Stability and asymptotic properties of a linearized hydrodynamic medium model for dispersive media in nanophotonics (S. Nicaise, Université Polytechnique Hauts-de-France, France)

Feb 18
18-02-2021 12:30 Uhr bis 13:30 Uhr
Online

Stability and asymptotic properties of a linearized hydrodynamic medium model for dispersive media in nanophotonics

Speaker: Prof. Dr. Serge Nicaise
Affiliation: Université Polytechnique Hauts-de-France, France

Zoom access data: Please contact marius.yamakou@fau.de

Abstract: In this talk, we will present a linearized hydrodynamical model describing the response of nanometric dispersive metallic materials illuminated by optical light waves, a situation occurring in nanoplasmonics. The model corresponds to the coupling between the Maxwell system and a PDE describing the evolution of the polarization current of the electrons in the metal. First by using semigroup theory its well posedness will be shown. Then using a frequency approach, a polynomial (and optimal) stability result will be presented. We will also investigate the numerical stability for a discontinuous Galerkin type approximation and several explicit time integration schemes. Numerical tests that confirm our theoretical prediction will be given.

This is a join work with Claire Scheid (Université Côte d’Azur, France).

https://en.www.math.fau.de/applied-analysis/

Friedrich-Alexander-Universität Erlangen-Nürnberg