7

is continuous on S; x Sy by the Dominated Convergence Theorem, holomorphic in z, and antiholo-
morphic in w on the interior ([Ne99, Prop. V.4.6]). This implies (iii) because it shows that f is
holomorphic on S; ([Ne99, Lemma A.IIL.1]) and continuous on S, (Exercise .

(iii) = (iv): For a*: §; — H as in (iii), we have

Jat(z) = o (mi + %) (3.16)
by analytic continuation, so that
n:=a5(mi/2) e ' with a(z) =at (z + %)
(iv) = (ii): We abbreviate S := Sy, /5. The kernel K (2, w) := ((w), a"(z)) is continuous on S xS

and holomorphic in 2 and antiholomorphic in w on S. It also satisfies K(z +t,w) = K(z,w —1t) for
t € R. Hence there exists a continuous function ¢ on S, holomorphic on S, such that

z—w
K(z,w) = <p( 5 )
For t € R, we then have ¢(t) = (n,a"(2t)) = [, e2** dP"()), so that [NO18, Lemma A.2.5] yields

L(P")(£7) < 0o and 7 € D(ATY/4). This implies that a”(z) = A~¥/27y for z € S.
From ¢ = " (—7i/2) = A~'/*5) we derive that
e

at(z) = a" (z - ?> = A2 for  zeS,.

Further, Jn = n implies
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3.4.4 The geometric KMS condition

On the geometric side, KMS conditions can be modeled as follows. We consider a connected complex
manifold =, endowed with a smooth action

c:R*xE2—=Z2 (r,m)—rm=:o.(m)=:0"(r)

for which the diffeomorphisms o, are holomorphic for » > 0 and antiholomorphic for r < 0. In
particular, 7= := o_; is an antiholomorphic involution of =. We further assume that = is an open
domain in a larger complex manifold and that the boundary 9= contains a real submanifold M
with the property that, for every fixed point m € =™ the orbit map R — =, — o™ (e') extends
to a holomorphic map 0™ : 84,/ — Z which further extends to a continuous map

0™ Sinp » ZUM  with o™ (&in/2) € M. (3.17)

Definition 3.27. We then write
Wrms © M

for the set of all elements whose orbit map ¢™: R — M extends analytically to a continuous map

Sy — ZU M, analytic on S, such that
o™ (mi) = t=(m).

Examples 3.28. (Domains in C) In one-dimension we have the following standard examples of
simply connected proper domains in C with their natural R*-actions.
(a) (Strips) On the strip Sy = {z € C: 0 < Imz < 7} we have the antiholomorphic involution
7s,(z) = mi + Z with fixed point set

Sy = {z €S, Imz= g}
The group R} acts by translations via oei(z) = 2z +t, M := RU (7i + R) = 8S; is a real
submanifold, and for Im z = 7/2, the orbit map ¢c*(¢) extends to the closure of the strip Syz with
o (%) =z2+F € M.
(b) (Upper half-plane) On the upper half-plane C; = {z € C: Imz > 0}, we have the antiholomor-
phic involution 7¢, (z) = —% and the action of R} by dilations 0,(z) = rz. Here M := R = 9Cy is
a real submanifold, and for z = iy, y > 0, the orbit map o*(¢) = e’z extends to the closure of the
strip S+z with o* (+ ) = +i(iy) = Fy.
(c) (Unit disc) On the unit disc D = {z € C: |z| < 1} we have the antiholomorphic involution
mn(2) = Z and the action of R} 22 SOy 1 (R)o by the fractional linear maps

_cosh(t/2)z +sinh(t/2)
o1(2) = sinh(¢/2)z + cosh(t/2)

Here M := S' = 0D is a real submanifold, and for z € D N R, the orbit map o*(t) extends to the
closure of the strip Sy /2 with

(3.18)

o (i )2) = C?S.(Tr/ﬁl)z + isin(m/4) _ z:ii i z iz
+isin(w/4)z 4+ cos(n/4)  Liz+1 zZFi

The biholomorphic maps

z—1

z+1

Exp: S > C4, z—¢€* and Cay:Cy — D, Cay(z):= (3.19)

are equivariant for the described R*-actions on the respective domains.
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Lemma 3.29. For a proper simply connected domain Q C C, two antiholomorphic involutions on
Q are conjugate under the group Aut(Q) of biholomorphic automorphisms. In particular, they have
fixed points.

Proof. (JANS22]) By the Riemann Mapping Theorem, we may assume that @ = D is the unit disc.
Let 0: D — D be an antiholomorphic involution. Then o is an isometry for the hyperbolic metric.
Therefore the midpoint of 0 and ¢(0) is fixed by 0. Conjugating by a suitable automorphism of D,
we may therefore assume that 0(0) = 0. Then 1(z) := o(%) is a holomorphic automorphism fixing 0,
hence of the form (z) = €z for some 6 € R, so that o(z) = €% = y(y=1(2)) for y(z) = /22, O

Proposition 3.30. Up to automorphisms of R*, any antiholomorphic R* -action on a proper
simply connected domain O C C is equivalent to the one in Examples a)-(c).

Proof. Up to conjugation with biholomorphic maps, we may assume that c_1(z2) =Z on O =D
(Lemma(3.29). Now we simply observe that the centralizer of o_; in the group PSU; 1 (C) = Aut(D)
is PSO1,1(R), and, up to automorphisms of R*, this leads to the action in (3.18). O

Examples 3.31. (Examples of KMS domains) (a) If G = E x, R as in Example then = :=
E +iC*° is a tube domain in the complex vector space F¢ with F C 0=, and Theorem [2.26] implies
that

Exms =CL @ Ey @ C?,

which in this case can be verified easily.
(b) For a causal Lie group G and the complex semigroup = = S(iCy), we obtain from Theoremm
that

Grus = exp(C2)G exp(C?).

(c) For a non-compactly causal symmetric space M = G/H, realized in the boundary of a complex
crown domain = C G¢/Kc as the orbit of oy := exp ( — 5th).Kc, we also have

Myms = Wit (h)em = G exp(Qq, ).eH

(IMNO24, Thm. 8.2]).

3.4.5 Boundary values for one-parameter groups

In this section, we collect some useful facts on boundary values of analytically extended orbit
maps of unitary one-parameter groups (U):cr and a conjugation J, commuting with U. The main
point is to identify the subspace Hyyig of distribution vectors, satisfying the KMS condition (cf.
Definition . with elements of a real subspace Hémp, specified in terms of the spectral measure
PofU.

Let P be the uniquely determined spectral measure on R for which

U, = / e dP(x), resp. Uy =e' teR, with A= /de(p).
R R

For v € H, we thus obtain finite measures PV := (v, P(-)v), and we define

Hiomp = {v € H': €™ dP"(p) tempered} = {v € H’: e"™ dP"(p) tempered}. (3.20)

15The automorphisms of the group RX have the form o(z) = sgn(z)|z|*, A € R.
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The equality of both spaces on the right follows from the symmetry of the measures PV, which is
a consequence of Jv = v. For the positive selfadjoint operator A := e~ we have JAJ = A™1,
so that JD(AY4) = D(A=/4) implies that

DAYy AR = DA nw = {ve /

e dPY(p) < oo} C Hiomp-
R

Theorem 3.32. ([FNO24, Thm. 6.1]) For v € H' N Nit)<n /2 D(et1), the following are equivalent:

(a) veH,

temp -

b) The limits B~ (v) = lim;_, 4. /o et exist in H~°(U).
/
(c) There exist C,N > 0 such that [|e*'4v||? < C (% — |t|)_N for |t| < /2.

Proof. (a) < (b): From [FN()23, Prop. 4], we recall that the temperedness of the measure v, given
by dv,(p) := €™ dP?(p) is equivalent to the existence of C; N > 0 with

/ e(m—t)p dP"(p) < ct™N for 0<t<m.
R

Further, [NC)15, Lemma 10.7] shows that this condition is equivalent to the function e™/2 to
define a distribution vector for the canonical multiplication representation on L?(R, PY). This
representation is equivalent to the subrepresentation of (U, H), generated by v, where the constant
function 1 corresponds to v.

(b) = (c): If limy_yr 2 et4v exist in H~°°(U), then [N()lS, Lemma 10.7], applied to the cyclic
subrepresentation generated by v, implies that the measure v, is tempered. Then the argument
from above implies the existence of C; N > 0 with

—N
et = /Rem ar'@)<o(5-1)" for </ (3.21)

If limy, /o e!4v also exists in H~°°(U), then the same argument applies again and we obtain (c).
(c) = (a): With the leftmost equality in (3.21]), we see that (c) implies that the measures du,(z) :=
eE™ dPY(z) are tempered ([ENO23, Prop. 4]). Here we use that the measure P? is symmetric
because Jv = v. O

Proposition 3.33. The map BT defines a bijection 57 : ’H;’emp — Hins-

Proof. (a) Let v € H{,,,. First we show that 5+ (v) € Hyprg. To this end, note that, for a real-
valued test function ¢ € C°(R,R), we have JU(p) = U(p)J. For v € H{,,, we therefore have
w:=U(p)v € H’. Moreover,

P (z) = |p()[2dP(z) with (z) = / e o(t) d,

where @ is a Schwartz function, which even implies that the measure
€™ AP (z) = ™| ()| dP" (a)
is finite, and thus w € D(AY*) N H”. This implies with [NO@QI, Prop. 2.1] that
U=*(p)B* (v) = 85 (U(p)v) = AMMw e V.
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From Proposition we derive for G = R that
Hins = o e H: (Vo e CX(R,R)) U™ (p)a € V}.

Hence the above argument implies that 51 (v) € Hinis-

(b) To see that BT is injective, we assume that 8% (v) = 0. Then the above argument implies
that U(p)v € H? N D(AY*) vanishes for every ¢ € C°(R,R) because A'/* is injective. Using an
approximate identity in this space, v = 0 follows.

(c) To see that BT is surjective, let v € Hgps. Replacing H by the cyclic subrepresentation
generated by ~, resp., the subspace U~*(C*(R,C))y C H, we may w.l.o.g. assume that H =
L?(R,v) for a positive Borel measure, where the constant function 1 corresponds to . Hence the
measure v on R is tempered ([Nél5, Lemma 10.7]). Then, for z = = + iy € S, the analytic
continuation of the orbit map of v =1 takes the form

U Sy — LA(R,v)™°, U7(2)(p) = &P = "™Pe VP,

Therefore all measures e %P dv(p),0 < y < 7, are tempered. It follows in particular that they are
actually finite for 0 < y < p. Hence v(p) := e~™/2 is an L*-function, and v = U7 (wi/2) implies
that Jv = v. As a consequence, the measure dP?(p) = e~ ™ dv(p) is finite and e™ dP"(p) = dv(p)
is tempered, so that v € H{,,,,. Therefore T (v) = 1 shows that AT is surjective. O

For v,w € ngcmp, we consider the complex-valued measure
PYY(E):= (v,P(F)w), ECR.

Then

Pvw(E) = (v, P(E)w) = (w, P(E)v) = P*"(E) (3.22)
and the relation JP(E)J = P(—FE) implies that

PU(E) = (Jv, P(E)Jw) = (Ju, JP(—~E)w) = (P(—E)w,v) = PU*(—E) = Prw(—E). (3.23)

In particular, the measures PV are symmetric and positive.
We obtain on the strip S+, the holomorphic function

ww@:mw@:/wwwwm
R

and the temperedness of the measures e*™ dP?*(p) implies that this function has boundary values
that are tempered distributions on +mi + R. For ¢ € R, we have """ (t) = (v, Uyw). Hence

Pl (=t) = v (t) = (Upw, v) = (UgJw, Jv) = (JUw, Jv) = (v, Upw) = """ (t),

and therefore -
et (2) = W (=2) = p""(Z) for 2z € Sin. (3.24)

For a := 3% (v) and ~ := 7 (w) the distribution
Do (&) :=~(U"7(§)a)

can be represented by the boundary values of a holomorphic function

Dor(x) = lim (Ugetv, e'tw) = lim eZETIOP PU () = U (=70 — x) = VY (i + ).
t—mw/2 t—=7m/2 Jr
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3.4.6 Simon’s Growth Theorem

The following result is [Si24) Thm. 3.2.6], where, in addition, we use [FN023, Thm. 3] for the
existence of the limit in the smaller subspace H~>°(0U(z)) € H~°°. This result generalizes the
extension results by Krotz and Stanton [KSt04] by removing the linearity condition on the group G.

Theorem 3.34. (Simon’s Growth Theorem) Let G be a connected semisimple Lie group with Cartan
decomposition G = Kexpp and (w,H) be an irreducible unitary representation of G. Then there
exist for every K-finite vector v € H constants C,n > 0 such that, for every x € p with spectral
radius Tgpec(ad x) < w/2, we have

i0U(2) | <« o T _ "

lle v|| < 0(2 rspec(adx)) .

In particular, lim;_,z_ e My egists in H=°°(Uy) for h € p with rspec(adh) = 1 and Un(t) =
U(expth).

The last statement uses the equivalence of (b) and (c) in Theorem [3.32}
The following proposition supplements Section It neither requires that ng is injective nor
that G is simply connected. The main information is contained in (c).

Proposition 3.35. Let G be a connected semisimple Lie group with Cartan decomposition G =
Kexpp and h € p an Fuler element. Consider an irreducible anti-unitary representation (w,H) of
G, and put Up(t) = exp(th) for t € R. Then the limits

fE(v) := lim eFitoU(h)y,
t—mw/2

exists in H=°°(Uy,) for every K-finite vector v € HIX! and the following assertions hold:
(a) The maps B*: HIEl — H=(U),) € H~ are injective.
(b) We have the intertwining relation

BrodU(z) = dU (¢t (2)) o BT HIEl 5 H=  for =z € gc.

(¢) If F € HIK is finite-dimensional and J-invariant, then the finite-dimensional real subspaces
BE(F) = BE(FT) CH™> is U~ (H)-invariant for H = K" exp(p~™). We further have

JBEW) = BF(v)  for wveHEL

Proof. (cf. [ENO23, Prop. 7]) For |t| < %, we have th € Q,, so that the existence of the limits
follows from Theorem m Hence the existence of the limits 3% (v) in the weak-*-topology on
H~«(Up,) follows from Theorem combined with Theorem
(a) (cf. [GKO04, Thm. 2.1.3]) Suppose that 8 (v) = 0. As v € HIE is contained in D(e!V M) for
|t| < &, the function

fiR—=C, f(t):= (v, My)

extends analytically to the strip S84, /p. Our assumption implies that
f(=Z+1)=BT(0)(?Y M) =0 for teR,

so that f = 0 by analytic continuation, and thus 0 = f(0) = ||v||? leads to v = 0.
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(b) For a K-finite vector v, we have

deoo(C:tl(x))ﬂ:t(U) — tEE}Z dU(C:tl(x))e$itBU(h),U _ tEI;}z €¥itaU(h)dU(€iitadhgil(l‘))v

= fF (U ("2 4 (@)v) = (U (x)o).

Here we use that ¢t — dU (eit adhe (x))v is a continuous curve in a finite-dimensional subspace.
(¢) As JidU (h)J = —idU(h), we have JB*(v) = ¥ (Jv) for v € HIE]. The relation

JOU(2)J = 8U (h(%)) (3.25)

shows that, on H!X], the operator dU(z) for z € h¢ + iqe, commutes with J. By (b), 4% intertwines
these operators with dU~°°(h). Hence the subspaces 8% (F) are dU~°(h)-invariant. The subspace
F = F/ C F is invariant under the subgroup K™. As H = Hg exp(h,) with Hx C K™ = K™ and
Hy C K" (]MNO23, Lemma 4.11]), the K"-equivariance of 3% entails that the dU~>°(h)-invariant
subspaces 3% (F) are invariant under U~ (H). O

4 Constructing nets of real subspaces

Let G be a connected Lie group, h € g an Euler element, and suppose that the involution 7, = eriadh

on g integrates to an involution 75, on G, so that we can form the semidirect product G, .
We also fix a homogeneous space M = G/H, in which we consider an open subset W invariant
under the one-parameter group exp(Rh). We call the translates (¢W)ge of W wedge regions. At
the outset, we do not assume any specific properties of W, but Lemma [.2 below will indicate which
properties good choices of W should have.
We consider an antiunitary representation (U, H) of G, and the canonical standard subspace
V = V(h,U) C H, specified by Ay = 2™V (") and Jy = U(ry,) (cf. The Euler Element Theorem

4.1 Minimal and maximal nets

We associate to the open subset W C M = G/H and the antiunitary representation (U, H) of G-,
the two nets HY™ and HY*, defined on open subsets of M by

HifX(0):= (] Ulgv and HE™O):= > Ulg)V. (4.1)
geG,0CgW geG,gWCO

We call HP2* the mazimal net and HE® the minimal net, which is justified by Lemma [4.7| below.
By construction, these nets are isotone and covariant, and it is easy to see that they assign V to
W C M if and only if

Sw={9€G:gWCW}CSy={geG:U(g)VCV} (4.2)
(cf. Lemma. Any other properties of these nets require a more detailed analysis.

Remark 4.1. (a) If there exists no g € G with O C gW, i.e., O is not contained in any wedge
region, then HP*(0) = H (the empty intersection). We likewise get HY*(O) := {0} (the empty
sum) if there exists no g € G with gW C O, i.e., O contains no wedge region.

(b) If @ £ W # M, then we have in particular

HE™(0) = {0} SHE™(0) = (| U(g)V and  HE"(M) = W C HY™ (M) = H.
geG geG
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The following lemma is rather elementary. It only uses Proposition to verify the equality
of standard subspaces.

Lemma 4.2. The following assertions hold:
(a) The nets HE™ and HY™ on M satisfy (Iso) and (Cov).
(b) The set of all open subsets O C M for which HYf*(O) is cyclic is G-invariant.
(¢) The following are equivalent:
(i
(ii

) Swi={geG: gW CW} CSy.
) HY@&* (W) = V.
) HYPX(W) is standard.

(iv) HYp*(W) is cyclzc
)
)
)

(v) HRn(W) =
(vi) HR™(W) is standard.
(vii) HRIM(W) is separating.

Proof. (a) Isotony is clear and covariance of the maximal net follows from

HE™(900) = [} U@V =Ulgo) [ Ulgg "9V =Ulgo)HF(O).
goOCgW g0OCgW

The argument for the minimal net is similar.

(b) follows from covariance.

(c) (i) & (ii): Clearly, HY* (W) C V, and equality holds if and only if W C gW implies U(g)V 2 V,
which is equivalent to S;;' C Sy ', and this is equivalent to (i).

(ii) = (iii) = (iv) are trivial.

(iv) = (ii): By covariance and exp(Rh).W = W, the subspace HY#*(W) C V is invariant
under the modular group U(expRh) of V. If HY2(W) is cyclic, then Proposition implies
HYA (W) = V.

(i) & (v) is obvious.

(v) = (vi) = (vii) are trivial.

(vii) = (v): By covariance and exp(Rh).W = W, the subspace HE"(W) D V is invariant
under the modular group U (exp Rh) of V. If HY™ (W) is separating, then Proposition implies
HWn (W) = V. O

The following lemma is a consequence of the naturality of the minimal and the maximal net.

Lemma 4.3. The cyclicity of a subspace HYP*(O) is inherited by subrepresentations, direct sums,
direct integrals and finite tensor products.

Proof. We use that

HYf > (0) =V4 = ﬂ UGV for A:={geG:g'OCW}. (4.3)
geEA

For a direct sum representation U = U; ® Uy we have V= V; @ Vy, which leads to

Va=Vy,4D V24 (4.4)
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because U(g) ™! (v1,vs) € V is equivalent to U;(g) ~'v; € V; for j = 1,2. We thus obtain
HY(0) = Hiri (0) © Hir5(0).

This proves that cyclicity of HY?*(O) is inherited by subrepresentations and direct sums. For finite

tensor products, the assertion follows from Lemma in Appendix tuv=/ )82 U, du(zx) is
a direct integral, then (4.3)) and Lemma a) imply that

(&)
HE (0) = / B (0) dpu(x) (4.5)

X

for direct integrals. So Lemma shows that Hy*(O) is cyclic if every HY(O) is eyclic in H,. [

€T

Remark 4.4. If we write

(9/\::< ﬂ gW) D0 and OV:= U gW C O,

gW D0 gWCcoO
then O” and OV are open subsets satisfying (O")" = O", (OV)Y = OV, and
HYPX(0") = HYPX(0)  and  HY™(OY) = HY™(0). (4.6)

So, effectively, the maximal net “lives” on all open subsets O satisfying O = O” (interiors of
intersections of wedge regions) and the minimal net on those open subsets satisfying O = OV
(unions of wedge regions)

Remark 4.5. (The case where Sy is a group) If the semigroup Sw is a group, i.e., Sy = Gy and
ker(U) is discrete, then the inclusion Sy C Sy is equivalent to

Gw CGy=GM ={geG": JU(9)J =U(g)} (4.7)

(cf. Exercise. In the context of causal homogeneous spaces, the definition of W as a connected
component of W, (h) (Definition implies that exp(Rh) C G C Gy, and we have in many
concrete examples that Gy C G, and always L(Gy) = g" (Proposition @I} However, U(Gw)
need not commute with J, so that may fail. Examples arise already for g = sly(R); see
Remark [4.6] below.

Remark 4.6. If g = slp(R), then Goq = PSLa(R) = SO12(R)., and Haq = exp(Rh), so that
Gaq/Hog = ds? (Example. If Z(G) is non-trivial, then the connected components of W (h)
can be labeled by the elements of Z(G) because this subgroup acts non-trivially on M = G/H,
leaving the positivity region WAZ (h) invariant. In any irreducible representation (U, H) we have
U(Z(G)) C T, but this subgroup preserves the standard subspace V if and only if it is contained
in {1}

The following lemma justifies the terminology “minimal” and “maximal”.

Lemma 4.7. Let (U, H) be an antiunitary representation of G-, and H a net of real subspaces on
open subsets of M, satisfying (Iso), (Cov) and H(W) = V with respect to h € g and W C M. Then

HY™(0) C H(O) CHE™(0)  for O € M open,

and equality holds for all domains of the form O = g.W, g € G (wedge regions in M ).
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Proof. First we show that the three properties (Iso), (Cov) and H(W) = V of the net H imply that
Sw C Sy. In fact, g. W C W implies

(Iso)

(Cov)
Ug)v = U(g)H(W) "="H(g.W) < HW)=V.
From Lemma [4.2(c) we thus obtain HE*(W) = HE» (W) = V. Hence
H(gW) = U(g)V = Hif™(gW) = Hi" (9W)

by covariance for any g € G (Lemma a)). By (Iso), O C gW implies H(O) C H(gW) =
U(g)V, so that H(O) C HY?*(0O). Likewise, gW C O implies U(g)V = H(gW) C H(O), and thus
HE(0) € H(0). O

Remark 4.8. The construction of the minimal and the maximal net can also be carried out on G
itself with respect to W& = qu/fl (W). It then makes sense to compare both nets and their properties.
For O C M, the relation q;j (0) C gW¥ is equivalent to O C gW, so that

() HE™ = HEP™
Likewise, q;/ll(O) D gW¢ is equivalent to O C gW, which shows that
() HE™ = HE™

If, however, W& C G is not the full inverse image of W C M, then these relations may fail.

4.2 The endomorphism semigroup of a standard subspace

To describe the semigroup Sy, we need the positive cone

Cy:={reg: —i-0U(x) > 0}, oU (x) U(exptx) (4.8)

~ dtli=o0

of a unitary representation U. It is a closed, convex, Ad(G)-invariant cone in g ([Ne99, Prop. X.1.5]).
The key point of the identity

S(h,Cy) = exp(C4)G" exp(C_)

in Theorem [2.20] is that it provides two different perspectives on the same subsemigroup of G, and
this is instrumental for the descriptions of the semigroups Sy. To see this connection, let us first
consider an antiunitary representation (U, H) with discrete kernel for a semidirect product G.,. We
consider the standard subspace V := V(h,U) C H from and Definition [2.54] The Monotonicity
Theorem [Ne22, Thm. 3.3] asserts that

Sy C S(h, Cy). (4.9)

Its proof is based on the fact that, for two standard subspaces Vi C Vg, we have log Ay, < log Ay,
in the sense of quadratic forms. Since these selfadjoint operators are typically not semibounded,
the order relation requires some explanation, provided in an appendix to [Ne22]. Put differently,
the Monotonicity Theorem asserts that the well-defined G-equivariant map

Oy = UGV = G/Gy — O = G/G°, U(g)V— Ad(g)h

is monotone with respect to the Cy-order on g (cf. Section [2.5)), hence the name.
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Theorem 4.9. ([Ne22l Thm. 3.4]) If (U, H) is an antiunitary representation of G, with discrete
kernel, then
Sy = exp(Cy)Gyexp(C_)  for Cy=Cyp.

The Borchers-Wiesbrock Theorem[4.21]in Appendix[4.5.1]immediately shows that exp(C;) C Sy.
Applying it again with —h and V/ = V(—h, U), we also get exp(C_) C Sy. Therefore the main point
is to show that the right-hand side in Theorem is a semigroup and that Sy is not larger (cf.
Section .

Example 4.10. (Poincaré group) In Quantum Field Theory on Minkowski space, the natural sym-
metry group is the proper Poincaré group P(d) = RV~ x Oy 4_1(R)" acting by causal isometries
on d-dimensional Minkowski space M := RM¥~1. Tts Lie algebra is g := p(d) = R»¥"1 x 501 4_1(R)
and the closed forward light cone

Cy = {(x0,x) € RM1: 25 > 0,22 > x?} (4.10)

is a pointed invariant cone in p(d). The generator h € so01 4_1(R) of the Lorentz boost on the
(20, x1)-plane

h(l‘o,xl, cee 71'd—1) = (.111,330,0, SN ,O)
is an Euler element and 7, = €™ defines an involution on g, acting on the ideal R:¢~1
(Minkowski space) by
™ (%o, %1, .., Ta—1) = (—To, —T1,T2, ..., Td-1)-

We apply the results in this section to G := P(d), = R"*~1 xS0 4_1(R).. A unitary represen-
tation (U, H) of G is called a positive energy representation if Cy C Cy. If ker(U) is discrete, then
Cy is pointed, and Cy = Cy follows from the fact that this is, up to sign, the only non-zero pointed
invariant cone in the Lie algebra g = p(d) for d > 2; for d = 2 there are four pointed invariant cones
which are quarter planes.

Here gy = ker(ad h) is the centralizer of the Lorentz boost:

go = ({(0,0)} x R¥"2) x (501 1(R) @ 504_2(R)) = (R¥"2 x 504_2(R)) ® RA,

and,
C+ = Og n g1 = Rzo(el + eo) and Cc_ = 709 n g-1—= Rzo(el - eo). (411)

The subsemigroup
S(h,Cq) ={9 € G: h—Ad(g)h € Cy4}

is easy to determine. The relation Ad(g)h — h € RY implies that g = (v,£) with Ad(¢)h = h, and
then Ad(g)h = Ad(v,1)h = —hv € —Cj is equivalent to hv € Cy, which specifies the closure Wg
of the standard right wedge

Wg={z e RV 121 > |20}

The two cones CL generate a proper Lie subalgebra of g. We therefore obtain with Lemma [2.23
S(h,Cy) = Wa % (S011(R)! x S04_5(R)) Z2 {g € G: gWr C Wi} = Sw,,

where SO1 1(R)T = exp(Rh). For any antiunitary positive energy representation of G, , the semi-
group Sy corresponding to the standard subspace V.= V(h,U) is given by

Sy = S(h,Cq) = Sy, (4.12)
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In fact, implies Sy C S(h,Cy), and since S(h,Cy) = Sw, = exp(C})Gw, exp(C_) and the
group Gyy,, is connected, hence contained in G™™ C Gy, so that follows.

For the simply connected covering group 67 we obtain the same picture because the involution
), acts trivially on the covering group G" of G".

Example 4.11. (Conformal groups SOz 4(R)) The Lie algebra of the conformal group G :=
SOz ¢(R)e of Minkowski space is g = s02 4(R), which contains the Poincaré algebra as those el-
ements corresponding to affine vector fields on V := R"¥~1, For d > 3 it is a simple hermitian Lie
algebra. It contains many Euler elements &, but they are all mutually conjugate (Proposition .
One arises from the element h = idy corresponding to the Euler vector field on V. Then g;(h),
j = —1,0,1, are spaces of vector fields on V which are linear (for j = 0), constant (for j = 1) and
quadratic (for j = —1).

Another important example is the element hy € s0q 4-1(R) C 509 g_1(R) corresponding to a
Lorentz boost in the Poincaré algebra (see Example .

We consider the minimal invariant cone Cy C g which intersects V in the positive light cone
C, C V. We obtain a complete description of the corresponding semigroups by

Sy = exp(C4)Gyexp(C-),
and here these semigroups have interior points because C'y generate the subspaces g+1.

Example 4.12. Another interesting example which is neither semisimple nor an affine group is
given by the Lie algebra
g = besp(V,w) := heis(V,w) x esp(V,w)

from Example Now we turn to the corresponding group and one of its irreducible unitary
representations. Choosing a symplectic basis, we obtain an isomorphism with

VeV 1oV =2R"GR"

with the canonical symplectic form specified by w((g,0),(0,p)) = (¢,p) and 7v(q,p) = (—q, p). Let
Mp,,,(R) denote the metaplectic group, which is the unique non-trivial double cover of Sp,,(R).
We consider the group

G = Heis(R*") x4 (RS x Mp,, (R)),

where R* acts on Heis(R?") = R x R?" by a,.(z,v) = (r?z,rv). Its Lie algebra is g = hesp(V,w).
Then I\ I\

H = L2 (Ri, 7;1:2(1&")) ~ 2 (Ri xR, =@ dx),
carries an irreducible unitary representation of G, where L?(R"™) =2 L?(V_;) carries the oscillator
representation Uy of Heis(R?") x Mp,,,(R). The Heisenberg group Heis(R?") is represented on H

by

(U(2,0,0)£)(\,z) = e*2 f(\, ), (4.13)
(U(O’%O)f)(/\’z) = ei/\<q7x>f()‘7x)v (414)
(U0,0,p) )N\, z) = f( N,z — Ap). (4.15)

The group Mp,,, (R) acts by the metaplectic representation on L?(R") via

U@ A, -) == Uo(9)f (A, ),
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independently of X\. The one-parameter group R} = exp(Rhg) acts by
(U'(r) Y\ x) == f(rA,z) for r>0.

We also note that we have a conjugation J on H defined by

(JH Y\ z) := f(A\,—x) satisfying  JU(g)J = U(1a(g)),

where 7¢ induces on g the involution e™ 84" = (—7,)7(cf. Example .

The positive cone Cyy C g is the same as the one of the metaplectic representation. It intersects
sp(V,w) in its unique invariant cone of non-negative polynomials of degree 2 on V. This implies
that (Cy)- = C_. To determine (Cy)y = Cy N g1, we observe that gy acts on L2(R") =2 L2(V_)
by multiplication operators. This shows that we also have (Cy )y = C4, so that we can determine
the semigroup Sy for the standard subspace V= V(h,U). It takes the form

Sy = exp(C4 )Gy exp(C-),

where Gy = G" is a double cover of Aff(R™)., its inverse image in Mp,,, (R).

4.3 Causal symmetric spaces

The following theorem follows from the Localization Theorem

Theorem 4.13. If M = G/H is a semisimple non-compactly causal symmetric space and (U, H)
an antiunitary representation of G, then the net HYF* satisfies (Iso), (Cov), (RS) and (BW).

Proof. In this case, Sy = Gw = G"H" C G" is a group by Theorem Since T = 7,6 coincides
on K with 73,, we further have H* C K™ C K™ so that Sy C G™™ C Gy. Therefore Lcmma
shows that HY™ satisfies (BW), and (RS) follows from Theorem [£.33] O

Theorem 4.14. If M = G/H is an irreducible compactly causal symmetric space and (U, H) an
antiunitary representation of G, then the net H™® satisfies (Iso), (Cov), (RS) and (BW) if and
only if

e the positive spectrum condition C C Cy is satisfied, and
e U(Gyw) commutes with J, i.e., T,(g9)g~' € ker U for g € H".
Proof. From [NO23a, Thm. 9.1] it follows that
Sw =GIlH"exp(Cy +C_) for Cp=4+CyNge, C=Cy4Nq.
Therefore Sy, C Sy is equivalent to
Ci C4+Cy and U(g)J =JU(g) for gecH"

The first condition implies that Cy # {0}. As kerU is discrete and g is simple or a sum of two
simple ideals, Cy is a pointed generating invariant cone with Cy 4+ = Cy. Conversely, C+ C £Cy
implies that Oy 4 = Cy = (Cy)+ (INO23a, Prop. 2.7(d)]). O
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4.4 Causal flag manifolds

Let M = G/Qp be an irreducible causal flag manifold. The results in this section can be found
in [MN25]. The fundamental group m1(M) is isomorphic to Z ([Wig98, Thm. 1.1]), so that there
exists for every k € NU {oo} a k-fold covering My, where M, is simply connected.

e M is a simple space-time manifold in the sense of Mack/de Riese [MdR07]. It carries a
global causal order (no closed causal curves).

o M;j, k < 0o, has closed causal curves, hence no global causal order.

e The open embedding ¢p;: V = g1 — M of the euclidean Jordan algebra V lifts to open
embedding tpz, 0 E — Mj,.

e In M), the canonical wedge region is
Whr, = LMk(Cj_) C M.

It is a connected component of the positivity domain W]\Jffk (h) of the Euler vector field X 1}\L4k
on Mj. In My, the positivity domain W;}k (h) has k connected components.

Examples 4.15. (a) For Minkowski space V = R"¥~! the conformal completion
M = (St x 8471y /{£1} C P(R*9)
is the isotropic quadric in P(R%%) on which G = SO 4(R). acts. In this case,
Mo =R x S4L

(b) For the euclidean Jordan algebra V = Herm,(C), we have M = U, (C), on which G = SU,..(C)
acts by fractional linear transformations

(CCL Z) 2= (az +b)(cz +d)7.

Here

U,(C) = R x SU,(C).

(c) For the euclidean Jordan algebra V = Sym, (R), the conformal compactification is the space
M of Lagrangian subspaces in the symplectic vector space (R?*",w), on which G = Sp,, (R) acts
naturally. Here M, =2 R x (SU,.(C)/SO..(R)).

To formulate existence criteria for nets on the My, we observe that the simply connected covering
group G acts on every My, k € NU {oo}. The centralizer G* of h in this group satisfies

mo(G") = m (M) = Z.
We pick g, € G" so that its connected component generates mo(G") and
Th(gn) = g5 - (4.16)

This element can be chosen to be central in an SLo (R)-subgroup with g7 € Z (G).
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Theorem 4.16. (Existence of nets) For an antiunitary representation (U, H) of éTh, a net H on
open subsets of My, satisfying (Iso), (Cov), (RS) and (BW) exists if and only if

e U satisfies the positive energy condition Cy C Cy.
e ¢?¥ ckerU for k < oo, and no condition for k = oc.

Proof. (Sketch; see [MN25]) In view of Lemmas and the existence of a net H satisfying
(Iso), (Cov) and (BW) is equivalent to Sw,, C Sy. Now

Swa, = Gw,, exp(C+C_) and Sy = Gyexp(C{ +CY) for CY = £Cy Ngi(h)

reduces the problem to the inclusion _ _
GWMk g G(V

and the positive energy condition

Ci CCy.
As CNT'WMk C C:‘WM = G" commutes with the Euler element h, the inclusion éka C Gyis equivalent
to {g7h(9) "1 g € Gy, } = g3% Cker U.
So it only remains to verify the Reeh—Schlieder condition. We refer to [MN25] for details. O

Theorem 4.17. (Existence and uniqueness of additive nets) For every antiunitary representation

(UH) ofé satisfying the positive energy condition Cy C Cy, there exists a unique additive net H
on open subsets of Moo satisfying (Iso), (Cov), (RS) and (BW).
On My, such nets exist if and only if, in addition, g%k CkerU.

Proof. Uniqueness: On every M}, the wedge regions form a basis for the topology. Every additive
covariant net H satisfying (BW) thus satisfies

H(@):H( U g.ka): SR ST

9.War, CO 9.Wa,, CO 9.Wa,, CO

so that H is determined by the representation U via H(Wyy, ) =V =V(h,U).
Existence: The argument for existence builds on nets for irreducible representations ([NO21|) and
direct integral techniques. O

The preceding theorem extends results by Brunetti, Guido and Longo [BGL93]| for the Jordan
algebra V.= RM¥~1 and the group G = SO3 4(R)..

4.4.1 Locality

Locality conditions concern open G-invariant subsets Dy, € M x M. Here are some relevant facts:
e M x M contains a unique open G-orbit D*.

e My, x My, contains infinitely many open G-orbits (D) nez, permuted the group m (M) 2 Z
acting by deck transformations.

e M x M, contains k open G-orbits D, n € Z/kZ, permuted by deck transformations of
Deck(My) =2 mi (M) /71 (My) = Z/KZ.
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Let g3, € G" be as above and pick z¢ € 3(€) such that 6 := exp(mad z¢) is a Cartan involution.

Theorem 4.18. (Locality properties of the nets) For the unique additive net associated to the
positive energy representation (U, H) of G, on My, k € NU{oo}, the following are equivalent:

(a) The locality condition for D}, (n-locality with n € Z/kZ):

01 x Oy C D; = H(Ol) - H(Og)/

(b) H(gp-War,) SHWy, ) for the dual wedge Wy, = 60.Wy .

(c) exp(2mze)gi" € ker U. |E|

4.4.2 The massless spin 0 representation on Minkowski space

We consider Minkowski space V = R%~1 and its conformal compactification M. On G= %2@(]&)6
the “minimal” positive energy representation (U, H) is the extension of the Poincaré representation
corresponding to massless spin 0-particles. _

It depends on the dimension d, to which quotient group of G the representation U descends, and
on which covering of M the net can be implemented. We have the following properties (cf. [BGL93]):

e d—2¢€4Z: U is defined on the adjoint group SO 4(R)./{£1} and the net lives on M.

o d € 4Z: U is defined on SOz ¢(R), with U(—1) = —1 and here also the net lives on M.

e d odd: U is defined on a 2-fold covering of SO 4(R). and the net lives on on My 2 St x Sd-1,
Remark 4.19. The n-locality condition on My (for n =0,1) is (n + 1)d € 2Z.

e For d even, the net therefore is 0- and 1-local, which corresponds to spacelike and timelike
locality on Minkowski space.

e For d odd, it is only 1-local, which corresponds to spacelike locality on Minkowski space.

These locality conditions relate to support properties of the fundamental solutions of the Klein—
Gordon equation (Huygens’ Principle). We refer to [MN25] for details.

4.5 Appendices to Section
4.5.1 Standard pairs

Definition 4.20. Standard pairs (U,V) consist of a standard subspace V of a complex Hilbert
space H and a unitary one-parameter group (U;)ieg on H such that U,V C V for ¢ > 0 and
U; = e with H > 0.

Theorem 4.21. (Borchers—Wiesbrock Theorem) Any standard pair defines an antiunitary positive
energy representation of Aff(R) 2 R x R* by

Ub,e®) == UAy ™" and  U(0,—1) == Jy. (4.17)

Conversely, all these representations define standard pairs.

16Note that ker U C G is central.
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Proof. This is the Borchers-Wiesbrock Theorem ([NO17, Thm. 3.18], see also [Bo92], [Wi93]). O

Proposition 4.22. Consider a Lie group G, = Gx{1,0}, where o € Aut(G) is an involution. Let
(U,H) be an antiunitary representation of G,. Suppose that (V,U?), j = 1,2, are standard pairs
for which there exists a graded homomorphism v: R* — G and x1,x9 € g such that

Jo=U(=1), A7Y* =U(y(e"), and U’(t)=U(exptz;), teR,j=12
Then the unitary one-parameter groups U and U? commute.

Proof. The positive cone Cyy C g of the representation U is a closed convex Ad(G)-invariant cone.
As we may w.l.o.g. assume that U is injective, the cone Cy is pointed.

Writing A;it/% = Ulexpth) and U} = Ul(exptx;) with h,z1, 29 € g, we have [h,z;] = z; for
j=1,2 and z1,22 € Cy by . If

gx(h) = ker(adh — A1)

is the A-eigenspace of adh in g, then [gx(h),g.(h)] € gryu(h), so that gy = D>\ oax(h) is a
nilpotent Lie algebra. Therefore n := (CyNgy) — (Cy Ngy) is a nilpotent Lie algebra generated by
the pointed invariant cone CyNg.. By [Ne99, Ex. VIL.3.21], nis abelian. Finally z; € CyNgi(h) Cn
implies that [x1, z2] = 0. O

One may expect that one-parameter groups U' and U?, for which (V,U7) form a standard pair,
commute. By Proposition this is true if they both come from an antiunitary representation of
a finite-dimensional Lie group. The following example shows that this is not true in general, not
even if the two one-parameter groups are conjugate under the stabilizer group U(H)y.

Example 4.23. On L%(R) we consider the selfadjoint operators
@) (@) =xf(x) and (Pf)(z)=if'(x),

satisfying the canonical commutation relations [P, Q] = i1. For both operators, the Schwartz space
S(R) C L%*(R) is a core. Actually it is the space of smooth vectors for the representation of the
3-dimensional Heisenberg group generated by the corresponding unitary one-parameter groups

(€ f)(x) =" f(z) and (e"Vf)(z) = f(z —1).

Since ¢’ is a smooth function for which all derivatives grow at most polynomially, it defines a
continuous linear operator on S(R) ([Tr67, Thm. 25.5]). Therefore the unitary operator T := €'Q
maps S(R) continuously onto itself, and

P:=TPT ' =@ pei@
is a selfadjoint operator for which S(R) is a core. For f € S(R), we obtain
s d

(Pf)(w) = ic"™ ™ f(x) = i(~i32*f(x) + f'(2)),
i
so that P = P + 3Q2 on S(R).
The two selfadjoint operators Q and e are the infinitesimal generators of the irreducible antiu-

nitary representation of Aff(R) = R x R*, given by

Ub,e!) = e e@ and  (U(0,-1)f)(z) = f(—2).
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Accordingly, the pair (A, J) with

A=e?? and J=U(0,-1)
specifies a standard subspace V which combines with U} := ei*e” to an irreducible standard
pair (V,U!). The unitary operator 7' commutes with A and with J because JQJ = —Q, so
that T'(V) = V. Therefore the unitary one-parameter group U? := '@’ Utle”Qs =¢'e" also defines
a standard pair (V,U?). These two one-parameter groups do not commute because otherwise the

selfadjoint operators P and P + 3Q? would commute in the strong sense, hence in particular on
their core S(R).

4.5.2 Regularity of unitary representations

Definition 4.24. We call an antiunitary representation (U,H) of G,, regular with respect to h,
or h-regular, if there exists an e-neighborhood N C G such that Vy = ) U(g)V is cyclic.
Replacing N by its interior, we may always assume that N is open.

geEN

A key motivation for [BN25] was the “regularity conjecture” from [MN24]. It asserts that, for
any Euler element h € g any antiunitary representation (U, H) of G, is h-regular. This conjecture
holds for connected reductive groups by Corollary [1.34] and for several specific classes of groups and
representations (see [MN24] for details).

Lemma 4.25. For an antiunitary representation (U, H) of G, , the following assertions hold:
(a) If U = Uy ® Us is a direct sum, then U is h-reqular if and only if Uy and Uy are h-regular.
(b) If U is h-regular, then every subrepresentation is h-regular.

(c) Assume that G has at most countably many connected components and let U = ff Uy, du(m)
be an antiunitary direct integral representation of G, , then U is regular if and only if there
exists an e-neighborhood N C G such that, for p-almost every m € X, the subspace V,,, v 1
cyclic.

Proof. (a) f U = Uy @ Us, then implies that Vy = Vy n @ Vo n for every e-neighborhood
N C G. In particular, V is cyclic if and only if Vi x and Vy y are.

(b) follows immediately from (a).

(c) Applying Lemma[D-3[b) to A := N, we obtain (c). O

Note that the following theorem does not require any assumption concerning the irreducibility
of the representation. Although its proof draws heavily from [FNO23|, which deals with irreducible
representations, Proposition is a convenient tool to reduce to this situation.

Proposition 4.26. Assume that G has at most countably many connected components and that
A C G is a subset. Then the following are equivalent:

(a) For all antiunitary representations (U, H) of G, , the subspace V4 := ﬂgeA U(g)V is cyclic.

(b) For all irreducible antiunitary representations (U, H) of G, , the subspace V4 is cyclic.

(¢) For all irreducible unitary representations (U, H) of G, the subspace V 4 is cyclic in 7—~[, where
V:=V(h,U).
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(d) (Characterization in terms of unitary representations) For all unitary representations (U, H)
of G, the subspace V4 is cyclic in H
Proposition 4.27. (Localizability implies regularity) Let § # O C W C M be open subsets such

that N := {g € G: g7*O C W} is an e-neighborhood. If (U, H) is an antiunitary representation for
which HYPX(W) =V and HYP*(O) is cyclic, then it is reqular.

Proof. By assumption HP?*(0O) is cyclic, and

HEP(0) € () M (W) = () U(g)HE(W) = () Ulg)V = V.

geEN geEN geN

It follows that V is cyclic. O

=1

Lemma 4.28. Suppose that (U, H) = ®7_,(U;,H;) is a tensor product of antiunitary representa-
tions of G, . Then the standard subspace V.= V(h,U) is a tensor product

V=V ®- --QV,,

and for every non-empty subset A C G the subset V4 := () .4 U(g)V satisfies

geEA
Va2 Via®: - ®Vpya. (4.18)

Proof. We have ¢ € V4 if and only if U(A)~1¢ C V. This shows that any £ = ¢ ® --- ® &, with
& € V; 4 is contained in V4, which is (4.18)). O

Regularity for a suitable wedge region

Theorem 4.29. Let (U, H) be an antiunitary representation of G, and V.= V(h,U) C H the
corresponding standard subspace. Then there ezists a net (H(O))oca on open subsets of G satisfying
(Iso), (Cov), (RS) and (BW) for some open subset W C G if and only if U is h-regular, i.e., Vy is
cyclic for some e-neighborhood N C G.

Proof. “=7: If a net H with the asserted properties exists, then V. = H(W), and for any relatively
compact open subset @ C W there exists an identity neighborhood N C G with NO C W. Then,
for all g~ € N, we have

U(9) *H(O) =H(g '.0) CH(W) =V, hence H(O)C Vy.

Now (RS) implies that U is h-regular.
“«<”: Assume that Vy is cyclic for an e-neighborhood N. Pick an open e-neighborhood N; C N
with NyN;* C N. Then

W := exp(Rh)Ny

is an open subset of G. We consider the net H := Hg%; 1y, defined by
HO) = () Ulgv.
geG,0CgW

This net satisfies (Iso) and (Cov) by Lemma [£.2]
We now verify the Reeh—Schlieder property (RS). So let ) # O C G be an open subset. By (Iso)
and (Cov), it suffices to show that H(O) is cyclic if O C N;. Then O C gW = gexp(Rh)N; implies

g € ON; ' exp(Rh) € NiN; ! exp(Rh) C N exp(Rh),

96



so that
HO)2 (] Ulgv=[)U@V=yy

gEN exp(Rh) geN

implies that H(O) is cyclic. This proves (RS). It follows in particular that H(WW) is cyclic, so that
Lemma c¢) implies H(W) = V. Therefore (BW) is also satisfied. O

Remark 4.30. Note that v € H™*((0) is equivalent to
grtoCcw = U(g) tvev.

If © C W is relatively compact, this condition holds for ¢ in an e-neighborhood. Therefore H™**(O)
consists of vectors v € H whose orbit map U?: G — H maps an identity neighborhood into V (cf.
Proposition d)). Put differently, the subset (U¥)~!(V) C G has interior points.

Remark 4.31. (a) Suppose that v € VN H* is an analytic vector and U(N)v C V holds for an
identity neighborhood N C G, then uniqueness of analytic continuation implies U(G)v C V, i.e.,
v EVg.

If, in addition, v is G-cyclic, then V¢ is a cyclic real subspace, so that its invariance under the
modular group of V implies with Proposition that V= Vg, i.e., that V is G-invariant. If U has
discrete kernel, this implies that h € 3(g). Hence 7, is trivial and therefore Jy commutes with G.
Therefore /' is a real orthogonal representation of G, and U is the complexification, considered as
a representation of G, on H = (H7')¢c. This is the context where QU (h) and Jy commute with G, .
(b) Another perspective on (a) is that the cyclic representation generated by any v € H* NVy is
such that U (h) and Jy commute with G. So v is fixed by the normal subgroup B with Lie algebra

b:=g1+[g1,0-1]+9-1.

4.5.3 Regularity for reductive Lie groups

From now on we assume that g is reductive and that G is a corresponding connected Lie group. We
choose an involution € on g in such a way that it fixes the center pointwise and restricts to a Cartan
involution on the semisimple Lie algebra [g,g]. Then the corresponding Cartan decomposition
g = £ @ p satisfies 3(g) C €. We write K := G? for the subgroup of #-fixed points in G.

For an Euler element h € g, we write g = g1 ® g2, where 3(g) C g1, h = ha + h, € g2 ® 3(g), and
g2 is minimal, i.e., go is the ideal generated by the projection hy of h to the commutator algebra.
We consider the involution 7 on g with

Tlg, =1dg, and 7|y, = 10.

We assume that 7 integrates to an involutive automorphism 7¢ of G. We write h := g and
q := g 7 C go for the 7-eigenspaces in g. Then there exists in q a unique maximal pointed
generating e®dP-invariant cone C' containing hs in its interior ([MNO23, Thm. 4.21] deals with
minimal cones, but these cones determine each other by duality). We choose an open f-invariant
subgroup H C G7, satisfying Ad(H)C = C. This is always the case for H = G (the minimal
choice). By [MNO23, Cor. 4.6], Ad(H)C = C is equivalent to Hx = H N K fixing h. Then

M:G/HgGQ/HQ for H2 = GQQH (419)

is called the corresponding non-compactly causal symmetric space (cf. Section [2.7.3]). The normal
subgroups G; C H acts trivially on M. The homogeneous space M carries a G-invariant causal
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structure, represented by the field (Cy, )mear of closed convex cones Cy,, C T,y (M), which is uniquely
determined by Cepy = C C q = T,y (M) (Subsection . By construction, eH € W,;(h), and we
write

W= Wi (h)en (4.20)
for the connected component of the base point in W, (h).

Definition 4.32. We say that the (anti-)unitary representation (U, H) of G, is (h, W)-localizable
in those open subsets O C M for which H™**(0) is cyclic.

Theorem 4.33. (Localization for reductive groups) If g is reductive and (U, H) is an antiunitary
representation of G, , then the canonical net HYf* on the non-compactly causal symmetric space

M =G/H from and W from satisfies (Iso), (Cov), (RS) and (BW).

Proof. As the standard subspace V is invariant under G; € G®™ and G acts trivially on M, the
real subspaces HY*(O) only depend on Ulg,. We may therefore assume that G = Ga, i.c., that G
is semisimple and that go(h) contains no non-zero ideal.

In view of Lemma c), assertion (a) follows from (b), applied to O = W. So it suffices to
verify (b). By Proposition we may further assume that (U, H) is irreducible.

Then (h, W)-localizability in the family of all non-empty open subsets of M follows from The-
orem It provides a net HY satisfying (Iso), (Cov), (RS) and (BW), and this net satisfies
HY(O) C H™%(0) for each O C M (Lemma[4.7). O

Corollary 4.34. (Regularity for reductive groups) Let G be a connected reductive Lie group. Then
there exists an e-neighborhood N C G such that for every separable antiunitary representation
(U, H) of G, and V=V (h,U), the real subspace Vn = (), n U(9)V is cyclic. In particular, (U, H)
18 h-regular.

geN

Proof. Let O CW C M = G/H (with M as in Theorem |4.33) be an open subset whose closure O
is relatively compact. In Theorem we have seen that HY?*(O) is cyclic. Further

N:={geG:g0CW}D{geG: gOCW}

is an e-neighborhood because O C W is compact. Therefore the h-regularity of (U, H) follows from
Proposition [£.27] O

Theorem 4.35. (Triviality of the semigroups of wedge regions in ncc symmetric spaces) If G is
a connected reductive Lie group and M = G/H a corresponding non-compactly causal symmetric
space as in , with causal Euler element h, and the mazimal causal structure, then the following
assertions hold:

(a) Sw=Gw ={geG": gW =W}
(b) Sw = G" if g is simple and Z(G) = {e}.

Proof. (a) First we apply the Localization Theorem to a unitary representation with discrete
kernel and Cyy = {0}; for instance a principal series representation. Then Sy = Gy C G" by
Theorem As W C W;;(h) is a connected component and G" preserves W (h), we obtain
Sy € G, and thus (a) follows.

(b) follows from Gy = G" in this case ([MNO24, Prop. 7.3]). O
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4.6 Localizability for the Poincaré group

The following result is well-known in AQFT ([BGL02, Thm. 4.7]). Below (cf. [MN24]) we derive
it naturally in the context of our theory for general Lie groups. It connects regularity, resp.,
localizability with the positive energy condition.

Theorem 4.36. (Localization for the Poincaré group) Let (U, H) be an (anti-)unitary representa-
tion of the proper Poincaré group P, = RV x L (identified with P,, ) and consider the standard
boost h and the corresponding Rindler wedge Wr C RV, Then (U, H) is (h, Wg)-localizable in the
set of all spacelike open cones if and only if it is a positive energy representation, i.e.,

Cy 2 Vi = {(20,%x): 7o > 0,23 > x*}. (4.21)
These representations are regular.

Note that Ad(Pi) acts transitively on the set £(p) of Euler elements, so that the choice of a
specific Euler element A is inessential.

Proof. First we show that the positive energy condition is necessary for localizability in spacelike
cones. In fact, the localizability condition implies in particular that H(Wpg) is cyclic, so that
Lemma implies Sy, C Sy. As a consequence, e; + ey € Cy, and thus V. C Cy by Lorentz
invariance of Cy. Therefore (U, H) is a positive energy representation.

Now we assume that (U, H) is a positive energy representation. For the standard boost, we have
h € 12 501 4(R), and the restriction (U|r, ,H) is (h, W)-localizable in the family of all non-empty
open subsets of dS?, where W = W N dS? is the canonical wedge region (Theorem .

Next we recall from [NO17, Lemma 4.12] that

Swr =1{9 € PL: gWr € Wr} = Wg x SO14(R)I},, .

where
SO14(R)y, = SO11(R)" x SO4_2(R)

is connected, hence coincides with L. It follows that
SWR = GZL exp(RZO(eo + el)) exp(RZO(—eo + el)).

Let us assume that (U,H) is a positive energy representation, i.e., that Cp 2 Vi (cf. (#.21)).
Then -
Cr =R>o(e1 £e9) CWg, sothat Sy, CSy.

By Lemma [£.2c), the net H™** satisfies H™*(Wg) = V.
Now suppose that C C W is a spacelike cone, so that

C=R,(CNdS?,

where C N dS? is an open subset of the wedge region W = Wx N dS? in de Sitter space. For
g t=(v/0) € 731, the condition C C g.Wp is equivalent to

g rC=v+0CCWg,
which in turn means that v € Wg and £.C C Wg. Then

UgV=U)"'U)"'voU@) v
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follows from Wgr C Sy, and therefore

H™(C)= () U@v> () U@ 'v
CCg.Wgr CCl—1.Wg
= N U(6)~'V = Hg(C nds?).
CNdS?Ce—1. (WrNdS9)

We conclude that, on spacelike cones with vertex in 0, the net H™®* coincides with the net HIU“aLX
on de Sitter space. As the latter net has the Reeh—Schlieder property by Theorem and all
spacelike cones can be translated to one with vertex 0, localization in spacelike cones follows.

Finally we show that (U,H) is regular. For v € Wg and a pointed spacelike cone C' with
v+ C C W, there exists an e-neighborhood N C G with v 4+ C C g.W for all g € N. This implies
that H™®*(v + C') C Vy, so that (U, H) is regular. O

Definition 4.37. (a) (Causal complement) Let M = R4 be Minkowski space. Its causal structure
allows us to define the causal complement (or the spacelike complement) of an open subset O C M
by

O ={zeM:(VyeO)(y—ux)?<0}°. (4.22)
This is the interior of the set of all the points that cannot be reached from E with a timelike or
lightlike curve.
(b) (Spacelike cones) In Minkowski space R'¢, we call an open subset O spacelike if 22 < x? holds
for all (zg,x) € O. A spacelike open subset is called a spacelike (convex) cone if, in addition, it is a
(convex) cone. (c¢) (Double cone) A double cone is, up to Poincaré covariance, the causal closure

]B%:N/ = (reo — V+) n (—Teo + V+)
of an open ball of the time zero hyper-plane B, = {(0,x) € Rb4 : x? < r2}.

Remark 4.38. Infinite helicity representations (U, H) of Py in R4 are not localizable in double
cones (Definition [4.37). Let V. = V(h,U) for h as in Example In [LMRI16, Thm. 6.1] it is
shown that, if © C R? is a double cone, then

H™(0)= (] U(g)V={0}. (4.23)

OCg.Wr

The argument to conclude can be sketched as follows. Infinite spin representations are
massless representations, i.e., the support of the spectral measure of the space-time translation
group is
OV = {(x0,x) € RM : 22 — x*> = 0,29 > 0}.

Covariant nets of standard subspaces on double cones in massless representations are also dilation
covariant in the sense that the representation of P, extends to the Poincaré and dilation group
R4 % (Rt x £), and that the net is also covariant under this larger group, cf. [LMR16] Prop. 5.4].
When d = 3, this follows from the fact that due to the Huygens Principle, one can associate
by additivity a standard subspace to the forward lightcone H(Vy) = > oy, H(O) (sum over all
double cones in V) and the modular group of H(V,.) is geometrically implemented by the dilation
group. As massless infinite helicity representations are not dilation covariant, it follows that they
do not permit localization in double cones. Properties of the free wave equation permit to extend
this argument to any space dimension d > 2 including even space dimensions, and the Huygens
Principle fails ([LMRI16], Sect. 8.2]). However, in Theorem we recover in our general setting the
result contained in [BGLO02, Thm. 4.7] that all positive energy representations of P, are localizable
in spacelike cones.
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5 Perspectives

5.1 Additivity

In this subsection, we take a closer look at the additivity condition (Add) for nets of real subspaces.
We show in particular that the nets H} are always additive. For causal flag manifolds, this im-
plies already that nets satisfying (Iso), (Cov), (BW) and (Add) are uniquely determined by the
representation (U, H) of G,, (cf. [MN25]).

Proposition 5.1. For a real subspace E C H™°, the net Héw is additive.

Proof. Let O C M be open and (O,), e an open covering of O. We write gy : G — M = G/H for
the quotient map and consider some ¢ € C2°(q;(O)).

The open subsets qIT/[l((’)j) form an open cover of q;;((’)). Therefore Lemma implies the
existence of ji,...,jr and test functions ., supported in q&l(OﬂL such that ¢ = 1 + -+ + @p.
Now

k k
U™(p)EC Y U ™(p)EC Y H'(0;) €Y HE'(0))
= =1 j€d
implies that H(0) C 3° et HM (0O,), and additivity thus follows from isotony. O

—

5.2 Locality

Definition 5.2. Let H be a net of real subspaces on M = G/H that is isotone and covariant. In
M x M, we defined the locality set of H by

LH: U 01XOQQM><M.
H(O1)CH(O2)’

By definition, this is an open subset, and (Cov) implies that it is G-invariant. Moreover, it is
symmetric in the sense that (x,y) € Ly implies (y,z) € L.

The subset Ly C M x M completely encodes the locality properties of the net H in a G-invariant
subset of the set of pairs in M. To connect locality properties of a net H with the given structures
on M therefore reduces to comparing Ly with the given geometric data.

Lemma 5.3. If H is additive and O1, Oy are open subsets of M with O1 x Oy C Ly, then
H(O1) C H(O,)'.
This corresponds to the locality condition (Loc) in Section

Proof. Since H is additive, it is also isotone, and the real subspace H(Os) is generated by the
subspaces H(C), where C C Os is a relatively compact open subset of Oy. So it suffices to show that
H(O1) C H(C)' for such subsets.

For any (x,y) € Oy x C C Ly, there exist open subsets OY, Oy € M with

z€OICO, YOO, and H(OY CHOyY.

Then, for each x € O, the sets (Og)yeg form an open covering of the compact subset C C O, so

that there exist finitely many points y1,...,y, € Oz with

CQOZIU-~-U(’);”7L.
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Then
O, =0%nN---NO» CO;

is an open neighborhood of z for which H(O,) C H(Oj )" for j = 1,...,n. Additivity of H thus
implies H(O,,) € H(C)’. Finally, we observe that the O, form an open cover of Oy, so that additivity
further implies that H(O1) C H(C)". O

Remark 5.4. If W and W' are open subsets of M with H(W) =V and H(W'’) = V', then we have
Ly =G W xW)UG.(W' x W) C Ly.
If H is additive, it follows from Lemmathat O1 x Oy C Ly implies H(O1) C H(O2)'.

Examples 5.5. (a) If M = R»¥~! is Minkowski space and W = Wp is the Rindler wedge, then
W' = —Wg and
Ly =G.(WxW')CMxM

is the set of spacelike pairs. For an open subset @ C M, the maximal open subset O’ satisfying
Ox0' CLw

is called the causal complement of O.

The same picture prevails for de Sitter space ds? C R14,
(b) For M = S', a causal flag manifold of G = SL3(R), the wedge regions are open non-dense
intervals W C S!' (Example . If W = Wj;(h), then W' = W (=h) is the interior of the
complement of W, and

Ly =G.(WxW') =M\ Ay.

So (z,y) € Ly if and only if z # y.
(c) In the non-compactly causal symmetric space M = SL4(R)/SO22(R), not all acausal pairs are
contained in Ly and M x M contains several open acausal G-orbits.

Remark 5.6. In the context of abstract wedges, represented by elements of the set
G(G.,) :={(z,7) € g x Grp: Ad(T)z = x,7° = ¢}
(cf. Exercise , there is a natural complementation map
(x,7) = (z,7) == (—z, 7).

In this context, it is a natural question if (h,7,) = (—h,73,) is contained in the G-orbit of (h, ).
This is equivalent to the symmetry of A and the additional condition that there exists a g € G™
with Ad(g)h = —h.

If this is the case and (U, ) is an antiunitary representation of G, , then V' = U(g)V. For any
net H satisfying (Cov) and (BW), this implies that

W x g W C Ly.

We refer to [MN25] for a detailed discussion of locality properties of nets of causal flag manifolds
and to [MN2]] for a discussion of twisted locality conditions.
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5.3 Representations of Lie supergroups

Lie supergroups and their unitary representations arise naturally in Physics in connection with
supersymmetry (cf. [Gu75]). It would be interesting to extend the theory developed in these notes
to this context, where the Euler element h € g is supposed to be an even element.

Definition 5.7. A Lie supergroup is a pair (G,g), where g = g5 & g7 is a finite-dimensional Lie
superalgebra and G is a real Lie group with Lie algebra gg, acting smoothly by automorphisms on
g via Ad: G — Aut(g) in such a way that the action on gy is the adjoint action of G.

Definition 5.8. A unitary representation of a Lie supergroup (G, g) is a pair (U, 8), where (U, H)
is a unitary representation of the Lie group G on a graded Hilbert space H = Hgy ® Hy, preserving
the grading, and

B:g— End(H*>)

is a representation of the Lie superalgebra g on the space of smooth vectors of U ([NSTT]).

Problem 5.9. One can associate to each real subspace E C H~>° (distribution vectors for U) the
closed real subspaces HS (O) generated by

B(U()U>*(C(O,R))E.

Does this construction lead to nets that are compatible with fermionic nets in AQFT? Possibly one
can develop a “supersymmetric” variant of the theory described in these notes.

Here are some relevant structures and observations.

Definition 5.10. (The *monoid associated to a Lie supergroup) The anti-linear map

—x ifx € gy,

—/—1x ifxegf.

is an anti-automorphism. It extends to an anti-linear anti-automorphism

gc —> gc, z+— ¥, defined by z*:= {

U(gc) = Ulgc) , D= D* (5.1)
in a canonical way. Consider the monoid S with underlying set G x U(gc) and multiplication

(D1,91)(D2, g2) = (D1g1 -+ - D2, g192)

where g - D denotes the adjoint action of ¢ € G on D € U(gc). The neutral element of S is
15 := (lU(gC),e). The map

S—S,s+ s definedby (D,g)":=(¢"' D*, g7

is an involution of S.

Recall that U(gc) is an associative superalgebra. An element (D,g) € S is called odd (resp.
even) if D is an odd (resp. even) element of U(gc).

Replacing in this construction the elements g € G by compactly supported smooth functions
on G, one can even construct a graded s-algebra (C2°(G),*) in such a way that every unitary
G-representation integrated to a x-representation of C2°(G) by bounded operators. This way, one
even obtains “supergroup C*-algebras”. We refer to [NS16] for details.
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Remark 5.11. From the table in [NST1, §2.5] we get some information on which finite-dimensional
simple Lie superalgebras g have non-trivial unitary representations. According to [NS11l §6], for
any unitary representation of G = (G, g), we must have the inclusion

Cone(g) = cone{[z,z]: x € g7} C Cy = {z € g5: —i0U(x) > 0}.

For a unitary representation with discrete kernel, the cone Cy is pointed, so that the pointedness
of the cone generated by the brackets of odd elements is necessary for the existence of non-trivial
unitary representations. Accordingly, [NS1I, Thm. 6.2.1] compiles a negative list of simple Lie
algebras for which this is not the case.

5.4 The geometric structure on M

Let (U, H) be an antiunitary representation of G, and V:= V(h,U) C H be the canonical standard
subspace obtained from the BGL construction (Exercise resp., (0.1). Let E C H ™ be a finite-
dimensional linear subspace, invariant under the subgroup H C G and M := G/H. Then we obtain
a net HY on M, satisfying (Iso) and (Cov).
Then
Wg:={gH € M: U *(9)E C Hrnst’

specifies an open subset of M that deserves to be called the wedge region associated to E, but it
may be empty; depending on the subspace E.
If Wg # ), then Proposition implies that

HY(Wg) €V and  exp(Rh)Wg C Wk,
For £ € V*° := VN H*>, we have

i t/2m

d ,
(€ 0UR)E) = 2| (6, Me) = 2| (€, A7) <0 (5:2)

because the convex function ¢ — (¢, A\t,/ °T¢) on [0, 7] takes its minimal value in ¢ = 7 and has a
local minimum in ¢ = 0. Here convexity follows from the Spectral Theorem, which implies that it

is a Laplace transform, and £ € V= FiX(JVA\l/ 2) implies that it is an even function.
For o € E and o € C°(Wg,R), we have U(p)a € V°, so that we get

(U(p)a, idU (h)U(p)a) < 0.

For ¢ — 44, g € W, we obtain
(0, iU (Ad(g)""h)a) < 0

in the sense of distributions on G. Maybe these inequalities can be related to the generalized
positive energy conditions appearing in [JN24].

Remark 5.12. In this context, it becomes apparent that the closed convex cone C(Wg) C g,
generated by
Ad(g)_1h7 g € WE7

plays an important role. It is clearly invariant under e®2d” so that
C(Wg) C C(We)4 +go(h) = C(Weg)—  for  C(We)s := £C(Wg) Ng+1(h) € C(Wg)
(cf. Lemma .
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Here is an alternative approach.

Proposition 5.13. Consider an antiunitary representation (U, H) of G, and the corresponding
standard subspace V :=V(h,U). Assume that the net H on open subsets of M = G/H satisfies (Iso)
and (Cov). Suppose that there exists an open subset ) £ O C M for which H(O) is cyclic and
contained in V. Then (BW) holds for the open subset W := exp(Rh).O.

Proof. Clearly, W is an exp(Rh)-invariant open subset of M and (Cov) and (Iso) imply that H(W) C
Vin an U (exp Rh)-invariant subspace. As H(W) contains H(O), it is cyclic, so that H(W') = V follows
from Proposition [1.20 O

Corollary 5.14. Assume that the net H on open subsets of M = G/H satisfies (Iso), (Cov), (RS)
and (Add) and that there exists an open subset O C M such that H(O) C V = V(h,U). Then the
union WH of all such open subsets is non-empty, open, exp(Rh)-invariant, and satisfies

HWH) =v.

Problem 5.15. Compare W with W (h) for causal homogeneous spaces M = G/H.

5.5 Classification of nets of real subspaces

We expect that there are various contexts in which nets could be classified. Specifically, the (BW)
property determines the net for a given antiunitary representation (U, H) of G, on all wedge regions
gW,ge G, in M.

For causal flag manifolds, this fact already implies that a net satisfying (Iso), (Cov), (RS), (BW)
and (Add) is uniquely determined by the antiunitary representation (U, H) of G, (see [MN25] for
details).

Problem 5.16. Consider G := Aff(R), with the non-symmetric Euler element h = (0,1) (Ex-
ample [2.18). Here the intervals (z,00), € R, are natural wedge regions in M = R. Given an
antiunitary representation (U, H) of G, = Aff(R), is it possible to classify all nets on open subsets
of R that satisfy the (BW) condition? Here additivity and locality conditions certainly help to
reduce the problem.

For instance, if H is additive, then it is easy to see that the whole net is determined by the real
subspace H((0,1)), assigned to the open unit interval (0,1). So one has to determine which real
subspaces arise in such nets.

A The category of WW*-algebras

By the Gelfand—Naimark Theorem, C*-algebras can be characterized as closed *-subalgebras of
some B(H), H a complex Hilbert space. On the other hand, we have defined von Neumann algebras
directly as *-subalgebras M C B(H) satisfying M"” = M. So they are in particular closed with
respect to the weak-*-topology on B(H), specified by the subspace By (H) C B(H)* of trace class
operators. As B(H) = By(H)*, the duality theory of Banach spaces easily implies that M = Q*
for Q := By (H)/ M. Hence every von Neumann algebra has a predual.

This observation can be used to specify von Neumann algebras axiomatically, independently of
an embedding in some B(H).

Definition A.1. A C*-algebra M is called a W*-algebras if it has a predual, i.e., there exists a
closed subspace M, C M* with M = (M,)* as Banach spaces.
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This approach has been pursued by S. Sakai, and his monograph [Sa71] is an excellent reference.
[SaT1l Cor. 1.13.3] asserts in particular that WW*-algebras have a unique predual M.. Its elements
are called normal linear functionals, they are the continuous linear functionals for the (M, M,)-
topology on M, i.e., the coarsest topology for which all functionals in M, are continuous. Any
normal selfadjoint functional is a difference of two positive ones, and the positive normal functionals
 can also be characterized by the property that, for every uniformly bounded increasing directed
subset (z;);es of M, we have

p(supz;) = sup p(x;)
([Sa7ll, Thm. 1.13.2]).

We also note that W*-algebras always have an identity, which can be derived from the Krein—-

Milman Theorem because it ensures the existence of extreme points in the unit ball of M ([Sa71

§1.7)).

Examples A.2. (a) For every complex Hilbert space H, the full operator algebra B(H) is a W*-
algebra with predual B(H). = B1(H) (trace class operators).

(b) For every o-finite measures space (X, &, ), the Banach algebra L (X, &, i) is a commutative
W*-algebra with L= (X, &, u). = LY(X, 6, p).

The same holds for £>°-direct sums (whose preduals are ¢!-direct sums), and all commutative
W*-algebras are such sums. More intrinsically, they can be described as the space L%, (X, &, ) of
bounded, locally measurable functions on a semi-finite measure space (X, S, u). Here semi-finite
means that every £ € & with u(FE) = oo contains a measurable subset of finite positive measure,
and locally measurable means measurable on every measurable subset of finite measure.

Definition A.3. A morphism of W*-algebras is a complex linear *-algebra morphism 7: M — N
with 7* N, C M,, i.e., pullbacks of normal functionals are normal. We call these algebra morphisms
normal. For every complex Hilbert space H, a normal representation (mw,H) of M is a normal
morphism 7: M — B(H).

Remark A.4. (a) For normal states, the GNS construction produces a normal representation.
(b) This is more generally true for semi-finite weights. A weight w: M, — [0, 00] is an additive,
positively homogeneous function. It is called normal if it is compatible with bounded sup’s. A weight
w on M is called semi-finite if the set

{MeM; | wM) < oo}

generates a #-algebra which is o(M, M, )—dense in M.

The GNS construction and the Tomita—Takesaki Theorem extend to normal weights and faithful
normal semi-finite weights always exist ([Bla06l I11.2.2.26]). Normal semi-finite weights are sums
(in the sense of summability of general families) of normal positive forms (cf. [Haa75b]). As a con-
sequence, any von Neumann algebra M has a standard form representation (cf. [BGN20], [Bla0d],
[BGN20, §3.1]).

Remark A.5. (a) Any o-finite measure is semi-finite. If X is a set, then the counting measure
p: P(X) = NoU {0}, w(E):=|E|

is semi-finite. It is o-finite if and only if X is countable.
(b) If (X;,6;, i1j)jes are semi-finite measure spaces, and we put

X::UjeJXj, G ={ECX:(Vje J)ENX;€6;} and puE):=>» p(EnX;),
jeJ
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then & is a o-algebra on X, u is a measure, and (X, &, i) is a semi-finite measure space. Exercise
shows that, conversely, up to sets of measure zero, any semi-finite measure space is such a direct
sum of finite measure spaces.

Exercises for Appendix [A]

Exercise A.1l. (Direct sums of von Neumann algebras) Let M; C B(#,;) be a family of von
Neumann algebras, H := @jGJHj the Hilbert space direct sum of the H; and

széﬁkaj:wkMﬁmJeIlﬂﬁt%EM@H<“%

jeJ
the ¢>°-direct sum of the von Neumann algebras M; with the norm |[M|| := sup;¢ ;|| M;]|. Show
that M can be realized in a natural way as a von Neumann algebra on .
Exercise A.2. (Separability and o-finiteness) Let (X, &, p) be a measure space. Show that:
(a) If f € LP(X, ), 1 < p < oo, then the measurable subset {f # 0} of X is o-finite.

(b) If H C L?(X, p) is a separable Hilbert subspace, then there exists a o-finite measurable subset
Xo C X with the property that each f € H vanishes u-almost everywhere on X§ = X \ Xj.

Exercise A.3. Let (X, &, i) be a measure space. Show that there exist measurable subsets X; C
X, j € J, of finite measure such that

—

L(X,m) =P

Hint: Use Zorn’s Lemma to find a maximal family (X;),cs of measurable subsets of finite positive
measure of X for which pu(X; N Xy) = 0 for j # k. Conclude that the corresponding subspaces
L*(X;, p|x,) of L?(X, ) are mutually orthogonal and that the intersection of their orthogonal
complements is trivial. For the latter argument, use Exercise a).

jEJL2<XjaM|Xj)'

B From unitary to antiunitary representations

Lemma B.1. (The antiunitary extension) Let (U, H) be a unitary representation of G and write H

for the Hilbert space H, endowed with the opposite complex structure. Then the following assertions
hold:

(a) On H=HoH we obtain by ﬁ(g) =

extends by U(m)(v,w) := J(v,w) := (w
corresponding standard subspace V := v(h,

U(g) ® U(mn(g)) a unitary representation which
,v) to an antiunitary representation of Gr,. The
U) coincides with the graph

V=T(AY?), (B.1)
and its modular operator is A=As AL

(b) If U extends to an antiunitary representation of G, by J = U(ty), then the following asser-
tions hold:
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(1) ®: H®2 = H, (v, w) = (v, Jw) is a unitary intertwiner of U and the antiunitary repre-
sentation U* of G, on H®?, given by

Ullg =U®?  and  U(m)(v,w) := J*(v,w) := (Jw, Jv).
(2) The standard subspace V¥ := V(h,U*) coincides with the graph T'(Ty) of the Tomita oper-
ator Ty = JAY/? of V.

(3) The antiunitary representation U is equivalent to the antiunitary representation U®? of
G, on H®2.
(4) If AC G is a subset, then V4 is cyclic in H if and only if V4 is cyclic in H.

Proof. ([MN24]) (a) The first assertion is a direct verification (cf. [NO17, Lemma 2.10]). Since
& _ e27ri8[7(h) =A® Afl’

the description of the standard subspace V = Fix(JAY2) follows immediately.
(b) (1) Clearly, ® is a complex linear isometry that intertwines the antiunitary representation U

with the antiunitary representation U f,
(2) As A = @7 TAP = A D A, the relation

(v, w) = JHA)Y2 (v, w) = (JAY?w, JAY?v) = (Tyw, Tyv)

is equivalent to w = Tyv. Hence V¥ = I'(Ty).

(3) As the restrictions of U®2 and U¥ to @ coincide, [NO17, Thm. 2.11] implies their equivalence
as antiunitary representations. However, in the present concrete case, it is easy to see an intertwining
operator. The matrix

a= g (T 02w ()

defines a unitary operator on H®? commuting with U¥(G). It satisfies J92AJ®2 = A* = A~ so
that
AJR2ATE = 42992 = g
(4) If Ulg extends to an antiunitary representation U of G, on H, then (3) implies that
U = U®2, and any equivalence W: (U, H) — (U®2, H®2) maps V4 to (VB V)4 = V4 B V4. Therefore
V4 is cyclic if and only if V4 is cyclic in H. O

The following definition extends the classical type of irreducible complex representations to the
case where the involution on G is non-trivial. For a unitary representation (U, H), we write (U, H)
for the canonical unitary representation on the complex conjugate space H by U(g) = U(g). We
observe that, for an antiunitary representation (U, H) of G, , its commutant

U(Gr) ={A € B(H): (Vg € Gy,) AU(g) = U(9)A}={A € U(G)": U(mn)A = AU ()}
is only a real subalgebra of B(H) because some U(g) are antilinear.

Definition B.2. ([NO17, Def. 2.12]) Let (U, H) be an irreducible unitary representation of G. We
say that U is (with respect to 75,), of
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e real type if there exists an antiunitary involution J on H such that U%(7;,) := J extends U to
an antiunitary representation U* of G, on H, i.e., JU(g)J = U(m4(g)) for g € G. Then the
commutant of U*(G,,) is R.

e quaternionic type if there exists an antiunitary complex structure I on H satisfying I1U (g)I ! =
U(7i(g)) for g € G. Then Uory, = U, U has no extension on the same space, and the antiuni-
tary representation (U, H) of G, with U|g = U & (U o 7,) is irreducible with commutant H.

o complex type if U o7, 2 U. This is equivalent to the non-existence of V € AU(H) such that
U(th(g)) = VU(g)V ! for all g € G, i.e., to the non-existence of an antiunitary extension of U
to G, on H. Then (U, H) is an irreducible antiunitary representation of G,, with commutant

C.

Remark B.3. (Antiunitary tensor products) Let G = G; x G2 be a product of type I groups
and 7 an involutive automorphism of G preserving both factors, i.e., 7 = 71 X 5. We want to
describe irreducible antiunitary representations (U, H) of the group G, = G x {idg, 7} using [NO17,
Thm. 2.11(d)].

(a) The first possibility is that Ul is irreducible, so that U(G)" =2 R. Then

(Ula, M) = (Ui, Hi) @ (Uz, Ha)

with irreducible unitary representations (U;, ;) of G, both extending to antiunitary representa-

tions Uf of G;. Hence both U; and U, are of real type.
(b) The second possibility is that Ulg is reducible with U(G)" = C or H, so that

U‘Gg‘/@(VOT),

where (V,K) is an irreducible unitary representation of G of complex or quaternionic type. Now
V =U; ® Uy, and thus

HE(Hi@H2) @ (H1®Hs), Ulg=(U1@Us)@® (Uior @Uzom).

If U; is of complex type, then U; OT] 2 U; implies that V is of complex type. If both Uy and Us are
of quaternionic type, then U or; 2 U; for j=1,2implies V o7 2V, so that V is of quaternionic

type.

C Smooth and analytic vectors

In this appendix, we collect some material on distribution vectors and hyperfunction vectors of
unitary representations U: G — U(H) that we use in this paper.

C.1 The integrated representation

Definition C.1. Let G be a Lie group. We fix a left-invariant Haar measure ug on G and we
often write dg for dug(g). This measure defines on L'(G) := L'(G, uc) the structure of a Banach-
x-algebra by the convolution product and

(0% 9)(x) = /G PV D) duclg), and  ¢*(g) = 2@ DAa(g) " (1)
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is the involution, where Ag : G — Ry is the modular function determined by

/ o) dpic(y) = / o) AG(y) Vduc(y) and
G G
Ac() /G o(yz) duc(y) = /G o) dualy) for € Cu(G).
We put
2'(9) = o(g™Y) - Aalg)™"  so that /G o(9) dc(g) = /G (@) ducle).  (C2)

The formulas above show that we have two isometric actions of G on L'(G), given by

Agf)(@) = flg™2) and  (pyf)(x) = f(zg)Ac(g)- (C.3)

Note that
()\gf)* = pgf* and ()‘gf)v = pgfv- (C.4)

Now let (U, H) be a continuous unitary representation of the Lie group G, i.e., a homomorphism
U:G— UH),g — Ul(g) such that, for each n € H, the orbit map U"(g) = U(g)n is continuous.
For ¢ € L*(G) the operator-valued integral

Ulp) = /Gw(g)U(g) dg

exists and is uniquely determined by

1 U(0)) = /G S U@ g for 5, e (C.5)

Then |U(¢)|| < |l¢]l1 and the so-obtained continuous linear map L(G) — B(H) is a representation
of the Banach-x-algebra L1 (G), i.e., U(p* ) = U(p)U(v)) and U(¢*) = U(p)*. We also note that

U(g)U(p) =U(Ngp) and  U(p)U(g) =Ul(p,'¢) for geG,peL'G). (C.6)
For ¢4(x) := ¢(xg), we then have v, = Ag(g9) " py¢ by (C.3), and thus by (C.6)
Ulpg) = Dalg) "' U(@U(g™")  for geG. (C.7)

C.2 The space of smooth vectors and its dual

A smooth vector is an element 1 € H for which the orbit map U" : G — H, g — U(g)n is smooth.
We write H™® = H>°(U) for the space of smooth vectors. It carries the derived representation dU
of the Lie algebra g given by

. Ulexptx)n —
dU(z)n = %gr(l) w (C.8)

For x € g, we write OU (z) for the infinitesimal generator of the one-parameter group U (exp tx),
so that U(exptr) = eV, As H> is dense and U(G)-invariant, OU (x) is the closure of dU ()
(IRS73, Thm. VIIL10]).
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We extend this representation to a homomorphism dU: U(g) — End(H*°), where U(g) is the
complex enveloping algebra of g. This algebra carries an involution D — D* determined uniquely
by * = —x for x € g. For D € U(g), we obtain a seminorm on H> by

po(n) = [aU(D)n|  for neH™.
These seminorms define a topology on H* which turns the injection
n: 1 = HUD, € (AU (D)) peucae) (C.9)

into a topological embedding, where the right-hand side carries the product topology (cf. [Mag92]
3.19]). It turns H™ into a complete locally convex space for which the linear operators dU (D),
D € U(g), are continuous. Since U(g) has a countable basis, countably many such seminorms
already determine the topology, so that H° is metrizable. As it is also complete, it is a Fréchet
space. We also observe that the inclusion H* — H is continuous.

The space H> of smooth vectors is G-invariant and we denote the corresponding representation
by U>. We thus obtain a smooth action of G on this Fréchet space ([Nel(]). We have the
intertwining relation

AU (Ad(g)x) = U(g)dU(x)U(g)"" for geG,z€g.

If o € CX(G) and € € H, then U(p)& € H™ and differentiation under the integral sign shows that

W@V ()e = U(-a"p)e, where (")(0) = | _ollexpt)g).  (C.10)

A sequence (¢n)nen in C°(G) is called a d-sequence if [, p,(g)dg = 1 for every n € N and,
for every e-neighborhood U C G, we have supp(p,) C U if n is sufficiently large. If (¢n)nen is a
d-sequence, then U(p, )¢ — &, so that H* is dense in H.

We write H~°° for the space of continuous anti-linear functionals on H°. Its elements are called
distribution vectors. The group G, U(g) and C°(G) act on n € H™>° by

o (U(g)n)(&) :=n(U(g7")¢), g € G, & € H*™.
If U: G — AU(H) is an antiunitary representation and U(g) is antiunitary, then we have to
modify this definition slightly by (U~>°(g)n)(§) :=n(U(g~1)¢).

o (AU>(D)n)(§) :=n(dU(D*)E), D € U(g),§ € H™.
o U ®(p)n=noU>(¢p*), p € CZ(G).
We have natural G-equivariant linear embeddings
W&y gy (C.11)

It is an important feature of that the representation of U(g) on H~°° provides an embed-
ding of the whole Hilbert space H into a larger space on which the Lie algebra acts. The following
lemma shows that, H* is the maximal g-invariant subspace of H C H~°° and that the subspace H
generates H~°° as a g-module.

Lemma C.2. The following assertions hold:

(a) H™® ={£ € H CH>: (VD € U(g)) dU=(D)E € H}.
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(b) H™°° = span (AU > (U(g))H).
Proof. (a) This follows by combining [Oeh20, Prop. A.1], asserting that
D(OU(z)) ={§ € H: dU™>(x)§ € H},
with the fact that
H>® =({D(©OU(z1) - 0U(zn)): n €N,zy, ..., 2y € g}

(INel0, Lemma 3.4]).

(b) Let n € X~ and consider H> as a subspace of the topological product HY(9) . By the Hahn-
Banach extension theorem, 7 extends to a continuous antilinear functional 77 on H%(®). Since the
dual of a direct product is the direct sum of the dual spaces, there exist Dy,...,D, € U(g) and
&,...,&, € H, such that

n

n(€) =Y (AU(D;)E,&) =Y (§,aU>(D))g;)  for &€ H™,

j=1 =1
which means that n = 37, dU~>°(D})¢;. O

For each ¢ € C'°(G), the map U(p): H — H is continuous, so that its adjoint defines a weak-
k-continuous map U~ >°(¢*): H™>° — H. We actually have U~ (p)H > C H> as a consequence
of the Dixmier-Malliavin Theorem [DM78, Thm. 3.1], which asserts that every ¢ € C2°(G) can be
written as a finite sum of functions of the form ¢; * @9 with ¢; € C°(G).

C.3 The space of analytic vectors and its dual

In this subsection, we briefly discuss the space of analytic vectors of a unitary representation of a
Lie group. Let (U,H) be a unitary representation of the connected real Lie group G. We write

He =N (U) CH

for the space of analytic vectors, i.e., those & € H for which the orbit map U¢: G — H, g+ U(g)¢,
is analytic.

To endow H“ with a locally convex topology, we specify subspaces H{, by open convex 0-
neighborhoods V' C g as follows. Let ng: G — G¢ denote the universal complexification of G and
assume that ng has discrete kernel (this is always the case if G is semisimple or 1-connected). We
assume that V' is so small that the map

nagv: Gy =G xV = Ge, (g,2)— ng(g)exp(iz) (C.12)

is a covering. Then we endow Gy with the unique complex manifold structure for which ng v is
holomorphic.
We now write H$, for the set of those analytic vectors ¢ for which the orbit map Us: G — H
extends to a holomorphic map
US: Gy — H.
As any such extension is G-equivariant by uniqueness of analytic continuation, it must have the
form

U‘g/(g,x) =U(g)e?"@¢  for geG,zeV, (C.13)
so that HY C N,y D(ePV@).
The following lemma ([FNO23, Lemma 1]) shows that we even have equality.
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Lemma C.3. If V C g is an open conver 0-neighborhood for which (C.12)) is a covering, then
MY = Npev D(?V).

Proof. It remains to show that each & € ),y P(e'?V®)) is contained in H$. For that, we first
observe that the holomorphy of the functions z — ¢V (@)
disc in C implies that the H-valued power series

v on a neighborhood of the closed unit

fele) = S oU )"
n=0

converges for each z € V. Further, [Go69, Thm. 1.1] implies that £ € H*°, so that the functions = —
OU (z)"¢ = dU(z)™¢ are homogeneous H-valued polynomials (cf. [BS71]). Thus [BS71, Thm. 5.2]
shows that the above series defines an analytic function f¢: V' — H. It follows in particular that &
is an analytic vector, and the map

US: Gy =M, (g,2) = Us(g,2) = U(g)e™ g

is defined. It is clearly equivariant. We claim that it is holomorphic. As it is locally bounded, it
suffices to show that, for each n € H“, the function

f: GV%Ca f(gvx) = <77,U£(g,f£)>
is holomorphic ([Ne99, Cor. A.IIL.3]). As

flg,x) = (U(g)"'n, V¢

and the orbit map of n is analytic, f is real analytic. Therefore it suffices to show that it is
holomorphic on some 0-neighborhood. This follows from the fact that it is G-equivariant and
coincides on some 0-neighborhood with the local holomorphic extension of the orbit map of £&. Here
we use that, for z,y € g sufficiently small, the holomorphic extension U¢ of the é-orbit map satisfies

U* (exp(a * iy)) = Ulexpa)US(expiy) = U(expz) fe(y) = Uy (expa,y),
where axb=a+b+ %[a, bl + - - - denotes the Baker—-Campbell-Hausdorff series. O

We topologize the space H$ by identifying it with O(Gy, H)¢, the Fréchet space of G-equivariant
holomorphic maps F': Gy — H, endowed with the Fréchet topology of uniform convergence on com-
pact subsets. Now H“ = J,, H};, and we topologize H“ as the locally convex direct limit of the
Fréchet spaces H{ . If the universal complexification ng: G — G is injective, it is easy to see that
we thus obtain the same topology as in [GKS11]. Note that, for any monotone basis (V;,)nen of
convex O-neighborhoods in g, we then have

HY = lim My,
so that H“ is a countable locally convex limit of Fréchet spaces. As the evaluation maps
O(Gy,H)® = H, F s F(e,0)

are continuous, the inclusion ¢: H¥ — H is continuous.
We write H ™ for the space of continuous antilinear functionals n: H¥ — C (called hyperfunction
vectors) and
(Y HYXHY - C
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for the natural sesquilinear pairing that is linear in the second argument. We endow H ™% with the
weak-*-topology. We then have natural continuous inclusions

HY > H — H¥.

Our specification of the topology on H* differs from the one [GKSTI] because we do not want to
assume that the universal complexification 7ng: G — G¢ is injective, but both constructions define
the same topology. Moreover, the arguments in [GKS11] apply with minor changes to general Lie
groups.

We actually have the following chain of complex linear embeddings

HYCHCHCH ®CH™, (C.14)

where all inclusions are continuous and G acts on all spaces by representations denoted U, U,
U, U=, and U™¥, respectively. All of the three above representations can be integrated to the
convolution algebra C2°(G) := C° (G, C) of test functions, for instance

U=*(p) = /G o()U~(g) dg, (C.15)

where dg stands for a left Haar measure on G.

D Direct integral techniques

Here we collect some material from [MN24] and [BN25]. We refer to [BR87] for the basics on direct
integrals.

Let H=[ )6(5 H.m die(m) be a direct integral of Hilbert spaces on a standard measure space (X, y1).
We call a closed real subspace H C ‘H decomposable if it is of the form

53
H= / Hm dﬂ(m)a

X

where (H,;)mex is a measurable field of closed real subspaces. Now let (Hk)ke Kk be an at most
countable family of decomposable real subspaces. Then we have ([MT19, Lemma B.3]):

(DI1) H = [ H., du(m).
(D12) Myex HE = J¥ Neex He dun(m).

(DI3) 32, HF = [ 32, HE, du(m).
Lemma D.1. The subspace H is cyclic/separating/standard if and only if p-almost all H,, have
this property.

Proof. (a) First we deal with the separating property. By (DI2) we have

&
HniH = / (H,, NiH,,) du(m),
X

and this space is trivial if and only if py-almost all spaces H,, N iH,, are trivial, which means that
H,, is separating.

(b) The subspace H is cyclic if and only if H’ is separating. By (DI1) and (a) this means that
p-almost all H] | are separating, i.e., that H,, is cyclic.

(¢) By (a) and (b) H is standard if and only if p-almost all H,, are cyclic and separating, i.e.,
standard. O
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Lemma D.2. For a countable family (H*).cx of decomposable cyclic closed real subspaces, the
intersection V := (¢ H¥ is cyclic if and only if, for p-almost every m € X, the subspace V,, :=

Niex HE, is cyclic.
Proof. By (DI2), we have V= [ )eg Vi di(m), so that the assertion follows from Lemma O

For a direct integral

D
(U,H)Z/X (UnuHm) d,u(m)

of antiunitary representations of G, , the canonical standard subspace V= V(h,U) C H from (0.1))
is specified by the decomposable operator JAY/2 = U ()€™ OU(h) hence decomposable:

@
V:/X Vo dpe(m). (D.1)

Lemma D.3. Assume that G has at most countably many components. For any subset A C G and
a real subspace H C H, we put

Ha = () Ulg)H. (D.2)
geA

Then the following assertions hold:
(a) IfH is decomposable, then Hy = f)e? Hon,a dp(m).
(b) Ha is cyclic if and only if p-almost all Hy, 4 are cyclic.

Proof. (a) As G has at most countably many components, it carries a separable metric. Hence
there exists a countable subset B C A which is dense in A. For £ € H, we have

¢c€Hy ifandonlyif U(A)~'¢ CH.

Now the closedness of H and the density of B in A show that this is equivalent to U(B)~*¢ C H,
ie., to £ € Hp. This shows that H4 = Hp. We likewise obtain H,, 4 = H,, p for every m € X.

Hence the assertion follows by applying (DI2) to Hg = H4.
(b) follows from (a) and Lemma O

Lemma D.4. Let H = f)? Hodu(x), a direct integral von Neumann algebra A = f)e? Azdp(x) and
a strongly continuous, unitary, direct integral representation of a Lie group G with countable many
connected components, (U, H) = ff?(Uz,HI)du(a:). Then, for any subset N C G, we have

M= [ At
g = g)zdp(x
geEN XgeN g

where Ay = U(g)AU(g)*.

Proof. As G has at most countably many components, it carries a separable metric. Hence there
exists a countable subset Ny C N which is dense in N. For A € B(H), the map

F:G— B(H), F(g)=U(g9)AU(9)*,
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is weak operator continuous, so that the set of all g € G with F(g) € ngGNo Ay is a closed subset,
hence contains N. We conclude that
() As= () Ao

gE€No geEN
We likewise obtain for every z € X the relation
() Avg= () Ay for Asg=Us(g)A:Us(9)".
g€No gEN
From [BRS&7, Prop. 4.4.6(b)] we thus obtain
52 S2]
ﬂ Ay = ﬂ Ag z/ ﬂ Ay, g du(z) :/ ﬂ Az g dp(z).
geN gE€No X genN, X gen
Finally, we observe that, for every g € G

[S] D
Ay = [ (A dula) = / Apg du(z)
X X

follows by the uniqueness of the direct integral decomposition. O

Tools to verify additivity
Definition D.5. We call a net H on open subsets of M additive if O = {J,c; O; implies H(O) =
> jes H(O;). We call it countably additive, it this relation holds for countable index sets.

Lemma D.6. If M has a countable basis for its topology, then every countably additive net on open
subsets of M is additive.

Proof. Let (O;);es be a family of open subsets of M. Further, let B be a countable basis for the
topology of M. Then each O; is the union of the countable set B, of basis elements contained
in O;, and therefore

O=|J{B: BeBo}, Bo:=U;csB;,
where 2B is countable. Countable additivity thus implies that

HO)= > HB)=>_ Y H(B)=> HO;).

BeBo jeJ BEB, jeJ

Therefore H is additive. O

Remark D.7. Every additive net is isotone because O; C O implies O = O1 U Oy, so that
additivity entails

Lemma D.8. IfH(O)oca is a net on open subsets of the second countable space M, each subspace
H(O) is decomposable as

@
HO) = [ H.(0) duo).

X
and p-almost all the nets (Hy)zex are additive, then H is additive.
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Proof. In view of Lemma m it suffices to show that H is countably additive. So let O = J ies O;
with a countable index set J. Then (DI3) and the additivity of the nets H, imply that

S H(O;) = /X S HL(0;) dp(x) = /X H.(0) du(x) = H(O). 0

jeJ jeJ

E Some facts on convex cones

Lemma E.1. ([MNO23| Lemma B.1]) Let E be a finite-dimensional real vector space, C C E a
closed convexr cone and E1 C E a linear subspace. If the interior C° of C intersects E1, then
C° N E; coincides with the relative interior C7 of the cone Cy :=C N E; in E;.

Lemma E.2. Let V be a finite-dimensional real vector space, A € End(V') diagonalizable, and let
C CV be a closed convex cone invariant under e®4. Let Apin and Amax e the minimal/mazimal
eigenvalues of A. For an eigenvalue A of A we write V\(A) for the corresponding eigenspace and
pa: V= Vi(A) for the projection along all other eigenspaces. Then

Prmin (C) =Cn VAmin (A) and  px

C)=C NV (A

max ( max (

If A has only two eigenvalues, it follows that C' = px,,,. (C) & pa,.. (C).

Proof. Since we can replace A by —A, it suffices to verify the second assertion. So let v € C' and
write it as a sum v = ), vy of A-eigenvectors. Then

Ulmax — lim e_f’)‘maxetAv cC
t—o0
implies that py,,.(C) € CNVy,,. (A), and the other inclusion is trivial. -
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