• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Department Mathematik
  • FAUZur zentralen FAU Website
Suche öffnen
  • de
  • en
  • UnivIS
  • StudOn
  • campo
  • CRIS
  • Hilfe im Notfall

Department Mathematik

Menu Menu schließen
  • Department
    • Lehrstühle und Professuren
    • Organe und Gremien
    • Verwaltung
    • Förderverein
    • Rechnerbetreuung
    • Kontakt und Anreise
    • Aktuelles
    Portal Department Mathematik
  • Forschung
    • Forschungsprojekte
    • Publikationen
    • Preprint-Reihe Angewandte Mathematik
    Portal Forschung
  • Studium
  • Veranstaltungen
  • Kolloquium
  1. Startseite
  2. Angewandte Mathematik 1
  3. Ehemalige Mitarbeitende
  4. Prof. Dr. Peter Knabner
  5. Lehre

Lehre

Bereichsnavigation: Angewandte Mathematik 1
  • Lehre
  • Mitarbeitende A - Z
  • Forschung
  • Veranstaltungen
  • Ehemalige Mitarbeitende
    • Prof. Dr. Vadym Aizinger
    • Dr. Apratim Bhattacharya
    • Astrid Bigott
    • Dr. Leon Bungert
    • Prof. Dr. Martin Burger
    • Dr. Antonio Esposito
    • Dr. Lea Föcke
    • Dr. Stephan Gärttner
    • Dr. Tobias Elbinger
    • PD Dr. Florian Frank
    • Dr. Hubertus Grillmeier (AG Grün)
    • Samira Kabri
    • Dr. Alicja Kerschbaum
    • Prof. Dr. Peter Knabner
      • CV
      • Forschung
      • Für jedermann
      • Lehre
        • Frühere Lehrveranstaltungen
        • Skripte zu Lehrveranstaltungen
        • Bücher
    • Dr. Markus Knodel
    • Lorenz Kuger
    • Alice Lieu, PhD
    • Dr. Balthasar Reuter
    • Tim Roith
    • Dr. Andreas Rupp
    • Dr. Doris Schneider
    • Dr. habil. Raphael Schulz
    • Dr. Oliver Sieber (AG Grün)
    • Dr. habil. Nicolae Suciu
    • Dr. Philipp Wacker
    • Lukas Weigand
    • Dr. Patrick Weiß (AG Grün)
    • Dr. Philipp Werner
    • Dr. Simon Zech

Lehre

Kurse für Doktoranden und Wissenschaftler

Reaktiver Transport in Porösen Medien: Modelle, Analysis und Simulation: (Kurs in Englisch, Format pdf) – Überblick

1 Vom Stofftransport zum allgemeinen reaktiven Mehrkomponententransport (Part 1)

2 – Ein genauerer Blick auf allgemeinen reaktiven Mehrkomponententransport (Part 2)

3 – Diskretisierung von Fluss- und Transportmodellen (Part 3)

4 – Identifizierung von konstitutiven Gesetzen mittels Durchbruchsexperimenten (kompakt, lang) Übung (Übung)

Videovorlesungen

Für die Vorlesungen, die auf Video verfügbar sind, klicken Sie bitte hier.

 

Friedrich-Alexander-Universität
Department Mathematik

Cauerstraße 11
91058 Erlangen
  • Kontakt und Anreise
  • Interner Bereich
  • Mitarbeitende A-Z
  • Impressum
  • Datenschutz
  • DE/EN
  • RSS Feed
Nach oben