• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Department Mathematik
  • FAUZur zentralen FAU Website
  • de
  • en
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • Hilfe im Notfall

Department Mathematik

Menu Menu schließen
  • Department
    • Lehrstühle und Professuren
    • Verwaltung
    • Förderverein
    • Rechnerbetreuung
    • Kontakt und Anreise
    • Aktuelles
    Portal Department Mathematik
  • Forschung
    • Forschungsprojekte
    • Publikationen
    • Preprint-Reihe Angewandte Mathematik
    Portal Forschung
  • Studium
    • Beratung
    • Vor dem Studium
    • Im Studium
    • International
    Portal Studium
  • Veranstaltungen
  1. Startseite
  2. Angewandte Mathematik 1
  3. Mitarbeitende A – Z
  4. Prof. Dr. Manuel Friedrich
  5. Forschung

Forschung

Bereichsnavigation: Angewandte Mathematik 1
  • Lehre
    • Skripte
    • Lehrveranstaltungen
  • Mitarbeitende A – Z
    • Dr. Marco Bresciani
    • Prof. Dr. Günther Grün
    • Dr. Rufat Badal
    • Apratim Bhattacharya
    • Astrid Bigott
    • Prof. Dr. Martin Burger
    • Sebastian Czop
    • Lea Föcke
    • Prof. Dr. Manuel Friedrich
      • Lehrveranstaltungen
      • Publikationen
      • Forschung
    • Dr. Stephan Gärttner
    • Samira Kabri
    • Lorenz Klein (AG Grün)
    • Jonas Knoch
    • Prof. Dr. Serge Kräutle
      • Lehrveranstaltungen (aktuelles Semester)
      • Lehre, frühere Semester
      • Vorlesungsskripte u. Klausuren
      • Publications
      • Research Interests, Awards, etc.
      • CV + Trekking in Greenland
    • Prof. Dr. Wilhelm Merz
      • Forschung
      • Lehrbücher
    • Dr. Stefan Metzger (AG Grün)
    • PD Dr. Maria Neuss-Radu
      • Forschung PD Dr. Maria Neuss-Radu
      • Anne Petzold
    • Dr. Alexander Prechtel
      • Forschung
      • Lehre
    • Dr. Nadja Ray
    • Tim Roith
    • Dr. habil. Raphael Schulz
      • Forschung
    • Joscha Seutter
    • Dr. Daniel Tenbrinck
    • Cornelia Weber
    • Lukas Weigand
    • Simon Zech
  • Forschung
    • Übersicht von Habilitationen und Dissertationen
    • Poröse Medien Gruppe
      • Multicomponent reactive transport
      • Multiscale problems in life sciences
      • Geophysical flows
      • Multiphase flow in porous media
      • Emergence in porous media
      • Stochastic modelling of porous media
    • Projekte
    • Software
      • SiMRX
      • flexBox
    • Gruppe Prof. Dr. Grün
      • Forschungsinteressen
      • Prof. Dr. Günther Grün
      • Projekte
  • Veranstaltungen
    • 50 Jahre Angewandte Mathematik
    • Math meets reality
    • Mathematical Modeling of Biomedical Problems
    • PDEs meet uncertainty
    • Short Course: Stochastic Compactness and SPDEs
    • Workshop on Modelling, Analysis and Simulation of Processes in Porous Media
  • Ehemalige Mitarbeitende
    • Prof. Dr. Vadym Aizinger
      • Forschung
        • Software
    • Dr. Leon Bungert
    • Dr. Antonio Esposito
    • Dr. Tobias Elbinger
    • Dr. Hubertus Grillmeier (AG Grün)
      • Forschung
    • Dr. Alicja Kerschbaum
    • Prof. Dr. Peter Knabner
      • CV
      • Forschung
      • Für jedermann
        • Festkolloquium
        • Karpfenrede
        • Laudatio zur Ehrenpromotion an Herrn Prof. Dr. Rolf Rannacher
      • Lehre
        • Frühere Lehrveranstaltungen
        • Skripte zu Lehrveranstaltungen
        • Bücher
          • Lineare Algebra
          • Lineare Algebra (Auflage 2013)
          • Lineare Algebra: Aufgaben und Lösungen
          • Mathematik für Ingenieure und Naturwissenschaftler
          • Mathematik für Ingenieure und Naturwissenschaftler: Band 2
          • Endlich gelöst! Aufgaben zur Mathematik für Ingenieure und Naturwissenschaftler
          • Endlich gelöst! Aufgaben zur Mathematik für Ingenieure und Naturwissenschaftler (Band 2)
          • Numerik partieller Differentialgleichungen
          • Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien
          • Mathematische Modellierung
          • Mit Mathe richtig anfangen
    • Dr. Markus Knodel
      • Forschung
    • Alice Lieu, PhD
    • Dr. Balthasar Reuter
      • Forschung
      • LateX-Vorlagen
      • Lehre
    • Dr. Andreas Rupp
      • Forschung
    • Dr. Doris Schneider
      • Conference Preview
      • Forschung
    • Dr. Oliver Sieber (AG Grün)
    • Dr. habil. Nicolae Suciu
    • Dr. Philipp Wacker
    • Dr. Patrick Weiß (AG Grün)
    • Dr. Philipp Werner

Forschung

Research Interests

The general research interests of the group lie in applied analysis, more precisely in the calculus of variations and the mathematical modeling of problems in materials science. Research questions and mathematical techniques include:

  • Multiscale Methods
  • Gamma-convergence, relaxation, and integral representation
  • Free-discontinuity problems
  • Atomistic models and discrete-to-continuum limits
  • Crystallization
  • Geometric rigidity and linearization
  • Functions of bounded variation/deformation
  • Geometric measure theory
  • Nonlinear evolution equations

Research group and associated members:

  • Rufat Badal (FAU Erlangen-Nürnberg)
  • Marco Bresciani (FAU Erlangen-Nürnberg)
  • Antonio Donnarumma (FAU Erlangen-Nürnberg)
  • Wojciech Górny (Universität Wien)
  • Camille Labourie (FAU Erlangen-Nürnberg)
  • Lennart Machill (WWU Münster)
  • Manuel Seitz (Universität Wien)
  • Joscha Seutter (FAU Erlangen-Nürnberg)
  • Konstantinos Zemas (WWU Münster)

Main research directions

The current main research directions of the group are

Variational problems involving bulk and surface energies

    • People: Marco Bresciani, Antonio Donnarumma, Manuel Friedrich, Camille Labourie Joscha Seutter, Konstantinos Zemas
    • Funding: GRK Frascal, DFG grant „Fracture models in SBD: Homogenization and quasistatic evolution“ (2019 – 2021)
    • Latest paper: S. Almi, E. Davoli, M. Friedrich: Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture.

                                     Geometric (non-)rigidity in variable domains (Friedrich, Kreutz, Zemas)

 

Molecular structures

    • People: Manuel Friedrich, Lennart Machill, Konstantinos Zemas
    • Funding: DFG-FWF grant „Variational Modeling of Molecular Geometries“ jointly with Ulisse Stefanelli (2020 – 2023)
    • Latest paper: M. Friedrich, W. Górny, U. Stefanelli: The double-bubble problem on the square lattice.

       Grain boundaries in polycrystals (Friedrich, Kreutz, Schmidt)

Gradient flows in solid mechanics

    • People: Rufat Badal, Manuel Friedrich, Lennart Machill
    • Funding: DFG grant „Effective theories for metric gradient flows in solid mechanics“ (2021 – 2024), DAAD grant „Rigorous derivation of linearized models in thermomechanics“ (2022-2023)
    • Latest paper: M. Friedrich, L. Machill: One-dimensional viscoelastic von Kármán theories derived from nonlinear thin-walled beams.

 Evolution of viscoelastic von Kármán plate (Friedrich, Kruzik, Valdman)

Publications

Publications of the group, ordered by topics:

Variational models of brittle fracture

  • C. Labourie, A. Lemenant: Epsilon-regularity for Griffith almost-minimizers in any dimension under a separating condition. Submitted 2022. [Preprint]
  • (with R. Badal, J. Seutter) Existence of quasi-static crack evolution for atomistic systems. Forces in mechanics, to appear. [Preprint, Article]
  • S. Almi, E. Davoli, M. Friedrich: Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture. Submitted 2022. [Preprint]
  • M. Friedrich, M. Perugini, F. Solombrino: Gamma-convergence for free-discontinuity problems in linear elasticity: Homogenization and relaxation. Indiana University Mathematics Journal, to appear. [Preprint]
  • V. Crismale, M. Friedrich, F. Solombrino: Integral representation for energies in linear elasticity with surface discontinuities. Adv. Calc. Var., to appear. [Preprint, Article]
  • M. Friedrich: Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials. Mathematics in Engineering, 2 (2020), pp. 75-100. [Preprint, Article]
  • M. Friedrich: A compactness result in GSBV^p and applications to Γ-convergence for free discontinuity problems. Calc. Var. PDE 58:86 (2019). [Preprint, Article]
  • M. Friedrich, F. Solombrino: Quasistatic crack growth in 2d-linearized elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018) pp. 27-64. [Preprint, Article]
  • M. Friedrich: A derivation of linearized Griffith energies from nonlinear models. Arch. Ration. Mech. Anal. 225 (2017) pp. 425-467. [Preprint, Article]

Epitaxially strained films and material voids

  • M. Friedrich, L. Kreutz, K. Zemas: From atomistic systems to linearized continuum models for elastic materials with voids. Submitted 2022. [Preprint]
  • M. Friedrich, L. Kreutz, K. Zemas: Geometric rigidity in variable domains and derivation of linearized models for elastic materials with free surfaces. Submitted 2021. [Preprint]
  • V. Crismale, M. Friedrich: Equilibrium configurations for epitaxially strained films and material voids in three-dimensional linear elasticity. Arch. Ration. Mech. Anal. 237 (2020), pp. 1041-1098. [Preprint, Article]
  • L. Kreutz, P. Piovano: Microscopic validation of a variational model of epitaxially strained crystalline film. SIAM J. Math. Anal. 53 (2021), pp. 453-490. [Preprint, Article]

Multiphase materials

  • M. Friedrich, L. Kreutz, B. Schmidt: Emergence of rigid polycrystals from atomistic systems with Heitmann-Radin sticky disk energy. Arch. Ration. Mech. Anal. 240 (2021), pp. 627-698. [Preprint, Article]
  • (with E. Davoli) Two-well linearization for solid-solid phase transitions. J. Eur. Math. Soc. (JEMS), to appear. [Preprint, Article]
  • M. Friedrich, F. Solombrino: Functionals defined on piecewise rigid functions: Integral representation and Γ-convergence. Arch. Ration. Mech. Anal. 236 (2020), pp. 1325-1387. [Preprint, Article]
  • E. Davoli, M. Friedrich: Two-well rigidity and multidimensional sharp-interface limits for solid-solid phase transitions. Calc. Var. PDE 59:44 (2020). [Preprint, Article]

Foundation of the function space SBD

  • M. Friedrich, M. Perugini, F. Solombrino: Lower semicontinuity for functionals defined on piecewise rigid functions and on GSBD. J. Funct. Anal. 280 (2021), 108929. [Preprint, Article]
  • F. Cagnetti, A. Chambolle, M. Perugini, L. Scardia: An extension result for generalised special functions of bounded deformation. Journal of Convex Analysis 28 (2021), pp. 457-470. [Preprint, Article]
  • M. Friedrich: A piecewise Korn inequality in SBD and applications to embedding and density results. SIAM J. Math. Anal. 50 (2018), pp. 3842-3918. [Preprint, Article]
  • M. Friedrich: On a decomposition of regular domains into John domains with uniform constants. ESAIM Control Optim. Calc. Var. 24 (2018), pp. 1541-1583. [Preprint, Article]
  • M. Friedrich: A Korn-type inequality in SBD for functions with small jump sets. Math. Models Methods Appl. Sci. (M3AS) 27 (2017) pp. 2461-2484. [Preprint, Article]
  • M. Friedrich, B. Schmidt: A quantitative geometric rigidity result in SBD. Preprint 2015. [Preprint]

Crystallization and lattice energies

  • (with L. Kreutz) A proof of finite crystallization via stratification. Submitted 2022. [Preprint]
  • M. Cicalese, L. Kreutz, G. P. Leonardi: Wulff-crystals in FCC and HCP lattices. Submitted 2021. [Preprint]
  • A. Chambolle, L. Kreutz: Crystallinity of the homogenized energy density of periodic lattice systems. Submitted 2021. [Preprint]
  • M. Friedrich, W. Górny, U. Stefanelli: The double-bubble problem on the square lattice. Submitted 2021. [Preprint]
  • (with L. Bétermin, U. Stefanelli) Lattice ground states for Embedded-Atom Models in 2D and 3D. Letters in Mathematical Physics 111: 107 (2021). [Preprint, Article]
  • M. Friedrich, U. Stefanelli: Crystallization in a one-dimensional periodic landscape. J. Stat.Phys. 179 (2020), pp. 485-501. [Preprint, Article]
  • M. Friedrich, L. Kreutz: Finite crystallization and Wulff shape emergence for ionic compounds in the square lattice. Nonlinearity 33 (2020), pp. 1240-1296. [Preprint, Article]
  • M. Friedrich, L. Kreutz: Crystallization in the hexagonal lattice for ionic dimers. Math. Models Methods Appl. Sci. (M3AS) 29 (2019), pp. 1853-1900. [Preprint, Article]

Geometry and stability of nanostructures

  • (with M. Seitz, U. Stefanelli) Tilings with nonflat squares: a characterization. Milan Journal of Mathematics 90 (2022), pp. 131-175. [Preprint, Article]
  • (with L. Bétermin, U. Stefanelli) Angle-rigidity for Z^2 configurations. Nonlinearity 34 (2021), pp. 8392-8413. [Preprint, Article]
  • M. Friedrich, U. Stefanelli: Ripples in graphene: A variational approach. Comm. Math. Phys. 379 (2020), pp. 915–954. [Preprint, Article]
  • M. Friedrich, E. Mainini, P. Piovano, U. Stefanelli: Characterization of optimal carbon nanotubes under stretching and validation of the Cauchy-Born rule. Arch. Ration. Mech. Anal. 231 (2019), pp. 465-517. [Preprint, Article]
  • U. Ludacka, M. R. A. Monazam, C. Rentenberger, M. Friedrich, U. Stefanelli, J. C. Meyer, J. Kotakoski: In situ control over graphene ripples and strain in the electron microscope. npj 2D Materials and Applications 2: 25 (2018). [Article]
  • M. Friedrich, U. Stefanelli: Graphene ground states. Zeitschrift für angewandte Mathematik und Physik, June 2018, 69:70. [Preprint, Article]
  • M. Friedrich, P. Piovano, U. Stefanelli: The geometry of C60: A rigorous approach via Molecular Mechanics. SIAM J. Appl. Math. 76 (2016) pp. 2009-2029. [Preprint, Article]

Spin systems

  • A. Bach, M. Cicalese, L. Kreutz, G. Orlando: The antiferromagnetic XY model on the triangular lattice: topological singularities. Submitted 2020. [Preprint]
  • A. Bach, M. Cicalese, L. Kreutz, G. Orlando: The antiferromagnetic XY model on the triangular lattice: chirality transitions at the surface scaling. Submitted 2020. [Preprint]
  • A. Braides, L. Kreutz: Optimal design of lattice surface energies. Calc. Var. PDE 57, 97 (2018) [Preprint, Article]
  • A. Braides, L. Kreutz: Optimal bounds for periodic mixtures of nearest-neighbour ferromagnetic interactions. Rendiconti Lincei-Matematica e Applicazioni 28(1) (2017) 103–117 [Preprint, Article]

Cleavage laws in brittle crystals

  • M. Friedrich, B. Schmidt: On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Netw. Heterog. Media 10 (2015) pp. 321-342. [Preprint, Article]
  • M. Friedrich, B. Schmidt: An analysis of crystal cleavage in the passage from atomistic models to continuum theory. Arch. Ration. Mech. Anal. 217 (2015) pp. 263-308. [Preprint, Article]
  • M. Friedrich, B. Schmidt: An atomistic-to-continuum analysis of crystal cleavage in a two-dimensional model problem. J. Nonlin. Sci. 24 (2014) pp. 145-183. [Preprint, Article]

Nonlinear viscoelasticity

  • M. Friedrich, L. Machill One-dimensional viscoelastic von Kármán theories derived from nonlinear thin-walled beams. Submitted 2022. [Preprint]
  • (with R. Badal, M. Kruzik) Nonlinear and Linearized Models in Thermoviscoelasticity. Arch. Ration. Mech. Anal. 247: 5 (2023). [Preprint, Article]
  • (with L. Machill) Derivation of a one-dimensional von Kármán theory for viscoelastic ribbons. NoDEA Nonlinear Differential Equations Appl. 59:11 (2022). [Preprint, Article]
  • M. Friedrich, M. Kruzik: Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity. Arch. Ration. Mech. Anal. 238 (2020), pp. 489-540. [Preprint, Article]
  • (with M. Kruzik, J. Valdman) Numerical approximation of von Kármán viscoelastic plates. DCDS-S, 14 (2021), pp. 299-319. [Preprint, Article]
  • M. Friedrich, M. Kruzik: On the passage from nonlinear to linearized viscoelasticity. SIAM J. Math. Anal. 50 (2018), pp. 4426-4456. [Preprint, Article]
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Kontakt und Anreise
  • Interner Bereich
  • Mitarbeitende A-Z
  • Impressum
  • Datenschutz
  • DE/EN
Nach oben