• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Department Mathematik
  • FAUZur zentralen FAU Website
  • de
  • en
  • UnivIS
  • StudOn
  • meincampus
  • CRIS
  • Hilfe im Notfall

Department Mathematik

Menu Menu schließen
  • Department
    • Lehrstühle und Professuren
    • Verwaltung
    • Förderverein
    • Rechnerbetreuung
    • Kontakt und Anreise
    • Aktuelles
    Portal Department Mathematik
  • Forschung
    • Forschungsprojekte
    • Publikationen
    • Preprint-Reihe Angewandte Mathematik
    Portal Forschung
  • Studium
    • Beratung
    • Vor dem Studium
    • Im Studium
    • International
    Portal Studium
  • Veranstaltungen
  1. Startseite
  2. Angewandte Mathematik 1
  3. Forschung
  4. Poröse Medien Gruppe
  5. Multiscale problems in life sciences

Multiscale problems in life sciences

Bereichsnavigation: Angewandte Mathematik 1
  • Lehre
    • Skripte
    • Lehrveranstaltungen
  • Mitarbeitende A – Z
    • Dr. Marco Bresciani
    • Prof. Dr. Günther Grün
    • Dr. Rufat Badal
    • Apratim Bhattacharya
    • Astrid Bigott
    • Prof. Dr. Martin Burger
    • Sebastian Czop
    • Lea Föcke
    • Prof. Dr. Manuel Friedrich
      • Lehrveranstaltungen
      • Publikationen
      • Forschung
    • Dr. Stephan Gärttner
    • Samira Kabri
    • Lorenz Klein (AG Grün)
    • Jonas Knoch
    • Prof. Dr. Serge Kräutle
      • Lehrveranstaltungen (aktuelles Semester)
      • Lehre, frühere Semester
      • Vorlesungsskripte u. Klausuren
      • Publications
      • Research Interests, Awards, etc.
      • CV + Trekking in Greenland
    • Prof. Dr. Wilhelm Merz
      • Forschung
      • Lehrbücher
    • Dr. Stefan Metzger (AG Grün)
    • PD Dr. Maria Neuss-Radu
      • Forschung PD Dr. Maria Neuss-Radu
      • Anne Petzold
    • Dr. Alexander Prechtel
      • Forschung
      • Lehre
    • Dr. Nadja Ray
    • Tim Roith
    • Dr. habil. Raphael Schulz
      • Forschung
    • Joscha Seutter
    • Dr. Daniel Tenbrinck
    • Cornelia Weber
    • Lukas Weigand
    • Simon Zech
  • Forschung
    • Übersicht von Habilitationen und Dissertationen
    • Poröse Medien Gruppe
      • Multicomponent reactive transport
      • Multiscale problems in life sciences
      • Geophysical flows
      • Multiphase flow in porous media
      • Emergence in porous media
      • Stochastic modelling of porous media
    • Projekte
    • Software
      • SiMRX
      • flexBox
    • Gruppe Prof. Dr. Grün
      • Forschungsinteressen
      • Prof. Dr. Günther Grün
      • Projekte
  • Veranstaltungen
    • 50 Jahre Angewandte Mathematik
    • Math meets reality
    • Mathematical Modeling of Biomedical Problems
    • PDEs meet uncertainty
    • Short Course: Stochastic Compactness and SPDEs
    • Workshop on Modelling, Analysis and Simulation of Processes in Porous Media
  • Ehemalige Mitarbeitende
    • Prof. Dr. Vadym Aizinger
      • Forschung
        • Software
    • Dr. Leon Bungert
    • Dr. Antonio Esposito
    • Dr. Tobias Elbinger
    • Dr. Hubertus Grillmeier (AG Grün)
      • Forschung
    • Dr. Alicja Kerschbaum
    • Prof. Dr. Peter Knabner
      • CV
      • Forschung
      • Für jedermann
        • Festkolloquium
        • Karpfenrede
        • Laudatio zur Ehrenpromotion an Herrn Prof. Dr. Rolf Rannacher
      • Lehre
        • Frühere Lehrveranstaltungen
        • Skripte zu Lehrveranstaltungen
        • Bücher
          • Lineare Algebra
          • Lineare Algebra (Auflage 2013)
          • Lineare Algebra: Aufgaben und Lösungen
          • Mathematik für Ingenieure und Naturwissenschaftler
          • Mathematik für Ingenieure und Naturwissenschaftler: Band 2
          • Endlich gelöst! Aufgaben zur Mathematik für Ingenieure und Naturwissenschaftler
          • Endlich gelöst! Aufgaben zur Mathematik für Ingenieure und Naturwissenschaftler (Band 2)
          • Numerik partieller Differentialgleichungen
          • Mathematische Modelle für Transport und Sorption gelöster Stoffe in porösen Medien
          • Mathematische Modellierung
          • Mit Mathe richtig anfangen
    • Dr. Markus Knodel
      • Forschung
    • Alice Lieu, PhD
    • Dr. Balthasar Reuter
      • Forschung
      • LateX-Vorlagen
      • Lehre
    • Dr. Andreas Rupp
      • Forschung
    • Dr. Doris Schneider
      • Conference Preview
      • Forschung
    • Dr. Oliver Sieber (AG Grün)
    • Dr. habil. Nicolae Suciu
    • Dr. Philipp Wacker
    • Dr. Patrick Weiß (AG Grün)
    • Dr. Philipp Werner

Multiscale problems in life sciences

Multiscale modeling, analysis and simulation of reaction-diffusion processes in porous media. Application to carbohydrate dynamics in living cell
Participants: Maria Neuss-Radu, Alexander Prechtel, Nadja Ray, Markus Gahn, Tobias Elbinger

We consider porous media consisting of different components separated by interfaces. Inside of each component diffusion and nonlinear reaction processes take place. The exchange of substances at interfaces is controlled by the concentrations on both sides of the interface via nonlinear transmission conditions. At interfaces also nonlinear reaction and surface diffusion can occur. We start from microscopic descriptions, where the geometry of medium, the processes inside the components, and the transmission conditions at the interfaces are are resolved. Then, under suitable conditions on the distribution of the components inside the medium (e.g. periodic, locally periodic or stochastic distribution), we derive effective approximations by using techniques of multiscale analysis and homogenization. Hereby, existing techniques have to be further developed to cope with the special feature of our models, e.g. nonlinear transmission conditions on microscopic interfaces.

Our models are applied to the mathematical modeling of metabolic and regulatory processes in living cells, where biochemical species are exchanged between organelles (like mitochondria or plastids) and cytoplasm through organellar membranes, or are attached to membranes, where they undergo enzymatic reactions. In this context, the nonlinearities are given by kinetics corresponding to multi-species enzyme catalyzed reactions, which are generalizations of the classical Michaelis-Menten kinetics for multi-species reactions.

Knowledge concerning metabolic reaction networks and spatial enzyme organization, as well as experimental data are provided by our collaboration partners Uwe Sonnewald and Lars Voll (Biochemistry Department, University Erlangen-Nuremberg). Based on these experimental information, the effective models are simulated numerically. A main aim for our investigations is the identification of the impact of metabolic channeling on the carbon partitioning between starch, sucrose and respiration in Arabidopsis leaves.

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Kontakt und Anreise
  • Interner Bereich
  • Mitarbeitende A-Z
  • Impressum
  • Datenschutz
  • DE/EN
Nach oben