Navigation

DE/EN

Dr. habil. Nicolae Suciu

Dr. Nicolae Suciu

Department Mathematik
Lehrstuhl für Angewandte Mathematik (Modellierung und Numerik) (Prof. Dr. Burger)

Raum: Raum 04.340
Cauerstr. 11
91058 Erlangen

Weitere Informationen finden Sie auf meiner persönlichen Webseite.

 

Publikationen

 

Projekte

  • Integriertes und an Raum-Zeit-Messungsskalen angepasstes Global Random Walk - Modell für reaktiven Transport im Grundwasser

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 01-10-2018 - 30-09-2021
    Mittelgeber: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
  • Entwicklung neuer photokatalytischer Filtersysteme zur Luftreinigung von Nanopartikeln, organischen Zusätzen und Bakterien mit Hilfe numerischer Simulationen

    (Drittmittelfinanzierte Einzelförderung)

    Laufzeit: 01-10-2009 - 30-09-2011
    Mittelgeber: Bundesministerium für Bildung und Forschung (BMBF)

    The project was a cooperation of a group of applied mathematicians with the Russian company Aeroservice for the development and optimization of new photocatalytic filter systems for air cleaning of nanoparticles and organic substances with the help of mathematical simulation tools. For the simulation of aerosol transport in the filter made of polypropylene fibers, which is used in hospitals or airports, e.g., mathematical models and efficient solution algorithms had to be developed. These allow on the one hand to take stochastic components into account, as the heterogeneous conductivity distribution in the filter. On the other hand these methods were coupled with highly accurate computation schemes as mixed finite element methods, which guarantee local mass conservation for the transport processes. The design parameters of real experiments can be optimized with the help of such simulation tools and their sensitivity with respect to filter efficiency analysed. Among the used methods are particle filtration in porous media, based on the Darcy equation, and coupled Eulerian and Lagrangeian simulation of transport processes, including Monte Carlo approaches with given filter geometries.