• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Department Mathematik
  • FAUZur zentralen FAU Website
  • de
  • en
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • Hilfe im Notfall

Department Mathematik

Menu Menu schließen
  • Department
    • Lehrstühle und Professuren
    • Verwaltung
    • Förderverein
    • Rechnerbetreuung
    • Kontakt und Anreise
    • Aktuelles
    Portal Department Mathematik
  • Forschung
    • Forschungsprojekte
    • Publikationen
    • Preprint-Reihe Angewandte Mathematik
    Portal Forschung
  • Studium
    • Beratung
    • Vor dem Studium
    • Im Studium
    • International
    Portal Studium
  • Veranstaltungen
  1. Startseite
  2. Lie-Gruppen
  3. Personen
  4. Prof. Dr. Karl-Hermann Neeb
  5. Forschung

Forschung

Bereichsnavigation: Lie-Gruppen
  • Personen
    • Prof. Dr. Catherine Meusburger
      • Arbeitsgruppe
      • Forschung
        • Konferenzvorträge
        • Seminarvorträge
      • Lehre
        • frühere Semester
        • betreute Arbeiten
        • Vorlesungsskripten
      • Publikationen
      • Projekte und Aktivitäten
        • School Quantum Geometry
        • Workshop 2014
        • Workshop 2012
        • Workshop 2011
      • CV
    • Prof. Dr. Karl-Hermann Neeb
      • Arbeitsgruppe
      • Forschung
      • Lehrveranstaltungen
      • Herausgeberschaft
      • Vorlesungsskripten
      • Publikationen
      • Projekte
    • Prof. Dr. Kang Li
      • Forschungsschwerpunkte
      • Lehre
  • Forschungsschwerpunkte

Forschung

Prof. Dr. Karl-Hermann Neeb

Research Interests:

Structure and representation theory of infinite-dimensional Lie groups and Lie algebras

Lie groups and Lie algebras

The simplest examples of Lie groups are are groups of matrices that students already encounter in the basic courses on Linear Algebra. One research focus of the group are infinite dimensional Lie groups, which are generalizations of matrix groups. These are groups carrying a smooth manifold structure for which the group operations are smooth. A natural first order approximation of a Lie group is its Lie algebra and the translation mechanism between Lie groups and Lie algebra lies at the heart of Lie theory. This is analogous to modeling a dynamical system by a differential equation (infinitesimal level) and to recover the dynamics (global level) by an integration process.

The representation theory of Lie groups and their Lie algebras deals with the different realizations of a Lie group by symmetries of a mathematical structure and plays an important role in classifying objects in terms of their symmetries. Felix Klein’s Erlangen program even defines geometry in terms of the corresponding symmetry groups. Lie groups and their Lie algebras also play a fundamental role as symmetries of classical and quantum mechanical systems. Here classical systems are modeled by Hamiltonian Lie group actions and quantum systems lead to unitary representations of Lie groups, an area which is under active investigation for infinite dimensional groups.

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Kontakt und Anreise
  • Interner Bereich
  • Mitarbeitende A-Z
  • Impressum
  • Datenschutz
  • DE/EN
Nach oben