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Contents:

• Classical approximation results by neural networks
(universality, approximation of smooth functions)
• ReLU networks (linear finite elements, approximation of

the square function)
• The role of depth (representation of compactly supported

functions, number of pieces)
• High dimensional approximation (curse of dimensiona-

lity, dimension dependent regularity assumptions)
• Complexity of sets of networks (VC dimension, lower

bounds)
• Spaces of realisations of neural networks (non-

convexity and closedness of network spaces) Fig. 1: Approximation of x 7→ x2.

Description: In this lecture, we will explore the mathematical structure of neural networks (NNs), a
central concept in modern machine learning. Historically, the first model was inspired by biology: the
McCulloch and Pitts neuron (1943) is a simple function which mimics a biological neuron firing when its
weighted inputs exceed a threshold.
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Fig. 2: Biological versus artificial neuron.

A network of neurons can be constructed by linking multiple neurons together such that the output of
one neuron forms an input to another. A simple model for such a network is the multilayer perceptron
(MLP). An MLP with L layers and activation σ is a function of the form

F (x) = TL(σ(TL−1(. . . σ(T1(x)) . . .))),

where each Tlx := Alx + bl, l = 1, . . . , L is an affine map and σ : R → R a (nonlinear) activation function
acting coordinate-wise. Although this architecture – with connections only between adjacent layers – is
far from a faithful biological model, it forms the computational core of deep learning.
The focus of this lecture will be mathematical, not algorithmic. We will study MLPs from a functional-
analytic perspective. By concentrating on a rigorous analytical framework, we will uncover mathematical
reasons behind many empirically observed successes of deep learning, providing a foundation to under-
stand their strengths and limitations. In particular, we address questions such as:

• Why are deep networks often more powerful than shallow ones?
• How can NNs approximate high-dimensional functions efficiently, where classical methods fail?
• What structural properties make certain architectures preferable?

Prerequisites: Linear Algebra I and Analysis I-III or Mathematics for Data Science I+II or comparable.
Moreover, Functional Analysis or Higher Analysis are recommended. This course is suitable for Bachelor
students in Mathematics as well as for the Master Mathematics/Data Science/CAM.
Creditable as: Theoretical/Applied Mathematics (B.Sc. Math); Specialisation Mathematical Theo-
ry/Foundations of Data Science (Data Science); Specialization: Analysis and Stochastics (M.Sc. Math).
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