• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Department Mathematik
  • FAUZur zentralen FAU Website
Suche öffnen
  • de
  • en
  • FAUDir
  • StudOn
  • campo
  • CRIS
  • Hilfe im Notfall

Department Mathematik

Menu Menu schließen
  • Department
    • Lehrstühle und Professuren
    • Mitarbeitende A-Z
    • Förderverein
    • Rechnerbetreuung
    • Kontakt und Anreise
    • Pruefungsausschuss
    • Aktuelles
    Portal Department Mathematik
  • Forschung
    • Forschungsprojekte
    • Publikationen
    • Preprint-Reihe Angewandte Mathematik
    Portal Forschung
  • Studium
  • Veranstaltungen
  • Kolloquium

Department Mathematik

Friedrich-Alexander-Universität

Bereichsnavigation: Department Mathematik
  • Lehrstühle und Professuren
  • Prüfungsausschuss Mathematik
  • Kolloquium
    • Kolloquium WS 2025/2026
    • Kolloquium SS 2025
    • Kolloquium WS 2024/2025
    • Kolloquium SS 2024
    • Kolloquium WS 2023/2024
    • Kolloquium SS 2023
    • Kolloquium WS 2022/2023
    • Kolloquium SS 2022
  • Forschung
  • Felix-Klein-Gebäude
  • Mathematische Sammlung
  • Förderverein
  • Rechnerbetreuung
  • Stellenanzeigen
  • Kontakt und Anreise

Kolloquium WS 2025/2026

Speaker: Giambattista Giacomin, Università degli Studi di Padova – Invited by H. Schulz-Baldes

Abstract: The transfer matrix method is a standard method to solve (in particular) one dimensional statistical mechanics models. In the case of spins taking only two values (Ising spins) the matrix involved is just a two by two matrix. In a somewhat surprising way and, for some cases, in highly non trivial way, the Ising transfer matrix is key to the solution of other models, notably dimer models and two dimensional Ising models. While for non disordered models everything boils down to computing the spectrum of the transfer matrix, in presence of disorder one needs to understand the much less explicit Lyapunov spectrum of the product of random Ising transfer matrices. In this field a number of mathematical challenges emerge from some remarkable research works in theoretical physics that, in mathematical terms, address the problem of singular behavior of Lyapunov exponents. The purpose of my presentation is to give an introduction to this research domain and present some rigorous results addressing precisely some of the issues tackled by physicists.

Friedrich-Alexander-Universität
Department Mathematik

Cauerstraße 11
91058 Erlangen
Germany
  • Kontakt und Anreise
  • Interner Bereich
  • Mitarbeitende A-Z
  • Impressum
  • Datenschutz
  • DE/EN
  • RSS Feed
Nach oben